101
|
Xin H, Strickland LW, Hamilton JP, Trusky JK, Fang C, Butler NM, Douches DS, Buell CR, Jiang J. Jan and mini-Jan, a model system for potato functional genomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627817. [PMID: 39713299 PMCID: PMC11661178 DOI: 10.1101/2024.12.10.627817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Potato (Solanum tuberosum) is the third most important food crop in the world. Although the potato genome has been fully sequenced, functional genomics research of potato lags relative to other major food crops due primarily to the lack of a model experimental potato line. Here, we present a diploid potato line, 'Jan', which possesses all essential characteristics for facile functional genomics studies. Jan has a high level of homozygosity after seven generations of self-pollination. Jan is vigorous and highly fertile with outstanding tuber traits, high regeneration rates, and excellent transformation efficiencies. We generated a chromosome-scale genome assembly for Jan, annotated genes, and identified syntelogs relative to the potato reference genome assembly DMv6.1 to facilitate functional genomics. To miniaturize plant architecture, we developed two "mini-Jan" lines with compact and dwarf plant stature using CRISPR/Cas9-mediated mutagenesis targeting the Dwarf and Erecta genes related to growth. Mini-Jan mutants are fully fertile and will permit higher-throughput studies in limited growth chamber and greenhouse space. Thus, Jan and mini-Jan provide an outstanding model system that can be leveraged for gene editing and functional genomics research in potato.
Collapse
Affiliation(s)
- Haoyang Xin
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Luke W. Strickland
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - John P. Hamilton
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia 30602, USA
| | - Jacob K. Trusky
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Chao Fang
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Nathaniel M. Butler
- Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- United States Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, Wisconsin 53706, USA
| | - David S. Douches
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA
- Michigan State University AgBioResearch, East Lansing, Michigan 48824, USA
| | - C. Robin Buell
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia 30602, USA
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia 30602, USA
- The Plant Center, University of Georgia, Athens, Georgia 30602, USA
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Michigan State University AgBioResearch, East Lansing, Michigan 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
102
|
Jdeed G, Morozova VV, Tikunova NV. Genome Analysis of Anti-Phage Defense Systems and Defense Islands in Stenotrophomonas maltophilia: Preservation and Variability. Viruses 2024; 16:1903. [PMID: 39772210 PMCID: PMC11680222 DOI: 10.3390/v16121903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Anti-phage defense systems are widespread in bacteria due to the latter continuous adaptation to infection by bacteriophages (phages). Stenotrophomonas maltophilia has a high degree of intrinsic antibiotic resistance, which makes phage therapy relevant for the treatment of infections caused by this species. Studying the array of anti-phage defense systems that could be found in S. maltophilia helps in better adapting the phages to the systems present in the pathogenic bacteria. Pangenome analysis of the available S. maltophilia strains with complete genomes that were downloaded from GenBank, including five local genomes, indicated a wide set of 72 defense systems and subsystems that varied between the strains. Seven of these systems were present in more than 20% of the studied genomes and the proteins encoded by the systems were variable in most of the cases. A total of 27 defense islands were revealed where defense systems were found; however, more than 60% of the instances of systems were found in four defense islands. Several elements linked to the transfer of these systems were found. No obvious associations between the pattern of distribution of the anti-phage defense systems of S. maltophilia and the phylogenetic features or the isolation site were found.
Collapse
Affiliation(s)
- Ghadeer Jdeed
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Prosp. Lavrentieva 8, Novosibirsk 630090, Russia;
| | | | - Nina V. Tikunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Prosp. Lavrentieva 8, Novosibirsk 630090, Russia;
| |
Collapse
|
103
|
Gao S, Zhang Y, Bush SJ, Wang B, Yang X, Ye K. Centromere Landscapes Resolved from Hundreds of Human Genomes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae071. [PMID: 39423139 DOI: 10.1093/gpbjnl/qzae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/27/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024]
Abstract
High-fidelity (HiFi) sequencing has facilitated the assembly and analysis of the most repetitive region of the genome, the centromere. Nevertheless, our current understanding of human centromeres is based on a relatively small number of telomere-to-telomere assemblies, which have not yet captured its full diversity. In this study, we investigated the genomic diversity of human centromere higher order repeats (HORs) via both HiFi reads and haplotype-resolved assemblies from hundreds of samples drawn from ongoing pangenome-sequencing projects and reprocessed them via a novel HOR annotation pipeline, HiCAT-human. We used this wealth of data to provide a global survey of the centromeric HOR landscape; in particular, we found that 23 HORs presented significant copy number variability between populations. We detected three centromere genotypes with unbalanced population frequencies on chromosomes 5, 8, and 17. An inter-assembly comparison of HOR loci further revealed that while HOR array structures are diverse, they nevertheless tend to form a number of specific landscapes, each exhibiting different levels of HOR subunit expansion and possibly reflecting a cyclical evolutionary transition from homogeneous to nested structures and back.
Collapse
Affiliation(s)
- Shenghan Gao
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yimeng Zhang
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Stephen J Bush
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bo Wang
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaofei Yang
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kai Ye
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Center for Mathematical Medical, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Faculty of Science, Leiden University, Leiden 2311 EZ, The Netherlands
| |
Collapse
|
104
|
Platt RN, Enabulele EE, Adeyemi E, Agbugui MO, Ajakaye OG, Amaechi EC, Ejikeugwu CE, Igbeneghu C, Njom VS, Dlamini P, Arya GA, Diaz R, Rabone M, Allan F, Webster B, Emery A, Rollinson D, Anderson TJC. Genomic data reveal a north-south split and introgression history of blood fluke ( Schistosoma haematobium) populations from across Africa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606828. [PMID: 39149400 PMCID: PMC11326172 DOI: 10.1101/2024.08.06.606828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The human parasitic fluke, Schistosoma haematobium hybridizes with the livestock parasite S. bovis in the laboratory, but the frequency of hybridization in nature is unclear. We analyzed 34.6 million single nucleotide variants in 162 samples from 18 African countries, revealing a sharp genetic discontinuity between northern and southern S. haematobium. We found no evidence for recent hybridization. Instead the data reveal admixture events that occurred 257-879 generations ago in northern S. haematobium populations. Fifteen introgressed S. bovis genes are approaching fixation in northern S. haematobium with four genes potentially driving adaptation. We identified 19 regions that were resistant to introgression; these were enriched on the sex chromosomes. These results (i) suggest strong barriers to gene flow between these species, (ii) indicate that hybridization may be less common than currently envisaged, but (iii) reveal profound genomic consequences of rare interspecific hybridization between schistosomes of medical and veterinary importance.
Collapse
Affiliation(s)
- Roy N Platt
- Texas Biomedical Research Institute, San Antonio TX, United States
| | - Egie E Enabulele
- Texas Biomedical Research Institute, San Antonio TX, United States
| | - Ehizogie Adeyemi
- Department of Pathology, University of Benin Teaching Hospital, Edo State, Nigeria
| | - Marian O Agbugui
- Department of Biological Sciences, Edo State University, Uzairue, Nigeria
| | | | - Ebube C Amaechi
- Department of Zoology, University of Ilorin, Kwara State, Nigeria
| | | | - Christopher Igbeneghu
- Department of Medical Laboratory Science, Ladoke Akintola University of Technology, Nigeria
| | - Victor S Njom
- Department of Applied Biology and Biotechnology, Enugu State University of Science and Technology, Nigeria
| | | | - Grace A Arya
- Texas Biomedical Research Institute, San Antonio TX, United States
| | - Robbie Diaz
- Texas Biomedical Research Institute, San Antonio TX, United States
| | - Muriel Rabone
- Science Department, Natural History Museum, London, United Kingdom
| | - Fiona Allan
- Science Department, Natural History Museum, London, United Kingdom
| | - Bonnie Webster
- Science Department, Natural History Museum, London, United Kingdom
| | - Aidan Emery
- Science Department, Natural History Museum, London, United Kingdom
| | - David Rollinson
- Science Department, Natural History Museum, London, United Kingdom
- Global Schistosomiasis Alliance, London, United Kingdom
| | | |
Collapse
|
105
|
Liu Z, Wang N, Su Y, Long Q, Peng Y, Shangguan L, Zhang F, Cao S, Wang X, Ge M, Xue H, Ma Z, Liu W, Xu X, Li C, Cao X, Ahmad B, Su X, Liu Y, Huang G, Du M, Liu Z, Gan Y, Sun L, Fan X, Zhang C, Zhong H, Leng X, Ren Y, Dong T, Pei D, Wu X, Jin Z, Wang Y, Liu C, Chen J, Gaut B, Huang S, Fang J, Xiao H, Zhou Y. Grapevine pangenome facilitates trait genetics and genomic breeding. Nat Genet 2024; 56:2804-2814. [PMID: 39496880 PMCID: PMC11631756 DOI: 10.1038/s41588-024-01967-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/01/2024] [Indexed: 11/06/2024]
Abstract
Grapevine breeding is hindered by a limited understanding of the genetic basis of complex agronomic traits. This study constructs a graph-based pangenome reference (Grapepan v.1.0) from 18 newly generated phased telomere-to-telomere assemblies and 11 published assemblies. Using Grapepan v.1.0, we build a variation map with 9,105,787 short variations and 236,449 structural variations (SVs) from the resequencing data of 466 grapevine cultivars. Integrating SVs into a genome-wide association study, we map 148 quantitative trait loci for 29 agronomic traits (50.7% newly identified), with 12 traits significantly contributed by SVs. The estimated heritability improves by 22.78% on average when including SVs. We discovered quantitative trait locus regions under divergent artificial selection in metabolism and berry development between wine and table grapes, respectively. Moreover, significant genetic correlations were detected among the 29 traits. Under a polygenic model, we conducted genomic predictions for each trait. In general, our study facilitates the breeding of superior cultivars via the genomic selection of multiple traits.
Collapse
Affiliation(s)
- Zhongjie Liu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Nan Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ying Su
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qiming Long
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yanling Peng
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lingfei Shangguan
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fan Zhang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shuo Cao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xu Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Mengqing Ge
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Hui Xue
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhiyao Ma
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wenwen Liu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaodong Xu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chaochao Li
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xuejing Cao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bilal Ahmad
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiangnian Su
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yuting Liu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guizhou Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Mengrui Du
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhenya Liu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yu Gan
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lei Sun
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiucai Fan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Chuan Zhang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Haixia Zhong
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Xiangpeng Leng
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Yanhua Ren
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Tianyu Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Dan Pei
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xinyu Wu
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Zhongxin Jin
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yiwen Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jinfeng Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Brandon Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Sanwen Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China.
- College of Horticulture, Qingdao Agricultural University, Qingdao, China.
| | - Hua Xiao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| |
Collapse
|
106
|
Wang JX, Li Y, Wang XW, Cao K, Chen CW, Wu JL, Fang WC, Zhu GR, Chen XJ, Guo DD, Wang J, Zhao YL, Fan JQ, Liu SN, Li WQ, Bie HL, Xu Q, Wang LR. Haplotype-resolved genome of a heterozygous wild peach reveals the PdaWRKY4-PdaCYP716A1 module mediates resistance to aphids by regulating betulin biosynthesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2716-2735. [PMID: 39451079 DOI: 10.1111/jipb.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024]
Abstract
Wild species of domesticated crops provide valuable genetic resources for resistance breeding. Prunus davidiana, a wild relative of peach with high heterozygosity and diverse stress tolerance, exhibits high resistance against aphids. However, the highly heterozygous genome of P. davidiana makes determining the underlying factors influencing resistance traits challenging. Here, we present the 501.7 Mb haplotype-resolved genome assembly of P. davidiana. Genomic comparisons of the two haplotypes revealed 18,152 structural variations, 2,699 Pda_hap1-specific and 2,702 Pda_hap2-specific genes, and 1,118 allele-specific expressed genes. Genome composition indicated 4.1% of the P. davidiana genome was non-peach origin, out of which 94.5% was derived from almond. Based on the haplotype genome, the aphid resistance quantitative trait locus (QTL) was mapped at the end of Pda03. From the aphid resistance QTL, PdaWRKY4 was identified as the major dominant gene, with a 9-bp deletion in its promoter of the resistant phenotype. Specifically, PdaWRKY4 regulates aphid resistance by promoting PdaCYP716A1-mediated anti-aphid metabolite betulin biosynthesis. Moreover, we employed a genome design to develop a breeding workflow for rapidly and precisely producing aphid-resistant peaches. In conclusion, this study identifies a novel aphid resistance gene and provides insights into genome design for the development of resistant fruit cultivars.
Collapse
Affiliation(s)
- Jun-Xiu Wang
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, 831100, China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, 400715, Chongqing, China
| | - Yong Li
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, 831100, China
- National Horticulture Germplasm Resources Center of China (NPGRC), Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Xin-Wei Wang
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, 831100, China
- National Horticulture Germplasm Resources Center of China (NPGRC), Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Ke Cao
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
- National Horticulture Germplasm Resources Center of China (NPGRC), Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Chang-Wen Chen
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
- National Horticulture Germplasm Resources Center of China (NPGRC), Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Jin-Long Wu
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
- National Horticulture Germplasm Resources Center of China (NPGRC), Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Wei-Chao Fang
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Geng-Rui Zhu
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Xue-Jia Chen
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Dan-Dan Guo
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Jiao Wang
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Ya-Lin Zhao
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Jia-Qi Fan
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Su-Ning Liu
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Wen-Qing Li
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Hang-Ling Bie
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Qiang Xu
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li-Rong Wang
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, 831100, China
- National Horticulture Germplasm Resources Center of China (NPGRC), Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| |
Collapse
|
107
|
Bortoluzzi C, Mapel XM, Neuenschwander S, Janett F, Pausch H, Leonard AS. Genome assembly of wisent (Bison bonasus) uncovers a deletion that likely inactivates the THRSP gene. Commun Biol 2024; 7:1580. [PMID: 39604663 PMCID: PMC11603333 DOI: 10.1038/s42003-024-07295-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
The wisent (Bison bonasus) is Europe's largest land mammal. We produced a HiFi read-based wisent assembly with a contig N50 value of 91 Mb containing 99.7% of the highly conserved single copy mammalian genes which improves contiguity a thousand-fold over an existing assembly. Extended runs of homozygosity in the wisent genome compromised the separation of the HiFi reads into parental-specific read sets, which resulted in inferior haplotype assemblies. A bovine super-pangenome built with assemblies from wisent, bison, gaur, yak, taurine and indicine cattle identified a 1580 bp deletion removing the protein-coding sequence of THRSP encoding thyroid hormone-responsive protein from the wisent and bison genomes. Analysis of 725 sequenced samples across the Bovinae subfamily showed that the deletion is fixed in both Bison species but absent in Bos and Bubalus. The THRSP transcript is abundant in adipose, fat, liver, muscle, and mammary gland tissue of Bos and Bubalus, but absent in bison. This indicates that the deletion likely inactivates THRSP in bison. We show that super-pangenomes can reveal potentially trait-associated variation across phylogenies, but also demonstrate that haplotype assemblies from species that went through population bottlenecks warrant scrutiny, as they may have accumulated long runs of homozygosity that complicate phasing.
Collapse
Affiliation(s)
| | | | | | - Fredi Janett
- Clinic of Reproductive Medicine, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
108
|
Osmond M, Coop G. Estimating dispersal rates and locating genetic ancestors with genome-wide genealogies. eLife 2024; 13:e72177. [PMID: 39589398 DOI: 10.7554/elife.72177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/24/2024] [Indexed: 11/27/2024] Open
Abstract
Spatial patterns in genetic diversity are shaped by individuals dispersing from their parents and larger-scale population movements. It has long been appreciated that these patterns of movement shape the underlying genealogies along the genome leading to geographic patterns of isolation-by-distance in contemporary population genetic data. However, extracting the enormous amount of information contained in genealogies along recombining sequences has, until recently, not been computationally feasible. Here, we capitalize on important recent advances in genome-wide gene-genealogy reconstruction and develop methods to use thousands of trees to estimate per-generation dispersal rates and to locate the genetic ancestors of a sample back through time. We take a likelihood approach in continuous space using a simple approximate model (branching Brownian motion) as our prior distribution of spatial genealogies. After testing our method with simulations we apply it to Arabidopsis thaliana. We estimate a dispersal rate of roughly 60 km2/generation, slightly higher across latitude than across longitude, potentially reflecting a northward post-glacial expansion. Locating ancestors allows us to visualize major geographic movements, alternative geographic histories, and admixture. Our method highlights the huge amount of information about past dispersal events and population movements contained in genome-wide genealogies.
Collapse
Affiliation(s)
- Matthew Osmond
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Graham Coop
- Department of Evolution & Ecology and Center for Population Biology, University of California, Davis, Davis, United States
| |
Collapse
|
109
|
Peng Y, Mao K, Zhang Z, Ping J, Jin M, Liu X, Wu C, Zhao C, Wang P, Duan X, Yu S, Li Z, Liu J, Li H, Yesaya A, Chen L, Wang H, Wilson K, Xiao Y. Landscape of structural variants reveals insights for local adaptations in the Asian corn borer. Cell Rep 2024; 43:114928. [PMID: 39504240 DOI: 10.1016/j.celrep.2024.114928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/20/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
Capturing the genetic diversity of different wild populations is crucial for unraveling the mechanisms of adaptation and establishing links between genome evolution and local adaptation. The Asian corn borer (ACB) moth has undergone natural selection during its adaptative evolution. However, structural variants (SVs), which play significant roles in these adaptation processes, have not been previously identified. Here, we constructed a multi-assembly graph pan-genome to highlight the importance of SVs in local adaptation. Our analysis revealed that the graph pan-genome contained 176.60 Mb (∼37.33%) of unique sequences. Subsequently, we performed an analysis of expression quantitative trait loci (QTLs) to explore the impact of SVs on gene expression regulation. Notably, through QTL mapping analysis, we identified the FTZ-F1 gene as a potential candidate gene associated with the traits of larval development rate. In sum, we explored the impact of SVs on the local adaptation of pests, therefore facilitating accelerated pest management strategies.
Collapse
Affiliation(s)
- Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kaikai Mao
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhuting Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Junfen Ping
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; School of Life Sciences, Henan University, Kaifeng 475004, China; Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xinye Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chao Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chongjun Zhao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Peng Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xueqing Duan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Songmiao Yu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhimin Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jimin Liu
- Plant Protection Research Institute, Guangxi Academy of Agricultural Science/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning, China
| | - Hongran Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Alexander Yesaya
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lin Chen
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Hongru Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kenneth Wilson
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
110
|
Glendening AM, Stephens C, Vuruputoor VS, Stern DL, Hogenhout SA, Mathers TC, Chaganti T, Pauloski N, Cernak TA, Wegrzyn JL, Fetter KC. Genomes of two invasive Adelges species (hemlock woolly adelgid and pineapple gall adelgid) enable characterization of nicotinic acetylcholine receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624573. [PMID: 39605547 PMCID: PMC11601503 DOI: 10.1101/2024.11.21.624573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Two invasive hemipteran adelgids cause widespread damage to North American conifers. Adelges tsugae (the hemlock woolly adelgid) has decimated Tsuga canadensis and Tsuga caroliniana (the Eastern and Carolina hemlocks, respectively). A. tsugae was introduced from East Asia and reproduces parthenogenetically in North America, where it can kill trees rapidly. A. abietis, introduced from Europe, makes "pineapple" galls on several North American spruce species, and weakens trees, increasing their susceptibility to other stresses. Broad-spectrum insecticides that are often used to control adelgid populations can have off-target impacts on beneficial insects and the development of more selective chemical treatments could improve control methods and minimize ecological damage. Whole genome sequencing was performed on both species to aid in development of targeted pest control solutions and improve species conservation. The assembled A. tsugae and A. abietis genomes are 220.75 Mbp and 253.16 Mbp, respectively, each consisting of nine chromosomes and both genomes are over 96% complete based on BUSCO assessment. Genome annotation identified 11,424 and 14,118 protein-coding genes in A. tsugae and A. abietis, respectively. Comparative analysis across 29 Hemipteran species and 14 arthropod outgroups identified 31,666 putative gene families. Gene family expansions in A. abietis included ABC transporters and carboxypeptidases involved in carbohydrate metabolism, while both species showed contractions in core histone families and oxidoreductase pathways. Gene family expansions in A. tsugae highlighted families associated with the regulation of cell differentiation and development (survival motor protein, SMN; juvenile hormone acid methyltransferase JHAMT) as well as those that may be involved in the suppression of plant immunity (clip domain serine protease-D, CLIPD; Endoplasmic reticulum aminopeptidase 1, ERAP1). Among the analyzed gene families, Nicotinic acetylcholine receptors (nAChRs) maintained consistent copy numbers and structural features across species, a finding particularly relevant given their role as targets for current forestry management insecticides. Detailed phylogenetic analysis of nAChR subunits across adelgids and other ecologically important insects revealed remarkable conservation in both sequence composition and predicted structural features, providing crucial insights for the development of more selective pest control strategies.
Collapse
Affiliation(s)
- A M Glendening
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA 06269
| | - Cole Stephens
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA 48109
| | - Vidya S Vuruputoor
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA 06269
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA, 20147
| | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Tesko Chaganti
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA 48109
- Canton High School, Canton, MI, USA 48187
| | - Nicole Pauloski
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA 06269
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA 06269
| | - Tim A Cernak
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA 48109
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA 06269
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA 06269
| | - Karl C Fetter
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA 06269
| |
Collapse
|
111
|
Fiesinger A, Buitrago-López C, Sharaf A, Cárdenas A, Voolstra CR. A draft genome assembly of the reef-building coral Acropora hemprichii from the central Red Sea. Sci Data 2024; 11:1288. [PMID: 39592588 PMCID: PMC11599867 DOI: 10.1038/s41597-024-04080-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Coral reef ecosystems are under threat from climate change. Thus, active interventions to spur coral conservation/restoration are critical to support reef survival, greatly informed by a molecular understanding of resilience. The genus Acropora is a species-rich and globally prevalent reef builder that has experienced dramatic declines in the Caribbean. Here we generated a draft genome of the common coral Acropora hemprichii from the central Red Sea, one of the warmest water bodies in the world. We assembled the genome using 10x Chromium sequencing with subsequent scaffolding using a reference genome and Illumina short-read sequencing contigs. The A. hemprichii genome has an assembly size of 495.6 Mb confirmed using physical size estimation, of which 247.8 Mb (50%) are repeats. The scaffold N50 is 1.38 Mb with 99.6% of BUSCO genes identified (93.7% complete, 5.9% fragmented), providing a set of 26,865 protein-coding genes. The Red Sea A. hemprichii reference genome provides a valuable resource for studies aiming to decode the genomic architecture of resilience, e.g. through comparative analyses with other Acropora genomes.
Collapse
Affiliation(s)
- Anna Fiesinger
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Carol Buitrago-López
- General Organization for the Conservation of Coral Reefs and Turtles in the Red Sea (Shams), Jeddah, Saudi Arabia
| | - Abdoallah Sharaf
- SequAna Core Facility, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Anny Cárdenas
- Department of Biology, American University, Washington, DC, 20016, USA
| | | |
Collapse
|
112
|
Hosaka AJ, Sanetomo R, Hosaka K. Allotetraploid nature of a wild potato species, Solanum stoloniferum Schlechtd. et Bché., as revealed by whole-genome sequencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39585203 DOI: 10.1111/tpj.17158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/26/2024]
Abstract
Mexican wild diploid potato species are reproductively isolated from A-genome species, including cultivated potatoes; thus, their genomic relationships remain unknown. Solanum stoloniferum Schlechtd. et Bché. (2n = 4x = 48, AABB) is a Mexican allotetraploid species frequently used in potato breeding. We constructed a chromosome-scale assembly of the S. stoloniferum genome using PacBio long-read sequencing and Hi-C scaffolding technologies. The final assembly consisted of 1742 Mb, among which 745 Mb and 713 Mb were anchored to the 12 A-genome and 12 B-genome chromosomes, respectively. Using the RNA-seq datasets, we detected 20 994 and 19 450 genes in the A and B genomes, respectively. Among these genes, 5138 and 3594 were specific to the A and B genomes, respectively, and 15 856 were homoeologous, of which 18.6-25.4% were biasedly expressed. Structural variations such as large pericentromeric inversions were frequently found between the A- and B-genome chromosomes. A comparison of the gene sequences from 38 diverse genomes of the related Solanum species revealed that the S. stoloniferum B genome and Mexican diploid species, with the exception of S. verrucosum, were monophyletically distinct from the S. stoloniferum A genome and the other A-genome species, indicating that the Mexican diploid species share the B genome. The content and divergence of transposable elements (TEs) revealed recent bursts and transpositions of TEs after polyploidization. Thus, the S. stoloniferum genome has undergone dynamic structural differentiation and TE mobilization and reorganization to stabilize the genomic imbalance. This study provides new insights into polyploid evolution and the efficient use of allotetraploid species in potato breeding.
Collapse
Affiliation(s)
- Awie J Hosaka
- Nihon BioData Corporation, Takatsu, Kawasaki, Kanagawa, 213-0012, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan
| | - Rena Sanetomo
- Potato Germplasm Enhancement Laboratory, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Kazuyoshi Hosaka
- Potato Germplasm Enhancement Laboratory, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| |
Collapse
|
113
|
Romanenko MN, Shikov AE, Savina IA, Nizhnikov AA, Antonets KS. Whole-Genome Sequencing of Peribacillus frigoritolerans Strain d21.2 Isolated in the Republic of Dagestan, Russia. Microorganisms 2024; 12:2410. [PMID: 39770615 PMCID: PMC11678259 DOI: 10.3390/microorganisms12122410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Pesticide-free agriculture is a fundamental pillar of environmentally friendly agriculture. To this end, there is an active search for new bacterial strains capable of synthesizing secondary metabolites and toxins that protect crops from pathogens and pests. In this study, we isolated a novel strain d21.2 of Peribacillus frigoritolerans from a soil sample collected in the Republic of Dagestan, Russia. Leveraging several bioinformatic approaches on Illumina-based whole-genome assembly, we revealed that the strain harbors certain insecticidal loci (coding for putative homologs of Bmp and Vpa) and also contains multiple BGCs (biosynthetic gene clusters), including paeninodin, koranimine, schizokinen, and fengycin. In total, 21 BGCs were predicted as synthesizing metabolites with bactericidal and/or fungicidal effects. Importantly, by applying a re-scaffolding pipeline, we managed to robustly predict MGEs (mobile genetic elements) associated with BGCs, implying high genetic plasticity. In addition, the d21.2's genome was free from genes encoding for enteric toxins, implying its safety in use. A comparison with available genomes of the Peribacillus frigoritolerans strain revealed that the strain described here contains more functionally important loci than other members of the species. Therefore, strain d21.2 holds potential for use in agriculture due to the probable manifestation of bactericidal, fungicidal, growth-stimulating, and other useful properties. The assembled genome is available in the NCBI GeneBank under ASM4106054v1.
Collapse
Affiliation(s)
- Maria N. Romanenko
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton E. Shikov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Iuliia A. Savina
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
| | - Anton A. Nizhnikov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
114
|
Volarić M, Despot-Slade E, Veseljak D, Mravinac B, Meštrović N. Long-read genome assembly of the insect model organism Tribolium castaneum reveals spread of satellite DNA in gene-rich regions by recurrent burst events. Genome Res 2024; 34:1878-1894. [PMID: 39438111 DOI: 10.1101/gr.279225.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/11/2024] [Indexed: 10/25/2024]
Abstract
Eukaryotic genomes are replete with satellite DNAs (satDNAs), large stretches of tandemly repeated sequences that are mostly underrepresented in genome assemblies. Here we combined nanopore long-read sequencing with a reference-guided assembly approach to generate an improved, high-quality genome assembly, TcasONT, of the model beetle Tribolium castaneum Enriched by 45 Mb in repetitive regions, the new assembly comprises almost the entire genome sequence. We use the enhanced assembly to conduct global and in-depth analyses of abundant euchromatic satDNAs. Unexpectedly, we show the extensive spread of satDNAs in gene-rich regions, including long arrays. The sequence similarity relationships between satDNA monomers and arrays indicate a recent exchange of satDNA arrays between different chromosomes. We propose a scenario of their genome dynamics characterized by repeated bursts of satDNAs spreading through euchromatin, followed by a process of elongation and homogenization of arrays. We find that suppressed recombination on the X Chromosome has no significant effect on the spread of satDNAs but the X rather tolerates the amplification of satDNAs into longer arrays. Analyses of arrays' neighboring regions show a tendency of one satDNA to be associated with transposable-like elements. Using 2D electrophoresis followed by Southern blotting, we prove Cast satDNAs' presence in the fraction of extrachromosomal circular DNA (eccDNA). We point to two mechanisms that enable this satDNA spread to occur: transposition by transposable elements and insertion mediated by eccDNA. The presence of such a large proportion of satDNA in gene-rich regions inevitably gives rise to speculation about their possible influence on gene expression.
Collapse
|
115
|
Zhang A, Wang T, Yuan L, Shen Y, Liu K, Liu B, Xu K, Elsadek MA, Wang Y, Wu L, Qi Z, Yu J, Zhang M, Chen L. Horizontal transfer of plasmid-like extrachromosomal circular DNAs across graft junctions in Solanaceae. MOLECULAR HORTICULTURE 2024; 4:41. [PMID: 39563413 DOI: 10.1186/s43897-024-00124-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024]
Abstract
The transfer of genetic material between stocks and scions of grafted plants has been extensively studied; however, the nature and frequency of the transferred material remain elusive. Here, we report a grafting system involving woody goji as the stock and herbaceous tomato as the scion, which was developed using in vitro and in vivo approaches; the results confirmed horizontal transfer of multiple nuclear DNA fragments from donor goji cells to recipient tomato cells. Tomato tissues containing goji donor DNA fragments at or near the grafting junctions had a perennial-biased anatomical structure, from which roots or shoots were regenerated. Most of the fragments were plasmid-like extrachromosomal circular DNAs (eccDNAs) present in the regenerants derived from the cells and in their asexual offspring. Plants with transferred eccDNAs in regenerated roots or shoots (designated "Go-tomato") were grown perennially and showed excellent agronomic performance. The present study provides new insights into the replication, expression, and potential function of eccDNAs in the pleiotropic traits of Go-tomato. Mobile eccDNAs offer evidence of stock-to-scion horizontal DNA transfer beyond chromosomes and organelles, thereby contributing to the molecular understanding of graft-induced genetic variation, evolution, and breeding.
Collapse
Affiliation(s)
- Aijun Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Tingjin Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lu Yuan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yuxin Shen
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ke Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Bin Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Kexin Xu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mohamed A Elsadek
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yiting Wang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Liang Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhenyu Qi
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jingquan Yu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mingfang Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Liping Chen
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
116
|
Guitart X, Porubsky D, Yoo D, Dougherty ML, Dishuck PC, Munson KM, Lewis AP, Hoekzema K, Knuth J, Chang S, Pastinen T, Eichler EE. Independent expansion, selection, and hypervariability of the TBC1D3 gene family in humans. Genome Res 2024; 34:1798-1810. [PMID: 39107043 DOI: 10.1101/gr.279299.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
TBC1D3 is a primate-specific gene family that has expanded in the human lineage and has been implicated in neuronal progenitor proliferation and expansion of the frontal cortex. The gene family and its expression have been challenging to investigate because it is embedded in high-identity and highly variable segmental duplications. We sequenced and assembled the gene family using long-read sequencing data from 34 humans and 11 nonhuman primate species. Our analysis shows that this particular gene family has independently duplicated in at least five primate lineages, and the duplicated loci are enriched at sites of large-scale chromosomal rearrangements on Chromosome 17. We find that all human copy-number variation maps to two distinct clusters located at Chromosome 17q12 and that humans are highly structurally variable at this locus, differing by as many as 20 copies and ∼1 Mbp in length depending on haplotypes. We also show evidence of positive selection, as well as a significant change in the predicted human TBC1D3 protein sequence. Last, we find that, despite multiple duplications, human TBC1D3 expression is limited to a subset of copies and, most notably, from a single paralog group: TBC1D3-CDKL These observations may help explain why a gene potentially important in cortical development can be so variable in the human population.
Collapse
Affiliation(s)
- Xavi Guitart
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - DongAhn Yoo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Max L Dougherty
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Philip C Dishuck
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Alexandra P Lewis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Jordan Knuth
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Stephen Chang
- Department of Biochemistry
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California 94305, USA
| | - Tomi Pastinen
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, Missouri 64108, USA
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, Missouri 64108, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA;
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
117
|
Li K, Smith ML, Blazier JC, Kochan KJ, Wood JMD, Howe K, Kwitek AE, Dwinell MR, Chen H, Ciosek JL, Masterson P, Murphy TD, Kalbfleisch TS, Doris PA. Construction and evaluation of a new rat reference genome assembly, GRCr8, from long reads and long-range scaffolding. Genome Res 2024; 34:2081-2093. [PMID: 39516046 PMCID: PMC11610589 DOI: 10.1101/gr.279292.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/10/2024] [Indexed: 11/16/2024]
Abstract
We report the construction and analysis of a new reference genome assembly for Rattus norvegicus, the laboratory rat, a widely used experimental animal model organism. The assembly has been adopted as the rat reference assembly by the Genome Reference Consortium and is named GRCr8. The assembly has employed 40× Pacific Biosciences (PacBio) HiFi sequencing coverage and scaffolding using optical mapping and Hi-C. We used genomic DNA from a male BN/NHsdMcwi (BN) rat of the same strain and from the same colony as the prior reference assembly, mRatBN7.2. The assembly is at chromosome level with 98.7% of the sequence assigned to chromosomes. All chromosomes have increased in size compared with the prior assembly and k-mer analysis indicates that the subject animal is fully inbred and that the genome is represented as a single haploid assembly. Notable increases are observed in Chromosomes 3, 11, and 12 in the prospective rDNA regions. In addition, Chr Y has increased threefold in size and is more consistent with the rat karyotype than previous assemblies. Several other chromosomes have grown by the incorporation of sizable discrete new blocks. These contain highly repetitive sequences and encode numerous previously unannotated genes. In addition, centromeric sequences are incorporated in most chromosomes. Genome annotation has been performed by NCBI RefSeq, which confirms improvement in assembly quality and adds more than 1100 new protein coding genes. PacBio Iso-Seq data have been acquired from multiple tissues of the subject animal and are released concurrently with the new assembly to aid further analyses.
Collapse
Affiliation(s)
- Kai Li
- Gluck Equine Genomics Center, University of Kentucky, Lexington, Kentucky 40503, USA
| | - Melissa L Smith
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - J Chris Blazier
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas 77843, USA
| | - Kelli J Kochan
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas 77843, USA
| | - Jonathan M D Wood
- Tree of Life, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, United Kingdom
| | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, United Kingdom
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Melinda R Dwinell
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Hao Chen
- Department of Pharmacology, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163, USA
| | - Julia L Ciosek
- Gluck Equine Genomics Center, University of Kentucky, Lexington, Kentucky 40503, USA
| | - Patrick Masterson
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | | | - Peter A Doris
- Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| |
Collapse
|
118
|
Wu H, Luo LY, Zhang YH, Zhang CY, Huang JH, Mo DX, Zhao LM, Wang ZX, Wang YC, He-Hua EE, Bai WL, Han D, Dou XT, Ren YL, Dingkao R, Chen HL, Ye Y, Du HD, Zhao ZQ, Wang XJ, Jia SG, Liu ZH, Li MH. Telomere-to-telomere genome assembly of a male goat reveals variants associated with cashmere traits. Nat Commun 2024; 15:10041. [PMID: 39567477 PMCID: PMC11579321 DOI: 10.1038/s41467-024-54188-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
A complete goat (Capra hircus) reference genome enhances analyses of genetic variation, thus providing insights into domestication and selection in goats and related species. Here, we assemble a telomere-to-telomere (T2T) gap-free genome (2.86 Gb) from a cashmere goat (T2T-goat1.0), including a Y chromosome of 20.96 Mb. With a base accuracy of >99.999%, T2T-goat1.0 corrects numerous genome-wide structural and base errors in previous assemblies and adds 288.5 Mb of previously unresolved regions and 446 newly assembled genes to the reference genome. We sequence the genomes of five representative goat breeds for PacBio reads, and use T2T-goat1.0 as a reference to identify a total of 63,417 structural variations (SVs) with up to 4711 (7.42%) in the previously unresolved regions. T2T-goat1.0 was applied in population analyses of global wild and domestic goats, which revealed 32,419 SVs and 25,397,794 SNPs, including 870 SVs and 545,026 SNPs in the previously unresolved regions. Also, our analyses reveal a set of selective variants and genes associated with domestication (e.g., NKG2D and ABCC4) and cashmere traits (e.g., ABCC4 and ASIP).
Collapse
Affiliation(s)
- Hui Wu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Northern Agriculture and Animal Husbandry Technical Innovation Center, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Ling-Yun Luo
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ya-Hui Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chong-Yan Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jia-Hui Huang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dong-Xin Mo
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Li-Ming Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhi-Xin Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yi-Chuan Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - EEr He-Hua
- Institute of Animal Science, NingXia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Wen-Lin Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Di Han
- Modern Agricultural Production Base Construction Engineering Center of Liaoning Province, Liaoyang, China
| | - Xing-Tang Dou
- Liaoning Province Liaoning Cashmere Goat Original Breeding Farm Co., Ltd., Liaoyang, China
| | - Yan-Ling Ren
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, China
| | | | | | - Yong Ye
- Zhongwei Goat Breeding Center of Ningxia Province, Zhongwei, China
| | - Hai-Dong Du
- Zhongwei Goat Breeding Center of Ningxia Province, Zhongwei, China
| | - Zhan-Qiang Zhao
- Zhongwei Goat Breeding Center of Ningxia Province, Zhongwei, China
| | - Xi-Jun Wang
- Jiaxiang Animal Husbandry and Veterinary Development Center, Jining, China
| | - Shan-Gang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, China.
| | - Zhi-Hong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China.
| | - Meng-Hua Li
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
119
|
Rajesh MK, Budhwar R, Shukla R, Oraon PK, Goel S, Paul B, Thomas RJ, Dinesh A, Jayasekhar S, Chandran KP, Muralikrishna KS, Nirmal Kumar BJ, Das A. Chromosome scale genome assembly and annotation of coconut cultivar Chowghat Green Dwarf. Sci Rep 2024; 14:28778. [PMID: 39567709 PMCID: PMC11579352 DOI: 10.1038/s41598-024-79768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024] Open
Abstract
The high-quality genome of coconut (Cocos nucifera L.) is a crucial resource for enhancing agronomic traits and studying genome evolution within the Arecaceae family. We sequenced the Chowghat Green Dwarf cultivar, which is resistant to the root (wilt) disease, utilizing Illumina, PacBio, ONT, and Hi-C technologies to produce a chromosome-level genome of ~ 2.68 Gb with a scaffold N50 of 174 Mb; approximately 97% of the genome could be anchored to 16 pseudo-molecules (2.62 Gb). In total, 34,483 protein-coding genes were annotated; the BUSCO completeness score was 96.80%, while the k-mer completeness was ~ 87%. The assembled genome includes 2.19 Gb (81.64%) of repetitive sequences, with long terminal repeats (LTRs) constituting the most abundant class at 53.76%. Additionally, our analysis confirms two whole-genome duplication (WGD) events in the C. nucifera lineage. A genome-wide analysis of LTR insertion time revealed ancient divergence and proliferation of copia and gypsy elements. In addition, 1368 RGAs were discovered in the CGD genome. We also developed a web server 'Kalpa Genome Resource' ( http://210.89.54.198:3000/ ), to manage and store a comprehensive array of genomic data, including genome sequences, genetic markers, structural and functional annotations like metabolic pathways, and transcriptomic profiles. The web server has an embedded genome browser to analyze and visualize the genome, its genomics elements, and transcriptome data. The in-built BLAST server allows sequence homology searches against genome, annotated transcriptome & proteome sequences. The genomic dataset and the database will support comparative genome analysis and can expedite genome-driven breeding and enhancement efforts for tapping genetic gains in coconut.
Collapse
Affiliation(s)
- M K Rajesh
- ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, 671124, India.
- ICAR-Central Plantation Crops Research Institute, Regional Station, Vittal, Karnataka, 574243, India.
| | - Roli Budhwar
- Bionivid Technology [P] Limited, Bengaluru, Karnataka, 560064, India
| | - Rohit Shukla
- Bionivid Technology [P] Limited, Bengaluru, Karnataka, 560064, India
| | | | - Shailendra Goel
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Bobby Paul
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Regi Jacob Thomas
- ICAR-Central Plantation Crops Research Institute, Regional Station, Kayamkulam, Kerala, 690533, India
| | - Akshay Dinesh
- ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, 671124, India
| | - S Jayasekhar
- ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, 671124, India
| | - K P Chandran
- ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, 671124, India
| | - K S Muralikrishna
- ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, 671124, India
| | - B J Nirmal Kumar
- ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, 671124, India
| | - Alpana Das
- ICAR-Central Plantation Crops Research Institute, Research Centre, Kahikuchi, Assam, 781017, India
| |
Collapse
|
120
|
de Almeida ELM, da Silveira WB, Fietto LG, Silva MS, Santana WC, Eller MR. Genome assembly and variant analysis of two Saccharomyces cerevisiae strains isolated from stingless bee pollen. Gene 2024; 927:148722. [PMID: 38914244 DOI: 10.1016/j.gene.2024.148722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Products from stingless bees are rich reservoirs of microbial diversity, including yeasts with fermentative potential. Previously, two Saccharomyces cerevisiae strains, JP14 and IP9, were isolated from Jataí (Tetragonisca angustula) and Iraí (Nannotrigona testaceicornis) bees, respectively, aiming at mead production. Both strains presented great osmotic and sulfite tolerance, and ethanol production, although they have a high free amino nitrogen demand. Herein, their genomes were sequenced, assembled, and annotated, and the variants were compared to the S. cerevisiae S288c reference strain. The final assembly of IP9 and JP14 presented high N50 and BUSCO scores, and more than 6430 protein-coding genes. Additionally, nQuire predicted the ploidy of IP9 as diploid, but the results were not enough to determine the ploidy of JP14. The mitochondrial genomes of IP9 and JP14 presented the same gene content as S288c but the genes were rearranged and fragmented in different patterns. Meanwhile, the genes with mutations of high impact (e.g., indels, gain of stop codon) for both yeasts were enriched for transmembrane transport, electron transfer, oxidoreductase, heme binding, fructose, mannose, and glucose transport, activities related to the respiratory chain and sugar metabolism. The IP9 strain presented copy number gains in genes related to sugar transport and cell morphogenesis; in JP14, genes were enriched for disaccharide metabolism and transport, response to reactive oxygen species, and polyamine transport. On the other hand, IP9 presented copy number losses related to disaccharide, thiamine, and aldehyde metabolism, while JP14 presented depletions related to disaccharide, oligosaccharide, asparagine, and aspartate metabolism. Notably, both strains presented a killer toxin gene, annotated from the assembling of unmapped reads, representing a potential mechanism for the control of other microorganisms population in the environment. Therefore, the annotated genomes of JP14 and IP9 presented a high selective pressure for sugar and nitrogen metabolism and stress response, consistent with their isolation source and fermentative properties.
Collapse
Affiliation(s)
- Eduardo Luís Menezes de Almeida
- Laboratory of Microbial Physiology, Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Wendel Batista da Silveira
- Laboratory of Microbial Physiology, Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Luciano Gomes Fietto
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Mayara Salgado Silva
- Department of Food Technology, Federal Institute of Education, Science and Technology of Ceará, Limoeiro Do Norte, Brazil
| | | | - Monique Renon Eller
- Department of Food Technology - Universidade Federal de Viçosa, Viçosa, Brazil.
| |
Collapse
|
121
|
Qin C, Lypaczewski P, Sayeed A, Cuénod AC, Brinkley L, Creasy-Marrazzo A, Cato ET, Islam K, Khabir IU, Bhuiyan TR, Begum Y, Qadri F, Khan AI, Nelson EJ, Shapiro BJ. Vibrio cholerae lineage and pangenome diversity varies geographically across Bangladesh over one year. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623281. [PMID: 39605465 PMCID: PMC11601304 DOI: 10.1101/2024.11.12.623281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Cholera is a diarrhoeal disease caused by Vibrio cholerae. It remains a major public health challenge in the endemic region around the Bay of Bengal. Over decadal time scales, one lineage typically dominates the others and spreads in global pandemic waves. However, it remains unclear to what extent diverse lineages co-circulate during a single outbreak season. Defining the pool of diversity during finer time scales is important because the selective pressures that impact V. cholerae - namely antibiotics and phages - are dynamic on these time scales. To study the nationwide diversity of V. cholerae, we long-read sequenced 273 V. cholerae genomes from seven hospitals over one year (2018) in Bangladesh. Four major V. cholerae lineages were identified: known lineages BD-1, BD-2a, and BD-2b, and a novel lineage that we call BD-3. In 2022, BD-1 caused a large cholera outbreak in Dhaka, apparently outcompeting BD-2 lineages. We show that, in 2018, BD-1 was already dominant in the five northern regions, including Dhaka, consistent with an origin from India in the north. By contrast, we observed a higher diversity of lineages in the two southern regions near the coast. The four lineages differed in pangenome content, including integrative and conjugative elements (ICEs) and genes involved in resistance to bacteriophages and antibiotics. Notably, BD-2a lacked an ICE and is predicted to be more sensitive to phages and antibiotics, but nevertheless persisted throughout the year-long sampling period. Genes associated with antibiotic resistance in V. cholerae from Bangladesh in 2006 were entirely absent from all lineages in 2018-19, suggesting shifting costs and benefits of encoding these genes. Together, our results highlight the dynamic nature of the V. cholerae pangenome and the geographic structure of its lineage diversity.
Collapse
Affiliation(s)
- Chuhan Qin
- Department of Microbiology & Immunology, McGill University, Montréal, Canada
- McGill Genome Centre, McGill University, Montréal, Canada
| | - Patrick Lypaczewski
- Department of Microbiology & Immunology, McGill University, Montréal, Canada
- McGill Genome Centre, McGill University, Montréal, Canada
| | - Abu Sayeed
- Departments of Pediatrics and Environmental and Global Health, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Aline C Cuénod
- Department of Microbiology & Immunology, McGill University, Montréal, Canada
- McGill Genome Centre, McGill University, Montréal, Canada
| | - Lindsey Brinkley
- Departments of Pediatrics and Environmental and Global Health, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Ashton Creasy-Marrazzo
- Departments of Pediatrics and Environmental and Global Health, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Emilee T Cato
- Departments of Pediatrics and Environmental and Global Health, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Kamrul Islam
- Infectious Diseases Division (IDD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | - Taufiqur R Bhuiyan
- Infectious Diseases Division (IDD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yasmin Begum
- Infectious Diseases Division (IDD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Firdausi Qadri
- Infectious Diseases Division (IDD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ashraful I Khan
- Infectious Diseases Division (IDD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Eric J Nelson
- Departments of Pediatrics and Environmental and Global Health, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - B Jesse Shapiro
- Department of Microbiology & Immunology, McGill University, Montréal, Canada
- McGill Genome Centre, McGill University, Montréal, Canada
- McGill Centre for Microbiome Research, McGill University, Montréal, Canada
| |
Collapse
|
122
|
Lee H, Niida H, Sung S, Lee J. Haplotype-resolved de novo assembly revealed unique characteristics of alternative lengthening of telomeres in mouse embryonic stem cells. Nucleic Acids Res 2024; 52:12456-12474. [PMID: 39351882 PMCID: PMC11551733 DOI: 10.1093/nar/gkae842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024] Open
Abstract
Telomeres protect chromosome ends from DNA damage responses, and their dysfunction triggers genomic alterations like chromosome fusion and rearrangement, which can lead to cellular death. Certain cells, including specific cancer cells, adopt alternative lengthening of telomere (ALT) to counteract dysfunctional telomeres and proliferate indefinitely. While telomere instability and ALT activity are likely major sources of genomic alteration, the patterns and consequences of such changes at the nucleotide level in ALT cells remain unexplored. Here we generated haplotype-resolved genome assemblies for type I ALT mouse embryonic stem cells, facilitated by highly accurate or ultra-long reads and Hi-C reads. High-quality genome revealed ALT-specific complex chromosome end structures and various genomic alterations including over 1000 structural variants (SVs). The unique sequence (mTALT) used as a template for type I ALT telomeres showed traces of being recruited into the genome, with mTALT being replicated with remarkably high accuracy. Subtelomeric regions exhibited distinct characteristics: resistance to the accumulation of SVs and small variants. We genotyped SVs at allele resolution, identifying genes (Rgs6, Dpf3 and Tacc2) crucial for maintaining ALT telomere stability. Our genome assembly-based approach elucidated the unique characteristics of ALT genome, offering insights into the genome evolution of cells surviving telomere-derived crisis.
Collapse
Affiliation(s)
- Hyunji Lee
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| | - Hiroyuki Niida
- Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu city, Shizuoka 431-3192, Japan
| | - Sanghyun Sung
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
123
|
Wu J, Oguz C, Teklemichael AA, Xu F, Stadler RV, Lucky AB, Liu S, Kaneko O, Lack J, Su XZ. Comparative genomics of Plasmodium yoelii nigeriensis N67 and N67C: genome-wide polymorphisms, differential gene expression, and drug resistance. BMC Genomics 2024; 25:1035. [PMID: 39497038 PMCID: PMC11536827 DOI: 10.1186/s12864-024-10961-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND The study of rodent malaria parasites has significantly advanced our understanding of malaria parasite biology and host responses to parasite infections. There are four well-characterized rodent malaria parasite species (Plasmodium yoelii, P. chabaudi, P. berghei, and P. vinckei). Each species also has multiple strains that cause different disease phenotypes. P. yoelii nigeriensis N67C and N67, two isogenic parasites, are particularly intriguing as they differ in virulence and incite different immune responses in mice. The genome of the N67 parasite has been assembled recently, but not that of N67C. This study used PacBio HiFi sequencing data to assemble the N67C genome, compared the two genomes, and performed RNA sequencing to identify polymorphisms and differentially expressed genes (DEGs). RESULTS The assembled N67C parasite genome consisted of 16 scaffolds and three contigs of approximately 22.5 Mb with 100% and 96.6% completeness based on well-characterized single-copy orthologs specific to the Apicomplexa phylum and the Plasmodium genus, respectively. A comparison between the annotated N67C and N67 genomes revealed 133 single nucleotide polymorphisms (SNPs) and 75 indels. Among the polymorphic sites, an S (N67) to N (N67C) amino acid substitution at position 114 (S114N) in the dihydrofolate reductase-thymidylate synthase (DHFR-TS) confers resistance to pyrimethamine in mice. Additionally, 60 differentially expressed single-copy genes (DEGs) were detected after comparing mRNA levels between the two parasites. Starting with the predicted and annotated 5,681 N67C and 5,749 N67 genes, we identified 4,641 orthogroups that included at least one gene from the four P. yoelii parasites (N67, N67C, 17X, and YM), whereas 758 orthogroups showed subspecies or strain-specific patterns. CONCLUSION The identification of polymorphic sites between the N67 and N67C genomes, along with the detection of the DEGs, may provide crucial insights into the variations in parasite drug responses and disease severity between these two isogenic parasites. The functional characterization of these genetic differences and candidate genes will deepen our understanding of disease mechanisms and pave the way for developing more effective control measures against malaria.
Collapse
Affiliation(s)
- Jian Wu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, 20852, USA
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Awet Alem Teklemichael
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, 20852, USA
| | - Fangzheng Xu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, 20852, USA
| | - Rachel V Stadler
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, 20852, USA
| | - Amuza Byaruhanga Lucky
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan
| | - Shengfa Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan
| | - Justin Lack
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xin-Zhuan Su
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, 20852, USA.
| |
Collapse
|
124
|
Kim J, Kim Y, Shin J, Kim YK, Lee DH, Park JW, Lee D, Kim HC, Lee JH, Lee SH, Kim J. Fully phased genome assemblies and graph-based genetic variants of the olive flounder, Paralichthys olivaceus. Sci Data 2024; 11:1193. [PMID: 39496665 PMCID: PMC11535246 DOI: 10.1038/s41597-024-04033-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
The olive flounder, Paralichthys olivaceus, also known as the Korean halibut, is an economically important flatfish in East Asian countries. Here, we provided four fully phased genome assemblies of two different olive flounder individuals using high-fidelity long-read sequencing and their parental short-read sequencing data. We obtained 42-44 Gb of ~15-kb and ~Q30 high-fidelity long reads, and their assembly quality values were ~53. We annotated ~30 K genes, ~170-Mb repetitive sequences, and ~3 M 5-methylcytosine positions for each genome assembly, and established a graph-based draft pan-genome of the olive flounder. We identified 5 M single-nucleotide variants and 100 K structural variants with their genotype information, where ~13% of the variants were possibly fixed in the two Korean individuals. Based on our chromosome-level genome assembly, we also explored chromosome evolution in the Pleuronectiformes family, as reported earlier. Our high-quality genomic resources will contribute to future genomic selection for accelerating the breeding process of the olive flounder.
Collapse
Affiliation(s)
- Julan Kim
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Korea
| | - Yoonsik Kim
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, 34134, Korea
| | - Jeongwoen Shin
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, 34134, Korea
| | - Yeong-Kuk Kim
- Quantomic research and solution, Yuseong-gu Daejeon Tips-town, Daejeon, 34134, Korea
| | - Doo Ho Lee
- Division of Animal & Dairy Science, Chungnam National University, Daejeon, 34134, Korea
| | - Jong-Won Park
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Korea
| | - Dain Lee
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Korea
| | - Hyun-Chul Kim
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Korea
| | - Jeong-Ho Lee
- Research and Development Planning and Coordination Department, National Institute of Fisheries Science, Busan, 46083, Korea
| | - Seung Hwan Lee
- Division of Animal & Dairy Science, Chungnam National University, Daejeon, 34134, Korea
| | - Jun Kim
- Department of Convergent Bioscience and Informatics, Chungnam National University, Daejeon, 34134, Korea.
| |
Collapse
|
125
|
Lu D, Liu C, Ji W, Xia R, Li S, Liu Y, Liu N, Liu Y, Deng XW, Li B. Nanopore ultra-long sequencing and adaptive sampling spur plant complete telomere-to-telomere genome assembly. MOLECULAR PLANT 2024; 17:1773-1786. [PMID: 39420560 DOI: 10.1016/j.molp.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/11/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
The pursuit of complete telomere-to-telomere (T2T) genome assembly in plants, challenged by genomic complexity, has been advanced by Oxford Nanopore Technologies (ONT), which offers ultra-long, real-time sequencing. Despite its promise, sequencing length and gap filling remain significant challenges. This study optimized DNA extraction and library preparation, achieving DNA lengths exceeding 485 kb; average N50 read lengths of 80.57 kb, reaching up to 440 kb; and maximum reads of 5.83 Mb. Importantly, we demonstrated that combining ultra-long sequencing and adaptive sampling can effectively fill gaps during assembly, evidenced by successfully filling the remaining gaps of a near-complete Arabidopsis genome assembly and resolving the sequence of an unknown telomeric region in watermelon genome. Collectively, our strategies improve the feasibility of complete T2T genomic assemblies across various plant species, enhancing genome-based research in diverse fields.
Collapse
Affiliation(s)
- Dongdong Lu
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Caijuan Liu
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Wenjun Ji
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Ruiyan Xia
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Shanshan Li
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Yanxia Liu
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Naixu Liu
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Yongqi Liu
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Xing Wang Deng
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Bosheng Li
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China.
| |
Collapse
|
126
|
Zheng Y, Young ND, Campos TL, Korhonen PK, Wang T, Sumanam SB, Taki AC, Byrne JJ, Chang BCH, Song J, Gasser RB. Chromosome-contiguous genome for the Haecon-5 strain of Haemonchus contortus reveals marked genetic variability and enables the discovery of essential gene candidates. Int J Parasitol 2024; 54:705-715. [PMID: 39168434 DOI: 10.1016/j.ijpara.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
Millions of livestock animals worldwide are infected with the haematophagous barber's pole worm, Haemonchus contortus, the aetiological agent of haemonchosis. Despite the major significance of this parasite worldwide and its widespread resistance to current treatments, the lack of a high-quality genome for the well-defined strain of this parasite from Australia, called Haecon-5, has constrained research in a number of areas including host-parasite interactions, drug discovery and population genetics. To enable research in these areas, we report here a chromosome-contiguous genome (∼280 Mb) for Haecon-5 with high-quality models for 19,234 protein-coding genes. Comparative genomic analyses show significant genomic similarity (synteny) with a UK strain of H. contortus, called MHco3(ISE).N1 (abbreviated as "ISE"), but we also discover marked differences in genomic structure/gene arrangements, distribution of nucleotide variability (single nucleotide polymorphisms (SNPs) and indels) and orthology between Haecon-5 and ISE. We used the genome and extensive transcriptomic resources for Haecon-5 to predict a subset of essential single-copy genes employing a "cross-species" machine learning (ML) approach using a range of features from nucleotide/protein sequences, protein orthology, subcellular localisation, single-cell RNA-seq and/or histone methylation data available for the model organisms Caenorhabditis elegans and Drosophila melanogaster. From a set of 1,464 conserved single copy genes, transcribed in key life-cycle stages of H. contortus, we identified 232 genes whose homologs have critical functions in C. elegans and/or D. melanogaster, and prioritised 10 of them for further characterisation; nine of the 10 genes likely play roles in neurophysiological processes, germline, hypodermis and/or respiration, and one is an unknown (orphan) gene for which no detailed functional information exists. Future studies of these genes/gene products are warranted to elucidate their roles in parasite biology, host-parasite interplay and/or disease. Clearly, the present Haecon-5 reference genome and associated resources now underpin a broad range of fundamental investigations of H. contortus and could assist in accelerating the discovery of novel intervention targets and drug candidates to combat haemonchosis.
Collapse
Affiliation(s)
- Yuanting Zheng
- Department of Veterinary Bioscience, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Neil D Young
- Department of Veterinary Bioscience, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia.
| | - Tulio L Campos
- Department of Veterinary Bioscience, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Pasi K Korhonen
- Department of Veterinary Bioscience, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Tao Wang
- Department of Veterinary Bioscience, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Sunita B Sumanam
- Department of Veterinary Bioscience, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Aya C Taki
- Department of Veterinary Bioscience, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Joseph J Byrne
- Department of Veterinary Bioscience, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Bill C H Chang
- Department of Veterinary Bioscience, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Jiangning Song
- Faculty of IT, Department of Data Science and AI, Monash University, Victoria, Australia; Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia; Monash Data Futures Institute, Monash University, Victoria, Australia.
| | - Robin B Gasser
- Department of Veterinary Bioscience, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
127
|
Li X, Lei W, You X, Kong X, Chen Z, Shan R, Zhang Y, Yu Y, Wang P, Chen C. The tea cultivar 'Chungui' with jasmine-like aroma: From genome and epigenome to quality. Int J Biol Macromol 2024; 281:136352. [PMID: 39374727 DOI: 10.1016/j.ijbiomac.2024.136352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
'Chungui' is a newly promoted tea cultivar in China, renowned for producing oolong tea with a distinctive jasmine-like aroma. However, the genetic basis of this unique aroma remains unclear. In this study, the 'Chungui' genome, one of the most complete and well-annotated tea genomes, was assembled using PacBio HiFi reads and Hi-C sequencing. Through comparative analysis with typical jasmine flower volatiles, eight core compounds responsible for this aroma were identified. Further research revealed that the jasmine-like aroma in 'Chungui' is regulated by a coordinated mechanism involving a significant increase in chromatin accessibility and the demethylation of CHH and CHG in the promoter regions of key aroma-related genes during oolong tea processing. The study proposes that the formation of this unique aroma is driven by the synergistic effect of enhanced chromatin accessibility and reduced methylation, which together lead to the robust upregulation of genes involved in the biosynthesis of these core aroma components. These results provide a molecular foundation for understanding the unique jasmine-like aroma of 'Chungui' tea and sets the stage for future studies to explore the roles of these regulatory mechanisms in aroma formation.
Collapse
Affiliation(s)
- Xinlei Li
- Tea Research Institute, Fujian Academy of Agricultural Science, Fuzhou 350013, China
| | - Wenlong Lei
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xiaomei You
- Tea Research Institute, Fujian Academy of Agricultural Science, Fuzhou 350013, China
| | - Xiangrui Kong
- Tea Research Institute, Fujian Academy of Agricultural Science, Fuzhou 350013, China
| | - Zhihui Chen
- Tea Research Institute, Fujian Academy of Agricultural Science, Fuzhou 350013, China
| | - Ruiyang Shan
- Tea Research Institute, Fujian Academy of Agricultural Science, Fuzhou 350013, China
| | - Yazhen Zhang
- Tea Research Institute, Fujian Academy of Agricultural Science, Fuzhou 350013, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Pengjie Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Science, Fuzhou 350013, China; Fujian Branch of National Center for Tea Improvement, Fuzhou 350013, China.
| |
Collapse
|
128
|
Arbore R, Barbosa S, Brejcha J, Ogawa Y, Liu Y, Nicolaï MPJ, Pereira P, Sabatino SJ, Cloutier A, Poon ESK, Marques CI, Andrade P, Debruyn G, Afonso S, Afonso R, Roy SG, Abdu U, Lopes RJ, Mojzeš P, Maršík P, Sin SYW, White MA, Araújo PM, Corbo JC, Carneiro M. A molecular mechanism for bright color variation in parrots. Science 2024; 386:eadp7710. [PMID: 39480920 PMCID: PMC7617403 DOI: 10.1126/science.adp7710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/05/2024] [Indexed: 11/02/2024]
Abstract
Parrots produce stunning plumage colors through unique pigments called psittacofulvins. However, the mechanism underlying their ability to generate a spectrum of vibrant yellows, reds, and greens remains enigmatic. We uncover a unifying chemical basis for a wide range of parrot plumage colors, which result from the selective deposition of red aldehyde- and yellow carboxyl-containing psittacofulvin molecules in developing feathers. Through genetic mapping, biochemical assays, and single-cell genomics, we identified a critical player in this process, the aldehyde dehydrogenase ALDH3A2, which oxidizes aldehyde psittacofulvins into carboxyl forms in late-differentiating keratinocytes during feather development. The simplicity of the underlying molecular mechanism, in which a single enzyme influences the balance of red and yellow pigments, offers an explanation for the exceptional evolutionary lability of parrot coloration.
Collapse
Affiliation(s)
- Roberto Arbore
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Soraia Barbosa
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Jindřich Brejcha
- Department of Philosophy and History of Science, Faculty of Science, Charles University in Prague, Praha, Czech Republic
| | - Yohey Ogawa
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yu Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michaël P. J. Nicolaï
- Evolution and Optics of Nanostructures Group, Biology Department, Ghent University, Ghent, Belgium
| | - Paulo Pereira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Stephen J. Sabatino
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Alison Cloutier
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | | | - Cristiana I. Marques
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Pedro Andrade
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Gerben Debruyn
- Evolution and Optics of Nanostructures Group, Biology Department, Ghent University, Ghent, Belgium
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Rita Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Shatadru Ghosh Roy
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva84105, Israel
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva84105, Israel
| | - Ricardo J. Lopes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- MHNC-UP, Natural History and Science Museum of the University of Porto, Porto, Portugal
- cE3c – Center for Ecology, Evolution and Environmental Change & CHANGE, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Peter Mojzeš
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Petr Maršík
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Michael A. White
- Edison Family Center for Systems Biology and Genome Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Pedro M. Araújo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- University of Coimbra, MARE – Marine and Environmental Sciences Centre, Department of Life Sciences, Coimbra, Portugal
| | - Joseph C. Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| |
Collapse
|
129
|
Li J, Liu Z, You C, Qi Z, You J, Grover CE, Long Y, Huang X, Lu S, Wang Y, Zhang S, Wang Y, Bai R, Zhang M, Jin S, Nie X, Wendel JF, Zhang X, Wang M. Convergence and divergence of diploid and tetraploid cotton genomes. Nat Genet 2024; 56:2562-2573. [PMID: 39472693 DOI: 10.1038/s41588-024-01964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/27/2024] [Indexed: 11/10/2024]
Abstract
Polyploidy is an important driving force in speciation and evolution; however, the genomic basis for parallel selection of a particular trait between polyploids and ancestral diploids remains unexplored. Here we construct graph-based pan-genomes for diploid (A2) and allotetraploid (AD1) cotton species, enabled by an assembly of 50 genomes of genetically diverse accessions. We delineate a mosaic genome map of tetraploid cultivars that illustrates genomic contributions from semi-wild forms into modern cultivars. Pan-genome comparisons identify syntenic and hyper-divergent regions of continued variation between diploid and tetraploid cottons, and suggest an ongoing process of sequence evolution potentially linked to the contrasting genome size change in two subgenomes. We highlight 43% of genetic regulatory relationships for gene expression in diploid encompassing sequence divergence after polyploidy, and specifically characterize six underexplored convergent genetic loci contributing to parallel selection of fiber quality. This study offers a framework for pan-genomic dissection of genetic regulatory components underlying parallel selection of desirable traits in organisms.
Collapse
Affiliation(s)
- Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Chunyuan You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhengyang Qi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Yuexuan Long
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xianhui Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Sifan Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yuejin Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Sainan Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yawen Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ruizhe Bai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Mengke Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
130
|
Yu H, Wang S, Wang L, Wu W, Xu W, Wu S, Li X, Xu W, Huang Z, Lin Y, Wang H. Pan-genomic characterization and structural variant analysis reveal insights into spore development and species diversity in Ganoderma. Microb Genom 2024; 10:001328. [PMID: 39565084 PMCID: PMC11897173 DOI: 10.1099/mgen.0.001328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
Understanding the genomic diversity and functional implications of Ganoderma species is crucial for elucidating their evolutionary history and biotechnological potential. Here, we present the first pan-genomic analysis of Ganoderma spp., combining five newly sequenced genomes with ten publicly available genomes. Our comprehensive comparative study unveiled a rich genomic landscape, identifying core genes shared among all Ganoderma strains and species-specific gene sets. Additionally, we identified structural variants impacting the expression of key genes, including insights into the MSH4 gene involved in DNA repair and recombination processes, which exhibits a 440 bp insertion in the promoter region and a leucine-to-serine mutation in the gene body, potentially increasing spore production in the S3 strain. Overall, our study provides valuable insights into the genomic architecture and functional diversity of Ganoderma, paving the way for further research on its evolutionary dynamics, biotechnological applications and pharmaceutical potential.
Collapse
Affiliation(s)
- Hang Yu
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi 530005, PR China
| | - Shasha Wang
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Lina Wang
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Weixin Wu
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Wei Xu
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Shuisheng Wu
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Xiaoyan Li
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Wen Xu
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Zehao Huang
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Yu Lin
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Haifeng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi 530005, PR China
- Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
131
|
Wang J, Wu Y, Zhu L, Guo K, Gao S, Dong Y. Genomic evolution and patterns of horizontal gene transfer in Papilio. Genomics 2024; 116:110956. [PMID: 39542384 DOI: 10.1016/j.ygeno.2024.110956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/14/2024] [Accepted: 11/02/2024] [Indexed: 11/17/2024]
Abstract
The Papilio genus, known for its ecological and phenotypic diversity, is a valuable model for evolutionary studies. This study conducted a comparative genomic analysis of 11 Papilio species, revealing species-specific gene family expansions, including the UDP-glucosyltransferase 2 gene associated with insect detoxification, particularly expanding in Papilio polyxenes. Our analysis also revealed 199 horizontal gene transfer (HGT) acquired genes from 76 microbial species, with Pseudomonadota and Bacillota as common HGT donors across these genomes. Furthermore, we examined the evolutionary patterns of nine ABC transporter subfamilies, uncovering potential links between gene family evolution and environmental adaptation. This study provides new insights into evolutionary relationships and genomic adaptations within the Papilio genus, contributing to broader butterfly evolutionary research.
Collapse
Affiliation(s)
- Jiajia Wang
- College of Biology and Food Engineering, Chuzhou University, Chuzhou 239000, China
| | - Yunfei Wu
- College of Biology and Food Engineering, Chuzhou University, Chuzhou 239000, China
| | - Linxin Zhu
- College of Biology and Food Engineering, Chuzhou University, Chuzhou 239000, China
| | - Kaixin Guo
- College of Biology and Food Engineering, Chuzhou University, Chuzhou 239000, China
| | - Shichen Gao
- College of Biology and Food Engineering, Chuzhou University, Chuzhou 239000, China
| | - Yan Dong
- College of Biology and Food Engineering, Chuzhou University, Chuzhou 239000, China.
| |
Collapse
|
132
|
Kim JH, Bae EK, Hue Y, Choi B, Kang MJ, Park EJ, Kim KT. Comparative Genomics Reveals Species-Specific Genes and Symbiotic Adaptations in Tricholoma matsutake. J Fungi (Basel) 2024; 10:746. [PMID: 39590665 PMCID: PMC11595502 DOI: 10.3390/jof10110746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/03/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
Tricholoma matsutake, a highly valued ectomycorrhizal fungus, requires a symbiotic relationship with pine trees for growth, complicating its cultivation. This study presents a comprehensive comparative genomic analysis of Tricholoma species, with a focus on T. matsutake. Genomic data from 19 assemblies representing 13 species were analyzed to identify genus-, species-, and strain-specific genes, revealing significant evolutionary adaptations. Notably, T. matsutake exhibits a higher proportion of repetitive elements compared to other species, with retrotransposons like LTR Gypsy dominating its genome. Phylogenomic analyses showed that T. matsutake forms a monophyletic group closely related to T. bakamatsutake. Gene family expansion and contraction analyses highlighted the unique evolutionary pressures on T. matsutake, particularly the loss of tryptophan-related metabolic pathways and the gain of genes related to iron ion homeostasis, which may be crucial for its adaptation to nutrient-limited environments. Additionally, the reduction in secreted proteins and carbohydrate-active enzymes reflects the host-dependent lifestyle of T. matsutake and related species. These findings enhance our understanding of the genetic and evolutionary mechanisms underlying the complex symbiotic relationships of T. matsutake, offering potential avenues for optimizing its cultivation and commercial value.
Collapse
Affiliation(s)
- Jea Hyeoung Kim
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Republic of Korea; (J.H.K.); (Y.H.)
| | - Eun-Kyung Bae
- Forest Microbiology and Application Division, Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea; (E.-K.B.); (M.-J.K.)
| | - Yoeguang Hue
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Republic of Korea; (J.H.K.); (Y.H.)
| | - Byungheon Choi
- Department of Multimedia Engineering, Sunchon National University, Suncheon 57922, Republic of Korea;
| | - Min-Jeong Kang
- Forest Microbiology and Application Division, Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea; (E.-K.B.); (M.-J.K.)
| | - Eung-Jun Park
- Forest Microbiology and Application Division, Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea; (E.-K.B.); (M.-J.K.)
| | - Ki-Tae Kim
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Republic of Korea; (J.H.K.); (Y.H.)
- Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
133
|
Bista B, González-Rodelas L, Álvarez-González L, Wu ZQ, Montiel EE, Lee LS, Badenhorst DB, Radhakrishnan S, Literman R, Navarro-Dominguez B, Iverson JB, Orozco-Arias S, González J, Ruiz-Herrera A, Valenzuela N. De novo genome assemblies of two cryptodiran turtles with ZZ/ZW and XX/XY sex chromosomes provide insights into patterns of genome reshuffling and uncover novel 3D genome folding in amniotes. Genome Res 2024; 34:1553-1569. [PMID: 39414368 PMCID: PMC11529993 DOI: 10.1101/gr.279443.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
Understanding the evolution of chromatin conformation among species is fundamental to elucidate the architecture and plasticity of genomes. Nonrandom interactions of linearly distant loci regulate gene function in species-specific patterns, affecting genome function, evolution, and, ultimately, speciation. Yet, data from nonmodel organisms are scarce. To capture the macroevolutionary diversity of vertebrate chromatin conformation, here we generate de novo genome assemblies for two cryptodiran (hidden-neck) turtles via Illumina sequencing, chromosome conformation capture, and RNA-seq: Apalone spinifera (ZZ/ZW, 2n = 66) and Staurotypus triporcatus (XX/XY, 2n = 54). We detected differences in the three-dimensional (3D) chromatin structure in turtles compared to other amniotes beyond the fusion/fission events detected in the linear genomes. Namely, whole-genome comparisons revealed distinct trends of chromosome rearrangements in turtles: (1) a low rate of genome reshuffling in Apalone (Trionychidae) whose karyotype is highly conserved when compared to chicken (likely ancestral for turtles), and (2) a moderate rate of fusions/fissions in Staurotypus (Kinosternidae) and Trachemys scripta (Emydidae). Furthermore, we identified a chromosome folding pattern that enables "centromere-telomere interactions" previously undetected in turtles. The combined turtle pattern of "centromere-telomere interactions" (discovered here) plus "centromere clustering" (previously reported in sauropsids) is novel for amniotes and it counters previous hypotheses about amniote 3D chromatin structure. We hypothesize that the divergent pattern found in turtles originated from an amniote ancestral state defined by a nuclear configuration with extensive associations among microchromosomes that were preserved upon the reshuffling of the linear genome.
Collapse
Affiliation(s)
- Basanta Bista
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Laura González-Rodelas
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Lucía Álvarez-González
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Zhi-Qiang Wu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
- Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Eugenia E Montiel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Ling Sze Lee
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Daleen B Badenhorst
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Srihari Radhakrishnan
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Robert Literman
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Beatriz Navarro-Dominguez
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - John B Iverson
- Department of Biology, Earlham College, Richmond, Indiana 47374, USA
| | | | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, 080003 Barcelona, Spain
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA;
| |
Collapse
|
134
|
Patro TSSK, Palanna KB, Jeevan B, Tatineni P, Poonacha TT, Khan F, Ramesh GV, Nayak AM, Praveen B, Divya M, Anuradha N, Rani YS, Nagaraja TE, Madhusudhana R, Satyavathi CT, Prasanna SK. Virulence perspective genomic research unlocks the secrets of Rhizoctonia solani associated with banded sheath blight in Barnyard Millet ( Echinochloa frumentacea). FRONTIERS IN PLANT SCIENCE 2024; 15:1457912. [PMID: 39529934 PMCID: PMC11551851 DOI: 10.3389/fpls.2024.1457912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Introduction Banded sheath blight (Bsb) disease, caused by Rhizoctonia solani, is an emerging problem in barnyard millet cultivation. One of the significant goals of pathogenomic research is to identify genes responsible for pathogenicity in the fungus. Methods A virulence profiling-based approach was employed and six R. solani isolates were collected from various ecological zones of India. The morphological parameters and virulence of all of the six R. solani isolates were investigated. The most virulent strain was designated as RAP2 and its genome has been sequenced, assembled, and annotated. Results The RAP2 genome is 43.63 megabases in size and comprises 10.95% repetitive DNA, within which 46% are retroelements, 8% are DNA transposons, and 46% are unidentified DNA. The Gene Ontology (GO) annotation of RAP2 proteins revealed that "phosphorylation", "membrane", and "ATP binding" have the highest gene enrichment in the "biological process", "cellular component" and "molecular function" domains, respectively. The genome comprises a majority of secretory proteins in the pectin lyase fold/virulence factor superfamily, which break down plant cell wall polymers to extract saccharides. The RAP2 genome is comparable to R. solani, which infects maize and rice, but it diverges further from soybean in terms of nucleotide-level genetic similarity. Orthologous clustering of RAP2 protein sequences with R. solani infecting maize, rice, and soybean yields 5606 proteins shared across all genomes. GO analysis of 25 proteins specific to the RAP2 genome found enrichment in the ethylene response, which can cause spore germination and infection in host plants. Discussion Interestingly, a 28-bp deletion in the RAP2 strain's cutinase domain was discovered in the cutinase protein, which might be important in the infection process, perhaps rendering the enzyme inactive or allowing the pathogen to infect barnyard millet while avoiding host defense. This study sheds light on the genetic makeup of R. solani, allowing researchers to discover critical genes related with pathogenicity as well as potential targets for fungicide development.
Collapse
Affiliation(s)
- T. S. S. K. Patro
- Agricultural Research Station, Acharya N. G. Ranga (ANGR) Agricultural University, Vizianagaram, Andhra Pradesh, India
| | - K. B. Palanna
- ICAR-All India Coordinated Research Project (ICAR-AICRP) on Small Millets, Project Coordinating (PC) Unit, University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - B. Jeevan
- Crop Protection Division, ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Pallavi Tatineni
- Agricultural Research Station, Acharya N. G. Ranga (ANGR) Agricultural University, Vizianagaram, Andhra Pradesh, India
| | - T. Tharana Poonacha
- Department of Plant Pathology, University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - Farooq Khan
- Department of Plant Pathology, University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - G. V. Ramesh
- Department of Plant Pathology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Anusha M. Nayak
- Department of Plant Pathology, University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - Boda Praveen
- Agricultural Research Station, Acharya N. G. Ranga (ANGR) Agricultural University, Vizianagaram, Andhra Pradesh, India
| | - M. Divya
- Agricultural Research Station, Acharya N. G. Ranga (ANGR) Agricultural University, Vizianagaram, Andhra Pradesh, India
| | - N. Anuradha
- Agricultural Research Station, Acharya N. G. Ranga (ANGR) Agricultural University, Vizianagaram, Andhra Pradesh, India
| | - Y. Sandhya Rani
- Agricultural Research Station, Acharya N. G. Ranga (ANGR) Agricultural University, Vizianagaram, Andhra Pradesh, India
| | - T. E. Nagaraja
- ICAR-All India Coordinated Research Project (ICAR-AICRP) on Small Millets, Project Coordinating (PC) Unit, University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - R. Madhusudhana
- ICAR- Indian Institute of Millets Research, Hyderabad, Telangana, India
| | | | - S. Koti Prasanna
- Department of Plant Biotechnology, University of Agricultural Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
135
|
Jiang Z, Peng Z, Wei Z, Sun J, Luo Y, Bie L, Zhang G, Wang Y. A deep learning-based method enables the automatic and accurate assembly of chromosome-level genomes. Nucleic Acids Res 2024; 52:e92. [PMID: 39287126 PMCID: PMC11514472 DOI: 10.1093/nar/gkae789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
The application of high-throughput chromosome conformation capture (Hi-C) technology enables the construction of chromosome-level assemblies. However, the correction of errors and the anchoring of sequences to chromosomes in the assembly remain significant challenges. In this study, we developed a deep learning-based method, AutoHiC, to address the challenges in chromosome-level genome assembly by enhancing contiguity and accuracy. Conventional Hi-C-aided scaffolding often requires manual refinement, but AutoHiC instead utilizes Hi-C data for automated workflows and iterative error correction. When trained on data from 300+ species, AutoHiC demonstrated a robust average error detection accuracy exceeding 90%. The benchmarking results confirmed its significant impact on genome contiguity and error correction. The innovative approach and comprehensive results of AutoHiC constitute a breakthrough in automated error detection, promising more accurate genome assemblies for advancing genomics research.
Collapse
Affiliation(s)
- Zijie Jiang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Zhixiang Peng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Zhaoyuan Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Jiahe Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yongjiang Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Lingzi Bie
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Guoqing Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yi Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
136
|
Hudson O, Meinecke CD, Brawner JT. Comparative genomics of Fusarium species causing Fusarium ear rot of maize. PLoS One 2024; 19:e0306144. [PMID: 39423180 PMCID: PMC11488721 DOI: 10.1371/journal.pone.0306144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/10/2024] [Indexed: 10/21/2024] Open
Abstract
Fusarium ear rot (FER), caused by the fungal pathogen Fusarium verticillioides, stands as one of the most economically burdensome and pervasive diseases affecting maize worldwide. Its impact on food security is particularly pronounced due to the production of fumonisins, toxic secondary metabolites that pose serious health risks, especially for livestock. FER disease severity is complex and polygenic, with few resistance (R) genes being identified for use in breeding resistant varieties. While FER is the subject of several breeding programs, only a few studies have investigated entire populations of F. verticillioides with corresponding virulence data to better understand and characterize the pathogenomics. Here, we sequenced and compared the genomes of 50 Fusarium isolates (43 F. verticillioides and 7 other Fusarium spp.) that were used to inoculate a diverse maize population. Our objectives were to elucidate the genome size and composition of F. verticillioides, explore the variable relationship between fumonisin production and visual disease severity, and shed light on the phylogenetic relationships among the isolates. Additionally, we conducted a comparative analysis of the nucleotide variants (SNPs) and the isolates' effectoromes to uncover potential genetic determinants of pathogenicity. Our findings revealed several promising leads, notably the association of certain gene groups, such as pectate lyase, with disease severity. These genes should be investigated further as putative alleles for breeding resistant maize varieties. We suggest that, beyond validation of the alleles identified in this study, researchers validate each phenotypic dataset on an individual basis, particularly if considering fumonisin concentrations and when using diverse populations. Our study underscores the importance of genomic analysis in tackling FER and offers insights that could inform the development of resilient maize cultivars. By leveraging advances in genomics and incorporating pathogen populations into breeding programs, resistance to FER can be advanced.
Collapse
Affiliation(s)
- Owen Hudson
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States of America
| | - Colton D. Meinecke
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States of America
| | - Jeremy T. Brawner
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States of America
- Genics Ltd, Queensland, Australia
| |
Collapse
|
137
|
Wade KJ, Suseno R, Kizer K, Williams J, Boquett J, Caillier S, Pollock NR, Renschen A, Santaniello A, Oksenberg JR, Norman PJ, Augusto DG, Hollenbach JA. MHConstructor: a high-throughput, haplotype-informed solution to the MHC assembly challenge. Genome Biol 2024; 25:274. [PMID: 39420419 PMCID: PMC11484429 DOI: 10.1186/s13059-024-03412-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
The extremely high levels of genetic polymorphism within the human major histocompatibility complex (MHC) limit the usefulness of reference-based alignment methods for sequence assembly. We incorporate a short-read, de novo assembly algorithm into a workflow for novel application to the MHC. MHConstructor is a containerized pipeline designed for high-throughput, haplotype-informed, reproducible assembly of both whole genome sequencing and target capture short-read data in large, population cohorts. To-date, no other self-contained tool exists for the generation of de novo MHC assemblies from short-read data. MHConstructor facilitates wide-spread access to high-quality, alignment-free MHC sequence analysis.
Collapse
Affiliation(s)
- Kristen J Wade
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Rayo Suseno
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Kerry Kizer
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Jacqueline Williams
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Juliano Boquett
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Stacy Caillier
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Nicholas R Pollock
- Department of Biomedical Informatics, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
- Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Adam Renschen
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Adam Santaniello
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Jorge R Oksenberg
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Paul J Norman
- Department of Biomedical Informatics, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
- Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Danillo G Augusto
- Department of Biological Sciences, University of North Carolina Charlotte, Charlotte, NC, USA
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Jill A Hollenbach
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
138
|
Jo E, Cho M, Choi S, Lee SJ, Choi E, Kim J, Kim JY, Kwon S, Lee JH, Park H. High-quality chromosome-level genome assembly of female Artemia franciscana reveals sex chromosome and Hox gene organization. Heliyon 2024; 10:e38687. [PMID: 39435060 PMCID: PMC11492255 DOI: 10.1016/j.heliyon.2024.e38687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
Artemia is a crustacean genus belonging to the order Anostraca in the class Branchiopoda and lives in inland hypersaline lakes. Among the genus, A. franciscana is a valuable species as a fish food in the aquaculture industry or as an aquatic model organism for toxicity tests. However, genomic data for A. franciscana remains incomplete. In this study, high-quality genome assembly at the chromosome level of female A. franciscana was conducted by combining various sequencing and assembly technologies. The final A. franciscana assembled genome was 1.27 Gb in length, containing 21 chromosomal scaffolds (>10 Mb). The scaffold N50 was 45.3 Mb, with a complete BUSCO value of 91.0 %, thereby confirming that a high-quality genome was assembled. Gene annotation shows that the A. franciscana genome contained 67.26 % of repetitive sequences, and a total of 26,923 protein-coding genes were predicted. Among the 21 chromosome-scale scaffolds, chromosome 1 was identified as a sex chromosome Z. Additionally, five contigs of putative W chromosome fragments and the candidate sex-determining genes were suggested. Ten homeobox (Hox) genes were identified in A. franciscana on the chromosome 14, which were in two subclusters with a large gap. Hox gene organizations within 13 arthropods showed that four anostracans had conserved synteny. This study provides a new female Artemia genome with sex chromosome and the first complete genomic arrangement of the Hox cluster in Anostraca. This study will be a useful genomic and genetic reference for understanding the evolution and development of A. franciscana.
Collapse
Affiliation(s)
- Euna Jo
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Minjoo Cho
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Soyun Choi
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Seung Jae Lee
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Eunkyung Choi
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jinmu Kim
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jang Yeon Kim
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Sooyeon Kwon
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jun Hyuck Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Hyun Park
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
139
|
Yevshin IS, Shagimardanova EI, Ryabova AS, Pintus SS, Kolpakov FA, Gusev OA. Genome of Russian Snow-White Chicken Reveals Genetic Features Associated with Adaptations to Cold and Diseases. Int J Mol Sci 2024; 25:11066. [PMID: 39456845 PMCID: PMC11508066 DOI: 10.3390/ijms252011066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Russian Snow White (RSW) chickens are characterized by high egg production, extreme resistance to low temperatures, disease resistance, and by the snow-white color of the day-old chicks. Studying the genome of this unique chicken breed will reveal its evolutionary history and help to understand the molecular genetic mechanisms underlying the unique characteristics of this breed, which will open new breeding opportunities and support future studies. We have sequenced and made a de novo assembly of the whole RSW genome using deep sequencing (250×) by the short reads. The genome consists of 40 chromosomes with a total length of 1.1 billion nucleotide pairs. Phylogenetic analysis placed the RSW near the White Leghorn, Fayoumi, and Houdan breeds. Comparison with other chicken breeds revealed a wide pool of mutations unique to the RSW. The functional annotation of these mutations showed the adaptation of genes associated with the development of the nervous system, thermoreceptors, purine receptors, and the TGF-beta pathway, probably caused by selection for low temperatures. We also found adaptation of the immune system genes, likely driven by selection for resistance to viral diseases. Integration with previous genome-wide association studies (GWAS) suggested several causal single nucleotide polymorphisms (SNPs). Specifically, we identified an RSW-specific missense mutation in the RALYL gene, presumably causing the snow-white color of the day-old chicks, and an RSW-specific missense mutation in the TLL1 gene, presumably affecting the egg weight.
Collapse
Affiliation(s)
| | - Elena I. Shagimardanova
- Life Improvement by Future Technologies (LIFT) Center, 121205 Moscow, Russia
- Center of Genomics and Bioimaging Core Facility, 121205 Moscow, Russia
| | | | - Sergey S. Pintus
- Sirius University of Science and Technology, 354340 Sirius, Russia; (S.S.P.)
| | - Fedor A. Kolpakov
- Sirius University of Science and Technology, 354340 Sirius, Russia; (S.S.P.)
| | - Oleg A. Gusev
- Life Improvement by Future Technologies (LIFT) Center, 121205 Moscow, Russia
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo 13-8421, Japan
| |
Collapse
|
140
|
Minoji K, Sakai T. A chromosome-scale genome assembly of Timorese crabgrass (Digitaria radicosa): a useful genomic resource for the Poaceae. G3 (BETHESDA, MD.) 2024; 14:jkae242. [PMID: 39387509 PMCID: PMC11631527 DOI: 10.1093/g3journal/jkae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
Timorese crabgrass (Digitaria radicosa) is a grass species commonly found in Southeast Asia and Oceania. Digitaria species have high intraspecific and interspecific genetic and phenotypic diversity, suggesting their potential usefulness as a genetic resource. However, as the only high-quality reference genome available is for a tetraploid Digitaria species, a reference genome of the diploid species D. radicosa would be a useful resource for genomic studies of Digitaria and Poaceae plants. Here, we present a chromosome-level genome assembly of D. radicosa and describe its genetic characteristics; we also illustrate its usefulness as a genomic resource for Poaceae. We constructed a 441.6 Mb draft assembly consisting of 61 contigs with an N50 contig length of 41.5 Mb, using PacBio HiFi long reads. We predicted 26,577 protein-coding genes, reaching a BUSCO score of 96.5%. To demonstrate the usefulness of the D. radicosa reference genome, we investigated the evolution of Digitaria species and the genetic diversity of Japanese Digitaria plants based on our new reference genome. We also defined the syntenic blocks between D. radicosa and 2 Poaceae crops, fonio and rice, and the diverse distribution of representative resistance genes in D. radicosa. The D. radicosa reference genome presented here should help elucidate the genetic relatedness of Digitaria species and the genetic diversity of Digitaria plants. In addition, the D. radicosa genome will be an important genomic resource for Poaceae genomics and crop breeding.
Collapse
Affiliation(s)
- Koki Minoji
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Muko, Kyoto 617-0001, Japan
| | - Toshiyuki Sakai
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Muko, Kyoto 617-0001, Japan
| |
Collapse
|
141
|
Sumampong G, Feau N, Bernier L, Hamelin RC, Liu JJ, Shamoun SF. Genome sequence of Heterobasidion occidentale, a fungus that causes annosus root and butt rot among conifer trees in North America. Microbiol Resour Announc 2024; 13:e0041924. [PMID: 39177369 PMCID: PMC11492984 DOI: 10.1128/mra.00419-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
We report an annotated draft genome of Heterobasidion occidentale, a fungus (Basidiomycota, Agaricomycetes) that has pathogenic and saprophytic lifestyles. This fungus belongs to the H. annosum (Fr.) Bref. sensu lato species complex that comprises several root rot pathogens. Heterobasidion occidentale causes annosus root and butt rot primarily in true fir (Abies spp.) and spruce (Picea spp.) species throughout western North America.
Collapse
Affiliation(s)
- Grace Sumampong
- Département des
Sciences du bois et de la Forêt, Faculté de Foresterie et
Géographie, Université
Laval, Québec,
Canada
- Natural Resources
Canada, Canadian Forest Service, Pacific Forestry
Centre, Victoria,
British Columbia, Canada
| | - Nicolas Feau
- Natural Resources
Canada, Canadian Forest Service, Pacific Forestry
Centre, Victoria,
British Columbia, Canada
| | - Louis Bernier
- Département des
Sciences du bois et de la Forêt, Faculté de Foresterie et
Géographie, Université
Laval, Québec,
Canada
| | - Richard C. Hamelin
- Department of Forest
and Conservation Sciences, Faculty of Forestry, The University of
British Columbia,
Vancouver, British Columbia,
Canada
| | - Jun-Jun Liu
- Natural Resources
Canada, Canadian Forest Service, Pacific Forestry
Centre, Victoria,
British Columbia, Canada
| | - Simon F. Shamoun
- Natural Resources
Canada, Canadian Forest Service, Pacific Forestry
Centre, Victoria,
British Columbia, Canada
| |
Collapse
|
142
|
Kayal E, Arick MA, Hsu CY, Thrash A, Yorkston M, Morden CW, Wendel JF, Peterson DG, Grover CE. Genomic diversity and evolution of the Hawaiian Islands endemic Kokia (Malvaceae). G3 (BETHESDA, MD.) 2024; 14:jkae180. [PMID: 39103179 PMCID: PMC11457090 DOI: 10.1093/g3journal/jkae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/15/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024]
Abstract
Island species are highly vulnerable due to habitat destruction and their often small population sizes with reduced genetic diversity. The Hawaiian Islands constitute the most isolated archipelago on the planet, harboring many endemic species. Kokia is an endangered flowering plant genus endemic to these islands, encompassing 3 extant and 1 extinct species. Recent studies provided evidence of unexpected genetic diversity within Kokia. Here, we provide high-quality genome assemblies for all 3 extant Kokia species, including an improved genome for Kokia drynarioides. All 3 Kokia genomes contain 12 chromosomes exhibiting high synteny within and between Kokia and the sister taxon Gossypioides kirkii. Gene content analysis revealed a net loss of genes in K. cookei compared to other species, whereas the gene complement in K. drynarioides remains stable and that of Kokia kauaiensis displays a net gain. A dated phylogeny estimates the divergence time from the last common ancestor for the 3 Kokia species at ∼1.2 million years ago (mya), with the sister taxa (K. cookei + K. drynarioides) diverging ∼0.8 mya. Kokia appears to have followed a stepping-stone pattern of colonization and diversification of the Hawaiian archipelago, likely starting on low or now submerged older islands. The genetic resources provided may benefit conservation efforts of this endangered endemic genus.
Collapse
Affiliation(s)
- Ehsan Kayal
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50011, USA
| | - Mark A Arick
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39759, USA
| | - Chuan-yu Hsu
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39759, USA
| | - Adam Thrash
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39759, USA
| | - Mitsuko Yorkston
- School of Life Sciences, University of Hawai‘i, Honolulu, HI 96822, USA
| | - Clifford W Morden
- School of Life Sciences, University of Hawai‘i, Honolulu, HI 96822, USA
| | - Jonathan F Wendel
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50011, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39759, USA
| | - Corrinne E Grover
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
143
|
Schmidt S, Murphy R, Vizueta J, Schierbech SK, Conlon BH, Kreuzenbeck NB, Vreeburg SME, van de Peppel LJJ, Aanen DK, Silué KS, Kone NA, Beemelmanns C, Weber T, Poulsen M. Comparative genomics unravels a rich set of biosynthetic gene clusters with distinct evolutionary trajectories across fungal species (Termitomyces) farmed by termites. Commun Biol 2024; 7:1269. [PMID: 39369058 PMCID: PMC11455885 DOI: 10.1038/s42003-024-06887-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024] Open
Abstract
The use of compounds produced by hosts or symbionts for defence against antagonists has been identified in many organisms, including in fungus-farming termites (Macrotermitinae). The obligate mutualistic fungus Termitomyces plays a pivotal role in plant biomass decomposition and as the primary food source for these termites. Despite the isolation of various specialized metabolites from different Termitomyces species, our grasp of their natural product repertoire remains incomplete. To address this knowledge gap, we conducted a comprehensive analysis of 39 Termitomyces genomes, representing 21 species associated with members of five termite host genera. We identified 754 biosynthetic gene clusters (BGCs) coding for specialized metabolites and categorized 660 BGCs into 61 biosynthetic gene cluster families (GCFs) spanning five compound classes. Seven GCFs were shared by all 21 Termitomyces species and 21 GCFs were present in all genomes of subsets of species. Evolutionary constraint analyses on the 25 most abundant GCFs revealed distinctive evolutionary histories, signifying that millions of years of termite-fungus symbiosis have influenced diverse biosynthetic pathways. This study unveils a wealth of non-random and largely undiscovered chemical potential within Termitomyces and contributes to our understanding of the intricate evolutionary trajectories of biosynthetic gene clusters in the context of long-standing symbiosis.
Collapse
Affiliation(s)
- Suzanne Schmidt
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
| | - Robert Murphy
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Joel Vizueta
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Signe Kjærsgaard Schierbech
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Benjamin H Conlon
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Nina B Kreuzenbeck
- Group of Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Sabine M E Vreeburg
- Laboratory of Genetics, Wageningen University, 6700 AA, Wageningen, The Netherlands
| | | | - Duur K Aanen
- Laboratory of Genetics, Wageningen University, 6700 AA, Wageningen, The Netherlands
| | - Kolotchèlèma S Silué
- Unité de Formation et de Recherche Sciences de la Nature (UFR-SN), Laboratoire d'Ecologie et de Développement Durable (UREB), Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
- Centre de Recherche en Écologie (CRE), Station de Recherche en Ecologie du Parc national de la Comoé, Bouna, Côte d'Ivoire
| | - N'Golo A Kone
- Unité de Formation et de Recherche Sciences de la Nature (UFR-SN), Laboratoire d'Ecologie et de Développement Durable (UREB), Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
- Centre de Recherche en Écologie (CRE), Station de Recherche en Ecologie du Parc national de la Comoé, Bouna, Côte d'Ivoire
| | - Christine Beemelmanns
- Group of Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
- Department Anti-infectives from Microbiota, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8, 66123, Saarbrücken, Germany
- Universität des Saarlandes, Campus E8, 66123, Saarbrücken, Germany
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| |
Collapse
|
144
|
Mejía-Limones I, Andrade-Molina D, Morey-León G, Hidalgo-Olmedo JC, Chang-Asinc JG, Fernández-Cadena JC, Rojas M. Whole-genome sequencing of Klebsiella pneumoniae MDR circulating in a pediatric hospital setting: a comprehensive genome analysis of isolates from Guayaquil, Ecuador. BMC Genomics 2024; 25:928. [PMID: 39367302 PMCID: PMC11451243 DOI: 10.1186/s12864-024-10835-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Klebsiella pneumoniae is the major cause of nosocomial infections worldwide and is related to a worsening increase in Multidrug-Resistant Bacteria (MDR) and virulence genes that seriously affect immunosuppressed patients, long-stay intensive care patients, elderly individuals, and children. Whole-Genome Sequencing (WGS) has resulted in a useful strategy for characterizing the genomic components of clinically important bacteria, such as K. pneumoniae, enabling them to monitor genetic changes and understand transmission, highlighting the risk of dissemination of resistance and virulence associated genes in hospitals. In this study, we report on WGS 14 clinical isolates of K. pneumoniae from a pediatric hospital biobank of Guayaquil, Ecuador. RESULTS The main findings revealed pronounced genetic heterogeneity among the isolates. Multilocus sequencing type ST45 was the predominant lineage among non-KPC isolates, whereas ST629 was found more frequently among KPC isolates. Phylogenetic analysis suggested local transmission dynamics. Comparative genomic analysis revealed a core set of 3511 conserved genes and an open pangenome in neonatal isolates. The diversity of MLSTs and capsular types, and the high genetic diversity among these isolates indicate high intraspecific variability. In terms of virulence factors, we identified genes associated with adherence, biofilm formation, immune evasion, secretion systems, multidrug efflux pump transporters, and a notably high number of genes related to iron uptake. A large number of these genes were detected in the ST45 isolate, whereas iron uptake yersiniabactin genes were found exclusively in the non-KPC isolates. We observed high resistance to commonly used antibiotics and determined that these isolates exhibited multidrug resistance including β-lactams, aminoglycosides, fluoroquinolones, quinolones, trimetropins, fosfomycin and macrolides; additionally, resistance-associated point mutations and cross-resistance genes were identified in all the isolates. We also report the first K. pneumoniae KPC-3 gene producers in Ecuador. CONCLUSIONS Our WGS results for clinical isolates highlight the importance of MDR in neonatal K. pneumoniae infections and their genetic diversity. WGS will be an imperative strategy for the surveillance of K. pneumoniae in Ecuador, and will contribute to identifying effective treatment strategies for K. pneumoniae infections in critical units in patients at stratified risk.
Collapse
Affiliation(s)
- I Mejía-Limones
- Laboratorio de Ciencias Omicas, Facultad de Ciencias de La Salud, Universidad Espíritu Santo, Samborondón, Ecuador
| | - D Andrade-Molina
- Laboratorio de Ciencias Omicas, Facultad de Ciencias de La Salud, Universidad Espíritu Santo, Samborondón, Ecuador.
| | - G Morey-León
- Laboratorio de Ciencias Omicas, Facultad de Ciencias de La Salud, Universidad Espíritu Santo, Samborondón, Ecuador
| | - J C Hidalgo-Olmedo
- Hospital de Niños Dr. Roberto Gilbert E. Junta de Beneficencia de Guayaquil, Guayaquil, Ecuador
| | - J G Chang-Asinc
- Hospital de Niños Dr. Roberto Gilbert E. Junta de Beneficencia de Guayaquil, Guayaquil, Ecuador
| | - J C Fernández-Cadena
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco
| | - M Rojas
- Human Genomics Corporation S.A.S., Loja, Ecuador
| |
Collapse
|
145
|
Lian Q, Zhang S, Wu Z, Zhang C, Negrão S. Assembly and comparative analysis of the mitochondrial genome in diploid potatoes. PLANT CELL REPORTS 2024; 43:249. [PMID: 39358565 DOI: 10.1007/s00299-024-03326-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
KEY MESSAGE We report the mitochondrial genome of 39 diploid potatoes and identify a candidate ORF potentially linked to cytoplasmic male sterility in potatoes. Potato (Solanum tuberosum L.) holds a critical position as the foremost non-grain food crop, playing a pivotal role in ensuring global food security. Diploid potatoes constitute a vital genetic resource pool, harboring the potential to revolutionize modern potato breeding. Nevertheless, diploid potatoes are relatively understudied, and mitochondrial DNA can provide valuable insights into key potato breeding traits such as CMS. In this study, we examine and assemble the mitochondrial genome evolution and diversity of 39 accessions of diploid potatoes using high-fidelity (HiFi) sequencing. We annotated 54 genes for all the investigated accessions, comprising 34 protein-coding genes, 3 rRNA genes, and 17 tRNA genes. Our analyses revealed differences in repeats sequences between wild and cultivated landraces. To understand the evolution of diploid maternal lineage inheritance, we conducted phylogenetic analysis, which clearly distinguished mitochondrial from nuclear gene trees, further supporting the evidence-based of clustering between wild and cultivated landraces accessions. Our study discovers new candidate ORFs associated with CMS in potatoes, including ORF137, which is homologous to other CMS in Solanaceae. Ultimately, this work bridges the gap in mitochondrial genome research for diploid potatoes, providing a steppingstone into evolutionary studies and potato breeding.
Collapse
Affiliation(s)
- Qun Lian
- School of Biology & Environmental Science, University College Dublin, Belfield, Dublin, Ireland
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Shuo Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Chunzhi Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Sónia Negrão
- School of Biology & Environmental Science, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
146
|
Marasco R, Michoud G, Seferji KA, Gonella E, Garuglieri E, Rolli E, Alma A, Mapelli F, Borin S, Daffonchio D, Crotti E. Sorlinia euscelidii gen. nov., sp. nov., a novel acetic acid bacterium isolated from the leafhopper Euscelidius variegatus ( Hemiptera: Cicadellidae). Int J Syst Evol Microbiol 2024; 74:006544. [PMID: 39432413 PMCID: PMC11493185 DOI: 10.1099/ijsem.0.006544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
Acetic acid bacteria - belonging to the Acetobacteraceae family - are found in the gut of many sugar-feeding insects. In this study, six strains have been isolated from the hemipteran leafhopper Euscelidius variegatus. While they exhibit high 16S rRNA gene sequence similarities to uncultured members of the Acetobacteraceae family, they could not be unequivocally assigned to any particular type species. Considering the clonality of the six isolates, the EV16PT strain was used as a representative of this group of isolates. The genome sequence of EV16PT is composed of a 2.388 Mbp chromosome, with a DNA G+C content of 57 mol%. Phylogenetic analyses based on the 16S rRNA gene sequence and whole-genome multilocus sequence analysis indicate that EV16PT forms a monophyletic clade with the uncultivated endosymbiont of Diaphorina citri, the Candidatus Kirkpatrickella diaphorinae. Such a phylogenetic clade is positioned between those of Asaia-Swaminathania and Kozakia. The genomic distance metrics based on gene and protein sequences support the proposal that EV16PT is a new species belonging to a yet-undescribed genus. It is a rod-shaped Gram-stain-negative bacterium, strictly aerobic, non-motile, non-spore-forming, showing optimal growth without salt (NaCl) at 30 °C and pH of 6-7. The major quinone is Q10, and the dominant cellular fatty acids (>10%) are C18:l ω7c, C19 : 0 cyclo ω6c, C16 : 0 and C19 : 1 2OH. The polar lipid profile comprises diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine, along with unidentified aminophospholipids, glycophospholipids, aminolipids and lipids. Based on a polyphasic approach, including phylogenetic, phylogenomic, genome relatedness, phenotypic and chemotaxonomic characterisations, EV16PT (= KCTC 8296T, = DSM 117028T) is proposed as a representative of a novel species in a novel genus with the proposed name Sorlinia euscelidii gen. nov., sp. nov., in honour of Prof. Claudia Sorlini, an Italian environmental microbiologist at the University of Milan who inspired the research on microbial diversity, including symbiosis in plants and animals.
Collapse
Affiliation(s)
- Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Grégoire Michoud
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Kholoud A. Seferji
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Elena Gonella
- Department of Agricultural, Forest, and Food Sciences (DISAFA), University of Torino, Turin, Italy
| | - Elisa Garuglieri
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Eleonora Rolli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Alberto Alma
- Department of Agricultural, Forest, and Food Sciences (DISAFA), University of Torino, Turin, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Elena Crotti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
147
|
Tahami MS, Vargas-Chavez C, Poikela N, Coronado-Zamora M, González J, Kankare M. Transposable elements in Drosophila montana from harsh cold environments. Mob DNA 2024; 15:18. [PMID: 39354634 PMCID: PMC11445987 DOI: 10.1186/s13100-024-00328-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Substantial discoveries during the past century have revealed that transposable elements (TEs) can play a crucial role in genome evolution by affecting gene expression and inducing genetic rearrangements, among other molecular and structural effects. Yet, our knowledge on the role of TEs in adaptation to extreme climates is still at its infancy. The availability of long-read sequencing has opened up the possibility to identify and study potential functional effects of TEs with higher precision. In this work, we used Drosophila montana as a model for cold-adapted organisms to study the association between TEs and adaptation to harsh climates. RESULTS Using the PacBio long-read sequencing technique, we de novo identified and manually curated TE sequences in five Drosophila montana genomes from eco-geographically distinct populations. We identified 489 new TE consensus sequences which represented 92% of the total TE consensus in D. montana. Overall, 11-13% of the D. montana genome is occupied by TEs, which as expected are non-randomly distributed across the genome. We identified five potentially active TE families, most of them from the retrotransposon class of TEs. Additionally, we found TEs present in the five analyzed genomes that were located nearby previously identified cold tolerant genes. Some of these TEs contain promoter elements and transcription binding sites. Finally, we detected TEs nearby fixed and polymorphic inversion breakpoints. CONCLUSIONS Our research revealed a significant number of newly identified TE consensus sequences in the genome of D. montana, suggesting that non-model species should be studied to get a comprehensive view of the TE repertoire in Drosophila species and beyond. Genome annotations with the new D. montana library allowed us to identify TEs located nearby cold tolerant genes, and present at high population frequencies, that contain regulatory regions and are thus good candidates to play a role in D. montana cold stress response. Finally, our annotations also allow us to identify for the first time TEs present in the breakpoints of three D. montana inversions.
Collapse
Affiliation(s)
- Mohadeseh S Tahami
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | | | - Noora Poikela
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| | - Marta Coronado-Zamora
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, 08038, Catalonia, Spain
| | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain.
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, 08038, Catalonia, Spain.
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.
| |
Collapse
|
148
|
Kim J, Rahman MM, Han C, Shin J, Ahn SJ. Chromosome-level genome assembly and comparative genomics shed light on Helicoverpa assulta ecology and pest management. PEST MANAGEMENT SCIENCE 2024; 80:5440-5451. [PMID: 38942610 DOI: 10.1002/ps.8273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND The Oriental tobacco budworm, Helicoverpa assulta, a specialist herbivorous insect that exclusively feeds on plants of the Solanaceae family, causes considerable damage to crops, such as tobacco and hot pepper. The absence of a genome sequence for this species hinders further research on its pest management and ecological adaptation. RESULTS Here, we present a high-quality chromosome-level genome of a Korean strain of H. assulta (Pyeongchang strain, K18). The total assembly spans 424.4 Mb with an N50 length of 14.54 Mb and 37% GC content. The assembled genome (ASM2961881v1) comprises 31 chromosomes, similar to other congeneric generalist species including H. armigera and H. zea. In terms of genomic assembly quality, the complete BUSCOs and repeat content accounted for 98.3% and 33.01% of the genome, respectively. Based on this assembly, 19 485 protein-coding genes were predicted in the genome annotation. A comparative analysis was conducted using the identified number of protein-coding genes in H. armigera (24154) and H. zea (23696). Out of the 19 485 predicted genes, 137 genes in 15 orthogroups were found to have expanded significantly in H. assulta, while 149 genes in 95 orthogroups contracted rapidly. CONCLUSION This study revealed specific gene expansions and contractions in H. assulta compared to those in its close relatives, indicating potential adaptations related to its specialized feeding habits. Also, the comparative genome analysis provides valuable insights for the integrated pest management of H. assulta and other globally significant pests in the Heliothinae subfamily. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Juil Kim
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon, Republic of Korea
- Interdisciplinary Graduate Program in Smart Agriculture, Kangwon National Unversity, Chuncheon, Republic of Korea
| | - Md-Mafizur Rahman
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon, Republic of Korea
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, Bangladesh
| | - Changhee Han
- Interdisciplinary Graduate Program in Smart Agriculture, Kangwon National Unversity, Chuncheon, Republic of Korea
| | - Jiyeong Shin
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon, Republic of Korea
| | - Seung-Joon Ahn
- Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology, Mississippi State University, Starkville, MS, USA
| |
Collapse
|
149
|
Kong Q, Jiang Y, Sun M, Wang Y, Zhang L, Zeng X, Wang Z, Wang Z, Liu Y, Gan Y, Liu H, Gao X, Yang X, Song X, Liu H, Shi J. Biparental graph strategy to represent and analyze hybrid plant genomes. PLANT PHYSIOLOGY 2024; 196:1284-1297. [PMID: 38991561 PMCID: PMC11444280 DOI: 10.1093/plphys/kiae375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/14/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
Hybrid plants are found extensively in the wild, and they often demonstrate superior performance of complex traits over their parents and other selfing plants. This phenomenon, known as heterosis, has been extensively applied in plant breeding for decades. However, the process of decoding hybrid plant genomes has seriously lagged due to the challenges associated with genome assembly and the lack of appropriate methodologies for their subsequent representation and analysis. Here, we present the assembly and analysis of 2 hybrids, an intraspecific hybrid between 2 maize (Zea mays ssp. mays) inbred lines and an interspecific hybrid between maize and its wild relative teosinte (Z. mays ssp. parviglumis), utilizing a combination of PacBio High Fidelity sequencing and chromatin conformation capture sequencing data. The haplotypic assemblies are well phased at chromosomal scale, successfully resolving the complex loci with extensive parental structural variations (SVs). By integrating into a biparental genome graph, the haplotypic assemblies can facilitate downstream short-read-based SV calling and allele-specific gene expression analysis, demonstrating outstanding advantages over a single linear genome. Our work offers a comprehensive workflow that aims to facilitate the decoding of numerous hybrid plant genomes, particularly those with unknown or inaccessible parentage, thereby enhancing our understanding of genome evolution and heterosis.
Collapse
Affiliation(s)
- Qianqian Kong
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yi Jiang
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Mingfei Sun
- Modern Crop Biotechnology Research and Application Laboratory, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yunpeng Wang
- Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Lin Zhang
- College of Agriculture, Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Xing Zeng
- College of Agriculture, Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Zhiheng Wang
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Zijie Wang
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yuting Liu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yuanxian Gan
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Han Liu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Xiang Gao
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Xuerong Yang
- Modern Crop Biotechnology Research and Application Laboratory, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xinyuan Song
- Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Hongjun Liu
- Modern Crop Biotechnology Research and Application Laboratory, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Junpeng Shi
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
150
|
Sun H, Abeli P, Campoy JA, Rütjes T, Krause K, Jiao WB, Beaudry R, Schneeberger K. The identification and analysis of meristematic mutations within the apple tree that developed the RubyMac sport mutation. BMC PLANT BIOLOGY 2024; 24:912. [PMID: 39350074 PMCID: PMC11443920 DOI: 10.1186/s12870-024-05628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Understanding the molecular basis of sport mutations in fruit trees has the potential to accelerate generation of improved cultivars. RESULTS For this, we analyzed the genome of the apple tree that developed the RubyMac phenotype through a sport mutation that led to the characteristic fruit coloring of this variety. Overall, we found 46 somatic mutations that distinguished the mutant and wild-type branches of the tree. In addition, we found 54 somatic gene conversions (i.e., loss-of-heterozygosity mutations) that also distinguished the two parts of the tree. Approximately 20% of the mutations were specific to individual cell lineages, suggesting that they originated from the corresponding meristematic layers. Interestingly, the de novo mutations were enriched for GC = > AT transitions while the gene conversions showed the opposite bias for AT = > GC transitions, suggesting that GC-biased gene conversions have the potential to counteract the AT-bias of de novo mutations. By comparing the gene expression patterns in fruit skins from mutant and wild-type branches, we found 56 differentially expressed genes including 18 involved in anthocyanin biosynthesis. While none of the differently expressed genes harbored a somatic mutation, we found that some of them in regions of the genome that were recently associated with natural variation in fruit coloration. CONCLUSION Our analysis revealed insights in the characteristics of somatic change, which not only included de novo mutations but also gene conversions. Some of these somatic changes displayed strong candidate mutations for the change in fruit coloration in RubyMac.
Collapse
Affiliation(s)
- Hequan Sun
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
- Faculty of Biology, LMU Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany.
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-Von-Linné-Weg 10, 50829, Cologne, Germany.
| | - Patrick Abeli
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - José Antonio Campoy
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-Von-Linné-Weg 10, 50829, Cologne, Germany
| | - Thea Rütjes
- Institute for Plant Genetics, Heinrich Heine University Düsseldorf, University Street 1, 40225, Düsseldorf, Germany
| | - Kristin Krause
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-Von-Linné-Weg 10, 50829, Cologne, Germany
- Illumina Solutions Center Berlin, Berlin, Germany
| | - Wen-Biao Jiao
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-Von-Linné-Weg 10, 50829, Cologne, Germany
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Randy Beaudry
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
| | - Korbinian Schneeberger
- Faculty of Biology, LMU Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany.
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-Von-Linné-Weg 10, 50829, Cologne, Germany.
- Cluster of Excellence On Plant Sciences, Heinrich-Heine University, Universitätsstraße 1, Düsseldorf, 40225, Germany.
| |
Collapse
|