101
|
Bush A, Floto RA. Pathophysiology, causes and genetics of paediatric and adult bronchiectasis. Respirology 2019; 24:1053-1062. [PMID: 30801930 DOI: 10.1111/resp.13509] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
Bronchiectasis has historically been considered to be irreversible dilatation of the airways, but with modern imaging techniques it has been proposed that 'irreversible' be dropped from the definition. The upper limit of normal for the ratio of airway to arterial development increases with age, and a developmental perspective is essential. Bronchiectasis (and persistent bacterial bronchitis, PBB) is a descriptive term and not a diagnosis, and should be the start not the end of the patient's diagnostic journey. PBB, characterized by airway infection and neutrophilic inflammation but without significant airway dilatation may be a precursor of bronchiectasis, and there are many commonalities in the microbiology and the pathology, which are reviewed in this article. A high index of suspicion is essential, and a history of chronic wet or productive cough for more than 4-8 weeks should prompt investigation. There are numerous underlying causes of bronchiectasis, although in many cases no cause is found. Causes include post-infectious, especially after tuberculosis, adenoviral or pertussis infection; aspiration syndromes; defects in host defence, which may solely affect the airways (cystic fibrosis, not considered in this review, and primary ciliary dyskinesia); and primary ciliary dyskinesia or be systemic, such as common variable immunodeficiency; genetic syndromes; and anatomical defects such as intraluminal airway obstruction (e.g. foreign body), intramural obstruction (e.g. complete cartilage rings) and external airway compression (e.g. by tuberculous lymph nodes). Identification of the underlying cause is important, because some of these conditions have specific treatments and others genetic implications for the family.
Collapse
Affiliation(s)
- Andrew Bush
- Department of Paediatrics, Imperial College, London, UK.,Department of Paediatric Respirology, National Heart and Lung Institute, London, UK.,Royal Brompton Harefield NHS Foundation Trust, London, UK
| | - R Andres Floto
- Department of Respiratory Biology, University of Cambridge, Cambridge, UK.,Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
| |
Collapse
|
102
|
Salter SJ, Scott P, Page AJ, Tracey A, de Goffau MC, Cormie C, Ochoa-Montaño B, Ling CL, Tangmanakit J, Turner P, Parkhill J. 'Candidatus Ornithobacterium hominis': insights gained from draft genomes obtained from nasopharyngeal swabs. Microb Genom 2019; 5. [PMID: 30720420 PMCID: PMC6421346 DOI: 10.1099/mgen.0.000247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
'Candidatus Ornithobacterium hominis' represents a new member of the Flavobacteriaceae detected in 16S rRNA gene surveys of people from South-East Asia, Africa and Australia. It frequently colonizes the infant nasopharynx at high proportional abundance, and we demonstrate its presence in 42 % of nasopharyngeal swabs from 12-month-old children in the Maela refugee camp in Thailand. The species, a Gram-negative bacillus, has not yet been cultured, but the cells can be identified in mixed samples by fluorescent hybridization. Here, we report seven genomes assembled from metagenomic data, two to improved draft standard. The genomes are approximately 1.9 Mb, sharing 62 % average amino acid identity with the only other member of the genus, the bird pathogen Ornithobacterium rhinotracheale. The draft genomes encode multiple antibiotic-resistance genes, competition factors, Flavobacterium johnsoniae-like gliding motility genes and a homologue of the Pasteurella multocida mitogenic toxin. Intra- and inter-host genome comparison suggests that colonization with this bacterium is both persistent and strain exclusive.
Collapse
Affiliation(s)
| | - Paul Scott
- 1Pathogen Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Andrew J Page
- 1Pathogen Genomics, Wellcome Sanger Institute, Hinxton, UK.,†Present address: Quadram Institute Bioscience, Norwich, UK
| | - Alan Tracey
- 1Pathogen Genomics, Wellcome Sanger Institute, Hinxton, UK
| | | | - Claire Cormie
- 1Pathogen Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Bernardo Ochoa-Montaño
- 2Department of Biochemistry, University of Cambridge, Cambridge, UK.,‡Present address: Illumina Cambridge Ltd, Little Chesterford, UK
| | - Clare L Ling
- 3Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,4Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jiraporn Tangmanakit
- 3Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Paul Turner
- 4Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,5Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | | |
Collapse
|
103
|
Watson RL, de Koff EM, Bogaert D. Characterising the respiratory microbiome. Eur Respir J 2019; 53:13993003.01711-2018. [PMID: 30487204 DOI: 10.1183/13993003.01711-2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/05/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Rebecca L Watson
- Center for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Both authors contributed equally
| | - Emma M de Koff
- Dept of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands.,Spaarne Academy, Spaarne Gasthuis, Hoofddorp, The Netherlands.,Both authors contributed equally
| | - Debby Bogaert
- Center for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Dept of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
104
|
Differences in the lower airway microbiota of infants with and without cystic fibrosis. J Cyst Fibros 2018; 18:646-652. [PMID: 30580994 DOI: 10.1016/j.jcf.2018.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/23/2018] [Accepted: 12/06/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) lung disease commences in infancy, and understanding the role of the microbiota in disease pathogenesis is critical. This study examined and compared the lower airway microbiota of infants with and without CF and its relationship to airway inflammation in the first months of life. METHODS Infants newly-diagnosed with CF were recruited into a single-centre study in Melbourne, Australia from 1992 to 2001. Bronchoalveolar lavage was performed at study entry. Healthy infants undergoing bronchoscopy to investigate chronic stridor acted as controls. Quantitative microbiological culture was performed and inflammatory markers were measured contemporaneously. 16S ribosomal RNA gene analysis was performed on stored samples. RESULTS Thirteen bronchoalveolar samples from infants with CF and nine from control infants, collected at median ages of 1.8-months (25th-75th percentile 1.5 to 3.1-months) and 5-months (25th-75th percentile 2.9 to 8.2-months) respectively, provided 16S rRNA gene data. Bacterial biomass was positively associated with inflammation. Alpha diversity was reduced in infants with CF and between-group compositional differences were apparent. These differences were driven by increased Staphylococcus and decreased Fusobacterium and were most apparent in symptomatic infants with CF. CONCLUSION In CF lung disease, differences in lower airway microbial community composition and structure are established by age 6-months.
Collapse
|
105
|
Kozik AJ, Huang YJ. The microbiome in asthma: Role in pathogenesis, phenotype, and response to treatment. Ann Allergy Asthma Immunol 2018; 122:270-275. [PMID: 30552986 DOI: 10.1016/j.anai.2018.12.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To synthesize evidence on the role of microbiota in asthma pathogenesis, phenotype, and treatment outcomes, and to provide perspective on future research directions and challenges. DATA SOURCES Studies identified from a PubMed search, including all or some of the terms "asthma," "microbiome," "microbiota," "gut," "airway," "respiratory," "lung," "viral," and "fungal". STUDY SELECTIONS Studies included and referenced based on the authors' opinion of the study design and methods, value of the research questions, and the relevance of the results to the objective of the article. RESULTS Many studies have demonstrated an important role for intestinal or upper airway microbiota in mediating the pathogenesis of childhood asthma. Fewer but robust studies have implicated a role for lower respiratory tract microbiota in adult asthma phenotype, including effects of treatments. Bacterial and fungal members of the respiratory microbiota are associated with and may drive specific molecular phenotypes of asthma in adults. CONCLUSION Current evidence supports the role of human microbiota changes in shaping asthma risk, pathogenesis, and clinical presentation. Further understanding of how microbiota functionally mediate these aspects in clinically relevant contexts will require better integration of advanced scientific tools, analytic methods, and well-designed clinical studies. These efforts should be pursued with a systems-level perspective of the complex interactions between human hosts and their microbiomes, and the impact on these interactions of changes in environmental and lifestyle factors across the lifespan.
Collapse
Affiliation(s)
- Ariangela J Kozik
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, Michigan
| | - Yvonne J Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
106
|
Toivonen L, Hasegawa K, Ajami NJ, Celedón JC, Mansbach JM, Petrosino JF, Camargo CA. Circulating 25-hydroxyvitamin D, nasopharyngeal microbiota, and bronchiolitis severity. Pediatr Allergy Immunol 2018; 29:877-880. [PMID: 30152883 PMCID: PMC6294653 DOI: 10.1111/pai.12977] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Laura Toivonen
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nadim J. Ajami
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Juan C. Celedón
- Division of Pulmonary Medicine, Allergy, and Immunology, Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Joseph F. Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Carlos A. Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
107
|
Grier A, McDavid A, Wang B, Qiu X, Java J, Bandyopadhyay S, Yang H, Holden-Wiltse J, Kessler HA, Gill AL, Huyck H, Falsey AR, Topham DJ, Scheible KM, Caserta MT, Pryhuber GS, Gill SR. Neonatal gut and respiratory microbiota: coordinated development through time and space. MICROBIOME 2018; 6:193. [PMID: 30367675 PMCID: PMC6204011 DOI: 10.1186/s40168-018-0566-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 09/28/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND Postnatal development of early life microbiota influences immunity, metabolism, neurodevelopment, and infant health. Microbiome development occurs at multiple body sites, with distinct community compositions and functions. Associations between microbiota at multiple sites represent an unexplored influence on the infant microbiome. Here, we examined co-occurrence patterns of gut and respiratory microbiota in pre- and full-term infants over the first year of life, a period critical to neonatal development. RESULTS Gut and respiratory microbiota collected as longitudinal rectal, throat, and nasal samples from 38 pre-term and 44 full-term infants were first clustered into community state types (CSTs) on the basis of their compositional profiles. Multiple methods were used to relate the occurrence of CSTs to temporal microbiota development and measures of infant maturity, including gestational age (GA) at birth, week of life (WOL), and post-menstrual age (PMA). Manifestation of CSTs followed one of three patterns with respect to infant maturity: (1) chronological, with CST occurrence frequency solely a function of post-natal age (WOL), (2) idiosyncratic to maturity at birth, with the interval of CST occurrence dependent on infant post-natal age but the frequency of occurrence dependent on GA at birth, and (3) convergent, in which CSTs appear first in infants of greater maturity at birth, with occurrence frequency in pre-terms converging after a post-natal interval proportional to pre-maturity. The composition of CSTs was highly dissimilar between different body sites, but the CST of any one body site was highly predictive of the CSTs at other body sites. There were significant associations between the abundance of individual taxa at each body site and the CSTs of the other body sites, which persisted after stringent control for the non-linear effects of infant maturity. Canonical correlations exist between the microbiota composition at each pair of body sites, with the strongest correlations between proximal locations. CONCLUSION These findings suggest that early microbiota is shaped by neonatal innate and adaptive developmental responses. Temporal progression of CST occurrence is influenced by infant maturity at birth and post-natal age. Significant associations of microbiota across body sites reveal distal connections and coordinated development of the infant microbial ecosystem.
Collapse
Affiliation(s)
- Alex Grier
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Andrew McDavid
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Bokai Wang
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - James Java
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Sanjukta Bandyopadhyay
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Hongmei Yang
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jeanne Holden-Wiltse
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Haeja A Kessler
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Ann L Gill
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Heidie Huyck
- Medicine-Infectious Disease, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ann R Falsey
- Medicine-Infectious Disease, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - David J Topham
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Kristin M Scheible
- Division of Neonatology, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Mary T Caserta
- Division of Infectious Disease, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Gloria S Pryhuber
- Division of Neonatology, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Steven R Gill
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
108
|
Zhang WQ, Zhao SK, Luo JW, Dong XP, Hao YT, Li H, Shan L, Zhou Y, Shi HB, Zhang ZY, Peng CL, Zhao XG. Alterations of fecal bacterial communities in patients with lung cancer. Am J Transl Res 2018; 10:3171-3185. [PMID: 30416659 PMCID: PMC6220220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/07/2018] [Indexed: 06/09/2023]
Abstract
Emerging evidence suggests the microbiome may affect a number of diseases, including lung cancer. However, the direct relationship between gut bacteria and lung cancer remains uncharacterized. In this study, we directly sequenced the hypervariable V1-V2 regions of the 16S rRNA gene in fecal samples from patients with lung cancer and healthy volunteers. Unweighted principal coordinate analysis (PCoA) revealed a clear difference in the bacterial community membership between the lung cancer group and the healthy control group. The lung cancer group had remarkably higher levels of Bacteroidetes, Fusobacteria, Cyanobacteria, Spirochaetes, and Lentisphaerae but dramatically lower levels of Firmicutes and Verrucomicrobia than the healthy control group (P < 0.05). Despite significant interindividual variation, eight predominant genera were significantly different between the two groups. The lung cancer group had higher levels of Bacteroides, Veillonella, and Fusobacterium but lower levels of Escherichia-Shigella, Kluyvera, Fecalibacterium, Enterobacter, and Dialister than the healthy control group (P < 0.05). Most notably, correlations between certain specific bacteria and serum inflammatory biomarkers were identified. Our findings demonstrated an altered bacterial community in patients with lung cancer, providing a significant step in understanding the relationship between gut bacteria and lung cancer. To our knowledge, this is the first study to evaluate the correlations between certain specific bacteria and inflammatory indicators. To better understand this relationship, further studies should investigate the underlying mechanisms of gut bacteria in lung cancer animal models.
Collapse
Affiliation(s)
- Wei-Quan Zhang
- Department of Thoracic Surgery, The Second Hospital of Shandong UniversityShandong, P. R. China
- School of Medicine, Shandong UniversityJinan 250000, Shandong, P. R. China
| | - Shu-Kang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong UniversityShandong, P. R. China
- School of Medicine, Shandong UniversityJinan 250000, Shandong, P. R. China
| | - Jun-Wen Luo
- Department of Thoracic Surgery, The Second Hospital of Shandong UniversityShandong, P. R. China
- School of Medicine, Shandong UniversityJinan 250000, Shandong, P. R. China
| | - Xiao-Peng Dong
- Department of Thoracic Surgery, The Second Hospital of Shandong UniversityShandong, P. R. China
| | - Ying-Tao Hao
- Department of Thoracic Surgery, The Second Hospital of Shandong UniversityShandong, P. R. China
| | - Hui Li
- Department of Pathology, The Second Hospital of Shandong UniversityShandong, P. R. China
| | - Lei Shan
- Department of Thoracic Surgery, The Second Hospital of Shandong UniversityShandong, P. R. China
| | - Yong Zhou
- Cancer Center, The Second Hospital of Shandong UniversityShandong, P. R. China
| | - Hu-Bo Shi
- Department of Thoracic Surgery, Shandong Provincial Chest HospitalJinan 250000, Shandong, P. R. China
| | - Zai-Yun Zhang
- Cancer Center, The Second Hospital of Shandong UniversityShandong, P. R. China
| | - Chuan-Liang Peng
- Department of Thoracic Surgery, The Second Hospital of Shandong UniversityShandong, P. R. China
| | - Xiao-Gang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong UniversityShandong, P. R. China
| |
Collapse
|
109
|
Di Cicco M, Pistello M, Jacinto T, Ragazzo V, Piras M, Freer G, Pifferi M, Peroni D. Does lung microbiome play a causal or casual role in asthma? Pediatr Pulmonol 2018; 53:1340-1345. [PMID: 29943915 DOI: 10.1002/ppul.24086] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 06/10/2018] [Indexed: 12/25/2022]
Abstract
Asthma is the most common chronic disease in childhood. The pathogenesis of asthma is multifactorial and is thought to include environmental factors interacting with genetics during pregnancy and in the first years of life. In the last decades, a possible role of gut microbiota in allergic disease pathogenesis has been demonstrated. Next generation sequencing techniques have allowed the identification of a distinct microbiome in the healthy lungs. The lung microbiome is characterized by the prevalence of bacteria belonging to the phylum Bacteroidetes (mostly Prevotella and Veilonella spp) in healthy subjects and to the phylum Proteobacteria in asthmatics (mostly Haemophilus, Moraxella, and Neisseria spp). In asthma, as well as in other diseases, the lung microbiome composition changes due to a disruption of the delicate balance between immigration and elimination of bacteria. The lung microbiome can interact with the immune system, thus influencing inflammation. Early infections with viruses, such as respiratory syncytial virus, may alter lung microbiome composition favoring the emergence of Proteobacteria, a phylum which is also linked to severity of asthma and bronchial hyperreactivity. Lastly, antibiotics may alter the gut and lung microbiota and potentially disturb the relationship between microbiota and host. Therefore, antibiotics should be prescribed with increasing awareness of their potential harmful effect on the microbiota in young children with and without asthma. The potential effects of probiotics and prebiotics on lung microbiome are unknown.
Collapse
Affiliation(s)
- Maria Di Cicco
- Pulmonology and Allergology Section, Pediatrics Unit, Pisa University Hospital, Pisa, Italy
| | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,Virology Unit, Pisa University Hospital, Pisa, Italy
| | - Tiago Jacinto
- CINTESIS-Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Cardiovascular and Respiratory Sciences, Porto Health School, Porto, Portugal
| | - Vincenzo Ragazzo
- Pediatrics and Neonatology Division, Women's and Children's Health Department, Versilia Hospital, Lido di Camaiore, Italy
| | - Martina Piras
- Pulmonology and Allergology Section, Pediatrics Unit, Pisa University Hospital, Pisa, Italy
| | - Giulia Freer
- Retrovirus Center and Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Massimo Pifferi
- Pulmonology and Allergology Section, Pediatrics Unit, Pisa University Hospital, Pisa, Italy
| | - Diego Peroni
- Pulmonology and Allergology Section, Pediatrics Unit, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
110
|
Chang AB, Bush A, Grimwood K. Bronchiectasis in children: diagnosis and treatment. Lancet 2018; 392:866-879. [PMID: 30215382 DOI: 10.1016/s0140-6736(18)31554-x] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/28/2018] [Accepted: 06/29/2018] [Indexed: 12/12/2022]
Abstract
Bronchiectasis is conventionally defined as irreversible dilatation of the bronchial tree. Bronchiectasis unrelated to cystic fibrosis is an increasingly appreciated cause of chronic respiratory-related morbidity worldwide. Few randomised controlled trials provide high-level evidence for management strategies to treat the children affected by bronchiectasis. However, both decades-old and more recent studies using technological advances support the notion that prompt diagnosis and optimal management of paediatric bronchiectasis is particularly important in early childhood. Although considered to be of a non-reversible nature, mild bronchiectasis determined by radiography might be reversible at any age if treated early, and the lung function decline associated with disease progression could then be halted. Although some management strategies are extrapolated from cystic fibrosis or adult-based studies, or both, non-cystic fibrosis paediatric-specific data to help diagnose and manage these children still need to be generated. We present current knowledge and an updated definition of bronchiectasis, and review controversies relating to the management of children with bronchiectasis, including applying the concept of so-called treatable traits.
Collapse
Affiliation(s)
- Anne B Chang
- Child Health Division, Menzies School of Health Research, Casuarina, NT, Australia; Department of Respiratory Medicine, Children's Health Queensland, Brisbane, QLD, Australia; Queensland University of Technology, Brisbane, QLD, Australia.
| | - Andrew Bush
- Head of Section (Paediatrics), Imperial College London, London, UK; National Heart and Lung Institute, London, UK; Royal Brompton Harefield NHS Foundation Trust, London, UK
| | - Keith Grimwood
- Royal Brompton Harefield NHS Foundation Trust, London, UK; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Department of Infectious Diseases and Department of Paediatrics, Gold Coast Health, Gold Coast, QLD, Australia
| |
Collapse
|
111
|
Response to "Bacteria from bronchoalveolar lavage fluid from children with suspected chronic lower respiratory tract infection: results from a multi-center, cross-sectional study in Spain" Eur J Pediatr (2018) 177:181-192. Eur J Pediatr 2018; 177:1409-1410. [PMID: 29948257 DOI: 10.1007/s00431-018-3176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/14/2018] [Indexed: 10/14/2022]
|
112
|
Kazachkov M, Kapoor BC, Malecha PW, Wu BG, Li Y, Levine J, Erkman J, Fitzgerald K, Moy L, Segal LN. Aerodigestive dysbiosis in children with chronic cough. Pediatr Pulmonol 2018; 53:1288-1298. [PMID: 29984544 DOI: 10.1002/ppul.24115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 06/11/2018] [Indexed: 12/31/2022]
Abstract
UNLABELLED In pediatric patients with chronic cough, respiratory culture techniques commonly yield negative results. Studies using culture-independent methods have found a high relative abundance of oral microbes in the lower airways, suggesting that the topographical continuity, and dynamics of the intraluminal contents of the aerodigestive system likely influence the lower airway microbiota. We hypothesize that in subjects with chronic cough, clinical diagnosis will correlate with distinct microbial signatures detected using culture-independent methods. STUDY DESIGN AND METHODS We enrolled 36 pediatric subjects with chronic cough in a cross-sectional study. Subjects were categorized into four clinical groups: asthma, bacterial bronchitis, neurologically impaired-orally fed, and neurologically impaired enterally fed. Samples from the aerodigestive tract were obtained through bronchoscopy and upper endoscopy. 16S rRNA gene sequencing compared the microbiota from bronchoalveolar lavage (BAL), tracheal, supraglottic, esophageal, gastric, and duodenal samples. RESULTS We observed that the lower airway microbiota of asthma subjects had higher α diversity as compared with the other groups. β diversity analysis of BAL samples revealed significant differences between the groups. Among the taxonomic differences found, most differentially enriched taxa were upper airway organisms such as Rothia, Gemellaceae (u.g. or uncharacterized genus), and Granulicatella in asthma, Prevotella in bacterial bronchitis, and Veillonella in neurologically impaired orally fed subjects. Greater dissimilarity between the upper airway and lower airway microbiota was associated with increased neutrophilic airway inflammation. CONCLUSIONS Distinct dysbiotic signatures can be identified in the lower airway microbiota of pediatric subjects with chronic cough that relates to the degree and type of inflammation.
Collapse
Affiliation(s)
- Mikhail Kazachkov
- Division of Pediatric Pulmonary Medicine, New York University School of Medicine, New York, New York
| | - Bianca C Kapoor
- Division of Pediatric Pulmonary Medicine, New York University School of Medicine, New York, New York
| | - Patrick W Malecha
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Benjamin G Wu
- Division of Pulmonary and Critical Care Medicine, New York University School of Medicine, New York, New York
| | - Yonghua Li
- Division of Pulmonary and Critical Care Medicine, New York University School of Medicine, New York, New York
| | - Jeremiah Levine
- Division of Pediatric Gastroenterology, New York University School of Medicine, New York, New York
| | - Jessica Erkman
- Division of Pediatric Pulmonary Medicine, New York University School of Medicine, New York, New York
| | - Kathryn Fitzgerald
- Division of Pediatric Pulmonary Medicine, New York University School of Medicine, New York, New York
| | - Libia Moy
- Division of Pediatric Gastroenterology, New York University School of Medicine, New York, New York
| | - Leopoldo N Segal
- Division of Pulmonary and Critical Care Medicine, New York University School of Medicine, New York, New York
| |
Collapse
|
113
|
Ahmed B, Cox MJ, Cuthbertson L, James PL, Cookson WOC, Davies JC, Moffatt MF, Bush A. Comparison of the upper and lower airway microbiota in children with chronic lung diseases. PLoS One 2018; 13:e0201156. [PMID: 30071000 PMCID: PMC6071972 DOI: 10.1371/journal.pone.0201156] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/10/2018] [Indexed: 01/27/2023] Open
Abstract
Rationale The lower airway microbiota is important in normal immunological development and chronic lung diseases (CLDs). Young children cannot expectorate and because of the uncertainty whether upper airway samples reflect the lower airway microbiota, there have been few longitudinal paediatric studies to date. Objectives To assess whether throat swabs (TS) and cough swabs (CS) are representative of the lower airway microbiota. Methods TS, CS, bronchoalveolar lavage and bronchial brushings were prospectively collected from 49 children undergoing fibreoptic bronchoscopy for CLDs. Bacterial DNA was extracted and the 16S rRNA gene V4 region sequenced using the Illumina MiSeq. Results 5.97 million high quality reads were obtained from 168 samples (47 TS, 37 CS, 42 BALF and 42 bronchial brushings). CS sequenced poorly. At a community level, no difference in alpha diversity (richness, evenness or Shannon Diversity Index) was seen between lower airway samples and TS (P > 0.05). Less than 6.31% of beta diversity variation related to sampling method for TS (P = 0.001). Variation between pathologies and individual patients was greater (20%, 54% respectively P ≤ 0.001) than between TS and lower airway samples. There was strong correlation in the relative abundance of genera between samples (r = 0.78, P < 0.001). Similarity between upper and lower airway samples was observed to be less for individuals where one sample type was dominated by a single organism. Conclusions At the community structure level, TS correlate with lower airway samples and distinguish between different CLDs. TS may be a useful sample for the study of the differences in longitudinal changes in the respiratory microbiota between different CLDs. Differences are too great however for TS to be used for clinical decision making.
Collapse
Affiliation(s)
- Bushra Ahmed
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Respiratory Paediatrics, Royal Brompton Hospital, London, United Kingdom
- * E-mail:
| | - Michael J. Cox
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Leah Cuthbertson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Phillip L. James
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Jane C. Davies
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Respiratory Paediatrics, Royal Brompton Hospital, London, United Kingdom
| | - Miriam F. Moffatt
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Andrew Bush
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Respiratory Paediatrics, Royal Brompton Hospital, London, United Kingdom
| |
Collapse
|
114
|
Marsh RL, Nelson MT, Pope CE, Leach AJ, Hoffman LR, Chang AB, Smith-Vaughan HC. How low can we go? The implications of low bacterial load in respiratory microbiota studies. Pneumonia (Nathan) 2018; 10:7. [PMID: 30003009 PMCID: PMC6033291 DOI: 10.1186/s41479-018-0051-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022] Open
Abstract
Background Culture-independent sequencing methods are increasingly used to investigate the microbiota associated with human mucosal surfaces, including sites that have low bacterial load in healthy individuals (e.g. the lungs). Standard microbiota methods developed for analysis of high bacterial load specimens (e.g. stool) may require modification when bacterial load is low, as background contamination derived from sterile laboratory reagents and kits can dominate sequence data when few bacteria are present. Main body Bacterial load in respiratory specimens may vary depending on the specimen type, specimen volume, the anatomic site sampled and clinical parameters. This review discusses methodological issues inherent to analysis of low bacterial load specimens and recommends strategies for successful respiratory microbiota studies. The range of methods currently used to process DNA from low bacterial load specimens, and the strategies used to identify and exclude background contamination are also discussed. Conclusion Microbiota studies that include low bacterial load specimens require additional tests to ensure that background contamination does not bias the results or interpretation. Several methods are currently used to analyse the microbiota in low bacterial load respiratory specimens; however, there is scant literature comparing the effectiveness and biases of different methods. Further research is needed to define optimal methods for analysing the microbiota in low bacterial load specimens.
Collapse
Affiliation(s)
- Robyn L Marsh
- 1Child Health Division, Menzies School of Health Research, Darwin, Northern Territory Australia
| | - Maria T Nelson
- 2Respiratory Medicine, Seattle Children's Hospital and University of Washington, Seattle, Washington USA
| | - Chris E Pope
- 2Respiratory Medicine, Seattle Children's Hospital and University of Washington, Seattle, Washington USA
| | - Amanda J Leach
- 1Child Health Division, Menzies School of Health Research, Darwin, Northern Territory Australia
| | - Lucas R Hoffman
- 2Respiratory Medicine, Seattle Children's Hospital and University of Washington, Seattle, Washington USA
| | - Anne B Chang
- 1Child Health Division, Menzies School of Health Research, Darwin, Northern Territory Australia.,3Department of Respiratory and Sleep Medicine, Children's Health Queensland and Queensland University of Technology, Brisbane, QLD Australia
| | - Heidi C Smith-Vaughan
- 1Child Health Division, Menzies School of Health Research, Darwin, Northern Territory Australia
| |
Collapse
|
115
|
Sánchez-Bautista A, Rodríguez-Díaz JC, Garcia-Heredia I, Luna-Paredes C, Alcalá-Minagorre PJ. Airway microbiota in patients with paediatric cystic fibrosis: Relationship with clinical status. Enferm Infecc Microbiol Clin 2018; 37:167-171. [PMID: 30827333 DOI: 10.1016/j.eimc.2018.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/08/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022]
Abstract
INTRODUCTION New massive sequencing techniques make it possible to determine the composition of airway microbiota in patients with cystic fibrosis (CF). However, the relationship between the composition of lung microbiome and the clinical status of paediatric patients is still not fully understood. MATERIAL AND METHODS A cross-sectional observational study was conducted on induced sputum samples from children with CF and known mutation in the CFTR gene. The bacterial sequences of the 16SrRNA gene were analyzed and their association with various clinical variables studied. RESULTS Analysis of the 13 samples obtained showed a core microbiome made up of Staphylococcus spp., Streptococcus spp., Rothia spp., Gemella spp. and Granulicatella spp., with a small number of Pseudomonas spp. The cluster of patients with less biodiversity were found to exhibit a greater number of sequences of Staphylococcus spp., mainly Staphylococcus aureus (p 0.009) and a greater degree of lung damage. CONCLUSION An airway microbiome with greater biodiversity may be an indicator of less pronounced disease progression, in which case new therapeutic interventions that prevent reduction in non-pathogenic species of the airway microbiota should be studied.
Collapse
Affiliation(s)
- Antonia Sánchez-Bautista
- Department of Microbiology, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Juan Carlos Rodríguez-Díaz
- Department of Microbiology, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| | - Inmaculada Garcia-Heredia
- Department of Microbiology, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Carmen Luna-Paredes
- Pediatric Cystic Fibrosis Unit, Department of Pediatrics, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Pedro J Alcalá-Minagorre
- Department of Pediatrics, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| |
Collapse
|
116
|
An SQ, Warris A, Turner S. Microbiome characteristics of induced sputum compared to bronchial fluid and upper airway samples. Pediatr Pulmonol 2018; 53:921-928. [PMID: 29727521 DOI: 10.1002/ppul.24037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 03/30/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The study of the community of microorganisms (the microbiota) in the lower airways in children is restricted to opportunistic sampling in children undergoing elective general anaesthetic. Here we tested the hypothesis that induced sputum is a valid alternative to directly sampling the lower airways to study lower airway microbiota. METHODS Children scheduled for elective operations were recruited. Pre-operatively a sample of induced sputum was obtained. After anaesthesia was induced, a bronchial brushing and swabs of the upper respiratory tract were obtained. Bacterial community analysis was performed by amplification of the V3-V4 16S rRNA gene region. RESULTS Twenty children were recruited, mean age 10.7 years. Induced sputum samples were obtained from 12 children, bronchial brushing from 14 and nasal, mouth, and throat samples in 15, 16, and 17 children. The profile of bacterial communities was similar in the mouth, throat, and sputum samples with the nose and bronchial samples being different. Actinobacteria species dominated the nose and mouth, Fusobacteria were the dominant species in the throat and sputum while Proteobacteria species dominated in bronchial samples. Forty-one percent of detected bacteria in bronchial samples were unclassified. Bacterial communities from the mouth, throat, and induced sputum were tightly clustered and were distinct from nose and those found in bronchial communities. CONCLUSIONS Induced sputum may not be a valid surrogate for microbiome assessment of the lower airways in all individuals. Many bacteria in bronchial samples were not recognized by standard testing, suggesting that our understanding of the lower airway microbiota in children remains rudimentary.
Collapse
Affiliation(s)
- Shi-Qi An
- Division of Molecular Microbiology, University of Dundee, Belfast, UK.,Wellcome Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Adilia Warris
- Department of Child Health, University of Aberdeen, Aberdeen, UK.,MRC Centre for Medical Mycology, University of Aberdeen, Aberdeen, UK
| | - Steve Turner
- Department of Child Health, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
117
|
Durack J, Huang YJ, Nariya S, Christian LS, Ansel KM, Beigelman A, Castro M, Dyer AM, Israel E, Kraft M, Martin RJ, Mauger DT, Rosenberg SR, King TS, White SR, Denlinger LC, Holguin F, Lazarus SC, Lugogo N, Peters SP, Smith LJ, Wechsler ME, Lynch SV, Boushey HA. Bacterial biogeography of adult airways in atopic asthma. MICROBIOME 2018; 6:104. [PMID: 29885665 PMCID: PMC5994066 DOI: 10.1186/s40168-018-0487-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/25/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Perturbations to the composition and function of bronchial bacterial communities appear to contribute to the pathophysiology of asthma. Unraveling the nature and mechanisms of these complex associations will require large longitudinal studies, for which bronchoscopy is poorly suited. Studies of samples obtained by sputum induction and nasopharyngeal brushing or lavage have also reported asthma-associated microbiota characteristics. It remains unknown, however, whether the microbiota detected in these less-invasive sample types reflect the composition of bronchial microbiota in asthma. RESULTS Bacterial microbiota in paired protected bronchial brushings (BB; n = 45), induced sputum (IS; n = 45), oral wash (OW; n = 45), and nasal brushings (NB; n = 27) from adults with mild atopic asthma (AA), atopy without asthma (ANA), and healthy controls (HC) were profiled using 16S rRNA gene sequencing. Though microbiota composition varied with sample type (p < 0.001), compositional similarity was greatest for BB-IS, particularly in AAs and ANAs. The abundance of genera detected in BB correlated with those detected in IS and OW (r median [IQR] 0.869 [0.748-0.942] and 0.822 [0.687-0.909] respectively), but not with those in NB (r = 0.004 [- 0.003-0.011]). The number of taxa shared between IS-BB and NB-BB was greater in AAs than in HCs (p < 0.05) and included taxa previously associated with asthma. Of the genera abundant in NB, only Moraxella correlated positively with abundance in BB; specific members of this genus were shared between the two compartments only in AAs. Relative abundance of Moraxella in NB of AAs correlated negatively with that of Corynebacterium but positively with markers of eosinophilic inflammation in the blood and BAL fluid. The genus, Corynebacterium, trended to dominate all NB samples of HCs but only half of AAs (p = 0.07), in whom abundance of this genus was negatively associated with markers of eosinophilic inflammation. CONCLUSIONS Induced sputum is superior to nasal brush or oral wash for assessing bronchial microbiota composition in asthmatic adults. Although compositionally similar to the bronchial microbiota, the microbiota in induced sputum are distinct, reflecting enrichment of oral bacteria. Specific bacterial genera are shared between the nasal and the bronchial mucosa which are associated with markers of systemic and bronchial inflammation.
Collapse
Affiliation(s)
- Juliana Durack
- Department of Medicine, Division of Gastroenterology, University of California San Francisco, San Francisco, CA, USA
| | - Yvonne J Huang
- Department of Internal Medicine, Division of Pulmonary/Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Snehal Nariya
- Department of Medicine, Division of Pulmonary/Critical Care Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Laura S Christian
- Department Microbiology/Immunology and Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, USA
| | - K Mark Ansel
- Department Microbiology/Immunology and Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Avraham Beigelman
- Division of Pediatric Allergy, Immunology and Pulmonary Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Mario Castro
- Division of Pediatric Allergy, Immunology and Pulmonary Medicine, Washington University School of Medicine, St Louis, MO, USA
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Anne-Marie Dyer
- Department of Public Health Sciences, Penn State University, Hershey, PA, USA
| | - Elliot Israel
- Department of Medicine, Brigham & Women's Hospital, Boston, MA, USA
| | - Monica Kraft
- University of Arizona, Health Sciences, Tucson, AZ, USA
| | - Richard J Martin
- Department of Medicine, National Jewish Hospital, Denver, CO, USA
| | - David T Mauger
- Department of Public Health Sciences, Penn State University, Hershey, PA, USA
| | | | - Tonya S King
- Department of Public Health Sciences, Penn State University, Hershey, PA, USA
| | - Steven R White
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Loren C Denlinger
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Fernando Holguin
- The University of Pittsburgh Asthma Institute at UPMC/UPSOM, Pittsburgh, PA, USA
| | - Stephen C Lazarus
- Department of Medicine, Division of Pulmonary/Critical Care Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Njira Lugogo
- Duke Asthma, Allergy & Airway Center, Duke University School of Medicine, Durham, NC, USA
| | | | - Lewis J Smith
- Department of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Susan V Lynch
- Department of Medicine, Division of Gastroenterology, University of California San Francisco, San Francisco, CA, USA
| | - Homer A Boushey
- Department of Medicine, Division of Pulmonary/Critical Care Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
118
|
Borges LGDA, Giongo A, Pereira LDM, Trindade FJ, Gregianini TS, Campos FS, Ghedin E, da Veiga ABG. Comparison of the nasopharynx microbiome between influenza and non-influenza cases of severe acute respiratory infections: A pilot study. Health Sci Rep 2018; 1:e47. [PMID: 30623080 PMCID: PMC6266421 DOI: 10.1002/hsr2.47] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/21/2018] [Accepted: 04/06/2018] [Indexed: 12/23/2022] Open
Abstract
AIMS Influenza A virus (IAV) can cause severe acute respiratory infection (SARI), and disease outcome may be associated with changes in the microbiome of the nasopharynx. This is a pilot study to characterize the microbiome of the nasopharynx in patients hospitalized with SARI, infected and not infected by IAV. METHODS AND RESULTS Using target sequencing of the 16S rRNA gene, we assessed the bacterial community of nasopharyngeal aspirate samples and compared the microbiome of patients infected with IAV with the microbiome of patients who were negative for IAV. We observed differences in the relative abundance of Proteobacteria and Firmicutes between SARI patients, with Streptococcus being enriched and Pseudomonas underrepresented in IAV patients compared with patients who were not infected with IAV. CONCLUSION Pseudomonas taxon seems to be in high frequency on the nasopharynx of SARI patients with non-IAV infection and might present a negative association with Streptococcus taxon. Microbial profile appears to be different between SARI patients infected or not infected with IAV.
Collapse
Affiliation(s)
- Luiz Gustavo dos Anjos Borges
- Laboratório de Biologia Molecular, Programa de Pós‐Graduação em PatologiaUniversidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA)Porto AlegreRSBrazil
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Adriana Giongo
- Instituto do Petróleo e dos Recursos Naturais (IPR)Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)Porto AlegreRSBrazil
| | - Leandro de Mattos Pereira
- Faculdade de BiociênciasPontifícia Universidade Católica do Rio Grande do Sul (PUCRS)Porto AlegreRSBrazil
| | - Fernanda J. Trindade
- Faculdade de BiociênciasPontifícia Universidade Católica do Rio Grande do Sul (PUCRS)Porto AlegreRSBrazil
| | - Tatiana Schäffer Gregianini
- Laboratório Central de Saúde Pública da Secretaria de Saúde do Estado do Rio Grande do Sul (LACEN/SES‐RS)Porto AlegreRSBrazil
| | - Fabrício Souza Campos
- College of Veterinary Medicine and AgronomyUniversity of Brasília, Darcy Ribeiro University Campus, ICCAsa Norte, CEP 70.910-970 BrasíliaDFBrazil
| | - Elodie Ghedin
- Center for Genomics and Systems Biology, Department of BiologyNew York UniversityNew YorkNYUSA
- Department of Epidemiology, College of Global Public HealthNew York UniversityNew YorkNYUSA
| | - Ana Beatriz Gorini da Veiga
- Laboratório de Biologia Molecular, Programa de Pós‐Graduação em PatologiaUniversidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA)Porto AlegreRSBrazil
| |
Collapse
|
119
|
Lanaspa M, Bassat Q, Medeiros MM, Muñoz-Almagro C. Respiratory microbiota and lower respiratory tract disease. Expert Rev Anti Infect Ther 2018; 15:703-711. [PMID: 28661199 DOI: 10.1080/14787210.2017.1349609] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The respiratory airways harbor a complex succession of ecological niches with distinct but related bacterial communities. Particular challenges of respiratory microbiome research have led to limited scientific output compared to other human microbiomes. Areas covered: In this review, we summarize the current state of knowledge of the bacterial respiratory microbiome, with a particular focus on associations between the respiratory microbiome and lower respiratory tract conditions. Expert commentary: There is growing evidence that the respiratory microbiome is associated with lower respiratory infectious diseases and related conditions. Most respiratory microbiome reports are metataxonomic cross-sectional or case-control studies with relatively small sample sizes. Large, prospective projects with metatranscriptomics or metabolomics approach are needed to unravel the effect of the respiratory microbiome on health-related conditions. Moreover, standardization in sampling, library preparation, sequencing techniques and data analysis should be encouraged.
Collapse
Affiliation(s)
- Miguel Lanaspa
- a Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical , Universidade Nova de Lisboa , Lisbon , Portugal.,b ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB) , Hospital Clínic - Universitat de Barcelona , Barcelona , Spain
| | - Quique Bassat
- b ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB) , Hospital Clínic - Universitat de Barcelona , Barcelona , Spain.,c Centro de Investigação em Saúde de Manhiça (CISM) , Maputo , Mozambique.,d ICREA , Barcelona , Spain.,e University Hospital Sant Joan de Deu , Barcelona , Spain
| | - Marcia Melo Medeiros
- a Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical , Universidade Nova de Lisboa , Lisbon , Portugal
| | - Camen Muñoz-Almagro
- f Institut de Recerca Pediatrica , Hospital de Sant Joan de Dèu , Barcelona , Spain.,g Ciber de Epidemiología y Salud Pública, CIBERESP , Madrid , Spain.,h Department of Medicine , Universitat Internacional de Catalunya , Barcelona , Spain
| |
Collapse
|
120
|
Kloepfer KM, Deschamp AR, Ross SE, Peterson-Carmichael SL, Hemmerich CM, Rusch DB, Davis SD. In children, the microbiota of the nasopharynx and bronchoalveolar lavage fluid are both similar and different. Pediatr Pulmonol 2018; 53:475-482. [PMID: 29405661 PMCID: PMC6542268 DOI: 10.1002/ppul.23953] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/22/2017] [Indexed: 11/06/2022]
Abstract
RATIONALE Sputum and bronchoalveolar lavage fluid (BALF) are often obtained to elucidate the lower airway microbiota in adults. Acquiring sputum samples from children is difficult and obtaining samples via bronchoscopy in children proves challenging due to the need for anesthesia and specialized procedural expertise; therefore nasopharyngeal (NP) swabs are often used as surrogates when investigating the pediatric airway microbiota. In adults, the airway microbiota differs significantly between NP and BALF samples however, minimal data exist in children. OBJECTIVES To compare NP and BALF samples in children undergoing clinically indicated bronchoscopy. METHODS NP and BALF samples were collected during clinically indicated bronchoscopy. Bacterial DNA was extracted from 72 samples (36 NP/BALF pairs); the bacterial V1-V3 region of the 16S rRNA gene was amplified and sequenced on the Illumina Miseq platform. Analysis was performed using mothur software. RESULTS Compared to NP samples, BALF had increased richness and diversity. Similarity between paired NP and BALF (intra-subject) samples was greater than inter-subject samples (P = 0.0006). NP samples contained more Actinobacteria (2.2% vs 21%; adjusted P = 1.4 × 10-6 ), while BALF contained more Bacteroidetes (29.5% vs 3.2%; adjusted P = 1.2 × 10-9 ). At the genus level several differences existed, however Streptococcus abundance was similar in both sample types (NP 37.3% vs BAL 36.1%; adjusted P = 0.8). CONCLUSION Our results provide evidence that NP samples can be used to distinguish differences between children, but the relative abundance of organisms may differ between the nasopharynx and lower airway in pediatric patients. Studies utilizing NP samples as surrogates for the lower airway should be interpreted with caution.
Collapse
Affiliation(s)
- Kirsten M Kloepfer
- Section of Pediatric Pulmonology, Allergy and Sleep Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ashley R Deschamp
- Section of Pediatric Pulmonology, Allergy and Sleep Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sydney E Ross
- Section of Pediatric Pulmonology, Allergy and Sleep Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Stacey L Peterson-Carmichael
- Section of Pediatric Pulmonology, Allergy and Sleep Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Christopher M Hemmerich
- Department of Biology,, Center of Genomics and Bioinformatics, Indiana University Bloomington, Bloomington, Indiana
| | - Douglas B Rusch
- Department of Biology,, Center of Genomics and Bioinformatics, Indiana University Bloomington, Bloomington, Indiana
| | - Stephanie D Davis
- Section of Pediatric Pulmonology, Allergy and Sleep Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
121
|
Kim BS, Lee E, Lee MJ, Kang MJ, Yoon J, Cho HJ, Park J, Won S, Lee SY, Hong SJ. Different functional genes of upper airway microbiome associated with natural course of childhood asthma. Allergy 2018; 73:644-652. [PMID: 29052232 DOI: 10.1111/all.13331] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Microbial colonization of the airway plays a role in the pathogenesis of asthma; however, the effect of the upper airway microbiome on childhood asthma is not fully understood. We analyzed the metagenome of airway microbiome to understand the associated role of upper airway microbiome with the natural course of childhood asthma. METHODS Nasopharyngeal swabs were collected from children with asthma, those in asthma remission, and control groups. High-throughput sequencing was used to examine the structure and functional dynamics of the airway microbiome with respect to asthma phenotypes. RESULTS The composition of microbiota differed among healthy control, asthma, and remission groups. The relative abundance of Streptococcus was negatively associated with FEV1% predicted (P = .023) and that of Staphylococcus was negatively associated with methacholine PC20 (P = .013). Genes related to arachidonic acid metabolites, lysine residues, and glycosaminoglycans in the microbiome could be associated with airway inflammation. In particular, genes related to synthesis of anti-inflammatory prostaglandin E2 (PGE2 ) were not detected from the airway microbiome in the asthma group. CONCLUSIONS These data suggest that alterations in the composition and function of the upper airway microbiome could be related with the natural course of asthma in children.
Collapse
Affiliation(s)
- B.-S. Kim
- Department of Life Science; Multidisciplinary Genome Institute; Hallym University; Chuncheon Korea
| | - E. Lee
- Department of Pediatrics; Chonnam National University Hospital; Gwangju Korea
| | - M.-J. Lee
- Department of Life Science; Multidisciplinary Genome Institute; Hallym University; Chuncheon Korea
| | - M.-J. Kang
- Asan Institute for Life Science; University of Ulsan College of Medicine; Seoul Korea
| | - J. Yoon
- Department of Pediatrics; Childhood Asthma Atopy Center; Environmental Health Center; Asan Medical Center; University of Ulsan College of Medicine; Seoul Korea
| | - H.-J. Cho
- Department of Pediatrics; Childhood Asthma Atopy Center; Environmental Health Center; Asan Medical Center; University of Ulsan College of Medicine; Seoul Korea
| | - J. Park
- Interdisciplinary Program of Bioinformatics; Seoul National University; Seoul Korea
| | - S. Won
- Interdisciplinary Program of Bioinformatics; Seoul National University; Seoul Korea
- Department of Public Health Science; Seoul National University; Seoul Korea
- Institute of Health and Environment; Seoul National University; Seoul Korea
| | - S. Y. Lee
- Department of Pediatrics; Childhood Asthma Atopy Center; Environmental Health Center; Asan Medical Center; University of Ulsan College of Medicine; Seoul Korea
| | - S. J. Hong
- Department of Pediatrics; Childhood Asthma Atopy Center; Environmental Health Center; Asan Medical Center; University of Ulsan College of Medicine; Seoul Korea
| |
Collapse
|
122
|
Luna PN, Hasegawa K, Ajami NJ, Espinola JA, Henke DM, Petrosino JF, Piedra PA, Sullivan AF, Camargo CA, Shaw CA, Mansbach JM. The association between anterior nares and nasopharyngeal microbiota in infants hospitalized for bronchiolitis. MICROBIOME 2018; 6:2. [PMID: 29298732 PMCID: PMC5751828 DOI: 10.1186/s40168-017-0385-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 12/14/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND The airway microbiome is a subject of great interest for the study of respiratory disease. Anterior nare samples are more accessible than samples from deeper within the nasopharynx. However, the correlation between the microbiota found in the anterior nares and the microbiota found within the nasopharynx is unknown. We assessed the anterior nares and nasopharyngeal microbiota to determine (1) the relation of the microbiota from these two upper airway sites and (2) if associations were maintained between the microbiota from these two sites and two bronchiolitis severity outcomes. RESULTS Among 815 infants hospitalized at 17 US centers for bronchiolitis with optimal 16S rRNA gene sequence reads from both nasal swab and nasopharyngeal aspirate samples, there were strong intra-individual correlations in the microbial communities between the two sample types, especially relating to Haemophilus and Moraxella genera. By contrast, we found a high abundance of Staphylococcus genus in the nasal swabs-a pattern not found in the nasopharyngeal samples and not informative when predicting the dominant nasopharyngeal genera. While these disparities may have been due to sample processing differences (i.e., nasal swabs were mailed at ambient temperature to emulate processing of future parent collected swabs while nasopharyngeal aspirates were mailed on dry ice), a previously reported association between Haemophilus-dominant nasopharyngeal microbiota and the increased severity of bronchiolitis was replicated utilizing the nasal swab microbiota and the same outcome measures: intensive care use (adjusted OR 6.43; 95% CI 2.25-20.51; P < 0.001) and hospital length-of-stay (adjusted OR 4.31; 95% CI, 1.73-11.11; P = 0.002). Additionally, Moraxella-dominant nasopharyngeal microbiota was previously identified as protective against intensive care use, a result that was replicated when analyzing the nasal swab microbiota (adjusted OR 0.30; 95% CI, 0.11-0.64; P = 0.01). CONCLUSIONS While the microbiota of the anterior nares and the nasopharynx are distinct, there is considerable overlap between the bacterial community compositions from these two anatomic sites. Despite processing differences between the samples, these results indicate that microbiota severity associations from the nasopharynx are recapitulated in the anterior nares, suggesting that nasal swab samples not only are effective sample types, but also can be used to detect microbial risk markers.
Collapse
Affiliation(s)
- Pamela N Luna
- Department of Statistics, Rice University, Houston, TX, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nadim J Ajami
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Janice A Espinola
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David M Henke
- Department of Molecular and Human Genetics MS 225, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology and Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Ashley F Sullivan
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chad A Shaw
- Department of Statistics, Rice University, Houston, TX, USA.
- Department of Molecular and Human Genetics MS 225, Baylor College of Medicine, Houston, TX, 77030, USA.
| | | |
Collapse
|
123
|
Bacteria from bronchoalveolar lavage fluid from children with suspected chronic lower respiratory tract infection: results from a multi-center, cross-sectional study in Spain. Eur J Pediatr 2018; 177:181-192. [PMID: 29285648 PMCID: PMC5758651 DOI: 10.1007/s00431-017-3044-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/30/2022]
Abstract
UNLABELLED This cross-sectional study assessed the prevalence of bacteria isolated from Spanish children with suspected chronic lower respiratory tract infection (LRTI) for whom bronchoalveolar lavage (BAL) was indicated. BAL fluid (BALF) was collected from 191 children (aged ≥ 6 months to < 6 years, with persistent or recurrent respiratory symptoms, non-responders to usual treatment) and cultured. Nasopharyngeal swabs (NPSs) were also obtained and cultured to assess concordance of BALF and NPS findings in the same patient. Streptococcus pneumoniae, Haemophilus influenzae, or Moraxella catarrhalis were identified from BALF with a bacterial load indicative of infection (> 104 colony-forming units/mL) in 10.5, 8.9, and 6.3% of children, respectively. Clinical characteristics were similar among participants, regardless of positivity status for any of the bacteria. Approximately 26% of pneumococcal isolates were PCV13 serotypes, and 96% of H. influenzae isolates were non-typeable (NTHi). Concordance between BALF and NPS isolates was 51.0% for S. pneumoniae, 52.1% for H. influenzae, and 22.0% for M. catarrhalis. CONCLUSION S. pneumoniae, NTHi, and M. catarrhalis were the main bacteria detected in BALF and NPS. Children with suspected chronic LRTI may benefit from a vaccine protecting against NTHi. What is Known: • Chronic lower respiratory tract infection (LRTI) in children can cause high morbidity and is a major use of healthcare resources worldwide. Despite this, their etiology or potential preventive measures are poorly assessed. • Bronchoalveolar lavage can be used to determine bacterial etiology of chronic LRTI. What is New: • We used conventional and molecular techniques to show that Haemophilus influenzae, Streptococcus pneumoniae, and Moraxella catarrhalis were present in the LRT of Spanish children with suspected chronic LRTI • Concordance between isolates from bronchoalveolar lavage fluid and nasopharyngeal swabs was low, suggesting that samples from the upper respiratory tract could not reliably predict the bacterial etiology of suspected chronic LRTI.
Collapse
|
124
|
Muhlebach MS, Zorn BT, Esther CR, Hatch JE, Murray CP, Turkovic L, Ranganathan SC, Boucher RC, Stick SM, Wolfgang MC. Initial acquisition and succession of the cystic fibrosis lung microbiome is associated with disease progression in infants and preschool children. PLoS Pathog 2018; 14:e1006798. [PMID: 29346420 PMCID: PMC5773228 DOI: 10.1371/journal.ppat.1006798] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023] Open
Abstract
The cystic fibrosis (CF) lung microbiome has been studied in children and adults; however, little is known about its relationship to early disease progression. To better understand the relationship between the lung microbiome and early respiratory disease, we characterized the lower airways microbiome using bronchoalveolar lavage (BAL) samples obtained from clinically stable CF infants and preschoolers who underwent bronchoscopy and chest computed tomography (CT). Cross-sectional samples suggested a progression of the lower airways microbiome with age, beginning with relatively sterile airways in infancy. By age two, bacterial sequences typically associated with the oral cavity dominated lower airways samples in many CF subjects. The presence of an oral-like lower airways microbiome correlated with a significant increase in bacterial density and inflammation. These early changes occurred in many patients, despite the use of antibiotic prophylaxis in our cohort during the first two years of life. The majority of CF subjects older than four harbored a pathogen dominated airway microbiome, which was associated with a further increase in inflammation and the onset of structural lung disease, despite a negligible increase in bacterial density compared to younger patients with an oral-like airway microbiome. Our findings suggest that changes within the CF lower airways microbiome occur during the first years of life and that distinct microbial signatures are associated with the progression of early CF lung disease.
Collapse
Affiliation(s)
- Marianne S. Muhlebach
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Bryan T. Zorn
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Charles R. Esther
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joseph E. Hatch
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Conor P. Murray
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Subiaco, Australia
| | - Lidija Turkovic
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Sarath C. Ranganathan
- Department of Respiratory Medicine, Royal Children’s Hospital, Parkville, Australia
- Murdoch Children’s Research Institute, Parkville, Australia
| | - Richard C. Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Stephen M. Stick
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Subiaco, Australia
- Telethon Kids Institute, University of Western Australia, Perth, Australia
- Department of Paediatrics and Child Health, University of Western Australia, Perth, Australia
| | - Matthew C. Wolfgang
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
125
|
Cuthbertson L, Craven V, Bingle L, Cookson WOCM, Everard ML, Moffatt MF. The impact of persistent bacterial bronchitis on the pulmonary microbiome of children. PLoS One 2017; 12:e0190075. [PMID: 29281698 PMCID: PMC5744971 DOI: 10.1371/journal.pone.0190075] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/07/2017] [Indexed: 12/31/2022] Open
Abstract
Introduction Persistent bacterial bronchitis (PBB) is a leading cause of chronic wet cough in young children. This study aimed to characterise the respiratory bacterial microbiota of healthy children and to assess the impact of the changes associated with the development of PBB. Blind, protected brushings were obtained from 20 healthy controls and 24 children with PBB, with an additional directed sample obtained from PBB patients. DNA was extracted, quantified using a 16S rRNA gene quantitative PCR assay prior to microbial community analysis by 16S rRNA gene sequencing. Results No significant difference in bacterial diversity or community composition (R2 = 0.01, P = 0.36) was observed between paired blind and non-blind brushes, showing that blind brushings are a valid means of accessing the airway microbiota. This has important implications for collecting lower respiratory samples from healthy children. A significant decrease in bacterial diversity (P < 0.001) and change in community composition (R2 = 0.08, P = 0.004) was observed among controls, in comparison with patients. Bacterial communities within patients with PBB were dominated by Proteobacteria, and indicator species analysis showed that Haemophilus and Neisseria were significantly associated with the patient group. In 15 (52.9%) cases the dominant organism by sequencing was not identified by standard routine clinical culture. Conclusion The bacteria present in the lungs of patients with PBB were less diverse in terms of richness and evenness. The results validate the clinical diagnosis, and suggest that more attention to bacterial communities in children with chronic cough may lead to more rapid recognition of this condition with earlier treatment and reduction in disease burden.
Collapse
Affiliation(s)
- Leah Cuthbertson
- National Heart and Lung Institute, Imperial College, London, United Kingdom
- Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London, United Kingdom
- * E-mail: (MLE); (LC)
| | - Vanessa Craven
- Sheffield Children’s Hospital, Sheffield, United Kingdom
| | - Lynne Bingle
- University of Sheffield School of Dentistry, Sheffield, United Kingdom
| | - William O. C. M. Cookson
- National Heart and Lung Institute, Imperial College, London, United Kingdom
- Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London, United Kingdom
| | - Mark L. Everard
- School of Paediatrics, University of Western Australia, Perth, Australia
- * E-mail: (MLE); (LC)
| | - Miriam F. Moffatt
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
126
|
Hang J, Zavaljevski N, Yang Y, Desai V, Ruck RC, Macareo LR, Jarman RG, Reifman J, Kuschner RA, Keiser PB. Composition and variation of respiratory microbiota in healthy military personnel. PLoS One 2017; 12:e0188461. [PMID: 29216202 PMCID: PMC5720755 DOI: 10.1371/journal.pone.0188461] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 11/07/2017] [Indexed: 01/16/2023] Open
Abstract
Certain occupational and geographical exposures have been associated with an increased risk of lung disease. As a baseline for future studies, we sought to characterize the upper respiratory microbiomes of healthy military personnel in a garrison environment. Nasal, oropharyngeal, and nasopharyngeal swabs were collected from 50 healthy active duty volunteers eight times over the course of one year (1107 swabs, completion rate = 92.25%) and subjected to pyrosequencing of the V1–V3 region of 16S rDNA. Respiratory bacterial taxa were characterized at the genus level, using QIIME 1.8 and the Ribosomal Database Project classifier. High levels of Staphylococcus, Corynebacterium, and Propionibacterium were observed among both nasal and nasopharyngeal microbiota, comprising more than 75% of all operational taxonomical units (OTUs). In contrast, Streptococcus was the sole dominant bacterial genus (approximately 50% of all OTUs) in the oropharynx. The average bacterial diversity was greater in the oropharynx than in the nasal or nasopharyngeal region at all time points. Diversity analysis indicated a significant overlap between nasal and nasopharyngeal samples, whereas oropharyngeal samples formed a cluster distinct from these two regions. The study produced a large set of pyrosequencing data on the V1–V3 region of bacterial 16S rDNA for the respiratory microbiomes of healthy active duty Service Members. Pre-processing of sequencing reads showed good data quality. The derived microbiome profiles were consistent both internally and with previous reports, suggesting their utility for further analyses and association studies based on sequence and demographic data.
Collapse
Affiliation(s)
- Jun Hang
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- * E-mail:
| | - Nela Zavaljevski
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | - Yu Yang
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Valmik Desai
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | - Richard C. Ruck
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Louis R. Macareo
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Richard G. Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | - Robert A. Kuschner
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Paul B. Keiser
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| |
Collapse
|
127
|
Mao Q, Jiang F, Yin R, Wang J, Xia W, Dong G, Ma W, Yang Y, Xu L, Hu J. Interplay between the lung microbiome and lung cancer. Cancer Lett 2017; 415:40-48. [PMID: 29197615 DOI: 10.1016/j.canlet.2017.11.036] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022]
Abstract
The human microbiome confers benefits or disease susceptibility to the human body through multiple pathways. Disruption of the symbiotic balance of the human microbiome is commonly found in systematic diseases such as diabetes, obesity, and chronic gastric diseases. Emerging evidence has suggested that dysbiosis of the microbiota may also play vital roles in carcinogenesis at multiple levels, e.g., by affecting metabolic, inflammatory, or immune pathways. Although the impact of the gut microbiome on the digestive cancer has been widely explored, few studies have investigated the interplay between the microbiome and lung cancer. Some recent studies have shown that certain microbes and microbiota dysbiosis are correlated with development of lung cancer. In this mini-review, we briefly summarize current research findings describing the relationship between the lung microbiome and lung cancer. We further discuss the potential mechanisms through which the lung microbiome may play a role in lung carcinogenesis and impact lung cancer treatment. A better knowledge of the interplay between the lung microbiome and lung cancer may promote the development of innovative strategies for early prevention and personalized treatment in lung cancer.
Collapse
Affiliation(s)
- Qixing Mao
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210009, PR China; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York NY10029, USA; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, PR China; The Fourth Clinical College of Nanjing Medical University, Graduated College of Nanjing Medical University, Nanjing 210000, PR China
| | - Feng Jiang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, PR China
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, PR China
| | - Jie Wang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, PR China
| | - Wenjie Xia
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, PR China; The Fourth Clinical College of Nanjing Medical University, Graduated College of Nanjing Medical University, Nanjing 210000, PR China
| | - Gaochao Dong
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, PR China
| | - Weidong Ma
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, PR China; The Fourth Clinical College of Nanjing Medical University, Graduated College of Nanjing Medical University, Nanjing 210000, PR China
| | - Yao Yang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York NY10029, USA
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, PR China.
| | - Jianzhong Hu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York NY10029, USA.
| |
Collapse
|
128
|
Nicola I, Cerutti F, Grego E, Bertone I, Gianella P, D'Angelo A, Peletto S, Bellino C. Characterization of the upper and lower respiratory tract microbiota in Piedmontese calves. MICROBIOME 2017; 5:152. [PMID: 29157308 PMCID: PMC5697440 DOI: 10.1186/s40168-017-0372-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/09/2017] [Indexed: 05/13/2023]
Abstract
BACKGROUND The microbiota of the bovine upper respiratory tract has been recently characterized, but no data for the lower respiratory tract are available. A major health problem in bovine medicine is infectious bronchopneumonia, the most common respiratory syndrome affecting cattle. With this study, we used 16S rRNA gene sequencing to characterize and compare the microbial community composition of the upper and lower respiratory tracts in calves. RESULTS The microbiota of the upper (nasal swab [NS]) and the lower (trans-tracheal aspiration [TTA]) respiratory tracts of 19 post-weaned Piedmontese calves with (8/19) and without (11/19) clinical signs of respiratory disease, coming from six different farms, was characterized by 16S rRNA gene metabarcoding. A total of 29 phyla (29 in NS, 21 in TTA) and 305 genera (289 in NS, 182 in TTA) were identified. Mycoplasma (60.8%) was the most abundant genus identified in both the NS (27.3%) and TTA (76.7%) samples, followed by Moraxella (16.6%) in the NS and Pasteurella (7.3%) in the TTA samples. Pasteurella multocida (7.3% of total operational taxonomic units [OTUs]) was the most abundant species in the TTA and Psychrobacter sanguinis (1.1% of total OTUs) in the NS samples. Statistically significant differences between the NS and the TTA samples were found for both alpha (Shannon index, observed species, Chao1 index, and Simpson index; P = 0.001) and beta (Adonis; P = 0.001) diversity. Comparison of the NS and TTA samples by farm origin and clinical signs revealed no statistical difference (P > 0.05), except for farm origin for the NS samples when compared by the unweighted UniFrac metric (P = 0.05). CONCLUSIONS Using 16S rRNA gene sequencing, we characterized the microbiota of the upper and lower respiratory tracts of calves, both healthy individuals and those with clinical signs of respiratory disease. Our results suggest that environmental factors may influence the composition of the upper airway microbiota in cattle. While the two microbial communities (upper and lower airways) differed in microbial composition, they shared several OTUs, suggesting that the lung microbiota may be a self-sustaining, more homogeneous ecosystem, influenced by the upper respiratory tract microbiota.
Collapse
Affiliation(s)
- Isabella Nicola
- Department of Veterinary Sciences, Clinical section, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Francesco Cerutti
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, TO, Italy
| | - Elena Grego
- Department of Veterinary Sciences, Clinical section, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Iride Bertone
- Department of Veterinary Sciences, Clinical section, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Paola Gianella
- Department of Veterinary Sciences, Clinical section, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Antonio D'Angelo
- Department of Veterinary Sciences, Clinical section, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Simone Peletto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, TO, Italy
| | - Claudio Bellino
- Department of Veterinary Sciences, Clinical section, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy.
| |
Collapse
|
129
|
Hasegawa K, Mansbach JM, Ajami NJ, Petrosino JF, Freishtat RJ, Teach SJ, Piedra PA, Camargo CA. The relationship between nasopharyngeal CCL5 and microbiota on disease severity among infants with bronchiolitis. Allergy 2017; 72:1796-1800. [PMID: 28306146 DOI: 10.1111/all.13160] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2017] [Indexed: 12/25/2022]
Abstract
Emerging evidence suggests that the airway microbiota plays an important role in viral bronchiolitis pathobiology. However, little is known about the combined role of airway microbiota and CCL5 in infants with bronchiolitis. In this multicenter prospective cohort study of 1005 infants (age <1 year) hospitalized for bronchiolitis during 2011-2014, we observed statistically significant interactions between nasopharyngeal airway CCL5 levels and microbiota profiles with regard to the risk of both intensive care use (Pinteraction =.02) and hospital length-of-stay ≥3 days (Pinteraction =.03). Among infants with lower CCL5 levels, the Haemophilus-dominant microbiota profile was associated with a higher risk of intensive care use (OR, 3.20; 95%CI, 1.18-8.68; P=.02) and hospital length-of-stay ≥3 days (OR, 4.14; 95%CI, 2.08-8.24; P<.001) compared to the Moraxella-dominant profile. Conversely, among those with higher CCL5 levels, there were no significant associations between the microbiota profiles and these severity outcomes (all P≥.10).
Collapse
Affiliation(s)
- K. Hasegawa
- Department of Emergency Medicine Harvard Medical School Massachusetts General Hospital Boston MA USA
| | - J. M. Mansbach
- Department of Medicine Boston Children's Hospital Boston MA USA
| | - N. J. Ajami
- Alkek Center for Metagenomics and Microbiome Research Department of Molecular Virology and Microbiology Baylor College of Medicine Houston TX USA
| | - J. F Petrosino
- Alkek Center for Metagenomics and Microbiome Research Department of Molecular Virology and Microbiology Baylor College of Medicine Houston TX USA
| | - R. J. Freishtat
- Division of Emergency Medicine Department of Pediatrics Children's National Health System Washington DC USA
| | - S. J. Teach
- Division of Emergency Medicine Department of Pediatrics Children's National Health System Washington DC USA
| | - P. A. Piedra
- Department of Molecular Virology and Microbiology and Pediatrics Baylor College of Medicine Houston TX USA
| | - C. A. Camargo
- Department of Emergency Medicine Harvard Medical School Massachusetts General Hospital Boston MA USA
| |
Collapse
|
130
|
Frayman KB, Armstrong DS, Grimwood K, Ranganathan SC. The airway microbiota in early cystic fibrosis lung disease. Pediatr Pulmonol 2017; 52:1384-1404. [PMID: 28815937 DOI: 10.1002/ppul.23782] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/17/2017] [Indexed: 12/12/2022]
Abstract
Infection plays a critical role in the pathogenesis of cystic fibrosis (CF) lung disease. Over the past two decades, the application of molecular and extended culture-based techniques to microbial analysis has changed our understanding of the lungs in both health and disease. CF lung disease is a polymicrobial disorder, with obligate and facultative anaerobes recovered alongside traditional pathogens in varying proportions, with some differences observed to correlate with disease stage. While healthy lungs are not sterile, differences between the lower airway microbiota of individuals with CF and disease-controls are already apparent in childhood. Understanding the evolution of the CF airway microbiota, and its relationship with clinical treatments and outcome at each disease stage, will improve our understanding of the pathogenesis of CF lung disease and potentially inform clinical management. This review summarizes current knowledge of the early development of the respiratory microbiota in healthy children and then discusses what is known about the airway microbiota in individuals with CF, including how it evolves over time and where future research priorities lie.
Collapse
Affiliation(s)
- Katherine B Frayman
- Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Melbourne, Victoria, Australia.,Respiratory Diseases Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - David S Armstrong
- Department of Respiratory Medicine, Monash Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Keith Grimwood
- School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.,Departments of Paediatrics and Infectious Diseases, Gold Coast Health, Gold Coast, Queensland, Australia
| | - Sarath C Ranganathan
- Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Melbourne, Victoria, Australia.,Respiratory Diseases Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
131
|
Salter SJ, Turner C, Watthanaworawit W, de Goffau MC, Wagner J, Parkhill J, Bentley SD, Goldblatt D, Nosten F, Turner P. A longitudinal study of the infant nasopharyngeal microbiota: The effects of age, illness and antibiotic use in a cohort of South East Asian children. PLoS Negl Trop Dis 2017; 11:e0005975. [PMID: 28968382 PMCID: PMC5638608 DOI: 10.1371/journal.pntd.0005975] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 10/12/2017] [Accepted: 09/19/2017] [Indexed: 11/19/2022] Open
Abstract
A longitudinal study was undertaken in infants living in the Maela refugee camp on the Thailand-Myanmar border between 2007 and 2010. Nasopharyngeal swabs were collected monthly, from birth to 24 months of age, with additional swabs taken if the infant was diagnosed with pneumonia according to WHO clinical criteria. At the time of collection, swabs were cultured for Streptococcus pneumoniae and multiple serotype carriage was assessed. The bacterial 16S rRNA gene profiles of 544 swabs from 21 infants were analysed to see how the microbiota changes with age, respiratory infection, antibiotic consumption and pneumococcal acquisition. The nasopharyngeal microbiota is a somewhat homogenous community compared to that of other body sites. In this cohort it is dominated by five taxa: Moraxella, Streptococcus, Haemophilus, Corynebacterium and an uncharacterized Flavobacteriaceae taxon of 93% nucleotide similarity to Ornithobacterium. Infant age correlates with certain changes in the microbiota across the cohort: Staphylococcus and Corynebacterium are associated with the first few months of life while Moraxella and the uncharacterised Flavobacteriaceae increase in proportional abundance with age. Respiratory illness and antibiotic use often coincide with an unpredictable perturbation of the microbiota that differs from infant to infant and in different illness episodes. The previously described interaction between Dolosigranulum and Streptococcus was observed in these data. Monthly sampling demonstrates that the nasopharyngeal microbiota is in flux throughout the first two years of life, and that in this refugee camp population the pool of potential bacterial colonisers may be limited. The nasopharynx hosts a community of microbes that first colonise us during infancy and that changes as we grow. Colonisation with certain species is a risk factor for developing respiratory infections such as pneumonia, while other species can have a protective influence. In this study we use molecular methods to identify the bacteria present in nasopharyngeal swabs taken regularly from children in a refugee camp in Thailand. The microbiota develops with age, with early colonisers such as Corynebacterium or Staphylococcus being eventually outgrown by Moraxella and an uncultured taxon described here as unclassified Flavobacteriaceae I. There is evidence in the cohort of Streptococcus pneumoniae being frequently carried and transmitted throughout the first two years of life. We found that the microbiota profiles were not unique or distinguishable between individuals in this study, which is unlike studies in high income, low density populations.
Collapse
Affiliation(s)
- Susannah J. Salter
- Pathogen Genomics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- * E-mail:
| | - Claudia Turner
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Wanitda Watthanaworawit
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | | | - Josef Wagner
- Pathogen Genomics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Julian Parkhill
- Pathogen Genomics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Stephen D. Bentley
- Pathogen Genomics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - David Goldblatt
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Paul Turner
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
132
|
Stewart CJ, Mansbach JM, Wong MC, Ajami NJ, Petrosino JF, Camargo CA, Hasegawa K. Associations of Nasopharyngeal Metabolome and Microbiome with Severity among Infants with Bronchiolitis. A Multiomic Analysis. Am J Respir Crit Care Med 2017; 196:882-891. [PMID: 28530140 PMCID: PMC5649976 DOI: 10.1164/rccm.201701-0071oc] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/30/2017] [Indexed: 12/19/2022] Open
Abstract
RATIONALE Bronchiolitis is the most common lower respiratory infection in infants; however, it remains unclear which infants with bronchiolitis will develop severe illness. In addition, although emerging evidence indicates associations of the upper-airway microbiome with bronchiolitis severity, little is known about the mechanisms linking airway microbes and host response to disease severity. OBJECTIVES To determine the relations among the nasopharyngeal airway metabolome profiles, microbiome profiles, and severity in infants with bronchiolitis. METHODS We conducted a multicenter prospective cohort study of infants (age <1 yr) hospitalized with bronchiolitis. By applying metabolomic and metagenomic (16S ribosomal RNA gene and whole-genome shotgun sequencing) approaches to 144 nasopharyngeal airway samples collected within 24 hours of hospitalization, we determined metabolome and microbiome profiles and their association with higher severity, defined by the use of positive pressure ventilation (i.e., continuous positive airway pressure and/or intubation). MEASUREMENTS AND MAIN RESULTS Nasopharyngeal airway metabolome profiles significantly differed by bronchiolitis severity (P < 0.001). Among 254 metabolites identified, a panel of 25 metabolites showed high sensitivity (84%) and specificity (86%) in predicting the use of positive pressure ventilation. The intensity of these metabolites was correlated with relative abundance of Streptococcus pneumoniae. In the pathway analysis, sphingolipid metabolism was the most significantly enriched subpathway in infants with positive pressure ventilation use compared with those without (P < 0.001). Enrichment of sphingolipid metabolites was positively correlated with the relative abundance of S. pneumoniae. CONCLUSIONS Although further validation is needed, our multiomic analyses demonstrate the potential of metabolomics to predict bronchiolitis severity and better understand microbe-host interaction.
Collapse
Affiliation(s)
- Christopher J. Stewart
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas; and
| | | | - Matthew C. Wong
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas; and
| | - Nadim J. Ajami
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas; and
| | - Joseph F. Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas; and
| | - Carlos A. Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
133
|
Kantar A, Chang AB, Shields MD, Marchant JM, Grimwood K, Grigg J, Priftis KN, Cutrera R, Midulla F, Brand PLP, Everard ML. ERS statement on protracted bacterial bronchitis in children. Eur Respir J 2017; 50:50/2/1602139. [PMID: 28838975 DOI: 10.1183/13993003.02139-2016] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/01/2017] [Indexed: 12/22/2022]
Abstract
This European Respiratory Society statement provides a comprehensive overview on protracted bacterial bronchitis (PBB) in children. A task force of experts, consisting of clinicians from Europe and Australia who manage children with PBB determined the overall scope of this statement through consensus. Systematic reviews addressing key questions were undertaken, diagrams in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement constructed and findings of relevant studies summarised. The final content of this statement was agreed upon by all members.The current knowledge regarding PBB is presented, including the definition, microbiology data, known pathobiology, bronchoalveolar lavage findings and treatment strategies to manage these children. Evidence for the definition of PBB was sought specifically and presented. In addition, the task force identified several major clinical areas in PBB requiring further research, including collecting more prospective data to better identify the disease burden within the community, determining its natural history, a better understanding of the underlying disease mechanisms and how to optimise its treatment, with a particular requirement for randomised controlled trials to be conducted in primary care.
Collapse
Affiliation(s)
- Ahmad Kantar
- Pediatric Asthma and Cough Centre, Istituti Ospedalieri Bergamaschi, University and Research Hospitals, Bergamo, Italy .,Both authors contributed equally
| | - Anne B Chang
- Dept of Respiratory and Sleep Medicine, Lady Cilento Children's Hospital, Brisbane, Australia.,Centre for Children's Health Research, Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Child Health Division, Menzies School of Health Research, Charles Darwin University, Casuarina, Australia.,Both authors contributed equally
| | - Mike D Shields
- Dept of Child Health, Queen's University Belfast, Belfast, UK
| | - Julie M Marchant
- Dept of Respiratory and Sleep Medicine, Lady Cilento Children's Hospital, Brisbane, Australia.,Centre for Children's Health Research, Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Keith Grimwood
- Menzies Health Institute Queensland, Griffith University and Gold Coast Health, Gold Coast, Australia
| | - Jonathan Grigg
- Blizard Institute, Queen Mary University London, London, UK
| | - Kostas N Priftis
- Third Dept of Paediatrics, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Renato Cutrera
- Respiratory Unit, University Dept of Pediatrics, Bambino Gesu' Children's Research Hospital, Rome, Italy
| | - Fabio Midulla
- Dept of Pediatrics and Infantile Neuropsychiatry, "Sapienza" University of Rome, Rome, Italy
| | - Paul L P Brand
- Isala Women and Children's Hospital, Zwolle, the Netherlands
| | - Mark L Everard
- School of Pediatrics and Child Health, University of Western Australia, Princess Margaret Hospital, Subiaco, Australia
| |
Collapse
|
134
|
The temporal dynamics of the tracheal microbiome in tracheostomised patients with and without lower respiratory infections. PLoS One 2017; 12:e0182520. [PMID: 28796800 PMCID: PMC5552036 DOI: 10.1371/journal.pone.0182520] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/19/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Airway microbiota dynamics during lower respiratory infection (LRI) are still poorly understood due, in part, to insufficient longitudinal studies and lack of uncontaminated lower airways samples. Furthermore, the similarity between upper and lower airway microbiomes is still under debate. Here we compare the diversity and temporal dynamics of microbiotas directly sampled from the trachea via tracheostomy in patients with (YLRI) and without (NLRI) lower respiratory infections. METHODS We prospectively collected 127 tracheal aspirates across four consecutive meteorological seasons (quarters) from 40 patients, of whom 20 developed LRIs and 20 remained healthy. All aspirates were collected when patients had no LRI. We generated 16S rRNA-based microbial profiles (~250 bp) in a MiSeq platform and analyzed them using Mothur and the SILVAv123 database. Differences in microbial diversity and taxon normalized (via negative binomial distribution) abundances were assessed using linear mixed effects models and multivariate analysis of variance. RESULTS AND DISCUSSION Alpha-diversity (ACE, Fisher and phylogenetic diversity) and beta-diversity (Bray-Curtis, Jaccard and Unifrac distances) indices varied significantly (P<0.05) between NLRI and YLRI microbiotas from tracheostomised patients. Additionally, Haemophilus was significantly (P = 0.009) more abundant in YLRI patients than in NLRI patients, while Acinetobacter, Corynebacterium and Pseudomonas (P<0.05) showed the inverse relationship. We did not detect significant differences in diversity and bacterial abundance among seasons. This result disagrees with previous evidence suggesting seasonal variation in airway microbiotas. Further study is needed to address the interaction between microbes and LRI during times of health and disease.
Collapse
|
135
|
Mika M, Maurer J, Korten I, Allemann A, Aebi S, Brugger SD, Qi W, Frey U, Latzin P, Hilty M. Influence of the pneumococcal conjugate vaccines on the temporal variation of pneumococcal carriage and the nasal microbiota in healthy infants: a longitudinal analysis of a case-control study. MICROBIOME 2017; 5:85. [PMID: 28738889 PMCID: PMC5525364 DOI: 10.1186/s40168-017-0302-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/06/2017] [Indexed: 05/31/2023]
Abstract
BACKGROUND Bacterial colonization of the upper airways is a prerequisite for subsequent invasive disease. With the introduction of the 7- and 13-valent pneumococcal conjugate vaccines (PCV7 and PCV13), changes in pneumococcal upper airway colonization have been described. It is, however, less evident whether the vaccines lead to compositional changes of the upper airway microbiota. Here, we performed a case-control study using samples from a longitudinal infant cohort from Switzerland. We compared pneumococcal carriage and the nasal microbiota within the first year of life of healthy infants vaccinated with either PCV7 (n = 20, born in 2010) or PCV13 (n = 21, born between 2011 and 2013). Nasal swabs were collected every second week (n = 763 in total). Pneumococcal carriage was analyzed by quantitative PCR of the pneumococcal-specific lytA gene. Analysis of the bacterial core microbiota was performed based on 16S rRNA sequencing and subsequent oligotyping. We exclusively performed oligotyping of the core microbiota members, which were defined as the five most abundant bacterial families (Moraxellaceae, Streptococcaceae, Staphylococcaceae, Corynebacteriaceae, and Pasteurellaceae). Linear mixed effect (LME) and negative binomial regression models were used for statistical analyses. RESULTS We found a higher number of samples positive for pneumococcal carriage in PCV7- compared to PCV13-vaccinated infants (LME model; P = 0.01). In contrast, infants vaccinated in the PCV13 era had an increased alpha diversity as measured by the richness and the Shannon Diversity Index (LME model; P = 0.003 and P = 0.01, respectively). Accordingly, the PCV13 era was associated with clusters of a higher diversity than PCV7-associated clusters. Furthermore, infants vaccinated with PCV13 had a higher binary-based within-subject microbiota similarity, as well as a decreased Jensen-Shannon distance over time as compared to PCV7-vaccinated infants, indicating a higher microbiota stability in the PCV13 era (LME model and t test; P = 0.06 and P = 0.03, respectively). CONCLUSIONS We hypothesize that the higher diversity and stability of the upper airway microbiota in the PCV13 era is the result of the lower pneumococcal carriage rate. This seems to indicate that the nasal bacterial microbiota of infants has changed in recent years as compared to the beginning of this study.
Collapse
Affiliation(s)
- Moana Mika
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Josua Maurer
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010, Bern, Switzerland
| | - Insa Korten
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Division of Respiratory Medicine, Department of Pediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Aurélie Allemann
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Suzanne Aebi
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010, Bern, Switzerland
| | - Silvio D Brugger
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010, Bern, Switzerland
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Weihong Qi
- Functional Genomics Center, Swiss Federal Institute of Technology Zurich/University of Zurich, Zurich, Switzerland
| | - Urs Frey
- University Children's Hospital (UKBB), Basel, Switzerland
| | - Philipp Latzin
- Division of Respiratory Medicine, Department of Pediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010, Bern, Switzerland.
- Department of Infectious Diseases, University Hospital, Bern, Switzerland.
| |
Collapse
|
136
|
Man WH, de Steenhuijsen Piters WA, Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol 2017; 15:259-270. [PMID: 28316330 PMCID: PMC7097736 DOI: 10.1038/nrmicro.2017.14] [Citation(s) in RCA: 838] [Impact Index Per Article: 104.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The respiratory tract is a complex organ system that is responsible for the exchange of oxygen and carbon dioxide. The human respiratory tract spans from the nostrils to the lung alveoli and is inhabited by niche-specific communities of bacteria. The microbiota of the respiratory tract probably acts as a gatekeeper that provides resistance to colonization by respiratory pathogens. The respiratory microbiota might also be involved in the maturation and maintenance of homeostasis of respiratory physiology and immunity. The ecological and environmental factors that direct the development of microbial communities in the respiratory tract and how these communities affect respiratory health are the focus of current research. Concurrently, the functions of the microbiome of the upper and lower respiratory tract in the physiology of the human host are being studied in detail. In this Review, we will discuss the epidemiological, biological and functional evidence that support the physiological role of the respiratory microbiota in the maintenance of human health.
Collapse
Affiliation(s)
- Wing Ho Man
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, Utrecht, 3584 EA The Netherlands
- Spaarne Gasthuis Academy, Spaarnepoort 1, Hoofddorp, 2134 TM The Netherlands
| | - Wouter A.A. de Steenhuijsen Piters
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, Utrecht, 3584 EA The Netherlands
- The University of Edinburgh/MRC Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ UK
| | - Debby Bogaert
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, Utrecht, 3584 EA The Netherlands
- The University of Edinburgh/MRC Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ UK
| |
Collapse
|
137
|
Pizzutto SJ, Hare KM, Upham JW. Bronchiectasis in Children: Current Concepts in Immunology and Microbiology. Front Pediatr 2017; 5:123. [PMID: 28611970 PMCID: PMC5447051 DOI: 10.3389/fped.2017.00123] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/08/2017] [Indexed: 12/26/2022] Open
Abstract
Bronchiectasis is a complex chronic respiratory condition traditionally characterized by chronic infection, airway inflammation, and progressive decline in lung function. Early diagnosis and intensive treatment protocols can stabilize or even improve the clinical prognosis of children with bronchiectasis. However, understanding the host immunologic mechanisms that contribute to recurrent infection and prolonged inflammation has been identified as an important area of research that would contribute substantially to effective prevention strategies for children at risk of bronchiectasis. This review will focus on the current understanding of the role of the host immune response and important pathogens in the pathogenesis of bronchiectasis (not associated with cystic fibrosis) in children.
Collapse
Affiliation(s)
- Susan J Pizzutto
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - Kim M Hare
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - John W Upham
- Department of Respiratory Medicine, Princess Alexandra Hospital, Brisbane, QLD, Australia.,School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
138
|
Serum cathelicidin, nasopharyngeal microbiota, and disease severity among infants hospitalized with bronchiolitis. J Allergy Clin Immunol 2016; 139:1383-1386.e6. [PMID: 27845236 DOI: 10.1016/j.jaci.2016.09.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/08/2016] [Accepted: 09/14/2016] [Indexed: 11/21/2022]
|