101
|
Liu Y, Peng B, Sohrabi S, Liu Y. The Configuration of Copolymer Ligands on Nanoparticles Affects Adhesion and Uptake. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10136-10143. [PMID: 27609544 DOI: 10.1021/acs.langmuir.6b02371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanoparticles (NPs) are promising carriers for targeted drug delivery, photodynamic therapy, and imaging probes. A fundamental understanding of the dynamics of polymeric NP targeting to bilayer membranes is important to enhance the design of NPs for higher adhesion, binding percentage, and efficiency. In this study, dissipative particle dynamics simulations are applied to investigate the adhesion and uptake processes of the rod, spherical, and striped NPs to cell membranes. It is observed that the striped ligands can prevent NPs from rotating even in active rotation. We further optimize striped NP to a more stabilized structure. Uptake processes of NPs with different configurations are thoroughly investigated in our simulations and among which Janus NP are indicated to improve the penetration rate to 100%. These findings provide better insight into patterned NP design and may help fabricate new NPs for biomedical applications.
Collapse
Affiliation(s)
- Yang Liu
- School of Mechatronics Engineering, University of Electronic Science and Technology of China , Chengdu 611731, China
- Center for Robotics, University of Electronic Science and Technology of China , Chengdu 611731, China
| | - Bei Peng
- School of Mechatronics Engineering, University of Electronic Science and Technology of China , Chengdu 611731, China
- Center for Robotics, University of Electronic Science and Technology of China , Chengdu 611731, China
| | - Salman Sohrabi
- Department of Mechanical Engineering and Mechanics, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| | - Yaling Liu
- Department of Mechanical Engineering and Mechanics, Lehigh University , Bethlehem, Pennsylvania 18015, United States
- Bioengineering, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
102
|
Abdel-Wahhab MA, Salman AS, Ibrahim MIM, El-Kady AA, Abdel-Aziem SH, Hassan NS, Waly AI. Curcumin nanoparticles loaded hydrogels protects against aflatoxin B1-induced genotoxicity in rat liver. Food Chem Toxicol 2016; 94:159-171. [PMID: 27288928 DOI: 10.1016/j.fct.2016.06.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/12/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022]
Abstract
The current study aimed to evaluate the protective role of curcumin nanoparticles loaded hydrogels (Cur-NPs-Hgs) against AFB1-induced genotoxicity in rat liver. Animals were divided into 7 treatment groups and treated orally for 3 weeks as follow: the control group, the group treated with Hgs alone (0.5 ml/rat), the groups treated with low or high dose of Cur-NPs-Hgs (100 or 200 mg/kg b.w), the group treated with AFB1 (0.125 mg/kg b.w) and the groups treated with AFB1 plus the low or high dose of Cur-NPs-Hgs. Blood ant liver samples were collected for different biochemical, genetical, histological and histochemical analysis. The results revealed that the prepared Cur-NPs have nearly spherical shape with average size of 140 ± 20 nm and negative zeta potential value of 30.7 ± 2.57 mV. The in vivo results showed that treatment with AFB1 decreased the body weight accompanied biochemical, genotoxicity and histological disturbances. The combined treatment with AFB1 and Cur-Nps-Hgs at the two tested doses succeeded to induce a significant protection against AFB1. It could be concluded that Cur-NPs-Hgs is a promise candidate to protect against AFB1-induce liver damage in the high incidence area. Moreover, Hgs are excellent candidates as drug delivery system.
Collapse
Affiliation(s)
- Mosaad A Abdel-Wahhab
- Food Toxicology and Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| | - Asmaa S Salman
- Genetic and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | - Mohamed I M Ibrahim
- Food Toxicology and Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Ahmed A El-Kady
- Food Toxicology and Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | | | - Nabila S Hassan
- Pathology Department, National Research Center, Dokki, Cairo, Egypt
| | - Ahmed I Waly
- Preperation and Finishing of Cellulosic Materials Department, National Research Center, Dokki, Cairo, Egypt
| |
Collapse
|
103
|
Othman BA, Greenwood C, Abuelela AF, Bharath AA, Chen S, Theodorou I, Douglas T, Uchida M, Ryan M, Merzaban JS, Porter AE. Correlative Light-Electron Microscopy Shows RGD-Targeted ZnO Nanoparticles Dissolve in the Intracellular Environment of Triple Negative Breast Cancer Cells and Cause Apoptosis with Intratumor Heterogeneity. Adv Healthc Mater 2016; 5:1310-25. [PMID: 27111660 DOI: 10.1002/adhm.201501012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/12/2016] [Indexed: 11/07/2022]
Abstract
ZnO nanoparticles (NPs) are reported to show a high degree of cancer cell selectivity with potential use in cancer imaging and therapy. Questions remain about the mode by which the ZnO NPs cause cell death, whether they exert an intra- or extracellular effect, and the resistance among different cancer cell types to ZnO NP exposure. The present study quantifies the variability between the cellular toxicity, dynamics of cellular uptake, and dissolution of bare and RGD (Arg-Gly-Asp)-targeted ZnO NPs by MDA-MB-231 cells. Compared to bare ZnO NPs, RGD-targeting of the ZnO NPs to integrin αvβ3 receptors expressed on MDA-MB-231 cells appears to increase the toxicity of the ZnO NPs to breast cancer cells at lower doses. Confocal microscopy of live MDA-MB-231 cells confirms uptake of both classes of ZnO NPs with a commensurate rise in intracellular Zn(2+) concentration prior to cell death. The response of the cells within the population to intracellular Zn(2+) is highly heterogeneous. In addition, the results emphasize the utility of dynamic and quantitative imaging in understanding cell uptake and processing of targeted therapeutic ZnO NPs at the cellular level by heterogeneous cancer cell populations, which can be crucial for the development of optimized treatment strategies.
Collapse
Affiliation(s)
- Basmah A. Othman
- Department of Materials; Imperial College London; Royal School of Mines; Exhibition Road London SW7 2AZ UK
| | - Christina Greenwood
- Cell and Molecular Biology Research Laboratory; Faculty of Medical Sciences; Post Graduate Medical Institute; Anglia Ruskin University; Bishop Hall Lane; Chelmsford CM1 1SQ UK
| | - Ayman F. Abuelela
- Cell Migration and Signaling Laboratory; Division of Biological and Environmental Sciences and Engineering; King Abdullah University of Science and Engineering (KAUST); Thuwal 23955-6900 Saudi Arabia
| | - Anil A. Bharath
- Department of Bioengineering; Imperial College London; Royal School of Mines; Exhibition Road London SW7 2AZ UK
| | - Shu Chen
- Department of Materials; Imperial College London; Royal School of Mines; Exhibition Road London SW7 2AZ UK
| | - Ioannis Theodorou
- Department of Materials; Imperial College London; Royal School of Mines; Exhibition Road London SW7 2AZ UK
| | - Trevor Douglas
- Department of Chemistry; Indiana University; 800 E. Kirkwood Avenue Bloomington IN 47405 USA
| | - Maskai Uchida
- Department of Chemistry; Indiana University; 800 E. Kirkwood Avenue Bloomington IN 47405 USA
| | - Mary Ryan
- Department of Materials; Imperial College London; Royal School of Mines; Exhibition Road London SW7 2AZ UK
| | - Jasmeen S. Merzaban
- Cell Migration and Signaling Laboratory; Division of Biological and Environmental Sciences and Engineering; King Abdullah University of Science and Engineering (KAUST); Thuwal 23955-6900 Saudi Arabia
| | - Alexandra E. Porter
- Department of Materials; Imperial College London; Royal School of Mines; Exhibition Road London SW7 2AZ UK
- Imperial College London and London Centre for Nanotechnology; London SW7 2AZ UK
| |
Collapse
|
104
|
Hiremath J, Kang KI, Xia M, Elaish M, Binjawadagi B, Ouyang K, Dhakal S, Arcos J, Torrelles JB, Jiang X, Lee CW, Renukaradhya GJ. Entrapment of H1N1 Influenza Virus Derived Conserved Peptides in PLGA Nanoparticles Enhances T Cell Response and Vaccine Efficacy in Pigs. PLoS One 2016; 11:e0151922. [PMID: 27093541 PMCID: PMC4836704 DOI: 10.1371/journal.pone.0151922] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/07/2016] [Indexed: 11/18/2022] Open
Abstract
Pigs are believed to be one of the important sources of emerging human and swine influenza viruses (SwIV). Influenza virus conserved peptides have the potential to elicit cross-protective immune response, but without the help of potent adjuvant and delivery system they are poorly immunogenic. Biodegradable polylactic-co-glycolic acid (PLGA) nanoparticle (PLGA-NP) based vaccine delivery system enhances cross-presentation of antigens by the professional antigen presenting cells. In this study, Norovirus P particle containing SwIV M2e (extracellular domain of the matrix protein 2) chimera and highly conserved two each of H1N1 peptides of pandemic 2009 and classical human influenza viruses were entrapped in PLGA-NPs. Influenza antibody-free pigs were vaccinated with PLGA-NPs peptides cocktail vaccine twice with or without an adjuvant, Mycobacterium vaccae whole cell lysate, intranasally as mist. Vaccinated pigs were challenged with a virulent heterologous zoonotic SwIV H1N1, and one week later euthanized and the lung samples were analyzed for the specific immune response and viral load. Clinically, pigs vaccinated with PLGA-NP peptides vaccine had no fever and flu symptoms, and the replicating challenged SwIV was undetectable in the bronchoalveolar lavage fluid. Immunologically, PLGA-NP peptides vaccination (without adjuvant) significantly increased the frequency of antigen-specific IFNγ secreting CD4 and CD8 T cells response in the lung lymphocytes, despite not boosting the antibody response both at pre- and post-challenge. In summary, our data indicated that nanoparticle-mediated delivery of conserved H1N1 influenza peptides induced the virus specific T cell response in the lungs and reduced the challenged heterologous virus load in the airways of pigs.
Collapse
Affiliation(s)
- Jagadish Hiremath
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, Ohio, 44691, United States of America, and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Kyung-il Kang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, Ohio, 44691, United States of America, and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Ming Xia
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Mohamed Elaish
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, Ohio, 44691, United States of America, and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Basavaraj Binjawadagi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, Ohio, 44691, United States of America, and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Kang Ouyang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, Ohio, 44691, United States of America, and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Santosh Dhakal
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, Ohio, 44691, United States of America, and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Jesus Arcos
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Jordi B. Torrelles
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - X. Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Chang Won Lee
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, Ohio, 44691, United States of America, and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Gourapura J. Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, Ohio, 44691, United States of America, and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, 43210, United States of America
| |
Collapse
|
105
|
Trujillo S, Lizundia E, Vilas JL, Salmeron-Sanchez M. PLLA/ZnO nanocomposites: Dynamic surfaces to harness cell differentiation. Colloids Surf B Biointerfaces 2016; 144:152-160. [PMID: 27085047 DOI: 10.1016/j.colsurfb.2016.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/15/2016] [Accepted: 04/04/2016] [Indexed: 01/19/2023]
Abstract
This work investigates the effect of the sequential availability of ZnO nanoparticles, (nanorods of ∼40nm) loaded within a degradable poly(lactic acid) (PLLA) matrix, in cell differentiation. The system constitutes a dynamic surface, in which nanoparticles are exposed as the polymer matrix degrades. ZnO nanoparticles were loaded into PLLA and the system was measured at different time points to characterise the time evolution of the physicochemical properties, including wettability and thermal properties. The micro and nanostructure were also investigated using AFM, SEM and TEM images. Cellular experiments with C2C12 myoblasts show that cell differentiation was significantly enhanced on ZnO nanoparticles-loaded PLLA, as the polymer degrades and the availability of nanoparticles become more apparent, whereas the release of zinc within the culture medium was negligible. Our results suggest PLLA/ZnO nanocomposites can be used as a dynamic system where nanoparticles are exposed during degradation, activating the material surface and driving cell differentiation.
Collapse
Affiliation(s)
- Sara Trujillo
- Division of Biomedical Engineering, School of Engineering, University of Glasgow G12 8LT, Glasgow, United Kingdom
| | - Erlantz Lizundia
- Macromolecular Chemistry Research Group, Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Spain
| | - José Luis Vilas
- Macromolecular Chemistry Research Group, Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Spain; Basque Center for Materials, Applications and Nanostructures (BCMaterials), Parque Tecnológico de Bizkaia, Ed. 500, Derio 48160, Spain
| | - Manuel Salmeron-Sanchez
- Division of Biomedical Engineering, School of Engineering, University of Glasgow G12 8LT, Glasgow, United Kingdom.
| |
Collapse
|
106
|
Choudhary KK, Kavya KM, Jerome A, Sharma RK. Advances in reproductive biotechnologies. Vet World 2016; 9:388-95. [PMID: 27182135 PMCID: PMC4864481 DOI: 10.14202/vetworld.2016.388-395] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/11/2016] [Indexed: 12/11/2022] Open
Abstract
In recent times, reproductive biotechnologies have emerged and started to replace the conventional techniques. It is noteworthy that for sustained livestock productivity, it is imperative to start using these techniques for facing the increasing challenges for productivity, reproduction and health with impending environment conditions. These recent biotechniques, both in male and female, have revolutionized and opened avenues for studying and manipulating the reproductive process both in vitro and in vivo in various livestock species for improving tis efficiency. This review attempts to highlight pros and cons, on the recent developments in reproductive biotechnologies, both in male and female in livestock species.
Collapse
Affiliation(s)
- K. K. Choudhary
- ICAR-National Dairy Research Institute, Karnal - 132 001, Haryana, India
| | - K. M. Kavya
- ICAR-Indian Veterinary Research Institute, Bareilly - 243 122, Uttar Pradesh, India
| | - A. Jerome
- ICAR-Central Institute for Research on Buffaloes, Hisar - 125 001, Haryana, India
| | - R. K. Sharma
- ICAR-Central Institute for Research on Buffaloes, Hisar - 125 001, Haryana, India
| |
Collapse
|
107
|
Moussa H, Merlin C, Dezanet C, Balan L, Medjahdi G, Ben-Attia M, Schneider R. Trace amounts of Cu²⁺ ions influence ROS production and cytotoxicity of ZnO quantum dots. JOURNAL OF HAZARDOUS MATERIALS 2016; 304:532-542. [PMID: 26619052 DOI: 10.1016/j.jhazmat.2015.11.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 11/08/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
3-Aminopropyltrimethoxysilane (APTMS) was used as ligand to prepare ZnO@APTMS, Cu(2+)-doped ZnO (ZnO:Cu@APTMS) and ZnO quantum dots (QDs) with chemisorbed Cu(2+) ions at their surface (ZnO@APTMS/Cu). The dots have a diameter of ca. 5 nm and their crystalline and phase purities and composition were established by X-ray diffraction, transmission electron microscopy, UV-visible and fluorescence spectroscopies and by X-ray photoelectron spectroscopy. The effect of Cu(2+) location on the ability of the QDs to generate reactive oxygen species (ROS) under light irradiation was investigated. Results obtained demonstrate that all dots are able to produce ROS (OH, O2(-), H2O2 and (1)O2) and that ZnO@APTMS/Cu QDs generate more OH and O2(-) radicals and H2O2 than ZnO@APTMS and ZnO:Cu@APTMS QDs probably via mechanisms associating photo-induced charge carriers and Fenton reactions. In cytotoxicity experiments conducted in the dark or under light exposure, ZnO@APTMS/Cu QDs appeared slightly more deleterious to Escherichia coli cells than the two other QDs, therefore pointing out the importance of the presence of Cu(2+) ions at the periphery of the nanocrystals. On the other hand, with the lack of photo-induced toxicity, it can be inferred that ROS production cannot explain the cytotoxicity associated to the QDs. Our study demonstrates that both the production of ROS from ZnO QDs and their toxicity may be enhanced by chemisorbed Cu(2+) ions, which could be useful for medical or photocatalytic applications.
Collapse
Affiliation(s)
- Hatem Moussa
- CNRS and Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), CNRS UMR 7274, 1 rue Grandville, 54001 Nancy, France; Laboratoire de Biosurveillance de l'Environnement, Université de Carthage, Faculté des Sciences de Bizerte, 7021 Jarzouna, Bizerte, Tunisia
| | - Christophe Merlin
- CNRS and Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), CNRS UMR 7564, 15 Avenue du Charmois, 54500 Vandœuvre-lès-Nancy, France
| | - Clément Dezanet
- CNRS and Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), CNRS UMR 7274, 1 rue Grandville, 54001 Nancy, France
| | - Lavinia Balan
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS UMR 7361, 15 rue Jean Starcky, 68093 Mulhouse, France
| | - Ghouti Medjahdi
- CNRS and Université de Lorraine, Institut Jean Lamour (IJL), UMR CNRS 7198, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Mossadok Ben-Attia
- Laboratoire de Biosurveillance de l'Environnement, Université de Carthage, Faculté des Sciences de Bizerte, 7021 Jarzouna, Bizerte, Tunisia
| | - Raphaël Schneider
- CNRS and Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), CNRS UMR 7274, 1 rue Grandville, 54001 Nancy, France.
| |
Collapse
|
108
|
Carels N, Spinassé LB, Tilli TM, Tuszynski JA. Toward precision medicine of breast cancer. Theor Biol Med Model 2016; 13:7. [PMID: 26925829 PMCID: PMC4772532 DOI: 10.1186/s12976-016-0035-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 02/15/2016] [Indexed: 12/17/2022] Open
Abstract
In this review, we report on breast cancer's molecular features and on how high throughput technologies are helping in understanding the dynamics of tumorigenesis and cancer progression with the aim of developing precision medicine methods. We first address the current state of the art in breast cancer therapies and challenges in order to progress towards its cure. Then, we show how the interaction of high-throughput technologies with in silico modeling has led to set up useful inferences for promising strategies of target-specific therapies with low secondary effect incidence for patients. Finally, we discuss the challenge of pharmacogenetics in the clinical practice of cancer therapy. All these issues are explored within the context of precision medicine.
Collapse
Affiliation(s)
- Nicolas Carels
- Laboratório de Modelagem de Sistemas Biológicos, National Institute of Science and Technology for Innovation in Neglected Diseases (INCT/IDN, CNPq), Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| | - Lizânia Borges Spinassé
- Laboratório de Modelagem de Sistemas Biológicos, National Institute of Science and Technology for Innovation in Neglected Diseases (INCT/IDN, CNPq), Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| | - Tatiana Martins Tilli
- Laboratório de Modelagem de Sistemas Biológicos, National Institute of Science and Technology for Innovation in Neglected Diseases (INCT/IDN, CNPq), Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| | - Jack Adam Tuszynski
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 1Z2, Canada. .,Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
109
|
Seleci M, Ag Seleci D, Joncyzk R, Stahl F, Blume C, Scheper T. Smart multifunctional nanoparticles in nanomedicine. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/bnm-2015-0030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractRecent advances in nanotechnology caused a growing interest using nanomaterials in medicine to solve a number of issues associated with therapeutic agents. The fabricated nanomaterials with unique physical and chemical properties have been investigated for both diagnostic and therapeutic applications. Therapeutic agents have been combined with the nanoparticles to minimize systemic toxicity, increase their solubility, prolong the circulation half-life, reduce their immunogenicity and improve their distribution. Multifunctional nanoparticles have shown great promise in targeted imaging and therapy. In this review, we summarized the physical parameters of nanoparticles for construction of “smart” multifunctional nanoparticles and their various surface engineering strategies. Outlook and questions for the further researches were discussed.
Collapse
|
110
|
Navya PN, Daima HK. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. NANO CONVERGENCE 2016; 3:1. [PMID: 28191411 PMCID: PMC5271116 DOI: 10.1186/s40580-016-0064-z] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/23/2015] [Indexed: 05/19/2023]
Abstract
Innovative engineered nanomaterials are at the leading edge of rapidly emerging fields of nanobiotechnology and nanomedicine. Meticulous synthesis, unique physicochemical properties, manifestation of chemical or biological moieties on the surface of materials make engineered nanostructures suitable for a variety of biomedical applications. Besides, tailored nanomaterials exhibit entirely novel therapeutic applications with better functionality, sensitivity, efficiency and specificity due to their customized unique physicochemical and surface properties. Additionally, such designer made nanomaterials has potential to generate series of interactions with various biological entities including DNA, proteins, membranes, cells and organelles at nano-bio interface. These nano-bio interactions are driven by colloidal forces and predominantly depend on the dynamic physicochemical and surface properties of nanomaterials. Nevertheless, recent development and atomic scale tailoring of various physical, chemical and surface properties of nanomaterials is promising to dictate their interaction in anticipated manner with biological entities for biomedical applications. As a result, rationally designed nanomaterials are in extensive demand for bio-molecular detection and diagnostics, therapeutics, drug and gene delivery, fluorescent labelling, tissue engineering, biochemical sensing and other pharmaceuticals applications. However, toxicity and risk associated with engineered nanomaterials is rather unclear or not well understood; which is gaining considerable attention and the field of nanotoxicology is evolving promptly. Therefore, this review explores current knowledge of articulate engineering of nanomaterials for biomedical applications with special attention on potential toxicological perspectives.
Collapse
Affiliation(s)
- P. N. Navya
- Nano-Bio Interfacial Research Laboratory (NBIRL), Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, 572103 Karnataka India
| | - Hemant Kumar Daima
- Nano-Bio Interfacial Research Laboratory (NBIRL), Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, 572103 Karnataka India
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303007 Rajasthan India
| |
Collapse
|
111
|
Renukaradhya GJ, Narasimhan B, Mallapragada SK. Respiratory nanoparticle-based vaccines and challenges associated with animal models and translation. J Control Release 2015; 219:622-631. [PMID: 26410807 PMCID: PMC4760633 DOI: 10.1016/j.jconrel.2015.09.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/14/2022]
Abstract
Vaccine development has had a huge impact on human health. However, there is a significant need to develop efficacious vaccines for several existing as well as emerging respiratory infectious diseases. Several challenges need to be overcome to develop efficacious vaccines with translational potential. This review focuses on two aspects to overcome some barriers - 1) the development of nanoparticle-based vaccines, and 2) the choice of suitable animal models for respiratory infectious diseases that will allow for translation. Nanoparticle-based vaccines, including subunit vaccines involving synthetic and/or natural polymeric adjuvants and carriers, as well as those based on virus-like particles offer several key advantages to help overcome the barriers to effective vaccine development. These include the ability to deliver combinations of antigens, target the vaccine formulation to specific immune cells, enable cross-protection against divergent strains, act as adjuvants or immunomodulators, allow for sustained release of antigen, enable single dose delivery, and potentially obviate the cold chain. While mouse models have provided several important insights into the mechanisms of infectious diseases, they are often a limiting step in translation of new vaccines to the clinic. An overview of different animal models involved in vaccine research for respiratory infections, with advantages and disadvantages of each model, is discussed. Taken together, advances in nanotechnology, combined with the right animal models for evaluating vaccine efficacy, has the potential to revolutionize vaccine development for respiratory infections.
Collapse
Affiliation(s)
- Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States
| | - Surya K Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
112
|
Gao Y, Yang T, Jin J. Nanoparticle pollution and associated increasing potential risks on environment and human health: a case study of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:19297-19306. [PMID: 26490887 DOI: 10.1007/s11356-015-5497-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/23/2015] [Indexed: 06/05/2023]
Abstract
The aims of this study are (1) to discuss the mechanism of nanoparticle lifecycle and estimate the impacts of its associated pollution on environment and human health; and (2) to provide recommendation to policy makers on how to leverage nanopollution and human health along with the rapid development of economics in China. Manufactured nanoparticles (MNPs) could either directly or indirectly impair human health and the environment. Exposures to MNP include many ways, such as via inhalation, ingestion, direct contact, or the use of consumer products over the lifecycle of the product. In China, the number of people exposed to MNP has been increasing year by year. To better provide medical care to people exposed to MNP, the Chinese government has established many disease control and prevention centers over China. However, the existing facilities and resources for controlling MNP are still not enough considering the number of people impacted by MNP and the number of ordinary workers in the MNP related industry applying for their occupational identification through the Center for Disease Control and Prevention. China should assess the apparent risk environment and human health being exposed to MNP and develop action plans to reduce the possibility of direct contacts between human beings and the emerging nanomaterials. In addition, we suggest more comprehensive studies on the MNP behavior and the development of quantitative approaches to measure MNP transport, and persistence should be carried out.
Collapse
Affiliation(s)
- Yang Gao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Tiantian Yang
- Department of Civil and Environmental Engineering, University of California, Irvine, CA, 92697, USA.
| | - Jin Jin
- Beijing GeoEnviron Engineering and Technology Inc., Beijing, 100095, China
| |
Collapse
|
113
|
Peng B, Liu Y, Zhou Y, Yang L, Zhang G, Liu Y. Modeling Nanoparticle Targeting to a Vascular Surface in Shear Flow Through Diffusive Particle Dynamics. NANOSCALE RESEARCH LETTERS 2015; 10:942. [PMID: 26055477 PMCID: PMC4452588 DOI: 10.1186/s11671-015-0942-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/15/2015] [Indexed: 05/03/2023]
Abstract
Nanoparticles are regarded as promising carriers for targeted drug delivery and imaging probes. A fundamental understanding of the dynamics of polymeric nanoparticle targeting to receptor-coated vascular surfaces is therefore of great importance to enhance the design of nanoparticles toward improving binding ability. Although the effects of particle size and shear flow on the binding of nanoparticles to a vessel wall have been studied at the particulate level, a computational model to investigate the details of the binding process at the molecular level has not been developed. In this research, dissipative particle dynamics simulations are used to study nanoparticles with diameters of several nanometers binding to receptors on vascular surfaces under shear flow. Interestingly, shear flow velocities ranging from 0 to 2000 s(-1) had no effect on the attachment process of nanoparticles very close to the capillary wall. Increased binding energy between the ligands and wall caused a corresponding linear increase in bonding ability. Our simulations also indicated that larger nanoparticles and those of rod shape with a higher aspect ratio have better binding ability than those of smaller size or rounder shape.
Collapse
Affiliation(s)
- Bei Peng
- />School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu, 611731 China
- />Center for Robotics, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Yang Liu
- />School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu, 611731 China
- />Center for Robotics, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Yihua Zhou
- />Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015 USA
| | - Longxiang Yang
- />School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu, 611731 China
- />Center for Robotics, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Guocheng Zhang
- />School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu, 611731 China
- />Center for Robotics, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Yaling Liu
- />Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015 USA
- />Bioengineering Group, Lehigh University, Bethlehem, PA 18015 USA
| |
Collapse
|
114
|
Xu H, Ma H, Yang P, Zhang X, Wu X, Yin W, Wang H, Xu D. Targeted polymer-drug conjugates: Current progress and future perspective. Colloids Surf B Biointerfaces 2015; 136:729-34. [PMID: 26513756 DOI: 10.1016/j.colsurfb.2015.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/11/2022]
Abstract
The combination of polymer technology and targeted drug delivery may pave the way for more effective yet safer therapeutic options for cancer therapy. Polymer-drug conjugates belonging to polymer therapeutics represent an emerging approach for drug delivery. The development of smart targeted polymer-drug conjugates that can specifically deliver drugs at a sustained rate to tumor cells may substantially improve the therapeutic index of anticancer agents. In this update, we provide an overview of the most important targeting molecules, and systemically summarize the recent advances in the development of tumor-targeted polymer-drug conjugates. Additionally, several promising approaches for the future will also be presented.
Collapse
Affiliation(s)
- Hongyan Xu
- Department of pharmacy, People's Hospital of Linzi District, Linzi, Shandong Province 255400, China
| | - Haifeng Ma
- Department of pharmacy, People's Hospital of Linzi District, Linzi, Shandong Province 255400, China.
| | - Peimin Yang
- Department of pharmacy, People's Hospital of Linzi District, Linzi, Shandong Province 255400, China
| | - Xia Zhang
- Department of pharmacy, People's Hospital of Linzi District, Linzi, Shandong Province 255400, China
| | - Xiangxia Wu
- Department of pharmacy, People's Hospital of Linzi District, Linzi, Shandong Province 255400, China
| | - Weidong Yin
- Department of pharmacy, People's Hospital of Linzi District, Linzi, Shandong Province 255400, China
| | - Hui Wang
- Department of pharmacy, People's Hospital of Linzi District, Linzi, Shandong Province 255400, China
| | - Dongmei Xu
- Department of pharmacy, People's Hospital of Linzi District, Linzi, Shandong Province 255400, China
| |
Collapse
|
115
|
|
116
|
|
117
|
Medvedeva NV, Prozorovskiy VN, Ignatov DV, Druzilovskaya OS, Kudinov VA, Kasatkina EO, Tikhonova EG, Ipatova OM. Pharmacological agents and transport nanosystems based on plant phospholipids. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2015. [DOI: 10.1134/s199075081503004x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
118
|
Dawidczyk CM, Russell LM, Searson PC. Recommendations for Benchmarking Preclinical Studies of Nanomedicines. Cancer Res 2015; 75:4016-20. [PMID: 26249177 DOI: 10.1158/0008-5472.can-15-1558] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/27/2015] [Indexed: 11/16/2022]
Abstract
Nanoparticle-based delivery systems provide new opportunities to overcome the limitations associated with traditional small-molecule drug therapy for cancer and to achieve both therapeutic and diagnostic functions in the same platform. Preclinical trials are generally designed to assess therapeutic potential and not to optimize the design of the delivery platform. Consequently, progress in developing design rules for cancer nanomedicines has been slow, hindering progress in the field. Despite the large number of preclinical trials, several factors restrict comparison and benchmarking of different platforms, including variability in experimental design, reporting of results, and the lack of quantitative data. To solve this problem, we review the variables involved in the design of preclinical trials and propose a protocol for benchmarking that we recommend be included in in vivo preclinical studies of drug-delivery platforms for cancer therapy. This strategy will contribute to building the scientific knowledge base that enables development of design rules and accelerates the translation of new technologies.
Collapse
Affiliation(s)
- Charlene M Dawidczyk
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland. Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Luisa M Russell
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland. Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland. Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
119
|
Mol M, Kosey D, Singh S. Nano-Synthetic Devices in Leishmaniasis: A Bioinformatics Approach. Front Immunol 2015; 6:323. [PMID: 26150819 PMCID: PMC4473697 DOI: 10.3389/fimmu.2015.00323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/03/2015] [Indexed: 11/13/2022] Open
Abstract
Synthetic biology is an investigative and constructive means of understanding the complexities of biology. Substantial progress in the fields has resulted in the creation of synthetic gene circuits, which when uploaded into the appropriate nanoliposomal vehicle, can be used for a tunable response in a cell. These tunable elements can be applied to treat diseased condition for a transition to a healthy state. Though in its nascent stage of development synthetic biology is beginning to use its constructs to bring engineering approaches into biomedicine for treatment of infectious disease leishmaniasis.
Collapse
Affiliation(s)
- Milsee Mol
- National Centre for Cell Science, Savitribai Phule Pune University Campus , Pune , India
| | - Dipali Kosey
- National Centre for Cell Science, Savitribai Phule Pune University Campus , Pune , India
| | - Shailza Singh
- National Centre for Cell Science, Savitribai Phule Pune University Campus , Pune , India
| |
Collapse
|
120
|
Arunkumar R, Prashanth KVH, Manabe Y, Hirata T, Sugawara T, Dharmesh SM, Baskaran V. Biodegradable Poly (Lactic-co-Glycolic Acid)-Polyethylene Glycol Nanocapsules: An Efficient Carrier for Improved Solubility, Bioavailability, and Anticancer Property of Lutein. J Pharm Sci 2015; 104:2085-2093. [DOI: 10.1002/jps.24436] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/22/2015] [Accepted: 02/25/2015] [Indexed: 11/08/2022]
|
121
|
Renukaradhya GJ, Meng XJ, Calvert JG, Roof M, Lager KM. Inactivated and subunit vaccines against porcine reproductive and respiratory syndrome: Current status and future direction. Vaccine 2015; 33:3065-72. [PMID: 25980425 DOI: 10.1016/j.vaccine.2015.04.102] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/18/2015] [Accepted: 04/30/2015] [Indexed: 02/07/2023]
Abstract
Within a few years of its emergence in the late 1980s, the PRRS virus had spread globally to become the foremost infectious disease concern for the pork industry. Since 1994, modified live-attenuated vaccines against porcine reproductive and respiratory syndrome virus (PRRSV-MLV) have been widely used, but have failed to provide complete protection against emerging and heterologous field strains of the virus. Moreover, like many other MLVs, PRRSV-MLVs have safety concerns including vertical and horizontal transmission of the vaccine virus and several documented incidences of reversion to virulence. Thus, the development of efficacious inactivated vaccines is warranted for the control and eradication of PRRS. Since the early 1990s, researchers have been attempting to develop inactivated PRRSV vaccines, but most of the candidates have failed to elicit protective immunity even against homologous virus challenge. Recent research findings relating to both inactivated and subunit candidate PRRSV vaccines have shown promise, but they need to be pursued further to improve their heterologous efficacy and cost-effectiveness before considering commercialization. In this comprehensive review, we provide information on attempts to develop PRRSV inactivated and subunit vaccines. These includes various virus inactivation strategies, adjuvants, nanoparticle-based vaccine delivery systems, DNA vaccines, and recombinant subunit vaccines produced using baculovirus, plant, and replication-deficient viruses as vector vaccines. Finally, future directions for the development of innovative non-infectious PRRSV vaccines are suggested. Undoubtedly there remains a need for novel PRRSV vaccine strategies targeted to deliver cross-protective, non-infectious vaccines for the control and eradication of PRRS.
Collapse
Affiliation(s)
- Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States.
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | | | - Michael Roof
- Boehringer Ingelheim Vetmedica, Inc., Ames, IA, United States
| | - Kelly M Lager
- Virology Swine Research Unit, National Animal Disease Center, U.S. Department of Agriculture, Ames, IA, United States.
| |
Collapse
|
122
|
Sharifi S, Seyednejad H, Laurent S, Atyabi F, Saei AA, Mahmoudi M. Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 10:329-55. [PMID: 25882768 DOI: 10.1002/cmmi.1638] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 01/30/2015] [Accepted: 02/06/2015] [Indexed: 12/16/2022]
Abstract
In the last decade, the biomedical applications of nanoparticles (NPs) (e.g. cell tracking, biosensing, magnetic resonance imaging (MRI), targeted drug delivery, and tissue engineering) have been increasingly developed. Among the various NP types, superparamagnetic iron oxide NPs (SPIONs) have attracted considerable attention for early detection of diseases due to their specific physicochemical properties and their molecular imaging capabilities. A comprehensive review is presented on the recent advances in the development of in vitro and in vivo SPION applications for molecular imaging, along with opportunities and challenges.
Collapse
Affiliation(s)
- Shahriar Sharifi
- Department of Biomaterials Science and Technology, University of Twente, The Netherlands
| | - Hajar Seyednejad
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Sophie Laurent
- Department of General, Organic, and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau 19, B-7000, Mons, Belgium.,CMMI - Center for Microscopy and Molecular Imaging, Rue Adrienne Bolland 8, B-6041, Gosselies, Belgium
| | - Fatemeh Atyabi
- Nanotechnology Research Center and Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ata Saei
- Nanotechnology Research Center and Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Morteza Mahmoudi
- Nanotechnology Research Center and Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Cardiovascular Institute, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
123
|
Kane CD, Nuss JE, Bavari S. Novel therapeutic uses and formulations of botulinum neurotoxins: a patent review (2012 - 2014). Expert Opin Ther Pat 2015; 25:675-90. [PMID: 25842964 DOI: 10.1517/13543776.2015.1030337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Botulinum neurotoxins (BoNTs) are among the most toxic of known biological molecules and function as acetylcholine release inhibitors and neuromuscular blocking agents. Paradoxically, these properties also make them valuable therapeutic agents for the treatment of movement disorders, urological conditions and hypersecretory disorders. Greater understanding of their molecular mechanism of action and advances in protein engineering has led to significant efforts to improve and expand their function with a view towards broadening their therapeutic potential. AREAS COVERED Searches of Espacenet and Google Patent have revealed a number of patents related to BoNTs. This review will focus on novel therapeutic uses and formulations disclosed during 2012 - 2014. The seven patents discussed will include nanoformulations of FDA-approved BoNTs, additional BoNT subtypes and novel BoNT variants and chimeras created through protein engineering. Supporting patents and related publications are also briefly discussed. EXPERT OPINION The clinical and commercial success of BoNTs has prompted investigation into novel BoNTs or BoNT-mediated chimeras with promising in vitro results. Distinct strategies including the use of nanoformulations and targeted delivery have been implemented to identify new indication and improved functionality. Greater understanding of their systemic exposure, efficacy and safety profiles will be required for further development.
Collapse
|
124
|
Hoover MD, Myers DS, Cash LJ, Guilmette RA, Kreyling WG, Oberdörster G, Smith R, Cassata JR, Boecker BB, Grissom MP. Application of an informatics-based decision-making framework and process to the assessment of radiation safety in nanotechnology. HEALTH PHYSICS 2015; 108:179-194. [PMID: 25551501 DOI: 10.1097/hp.0000000000000250] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The National Council on Radiation Protection and Measurements (NCRP) established NCRP Scientific Committee 2-6 to develop a report on the current state of knowledge and guidance for radiation safety programs involved with nanotechnology. Nanotechnology is the understanding and control of matter at the nanoscale, at dimensions between ∼1 and 100 nm, where unique phenomena enable novel applications. While the full report is in preparation, this paper presents and applies an informatics-based decision-making framework and process through which the radiation protection community can anticipate that nano-enabled applications, processes, nanomaterials, and nanoparticles are likely to become present or are already present in radiation-related activities; recognize specific situations where environmental and worker safety, health, well-being, and productivity may be affected by nano-related activities; evaluate how radiation protection practices may need to be altered to improve protection; control information, interpretations, assumptions, and conclusions to implement scientifically sound decisions and actions; and confirm that desired protection outcomes have been achieved. This generally applicable framework and supporting process can be continuously applied to achieve health and safety at the convergence of nanotechnology and radiation-related activities.
Collapse
Affiliation(s)
- Mark D Hoover
- *National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505-2888; †Livermore, CA 94550; ‡Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545; §Ray Guilmette & Associates, LLC, Perry, ME 04667; **Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive, SE, Albuquerque, NM 87108; ††Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany; ‡‡Department of Environmental Medicine, University of Rochester, 575 Elmwood Avenue, Rochester, NY 14627; §§Public Health England-Centre for Radiation, Chemical and Environmental Hazards, Chilton, Oxfordshire OX11 0RQ, United Kingdom; ***National Council on Radiation Protection and Measurements, 7910 Woodmont Avenue, Suite 400, Bethesda, MD 20814; †††MPG-HP, Inc., 8068 Citricado Lane, Riverside, CA 92508-8720
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Sanzhakov MA, Ignatov DV, Prozorovskiĭ VN, Druzhilovskaia OS, Medvedeva NV, Ipatova OM. [Development of targeted drug delivery system: synthesis of conjugates of address fragment (RA-COOH) with ligand (R-NH2)]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2015; 60:713-6. [PMID: 25552514 DOI: 10.18097/pbmc20146006713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
One of the main ways to increase the effectiveness of well-known medical formulations well-established in clinical medicine - development of delivery systems using new technological approaches and nanomaterials. Currently, much attention is given to targeted delivery systems. At the same time drug carrier has in addition to medication the so-called vector/address with a high affinity for binding to specific receptors on cells/tissue target. In this paper it is described the method for producing of address conjugates to over-expressed receptors on the tumor cells. As address fragment it was folic acid and as a linker was dodecylamine, causing inclusion the conjugate into lipid nanoparticles.
Collapse
|
126
|
Lin PC. Nuclear Magnetic Resonance Spectroscopy in Nanomedicine. PROGRESS IN OPTICAL SCIENCE AND PHOTONICS 2015. [DOI: 10.1007/978-981-287-242-5_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
127
|
Peetla C, Labhasetwar V. Physical and Biophysical Characteristics of Nanoparticles: Potential Impact on Targeted Drug Delivery. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
128
|
Heidari H, Fordoei AS, Saffary M, Ardestani MS. Prostate Cancer’s Molecular Imaging by Targeting Based Nanoparticles: An Overview. Health (London) 2015. [DOI: 10.4236/health.2015.75069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
129
|
Medvedeva N, Prosorovskiy V, Ignatov D, Druzilovskaya O, Kudinov V, Kasatkina E, Tikhonova E, Ipatova O. Pharmacological agents and transport nanosystems based on plant phospholipids. ACTA ACUST UNITED AC 2015; 61:219-30. [DOI: 10.18097/pbmc20156102219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A new generation of plant phosphatidylcholine (PC)-based pharmacological agents has been developed under academician A.I. Archakov leadership at the Institute of Biomedical Chemistry (IBMC). For their production a unique technology allowing to obtain dry lyophilized phospholipid nanoparticles of 30 nm was elaborated. The successful practical application of PC nanoparticles as a drug agent may be illustrated by Phosphogliv (oral and injection formulations). Being developed at IBMC for the treatment of liver diseases, including viral hepatitis, Phosphogliv (currently marketed by the “Pharmstandard” company) is approved for clinical application in 2000, and is widely used in medical practice. Based on the developed and scaled in IBMC technology of prerparation of ultra small size phospholipid nanoparticles without the use of detergents/surfactants and stabilizers another drug preparation, Phospholipovit, exhibiting pronounced hypolipidemic properties has been obtained. Recently completed preclinical studies have shown that PC nanoparticles of 20-30 nm activate reverse cholesterol transport (RCT) and in this context it is more active than well known foreign preparation Essentiale. Phospholipovit is now at the stage of clinical trials (phase 1 completed). PC was also used as a basis for the development of a transport nanosystem with a particles size of 20-25 nm in diameter and incorporation of various drug substances from various therapeutic groups. Using several drugs substances as an example, increased bioavailability and specific activity were demonstrated for the formulations equipped with such transport nanosystem. Formulations equipped with the transport nanosystems have been developed for such pharmacological agents as doxorubicin, rifampin, budesonide, chlorin E6, prednisone, and others.
Collapse
Affiliation(s)
| | | | - D.V. Ignatov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - V.A. Kudinov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | - O.M. Ipatova
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
130
|
Okyay TO, Bala RK, Nguyen HN, Atalay R, Bayam Y, Rodrigues DF. Antibacterial properties and mechanisms of toxicity of sonochemically grown ZnO nanorods. RSC Adv 2015. [DOI: 10.1039/c4ra12539h] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ZnO nanorods produced sonochemically prevented microbial growth, biofilm formation and were non-toxic to mammalian cells.
Collapse
Affiliation(s)
- Tugba O. Okyay
- Department of Civil and Environmental Engineering
- University of Houston
- Houston
- USA
| | - Rukayya K. Bala
- Department of Electrical and Electronics Engineering
- Gediz University
- 35665 Izmir
- Turkey
| | - Hang N. Nguyen
- Department of Civil and Environmental Engineering
- University of Houston
- Houston
- USA
| | - Ramazan Atalay
- Department of Biomedical Engineering
- Gediz University
- 35665 Izmir
- Turkey
| | - Yavuz Bayam
- Department of Electrical and Electronics Engineering
- Gediz University
- 35665 Izmir
- Turkey
| | - Debora F. Rodrigues
- Department of Civil and Environmental Engineering
- University of Houston
- Houston
- USA
| |
Collapse
|
131
|
Hunt PR, Keltner Z, Gao X, Oldenburg SJ, Bushana P, Olejnik N, Sprando RL. Bioactivity of nanosilver in Caenorhabditis elegans: Effects of size, coat, and shape. Toxicol Rep 2014; 1:923-944. [PMID: 28962305 PMCID: PMC5598322 DOI: 10.1016/j.toxrep.2014.10.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 01/18/2023] Open
Abstract
The in vivo toxicity to eukaryotes of nanosilver (AgNP) spheres and plates in two sizes each was assessed using the simple model organism Caenorhabditis elegans. For each shape, smaller AgNP size correlated with higher toxicity, as indicated by reduced larval growth. Smaller size also correlated with significant increases in silver uptake for silver nanospheres. Citrate coated silver spheres of 20 nm diameter induced an innate immune response that increased or held steady over 24 h, while regulation of genes involved in metal metabolism peaked at 4 h and subsequently decreased. For AgNP spheres, coating altered bioactivity, with a toxicity ranking of polyethylene glycol (PEG) > polyvinylpyrrolidone (PVP) ≅ branched polyethyleneimine (BPEI) > citrate, but silver uptake ranking of PEG > PVP > citrate > BPEI. Our findings in C. elegans correlate well with findings in rodents for AgNP size vs. uptake and toxicity, as well as for induction of immune effectors, while using methods that are faster and far less expensive, supporting the use of C. elegans as an alternative model for early toxicity screening.
Collapse
Affiliation(s)
- Piper Reid Hunt
- Center for Food Safety and Applied Nutrition, FDA, Laurel, MD, United States
| | - Zachary Keltner
- Center for Food Safety and Applied Nutrition, FDA, Laurel, MD, United States
| | - Xiugong Gao
- Center for Food Safety and Applied Nutrition, FDA, Laurel, MD, United States
| | | | - Priyanka Bushana
- Center for Food Safety and Applied Nutrition, FDA, Laurel, MD, United States
| | - Nicholas Olejnik
- Center for Food Safety and Applied Nutrition, FDA, Laurel, MD, United States
| | - Robert L Sprando
- Center for Food Safety and Applied Nutrition, FDA, Laurel, MD, United States
| |
Collapse
|
132
|
Joseph D, Tyagi N, Geckeler C, E.Geckeler K. Protein-coated pH-responsive gold nanoparticles: Microwave-assisted synthesis and surface charge-dependent anticancer activity. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:1452-62. [PMID: 25247128 PMCID: PMC4168932 DOI: 10.3762/bjnano.5.158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 08/14/2014] [Indexed: 06/03/2023]
Abstract
The biocompatibility and ease of functionalization of gold nanoparticles underlie significant potential in biotechnology and biomedicine. Eight different proteins were examined in the preparation of gold nanoparticles (AuNPs) in aqueous medium under microwave irradiation. Six of the proteins resulted in the formation of AuNPs. The intrinsic pH of the proteins played an important role in AuNPs with strong surface plasmon bands. The hydrodynamic size of the nanoparticles was larger than the values observed by TEM and ImageJ. The formation of a protein layer on the AuNPs accounts for this difference. The AuNPs exhibited sensitivity towards varying pH conditions, which was confirmed by determining the difference in the isoelectric points studied by using pH-dependent zeta potential titration. Cytotoxicity studies revealed anticancerous effects of the AuNPs at a certain micromolar concentration by constraining the growth of cancer cells with different efficacies due to the use of different proteins as capping agents. The positively charged AuNPs are internalized by the cells to a greater level than the negatively charged AuNPs. These AuNPs synthesized with protein coating holds promise as anticancer agents and would help in providing a new paradigm in area of nanoparticles.
Collapse
Affiliation(s)
- Dickson Joseph
- Department of Nanobio Materials and Electronics (WCU), Gwangju Institute of Science & Technology (GIST), Gwangju 500-712, South Korea
| | - Nisha Tyagi
- Department of Nanobio Materials and Electronics (WCU), Gwangju Institute of Science & Technology (GIST), Gwangju 500-712, South Korea
| | - Christian Geckeler
- Department of Materials Science and Engineering, Gwangju Institute of Science & Technology (GIST), Gwangju 500-712, South Korea
| | - Kurt E.Geckeler
- Department of Nanobio Materials and Electronics (WCU), Gwangju Institute of Science & Technology (GIST), Gwangju 500-712, South Korea
- Department of Materials Science and Engineering, Gwangju Institute of Science & Technology (GIST), Gwangju 500-712, South Korea
- Institute of Medical System Engineering, Gwangju Institute of Science & Technology (GIST), Gwangju 500-712, South Korea
| |
Collapse
|
133
|
Ardini M, Giansanti F, Di Leandro L, Pitari G, Cimini A, Ottaviano L, Donarelli M, Santucci S, Angelucci F, Ippoliti R. Metal-induced self-assembly of peroxiredoxin as a tool for sorting ultrasmall gold nanoparticles into one-dimensional clusters. NANOSCALE 2014; 6:8052-8061. [PMID: 24910403 DOI: 10.1039/c4nr01526f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nanomanipulation of matter to create responsive, ordered materials still remains extremely challenging. Supramolecular chemistry has inspired new strategies by which such nanomaterials can be synthesized step by step by exploiting the self-recognition properties of molecules. In this work, the ring-shaped architecture of the 2-Cys peroxiredoxin I protein from Schistosoma mansoni, engineered to have metal ion-binding sites, is used as a template to build up 1D nanoscopic structures through metal-induced self-assembly. Chromatographic and microscopic analyses demonstrate the ability of the protein rings to stack directionally upon interaction with divalent metal ions and form well-defined nanotubes by exploiting the intrinsic recognition properties of the ring surfaces. Taking advantage of such behavior, the rings are then used to capture colloidal Ni(2+)-functionalized ultrasmall gold nanoparticles and arrange them into 1D arrays through stacking into peapod-like complexes. Finally, as the formation of such nano-peapods strictly depends on nanoparticle dimensions, the peroxiredoxin template is used as a colloidal cut-off device to sort by size the encapsulated nanoparticles. These results open up possibilities in developing Prx-based methods to synthesize new advanced functional materials.
Collapse
Affiliation(s)
- Matteo Ardini
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Amruthraj NJ, Preetam Raj JP, Lebel A. Capsaicin-capped silver nanoparticles: its kinetics, characterization and biocompatibility assay. APPLIED NANOSCIENCE 2014. [DOI: 10.1007/s13204-014-0330-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
135
|
Lin PC, Lin S, Wang PC, Sridhar R. Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 2014; 32:711-26. [PMID: 24252561 PMCID: PMC4024087 DOI: 10.1016/j.biotechadv.2013.11.006] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 11/05/2013] [Accepted: 11/12/2013] [Indexed: 12/12/2022]
Abstract
Advances in nanotechnology have opened up a new era of diagnosis, prevention and treatment of diseases and traumatic injuries. Nanomaterials, including those with potential for clinical applications, possess novel physicochemical properties that have an impact on their physiological interactions, from the molecular level to the systemic level. There is a lack of standardized methodologies or regulatory protocols for detection or characterization of nanomaterials. This review summarizes the techniques that are commonly used to study the size, shape, surface properties, composition, purity and stability of nanomaterials, along with their advantages and disadvantages. At present there are no FDA guidelines that have been developed specifically for nanomaterial based formulations for diagnostic or therapeutic use. There is an urgent need for standardized protocols and procedures for the characterization of nanoparticles, especially those that are intended for use as theranostics.
Collapse
MESH Headings
- Chemistry, Physical/methods
- Circular Dichroism
- Contrast Media/chemistry
- Humans
- Light
- Magnetic Resonance Spectroscopy
- Mass Spectrometry
- Microscopy, Atomic Force
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Microscopy, Scanning Tunneling
- Molecular Imaging/methods
- Nanomedicine/methods
- Nanoparticles/chemistry
- Nanostructures/chemistry
- Nanotechnology/methods
- Nanotechnology/trends
- Scattering, Radiation
- Spectrometry, Fluorescence
- Spectrophotometry, Infrared
- Spectrum Analysis, Raman
- Surface Properties
- Technology, Pharmaceutical/methods
Collapse
Affiliation(s)
- Ping-Chang Lin
- Laboratory of Molecular Imaging, Department of Radiology, Howard University, Washington, DC 20060, USA
| | - Stephen Lin
- Laboratory of Molecular Imaging, Department of Radiology, Howard University, Washington, DC 20060, USA
| | - Paul C Wang
- Laboratory of Molecular Imaging, Department of Radiology, Howard University, Washington, DC 20060, USA
| | - Rajagopalan Sridhar
- Department of Radiation Oncology, Howard University, Washington, DC 20060, USA.
| |
Collapse
|
136
|
Ayyappan JP, Sami H, Rajalekshmi DC, Sivakumar S, Abraham A. Immunocompatibility and Toxicity Studies of Poly‐L‐Lysine Nanocapsules in Sprague–Dawley Rats for Drug‐Delivery Applications. Chem Biol Drug Des 2014; 84:292-9. [DOI: 10.1111/cbdd.12313] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Janeesh Plakkal Ayyappan
- Department of Biochemistry University of Kerala Kariavattom campus Trivandrum 695 581 Kerala India
| | - Haider Sami
- Department of Biological Sciences and Bioengineering Indian Institute of Technology (IIT) Kanpur Kanpur Uttar Pradesh India
| | | | - Sri Sivakumar
- Unit of Excellence on Soft Nanofabrication Department of Chemical Engineering Indian Institute of Technology Kanpur (IIT) Kanpur Uttar Pradesh India
| | - Annie Abraham
- Department of Biochemistry University of Kerala Kariavattom campus Trivandrum 695 581 Kerala India
| |
Collapse
|
137
|
Willander M, Khun K, Ibupoto ZH. Metal oxide nanosensors using polymeric membranes, enzymes and antibody receptors as ion and molecular recognition elements. SENSORS (BASEL, SWITZERLAND) 2014; 14:8605-32. [PMID: 24841244 PMCID: PMC4063009 DOI: 10.3390/s140508605] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/30/2014] [Accepted: 05/06/2014] [Indexed: 12/27/2022]
Abstract
The concept of recognition and biofunctionality has attracted increasing interest in the fields of chemistry and material sciences. Advances in the field of nanotechnology for the synthesis of desired metal oxide nanostructures have provided a solid platform for the integration of nanoelectronic devices. These nanoelectronics-based devices have the ability to recognize molecular species of living organisms, and they have created the possibility for advanced chemical sensing functionalities with low limits of detection in the nanomolar range. In this review, various metal oxides, such as ZnO-, CuO-, and NiO-based nanosensors, are described using different methods (receptors) of functionalization for molecular and ion recognition. These functionalized metal oxide surfaces with a specific receptor involve either a complex formation between the receptor and the analyte or an electrostatic interaction during the chemical sensing of analytes. Metal oxide nanostructures are considered revolutionary nanomaterials that have a specific surface for the immobilization of biomolecules with much needed orientation, good conformation and enhanced biological activity which further improve the sensing properties of nanosensors. Metal oxide nanostructures are associated with certain unique optical, electrical and molecular characteristics in addition to unique functionalities and surface charge features which shows attractive platforms for interfacing biorecognition elements with effective transducing properties for signal amplification. There is a great opportunity in the near future for metal oxide nanostructure-based miniaturization and the development of engineering sensor devices.
Collapse
Affiliation(s)
- Magnus Willander
- Department of Science and Technology, Campus Norrköping, Linköping University, Norrköping SE-60174, Sweden.
| | - Kimleang Khun
- Department of Science and Technology, Campus Norrköping, Linköping University, Norrköping SE-60174, Sweden.
| | - Zafar Hussain Ibupoto
- Department of Science and Technology, Campus Norrköping, Linköping University, Norrköping SE-60174, Sweden.
| |
Collapse
|
138
|
Kuzyniak W, Adegoke O, Sekhosana K, D’Souza S, Tshangana SC, Hoffmann B, Ermilov EA, Nyokong T, Höpfner M. Synthesis and characterization of quantum dots designed for biomedical use. Int J Pharm 2014; 466:382-9. [DOI: 10.1016/j.ijpharm.2014.03.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 11/27/2022]
|
139
|
Alharbi KK, Al-sheikh YA. Role and implications of nanodiagnostics in the changing trends of clinical diagnosis. Saudi J Biol Sci 2014; 21:109-17. [PMID: 24600302 PMCID: PMC3942856 DOI: 10.1016/j.sjbs.2013.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/03/2013] [Accepted: 11/03/2013] [Indexed: 11/18/2022] Open
Abstract
Nanodiagnostics is the term used for the application of nanobiotechnology in molecular diagnosis, which is important for developing personalized cancer therapy. It is usually based on pharmacogenetics, pharmacogenomics, and pharmacoproteomic information but also takes into consideration environmental factors that influence response to therapy. Nanotechnology in medicine involves applications of nanoparticles currently under development, as well as longer range research that involves the use of manufactured nano-robots to make repairs at the cellular level. Nanodiagnostic technologies are also being used to refine the discovery of biomarkers, as nanoparticles offer advantages of high volume/surface ratio and multifunctionality. Biomarkers are important basic components of personalized medicine and are applicable to the management of cancer as well. The field of nano diagnostics raises certain ethical concerns related with the testing of blood. With advances in diagnostic technologies, doctors will be able to give patients complete health checks quickly and routinely. If any medication is required this will be tailored specifically to the individual based on their genetic makeup, thus preventing unwanted side-effects.
Collapse
Affiliation(s)
- Khalid Khalaf Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | | |
Collapse
|
140
|
Binjawadagi B, Dwivedi V, Manickam C, Ouyang K, Torrelles JB, Renukaradhya GJ. An innovative approach to induce cross-protective immunity against porcine reproductive and respiratory syndrome virus in the lungs of pigs through adjuvanted nanotechnology-based vaccination. Int J Nanomedicine 2014; 9:1519-35. [PMID: 24711701 PMCID: PMC3969340 DOI: 10.2147/ijn.s59924] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an economically devastating respiratory disease of pigs. The disease is caused by the PRRS virus (PRRSV), an Arterivirus which is a highly mutating RNA virus. Widely used modified live PRRSV vaccines have failed to prevent PRRS outbreaks and reinfections; moreover, safety of the live virus vaccines is questionable. Though poorly immunogenic, inactivated PRRSV vaccine is safe. The PRRSV infects primarily the lung macrophages. Therefore, we attempted to strengthen the immunogenicity of inactivated/killed PRRSV vaccine antigens (KAg), especially in the pig respiratory system, through: 1) entrapping the KAg in biodegradable poly(lactic-co-glycolic acid) nanoparticles (NP-KAg); 2) coupling the NP-KAg with a potent mucosal adjuvant, whole cell lysate of Mycobacterium tuberculosis (M. tb WCL); and 3) delivering the vaccine formulation twice intranasally to growing pigs. We have previously shown that a single dose of NP-KAg partially cleared the challenged heterologous PRRSV. Recently, we reported that NP-KAg coupled with unentrapped M. tb WCL significantly cleared the viremia of challenged heterologous PRRSV. Since PRRSV is primarily a lung disease, our goal in this study was to investigate lung viral load and various immune correlates of protection at the lung mucosal surfaces and its parenchyma in vaccinated heterologous PRRSV-challenged pigs. Our results indicated that out of five different vaccine-adjuvant formulations, the combination of NP-KAg and unentrapped M. tb WCL significantly cleared detectable replicating infective PRRSV with a tenfold reduction in viral RNA load in the lungs, associated with substantially reduced gross and microscopic lung pathology. Immunologically, strong humoral (enhanced virus neutralization titers by high avidity antibodies) and cell-mediated immune responses (augmented population of interferon-γ secreting CD4(+) and CD8(+) lymphocytes and reduced secretion of immunosuppressive cytokines) in the lungs were observed. In conclusion, combination of NP-KAg and soluble M. tb WCL elicits broadly cross-protective anti-PRRSV immunity in the pig respiratory system.
Collapse
Affiliation(s)
- Basavaraj Binjawadagi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, USA ; Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA
| | - Varun Dwivedi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| | - Cordelia Manickam
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, USA ; Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA
| | - Kang Ouyang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, USA ; Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
141
|
Pereira AES, Grillo R, Mello NFS, Rosa AH, Fraceto LF. Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. JOURNAL OF HAZARDOUS MATERIALS 2014; 268:207-15. [PMID: 24508945 DOI: 10.1016/j.jhazmat.2014.01.025] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 05/24/2023]
Abstract
Nanoparticles of poly(epsilon-caprolactone) containing the herbicide atrazine were prepared, characterized, and evaluated in terms of their herbicidal activity and genotoxicity. The stability of the nanoparticles was evaluated over a period of three months, considering the variables: size, polydispersion index, pH, and encapsulation efficiency. Tests on plants were performed with target (Brassica sp.) and non-target (Zea mays) organisms, and the nanoparticle formulations were shown to be effective for the control of the target species. Experiments using soil columns revealed that the use of nanoparticles reduced the mobility of atrazine in the soil. Application of the Allium cepa chromosome aberration assay demonstrated that the nanoparticle systems were able to reduce the genotoxicity of the herbicide. The formulations developed offer a useful means of controlling agricultural weeds, while at the same time reducing the risk of harm to the environment and human health.
Collapse
Affiliation(s)
- Anderson E S Pereira
- Departamento de Bioquímica, Universidade Estadual de Campinas (UNICAMP), Campus Universitário Zeferino Vaz, s/n, Cidade Universitária, CEP 13083-870 Campinas, SP, Brazil
| | - Renato Grillo
- Departamento de Bioquímica, Universidade Estadual de Campinas (UNICAMP), Campus Universitário Zeferino Vaz, s/n, Cidade Universitária, CEP 13083-870 Campinas, SP, Brazil
| | - Nathalie F S Mello
- Departamento de Bioquímica, Universidade Estadual de Campinas (UNICAMP), Campus Universitário Zeferino Vaz, s/n, Cidade Universitária, CEP 13083-870 Campinas, SP, Brazil
| | - Andre H Rosa
- Departamento de Engenharia Ambiental, Universidade Estadual Paulista (UNESP) , Avenida Três de Março, 511, CEP 18087-180 Sorocaba, SP, Brazil
| | - Leonardo F Fraceto
- Departamento de Engenharia Ambiental, Universidade Estadual Paulista (UNESP) , Avenida Três de Março, 511, CEP 18087-180 Sorocaba, SP, Brazil.
| |
Collapse
|
142
|
Hasson TH, Takaoka A, de la Rica R, Matsui H, Smeureanu G, Drain CM, Kawamura A. Immunostimulatory lipid nanoparticles from herbal medicine. Chem Biol Drug Des 2014; 83:493-7. [PMID: 24495243 DOI: 10.1111/cbdd.12250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 10/10/2013] [Accepted: 10/15/2013] [Indexed: 11/29/2022]
Abstract
Reproducibility is an important issue in biological characterization of drug candidates and natural products. It is not uncommon to encounter cases in which supposedly the same sample exhibits very different biological activities. During our characterization of macrophage-stimulatory lipids from herbal medicine, it was found that the potency of these lipids could vary substantially from experiment to experiment. Further analysis of this reproducibility issue led to the discovery of solvent-dependent nanoparticle formation by these lipids. While larger nanoparticles (approximately 100 nm) of these lipids showed modest macrophage-stimulatory activity, smaller nanoparticles (<10 nm) of the same lipids exhibited substantially higher potency. Thus, the study revealed an unexpected link between nanoparticle formation and macrophage-stimulatory activity of plant lipids. Although nanoparticles have been extensively studied in the context of vehicles for drug delivery, our finding indicates that drugs themselves can form nanoassemblies, and their biological properties may be altered by the way they assemble.
Collapse
Affiliation(s)
- Tal H Hasson
- Department of Chemistry, Hunter College of CUNY, New York, NY, 10065, USA
| | | | | | | | | | | | | |
Collapse
|
143
|
Binjawadagi B, Dwivedi V, Manickam C, Ouyang K, Wu Y, Lee LJ, Torrelles JB, Renukaradhya GJ. Adjuvanted poly(lactic-co-glycolic) acid nanoparticle-entrapped inactivated porcine reproductive and respiratory syndrome virus vaccine elicits cross-protective immune response in pigs. Int J Nanomedicine 2014; 9:679-94. [PMID: 24493925 PMCID: PMC3908835 DOI: 10.2147/ijn.s56127] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), is an economically devastating disease, causing daily losses of approximately $3 million to the US pork industry. Current vaccines have failed to completely prevent PRRS outbreaks. Recently, we have shown that poly(lactic-co-glycolic) acid (PLGA) nanoparticle-entrapped inactivated PRRSV vaccine (NP-KAg) induces a cross-protective immune response in pigs. To further improve its cross-protective efficacy, the NP-KAg vaccine formulation was slightly modified, and pigs were coadministered the vaccine twice intranasally with a potent adjuvant: Mycobacterium tuberculosis whole-cell lysate. In vaccinated virulent heterologous PRRSV-challenged pigs, the immune correlates in the blood were as follows: 1) enhanced PRRSV-specific antibody response with enhanced avidity of both immunoglobulin (Ig)-G and IgA isotypes, associated with augmented virus-neutralizing antibody titers; 2) comparable and increased levels of virus-specific IgG1 and IgG2 antibody subtypes and production of high levels of both T-helper (Th)-1 and Th2 cytokines, indicative of a balanced Th1–Th2 response; 3) suppressed immunosuppressive cytokine response; 4) increased frequency of interferon-γ+ lymphocyte subsets and expanded population of antigen-presenting cells; and most importantly 5) complete clearance of detectable replicating challenged heterologous PRRSV and close to threefold reduction in viral ribonucleic acid load detected in the blood. In conclusion, intranasal delivery of adjuvanted NP-KAg vaccine formulation to growing pigs elicited a broadly cross-protective immune response, showing the potential of this innovative vaccination strategy to prevent PRRS outbreaks in pigs. A similar approach to control other respiratory diseases in food animals and humans appears to be feasible.
Collapse
Affiliation(s)
- Basavaraj Binjawadagi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, USA ; Department of Veterinary Preventive Medicine, Ohio State University, Wooster, OH, USA
| | - Varun Dwivedi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| | - Cordelia Manickam
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, USA ; Department of Veterinary Preventive Medicine, Ohio State University, Wooster, OH, USA
| | - Kang Ouyang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, USA
| | - Yun Wu
- NanoScale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, Columbus, OH, USA
| | - Ly James Lee
- NanoScale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, Columbus, OH, USA
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, USA ; Department of Veterinary Preventive Medicine, Ohio State University, Wooster, OH, USA
| |
Collapse
|
144
|
Zhang L, Li Y, Yu JC. Chemical modification of inorganic nanostructures for targeted and controlled drug delivery in cancer treatment. J Mater Chem B 2014; 2:452-470. [DOI: 10.1039/c3tb21196g] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
145
|
Alam F, Naim M, Aziz M, Yadav N. Unique roles of nanotechnology in medicine and cancer. Indian J Cancer 2014; 51:506-10. [DOI: 10.4103/0019-509x.175320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
146
|
Cellular Mechanisms in Nanomaterial Internalization, Intracellular Trafficking, and Toxicity. Nanotoxicology 2014. [DOI: 10.1007/978-1-4614-8993-1_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
147
|
Magdolenova Z, Drlickova M, Henjum K, Rundén-Pran E, Tulinska J, Bilanicova D, Pojana G, Kazimirova A, Barancokova M, Kuricova M, Liskova A, Staruchova M, Ciampor F, Vavra I, Lorenzo Y, Collins A, Rinna A, Fjellsbø L, Volkovova K, Marcomini A, Amiry-Moghaddam M, Dusinska M. Coating-dependent induction of cytotoxicity and genotoxicity of iron oxide nanoparticles. Nanotoxicology 2013; 9 Suppl 1:44-56. [DOI: 10.3109/17435390.2013.847505] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
148
|
A prospective overview of the essential requirements in molecular modeling for nanomedicine design. Future Med Chem 2013; 5:929-46. [PMID: 23682569 DOI: 10.4155/fmc.13.67] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nanotechnology has presented many new challenges and opportunities in the area of nanomedicine design. The issues related to nanoconjugation, nanosystem-mediated targeted drug delivery, transitional stability of nanovehicles, the integrity of drug transport, drug-delivery mechanisms and chemical structural design require a pre-estimated and determined course of assumptive actions with property and characteristic estimations for optimal nanomedicine design. Molecular modeling in nanomedicine encompasses these pre-estimations and predictions of pertinent design data via interactive computographic software. Recently, an increasing amount of research has been reported where specialized software is being developed and employed in an attempt to bridge the gap between drug discovery, materials science and biology. This review provides an assimilative and concise incursion into the current and future strategies of molecular-modeling applications in nanomedicine design and aims to describe the utilization of molecular models and theoretical-chemistry computographic techniques for expansive nanomedicine design and development.
Collapse
|
149
|
Synthesis of alginate-curcumin nanocomposite and its protective role in transgenic Drosophila model of Parkinson's disease. ISRN PHARMACOLOGY 2013; 2013:794582. [PMID: 24171120 PMCID: PMC3793296 DOI: 10.1155/2013/794582] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/16/2013] [Indexed: 11/25/2022]
Abstract
The genetic models in Drosophila provide a platform to understand the mechanism associated with degenerative diseases. The model for Parkinson's disease (PD) based on normal human alpha-synuclein (αS) expression was used in the present study. The aggregation of αS in brain leads to the formation of Lewy bodies and selective loss of dopaminergic neurons due to oxidative stress. Polyphenols generally have the reduced oral bioavailability, increased metabolic turnover, and lower permeability through the blood brain barrier. In the present study, the effect of synthesized alginate-curcumin nanocomposite was studied on the climbing ability of the PD model flies, lipid peroxidation, and apoptosis in the brain of PD model flies. The alginate-curcumin nanocomposite at final doses of 10−5, 10−3, and 10−1 g/mL was supplemented with diet, and the flies were allowed to feed for 24 days. A significant dose-dependent delay in the loss of climbing ability and reduction in the oxidative stress and apoptosis in the brain of PD model flies were observed. The results suggest that alginate-curcumin nanocomposite is potent in delaying the climbing disability of PD model flies and also reduced the oxidative stress as well as apoptosis in the brain of PD model flies.
Collapse
|
150
|
Systemic siRNA Delivery via Peptide-Tagged Polymeric Nanoparticles, Targeting PLK1 Gene in a Mouse Xenograft Model of Colorectal Cancer. Int J Biomater 2013; 2013:252531. [PMID: 24159333 PMCID: PMC3789392 DOI: 10.1155/2013/252531] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/07/2013] [Indexed: 12/12/2022] Open
Abstract
Polymeric nanoparticles were developed from a series of chemical reactions using chitosan, polyethylene glycol, and a cell-targeting peptide (CP15). The nanoparticles were complexed with PLK1-siRNA. The optimal siRNA loading was achieved at an N : P ratio of 129.2 yielding a nanoparticle size of >200 nm. These nanoparticles were delivered intraperitoneally and tested for efficient delivery, cytotoxicity, and biodistribution in a mouse xenograft model of colorectal cancer. Both unmodified and modified chitosan nanoparticles showed enhanced accumulation at the tumor site. However, the modified chitosan nanoparticles showed considerably, less distribution in other organs. The relative gene expression as evaluated showed efficient delivery of PLK1-siRNA (0.5 mg/kg) with 50.7 ± 19.5% knockdown (P = 0.031) of PLK1 gene. The in vivo data reveals no systemic toxicity in the animals, when tested for systemic inflammation and liver toxicity. These results indicate a potential of using peptide-tagged nanoparticles for systemic delivery of siRNA at the targeted tumor site.
Collapse
|