101
|
Su H, Masters CL, Bush AI, Barnham KJ, Reid GE, Vella LJ. Exploring the significance of lipids in Alzheimer's disease and the potential of extracellular vesicles. Proteomics 2024; 24:e2300063. [PMID: 37654087 DOI: 10.1002/pmic.202300063] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Lipids play a significant role in maintaining central nervous system (CNS) structure and function, and the dysregulation of lipid metabolism is known to occur in many neurological disorders, including Alzheimer's disease. Here we review what is currently known about lipid dyshomeostasis in Alzheimer's disease. We propose that small extracellular vesicle (sEV) lipids may provide insight into the pathophysiology and progression of Alzheimer's disease. This stems from the recognition that sEV likely contributes to disease pathogenesis, but also an understanding that sEV can serve as a source of potential biomarkers. While the protein and RNA content of sEV in the CNS diseases have been studied extensively, our understanding of the lipidome of sEV in the CNS is still in its infancy.
Collapse
Affiliation(s)
- Huaqi Su
- The Florey, The University of Melbourne, Parkville, Victoria, Australia
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Colin L Masters
- The Florey, The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley I Bush
- The Florey, The University of Melbourne, Parkville, Victoria, Australia
| | - Kevin J Barnham
- The Florey, The University of Melbourne, Parkville, Victoria, Australia
| | - Gavin E Reid
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura J Vella
- The Florey, The University of Melbourne, Parkville, Victoria, Australia
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
102
|
Sharma A, Yadav A, Nandy A, Ghatak S. Insight into the Functional Dynamics and Challenges of Exosomes in Pharmaceutical Innovation and Precision Medicine. Pharmaceutics 2024; 16:709. [PMID: 38931833 PMCID: PMC11206934 DOI: 10.3390/pharmaceutics16060709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Of all the numerous nanosized extracellular vesicles released by a cell, the endosomal-originated exosomes are increasingly recognized as potential therapeutics, owing to their inherent stability, low immunogenicity, and targeted delivery capabilities. This review critically evaluates the transformative potential of exosome-based modalities across pharmaceutical and precision medicine landscapes. Because of their precise targeted biomolecular cargo delivery, exosomes are posited as ideal candidates in drug delivery, enhancing regenerative medicine strategies, and advancing diagnostic technologies. Despite the significant market growth projections of exosome therapy, its utilization is encumbered by substantial scientific and regulatory challenges. These include the lack of universally accepted protocols for exosome isolation and the complexities associated with navigating the regulatory environment, particularly the guidelines set forth by the U.S. Food and Drug Administration (FDA). This review presents a comprehensive overview of current research trajectories aimed at addressing these impediments and discusses prospective advancements that could substantiate the clinical translation of exosomal therapies. By providing a comprehensive analysis of both the capabilities and hurdles inherent to exosome therapeutic applications, this article aims to inform and direct future research paradigms, thereby fostering the integration of exosomal systems into mainstream clinical practice.
Collapse
Affiliation(s)
| | | | | | - Subhadip Ghatak
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; (A.S.); (A.Y.); (A.N.)
| |
Collapse
|
103
|
Karpurapu M, Nie Y, Chung S, Yan J, Dougherty P, Pannu S, Wisler J, Harkless R, Parinandi N, Berdyshev E, Pei D, Christman JW. The calcineurin-NFATc pathway modulates the lipid mediators in BAL fluid extracellular vesicles, thereby regulating microvascular endothelial cell barrier function. Front Physiol 2024; 15:1378565. [PMID: 38812883 PMCID: PMC11133699 DOI: 10.3389/fphys.2024.1378565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/16/2024] [Indexed: 05/31/2024] Open
Abstract
Extracellular vesicles mediate intercellular communication by transporting biologically active macromolecules. Our prior studies have demonstrated that the nuclear factor of activated T cell cytoplasmic member 3 (NFATc3) is activated in mouse pulmonary macrophages in response to lipopolysaccharide (LPS). Inhibition of NFATc3 activation by a novel cell-permeable calcineurin peptide inhibitor CNI103 mitigated the development of acute lung injury (ALI) in LPS-treated mice. Although pro-inflammatory lipid mediators are known contributors to lung inflammation and injury, it remains unclear whether the calcineurin-NFATc pathway regulates extracellular vesicle (EV) lipid content and if this content contributes to ALI pathogenesis. In this study, EVs from mouse bronchoalveolar lavage fluid (BALF) were analyzed for their lipid mediators by liquid chromatography in conjunction with mass spectrometry (LC-MS/MS). Our data demonstrate that EVs from LPS-treated mice contained significantly higher levels of arachidonic acid (AA) metabolites, which were found in low levels by prior treatment with CNI103. The catalytic activity of lung tissue cytoplasmic phospholipase A2 (cPLA2) increased during ALI, correlating with an increased amount of arachidonic acid (AA) in the EVs. Furthermore, ALI is associated with increased expression of cPLA2, cyclooxygenase 2 (COX2), and lipoxygenases (5-LOX, 12-LOX, and 15-LOX) in lung tissue, and pretreatment with CNI103 inhibited the catalytic activity of cPLA2 and the expression of cPLA2, COX, and LOX transcripts. Furthermore, co-culture of mouse pulmonary microvascular endothelial cell (PMVEC) monolayer and NFAT-luciferase reporter macrophages with BALF EVs from LPS-treated mice increased the pulmonary microvascular endothelial cell (PMVEC) monolayer barrier permeability and luciferase activity in macrophages. However, EVs from CNI103-treated mice had no negative impact on PMVEC monolayer barrier integrity. In summary, BALF EVs from LPS-treated mice carry biologically active NFATc-dependent, AA-derived lipids that play a role in regulating PMVEC monolayer barrier function.
Collapse
Affiliation(s)
- Manjula Karpurapu
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Yunjuan Nie
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Sangwoon Chung
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Jiasheng Yan
- Department of Pharmacology, Ohio State University, Columbus, OH, United States
| | - Patrick Dougherty
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, United States
| | - Sonal Pannu
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Jon Wisler
- Department of Surgery, Ohio State Wexner Medical Center, Columbus, OH, United States
| | - Ryan Harkless
- Department of Surgery, Ohio State Wexner Medical Center, Columbus, OH, United States
| | - Narasimham Parinandi
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Evgeny Berdyshev
- Division of Pulmonary Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, United States
| | - John W. Christman
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| |
Collapse
|
104
|
Jiang Y, Lv H, Shen F, Fan L, Zhang H, Huang Y, Liu J, Wang D, Pan H, Yang J. Strategies in product engineering of mesenchymal stem cell-derived exosomes: unveiling the mechanisms underpinning the promotive effects of mesenchymal stem cell-derived exosomes. Front Bioeng Biotechnol 2024; 12:1363780. [PMID: 38756412 PMCID: PMC11096451 DOI: 10.3389/fbioe.2024.1363780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
Articular cartilage injuries present a significant global challenge, particularly in the aging population. These injuries not only restrict movement due to primary damage but also exacerbate elderly degenerative lesions, leading to secondary cartilage injury and osteoarthritis. Addressing osteoarthritis and cartilage damage involves overcoming several technical challenges in biological treatment. The use of induced mesenchymal stem cells (iMSCs) with functional gene modifications emerges as a solution, providing a more stable and controllable source of Mesenchymal Stem Cells (MSCs) with reduced heterogeneity. Furthermore, In addition, this review encompasses strategies aimed at enhancing exosome efficacy, comprising the cultivation of MSCs in three-dimensional matrices, augmentation of functional constituents within MSC-derived exosomes, and modification of their surface characteristics. Finally, we delve into the mechanisms through which MSC-exosomes, sourced from diverse tissues, thwart osteoarthritis (OA) progression and facilitate cartilage repair. This review lays a foundational framework for engineering iMSC-exosomes treatment of patients suffering from osteoarthritis and articular cartilage injuries, highlighting cutting-edge research and potential therapeutic pathways.
Collapse
Affiliation(s)
- Yudong Jiang
- Orthopedics Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hanning Lv
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuguo Shen
- Orthopedics Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Lei Fan
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Hongjun Zhang
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Yong Huang
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Jia Liu
- Central Laboratory, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Dong Wang
- The Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Exeter, United Kingdom
| | - Haile Pan
- Orthopedics Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianhua Yang
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
105
|
Xia T, Liu Z, Du Y, Zhang J, Liu X, Ouyang J, Xu P, Chen B. Bifunctional iRGD-Exo-DOX crosses the blood-brain barrier to target central nervous system lymphoma. Biochem Pharmacol 2024; 223:116138. [PMID: 38494062 DOI: 10.1016/j.bcp.2024.116138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Central nervous system lymphoma (CNSL) is a type of hematological tumor. Treatment of CNSL is difficult due to the existence of the blood-brain barrier (BBB). Here, we used exosomes (Exos), a type of extracellular vesicle, and iRGD to construct a new drug carrier system and use it to load doxorubicin (DOX). The results of in vitro and in vivo experiments showed that the iRGD-Exo-DOX system can efficiently and securely transport DOX through the BBB and target tumor cells. The results suggest that iRGD-Exo-DOX may cross the BBB through brain microvascular endothelial cell-mediated endocytosis. Together, our study indicates an impactful treatment of central nervous system tumors.
Collapse
Affiliation(s)
- Tian Xia
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210029, China
| | - Zhenyu Liu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210029, China
| | - Ying Du
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210029, China
| | - Jiejie Zhang
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Xu Liu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210029, China
| | - Jian Ouyang
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210029, China.
| | - Peipei Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210029, China; Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| | - Bing Chen
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210029, China.
| |
Collapse
|
106
|
Cui L, Zheng J, Lu Y, Lin P, Lin Y, Zheng Y, Xu R, Mai Z, Guo B, Zhao X. New frontiers in salivary extracellular vesicles: transforming diagnostics, monitoring, and therapeutics in oral and systemic diseases. J Nanobiotechnology 2024; 22:171. [PMID: 38610017 PMCID: PMC11015696 DOI: 10.1186/s12951-024-02443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Salivary extracellular vesicles (EVs) have emerged as key tools for non-invasive diagnostics, playing a crucial role in the early detection and monitoring of diseases. These EVs surpass whole saliva in biomarker detection due to their enhanced stability, which minimizes contamination and enzymatic degradation. The review comprehensively discusses methods for isolating, enriching, quantifying, and characterizing salivary EVs. It highlights their importance as biomarkers in oral diseases like periodontitis and oral cancer, and underscores their potential in monitoring systemic conditions. Furthermore, the review explores the therapeutic possibilities of salivary EVs, particularly in personalized medicine through engineered EVs for targeted drug delivery. The discussion also covers the current challenges and future prospects in the field, emphasizing the potential of salivary EVs in advancing clinical practice and disease management.
Collapse
Affiliation(s)
- Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Bing Guo
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China.
| |
Collapse
|
107
|
Yakovlev V, Lapato DM, Rana P, Ghosh P, Frye R, Roberson-Nay R. Neuron enriched extracellular vesicles' MicroRNA expression profiles as a marker of early life alcohol consumption. Transl Psychiatry 2024; 14:176. [PMID: 38575599 PMCID: PMC10994930 DOI: 10.1038/s41398-024-02874-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Alcohol consumption may impact and shape brain development through perturbed biological pathways and impaired molecular functions. We investigated the relationship between alcohol consumption rates and neuron-enriched extracellular vesicles' (EVs') microRNA (miRNA) expression to better understand the impact of alcohol use on early life brain biology. Neuron-enriched EVs' miRNA expression was measured from plasma samples collected from young people using a commercially available microarray platform while alcohol consumption was measured using the Alcohol Use Disorders Identification Test. Linear regression and network analyses were used to identify significantly differentially expressed miRNAs and to characterize the implicated biological pathways, respectively. Compared to alcohol naïve controls, young people reporting high alcohol consumption exhibited significantly higher expression of three neuron-enriched EVs' miRNAs including miR-30a-5p, miR-194-5p, and miR-339-3p, although only miR-30a-5p and miR-194-5p survived multiple test correction. The miRNA-miRNA interaction network inferred by a network inference algorithm did not detect any differentially expressed miRNAs with a high cutoff on edge scores. However, when the cutoff of the algorithm was reduced, five miRNAs were identified as interacting with miR-194-5p and miR-30a-5p. These seven miRNAs were associated with 25 biological functions; miR-194-5p was the most highly connected node and was highly correlated with the other miRNAs in this cluster. Our observed association between neuron-enriched EVs' miRNAs and alcohol consumption concurs with results from experimental animal models of alcohol use and suggests that high rates of alcohol consumption during the adolescent/young adult years may impact brain functioning and development by modulating miRNA expression.
Collapse
Affiliation(s)
- Vasily Yakovlev
- Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| | - Dana M Lapato
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Pratip Rana
- Department of Computer Science, College of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Preetam Ghosh
- Department of Computer Science, College of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Rebekah Frye
- Neuroscience Program, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Roxann Roberson-Nay
- Department of Psychiatry, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
108
|
Qiu H, Liang J, Yang G, Xie Z, Wang Z, Wang L, Zhang J, Nanda HS, Zhou H, Huang Y, Peng X, Lu C, Chen H, Zhou Y. Application of exosomes in tumor immunity: recent progresses. Front Cell Dev Biol 2024; 12:1372847. [PMID: 38633106 PMCID: PMC11021734 DOI: 10.3389/fcell.2024.1372847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Exosomes are small extracellular vesicles secreted by cells, ranging in size from 30 to 150 nm. They contain proteins, nucleic acids, lipids, and other bioactive molecules, which play a crucial role in intercellular communication and material transfer. In tumor immunity, exosomes present various functions while the following two are of great importance: regulating the immune response and serving as delivery carriers. This review starts with the introduction of the formation, compositions, functions, isolation, characterization, and applications of exosomes, and subsequently discusses the current status of exosomes in tumor immunotherapy, and the recent applications of exosome-based tumor immunity regulation and antitumor drug delivery. Finally, current challenge and future prospects are proposed and hope to demonstrate inspiration for targeted readers in the field.
Collapse
Affiliation(s)
- Haiyan Qiu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Junting Liang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Guang Yang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zhenyu Xie
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zhenpeng Wang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Liyan Wang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jingying Zhang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Himansu Sekhar Nanda
- Biomedical Engineering and Technology Lab, Discipline of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing Jabalpur, Jabalpur, Madhya Pradesh, India
| | - Hui Zhou
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yong Huang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xinsheng Peng
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Chengyu Lu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Huizhi Chen
- School of Pharmacy, Guangdong Medical University, Dongguan, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Yubin Zhou
- School of Pharmacy, Guangdong Medical University, Dongguan, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| |
Collapse
|
109
|
Xu YP, Jiang T, Yang XF, Chen ZB. Methods, Mechanisms, and Application Prospects for Enhancing Extracellular Vesicle Uptake. Curr Med Sci 2024; 44:247-260. [PMID: 38622425 DOI: 10.1007/s11596-024-2861-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
Extracellular vesicles (EVs) are considered to be a new generation of bioinspired nanoscale drug delivery systems due to their low immunogenicity, natural functionality, and excellent biocompatibility. However, limitations such as low uptake efficiency, insufficient production, and inhomogeneous performance undermine their potential. To address these issues, numerous researchers have put forward various methods and applications for enhancing EV uptake in recent decades. In this review, we introduce various methods for the cellular uptake of EVs and summarize recent advances on the methods and mechanisms for enhancing EV uptake. In addition, we provide further understanding regarding enhancing EV uptake and put forward prospects and challenges for the development of EV-based therapy in the future.
Collapse
Affiliation(s)
- Ying-Peng Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Fan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhen-Bing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
110
|
Kankaanpää S, Nurmi M, Lampimäki M, Leskinen H, Nieminen A, Samoylenko A, Vainio SJ, Mäkinen S, Ahonen L, Kangasluoma J, Petäjä T, Viitala S. Comparative analysis of the effects of different purification methods on the yield and purity of cow milk extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e149. [PMID: 38938848 PMCID: PMC11080921 DOI: 10.1002/jex2.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/21/2024] [Accepted: 03/29/2024] [Indexed: 06/29/2024]
Abstract
Isolation of extracellular vesicles (EV) has been developing rapidly in parallel with the interest in EVs. However, commonly utilized protocols may not suit more challenging sample matrixes and could potentially yield suboptimal results. Knowing and assessing the pitfalls of isolation procedure to be used, should be involved to some extent for EV analytics. EVs in cow milk are of great interest due to their abundancy and large-scale availability as well as their cross-species bioavailability and possible use as drug carriers. However, the characteristics of milk EVs overlap with those of other milk components. This makes it difficult to isolate and study EVs individually. There exists also a lack of consensus for isolation methods. In this study, we demonstrated the differences between various differential centrifugation-based approaches for isolation of large quantities of EVs from cow milk. Samples were further purified with gradient centrifugation and size exclusion chromatography (SEC) and differences were analyzed. Quality measurements were conducted on multiple independent platforms. Particle analysis, electron microscopy and RNA analysis were used, to comprehensively characterize the isolated samples and to identify the limitations and possible sources of contamination in the EV isolation protocols. Vesicle concentration to protein ratio and RNA to protein ratios were observed to increase as samples were purified, suggesting co-isolation with major milk proteins in direct differential centrifugation protocols. We demonstrated a novel size assessment of vesicles using a particle mobility analyzer that matched the sizing using electron microscopy in contrast to commonly utilized nanoparticle tracking analysis. Based on the standards of the International Society for Extracellular Vesicles and the quick checklist of EV-Track.org for EV isolation, we emphasize the need for complete characterization and validation of the isolation protocol with all EV-related work to ensure the accuracy of results and allow further analytics and experiments.
Collapse
Affiliation(s)
| | - Markus Nurmi
- Natural Resources Institute FinlandJokioinenFinland
| | - Markus Lampimäki
- Institute for Atmospheric and Earth System Research (INAR) / PhysicsUniversity of HelsinkiHelsinkiFinland
| | | | - Anni Nieminen
- Metabolomics Unit, Institute for Molecular Medicine FinlandUniversity of HelsinkiHelsinkiFinland
| | - Anatoliy Samoylenko
- University of Oulu, Kvantum Institute, Infotech Oulu, Faculty of Biochemistry and Molecular Medicine, Disease Networks Research UnitOulu UniversityOuluFinland
| | - Seppo J. Vainio
- University of Oulu, Kvantum Institute, Infotech Oulu, Faculty of Biochemistry and Molecular Medicine, Disease Networks Research UnitOulu UniversityOuluFinland
| | - Sari Mäkinen
- Natural Resources Institute FinlandJokioinenFinland
| | - Lauri Ahonen
- Institute for Atmospheric and Earth System Research (INAR) / PhysicsUniversity of HelsinkiHelsinkiFinland
| | - Juha Kangasluoma
- Institute for Atmospheric and Earth System Research (INAR) / PhysicsUniversity of HelsinkiHelsinkiFinland
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research (INAR) / PhysicsUniversity of HelsinkiHelsinkiFinland
| | | |
Collapse
|
111
|
Gupta R, Gupta J, Roy S. Exosomes: Key Players for Treatment of Cancer and Their Future Perspectives. Assay Drug Dev Technol 2024; 22:118-147. [PMID: 38407852 DOI: 10.1089/adt.2023.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Affiliation(s)
- Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Suchismita Roy
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
112
|
Hsia T, Chen Y. RNA-encapsulating lipid nanoparticles in cancer immunotherapy: From pre-clinical studies to clinical trials. Eur J Pharm Biopharm 2024; 197:114234. [PMID: 38401743 DOI: 10.1016/j.ejpb.2024.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/29/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Nanoparticle-based delivery systems such as RNA-encapsulating lipid nanoparticles (RNA LNPs) have dramatically advanced in function and capacity over the last few decades. RNA LNPs boast of a diverse array of external and core configurations that enhance targeted delivery and prolong circulatory retention, advancing therapeutic outcomes. Particularly within the realm of cancer immunotherapies, RNA LNPs are increasingly gaining prominence. Pre-clinical in vitro and in vivo studies have laid a robust foundation for new and ongoing clinical trials that are actively enrolling patients for RNA LNP cancer immunotherapy. This review explores RNA LNPs, starting from their core composition to their external membrane formulation, set against a backdrop of recent clinical breakthroughs. We further elucidate the LNP delivery avenues, broach the prevailing challenges, and contemplate the future perspectives of RNA LNP-mediated immunotherapy.
Collapse
Affiliation(s)
- Tiffaney Hsia
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
113
|
Yin W, Ma H, Qu Y, Wang S, Zhao R, Yang Y, Guo ZN. Targeted exosome-based nanoplatform for new-generation therapeutic strategies. Biomed Mater 2024; 19:032002. [PMID: 38471163 DOI: 10.1088/1748-605x/ad3310] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Exosomes, typically 30-150 nm in size, are lipid-bilayered small-membrane vesicles originating in endosomes. Exosome biogenesis is regulated by the coordination of various mechanisms whereby different cargoes (e.g. proteins, nucleic acids, and lipids) are sorted into exosomes. These components endow exosomes with bioregulatory functions related to signal transmission and intercellular communication. Exosomes exhibit substantial potential as drug-delivery nanoplatforms owing to their excellent biocompatibility and low immunogenicity. Proteins, miRNA, siRNA, mRNA, and drugs have been successfully loaded into exosomes, and these exosome-based delivery systems show satisfactory therapeutic effects in different disease models. To enable targeted drug delivery, genetic engineering and chemical modification of the lipid bilayer of exosomes are performed. Stimuli-responsive delivery nanoplatforms designed with appropriate modifications based on various stimuli allow precise control of on-demand drug delivery and can be utilized in clinical treatment. In this review, we summarize the general properties, isolation methods, characterization, biological functions, and the potential role of exosomes in therapeutic delivery systems. Moreover, the effective combination of the intrinsic advantages of exosomes and advanced bioengineering, materials science, and clinical translational technologies are required to accelerate the development of exosome-based delivery nanoplatforms.
Collapse
Affiliation(s)
- Wenjing Yin
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Hongyin Ma
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Siji Wang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Ruoyu Zhao
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
- Neuroscience Research Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| |
Collapse
|
114
|
Wen S, Huang X, Ma J, Zhao G, Ma T, Chen K, Huang G, Chen J, Shi J, Wang S. Exosomes derived from MSC as drug system in osteoarthritis therapy. Front Bioeng Biotechnol 2024; 12:1331218. [PMID: 38576449 PMCID: PMC10993706 DOI: 10.3389/fbioe.2024.1331218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Osteoarthritis (OA) is the most common degenerative disease of the joint with irreversible cartilage damage as the main pathological feature. With the development of regenerative medicine, mesenchymal stem cells (MSCs) have been found to have strong therapeutic potential. However, intraarticular MSCs injection therapy is limited by economic costs and ethics. Exosomes derived from MSC (MSC-Exos), as the important intercellular communication mode of MSCs, contain nucleic acid, proteins, lipids, microRNAs, and other biologically active substances. With excellent editability and specificity, MSC-Exos function as a targeted delivery system for OA treatment, modulating immunity, inhibiting apoptosis, and promoting regeneration. This article reviews the mechanism of action of MSC-Exos in the treatment of osteoarthritis, the current research status of the preparation of MSC-Exos and its application of drug delivery in OA therapy.
Collapse
Affiliation(s)
- Shuzhan Wen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Huang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingchun Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Guanglei Zhao
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Tiancong Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Kangming Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Gangyong Huang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingsheng Shi
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Siqun Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
115
|
Halipi V, Sasanian N, Feng J, Hu J, Lubart Q, Bernson D, van Leeuwen D, Ahmadpour D, Sparr E, Esbjörner EK. Extracellular Vesicles Slow Down Aβ(1-42) Aggregation by Interfering with the Amyloid Fibril Elongation Step. ACS Chem Neurosci 2024; 15:944-954. [PMID: 38408014 PMCID: PMC10921407 DOI: 10.1021/acschemneuro.3c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
Formation of amyloid-β (Aβ) fibrils is a central pathogenic feature of Alzheimer's disease. Cell-secreted extracellular vesicles (EVs) have been suggested as disease modulators, although their exact roles and relations to Aβ pathology remain unclear. We combined kinetics assays and biophysical analyses to explore how small (<220 nm) EVs from neuronal and non-neuronal human cell lines affected the aggregation of the disease-associated Aβ variant Aβ(1-42) into amyloid fibrils. Using thioflavin-T monitored kinetics and seeding assays, we found that EVs reduced Aβ(1-42) aggregation by inhibiting fibril elongation. Morphological analyses revealed this to result in the formation of short fibril fragments with increased thicknesses and less apparent twists. We suggest that EVs may have protective roles by reducing Aβ(1-42) amyloid loads, but also note that the formation of small amyloid fragments could be problematic from a neurotoxicity perspective. EVs may therefore have double-edged roles in the regulation of Aβ pathology in Alzheimer's disease.
Collapse
Affiliation(s)
- Vesa Halipi
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden
| | - Nima Sasanian
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden
| | - Julia Feng
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden
| | - Jing Hu
- Division
of Physical Chemistry, Department of Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Quentin Lubart
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden
| | - David Bernson
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden
| | - Daniel van Leeuwen
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden
| | - Doryaneh Ahmadpour
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden
| | - Emma Sparr
- Division
of Physical Chemistry, Department of Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Elin K. Esbjörner
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden
| |
Collapse
|
116
|
Kawano K, Kuzuma Y, Yoshio K, Hosokawa K, Oosugi Y, Fujiwara T, Yokoyama F, Matsuzaki K. Extracellular-Vesicle Catch-and-Release Isolation System Using a Net-Charge Invertible Curvature-Sensing Peptide. Anal Chem 2024; 96:3754-3762. [PMID: 38402519 DOI: 10.1021/acs.analchem.3c03756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Extracellular vesicles (EVs) carry various informative components, including signaling proteins, transcriptional regulators, lipids, and nucleic acids. These components are utilized for cell-cell communication between donor and recipient cells. EVs have shown great promise as pharmaceutical-targeting vesicles and have attracted the attention of researchers in the fields of biological and medical science because of their importance as diagnostic and prognostic markers. However, the isolation and purification of EVs from cell-cultured media remain challenging. Ultracentrifugation is the most widely used method, but it requires specialized and expensive equipment. In the present study, we proposed a novel methodology to isolate EVs using a simple and convenient method, i.e., an EV catch-and-release isolation system (EV-CaRiS) using a net-charge invertible curvature-sensing peptide (NIC). Curvature-sensing peptides recognize vesicles by binding to lipid-packing defects on highly curved membranes regardless of the expression levels of biomarkers. NIC was newly designed to reversibly capture and release EVs in a pH-dependent manner. NIC allowed us to achieve reproducible EV isolation from three human cell lines on resin using a batch method and single-particle imaging of EVs containing the ubiquitous exosome markers CD63 and CD81 by total internal reflection fluorescence microscopy (TIRFM). EV-CaRiS was demonstrated as a simple and convenient methodology for EV isolation, and NIC is promising for applications in the single-particle analysis of EVs.
Collapse
Affiliation(s)
- Kenichi Kawano
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuki Kuzuma
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Koichi Yoshio
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kenta Hosokawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuuto Oosugi
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takahiro Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fumiaki Yokoyama
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
117
|
Bryl R, Kulus M, Bryja A, Domagała D, Mozdziak P, Antosik P, Bukowska D, Zabel M, Dzięgiel P, Kempisty B. Cardiac progenitor cell therapy: mechanisms of action. Cell Biosci 2024; 14:30. [PMID: 38444042 PMCID: PMC10913616 DOI: 10.1186/s13578-024-01211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/17/2024] [Indexed: 03/07/2024] Open
Abstract
Heart failure (HF) is an end-stage of many cardiac diseases and one of the main causes of death worldwide. The current management of this disease remains suboptimal. The adult mammalian heart was considered a post-mitotic organ. However, several reports suggest that it may possess modest regenerative potential. Adult cardiac progenitor cells (CPCs), the main players in the cardiac regeneration, constitute, as it may seem, a heterogenous group of cells, which remain quiescent in physiological conditions and become activated after an injury, contributing to cardiomyocytes renewal. They can mediate their beneficial effects through direct differentiation into cardiac cells and activation of resident stem cells but majorly do so through paracrine release of factors. CPCs can secrete cytokines, chemokines, and growth factors as well as exosomes, rich in proteins, lipids and non-coding RNAs, such as miRNAs and YRNAs, which contribute to reparation of myocardium by promoting angiogenesis, cardioprotection, cardiomyogenesis, anti-fibrotic activity, and by immune modulation. Preclinical studies assessing cardiac progenitor cells and cardiac progenitor cells-derived exosomes on damaged myocardium show that administration of cardiac progenitor cells-derived exosomes can mimic effects of cell transplantation. Exosomes may become new promising therapeutic strategy for heart regeneration nevertheless there are still several limitations as to their use in the clinic. Key questions regarding their dosage, safety, specificity, pharmacokinetics, pharmacodynamics and route of administration remain outstanding. There are still gaps in the knowledge on basic biology of exosomes and filling them will bring as closer to translation into clinic.
Collapse
Affiliation(s)
- Rut Bryl
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, Poznań, Poznan, 61-614, Poland
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, 87-100, Poland
| | - Artur Bryja
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, 50-367, Poland
| | - Dominika Domagała
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, 50-367, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, 27695, USA
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, 27695, USA
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, 87-100, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, 87-100, Poland
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Góra, Zielona Góra, 65-046, Poland
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, Wroclaw, 50-368, Poland
| | - Piotr Dzięgiel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, Wroclaw, 50-368, Poland
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, 87-100, Poland.
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, 50-367, Poland.
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, 27695, USA.
- Department of Obstetrics and Gynaecology, University Hospital and Masaryk University, Brno, 62500, Czech Republic.
| |
Collapse
|
118
|
Wan R, Liu S, Feng X, Luo W, Zhang H, Wu Y, Chen S, Shang X. The Revolution of exosomes: From biological functions to therapeutic applications in skeletal muscle diseases. J Orthop Translat 2024; 45:132-139. [PMID: 38544740 PMCID: PMC10966453 DOI: 10.1016/j.jot.2024.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 11/11/2024] Open
Abstract
Skeletal muscle diseases, a broad category encompassing a myriad of afflictions such as acute muscle injury and muscular dystrophies, pose a significant health burden globally. These conditions often lead to muscle weakness, compromised mobility, and a diminished quality of life. In light of this, innovative and effective therapeutic strategies are fervently sought after. Exosomes, naturally extracellular vesicles with a diameter of 30-150 nm, pervade biological fluids. These microscopic entities harbor a host of biological molecules, including proteins, nucleic acids, and lipids, bearing a significant resemblance to their parent cells. The roles they play in the biological theater are manifold, influencing crucial physiological and pathological processes within the organism. In the context of skeletal muscle diseases, their potential extends beyond these roles, as they present a promising therapeutic target and a vehicle for targeted drug delivery. This potentially paves the way for significant clinical applications. This review aims to elucidate the mechanisms underpinning exosome action, their myriad biological functions, and the strides made in exosome research and application. A comprehensive exploration of the part played by exosomes in skeletal muscle repair and regeneration is undertaken. In addition, we delve into the use of exosomes in the therapeutic landscape of skeletal muscle diseases, providing a valuable reference for a deeper understanding of exosome applications in this realm. The concluding section encapsulates the prospective avenues for exosome research and the promising future they hold, underscoring the tremendous potential these diminutive vesicles possess in the field of skeletal muscle diseases. The Translational Potential of this Article. The comprehensive exploration of exosome's diverse biological functions and translational potential in the context of skeletal muscle diseases presented in this review underscores their promising future as a therapeutic target with significant clinical applications, thus paving the way for innovative and effective therapeutic strategies in this realm.
Collapse
Affiliation(s)
- Renwen Wan
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shan Liu
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xinting Feng
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Hanli Zhang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yang Wu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiliang Shang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| |
Collapse
|
119
|
Amin S, Massoumi H, Tewari D, Roy A, Chaudhuri M, Jazayerli C, Krishan A, Singh M, Soleimani M, Karaca EE, Mirzaei A, Guaiquil VH, Rosenblatt MI, Djalilian AR, Jalilian E. Cell Type-Specific Extracellular Vesicles and Their Impact on Health and Disease. Int J Mol Sci 2024; 25:2730. [PMID: 38473976 PMCID: PMC10931654 DOI: 10.3390/ijms25052730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Extracellular vesicles (EVs), a diverse group of cell-derived exocytosed particles, are pivotal in mediating intercellular communication due to their ability to selectively transfer biomolecules to specific cell types. EVs, composed of proteins, nucleic acids, and lipids, are taken up by cells to affect a variety of signaling cascades. Research in the field has primarily focused on stem cell-derived EVs, with a particular focus on mesenchymal stem cells, for their potential therapeutic benefits. Recently, tissue-specific EVs or cell type-specific extracellular vesicles (CTS-EVs), have garnered attention for their unique biogenesis and molecular composition because they enable highly targeted cell-specific communication. Various studies have outlined the roles that CTS-EVs play in the signaling for physiological function and the maintenance of homeostasis, including immune modulation, tissue regeneration, and organ development. These properties are also exploited for disease propagation, such as in cancer, neurological disorders, infectious diseases, autoimmune conditions, and more. The insights gained from analyzing CTS-EVs in different biological roles not only enhance our understanding of intercellular signaling and disease pathogenesis but also open new avenues for innovative diagnostic biomarkers and therapeutic targets for a wide spectrum of medical conditions. This review comprehensively outlines the current understanding of CTS-EV origins, function within normal physiology, and implications in diseased states.
Collapse
Affiliation(s)
- Sohil Amin
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Hamed Massoumi
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Deepshikha Tewari
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Arnab Roy
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Madhurima Chaudhuri
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Cedra Jazayerli
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Abhi Krishan
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Mannat Singh
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Mohammad Soleimani
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Emine E. Karaca
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
- Department of Ophthalmology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara 06800, Turkey
| | - Arash Mirzaei
- Department of Ophthalmology, University of Medical Sciences, Farabi Eye Hospital, Tehran 13366 16351, Iran;
| | - Victor H. Guaiquil
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
120
|
Yang Z, Luo Y, Zhang F, Ma L. Exosome-derived lncRNA A1BG-AS1 attenuates the progression of prostate cancer depending on ZC3H13-mediated m6A modification. Cell Div 2024; 19:5. [PMID: 38351022 PMCID: PMC10863231 DOI: 10.1186/s13008-024-00110-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Exosome-derived long non-coding RNAs (lncRNAs) and N6-methyladenosine (m6A) modifications of lncRNAs have been shown crucial functions in prostate cancer (PCa). Herein, we aim to investigate the detailed mechanism of exosome-derived lncRNA A1BG-AS1 in PCa process. METHODS PCa cell exosomes were extracted, exosomal marker proteins (CD63, CD9) were detected utilizing western blotting, and exosomes with overexpressing A1BG-AS1 were co-cultured with targeted PCa cells. qRT-PCR was used to detect A1BG-AS1 expression and m6A methyltransferase ZC3H13 in PCa. Transwell, colony formation and CCK-8 assays were utilized to assess the invasion, migration, and proliferation ability of PCa cells. Then, we performed actinomycin D and MeRIP assays to analyze the regulatory effect of ZC3H13 on A1BG-AS1 mRNA stability and m6A modification level. RESULTS We observed that A1BG-AS1 and ZC3H13 expression was restricted in PCa tumors. The invasion, proliferation and migratory capacities of PCa cells could be inhibited by up-regulating A1BG-AS1 or by co-culturing with exosomes that up-regulate A1BG-AS1. Additionally, ZC3H13 promoted stable A1BG-AS1 expression by regulating the m6A level of A1BG-AS1. CONCLUSION Exosomal A1BG-AS1 was m6A-modified by the m6A methyltransferase ZC3H13 to stabilize expression and thus prevent PCa cell malignancy. These findings offer a possible target for clinical therapy of PCa.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Urology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, No. 168, Hong Kong Road, Jiangan District, Wuhan, 430015, Hubei, China
| | - Yu Luo
- Department of Urology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, No. 168, Hong Kong Road, Jiangan District, Wuhan, 430015, Hubei, China
| | - Fan Zhang
- Department of Urology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, No. 168, Hong Kong Road, Jiangan District, Wuhan, 430015, Hubei, China
| | - Likun Ma
- Department of Urology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, No. 168, Hong Kong Road, Jiangan District, Wuhan, 430015, Hubei, China.
| |
Collapse
|
121
|
Sayson SG, Ashbaugh A, Cushion MT. Extracellular vesicles from Pneumocystis carinii-infected rats impair fungal viability but are dispensable for macrophage functions. Microbiol Spectr 2024; 12:e0365323. [PMID: 38236033 PMCID: PMC10845964 DOI: 10.1128/spectrum.03653-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
Pneumocystis spp. are host obligate fungal pathogens that can cause severe pneumonia in mammals and rely heavily on their host for essential nutrients. The lack of a sustainable in vitro culture system poses challenges in understanding their metabolism, and the acquisition of essential nutrients from host lungs remains unexplored. Transmission electron micrographs show that extracellular vesicles (EVs) are found near Pneumocystis spp. within the lung. We hypothesized that EVs transport essential nutrients to the fungi during infection. To investigate this, EVs from P. carinii- and P. murina-infected rodents were biochemically and functionally characterized. These EVs contained host proteins involved in cellular, metabolic, and immune processes as well as proteins with homologs found in other fungal EV proteomes, indicating that Pneumocystis may release EVs. Notably, EV uptake by P. carinii indicated their potential involvement in nutrient acquisition and a possibility for using engineered EVs for efficient therapeutic delivery. However, EVs added to P. carinii in vitro did not show increased growth or viability, implying that additional nutrients or factors are necessary to support their metabolic requirements. Exposure of macrophages to EVs increased proinflammatory cytokine levels but did not affect macrophages' ability to kill or phagocytose P. carinii. These findings provide vital insights into P. carinii and host EV interactions, yet the mechanisms underlying P. carinii's survival in the lung remain uncertain. These studies are the first to isolate, characterize, and functionally assess EVs from Pneumocystis-infected rodents, promising to enhance our understanding of host-pathogen dynamics and therapeutic potential.IMPORTANCEPneumocystis spp. are fungal pathogens that can cause severe pneumonia in mammals, relying heavily on the host for essential nutrients. The absence of an in vitro culture system poses challenges in understanding their metabolism, and the acquisition of vital nutrients from host lungs remains unexplored. Extracellular vesicles (EVs) are found near Pneumocystis spp., and it is hypothesized that these vesicles transport nutrients to the pathogenic fungi. Pneumocystis proteins within the EVs showed homology to other fungal EV proteomes, suggesting that Pneumocystis spp. release EVs. While EVs did not significantly enhance P. carinii growth in vitro, P. carinii displayed active uptake of these vesicles. Moreover, EVs induced proinflammatory cytokine production in macrophages without compromising their ability to combat P. carinii. These findings provide valuable insights into EV dynamics during host-pathogen interactions in Pneumocystis pneumonia. However, the precise underlying mechanisms remain uncertain. This research also raises the potential for engineered EVs in therapeutic applications.
Collapse
Affiliation(s)
- Steven G. Sayson
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- The Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | - Alan Ashbaugh
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- The Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | - Melanie T. Cushion
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- The Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
122
|
Xu Y, Han J, Zhang X, Zhang X, Song J, Gao Z, Qian H, Jin J, Liang Z. Exosomal circRNAs in gastrointestinal cancer: Role in occurrence, development, diagnosis and clinical application (Review). Oncol Rep 2024; 51:19. [PMID: 38099408 PMCID: PMC10777447 DOI: 10.3892/or.2023.8678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
Gastrointestinal cancer is frequently detected at an advanced stage and has an undesirable prognosis due to the absence of efficient and precise biomarkers and therapeutic targets. Exosomes are small, living‑cell‑derived vesicles that serve a critical role in facilitating intercellular communication by transporting molecules from donor cells to receiver cells. circular RNAs (circRNAs) are mis‑expressed in a variety of diseases, including gastrointestinal cancer, and are promising as diagnostic biomarkers and tumor therapeutic targets for gastrointestinal cancer. The main features of exosomes and circRNAs are discussed in the present review, along with research on the biological function of exosomal circRNAs in the development and progression of gastrointestinal cancer. It also assesses the advantages and disadvantages of implementing these findings in clinical applications.
Collapse
Affiliation(s)
- Yumeng Xu
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jiayi Han
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xuan Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xinyi Zhang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jiajia Song
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Zihan Gao
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hui Qian
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jianhua Jin
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
| | - Zhaofeng Liang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
123
|
Miron RJ, Zhang Y. Understanding exosomes: Part 1-Characterization, quantification and isolation techniques. Periodontol 2000 2024; 94:231-256. [PMID: 37740431 DOI: 10.1111/prd.12520] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 09/24/2023]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with a diameter in the range of 30-150 nm. Their use has gained great momentum recently due to their ability to be utilized as diagnostic tools with a vast array of therapeutic applications. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be investigated. This review article first focuses on understanding exosomes, including their cellular origin, biogenesis, function, and characterization. Thereafter, overviews of the quantification methods and isolation techniques are given with discussion over their potential use as novel therapeutics in regenerative medicine.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
124
|
Basak M, Narisepalli S, Salunkhe SA, Tiwari S, Chitkara D, Mittal A. Macrophage derived Exosomal Docetaxel (Exo-DTX) for pro-metastasis suppression: QbD driven formulation development, validation, in-vitro and pharmacokinetic investigation. Eur J Pharm Biopharm 2024; 195:114175. [PMID: 38185191 DOI: 10.1016/j.ejpb.2024.114175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Exosomes, biogenic nano-vesicles, are renowned for their ability to encapsulate diverse payloads, however the systematic development and validation of exosomal formulation with significant biological implications have been overlooked. Herein, we developed and validated Exo-DTX, a QbD-driven optimized RAW 264.7 cell derived exosomal anti-cancer formulation of docetaxel (DTX) and evaluate its anti-metastatic and apoptotic efficacy in TNBC 4T1 cells. RAW264.7-derived exosomes were having particle size (112.5 ± 21.48 nm) and zeta-potential (-10.268 ± 3.66 mV) with polydispersity (PDI:0.256 ± 0.03). The statistical optimization of exosomes (200 μg) with Exo: DTX ratio 4:1 confirmed encapsulation of 23.60 ± 1.54 ng DTX/ µg exosomes. Exo-DTX (∼189 nm, -11.03 mV) with 100 ng/ml DTX as payload exhibited ∼5 folds' improvement in IC50 of DTX and distinct cytoskeletal deformation in TNBC 4T1 cells. It also has shown enormous Filamentous actin (F-actin) degradation and triggered apoptosis explained Exo-DTX's effective anti-migratory impact with just 2.6 ± 6.33 % wound closure and 4.56 ± 1.38 % invasion. The western blot confirmed that Exo-DTX downregulated migratory protein EGFR and β1-integrin but raised cleaved caspase 3/caspase 3 (CC3/C3) ratio and BAX/BCL-2 ratio by about 2.70 and 4.04 folds respectively. The naive RAW 264.7 exosomes also contributed positively towards the effect of Exo-DTX formulation by suppressing β1-integrin expression and increasing the CC3/C3 ratio in TNBC 4T1 cells as well. Additionally, significant improvement in PK parameters of Exo-DTX was observed in comparison to Taxotere, 6-folds and 3.04-folds improved t1/2 and Vd, proving the translational value of Exo-DTX formulation. Thus, the Exo-DTX so formulated proved beneficial in controlling the aggressiveness of TNBC wherein, naive exosomes also demonstrated beneficial synergistic anti-proliferative effect in 4T1.
Collapse
Affiliation(s)
- Moumita Basak
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Saibhargav Narisepalli
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Shubham A Salunkhe
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Swasti Tiwari
- Molecular Medicine and Biotechnology Division, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India.
| |
Collapse
|
125
|
Klemetti MM, Pettersson ABV, Ahmad Khan A, Ermini L, Porter TR, Litvack ML, Alahari S, Zamudio S, Illsley NP, Röst H, Post M, Caniggia I. Lipid profile of circulating placental extracellular vesicles during pregnancy identifies foetal growth restriction risk. J Extracell Vesicles 2024; 13:e12413. [PMID: 38353485 PMCID: PMC10865917 DOI: 10.1002/jev2.12413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/18/2023] [Accepted: 01/13/2024] [Indexed: 02/16/2024] Open
Abstract
Small-for-gestational age (SGA) neonates exhibit increased perinatal morbidity and mortality, and a greater risk of developing chronic diseases in adulthood. Currently, no effective maternal blood-based screening methods for determining SGA risk are available. We used a high-resolution MS/MSALL shotgun lipidomic approach to explore the lipid profiles of small extracellular vesicles (sEV) released from the placenta into the circulation of pregnant individuals. Samples were acquired from 195 normal and 41 SGA pregnancies. Lipid profiles were determined serially across pregnancy. We identified specific lipid signatures of placental sEVs that define the trajectory of a normal pregnancy and their changes occurring in relation to maternal characteristics (parity and ethnicity) and birthweight centile. We constructed a multivariate model demonstrating that specific lipid features of circulating placental sEVs, particularly during early gestation, are highly predictive of SGA infants. Lipidomic-based biomarker development promises to improve the early detection of pregnancies at risk of developing SGA, an unmet clinical need in obstetrics.
Collapse
Affiliation(s)
- Miira M. Klemetti
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
- Department of Obstetrics & GynecologyUniversity of TorontoTorontoOntarioCanada
| | - Ante B. V. Pettersson
- Program in Translational Medicine, Peter Gilgan Centre for Research and LearningHospital for Sick ChildrenTorontoOntarioCanada
| | - Aafaque Ahmad Khan
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoCanada
| | - Leonardo Ermini
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
| | - Tyler R. Porter
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
| | - Michael L. Litvack
- Program in Translational Medicine, Peter Gilgan Centre for Research and LearningHospital for Sick ChildrenTorontoOntarioCanada
| | - Sruthi Alahari
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
| | | | | | - Hannes Röst
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoCanada
| | - Martin Post
- Program in Translational Medicine, Peter Gilgan Centre for Research and LearningHospital for Sick ChildrenTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Department PhysiologyUniversity of TorontoTorontoOntarioCanada
| | - Isabella Caniggia
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
- Department of Obstetrics & GynecologyUniversity of TorontoTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Department PhysiologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
126
|
Tuluwengjiang G, Rasulova I, Ahmed S, Kiasari BA, Sârbu I, Ciongradi CI, Omar TM, Hussain F, Jawad MJ, Castillo-Acobo RY, Hani T, Lakshmaiya N, Samaniego SSC. Dendritic cell-derived exosomes (Dex): Underlying the role of exosomes derived from diverse DC subtypes in cancer pathogenesis. Pathol Res Pract 2024; 254:155097. [PMID: 38277745 DOI: 10.1016/j.prp.2024.155097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/28/2024]
Abstract
Exosomes are nanometric membrane vesicles of late endosomal origin that are released by most, if not all, cell types as a sophisticated means of intercellular communication. They play an essential role in the movement of materials and information between cells, transport a variety of proteins, lipids, RNA, and other vital data, and over time, they become an essential part of the drug delivery system and a marker for the early detection of many diseases. Dendritic cells have generated interest in cancer immunotherapy due to their ability to initiate and modify effective immune responses. Apart from their cytokine release and direct interactions with other cell types, DCs also emit nanovesicles, such as exosomes, that contribute to their overall activity. Numerous studies have demonstrated exosomes to mediate and regulate immune responses against cancers. Dendritic cell-derived exosomes (DCs) have attracted a lot of attention as immunotherapeutic anti-cancer treatments since it was found that they contain functional MHC-peptide complexes along with a variety of other immune-stimulating components that together enable immune cell-dependent tumor rejection. By enhancing tumor and immunosuppressive immune cells or changing a pro-inflammatory milieu to inhibit tumor advancement, exosomes generated from dendritic cells can initiate and support tumor growth. This study reviewed the immunogenicity of dendritic cell-derived exosomes and strategies for expanding their immunogenic potential as novel and effective anti-cancer therapies.
Collapse
Affiliation(s)
| | - Irodakhon Rasulova
- Senior Researcher, School of Humanities, Natural & Social Sciences, New Uzbekistan University, 54 Mustaqillik Ave., Tashkent, 100007, Uzbekistan; Department of Public Health, Samarkand State Medical University, Amir Temur street 18, Samarkand, Uzbekistan
| | - Shamim Ahmed
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Bahman Abedi Kiasari
- Microbiology & Immunology Group, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| | - Carmen Iulia Ciongradi
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, Al-Noor University College, Nineveh, Iraq
| | - Farah Hussain
- Medical Technical College, Al-Farahidi University, Iraq
| | | | | | - Thamer Hani
- Dentistry Department, Al-Turath University College, Baghdad, Iraq
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | | |
Collapse
|
127
|
Niu L, Wang Q, Feng F, Yang W, Xie Z, Zheng G, Zhou W, Duan L, Du K, Li Y, Tian Y, Chen J, Xie Q, Fan A, Dan H, Liu J, Fan D, Hong L, Zhang J, Zheng J. Small extracellular vesicles-mediated cellular interactions between tumor cells and tumor-associated macrophages: Implication for immunotherapy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166917. [PMID: 37820821 DOI: 10.1016/j.bbadis.2023.166917] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/14/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
The tumor microenvironment consists of cancer cells and various stromal cells, including macrophages, which exhibit diverse phenotypes with either pro-inflammatory (M1) or anti-inflammatory (M2) effects. The interaction between cancer cells and macrophages plays a crucial role in tumor progression. Small extracellular vesicles (sEVs), which facilitate intercellular communication, are known to play a vital role in this process. This review provides a comprehensive summary of how sEVs derived from cancer cells, containing miRNAs, lncRNAs, proteins, and lipids, can influence macrophage polarization. Additionally, we discuss the impact of macrophage-secreted sEVs on tumor malignant transformation, including effects on proliferation, metastasis, angiogenesis, chemoresistance, and immune escape. Furthermore, we address the therapeutic advancements and current challenges associated with macrophage-associated sEVs, along with potential solutions.
Collapse
Affiliation(s)
- Liaoran Niu
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qi Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Fan Feng
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wanli Yang
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhenyu Xie
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Gaozan Zheng
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Zhou
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lili Duan
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kunli Du
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yiding Li
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ye Tian
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Junfeng Chen
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qibin Xie
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Aqiang Fan
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hanjun Dan
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jinqiang Liu
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Liu Hong
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Jian Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Jianyong Zheng
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; Department of Aviation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
128
|
Gorgzadeh A, Nazari A, Ali Ehsan Ismaeel A, Safarzadeh D, Hassan JAK, Mohammadzadehsaliani S, Kheradjoo H, Yasamineh P, Yasamineh S. A state-of-the-art review of the recent advances in exosome isolation and detection methods in viral infection. Virol J 2024; 21:34. [PMID: 38291452 PMCID: PMC10829349 DOI: 10.1186/s12985-024-02301-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
Proteins, RNA, DNA, lipids, and carbohydrates are only some of the molecular components found in exosomes released by tumor cells. They play an essential role in healthy and diseased cells as messengers of short- and long-distance intercellular communication. However, since exosomes are released by every kind of cell and may be found in blood and other bodily fluids, they may one day serve as biomarkers for a wide range of disorders. In many pathological conditions, including cancer, inflammation, and infection, they play a role. It has been shown that the biogenesis of exosomes is analogous to that of viruses and that the exosomal cargo plays an essential role in the propagation, dissemination, and infection of several viruses. Bidirectional modulation of the immune response is achieved by the ability of exosomes associated with viruses to facilitate immunological escape and stimulate the body's antiviral immune response. Recently, exosomes have received a lot of interest due to their potential therapeutic use as biomarkers for viral infections such as human immunodeficiency virus (HIV), Hepatitis B virus (HBV), Hepatitis C virus (HCV), Epstein-Barr virus (EBV), and SARS-CoV-2. This article discusses the purification procedures and detection techniques for exosomes and examines the research on exosomes as a biomarker of viral infection.
Collapse
Affiliation(s)
| | - Ahmad Nazari
- Tehran University of Medical Sciences, Tehran, Iran
| | | | - Diba Safarzadeh
- Vocational School of Health Service, Near East University, Nicosia, Cyprus
| | - Jawad A K Hassan
- National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | | | | | - Pooneh Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
129
|
Wang T, Zhou Y, Zhang W, Xue Y, Xiao Z, Zhou Y, Peng X. Exosomes and exosome composite scaffolds in periodontal tissue engineering. Front Bioeng Biotechnol 2024; 11:1287714. [PMID: 38304105 PMCID: PMC10831513 DOI: 10.3389/fbioe.2023.1287714] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024] Open
Abstract
Promoting complete periodontal regeneration of damaged periodontal tissues, including dental cementum, periodontal ligament, and alveolar bone, is one of the challenges in the treatment of periodontitis. Therefore, it is urgent to explore new treatment strategies for periodontitis. Exosomes generated from stem cells are now a promising alternative to stem cell therapy, with therapeutic results comparable to those of their blast cells. It has great potential in regulating immune function, inflammation, microbiota, and tissue regeneration and has shown good effects in periodontal tissue regeneration. In addition, periodontal tissue engineering combines exosomes with biomaterial scaffolds to maximize the therapeutic advantages of exosomes. Therefore, this article reviews the progress, challenges, and prospects of exosome and exosome-loaded composite scaffolds in periodontal regeneration.
Collapse
Affiliation(s)
- Tingyu Wang
- The Second Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pathophysiology, Guangdong Medical University, Dongguan, China
| | - Yanxing Zhou
- Institute of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Wenwen Zhang
- The Second Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
| | - Yuanye Xue
- The Second Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
| | - Ziteng Xiao
- The Second Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
| | - Yanfang Zhou
- The Second Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pathophysiology, Guangdong Medical University, Dongguan, China
| | - Xinsheng Peng
- Biomedical Innovation Center, Guangdong Medical University, Dongguan, China
- Institute of Marine Medicine, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
130
|
Hánělová K, Raudenská M, Masařík M, Balvan J. Protein cargo in extracellular vesicles as the key mediator in the progression of cancer. Cell Commun Signal 2024; 22:25. [PMID: 38200509 PMCID: PMC10777590 DOI: 10.1186/s12964-023-01408-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
Exosomes are small vesicles of endosomal origin that are released by almost all cell types, even those that are pathologically altered. Exosomes widely participate in cell-to-cell communication via transferring cargo, including nucleic acids, proteins, and other metabolites, into recipient cells. Tumour-derived exosomes (TDEs) participate in many important molecular pathways and affect various hallmarks of cancer, including fibroblasts activation, modification of the tumour microenvironment (TME), modulation of immune responses, angiogenesis promotion, setting the pre-metastatic niche, enhancing metastatic potential, and affecting therapy sensitivity and resistance. The unique exosome biogenesis, composition, nontoxicity, and ability to target specific tumour cells bring up their use as promising drug carriers and cancer biomarkers. In this review, we focus on the role of exosomes, with an emphasis on their protein cargo, in the key mechanisms promoting cancer progression. We also briefly summarise the mechanism of exosome biogenesis, its structure, protein composition, and potential as a signalling hub in both normal and pathological conditions. Video Abstract.
Collapse
Affiliation(s)
- Klára Hánělová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Martina Raudenská
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Michal Masařík
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, Vestec, CZ-252 50, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic.
| |
Collapse
|
131
|
Zhang J, Ma B, Wang Z, Chen Y, Li C, Dong Y. Extracellular vesicle therapy for obesity-induced NAFLD: a comprehensive review of current evidence. Cell Commun Signal 2024; 22:18. [PMID: 38195552 PMCID: PMC10775587 DOI: 10.1186/s12964-023-01292-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/22/2023] [Indexed: 01/11/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) as a chronic disease especially in Western countries, is still a tough question in the clinical therapy. With the rising prevalence of various chronic diseases, liver transplantation is expected to be the most common therapy after the next 10 years. However, there is still no approved drug for NAFLD, and targeted therapy for NAFLD is urgent. Exosomes as a kind of extracellular vesicle are cell-derived nanovesicles, which play an essential role in intercellular communication. Due to complex cell-cell interactions in the liver, exosomes as therapeutic drugs or drug delivery vesicles may be involved in physiological or pathological processes in NAFLD. Compared with other nanomaterials, exosomes as a cell-free therapy, are not dependent on cell number limitation, which means can be administered safely in high doses. Apart from this, exosomes with the advantages of being low-toxic, high stability, and low-immunological are chosen for targeted therapy for many diseases. In this review, firstly we introduced the extracellular vesicles, including the biogenesis, composition, isolation and characterization, and fundamental function of extracellular vesicles. And then we discussed the modification of extracellular vesicles, cargo packing, and artificial exosomes. Finally, the extracellular vesicles for the therapies of NAFLD are summarized. Moreover, we highlight therapeutic approaches using exosomes in the clinical treatment of NAFLD, which provide valuable insights into targeting NAFLD in the clinical setting.
Collapse
Affiliation(s)
- Jiali Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Baochen Ma
- China Animal Husbandry Group, Beijing, 100070, China
| | - Zixu Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yaoxing Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Chengzhong Li
- Department of Horticulture and Landscape Architecture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 225300, People's Republic of China
| | - Yulan Dong
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
132
|
Verma P, Joshi H, Singh T, Sharma B, Sharma U, Ramniwas S, Rana R, Gupta M, Kaur G, Tuli HS. Temozolomide and flavonoids against glioma: from absorption and metabolism to exosomal delivery. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:41-57. [PMID: 37566307 DOI: 10.1007/s00210-023-02660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Patients with glioblastoma multiforme and anaplastic astrocytoma are treated with temozolomide. Although it has been demonstrated that temozolomide increases GBM patient survival, it has also been connected to negative immune-related adverse effects. Numerous research investigations have shown that flavonoids have strong antioxidant and chemo-preventive effects. Consequently, it might lessen chemotherapeutic medicines' side effects while also increasing therapeutic effectiveness. The need for creating innovative, secure, and efficient drug carriers for cancer therapy has increased over time. Recent research indicates that exosomes have enormous potential to serve as carriers and cutting-edge drug delivery systems to the target cell. In recent years, researchers have been paying considerable attention to exosomes because of their favorable biodistribution, biocompatibility, and low immunogenicity. In the present review, the mechanistic information of the anti-glioblastoma effects of temozolomide and flavonoids coupled with their exosomal delivery to the targeted cell has been discussed. In addition, we discuss the safety aspects of temozolomide and flavonoids against glioma. The in-depth information of temozolomide and flavonoids action via exosomal delivery can unravel novel strategies to target Glioma.
Collapse
Affiliation(s)
- Priyanka Verma
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Tejveer Singh
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India
| | - Bunty Sharma
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda, 151001, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 122016, India.
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 400056, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
133
|
Hua S, Wang B, Ding CF, Yan Y. A novel carbon-based material with titanium and zirconium ions etched on hollow mesoporous carbon tubes for specific capture of phosphopeptides and exosomes. Talanta 2024; 266:125139. [PMID: 37659233 DOI: 10.1016/j.talanta.2023.125139] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
The analysis of low abundance phosphopeptides in organisms and specific capture exosomes are crucial for unraveling the pathogenesis of diseases. For this reason, titanium-zirconium ions and highly biocompatible dopamine and polyimide tubes (PITs) were introduced, and a novel carbon-based material with titanium and zirconium ions etched on hollow mesoporous carbon tubes (HMCT), denoted as G@C@Ti-Zr-HMCT, comes into being after high-temperature calcination. Attributing to the tightly bound titanium and zirconium ions to HMCT and the high carbon content of the polydopamine carbonaceous layer, G@C@Ti-Zr-HMCT displays satisfactory capability of enriching phosphopeptides with satisfactory detection limit (0.2 fmol), extraordinary selectivity (1:2000), and good loading capacity (100 μg/mg). In addition, 25 phosphopeptides related to 25 phosphoproteins from the serum of Parkinson's disease (PD) patients and 30 phosphopeptides attributed to 26 phosphoproteins from the serum of healthy individuals were enriched by G@C@Ti-Zr-HMCT, respectively. In addition, bioinformatics analysis of the above results revealed that PD were associated with serine, threonine, and leucine of high frequency, blood coagulation in BP, Golgi apparatus and mitochondrial outer membrane in CC, and heparin binding in MF. Moreover, the phospholipid bilayer of exosomes and metallic titanium and zirconium ions interact to produce the following results: this highly biocompatible carbon-based material was successfully applied to capture exosomes, which offers a promising platform for isolating exosomes. To sum up, these delightful results confirmed without doubt that G@C@Ti-Zr-HMCT has enjoyed a splendiferous future in the specific capture of phosphopeptides and exosomes isolation.
Collapse
Affiliation(s)
- Shuwen Hua
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Bing Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China.
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
134
|
Yang Y, Luo J, Kang Y, Wu W, Lu Y, Fu J, Zhang X, Cheng M, Cui X. Progression in the Relationship between Exosome Production and Atherosclerosis. Curr Pharm Biotechnol 2024; 25:1099-1111. [PMID: 37493161 DOI: 10.2174/1389201024666230726114920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023]
Abstract
Atherosclerosis (AS) is the leading cause of cardiovascular disease, causing a major burden on patients as well as families and society. Exosomes generally refer to various lipid bilayer microvesicles originating from different cells that deliver various bioactive molecules to the recipient cells, exerting biological effects in cellular communication and thereby changing the internal environment of the body. The mechanisms of correlation between exosomes and the disease process of atherosclerosis have been recently clarified. Exosomes are rich in nucleic acid molecules and proteins. For example, the exosome miRNAs reportedly play important roles in the progression of atherosclerotic diseases. In this review, we focus on the composition of exosomes, the mechanism of their biogenesis and release, and the commonly used methods for exosome extraction. By summarizing the latest research progress on exosomes and atherosclerosis, we can explore the advances in the roles of exosomes in atherosclerosis to provide new ideas and targets for atherosclerosis prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Yi Yang
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Jinxi Luo
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Yunan Kang
- College of Anesthesiology, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Wenqian Wu
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Yajie Lu
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Jie Fu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Xiaoyun Zhang
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Min Cheng
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Xiaodong Cui
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| |
Collapse
|
135
|
Chandrasekhar P, Kaliyaperumal R. Revolutionizing Brain Drug Delivery: Buccal Transferosomes on the Verge of a Breakthrough. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:262-275. [PMID: 39356098 DOI: 10.2174/0126673878312336240802113811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 10/03/2024]
Abstract
The buccal cavity, also known as the oral cavity, is a complex anatomical structure that plays a crucial role in various physiological processes. It serves as a gateway to the digestive system and facilitates the initial stages of food digestion and absorption. However, its significance extends beyond mere digestion as it presents a promising route for drug delivery, particularly to the brain. Transferosomes are lipid-based vesicles that have gained significant attention in the field of drug delivery due to their unique structure and properties. These vesicles are composed of phospholipids that form bilayer structures capable of encapsulating both hydrophilic and lipophilic drugs. Strategies for the development of buccal transferosomes for brain delivery have emerged as promising avenues for pharmaceutical research. This review aims to explore the various approaches and challenges associated with harnessing the potential of buccal transferosomes as a means of enhancing drug delivery to the brain. By understanding the structure and function of both buccal tissue and transferosomes, researchers can develop effective formulation methods and characterization techniques to optimize drug delivery. Furthermore, strategic approaches and success stories in buccal transferosome development are highlighted, showcasing inspiring examples that demonstrate their potential to revolutionize brain delivery.
Collapse
Affiliation(s)
- Pavuluri Chandrasekhar
- Department of Pharmaceutics, Faculty of Pharmacy, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu, 600073, India
| | - Rajaganapathy Kaliyaperumal
- Department of Pharmacology, Faculty of Pharmacy, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu, 600073, India
| |
Collapse
|
136
|
Rome S, Tacconi S. High-fat diets: You are what you eat….your extracellular vesicles too! J Extracell Vesicles 2024; 13:e12382. [PMID: 38151475 PMCID: PMC10752826 DOI: 10.1002/jev2.12382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/13/2023] [Accepted: 11/10/2023] [Indexed: 12/29/2023] Open
Abstract
Recent works indicate that the lipid composition of extracellular vesicles (EVs) can modify their biological functions and their incorporation into recipient cells. In particular high-fat diets affect EV biogenesis, EV lipid composition, EV targeting and consequently the cross-talk between tissues. This review connects different research topics to show that a vicious circle is established during the development of high-fat diet-induced obesity, connecting the alteration of lipid metabolism, the composition of extracellular vesicles and the spread of deleterious lipids between tissues, which participates in NAFLD/NASH and diabetes development. According to the studies described in this review, it is urgent to take an interest in this question as the modulation of EV lipid composition could be an important factor to take into account during the therapeutic management of patients suffering from metabolic syndrome and related pathologies such as obesity and diabetes. Furthermore, as lipid modification of EVs is a strategy currently being tested to enable better integration into their target tissue or cell, it is important to consider the impact of these lipid modifications on the homeostasis of these targets.
Collapse
Affiliation(s)
- Sophie Rome
- CarMeN Laboratory, INSERM 1060‐INRAE 1397, Department of Human Nutrition, Lyon Sud HospitalUniversity of LyonLyonFrance
| | - Stefano Tacconi
- CarMeN Laboratory, INSERM 1060‐INRAE 1397, Department of Human Nutrition, Lyon Sud HospitalUniversity of LyonLyonFrance
| |
Collapse
|
137
|
Shan C, Liang Y, Wang K, Li P. Mesenchymal Stem Cell-Derived Extracellular Vesicles in Cancer Therapy Resistance: from Biology to Clinical Opportunity. Int J Biol Sci 2024; 20:347-366. [PMID: 38164177 PMCID: PMC10750277 DOI: 10.7150/ijbs.88500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/09/2023] [Indexed: 01/03/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are a type of stromal cells characterized by their properties of self-renewal and multi-lineage differentiation, which make them prominent in regenerative medicine. MSCs have shown significant potential for the treatment of various diseases, primarily through the paracrine effects mediated by soluble factors, specifically extracellular vesicles (EVs). MSC-EVs play a crucial role in intercellular communication by transferring various bioactive substances, including proteins, RNA, DNA, and lipids, highlighting the contribution of MSC-EVs in regulating cancer development and progression. Remarkably, increasing evidence indicates the association between MSC-EVs and resistance to various types of cancer treatments, including radiotherapy, chemotherapy, targeted therapy, immunotherapy, and endocrinotherapy. In this review, we provide an overview of the recent advancements in the biogenesis, isolation, and characterization of MSC-EVs, with an emphasis on their functions in cancer therapy resistance. The clinical applications and future prospects of MSC-EVs for mitigating cancer therapy resistance and enhancing drug delivery are also discussed. Elucidating the role and mechanism of MSC-EVs in the development of treatment resistance in cancer, as well as evaluating the clinical significance of MSC-EVs, is crucial for advancing our understanding of tumor biology. Meanwhile, inform the development of effective treatment strategies for cancer patients in the future.
Collapse
Affiliation(s)
- Chan Shan
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Kun Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
138
|
Hur JY, Lee S, Shin WR, Kim YH, Ahn JY. The emerging role of medical foods and therapeutic potential of medical food-derived exosomes. NANOSCALE ADVANCES 2023; 6:32-50. [PMID: 38125597 PMCID: PMC10729880 DOI: 10.1039/d3na00649b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Abstract
Medical food is consumed for the purpose of improving specific nutritional requirements or disease conditions, such as inflammation, diabetes, and cancer. It involves partial or exclusive feeding for fulfilling unique nutritional requirements of patients and is different from medicine, consisting of basic nutrients, such as polyphenols, vitamins, sugars, proteins, lipids, and other functional ingredients to nourish the patients. Recently, studies on extracellular vesicles (exosomes) with therapeutic and drug carrier potential have been actively conducted. In addition, there have been attempts to utilize exosomes as medical food components. Consequently, the application of exosomes is expanding in different fields with increasing research being conducted on their stability and safety. Herein, we introduced the current trends of medical food and the potential utilization of exosomes in them. Moreover, we proposed Medi-Exo, a exosome-based medical food. Furthermore, we comprehensively elucidate various disease aspects between medical food-derived exosomes (Medi-Exo) and therapeutic natural bionanocomposites. This review highlights the therapeutic challenges regarding Medi-Exo and its potential health benefits.
Collapse
Affiliation(s)
- Jin-Young Hur
- Department of Microbiology, Chungbuk National University 1 Chungdae-Ro, Seowon-Gu Cheongju 28644 South Korea +82-43-264-9600 +82-43-261-2301 +82-43-261-3575
| | - SeonHyung Lee
- Department of Bioengineering, University of Pennsylvania 210 S 33rd St. Philadelphia PA 19104 USA
| | - Woo-Ri Shin
- Department of Microbiology, Chungbuk National University 1 Chungdae-Ro, Seowon-Gu Cheongju 28644 South Korea +82-43-264-9600 +82-43-261-2301 +82-43-261-3575
- Department of Bioengineering, University of Pennsylvania 210 S 33rd St. Philadelphia PA 19104 USA
| | - Yang-Hoon Kim
- Department of Microbiology, Chungbuk National University 1 Chungdae-Ro, Seowon-Gu Cheongju 28644 South Korea +82-43-264-9600 +82-43-261-2301 +82-43-261-3575
| | - Ji-Young Ahn
- Department of Microbiology, Chungbuk National University 1 Chungdae-Ro, Seowon-Gu Cheongju 28644 South Korea +82-43-264-9600 +82-43-261-2301 +82-43-261-3575
| |
Collapse
|
139
|
Ma F, Zhang S, Akanyibah FA, Zhang W, Chen K, Ocansey DKW, Lyu C, Mao F. Exosome-mediated macrophage regulation for inflammatory bowel disease repair: a potential target of gut inflammation. Am J Transl Res 2023; 15:6970-6987. [PMID: 38186999 PMCID: PMC10767518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024]
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), is a complex condition without a definite cause. During IBD, immune cells such as macrophages release proinflammatory cytokines and chemokines, contributing to intestinal barrier integrity dysfunction. IBD is largely influenced by macrophages, which are classified into subtypes M1 and M2. M1 macrophages have been found to contribute to the development of IBD, whereas M2 macrophages alleviate IBD. Hence, agents that cause increased polarization of the M2 phenotype could help repair IBD. Exosomes, as ubiquitous conveyors of intercellular messages, are involved in immune responses and immune-mediated disease processes. Exosomes and their microRNA (miRNA) from healthy cells have been found to polarize macrophages to M2 to repair IBD due to their anti-inflammatory properties; however, those from inflammatory-driven cells and disease cells promote M1 macrophages to perpetuate IBD. Here, we review the biogenesis, biochemical composition, and sources of exosomes, as well as the roles of exosomes as extracellular vesicles in regulation of macrophages to repair IBD.
Collapse
Affiliation(s)
- Feifei Ma
- School of Medical Technology, Shangqiu Medical CollegeShangqiu 476100, Henan, P. R. China
| | - Shiheng Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, P. R. China
| | - Francis Atim Akanyibah
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, P. R. China
| | - Weibin Zhang
- School of Medical Technology, Shangqiu Medical CollegeShangqiu 476100, Henan, P. R. China
| | - Kangjing Chen
- School of Medical Technology, Shangqiu Medical CollegeShangqiu 476100, Henan, P. R. China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, P. R. China
- Directorate of University Health Services, University of Cape CoastCape Coast CC0959347, Ghana
| | - Changkun Lyu
- School of Medical Technology, Shangqiu Medical CollegeShangqiu 476100, Henan, P. R. China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, P. R. China
| |
Collapse
|
140
|
Wu J, Liu G, Jia R, Guo J. Salivary Extracellular Vesicles: Biomarkers and Beyond in Human Diseases. Int J Mol Sci 2023; 24:17328. [PMID: 38139157 PMCID: PMC10743646 DOI: 10.3390/ijms242417328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Extracellular vesicles, as bioactive molecules, have been extensively studied. There are abundant studies in the literature on their biogenesis, secretion, structure, and content, and their roles in pathophysiological processes. Extracellular vesicles have been reviewed as biomarkers for use in diagnostic tools. Saliva contains many extracellular vesicles, and compared with other body fluids, it is easier to obtain in a non-invasive way, making its acquisition more easily accepted by patients. In recent years, there have been numerous new studies investigating the role of salivary extracellular vesicles as biomarkers. These studies have significant implications for future clinical diagnosis. Therefore, in this paper, we summarize and review the potential applications of salivary extracellular vesicles as biomarkers, and we also describe their other functions (e.g., hemostasis, innate immune defense) in both oral and non-oral diseases.
Collapse
Affiliation(s)
- Jialing Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
| | - Gege Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
| | - Rong Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
| | - Jihua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
- Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
141
|
Dzhugashvili E, Tamkovich S. Exosomal Cargo in Ovarian Cancer Dissemination. Curr Issues Mol Biol 2023; 45:9851-9867. [PMID: 38132461 PMCID: PMC10742327 DOI: 10.3390/cimb45120615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Ovarian cancer (OC) has the highest mortality rate among all gynecologic cancers and is characterized by early peritoneal spread. The growth and development of OC are associated with the formation of ascitic fluid, creating a unique tumor microenvironment. Understanding the mechanisms of tumor progression is crucial in identifying new diagnostic biomarkers and developing novel therapeutic strategies. Exosomes, lipid bilayer vesicles measuring 30-150 nm in size, are known to establish a crucial link between malignant cells and their microenvironment. Additionally, the confirmed involvement of exosomes in carcinogenesis enables them to mediate the invasion, migration, metastasis, and angiogenesis of tumor cells. Functionally active non-coding RNAs (such as microRNAs, long non-coding RNAs, circRNAs), proteins, and lipid rafts transported within exosomes can activate numerous signaling pathways and modify gene expression. This review aims to expand our understanding of the role of exosomes and their contents in OC carcinogenesis processes such as epithelial-mesenchymal transition (EMT), angiogenesis, vasculogenic mimicry, tumor cell proliferation, and peritoneal spread. It also discusses the potential for utilizing exosomal cargo to develop novel "liquid biopsy" biomarkers for early OC diagnosis.
Collapse
Affiliation(s)
- Ekaterina Dzhugashvili
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Svetlana Tamkovich
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
142
|
Kang C, He H, Liu P, Liu Y, Li X, Zhang J, Ran H, Zeng X, Zhao H, Liu J, Qiu S. Role of dendritic cell‑derived exosomes in allergic rhinitis (Review). Int J Mol Med 2023; 52:117. [PMID: 37888754 PMCID: PMC10635688 DOI: 10.3892/ijmm.2023.5320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Allergic rhinitis (AR) is a common pathological condition in otorhinolaryngology. Its prevalence has been increasing worldwide and is becoming a major burden to the world population. Dendritic cells (DCs) are typically activated and matured after capturing, phagocytosing, and processing allergens during the immunopathogenesis of AR. In addition, the process of DC activation and maturation is accompanied by the production of exosomes, which are cell‑derived extracellular vesicles (EVs) that can carry proteins, lipids, nucleic acids, and other cargoes involved in intercellular communication and material transfer. In particular, DC‑derived exosomes (Dex) can participate in allergic immune responses, where the biological substances carried by them can have potentially important implications for both the pathogenesis and treatment of AR. Dex can also be exploited to carry anti‑allergy agents to effectively treat AR. This provides a novel method to explore the pathogenesis of and treatment strategies for AR further. Therefore, the present review focuses on the origin, composition, function, and biological characteristics of DCs, exosomes, and Dex, in addition to the possible relationship between Dex and AR.
Collapse
Affiliation(s)
- Chenglin Kang
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
- Department of Otolaryngology, Second People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Haipeng He
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Peng Liu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Yue Liu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Xiaomei Li
- Department of Otolaryngology, Second People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Jin Zhang
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
- Department of Otorhinolaryngology, The Second People's Hospital of Yibin, Yibin, Sichuan 644000, P.R. China
| | - Hong Ran
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Xianhai Zeng
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Hailiang Zhao
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Jiangqi Liu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Shuqi Qiu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| |
Collapse
|
143
|
Han M, Zhang M, Qi M, Zhou Y, Li F, Fang S. Regulatory mechanism and promising clinical application of exosomal circular RNA in gastric cancer. Front Oncol 2023; 13:1236679. [PMID: 38094607 PMCID: PMC10718620 DOI: 10.3389/fonc.2023.1236679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2024] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide and the leading cause of cancer-related deaths. Exosomes are nanoscale extracellular vesicles secreted by a variety of cells and play an important role in cellular communication and epigenetics by transporting bioactive substances in the tumor microenvironment (TME). Circular RNA (circRNA) is a type of non-coding RNA (ncRNA) with a specific structure, which is widely enriched in exosomes and is involved in various pathophysiological processes mediated by exosomes. Exosomal circRNAs play a critical role in the development of GC by regulating epithelial-mesenchymal transition (EMT), angiogenesis, proliferation, invasion, migration, and metastasis of GC. Given the biological characteristics of exosomal circRNAs, they have more significant diagnostic sensitivity and specificity in the clinic and may become biomarkers for GC diagnosis and prognosis. In this review, we briefly describe the biogenesis of exosomes and circRNAs and their biological functions, comprehensively summarize the mechanisms of exosomal circRNAs in the development of GC and chemotherapy resistance, and finally, we discuss the potential clinical application value and challenges of exosomal circRNAs in GC.
Collapse
Affiliation(s)
| | | | | | | | | | - Shengquan Fang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
144
|
Rosso G, Cauda V. Biomimicking Extracellular Vesicles with Fully Artificial Ones: A Rational Design of EV-BIOMIMETICS toward Effective Theranostic Tools in Nanomedicine. ACS Biomater Sci Eng 2023; 9:5924-5932. [PMID: 36535896 PMCID: PMC10646844 DOI: 10.1021/acsbiomaterials.2c01025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Extracellular Vesicles (EVs) are the protagonists in cell communication and membrane trafficking, being responsible for the delivery of innumerable biomolecules and signaling moieties. At the moment, they are of paramount interest to researchers, as they naturally show incredibly high efficiency and specificity in delivering their cargo. For these reasons, EVs are employed or inspire the development of nanosized therapeutic delivery systems. In this Perspective, we propose an innovative strategy for the rational design of EV-mimicking vesicles (EV-biomimetics) for theranostic scopes. We first report on the current state-of-the-art use of EVs and their byproducts, such as surface-engineered EVs and EV-hybrids, having an artificial cargo (drug molecule, genetic content, nanoparticles, or dye incorporated in their lumen). Thereafter, we report on the new emerging field of EV-mimicking vesicles for theranostic scopes. We introduce an approach to prepare new, fully artificial EV-biomimetics, with particular attention to maintaining the natural reference lipidic composition. We overview those studies investigating natural EV membranes and the possible strategies to identify key proteins involved in site-selective natural homing, typical of EVs, and their cargo transfer to recipient cells. We propose the use also of molecular simulations, in particular of machine learning models, to approach the problem of lipid organization and self-assembly in natural EVs. We also discuss the beneficial feedback that could emerge combining the experimental tests with atomistic and molecular simulations when designing an EV-biomimetics lipid bilayer. The expectations from both research and industrial fields on fully artificial EV-biomimetics, having the same key functions of natural ones plus new diagnostic or therapeutic functions, could be enormous, as they can greatly expand the nanomedicine applications and guarantee on-demand and scalable production, off-the-shelf storage, high reproducibility of morphological and functional properties, and compliance with regulatory standards.
Collapse
Affiliation(s)
- Giada Rosso
- Department of Applied Science
and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Valentina Cauda
- Department of Applied Science
and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
145
|
Abinti M, Favi E, Alfieri CM, Zanoni F, Armelloni S, Ferraresso M, Cantaluppi V, Castellano G. Update on current and potential application of extracellular vesicles in kidney transplantation. Am J Transplant 2023; 23:1673-1693. [PMID: 37517555 DOI: 10.1016/j.ajt.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/28/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
Kidney transplantation (KT) is the best treatment for end-stage kidney disease. However, early diagnosis of graft injury remains challenging, mainly because of the lack of accurate and noninvasive diagnostic techniques. Improving graft outcomes is equally demanding, as is the development of innovative therapies. Many research efforts are focusing on extracellular vesicles, cellular particles free in each body fluid that have shown promising results as precise markers of damage and potential therapeutic targets in many diseases, including the renal field. In fact, through their receptors and cargo, they act in damage response and immune modulation. In transplantation, they may be used to determine organ quality and aging, the presence of delayed graft function, rejection, and many other transplant-related pathologies. Moreover, their low immunogenicity and safe profile make them ideal for drug delivery and the development of therapies to improve KT outcomes. In this review, we summarize current evidence about extracellular vesicles in KT, starting with their characteristics and major laboratory techniques for isolation and characterization. Then, we discuss their use as potential markers of damage and as therapeutic targets, discussing their promising use in clinical practice as a form of liquid biopsy.
Collapse
Affiliation(s)
- Matteo Abinti
- Nephrology, Dialysis and Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Evaldo Favi
- Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Carlo Maria Alfieri
- Nephrology, Dialysis and Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Francesca Zanoni
- Nephrology, Dialysis and Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA
| | - Silvia Armelloni
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Mariano Ferraresso
- Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplant Unit, Department of Translational Medicine (DIMET), University of Piemonte Orientale (UPO), "Maggiore della Carita" University Hospital, Novara, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
146
|
Zhang Y, Ju W, Zhang H, Mengyun L, Shen W, Chen X. Mechanisms and therapeutic prospects of mesenchymal stem cells-derived exosomes for tendinopathy. Stem Cell Res Ther 2023; 14:307. [PMID: 37880763 PMCID: PMC10601253 DOI: 10.1186/s13287-023-03431-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 07/26/2023] [Indexed: 10/27/2023] Open
Abstract
Tendinopathy is a debilitating and crippling syndrome resulting from the degeneration of tendon tissue, leading to loss of mechanical properties and function, and eventual tendon rupture. Unfortunately, there is currently no treatment for tendinopathy that can prevent or delay its progression. Exosomes are small extracellular vesicles that transport bioactive substances produced by cells, such as proteins, lipids, mRNAs, non-coding RNAs, and DNA. They can generate by mesenchymal stem cells (MSCs) throughout the body and play a role in intercellular communication and regulation of homeostasis. Recent research suggests that MSCs-derived exosomes (MSCs-exos) may serve as useful therapeutic candidates for promoting tendon healing. This review focuses on the function and mechanisms of MSCs-exos in tendinopathy treatment and discusses their potential application for treating this condition.
Collapse
Affiliation(s)
- Yuxiang Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Ju
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Liu Mengyun
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiliang Shen
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiao Chen
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
147
|
Shiota T, Li Z, Chen GY, McKnight KL, Shirasaki T, Yonish B, Kim H, Fritch EJ, Sheahan TP, Muramatsu M, Kapustina M, Cameron CE, Li Y, Zhang Q, Lemon SM. Hepatoviruses promote very-long-chain fatty acid and sphingolipid synthesis for viral RNA replication and quasi-enveloped virus release. SCIENCE ADVANCES 2023; 9:eadj4198. [PMID: 37862421 PMCID: PMC10588952 DOI: 10.1126/sciadv.adj4198] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/15/2023] [Indexed: 10/22/2023]
Abstract
Virus-induced changes in host lipid metabolism are an important but poorly understood aspect of viral pathogenesis. By combining nontargeted lipidomics analyses of infected cells and purified extracellular quasi-enveloped virions with high-throughput RNA sequencing and genetic depletion studies, we show that hepatitis A virus, an hepatotropic picornavirus, broadly manipulates the host cell lipid environment, enhancing synthesis of ceramides and other sphingolipids and transcriptionally activating acyl-coenzyme A synthetases and fatty acid elongases to import and activate long-chain fatty acids for entry into the fatty acid elongation cycle. Phospholipids with very-long-chain acyl tails (>C22) are essential for genome replication, whereas increases in sphingolipids support assembly and release of quasi-enveloped virions wrapped in membranes highly enriched for sphingomyelin and very-long-chain ceramides. Our data provide insight into how a pathogenic virus alters lipid flux in infected hepatocytes and demonstrate a distinction between lipid species required for viral RNA synthesis versus nonlytic quasi-enveloped virus release.
Collapse
Affiliation(s)
- Tomoyuki Shiota
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhucui Li
- Center for Translational Biomedical Research, The University of North Carolina at Greensboro, Kannapolis, NC, USA
| | - Guan-Yuan Chen
- Center for Translational Biomedical Research, The University of North Carolina at Greensboro, Kannapolis, NC, USA
| | - Kevin L. McKnight
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Takayoshi Shirasaki
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bryan Yonish
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Heyjeong Kim
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ethan J. Fritch
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy P. Sheahan
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Masamichi Muramatsu
- Department of Infectious Disease Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
| | - Maryna Kapustina
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Craig E. Cameron
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - You Li
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qibin Zhang
- Center for Translational Biomedical Research, The University of North Carolina at Greensboro, Kannapolis, NC, USA
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Stanley M. Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
148
|
Fernandez‐Becerra C, Xander P, Alfandari D, Dong G, Aparici‐Herraiz I, Rosenhek‐Goldian I, Shokouhy M, Gualdron‐Lopez M, Lozano N, Cortes‐Serra N, Karam PA, Meneghetti P, Madeira RP, Porat Z, Soares RP, Costa AO, Rafati S, da Silva A, Santarém N, Fernandez‐Prada C, Ramirez MI, Bernal D, Marcilla A, Pereira‐Chioccola VL, Alves LR, Portillo HD, Regev‐Rudzki N, de Almeida IC, Schenkman S, Olivier M, Torrecilhas AC. Guidelines for the purification and characterization of extracellular vesicles of parasites. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e117. [PMID: 38939734 PMCID: PMC11080789 DOI: 10.1002/jex2.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/21/2023] [Accepted: 09/14/2023] [Indexed: 06/29/2024]
Abstract
Parasites are responsible for the most neglected tropical diseases, affecting over a billion people worldwide (WHO, 2015) and accounting for billions of cases a year and responsible for several millions of deaths. Research on extracellular vesicles (EVs) has increased in recent years and demonstrated that EVs shed by pathogenic parasites interact with host cells playing an important role in the parasite's survival, such as facilitation of infection, immunomodulation, parasite adaptation to the host environment and the transfer of drug resistance factors. Thus, EVs released by parasites mediate parasite-parasite and parasite-host intercellular communication. In addition, they are being explored as biomarkers of asymptomatic infections and disease prognosis after drug treatment. However, most current protocols used for the isolation, size determination, quantification and characterization of molecular cargo of EVs lack greater rigor, standardization, and adequate quality controls to certify the enrichment or purity of the ensuing bioproducts. We are now initiating major guidelines based on the evolution of collective knowledge in recent years. The main points covered in this position paper are methods for the isolation and molecular characterization of EVs obtained from parasite-infected cell cultures, experimental animals, and patients. The guideline also includes a discussion of suggested protocols and functional assays in host cells.
Collapse
Affiliation(s)
- Carmen Fernandez‐Becerra
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
- IGTP Institut d'Investigació Germans Trias i PujolBadalona (Barcelona)Spain
- CIBERINFECISCIII‐CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIIMadridSpain
| | - Patrícia Xander
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Daniel Alfandari
- Department of Biomolecular SciencesWeizmann Institute of Science (WIS)RehovotIsrael
| | - George Dong
- The Research Institute of the McGill University Health CentreMcGill UniversityMontréalQuébecCanada
| | - Iris Aparici‐Herraiz
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
| | | | - Mehrdad Shokouhy
- Department of Immunotherapy and Leishmania Vaccine ResearchPasteur Institute of IranTehranIran
| | - Melisa Gualdron‐Lopez
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
| | - Nicholy Lozano
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Nuria Cortes‐Serra
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
| | - Paula Abou Karam
- Department of Biomolecular SciencesWeizmann Institute of Science (WIS)RehovotIsrael
| | - Paula Meneghetti
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Rafael Pedro Madeira
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Ziv Porat
- Flow Cytometry UnitLife Sciences Core Facilities, WISRehovotIsrael
| | | | - Adriana Oliveira Costa
- Departamento de Análises Clínicas e ToxicológicasFaculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG)Belo HorizonteMinas GeraisBrasil
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine ResearchPasteur Institute of IranTehranIran
| | - Anabela‐Cordeiro da Silva
- Host‐Parasite Interactions GroupInstitute of Research and Innovation in HealthUniversity of PortoPortoPortugal
- Department of Biological SciencesFaculty of PharmacyUniversity of PortoPortoPortugal
| | - Nuno Santarém
- Host‐Parasite Interactions GroupInstitute of Research and Innovation in HealthUniversity of PortoPortoPortugal
- Department of Biological SciencesFaculty of PharmacyUniversity of PortoPortoPortugal
| | | | - Marcel I. Ramirez
- EVAHPI ‐ Extracellular Vesicles and Host‐Parasite Interactions Research Group Laboratório de Biologia Molecular e Sistemática de TripanossomatideosInstituto Carlos Chagas‐FiocruzCuritibaParanáBrasil
| | - Dolores Bernal
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències BiològiquesUniversitat de ValènciaBurjassotValenciaSpain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i ParasitologiaUniversitat de ValènciaBurjassotValenciaSpain
| | - Vera Lucia Pereira‐Chioccola
- Laboratório de Biologia Molecular de Parasitas e Fungos, Centro de Parasitologia e MicologiaInstituto Adolfo Lutz (IAL)São PauloBrasil
| | - Lysangela Ronalte Alves
- Laboratório de Regulação da Expressão GênicaInstituto Carlos ChagasFiocruz ParanáCuritibaBrazil
- Research Center in Infectious DiseasesDivision of Infectious Disease and Immunity CHU de Quebec Research CenterDepartment of MicrobiologyInfectious Disease and ImmunologyFaculty of MedicineUniversity LavalQuebec CityQuebecCanada
| | - Hernando Del Portillo
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
- IGTP Institut d'Investigació Germans Trias i PujolBadalona (Barcelona)Spain
- ICREA Institució Catalana de Recerca i Estudis Avanc¸ats (ICREA)BarcelonaSpain
| | - Neta Regev‐Rudzki
- Department of Biomolecular SciencesWeizmann Institute of Science (WIS)RehovotIsrael
| | - Igor Correia de Almeida
- Department of Biological SciencesBorder Biomedical Research CenterThe University of Texas at El PasoEl PasoTexasUSA
| | - Sergio Schenkman
- Departamento de MicrobiologiaImunologia e Parasitologia, UNIFESPSão PauloBrazil
| | - Martin Olivier
- The Research Institute of the McGill University Health CentreMcGill UniversityMontréalQuébecCanada
| | - Ana Claudia Torrecilhas
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| |
Collapse
|
149
|
Soltani-Fard E, Asadi M, Taghvimi S, Vafadar A, Vosough P, Tajbakhsh A, Savardashtaki A. Exosomal microRNAs and long noncoding RNAs: as novel biomarkers for endometriosis. Cell Tissue Res 2023; 394:55-74. [PMID: 37480408 DOI: 10.1007/s00441-023-03802-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 06/23/2023] [Indexed: 07/24/2023]
Abstract
Endometriosis is a gynecological inflammatory disorder characterized by the development of endometrial-like cells outside the uterine cavity. This disease is associated with a wide range of clinical presentations, such as debilitating pelvic pain and infertility issues. Endometriosis diagnosis is not easily discovered by ultrasound or clinical examination. Indeed, difficulties in noninvasive endometriosis diagnosis delay the confirmation and management of the disorder, increase symptoms, and place a significant medical and financial burden on patients. So, identifying specific and sensitive biomarkers for this disease should therefore be a top goal. Exosomes are extracellular vesicles secreted by most cell types. They transport between cells' bioactive molecules such as noncoding RNAs and proteins. MicroRNAs and long noncoding RNAs which are key molecules transferred by exosomes have recently been identified to have a significant role in endometriosis by modulating different proteins and their related genes. As a result, the current review focuses on exosomal micro-and-long noncoding RNAs that are involved in endometriosis disease. Furthermore, major molecular mechanisms linking corresponding RNA molecules to endometriosis development will be briefly discussed to better clarify the potential functions of exosomal noncoding RNAs in the therapy and diagnosis of endometriosis.
Collapse
Affiliation(s)
- Elahe Soltani-Fard
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Marzieh Asadi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and, Technologies, Shiraz University of, Medical Sciences, Shiraz, 71362 81407, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Taghvimi
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and, Technologies, Shiraz University of, Medical Sciences, Shiraz, 71362 81407, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Vosough
- Department of Medical Biotechnology, School of Advanced Medical Sciences and, Technologies, Shiraz University of, Medical Sciences, Shiraz, 71362 81407, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and, Technologies, Shiraz University of, Medical Sciences, Shiraz, 71362 81407, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
150
|
Patel G, Agnihotri TG, Gitte M, Shinde T, Gomte SS, Goswami R, Jain A. Exosomes: a potential diagnostic and treatment modality in the quest for counteracting cancer. Cell Oncol (Dordr) 2023; 46:1159-1179. [PMID: 37040056 PMCID: PMC10088756 DOI: 10.1007/s13402-023-00810-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Exosomes are nanosized bio vesicles formed when multivesicular bodies and the plasma membrane merge and discharge into bodily fluids. They are well recognized for facilitating intercellular communication by transporting numerous biomolecules, including DNA, RNAs, proteins, and lipids, and have been implicated in varied diseases including cancer. Exosomes may be altered to transport a variety of therapeutic payloads, including as short interfering RNAs, antisense oligonucleotides, chemotherapeutic drugs, and immunological modulators, and can be directed to a specific target. Exosomes also possess the potential to act as a diagnostic biomarker in cancer, in addition to their therapeutic potential. CONCLUSION In this review, the physiological roles played by exosomes were summarized along with their biogenesis process. Different isolation techniques of exosomes including centrifugation-based, size-based, and polymer precipitation-based techniques have also been described in detail with a special focus on cancer therapeutic applications. The review also shed light on techniques of incubation of drugs with exosomes and their characterization methods covering the most advanced techniques. Myriad applications of exosomes in cancer as diagnostic biomarkers, drug delivery carriers, and chemoresistance-related issues have been discussed at length. Furthermore, a brief overview of exosome-based anti-cancer vaccines and a few prominent challenges concerning exosomal delivery have been concluded at the end.
Collapse
Affiliation(s)
- Gayatri Patel
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Manoj Gitte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Tanuja Shinde
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Roshan Goswami
- Biological E Limited, Plot No-1, Phase 2, Kolthur Village, Medchal District, Shameerpet Mdl, Hyderabad, Telangana, 500078, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|