101
|
Is leptin resistance the cause or the consequence of diet-induced obesity? Int J Obes (Lond) 2018; 42:1445-1457. [PMID: 29789721 DOI: 10.1038/s41366-018-0111-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/13/2018] [Accepted: 04/10/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND/OBJECTIVES Obesity is strongly associated with leptin resistance. It is unclear whether leptin resistance results from the (over)consumption of energy-dense diets or if reduced leptin sensitivity is also a pre-existing factor in rodent models of diet-induced obesity (DIO). We here tested whether leptin sensitivity on a chow diet predicts subsequent weight gain and leptin sensitivity on a free choice high-fat high-sucrose (fcHFHS) diet. METHODS Based upon individual leptin sensitivity on chow diet, rats were grouped in leptin sensitive (LS, n = 22) and leptin resistant (LR, n = 19) rats (P = 0.000), and the development of DIO on a fcHFHS diet was compared. The time-course of leptin sensitivity was measured over weeks in individual rats. RESULTS Both on a chow and a fcHFHS diet, high variability in leptin sensitivity was observed between rats, but not over time per individual rat. Exposure to the fcHFHS diet revealed that LR rats were more prone to develop DIO (P = 0.013), which was independent of caloric intake (p ≥ 0.320) and the development of diet-induced leptin resistance (P = 0.769). Reduced leptin sensitivity in LR compared with LS rats before fcHFHS diet exposure, was associated with reduced leptin-induced phosphorylated signal transducer and activator of transcription 3 (pSTAT3) levels in the dorsomedial and ventromedial hypothalamus (P ≤ 0.049), but not the arcuate nucleus (P = 0.558). CONCLUSIONS A pre-existing reduction in leptin sensitivity determines the susceptibility to develop excessive DIO after fcHFHS diet exposure. Rats with a pre-existing reduction in leptin sensitivity develop excessive DIO without eating more calories or altering their leptin sensitivity.
Collapse
|
102
|
Quach D, Britton RA. Gut Microbiota and Bone Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1033:47-58. [PMID: 29101651 DOI: 10.1007/978-3-319-66653-2_4] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The past decade has seen an explosion of research in the area of how the bacteria that inhabit the human body impact health and disease. One of the more surprising concepts to emerge from this work is the ability of the intestinal microbiota to impact virtually all systems in the body. Recently, the role of gut bacteria in bone health and disease has received more significant attention. In this chapter, we review what has been learned about how the gut microbiome impacts bone health and discuss possible mechanisms of how the gut-bone axis may be connected. We also discuss the use of therapeutic microbes in the modulation of bone health. Finally, we propose an emerging field of the gut-brain-bone axis, in which the gut drives bone physiology via regulation of key hormones that are originally synthesized in the brain.
Collapse
Affiliation(s)
- Darin Quach
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Robert A Britton
- Baylor College of Medicine, Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research, Houston, TX, USA.
| |
Collapse
|
103
|
Nath A, Haktanirlar G, Varga Á, Molnár MA, Albert K, Galambos I, Koris A, Vatai G. Biological Activities of Lactose-Derived Prebiotics and Symbiotic with Probiotics on Gastrointestinal System. ACTA ACUST UNITED AC 2018; 54:medicina54020018. [PMID: 30344249 PMCID: PMC6037253 DOI: 10.3390/medicina54020018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/23/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023]
Abstract
Lactose-derived prebiotics provide wide ranges of gastrointestinal comforts. In this review article, the probable biochemical mechanisms through which lactose-derived prebiotics offer positive gastrointestinal health are reported along with the up-to-date results of clinical investigations; this might be the first review article of its kind, to the best of our knowledge. Lactose-derived prebiotics have unique biological and functional values, and they are confirmed as ‘safe’ by the Food and Drug Administration federal agency. Medical practitioners frequently recommend them as therapeutics as a pure form or combined with dairy-based products (yoghurt, milk and infant formulas) or fruit juices. The biological activities of lactose-derived prebiotics are expressed in the presence of gut microflora, mainly probiotics (Lactobacillus spp. in the small intestine and Bifidobacterium spp. in the large intestine). Clinical investigations reveal that galacto-oligosaccharide reduces the risks of several types of diarrhea (traveler’s diarrhea, osmotic diarrhea and Clostridium difficile associated relapsing diarrhea). Lactulose and lactosucrose prevent inflammatory bowel diseases (Crohn’s disease and ulcerative colitis). Lactulose and lactitol reduce the risk of hepatic encephalopathy. Furthermore, lactulose, galacto-oligosaccharide and lactitol prevent constipation in individuals of all ages. It is expected that the present review article will receive great attention from medical practitioners and food technologists.
Collapse
Affiliation(s)
- Arijit Nath
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
- Soós Ernő Water Technology Research Centre, Faculty of Engineering, University of Pannonia, Zrínyi M. u. 18, H-8800 Nagykanizsa, Hungary.
| | - Gokce Haktanirlar
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
| | - Áron Varga
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
| | - Máté András Molnár
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
| | - Krisztina Albert
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
| | - Ildikó Galambos
- Soós Ernő Water Technology Research Centre, Faculty of Engineering, University of Pannonia, Zrínyi M. u. 18, H-8800 Nagykanizsa, Hungary.
| | - András Koris
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
| | - Gyula Vatai
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
| |
Collapse
|
104
|
Mulders RJ, de Git KCG, Schéle E, Dickson SL, Sanz Y, Adan RAH. Microbiota in obesity: interactions with enteroendocrine, immune and central nervous systems. Obes Rev 2018; 19:435-451. [PMID: 29363272 DOI: 10.1111/obr.12661] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023]
Abstract
Western diets, with high consumption of simple sugars and saturated fats, contribute to the rise in the prevalence of obesity. It now seems clear that high-fat diets cause obesity, at least in part, by modifying the composition and function of the microorganisms that colonize in the gastrointestinal tract, the microbiota. The exact pathways by which intestinal microbiota contribute to obesity remain largely unknown. High-fat diet-induced alterations in intestinal microbiota have been suggested to increase energy extraction, intestinal permeability and systemic inflammation while decreasing the capability to generate obesity-suppressing short-chain fatty acids. Moreover, by increasing systemic inflammation, microglial activation and affecting vagal nerve activity, 'obese microbiota' indirectly influence hypothalamic gene expression and promote overeating. Because the potential of intestinal microbiota to induce obesity has been recognized, multiple ways to modify its composition and function are being investigated to provide novel preventive and therapeutic strategies against diet-induced obesity.
Collapse
Affiliation(s)
- R J Mulders
- Master's Programme Science and Business Management, Utrecht University, Utrecht, The Netherlands
| | - K C G de Git
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - E Schéle
- Institute for Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - S L Dickson
- Institute for Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Y Sanz
- Microbial Ecology, Nutrition and Health Research Group, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - R A H Adan
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
105
|
Abstract
The human GI tract harbors a diverse and dynamic microbial community comprising bacteria, archaea, viruses and eukaryotic microbes, which varies in composition from individual to individual. A healthy microbiota metabolizes various indigestible dietary components of the host, maintains host immune homeostasis and nutrient intake, but, an imbalanced microbiota has been reported to be associated with many diseases, including obesity. Rodent studies have produced evidence in support of the causal role of the gut microbiota in the development of obesity, however, such causal relationship is lacking in humans. The objective of this review is to critically analyze the vast information available on the composition, function and alterations of the gut microbiota in obesity and explore the future prospects of this research area.
Collapse
Affiliation(s)
- Shabana
- Department of Microbiology & Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan
| | - Saleem U Shahid
- Department of Microbiology & Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan
| | - Uzma Irfan
- Women University Multan, Multan 66000, Pakistan
| |
Collapse
|
106
|
Pekmez CT, Dragsted LO, Brahe LK. Gut microbiota alterations and dietary modulation in childhood malnutrition - The role of short chain fatty acids. Clin Nutr 2018; 38:615-630. [PMID: 29496274 DOI: 10.1016/j.clnu.2018.02.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/02/2018] [Accepted: 02/08/2018] [Indexed: 12/12/2022]
Abstract
The gut microbiome affects the health status of the host through different mechanisms and is associated with a wide variety of diseases. Both childhood undernutrition and obesity are linked to alterations in composition and functionality of the gut microbiome. One of the possible mechanisms underlying the interplay between microbiota and host metabolism is through appetite-regulating hormones (including leptin, ghrelin, glucagon-like peptide-1). Short chain fatty acids, the end product of bacterial fermentation of non-digestible carbohydrates, might be able to alter energy harvest and metabolism through enteroendocrine cell signaling, adipogenesis and insulin-like growth factor-1 production. Elucidating these mechanisms may lead to development of new modulation practices of the gut microbiota as a potential prevention and treatment strategy for childhood malnutrition. The present overview will briefly outline the gut microbiota development in the early life, gut microbiota alterations in childhood undernutrition and obesity, and whether this relationship is causal. Further we will discuss possible underlying mechanisms in relation to the gut-brain axis and short chain fatty acids, and the potential of probiotics, prebiotics and synbiotics for modulating the gut microbiota during childhood as a prevention and treatment strategy against undernutrition and obesity.
Collapse
Affiliation(s)
- Ceyda Tugba Pekmez
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark; Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey.
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Lena Kirchner Brahe
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
107
|
Prieto I, Hidalgo M, Segarra AB, Martínez-Rodríguez AM, Cobo A, Ramírez M, Abriouel H, Gálvez A, Martínez-Cañamero M. Influence of a diet enriched with virgin olive oil or butter on mouse gut microbiota and its correlation to physiological and biochemical parameters related to metabolic syndrome. PLoS One 2018; 13:e0190368. [PMID: 29293629 PMCID: PMC5749780 DOI: 10.1371/journal.pone.0190368] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 12/13/2017] [Indexed: 12/22/2022] Open
Abstract
The type of fat in the diet determinates the characteristics of gut microbiota, exerting a major role in the development of metabolic syndrome. We hypothesize that a diet enriched with extra virgin olive oil (EVOO) has a distinctive effect on the intestinal microbiome in comparison with an enriched butter diet (BT) and this effect is related to the physiological benefits exerted by EVOO. Swiss Webster mice were fed standard (SD) or two high fat diets enriched with EVOO or butter. Hormonal, physiological and metabolic parameters were evaluated. At the end of the feeding period, DNA was extracted from faeces and the 16S rRNA genes were pyrosequenced. Among the main significant differences found, BT triggered the highest values of systolic blood pressure, correlating positively with the percentage of Desulfovibrio sequences in faeces, which in turn showed significantly higher values in BT than in EVOO. EVOO had the lowest values of plasmatic insulin, correlating inversely with Desulfovibrio, and had the lowest plasmatic values of leptin which correlated inversely with Sutterellaceae, Marispirillum and Mucilaginibacter dageonensis, the three showing significantly higher percentages in EVOO. The lowest total cholesterol levels in plasma were detected in SD, correlating positively with Prevotella and Fusicatenibacter, both taxa with significantly greater presence in SD. These results may be indicative of a link between specific diets, certain physiological parameters and the prevalence of some taxa, supporting the possibility that in some of the proposed effects of virgin olive oil the modulation of intestinal microbiota could be involved.
Collapse
Affiliation(s)
- Isabel Prieto
- Área de Fisiología, Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
| | - Marina Hidalgo
- Área de Microbiología, Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
| | - Ana Belén Segarra
- Área de Fisiología, Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
| | | | - Antonio Cobo
- Área de Microbiología, Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
| | - Manuel Ramírez
- Área de Fisiología, Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
| | - Hikmate Abriouel
- Área de Microbiología, Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
| | - Antonio Gálvez
- Área de Microbiología, Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
| | | |
Collapse
|
108
|
Abstract
The microbial ecosystem that inhabits the gastrointestinal tract of all mammals-the gut microbiota-has been in a symbiotic relationship with its hosts over many millennia. Thanks to modern technology, the myriad of functions that are controlled or modulated by the gut microbiota are beginning to unfold. One of the systems that is emerging to closely interact with the gut microbiota is the body's major neuroendocrine system that controls various body processes in response to stress, the hypothalamic-pituitary-adrenal (HPA) axis. This interaction is of pivotal importance; as various disorders of the microbiota-gut-brain axis are associated with dysregulation of the HPA axis. The present contribution describes the bidirectional communication between the gut microbiota and the HPA axis and delineates the potential underlying mechanisms. In this regard, it is important to note that the communication between the gut microbiota and the HPA axis is closely interrelated with other systems, such as the immune system, the intestinal barrier and blood-brain barrier, microbial metabolites, and gut hormones, as well as the sensory and autonomic nervous systems. These communication pathways will be exemplified through preclinical models of early life stress, beneficial roles of probiotics and prebiotics, evidence from germ-free mice, and antibiotic-induced modulation of the gut microbiota.
Collapse
Affiliation(s)
- Aitak Farzi
- Otto Loewi Research Center, Pharmacology Section, Medical University of Graz, Graz, Austria.
| | - Esther E Fröhlich
- Otto Loewi Research Center, Pharmacology Section, Medical University of Graz, Graz, Austria
| | - Peter Holzer
- Otto Loewi Research Center, Pharmacology Section, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
109
|
Lach G, Schellekens H, Dinan TG, Cryan JF. Anxiety, Depression, and the Microbiome: A Role for Gut Peptides. Neurotherapeutics 2018; 15:36-59. [PMID: 29134359 PMCID: PMC5794698 DOI: 10.1007/s13311-017-0585-0] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The complex bidirectional communication between the gut and the brain is finely orchestrated by different systems, including the endocrine, immune, autonomic, and enteric nervous systems. Moreover, increasing evidence supports the role of the microbiome and microbiota-derived molecules in regulating such interactions; however, the mechanisms underpinning such effects are only beginning to be resolved. Microbiota-gut peptide interactions are poised to be of great significance in the regulation of gut-brain signaling. Given the emerging role of the gut-brain axis in a variety of brain disorders, such as anxiety and depression, it is important to understand the contribution of bidirectional interactions between peptide hormones released from the gut and intestinal bacteria in the context of this axis. Indeed, the gastrointestinal tract is the largest endocrine organ in mammals, secreting dozens of different signaling molecules, including peptides. Gut peptides in the systemic circulation can bind cognate receptors on immune cells and vagus nerve terminals thereby enabling indirect gut-brain communication. Gut peptide concentrations are not only modulated by enteric microbiota signals, but also vary according to the composition of the intestinal microbiota. In this review, we will discuss the gut microbiota as a regulator of anxiety and depression, and explore the role of gut-derived peptides as signaling molecules in microbiome-gut-brain communication. Here, we summarize the potential interactions of the microbiota with gut hormones and endocrine peptides, including neuropeptide Y, peptide YY, pancreatic polypeptide, cholecystokinin, glucagon-like peptide, corticotropin-releasing factor, oxytocin, and ghrelin in microbiome-to-brain signaling. Together, gut peptides are important regulators of microbiota-gut-brain signaling in health and stress-related psychiatric illnesses.
Collapse
Affiliation(s)
- Gilliard Lach
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Harriet Schellekens
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Food for Health Ireland, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland.
- Food for Health Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
110
|
Spichak S, Guzzetta KE, O’Leary OF, Clarke G, Dinan TG, Cryan JF. Without a bug’s life: Germ-free rodents to interrogate microbiota-gut-neuroimmune interactions. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.ddmod.2019.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
111
|
Heiss CN, Olofsson LE. Gut Microbiota-Dependent Modulation of Energy Metabolism. J Innate Immun 2017; 10:163-171. [PMID: 29131106 DOI: 10.1159/000481519] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 09/14/2017] [Indexed: 12/24/2022] Open
Abstract
The gut microbiota has emerged as an environmental factor that modulates the host's energy balance. It increases the host's ability to harvest energy from the digested food, and produces metabolites and microbial products such as short-chain fatty acids, secondary bile acids, and lipopolysaccharides. These metabolites and microbial products act as signaling molecules that modulate appetite, gut motility, energy uptake and storage, and energy expenditure. Several findings suggest that the gut microbiota can affect the development of obesity. Germ-free mice are leaner than conventionally raised mice and they are protected against diet-induced obesity. Furthermore, obese humans and rodents have an altered gut microbiota composition with less phylogeneic diversity compared to lean controls, and transplantation of the gut microbiota from obese subjects to germ-free mice can transfer the obese phenotype. Taken together, these findings indicate a role for the gut microbiota in obesity and suggest that the gut microbiota could be targeted to improve metabolic diseases like obesity. This review focuses on the role of the gut microbiota in energy balance regulation and its potential role in obesity.
Collapse
Affiliation(s)
- Christina N Heiss
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | | |
Collapse
|
112
|
Jordan BF, Gourgue F, Cani PD. Adipose Tissue Metabolism and Cancer Progression: Novel Insights from Gut Microbiota? CURRENT PATHOBIOLOGY REPORTS 2017; 5:315-322. [PMID: 29188139 PMCID: PMC5684272 DOI: 10.1007/s40139-017-0154-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose of Review Obesity is strongly associated with the development of several types of cancers. This review aims to discuss the recent key mechanisms and actors underlying the link between adipose tissue metabolism and cancer, and the unequivocal common mechanisms connecting gut microbes to adipose tissue and eventually cancer development. Recent Findings Complex interactions among systemic and tissue-specific pathways are suggested to link obesity and cancer, involving endocrine hormones, adipokines, fatty acids, inflammation, metabolic alterations, and hypoxia. Emerging evidence also suggests that the gut microbiota, another key environmental factor, may be considered as a converging element. Studies have shown that cancer susceptibility may be induced in germ-free mice colonized with the gut microbiota from high-fat diet-fed mice. Suggested mechanisms may involve inflammation, immunity changes, lipogenic substrates, and adipogenesis. Summary Cancer development is a complex process that may be under the control of previously unthought factors such as the gut microbiota. Whether specific intervention targeting the gut microbiota may reduce adipose tissue-driven cancer is an interesting strategy that remains to be proven.
Collapse
Affiliation(s)
- Benedicte F Jordan
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research group, Université Catholique de Louvain, Av. E. Mounier, 73, B1.73.08, 1200 Brussels, Belgium
| | - Florian Gourgue
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research group, Université Catholique de Louvain, Av. E. Mounier, 73, B1.73.08, 1200 Brussels, Belgium.,Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life Sciences and BIOtechnology), Metabolism and Nutrition Research group, Université Catholique de Louvain, Av. E. Mounier, 73 box B1.73.11, 1200 Brussels, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life Sciences and BIOtechnology), Metabolism and Nutrition Research group, Université Catholique de Louvain, Av. E. Mounier, 73 box B1.73.11, 1200 Brussels, Belgium
| |
Collapse
|
113
|
Bagarolli RA, Tobar N, Oliveira AG, Araújo TG, Carvalho BM, Rocha GZ, Vecina JF, Calisto K, Guadagnini D, Prada PO, Santos A, Saad STO, Saad MJA. Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice. J Nutr Biochem 2017; 50:16-25. [PMID: 28968517 DOI: 10.1016/j.jnutbio.2017.08.006] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/05/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023]
Abstract
Obesity and type 2 diabetes are characterized by subclinical inflammatory process. Changes in composition or modulation of the gut microbiota may play an important role in the obesity-associated inflammatory process. In the current study, we evaluated the effects of probiotics (Lactobacillus rhamnosus, L. acidophilus and Bifidobacterium bifidumi) on gut microbiota, changes in permeability, and insulin sensitivity and signaling in high-fat diet and control animals. More importantly, we investigated the effects of these gut modulations on hypothalamic control of food intake, and insulin and leptin signaling. Swiss mice were submitted to a high-fat diet (HFD) with probiotics or pair-feeding for 5 weeks. Metagenome analyses were performed on DNA samples from mouse feces. Blood was drawn to determine levels of glucose, insulin, LPS, cytokines and GLP-1. Liver, muscle, ileum and hypothalamus tissue proteins were analyzed by Western blotting and real-time polymerase chain reaction. In addition, liver and adipose tissues were analyzed using histology and immunohistochemistry. The HFD induced huge alterations in gut microbiota accompanied by increased intestinal permeability, LPS translocation and systemic low-grade inflammation, resulting in decreased glucose tolerance and hyperphagic behavior. All these obesity-related features were reversed by changes in the gut microbiota profile induced by probiotics. Probiotics also induced an improvement in hypothalamic insulin and leptin resistance. Our data demonstrate that the intestinal microbiome is a key modulator of inflammatory and metabolic pathways in both peripheral and central tissues. These findings shed light on probiotics as an important tool to prevent and treat patients with obesity and insulin resistance.
Collapse
Affiliation(s)
- Renata A Bagarolli
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil
| | - Natália Tobar
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil
| | - Alexandre G Oliveira
- Department of Physical Education, São Paulo State University (UNESP), Bioscience Institute, Rio Claro, SP, Brazil
| | - Tiago G Araújo
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil
| | - Bruno M Carvalho
- Department of Biology Science, Federal University of Pernambuco, Recife, PE, Brazil
| | - Guilherme Z Rocha
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil
| | - Juliana F Vecina
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil
| | - Kelly Calisto
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil
| | - Patrícia O Prada
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil
| | - Andrey Santos
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil
| | - Sara T O Saad
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil
| | - Mario J A Saad
- Department of Internal Medicine, State University of Campinas, 13081-970, Campinas, SP, Brazil.
| |
Collapse
|
114
|
|
115
|
Blasco G, Moreno-Navarrete JM, Rivero M, Pérez-Brocal V, Garre-Olmo J, Puig J, Daunis-I-Estadella P, Biarnés C, Gich J, Fernández-Aranda F, Alberich-Bayarri Á, Moya A, Pedraza S, Ricart W, López M, Portero-Otin M, Fernandez-Real JM. The Gut Metagenome Changes in Parallel to Waist Circumference, Brain Iron Deposition, and Cognitive Function. J Clin Endocrinol Metab 2017; 102:2962-2973. [PMID: 28591831 DOI: 10.1210/jc.2017-00133] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 05/30/2017] [Indexed: 02/07/2023]
Abstract
CONTEXT Microbiota perturbations seem to exert modulatory effects on emotional behavior, stress-, and pain-modulation systems in adult animals; however, limited information is available in humans. OBJECTIVE To study potential relationships among the gut metagenome, brain microstructure, and cognitive performance in middle-aged, apparently healthy, obese and nonobese subjects after weight changes. DESIGN This is a longitudinal study over a 2-year period. SETTING A tertiary public hospital. PATIENTS OR OTHER PARTICIPANTS Thirty-five (18 obese) apparently healthy subjects. INTERVENTION(S) Diet counseling was provided to all subjects. Obese subjects were followed every 6 months. MAIN OUTCOME MEASURE(S) Brain relaxometry (using magnetic resonance R2*), cognitive performance (by means of cognitive tests), and gut microbiome composition (shotgun). RESULTS R2* increased in both obese and nonobese subjects, independent of weight variations. Changes in waist circumference, but not in body mass index, were associated with brain iron deposition (R2*) in the striatum, amygdala, and hippocampus in parallel to visual-spatial constructional ability and circulating beta amyloid Aβ42 levels. These changes were linked to shifts in gut microbiome in which the relative abundance of bacteria belonging to Caldiserica and Thermodesulfobacteria phyla were reciprocally associated with raised R2* in different brain nuclei. Of note, the increase in bacteria belonging to Tenericutes phylum was parallel to decreased R2* gain in the striatum, serum Aβ42 levels, and spared visual-spatial constructional ability. Interestingly, metagenome functions associated with circulating and brain iron stores are involved in bacterial generation of siderophores. CONCLUSIONS Changes in the gut metagenome are associated longitudinally with cognitive function and brain iron deposition.
Collapse
Affiliation(s)
- Gerard Blasco
- Research Unit, Institute of Diagnostic Imaging (IDI), Parc Sanitari Pere Virgili, Barcelona 08023, Spain
- Medical Imaging, Girona Biomedical Research Institute (IDIBGI), Hospital Universitari Dr Josep Trueta, Girona 17007, Spain
| | - José Maria Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition (UDEN), Girona Biomedical Research Institute (IDIBGI), CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0010), Instituto de Salud Carlos III (ISCIII), Girona 17007, Spain
- Department of Medicine, University of Girona, Girona 17007, Spain
| | - Mireia Rivero
- Neurology Department, Girona Biomedical Research Institute (IDIBGI), Hospital Universitari Dr Josep Trueta. Girona 17007, Spain
| | - Vicente Pérez-Brocal
- Genomics and Health Area of the Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO)-Salud Pública, Valencia 46020, Spain
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Valencia 46980, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid 28029, Spain
| | - Josep Garre-Olmo
- Research Group on Aging, Disability and Health, Girona Biomedical Research Institute (IDIBGI), Girona 17007, Spain
| | - Josep Puig
- Research Unit, Institute of Diagnostic Imaging (IDI), Parc Sanitari Pere Virgili, Barcelona 08023, Spain
- Medical Imaging, Girona Biomedical Research Institute (IDIBGI), Hospital Universitari Dr Josep Trueta, Girona 17007, Spain
| | - Pepus Daunis-I-Estadella
- Department of Computer Science, Applied Mathematics, and Statistics, University of Girona. Girona 17004, Spain
| | - Carles Biarnés
- Medical Imaging, Girona Biomedical Research Institute (IDIBGI), Hospital Universitari Dr Josep Trueta, Girona 17007, Spain
| | - Jordi Gich
- Department of Medicine, University of Girona, Girona 17007, Spain
| | - Fernando Fernández-Aranda
- Department of Psychiatry, University Hospital of Bellvitge, Bellvitge Biomedical ResearchInstitute (IDIBELL), CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona 08908, Spain
| | - Ángel Alberich-Bayarri
- Biomedical Imaging Research Group (GIBI230), QUantitative Imaging Biomarkers In Medicine (QUIBIM SL), La Fe Polytechnics and University Hospital, La Fe Health ResearchInstitute, Valencia 46026, Spain
| | - Andrés Moya
- Genomics and Health Area of the Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO)-Salud Pública, Valencia 46020, Spain
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Valencia 46980, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid 28029, Spain
| | - Salvador Pedraza
- Medical Imaging, Girona Biomedical Research Institute (IDIBGI), Hospital Universitari Dr Josep Trueta, Girona 17007, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition (UDEN), Girona Biomedical Research Institute (IDIBGI), CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0010), Instituto de Salud Carlos III (ISCIII), Girona 17007, Spain
- Department of Medicine, University of Girona, Girona 17007, Spain
| | - Miguel López
- NeurObesity Group; Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain
- CIBERObn, Santiago de Compostela 15706, Spain
| | - Manuel Portero-Otin
- Nutren Group, Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida) and Agroalimentary Science and Technology Park (PCiTAL)-University of Lleida, Lleida 25003, Spain
| | - José-Manuel Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition (UDEN), Girona Biomedical Research Institute (IDIBGI), CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0010), Instituto de Salud Carlos III (ISCIII), Girona 17007, Spain
- Department of Medicine, University of Girona, Girona 17007, Spain
| |
Collapse
|
116
|
de Cossío LF, Fourrier C, Sauvant J, Everard A, Capuron L, Cani PD, Layé S, Castanon N. Impact of prebiotics on metabolic and behavioral alterations in a mouse model of metabolic syndrome. Brain Behav Immun 2017; 64:33-49. [PMID: 28027925 DOI: 10.1016/j.bbi.2016.12.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/09/2016] [Accepted: 12/22/2016] [Indexed: 02/08/2023] Open
Abstract
Mounting evidence shows that the gut microbiota, an important player within the gut-brain communication axis, can affect metabolism, inflammation, brain function and behavior. Interestingly, gut microbiota composition is known to be altered in patients with metabolic syndrome (MetS), who also often display neuropsychiatric symptoms. The use of prebiotics, which beneficially alters the microbiota, may therefore be a promising way to potentially improve physical and mental health in MetS patients. This hypothesis was tested in a mouse model of MetS, namely the obese and type-2 diabetic db/db mice, which display emotional and cognitive alterations associated with changes in gut microbiota composition and hippocampal inflammation compared to their lean db/+ littermates. We assessed the impact of chronic administration (8weeks) of prebiotics (oligofructose) on both metabolic (body weight, food intake, glucose homeostasis) and behavioral (increased anxiety-like behavior and impaired spatial memory) alterations characterizing db/db mice, as well as related neurobiological correlates, with particular attention to neuroinflammatory processes. Prebiotic administration improved excessive food intake and glycemic dysregulations (glucose tolerance and insulin resistance) in db/db mice. This was accompanied by an increase of plasma anti-inflammatory cytokine IL-10 levels and hypothalamic mRNA expression of the anorexigenic cytokine IL-1β, whereas unbalanced mRNA expression of hypothalamic orexigenic (NPY) and anorexigenic (CART, POMC) peptides was unchanged. We also detected signs of improved blood-brain-barrier integrity in the hypothalamus of oligofructose-treated db/db mice (normalized expression of tight junction proteins ZO-1 and occludin). On the contrary, prebiotic administration did not improve behavioral alterations and associated reduction of hippocampal neurogenesis displayed by db/db mice, despite normalization of increased hippocampal IL-6 mRNA expression. Of note, we found a relationship between the effect of treatment on dentate gyrus neurons and spatial memory. These findings may prove valuable for introducing novel approaches to treat some of the comorbidities associated with MetS.
Collapse
Affiliation(s)
- Lourdes Fernández de Cossío
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Célia Fourrier
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Julie Sauvant
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Amandine Everard
- Université catholique de Louvain, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Metabolism and Nutrition Research Group, 1200 Brussels, Belgium
| | - Lucile Capuron
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Patrice D Cani
- Université catholique de Louvain, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Metabolism and Nutrition Research Group, 1200 Brussels, Belgium
| | - Sophie Layé
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Nathalie Castanon
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France.
| |
Collapse
|
117
|
Fleck AK, Schuppan D, Wiendl H, Klotz L. Gut-CNS-Axis as Possibility to Modulate Inflammatory Disease Activity-Implications for Multiple Sclerosis. Int J Mol Sci 2017; 18:E1526. [PMID: 28708108 PMCID: PMC5536015 DOI: 10.3390/ijms18071526] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/15/2022] Open
Abstract
In the last decade the role of environmental factors as modulators of disease activity and progression has received increasing attention. In contrast to classical environmental modulators such as exposure to sun-light or fine dust pollution, nutrition is an ideal tool for a personalized human intervention. Various studies demonstrate a key role of dietary factors in autoimmune diseases including Inflammatory Bowel Disease (IBD), rheumatoid arthritis or inflammatory central nervous system (CNS) diseases such as Multiple Sclerosis (MS). In this review we discuss the connection between diet and inflammatory processes via the gut-CNS-axis. This axis describes a bi-directional communication system and comprises neuronal signaling, neuroendocrine pathways and modulation of immune responses. Therefore, the gut-CNS-axis represents an emerging target to modify CNS inflammatory activity ultimately opening new avenues for complementary and adjunctive treatment of autoimmune diseases such as MS.
Collapse
Affiliation(s)
- Ann-Katrin Fleck
- Department of Neurology, University Hospital Muenster, 48149 Muenster, Germany.
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Heinz Wiendl
- Department of Neurology, University Hospital Muenster, 48149 Muenster, Germany.
| | - Luisa Klotz
- Department of Neurology, University Hospital Muenster, 48149 Muenster, Germany.
| |
Collapse
|
118
|
Shore SA, Cho Y. Obesity and Asthma: Microbiome-Metabolome Interactions. Am J Respir Cell Mol Biol 2017; 54:609-17. [PMID: 26949916 DOI: 10.1165/rcmb.2016-0052ps] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Obesity is a risk factor for asthma, but obese subjects with asthma respond poorly to standard asthma drugs. Obesity also alters gut bacterial community structure. Obesity-related changes in gut bacteria contribute to weight gain and other obesity-related conditions, including insulin resistance and systemic inflammation. Here, we review the rationale for the hypothesis that obesity-related changes in gut bacteria may also play a role in obesity-related asthma. The metabolomes of the liver, serum, urine, and adipose tissue are altered in obesity. Gut bacteria produce a large number of metabolites, which can reach the blood and circulate to other organs, and gut bacteria-derived metabolites have been shown to contribute to disease processes outside the gastrointestinal tract, including cardiovascular disease. Here, we describe the potential roles for two such classes of metabolites in obesity-related asthma: short-chain fatty acids and bile acids. Greater understanding of the role of microbiota in obesity-related asthma could lead to novel microbiota-based treatments for these hard-to-treat patients.
Collapse
Affiliation(s)
- Stephanie A Shore
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Youngji Cho
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
119
|
Yoo BB, Mazmanian SK. The Enteric Network: Interactions between the Immune and Nervous Systems of the Gut. Immunity 2017; 46:910-926. [PMID: 28636959 PMCID: PMC5551410 DOI: 10.1016/j.immuni.2017.05.011] [Citation(s) in RCA: 323] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 05/25/2017] [Accepted: 05/31/2017] [Indexed: 12/16/2022]
Abstract
Interactions between the nervous and immune systems enable the gut to respond to the variety of dietary products that it absorbs, the broad spectrum of pathogens that it encounters, and the diverse microbiome that it harbors. The enteric nervous system (ENS) senses and reacts to the dynamic ecosystem of the gastrointestinal (GI) tract by translating chemical cues from the environment into neuronal impulses that propagate throughout the gut and into other organs in the body, including the central nervous system (CNS). This review will describe the current understanding of the anatomy and physiology of the GI tract by focusing on the ENS and the mucosal immune system. We highlight emerging literature that the ENS is essential for important aspects of microbe-induced immune responses in the gut. Although most basic and applied research in neuroscience has focused on the brain, the proximity of the ENS to the immune system and its interface with the external environment suggest that novel paradigms for nervous system function await discovery.
Collapse
Affiliation(s)
- Bryan B Yoo
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Sarkis K Mazmanian
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
120
|
Plovier H, Cani PD. Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders? Microbiol Spectr 2017; 5:10.1128/microbiolspec.bad-0002-2016. [PMID: 28597812 PMCID: PMC11687490 DOI: 10.1128/microbiolspec.bad-0002-2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Indexed: 12/14/2022] Open
Abstract
Malnutrition is the cause of major public health concerns worldwide. On the one hand, obesity and associated pathologies (also known as the metabolic syndrome) affect more than 10% of the world population. Such pathologies might arise from an elevated inflammatory tone. We have discovered that the inflammatory properties of high-fat diets were linked to the translocation of lipopolysaccharide (LPS). We proposed a mechanism associating the gut microbiota with the onset of insulin resistance and low-grade inflammation, a phenomenon that we called "metabolic endotoxemia." We and others have shown that bacteria as well as host-derived immune-related elements control microbial communities and eventually contribute to the phenotype observed during diet-induced obesity, diabetes, and metabolic inflammation. On the other hand, undernutrition is one of the leading causes of death in children. A diet poor in energy and/or nutrients causes incomplete development of the gut microbiota and may profoundly affect energy absorption, initiating stunted growth, edema, and diarrhea. In this review, we discuss how changes in microbiota composition are associated with obesity and undernutrition. We also highlight that opposite consequences exist in terms of energy absorption from the diet (obesity versus undernutrition), but interestingly the two situations share similar defects in term of diversity, functionality, and inflammatory potential.
Collapse
Affiliation(s)
- Hubert Plovier
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Patrice D Cani
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
121
|
Mirza A, Mao-Draayer Y. The gut microbiome and microbial translocation in multiple sclerosis. Clin Immunol 2017; 183:213-224. [PMID: 28286112 DOI: 10.1016/j.clim.2017.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/03/2017] [Accepted: 03/07/2017] [Indexed: 02/07/2023]
Abstract
Individuals with multiple sclerosis (MS) have a distinct intestinal microbial community (microbiota) and increased low-grade translocation of bacteria from the intestines into the circulation. The observed change of intestinal bacteria in MS patients regulate immune functions involved in MS pathogenesis. These functions include: systemic and central nervous system (CNS) immunity (including peripheral regulatory T cell function), the blood-brain barrier (BBB) permeability and CNS-resident cell activity. This review discusses the MS intestinal microbiota implication on MS systemic- and CNS-immunopathology. We introduce the possible contributions of MS low-grade microbial translocation (LG-MT) to the development of MS, and end on a discussion on microbiota therapies for MS patients.
Collapse
Affiliation(s)
- Ali Mirza
- Department of Microbiology and Immunology, University of Michigan School of Medicine, 4258 Alfred Taubman Biomedical Sciences Research Bldg. 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, United States; Department of Neurology, University of Michigan School of Medicine, 4258 Alfred Taubman Biomedical Sciences Research Bldg. 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, United States
| | - Yang Mao-Draayer
- Department of Neurology, University of Michigan School of Medicine, 4015 Alfred Taubman Biomedical Sciences Research Bldg. 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, United States.
| |
Collapse
|
122
|
Mazzoli R, Pessione E. The Neuro-endocrinological Role of Microbial Glutamate and GABA Signaling. Front Microbiol 2016; 7:1934. [PMID: 27965654 PMCID: PMC5127831 DOI: 10.3389/fmicb.2016.01934] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota provides the host with multiple functions (e.g., by contributing to food digestion, vitamin supplementation, and defense against pathogenic strains) and interacts with the host organism through both direct contact (e.g., through surface antigens) and soluble molecules, which are produced by the microbial metabolism. The existence of the so-called gut–brain axis of bi-directional communication between the gastrointestinal tract and the central nervous system (CNS) also supports a communication pathway between the gut microbiota and neural circuits of the host, including the CNS. An increasing body of evidence has shown that gut microbiota is able to modulate gut and brain functions, including the mood, cognitive functions, and behavior of humans. Nonetheless, given the extreme complexity of this communication network, its comprehension is still at its early stage. The present contribution will attempt to provide a state-of-the art description of the mechanisms by which gut microbiota can affect the gut–brain axis and the multiple cellular and molecular communication circuits (i.e., neural, immune, and humoral). In this context, special attention will be paid to the microbial strains that produce bioactive compounds and display ascertained or potential probiotic activity. Several neuroactive molecules (e.g., catecholamines, histamine, serotonin, and trace amines) will be considered, with special focus on Glu and GABA circuits, receptors, and signaling. From the basic science viewpoint, “microbial endocrinology” deals with those theories in which neurochemicals, produced by both multicellular organisms and prokaryotes (e.g., serotonin, GABA, glutamate), are considered as a common shared language that enables interkingdom communication. With regards to its application, research in this area opens the way toward the possibility of the future use of neuroactive molecule-producing probiotics as therapeutic agents for the treatment of neurogastroenteric and/or psychiatric disorders.
Collapse
Affiliation(s)
- Roberto Mazzoli
- Laboratory of Biochemistry, Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino Torino, Italy
| | - Enrica Pessione
- Laboratory of Biochemistry, Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino Torino, Italy
| |
Collapse
|
123
|
Friedman M. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans. Foods 2016; 5:E80. [PMID: 28231175 PMCID: PMC5302426 DOI: 10.3390/foods5040080] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/10/2016] [Accepted: 11/22/2016] [Indexed: 02/07/2023] Open
Abstract
More than 2000 species of edible and/or medicinal mushrooms have been identified to date, many of which are widely consumed, stimulating much research on their health-promoting properties. These properties are associated with bioactive compounds produced by the mushrooms, including polysaccharides. Although β-glucans (homopolysaccharides) are believed to be the major bioactive polysaccharides of mushrooms, other types of mushroom polysaccharides (heteropolysaccharides) also possess biological properties. Here we survey the chemistry of such health-promoting polysaccharides and their reported antiobesity and antidiabetic properties as well as selected anticarcinogenic, antimicrobial, and antiviral effects that demonstrate their multiple health-promoting potential. The associated antioxidative, anti-inflammatory, and immunomodulating activities in fat cells, rodents, and humans are also discussed. The mechanisms of action involve the gut microbiota, meaning the polysaccharides act as prebiotics in the digestive system. Also covered here are the nutritional, functional food, clinical, and epidemiological studies designed to assess the health-promoting properties of polysaccharides, individually and as blended mixtures, against obesity, diabetes, cancer, and infectious diseases, and suggestions for further research. The collated information and suggested research needs might guide further studies needed for a better understanding of the health-promoting properties of mushroom polysaccharides and enhance their use to help prevent and treat human chronic diseases.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA.
| |
Collapse
|
124
|
Berding K, Donovan SM. Microbiome and nutrition in autism spectrum disorder: current knowledge and research needs. Nutr Rev 2016; 74:723-736. [DOI: 10.1093/nutrit/nuw048] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
125
|
Kiraly DD, Walker DM, Calipari ES, Labonte B, Issler O, Pena CJ, Ribeiro EA, Russo SJ, Nestler EJ. Alterations of the Host Microbiome Affect Behavioral Responses to Cocaine. Sci Rep 2016; 6:35455. [PMID: 27752130 PMCID: PMC5067576 DOI: 10.1038/srep35455] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022] Open
Abstract
Addiction to cocaine and other psychostimulants represents a major public health crisis. The development and persistence of addictive behaviors comes from a complex interaction of genes and environment - the precise mechanisms of which remain elusive. In recent years a surge of evidence has suggested that the gut microbiome can have tremendous impact on behavioral via the microbiota-gut-brain axis. In this study we characterized the influence of the gut microbiota on cocaine-mediated behaviors. Groups of mice were treated with a prolonged course of non-absorbable antibiotics via the drinking water, which resulted in a substantial reduction of gut bacteria. Animals with reduced gut bacteria showed an enhanced sensitivity to cocaine reward and enhanced sensitivity to the locomotor-sensitizing effects of repeated cocaine administration. These behavioral changes were correlated with adaptations in multiple transcripts encoding important synaptic proteins in the brain’s reward circuitry. This study represents the first evidence that alterations in the gut microbiota affect behavioral response to drugs of abuse.
Collapse
Affiliation(s)
- Drew D Kiraly
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deena M Walker
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erin S Calipari
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benoit Labonte
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Orna Issler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Catherine J Pena
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Efrain A Ribeiro
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Scott J Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric J Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
126
|
Abstract
The gut microbiota and the brain interact with each other through multiple bidirectional signaling pathways in which neuropeptides and neuroactive peptide messengers play potentially important mediator roles. Currently, six particular modes of a neuropeptide link are emerging. (i) Neuropeptides and neurotransmitters contribute to the mutual microbiota-host interaction. (ii) The synthesis of neuroactive peptides is influenced by microbial control of the availability of amino acids. (iii) The activity of neuropeptides is tempered by microbiota-dependent autoantibodies. (iv) Peptide signaling between periphery and brain is modified by a regulatory action of the gut microbiota on the blood-brain barrier. (v) Within the brain, gut hormones released under the influence of the gut microbiota turn into neuropeptides that regulate multiple aspects of brain activity. (vi) Cerebral neuropeptides participate in the molecular, behavioral, and autonomic alterations which the brain undergoes in response to signals from the gut microbiota.
Collapse
Affiliation(s)
- P Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
127
|
Fröhlich EE, Farzi A, Mayerhofer R, Reichmann F, Jačan A, Wagner B, Zinser E, Bordag N, Magnes C, Fröhlich E, Kashofer K, Gorkiewicz G, Holzer P. Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication. Brain Behav Immun 2016; 56:140-55. [PMID: 26923630 PMCID: PMC5014122 DOI: 10.1016/j.bbi.2016.02.020] [Citation(s) in RCA: 504] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence indicates that disruption of the gut microbial community (dysbiosis) impairs mental health. Germ-free mice and antibiotic-induced gut dysbiosis are two approaches to establish causality in gut microbiota-brain relationships. However, both models have limitations, as germ-free mice display alterations in blood-brain barrier and brain ultrastructure and antibiotics may act directly on the brain. We hypothesized that the concerns related to antibiotic-induced gut dysbiosis can only adequately be addressed if the effect of intragastric treatment of adult mice with multiple antibiotics on (i) gut microbial community, (ii) metabolite profile in the colon, (iii) circulating metabolites, (iv) expression of neuronal signaling molecules in distinct brain areas and (v) cognitive behavior is systematically investigated. Of the antibiotics used (ampicillin, bacitracin, meropenem, neomycin, vancomycin), ampicillin had some oral bioavailability but did not enter the brain. 16S rDNA sequencing confirmed antibiotic-induced microbial community disruption, and metabolomics revealed that gut dysbiosis was associated with depletion of bacteria-derived metabolites in the colon and alterations of lipid species and converted microbe-derived molecules in the plasma. Importantly, novel object recognition, but not spatial, memory was impaired in antibiotic-treated mice. This cognitive deficit was associated with brain region-specific changes in the expression of cognition-relevant signaling molecules, notably brain-derived neurotrophic factor, N-methyl-d-aspartate receptor subunit 2B, serotonin transporter and neuropeptide Y system. We conclude that circulating metabolites and the cerebral neuropeptide Y system play an important role in the cognitive impairment and dysregulation of cerebral signaling molecules due to antibiotic-induced gut dysbiosis.
Collapse
Affiliation(s)
- Esther E Fröhlich
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria.
| | - Aitak Farzi
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Raphaela Mayerhofer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Angela Jačan
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Bernhard Wagner
- Institute of Biomedical Science, FH JOANNEUM University of Applied Sciences, Eggenberger Allee 13, 8020 Graz, Austria
| | - Erwin Zinser
- Institute of Biomedical Science, FH JOANNEUM University of Applied Sciences, Eggenberger Allee 13, 8020 Graz, Austria
| | - Natalie Bordag
- Center for Biomarker Research in Medicine, CBmed GmbH, Stiftingtalstrasse 5, 8010 Graz, Austria
| | - Christoph Magnes
- HEALTH Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz, Austria
| | - Eleonore Fröhlich
- Core Facility Microscopy, Center for Medical Research, Medical University of Graz, Stiftingtalstrasse 24/1, 8010 Graz, Austria
| | - Karl Kashofer
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, 8036 Graz, Austria
| | - Gregor Gorkiewicz
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, 8036 Graz, Austria; Theodor Escherich Laboratory for Medical Microbiome Research, Medical University of Graz, Auenbruggerplatz 25, 8036 Graz, Austria; BioTechMed-Graz, Krenngasse 37/1, 8010 Graz, Austria
| | - Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria.
| |
Collapse
|
128
|
Jiang S, Wang Q, Huang Z, Song A, Peng Y, Hou S, Guo S, Zhu W, Yan S, Lin Z, Gao X. Gastric Bypass Surgery Reverses Diabetic Phenotypes in Bdnf-Deficient Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2117-2128. [DOI: 10.1016/j.ajpath.2016.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 04/01/2016] [Accepted: 04/11/2016] [Indexed: 01/07/2023]
|
129
|
Hansen AK, Krych Ł, Nielsen DS, Hansen CHF. A Review of Applied Aspects of Dealing with Gut Microbiota Impact on Rodent Models. ILAR J 2016; 56:250-64. [PMID: 26323634 DOI: 10.1093/ilar/ilv010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The gut microbiota (GM) affects numerous human diseases, as well as rodent models for these. We will review this impact and summarize ways to handle this challenge in animal research. The GM is complex, with the largest fractions being the gram-positive phylum Firmicutes and the gram-negative phylum Bacteroidetes. Other important phyla are the gram-negative phyla Proteobacteria and Verrucomicrobia, and the gram-positive phylum Actinobacteria. GM members influence models for diseases, such as inflammatory bowel diseases, allergies, autoimmunity, cancer, and neuropsychiatric diseases. GM characterization of all individual animals and incorporation of their GM composition in data evaluation may therefore be considered in future protocols. Germfree isolator-housed rodents or rodents made virtually germ free by antibiotic cocktails can be used to study diverse microbial influences on disease expression. Through subsequent inoculation with selected strains or cocktails of microbes, new "defined flora" models can yield valuable knowledge on the impact of the GM, and of specific GM members and their interactions, on important disease phenotypes and mechanisms. Rodent husbandry and microbial quality assurance practices will be important to ensure and confirm appropriate and research relevant GM.
Collapse
Affiliation(s)
- Axel Kornerup Hansen
- Axel Kornerup Hansen, DVM, DVsc, DipECLAM, Professor, Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Thorvaldsensvej 57, 1871 Frederiksberg C, Denmark. Łukasz Krych, MSc, PhD, Postdoc, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark. Dennis Sandris Nielsen, MSc, PhD, Associate Professor, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark. Camilla Hartmann Friis Hansen, DVM, PhD, Assistant Professor, Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Thorvaldsensvej 57, 1871 Frederiksberg C, Denmark
| | - Łukasz Krych
- Axel Kornerup Hansen, DVM, DVsc, DipECLAM, Professor, Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Thorvaldsensvej 57, 1871 Frederiksberg C, Denmark. Łukasz Krych, MSc, PhD, Postdoc, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark. Dennis Sandris Nielsen, MSc, PhD, Associate Professor, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark. Camilla Hartmann Friis Hansen, DVM, PhD, Assistant Professor, Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Thorvaldsensvej 57, 1871 Frederiksberg C, Denmark
| | - Dennis Sandris Nielsen
- Axel Kornerup Hansen, DVM, DVsc, DipECLAM, Professor, Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Thorvaldsensvej 57, 1871 Frederiksberg C, Denmark. Łukasz Krych, MSc, PhD, Postdoc, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark. Dennis Sandris Nielsen, MSc, PhD, Associate Professor, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark. Camilla Hartmann Friis Hansen, DVM, PhD, Assistant Professor, Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Thorvaldsensvej 57, 1871 Frederiksberg C, Denmark
| | - Camilla Hartmann Friis Hansen
- Axel Kornerup Hansen, DVM, DVsc, DipECLAM, Professor, Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Thorvaldsensvej 57, 1871 Frederiksberg C, Denmark. Łukasz Krych, MSc, PhD, Postdoc, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark. Dennis Sandris Nielsen, MSc, PhD, Associate Professor, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark. Camilla Hartmann Friis Hansen, DVM, PhD, Assistant Professor, Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Thorvaldsensvej 57, 1871 Frederiksberg C, Denmark
| |
Collapse
|
130
|
Rogers GB, Keating DJ, Young RL, Wong ML, Licinio J, Wesselingh S. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol Psychiatry 2016; 21:738-48. [PMID: 27090305 PMCID: PMC4879184 DOI: 10.1038/mp.2016.50] [Citation(s) in RCA: 657] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 02/22/2016] [Accepted: 02/25/2016] [Indexed: 02/06/2023]
Abstract
The human body hosts an enormous abundance and diversity of microbes, which perform a range of essential and beneficial functions. Our appreciation of the importance of these microbial communities to many aspects of human physiology has grown dramatically in recent years. We know, for example, that animals raised in a germ-free environment exhibit substantially altered immune and metabolic function, while the disruption of commensal microbiota in humans is associated with the development of a growing number of diseases. Evidence is now emerging that, through interactions with the gut-brain axis, the bidirectional communication system between the central nervous system and the gastrointestinal tract, the gut microbiome can also influence neural development, cognition and behaviour, with recent evidence that changes in behaviour alter gut microbiota composition, while modifications of the microbiome can induce depressive-like behaviours. Although an association between enteropathy and certain psychiatric conditions has long been recognized, it now appears that gut microbes represent direct mediators of psychopathology. Here, we examine roles of gut microbiome in shaping brain development and neurological function, and the mechanisms by which it can contribute to mental illness. Further, we discuss how the insight provided by this new and exciting field of research can inform care and provide a basis for the design of novel, microbiota-targeted, therapies.
Collapse
Affiliation(s)
- G B Rogers
- South Australian Health and Medical Research Institute, Infection and Immunity Theme, School of Medicine, Flinders University, Adelaide, SA, Australia
| | - D J Keating
- South Australian Health and Medical Research Institute, Centre for Neuroscience and Department of Human Physiology, Flinders University, Adelaide, SA, Australia
| | - R L Young
- South Australian Health and Medical Research Institute, Department of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - M-L Wong
- South Australian Health and Medical Research Institute, Mind and Brain Theme, and Flinders University, Adelaide, SA, Australia
| | - J Licinio
- South Australian Health and Medical Research Institute, Mind and Brain Theme, and Flinders University, Adelaide, SA, Australia
| | - S Wesselingh
- South Australian Health and Medical Research Institute, Infection and Immunity Theme, School of Medicine, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
131
|
Cani PD, Knauf C. How gut microbes talk to organs: The role of endocrine and nervous routes. Mol Metab 2016; 5:743-52. [PMID: 27617197 PMCID: PMC5004142 DOI: 10.1016/j.molmet.2016.05.011] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 02/07/2023] Open
Abstract
Background Changes in gut microbiota composition and activity have been associated with different metabolic disorders, including obesity, diabetes, and cardiometabolic disorders. Recent evidence suggests that different organs are directly under the influence of bacterial metabolites that may directly or indirectly regulate physiological and pathological processes. Scope of review We reviewed seminal as well as recent papers showing that gut microbes influence energy, glucose and lipid homeostasis by controlling different metabolic routes such as endocrine, enteric and central nervous system. These dialogues are discussed in the context of obesity and diabetes but also for brain pathologies and neurodegenerative disorders. Major conclusions The recent advances in gut microbiota investigation as well as the discovery of specific metabolites interacting with host cells has led to the identification of novel inter-organ communication during metabolic disturbances. This suggests that gut microbes may be viewed as “novel” future therapeutic partners. This article is part of a special issue on microbiota.
Collapse
Affiliation(s)
- Patrice D. Cani
- Université catholique de Louvain, WELBIO – Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Brussels, Belgium
- NeuroMicrobiota, European Associated Laboratory (INSERM/UCL), Toulouse, France
- NeuroMicrobiota, European Associated Laboratory (INSERM/UCL), Brussels, Belgium
- Corresponding author. Université catholique de Louvain, LDRI, Metabolism and Nutrition research group, European Associated Laboratory NeuroMicrobiota (INSERM / UCL), Av. E. Mounier, 73 box B1.73.11, B-1200 Brussels, Belgium. Tel.: +32 2 764 73 97.Université catholique de LouvainLDRIMetabolism and Nutrition research groupEuropean Associated Laboratory NeuroMicrobiota (INSERM / UCL)Av. E. Mounier73 box B1.73.11BrusselsB-1200Belgium
| | - Claude Knauf
- NeuroMicrobiota, European Associated Laboratory (INSERM/UCL), Toulouse, France
- NeuroMicrobiota, European Associated Laboratory (INSERM/UCL), Brussels, Belgium
- Université Paul Sabatier, Toulouse, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1220, Institut de Recherche en Santé Digestive (IRSD), INRA, ENVT, Toulouse, France
- Corresponding author. Université Paul Sabatier, Toulouse III, European Associated Laboratory NeuroMicrobiota (INSERM/UCL), Team 3, “Intestinal Neuroimmune Interactions”, IRSD Institut de Recherche en Santé Digestive (IRSD), INSERM U1220 Bat B, CHU Purpan, Place du Docteur Baylac, CS 60039, 31024 Toulouse Cedex 3, France. Tel.: +33 562 74 45 21.Université Paul SabatierToulouse IIIEuropean Associated Laboratory NeuroMicrobiota (INSERM/UCL)Team 3“Intestinal Neuroimmune Interactions”IRSD Institut de Recherche en Santé Digestive (IRSD)INSERM U1220 Bat BCHU PurpanPlace du Docteur BaylacCS 60039Toulouse Cedex 331024France
| |
Collapse
|
132
|
Abstract
It is now well established that a healthy gut flora is largely responsible for the overall health of the host, while a perturbation in gut microbial communities can contribute to disease susceptibility. Obesity is a complex process involving genetic and environmental factors with an epidemiological burden that makes it a major public health issue. Studies of germ-free or gnotobiotic mice provided evidence that the diversity, as well as the presence and relative proportion of different microbes in the gut play active roles in energy homeostasis. Similarly, human studies showed that both the diversity of the microbiota and the Bacteroidetes/Firmicutes ratio are decreased in obese individuals. The 'obese microbiota' seems to be able to increase dietary energy harvest and favor weight gain and fat deposition. Although research in this field has just started and many of the available data are still conflicting, the results are providing exciting perspectives, and gut microbiota manipulation has already become a new target for both prevention and treatment of obesity.
Collapse
Affiliation(s)
- Debora Compare
- Department of Clinical Medicine and Surgery, Hepatogastroenterology Unit, University Federico II, Naples, Italy
| | | | | | | |
Collapse
|
133
|
Ochoa-Repáraz J, Kasper LH. The Second Brain: Is the Gut Microbiota a Link Between Obesity and Central Nervous System Disorders? Curr Obes Rep 2016; 5:51-64. [PMID: 26865085 PMCID: PMC4798912 DOI: 10.1007/s13679-016-0191-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gut-brain axis is a bi-directional integrated system composed by immune, endocrine, and neuronal components by which the gap between the gut microbiota and the brain is significantly impacted. An increasing number of different gut microbial species are now postulated to regulate brain function in health and disease. The westernized diet is hypothesized to be the cause of the current obesity levels in many countries, a major socio-economical health problem. Experimental and epidemiological evidence suggest that the gut microbiota is responsible for significant immunologic, neuronal, and endocrine changes that lead to obesity. We hypothesize that the gut microbiota, and changes associated with diet, affect the gut-brain axis and may possibly contribute to the development of mental illness. In this review, we discuss the links between diet, gut dysbiosis, obesity, and immunologic and neurologic diseases that impact brain function and behavior.
Collapse
Affiliation(s)
| | - Lloyd H. Kasper
- Department of Microbiology and Immunology, Remsen Building, Room 132A, Geisel School of Medicine at Dartmouth College, Hanover NH 03755, United States, Phone: (603) 653-9909
| |
Collapse
|
134
|
Schéle E, Grahnemo L, Anesten F, Hallén A, Bäckhed F, Jansson JO. Regulation of body fat mass by the gut microbiota: Possible mediation by the brain. Peptides 2016; 77:54-9. [PMID: 25934163 DOI: 10.1016/j.peptides.2015.03.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/27/2015] [Accepted: 03/31/2015] [Indexed: 12/17/2022]
Abstract
New insight suggests gut microbiota as a component in energy balance. However, the underlying mechanisms by which gut microbiota can impact metabolic regulation is unclear. A recent study from our lab shows, for the first time, a link between gut microbiota and energy balance circuitries in the hypothalamus and brainstem. In this article we will review this study further.
Collapse
Affiliation(s)
- Erik Schéle
- Institute of Neuroscience and Physiology/Endocrinology, The Sahlgrenska Academy at the University of Gothenburg, S-413 45 Gothenburg, Sweden
| | - Louise Grahnemo
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at the University of Gothenburg, S-413 45 Gothenburg, Sweden
| | - Fredrik Anesten
- Institute of Neuroscience and Physiology/Endocrinology, The Sahlgrenska Academy at the University of Gothenburg, S-413 45 Gothenburg, Sweden
| | - Anna Hallén
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at the University of Gothenburg, S-413 45 Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at the University of Gothenburg, S-413 45 Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark.
| | - John-Olov Jansson
- Institute of Neuroscience and Physiology/Endocrinology, The Sahlgrenska Academy at the University of Gothenburg, S-413 45 Gothenburg, Sweden.
| |
Collapse
|
135
|
Bauer PV, Hamr SC, Duca FA. Regulation of energy balance by a gut-brain axis and involvement of the gut microbiota. Cell Mol Life Sci 2016; 73:737-55. [PMID: 26542800 PMCID: PMC11108299 DOI: 10.1007/s00018-015-2083-z] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022]
Abstract
Despite significant progress in understanding the homeostatic regulation of energy balance, successful therapeutic options for curbing obesity remain elusive. One potential target for the treatment of obesity is via manipulation of the gut-brain axis, a complex bidirectional communication system that is crucial in maintaining energy homeostasis. Indeed, ingested nutrients induce secretion of gut peptides that act either via paracrine signaling through vagal and non-vagal neuronal relays, or in an endocrine fashion via entry into circulation, to ultimately signal to the central nervous system where appropriate responses are generated. We review here the current hypotheses of nutrient sensing mechanisms of enteroendocrine cells, including the release of gut peptides, mainly cholecystokinin, glucagon-like peptide-1, and peptide YY, and subsequent gut-to-brain signaling pathways promoting a reduction of food intake and an increase in energy expenditure. Furthermore, this review highlights recent research suggesting this energy regulating gut-brain axis can be influenced by gut microbiota, potentially contributing to the development of obesity.
Collapse
Affiliation(s)
- Paige V Bauer
- Department of Medicine, Toronto General Research Institute, UHN, Toronto, ON, M5G 1L7, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Sophie C Hamr
- Department of Medicine, Toronto General Research Institute, UHN, Toronto, ON, M5G 1L7, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Frank A Duca
- Department of Medicine, Toronto General Research Institute, UHN, Toronto, ON, M5G 1L7, Canada.
- MaRS Centre, Toronto Medical Discovery Tower, Room 10-701H, 101 College Street, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|
136
|
Lundberg R, Toft MF, August B, Hansen AK, Hansen CHF. Antibiotic-treated versus germ-free rodents for microbiota transplantation studies. Gut Microbes 2016; 7:68-74. [PMID: 26744774 PMCID: PMC4856451 DOI: 10.1080/19490976.2015.1127463] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We recently investigated the applicability of antibiotic-treated recipient mice for transfer of different gut microbiota profiles. With this addendum we elaborate on perspectives and limitations of using antibiotics as an alternative to germ-free (GF) technology in microbial transplantation studies, and we speculate on the housing effect. It is possible to transfer host phenotypes via fecal transplantation to antibiotic-treated animals, but problems with reproducibility, baseline values, and antibiotic resistance genes should be considered. GF animals maintained in isolators still seem to be the best controlled models for long-term microbial transplantation, but antibiotic-treated recipients are also commonly utilized. We identify a need for systematic experiments investigating the stability of microbial transplantations by addressing 1) the recipient status as either GF, antibiotic-treated or specific pathogen free and 2) different levels of protected housing systems. In addition, the developmental effect of microbes on host physiological functions should be evaluated in the different scenarios.
Collapse
Affiliation(s)
- Randi Lundberg
- Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark,Internal Research and Development, Taconic Biosciences, Lille Skensved, Denmark
| | - Martin F. Toft
- Internal Research and Development, Taconic Biosciences, Lille Skensved, Denmark
| | - Benjamin August
- Internal Research and Development, Taconic Biosciences, Lille Skensved, Denmark
| | - Axel K. Hansen
- Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Camilla H. F. Hansen
- Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
137
|
Wu H, Tremaroli V, Bäckhed F. Linking Microbiota to Human Diseases: A Systems Biology Perspective. Trends Endocrinol Metab 2015; 26:758-770. [PMID: 26555600 DOI: 10.1016/j.tem.2015.09.011] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/28/2015] [Accepted: 09/28/2015] [Indexed: 12/19/2022]
Abstract
The human gut microbiota encompasses a densely populated ecosystem that provides essential functions for host development, immune maturation, and metabolism. Alterations to the gut microbiota have been observed in numerous diseases, including human metabolic diseases such as obesity, type 2 diabetes (T2D), and irritable bowel syndrome, and some animal experiments have suggested causality. However, few studies have validated causality in humans and the underlying mechanisms remain largely to be elucidated. We discuss how systems biology approaches combined with new experimental technologies may disentangle some of the mechanistic details in the complex interactions of diet, microbiota, and host metabolism and may provide testable hypotheses for advancing our current understanding of human-microbiota interaction.
Collapse
Affiliation(s)
- Hao Wu
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Valentina Tremaroli
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
138
|
Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep 2015; 5:16643. [PMID: 26563823 PMCID: PMC4643218 DOI: 10.1038/srep16643] [Citation(s) in RCA: 595] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/16/2015] [Indexed: 12/12/2022] Open
Abstract
Recent evidence indicates that the gut microbiota plays a key role in the pathophysiology of obesity. Indeed, diet-induced obesity (DIO) has been associated to substantial changes in gut microbiota composition in rodent models. In the context of obesity, enhanced adiposity is accompanied by low-grade inflammation of this tissue but the exact link with gut microbial community remains unknown. In this report, we studied the consequences of high-fat diet (HFD) administration on metabolic parameters and gut microbiota composition over different periods of time. We found that Akkermansia muciniphila abundance was strongly and negatively affected by age and HFD feeding and to a lower extend Bilophila wadsworthia was the only taxa following an opposite trend. Different approaches, including multifactorial analysis, showed that these changes in Akkermansia muciniphila were robustly correlated with the expression of lipid metabolism and inflammation markers in adipose tissue, as well as several circulating parameters (i.e., glucose, insulin, triglycerides, leptin) from DIO mice. Thus, our data shows the existence of a link between gut Akkermansia muciniphila abundance and adipose tissue homeostasis on the onset of obesity, thus reinforcing the beneficial role of this bacterium on metabolism.
Collapse
|
139
|
Trautmann SM, Sharkey KA. The Endocannabinoid System and Its Role in Regulating the Intrinsic Neural Circuitry of the Gastrointestinal Tract. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 125:85-126. [PMID: 26638765 DOI: 10.1016/bs.irn.2015.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endocannabinoids are important neuromodulators in the central nervous system. They regulate central transmission through pre- and postsynaptic actions on neurons and indirectly through effects on glial cells. Cannabinoids (CBs) also regulate neurotransmission in the enteric nervous system (ENS) of the gastrointestinal (GI) tract. The ENS consists of intrinsic primary afferent neurons, interneurons, and motor neurons arranged in two ganglionated plexuses which control all the functions of the gut. Increasing evidence suggests that endocannabinoids are potent neuromodulators in the ENS. In this review, we will highlight key observations on the localization of CB receptors and molecules involved in the synthesis and degradation of endocannabinoids in the ENS. We will discuss endocannabinoid signaling mechanisms, endocannabinoid tone and concepts of CB receptor metaplasticity in the ENS. We will also touch on some examples of enteric neural signaling in relation neuromuscular, secretomotor, and enteroendocrine transmission in the ENS. Finally, we will briefly discuss some key future directions.
Collapse
Affiliation(s)
- Samantha M Trautmann
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
140
|
Rosenbaum M, Knight R, Leibel RL. The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol Metab 2015; 26:493-501. [PMID: 26257300 PMCID: PMC4862197 DOI: 10.1016/j.tem.2015.07.002] [Citation(s) in RCA: 307] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/03/2015] [Accepted: 07/10/2015] [Indexed: 12/15/2022]
Abstract
Numerous studies of rodents suggest that the gut microbiota populations are sensitive to genetic and environmental influences, and can produce or influence afferent signals that directly or indirectly impinge on energy homeostatic systems affecting both energy balance (weight gain or loss) and energy stores. Fecal transplants from obese and lean human, and from mouse donors to gnotobiotic mice, result in adoption of the donor somatotype by the formerly germ-free rodents. Thus, the microbiota is certainly implicated in the development of obesity, adiposity-related comorbidities, and the response to interventions designed to achieve sustained weight reduction in mice. More studies are needed to determine whether the microbiota plays a similarly potent role in human body-weight regulation and obesity.
Collapse
Affiliation(s)
- Michael Rosenbaum
- Columbia University, Department of Pediatrics, Division of Molecular Genetics, New York, NY 10032, USA.
| | - Rob Knight
- Departments of Pediatrics and Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Rudolph L Leibel
- Columbia University, Department of Pediatrics, Division of Molecular Genetics, New York, NY 10032, USA
| |
Collapse
|
141
|
Yusta B, Baggio LL, Koehler J, Holland D, Cao X, Pinnell LJ, Johnson-Henry KC, Yeung W, Surette MG, Bang KWA, Sherman PM, Drucker DJ. GLP-1R Agonists Modulate Enteric Immune Responses Through the Intestinal Intraepithelial Lymphocyte GLP-1R. Diabetes 2015; 64:2537-49. [PMID: 25735732 DOI: 10.2337/db14-1577] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/17/2015] [Indexed: 11/13/2022]
Abstract
Obesity and diabetes are characterized by increased inflammation reflecting disordered control of innate immunity. We reveal a local intestinal intraepithelial lymphocyte (IEL)-GLP-1 receptor (GLP-1R) signaling network that controls mucosal immune responses. Glp1r expression was enriched in intestinal IEL preparations and copurified with markers of Tαβ and Tγδ IELs, the two main subsets of intestinal IELs. Exendin-4 increased cAMP accumulation in purified IELs and reduced the production of cytokines from activated IELs but not from splenocytes ex vivo. These actions were mimicked by forskolin, absent in IELs from Glp1r(-/-) mice, and attenuated by the GLP-1R agonist exendin (9-39) consistent with a GLP-1R-dependent mechanism of action. Furthermore, Glp1r(-/-) mice exhibited dysregulated intestinal gene expression, an abnormal representation of microbial species in feces, and enhanced sensitivity to intestinal injury following administration of dextran sodium sulfate. Bone marrow transplantation using wild-type C57BL/6 donors normalized expression of multiple genes regulating immune function and epithelial integrity in Glp1r(-/-) recipient mice, whereas acute exendin-4 administration robustly induced the expression of genes encoding cytokines and chemokines in normal and injured intestine. Taken together, these findings define a local enteroendocrine-IEL axis linking energy availability, host microbial responses, and mucosal integrity to the control of innate immunity.
Collapse
Affiliation(s)
- Bernardo Yusta
- Department of Medicine, Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Laurie L Baggio
- Department of Medicine, Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Jacqueline Koehler
- Department of Medicine, Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Dianne Holland
- Department of Medicine, Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Xiemin Cao
- Department of Medicine, Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Lee J Pinnell
- Cell Biology Program, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Kathene C Johnson-Henry
- Cell Biology Program, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - William Yeung
- Cell Biology Program, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Michael G Surette
- Department of Medicine, Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - K W Annie Bang
- Department of Medicine, Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Philip M Sherman
- Cell Biology Program, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Daniel J Drucker
- Department of Medicine, Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| |
Collapse
|
142
|
Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015; 18:965-77. [PMID: 26030851 DOI: 10.1038/nn.4030] [Citation(s) in RCA: 2339] [Impact Index Per Article: 233.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 04/29/2015] [Indexed: 02/07/2023]
Abstract
As the tissue macrophages of the CNS, microglia are critically involved in diseases of the CNS. However, it remains unknown what controls their maturation and activation under homeostatic conditions. We observed substantial contributions of the host microbiota to microglia homeostasis, as germ-free (GF) mice displayed global defects in microglia with altered cell proportions and an immature phenotype, leading to impaired innate immune responses. Temporal eradication of host microbiota severely changed microglia properties. Limited microbiota complexity also resulted in defective microglia. In contrast, recolonization with a complex microbiota partially restored microglia features. We determined that short-chain fatty acids (SCFA), microbiota-derived bacterial fermentation products, regulated microglia homeostasis. Accordingly, mice deficient for the SCFA receptor FFAR2 mirrored microglia defects found under GF conditions. These findings suggest that host bacteria vitally regulate microglia maturation and function, whereas microglia impairment can be rectified to some extent by complex microbiota.
Collapse
|
143
|
Raghow R. Ménage-à-trois of bariatric surgery, bile acids and the gut microbiome. World J Diabetes 2015; 6:367-370. [PMID: 25897347 PMCID: PMC4398893 DOI: 10.4239/wjd.v6.i3.367] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 12/26/2014] [Accepted: 01/12/2015] [Indexed: 02/05/2023] Open
Abstract
Bariatric surgeries have emerged as highly effective treatments for obesity associated type-2 diabetes mellitus. Evidently, the desired therapeutic endpoints such as rates of weight loss, lower levels of glycated hemoglobin and remission of diabetes are achieved more rapidly and last longer following bariatric surgery, as opposed to drug therapies alone. In light of these findings, it has been suspected that in addition to causing weight loss dependent glucose intolerance, bariatric surgery induces other physiological changes that contribute to the alleviation of diabetes. However, the putative post-surgical neuro-hormonal pathways that underpin the therapeutic benefits of bariatric surgery remain undefined. In a recent report, Ryan and colleagues shed new light on the potential mechanisms that determine the salutary effects of bariatric surgery in mice. The authors demonstrated that the improved glucose tolerance and weight loss in mice after vertical sleeve gastrectomy (VSG) surgery were likely to be caused by post-surgical changes in circulating bile acids and farnesoid-X receptor (FXR) signaling, both of which were also mechanistically linked to changes in the microbial ecology of the gut. The authors arrived at this conclusion from a comparison of genome-wide, metabolic consequences of VSG surgery in obese wild type (WT) and FXR knockout mice. Gene expression in the distal small intestines of WT and FXR knockout mice revealed that the pathways regulating bile acid composition, nutrient metabolism and anti-oxidant defense were differentially altered by VSG surgery in WT and FXR-/- mice. Based on these data Ryan et al, hypothesized that bile acid homeostasis and FXR signaling were mechanistically linked to the gut microbiota that played a role in modulating post-surgical changes in total body mass and glucose tolerance. The authors’ data provide a plausible explanation for putative weight loss-independent benefits of bariatric surgery and its relationship with metabolism of bile acids.
Collapse
|
144
|
Sáinz N, González-Navarro CJ, Martínez JA, Moreno-Aliaga MJ. Leptin signaling as a therapeutic target of obesity. Expert Opin Ther Targets 2015; 19:893-909. [PMID: 25726860 DOI: 10.1517/14728222.2015.1018824] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Leptin is a hormone with a key role in food intake and body weight homeostasis. Congenital leptin deficiency (CLD) is a rare disease that causes hyperphagia and early severe obesity. However, common obesity conditions are associated with hyperleptinemia and leptin resistance. AREAS COVERED The main signaling pathways activated by leptin as well as the mechanisms underlying the regulatory actions of leptin on food intake and on lipid and glucose metabolism are reviewed. The potential mechanisms involving leptin resistance and the main regulatory hormonal and nutritional factors controlling leptin production/functions are also analyzed. The pathophysiology of leptin in human obesity, and especially the trials analyzing effects of leptin replacement therapy in patients with CLD or in subjects with common obesity and in post-obese weight-reduced subjects are also summarized. EXPERT OPINION The use of drugs or specific bioactive food components with anti-inflammatory properties to reduce the inflammatory state associated with obesity, especially at the hypothalamus, may help to overcome leptin resistance. Research should also be focused on investigating dietary strategies, food supplements or drugs capable of avoiding or reversing the leptin fall during weight management, in order to promote sustained body weight lowering and weight loss maintenance.
Collapse
Affiliation(s)
- Neira Sáinz
- University of Navarra, Centre for Nutrition Research, School of Pharmacy , C/Irunlarrea 1, 31008 Pamplona , Spain
| | | | | | | |
Collapse
|
145
|
Farzi A, Reichmann F, Holzer P. The homeostatic role of neuropeptide Y in immune function and its impact on mood and behaviour. Acta Physiol (Oxf) 2015; 213:603-27. [PMID: 25545642 DOI: 10.1111/apha.12445] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/10/2014] [Accepted: 12/21/2014] [Indexed: 12/18/2022]
Abstract
Neuropeptide Y (NPY), one of the most abundant peptides in the nervous system, exerts its effects via five receptor types, termed Y1, Y2, Y4, Y5 and Y6. NPY's pleiotropic functions comprise the regulation of brain activity, mood, stress coping, ingestion, digestion, metabolism, vascular and immune function. Nerve-derived NPY directly affects immune cells while NPY also acts as a paracrine and autocrine immune mediator, because immune cells themselves are capable of producing and releasing NPY. NPY is able to induce immune activation or suppression, depending on a myriad of factors such as the Y receptors activated and cell types involved. There is an intricate relationship between psychological stress, mood disorders and the immune system. While stress represents a risk factor for the development of mood disorders, it exhibits diverse actions on the immune system as well. Conversely, inflammation is regarded as an internal stressor and is increasingly recognized to contribute to the pathogenesis of mood and metabolic disorders. Intriguingly, the cerebral NPY system has been found to protect against distinct disturbances in response to immune challenge, attenuating the sickness response and preventing the development of depression. Thus, NPY plays an important homeostatic role in balancing disturbances of physiological systems caused by peripheral immune challenge. This implication is particularly evident in the brain in which NPY counteracts the negative impact of immune challenge on mood, emotional processing and stress resilience. NPY thus acts as a unique signalling molecule in the interaction of the immune system with the brain in health and disease.
Collapse
Affiliation(s)
- A. Farzi
- Research Unit of Translational Neurogastroenterology; Institute of Experimental and Clinical Pharmacology; Medical University of Graz; Graz Austria
| | - F. Reichmann
- Research Unit of Translational Neurogastroenterology; Institute of Experimental and Clinical Pharmacology; Medical University of Graz; Graz Austria
| | - P. Holzer
- Research Unit of Translational Neurogastroenterology; Institute of Experimental and Clinical Pharmacology; Medical University of Graz; Graz Austria
| |
Collapse
|
146
|
Paoli A, Bosco G, Camporesi EM, Mangar D. Ketosis, ketogenic diet and food intake control: a complex relationship. Front Psychol 2015; 6:27. [PMID: 25698989 PMCID: PMC4313585 DOI: 10.3389/fpsyg.2015.00027] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 01/07/2015] [Indexed: 12/16/2022] Open
Abstract
Though the hunger-reduction phenomenon reported during ketogenic diets is well-known, the underlying molecular and cellular mechanisms remain uncertain. Ketosis has been demonstrated to exert an anorexigenic effect via cholecystokinin (CCK) release while reducing orexigenic signals e.g., via ghrelin. However, ketone bodies (KB) seem to be able to increase food intake through AMP-activated protein kinase (AMPK) phosphorylation, gamma-aminobutyric acid (GABA) and the release and production of adiponectin. The aim of this review is to provide a summary of our current knowledge of the effects of ketogenic diet (KD) on food control in an effort to unify the apparently contradictory data into a coherent picture.
Collapse
Affiliation(s)
- Antonio Paoli
- Nutrition and Exercise Physiology Laboratory, Department of Biomedical Sciences, University of Padova Padova, Italy
| | - Gerardo Bosco
- Nutrition and Exercise Physiology Laboratory, Department of Biomedical Sciences, University of Padova Padova, Italy
| | - Enrico M Camporesi
- Department of Surgery, University of South Florida Tampa, FL, USA ; TEAMHealth Tampa, FL, USA
| | - Devanand Mangar
- TEAMHealth Tampa, FL, USA ; Tampa General Hospital Tampa, FL, USA
| |
Collapse
|
147
|
Gondalia S, Scholey A. Gastrointestinal microbiota, diet and brain functioning. MICROBIOLOGY AUSTRALIA 2015. [DOI: 10.1071/ma15008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
148
|
Abstract
The human gastrointestinal tract is home to trillions of bacteria, which vastly outnumber host cells in the body. Although generally overlooked in the field of endocrinology, gut microbial symbionts organize to form a key endocrine organ that converts nutritional cues from the environment into hormone-like signals that impact both normal physiology and chronic disease in the human host. Recent evidence suggests that several gut microbial-derived products are sensed by dedicated host receptor systems to alter cardiovascular disease (CVD) progression. In fact, gut microbial metabolism of dietary components results in the production of proatherogenic circulating factors that act through a meta-organismal endocrine axis to impact CVD risk. Whether pharmacological interventions at the level of the gut microbial endocrine organ will reduce CVD risk is a key new question in the field of cardiovascular medicine. Here we discuss the opportunities and challenges that lie ahead in targeting meta-organismal endocrinology for CVD prevention.
Collapse
Affiliation(s)
- J. Mark Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Stanley L. Hazen
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| |
Collapse
|
149
|
Burokas A, Moloney RD, Dinan TG, Cryan JF. Microbiota regulation of the Mammalian gut-brain axis. ADVANCES IN APPLIED MICROBIOLOGY 2015; 91:1-62. [PMID: 25911232 DOI: 10.1016/bs.aambs.2015.02.001] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The realization that the microbiota-gut-brain axis plays a critical role in health and disease has emerged over the past decade. The brain-gut axis is a bidirectional communication system between the central nervous system (CNS) and the gastrointestinal tract. Regulation of the microbiota-brain-gut axis is essential for maintaining homeostasis, including that of the CNS. The routes of this communication are not fully elucidated but include neural, humoral, immune, and metabolic pathways. A number of approaches have been used to interrogate this axis including the use of germ-free animals, probiotic agents, antibiotics, or animals exposed to pathogenic bacterial infections. Together, it is clear that the gut microbiota can be a key regulator of mood, cognition, pain, and obesity. Understanding microbiota-brain interactions is an exciting area of research which may contribute new insights into individual variations in cognition, personality, mood, sleep, and eating behavior, and how they contribute to a range of neuropsychiatric diseases ranging from affective disorders to autism and schizophrenia. Finally, the concept of psychobiotics, bacterial-based interventions with mental health benefit, is also emerging.
Collapse
Affiliation(s)
- Aurelijus Burokas
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Rachel D Moloney
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Psychiatry, University College Cork, Cork, Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
150
|
|