101
|
Jury-Garfe N, Redding-Ochoa J, You Y, Martínez P, Karahan H, Chimal-Juárez E, Johnson TS, Zhang J, Resnick S, Kim J, Troncoso JC, Lasagna-Reeves CA. Enhanced microglial dynamics and a paucity of tau seeding in the amyloid plaque microenvironment contribute to cognitive resilience in Alzheimer's disease. Acta Neuropathol 2024; 148:15. [PMID: 39102080 PMCID: PMC11300572 DOI: 10.1007/s00401-024-02775-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Asymptomatic Alzheimer's disease (AsymAD) describes the status of individuals with preserved cognition but identifiable Alzheimer's disease (AD) brain pathology (i.e., beta-amyloid (Aβ) deposits, neuritic plaques, and neurofibrillary tangles) at autopsy. In this study, we investigated the postmortem brains of a cohort of AsymAD subjects to gain insight into the mechanisms underlying resilience to AD pathology and cognitive decline. Our results showed that AsymAD cases exhibit enrichment in core plaques, decreased filamentous plaque accumulation, and increased plaque-surrounding microglia. Less pathological tau aggregation in dystrophic neurites was found in AsymAD brains than in AD brains, and tau seeding activity was comparable to that in healthy brains. We used spatial transcriptomics to characterize the plaque niche further and revealed autophagy, endocytosis, and phagocytosis as the pathways associated with the genes upregulated in the AsymAD plaque niche. Furthermore, the levels of ARP2 and CAP1, which are actin-based motility proteins that participate in the dynamics of actin filaments to allow cell motility, were increased in the microglia surrounding amyloid plaques in AsymAD cases. Our findings suggest that the amyloid-plaque microenvironment in AsymAD cases is characterized by the presence of microglia with highly efficient actin-based cell motility mechanisms and decreased tau seeding compared with that in AD brains. These two mechanisms can potentially protect against the toxic cascade initiated by Aβ, preserving brain health, and slowing AD pathology progression.
Collapse
Affiliation(s)
- Nur Jury-Garfe
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Yanwen You
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Pablo Martínez
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hande Karahan
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
| | - Enrique Chimal-Juárez
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Travis S Johnson
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, USA
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Susan Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging and National Institute of Health, Baltimore, MD, USA
| | - Jungsu Kim
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Cristian A Lasagna-Reeves
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA.
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
102
|
Monzio Compagnoni G, Appollonio I, Ferrarese C. The role of 123-I-MIBG cardiac scintigraphy in the differential diagnosis between dementia with Lewy bodies and Alzheimer's disease. Neurol Sci 2024; 45:3599-3609. [PMID: 38517586 DOI: 10.1007/s10072-024-07476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Although detailed diagnostic guidelines are available, differentiating dementia with Lewy bodies from Alzheimer's disease is often difficult. 123-I-MIBG cardiac scintigraphy is one of the tools which have been proposed for the diagnostic procedure. The present review is aimed at evaluating the available literature about this topic. Studies assessing the use of this technique to differentiate between the two diseases have been examined and reported. Overall, despite a certain study-to-study variability, the available literature suggests that 123-I-MIBG cardiac scintigraphy is an effective tool in differentiating between the two diseases, with high sensitivity and specificity values. Although the large-scale application of this technique is limited by possible interactions with specific medications and comorbidities, the reported studies are supportive for the usefulness of this technique in clinical practice.
Collapse
Affiliation(s)
| | - Ildebrando Appollonio
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Neurology Unit, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy
| | - Carlo Ferrarese
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Neurology Unit, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
103
|
Venati SR, Uversky VN. Exploring Intrinsic Disorder in Human Synucleins and Associated Proteins. Int J Mol Sci 2024; 25:8399. [PMID: 39125972 PMCID: PMC11313516 DOI: 10.3390/ijms25158399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
In this work, we explored the intrinsic disorder status of the three members of the synuclein family of proteins-α-, β-, and γ-synucleins-and showed that although all three human synucleins are highly disordered, the highest levels of disorder are observed in γ-synuclein. Our analysis of the peculiarities of the amino acid sequences and modeled 3D structures of the human synuclein family members revealed that the pathological mutations A30P, E46K, H50Q, A53T, and A53E associated with the early onset of Parkinson's disease caused some increase in the local disorder propensity of human α-synuclein. A comparative sequence-based analysis of the synuclein proteins from various evolutionary distant species and evaluation of their levels of intrinsic disorder using a set of commonly used bioinformatics tools revealed that, irrespective of their origin, all members of the synuclein family analyzed in this study were predicted to be highly disordered proteins, indicating that their intrinsically disordered nature represents an evolutionary conserved and therefore functionally important feature. A detailed functional disorder analysis of the proteins in the interactomes of the human synuclein family members utilizing a set of commonly used disorder analysis tools showed that the human α-synuclein interactome has relatively higher levels of intrinsic disorder as compared with the interactomes of human β- and γ- synucleins and revealed that, relative to the β- and γ-synuclein interactomes, α-synuclein interactors are involved in a much broader spectrum of highly diversified functional pathways. Although proteins interacting with three human synucleins were characterized by highly diversified functionalities, this analysis also revealed that the interactors of three human synucleins were involved in three common functional pathways, such as the synaptic vesicle cycle, serotonergic synapse, and retrograde endocannabinoid signaling. Taken together, these observations highlight the critical importance of the intrinsic disorder of human synucleins and their interactors in various neuronal processes.
Collapse
Affiliation(s)
- Sriya Reddy Venati
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
104
|
Yoshida K, Hata Y, Ichimata S, Tanaka R, Nishida N. Prevalence and clinicopathological features of primary age-related tauopathy (PART): A large forensic autopsy study. Alzheimers Dement 2024; 20:5411-5420. [PMID: 38938196 PMCID: PMC11350034 DOI: 10.1002/alz.14037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/15/2024] [Accepted: 05/06/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Primary age-related tauopathy (PART), often regarded as a minimally symptomatic pathology of old age, lacks comprehensive cohorts across various age groups. METHODS We examined PART prevalence and clinicopathologic features in 1589 forensic autopsy cases (≥40 years old, mean age ± SD 70.2 ± 14.2 years). RESULTS PART cases meeting criteria for argyrophilic grain diseases (AGD) were AGD+PART (n = 181). The remaining PART cases (n = 719, 45.2%) were classified as comorbid conditions (PART-C, n = 90) or no comorbid conditions (pure PART, n = 629). Compared to controls (n = 208), Alzheimer's disease (n = 133), and AGD+PART, PART prevalence peaked in the individuals in their 60s (65.5%) and declined in the 80s (21.5%). No significant clinical background differences were found (excluding controls). However, PART-C in patients inclusive of age 80 had a higher suicide rate than pure PART (p < 0.05), and AGD+PART showed more dementia (p < 0.01) and suicide (p < 0.05) than pure PART. DISCUSSION Our results advocate a reevaluation of the PART concept and its diagnostic criteria. HIGHLIGHTS We investigated 1589 forensic autopsy cases to investigate the features of primary age-related tauopathy (PART). PART peaked in people in their 60s in our study. Many PART cases over 80s had comorbid pathologies in addition to neurofibrillary tangles pathology. Argyrophilic grain disease and Lewy pathology significantly affected dementia and suicide rates in PART. Our results suggest that the diagnostic criteria of PART need to be reconsidered.
Collapse
Affiliation(s)
- Koji Yoshida
- Department of Legal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
- Tanz Centre for Research in Neurodegenerative DiseaseKrembil Discovery TowerUniversity of TorontoTorontoOntarioCanada
- Department of Laboratory Medicine and Pathobiology and Department of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Yukiko Hata
- Department of Legal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
| | - Shojiro Ichimata
- Department of Legal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
| | - Ryo Tanaka
- Department of NeurologyToyama University HospitalToyamaJapan
| | - Naoki Nishida
- Department of Legal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
| |
Collapse
|
105
|
Plácido E, Koss DJ, Outeiro TF, Brocardo PS. Altered hippocampal doublecortin expression in Parkinson's disease. J Neurochem 2024; 168:1514-1526. [PMID: 38485468 DOI: 10.1111/jnc.16101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 07/31/2024]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by motor and non-motor symptoms. Motor symptoms include bradykinesia, resting tremors, muscular rigidity, and postural instability, while non-motor symptoms include cognitive impairments, mood disturbances, sleep disturbances, autonomic dysfunction, and sensory abnormalities. Some of these symptoms may be influenced by the proper hippocampus functioning, including adult neurogenesis. Doublecortin (DCX) is a microtubule-associated protein that plays a pivotal role in the development and differentiation of migrating neurons. This study utilized postmortem human brain tissue of PD and age-matched control individuals to investigate DCX expression in the context of adult hippocampal neurogenesis. Our findings demonstrate a significant reduction in the number of DCX-expressing cells within the subgranular zone (SGZ), as well as a decrease in the nuclear area of these DCX-positive cells in postmortem brain tissue obtained from PD cases, suggesting an impairment in the adult hippocampal neurogenesis. Additionally, we found that the nuclear area of DCX-positive cells correlates with pH levels. In summary, we provide evidence supporting that the process of hippocampal adult neurogenesis is likely to be compromised in PD patients before cognitive dysfunction, shedding light on potential mechanisms contributing to the neuropsychiatric symptoms observed in affected individuals. Understanding these mechanisms may offer novel insights into the pathophysiology of PD and possible therapeutic avenues.
Collapse
Affiliation(s)
- Evelini Plácido
- Neuroscience Graduate Program, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - David J Koss
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Tiago Fleming Outeiro
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Patricia S Brocardo
- Neuroscience Graduate Program, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Morphological Sciences Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
106
|
Yokota O, Miki T, Nakashima-Yasuda H, Ishizu H, Haraguchi T, Ikeda C, Hasegawa M, Miyashita A, Ikeuchi T, Nishikawa N, Takenoshita S, Sudo K, Terada S, Takaki M. Pure argyrophilic grain disease revisited: independent effects on limbic, neocortical, and striato-pallido-nigral degeneration and the development of dementia in a series with a low to moderate Braak stage. Acta Neuropathol Commun 2024; 12:121. [PMID: 39085955 PMCID: PMC11290173 DOI: 10.1186/s40478-024-01828-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
Agyrophilic grains (AGs) are age-related limbic-predominant lesions in which four-repeat tau is selectively accumulated. Because previous methodologically heterogeneous studies have demonstrated inconsistent findings on the relationship between AGs and dementia, whether AGs affect cognitive function remains unclear. To address this question, we first comprehensively evaluated the distribution and quantity of Gallyas-positive AGs and the severity of neuronal loss in the limbic, neocortical, and subcortical regions in 30 cases of pure argyrophilic grain disease (pAGD) in Braak stages I-IV and without other degenerative diseases, and 34 control cases that had only neurofibrillary tangles with Braak stages I-IV and no or minimal Aβ deposits. Then, we examined whether AGs have independent effects on neuronal loss and dementia by employing multivariate ordered logistic regression and binomial logistic regression. Of 30 pAGD cases, three were classified in diffuse form pAGD, which had evident neuronal loss not only in the limbic region but also in the neocortex and subcortical nuclei. In all 30 pAGD cases, neuronal loss developed first in the amygdala, followed by temporo-frontal cortex, hippocampal CA1, substantia nigra, and finally, the striatum and globus pallidus with the progression of Saito AG stage. In multivariate analyses of 30 pAGD and 34 control cases, the Saito AG stage affected neuronal loss in the amygdala, hippocampal CA1, temporo-frontal cortex, striatum, globus pallidus, and substantia nigra independent of the age, Braak stage, and limbic-predominant age-related TDP-43 encephalopathy (LATE-NC) stage. In multivariate analyses of 23 pAGD and 28 control cases that lacked two or more lacunae and/or one or more large infarctions, 100 or more AGs per × 400 visual field in the amygdala (OR 10.02, 95% CI 1.12-89.43) and hippocampal CA1 (OR 12.22, 95% CI 1.70-87.81), and the presence of AGs in the inferior temporal cortex (OR 8.18, 95% CI 1.03-65.13) affected dementia independent of age, moderate Braak stages (III-IV), and LATE-NC. Given these findings, the high density of limbic AGs and the increase of AGs in the inferior temporal gyrus may contribute to the occurrence of dementia through neuronal loss, at least in cases in a low to moderate Braak stage.
Collapse
Affiliation(s)
- Osamu Yokota
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan.
- Okayama University Medical School, Okayama, Japan.
- Department of Psychiatry, Kinoko Espoir Hospital, Okayama, Japan.
| | - Tomoko Miki
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
- Department of Neuropathology, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm U1127, CNRS UMR7225, AP-HP, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Hanae Nakashima-Yasuda
- Okayama University Medical School, Okayama, Japan
- Department of Psychiatry, Zikei Hospital, Okayama, Japan
| | - Hideki Ishizu
- Okayama University Medical School, Okayama, Japan
- Department of Psychiatry, Zikei Hospital, Okayama, Japan
| | - Takashi Haraguchi
- Department of Neurology, National Hospital Organization Minami-Okayama Medical Center, Okayama, Japan
| | - Chikako Ikeda
- Okayama University Medical School, Okayama, Japan
- Department of Psychiatry, Zikei Hospital, Okayama, Japan
| | - Masato Hasegawa
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Akinori Miyashita
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Naoto Nishikawa
- Department of Neuropsychiatry, Okayama University Hospital, Okayama, Japan
| | | | - Koichiro Sudo
- Department of Psychiatry, Tosa Hospital, Kochi, Japan
| | - Seishi Terada
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
- Department of Neuropsychiatry, Okayama University Hospital, Okayama, Japan
- Department of Neuropsychiatry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Manabu Takaki
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
- Department of Neuropsychiatry, Okayama University Hospital, Okayama, Japan
- Department of Neuropsychiatry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
107
|
Haikal C, Winston GM, Kaplitt MG. Cognitive dysfunction in animal models of human lewy-body dementia. Front Aging Neurosci 2024; 16:1369733. [PMID: 39104707 PMCID: PMC11298446 DOI: 10.3389/fnagi.2024.1369733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/18/2024] [Indexed: 08/07/2024] Open
Abstract
Cognitive impairments are a common feature of synucleinopathies such as Parkinson's Disease Dementia and Dementia with Lewy Bodies. These pathologies are characterized by accumulation of Lewy bodies and Lewy neurites as well as neuronal cell death. Alpha-synuclein is the main proteinaceous component of Lewy bodies and Lewy neurites. To model these pathologies in vivo, toxins that selectively target certain neuronal populations or different means of inducing alpha-synuclein aggregation can be used. Alpha-synuclein accumulation can be induced by genetic manipulation, viral vector overexpression or the use of preformed fibrils of alpha-synuclein. In this review, we summarize the cognitive impairments associated with different models of synucleinopathies and relevance to observations in human diseases.
Collapse
Affiliation(s)
- Caroline Haikal
- Weill Cornell Medicine, Department of Neurological Surgery, New York, NY, United States
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD, United States
| | - Graham M. Winston
- Weill Cornell Medicine, Department of Neurological Surgery, New York, NY, United States
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD, United States
| | - Michael G. Kaplitt
- Weill Cornell Medicine, Department of Neurological Surgery, New York, NY, United States
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD, United States
| |
Collapse
|
108
|
Shwab EK, Gingerich DC, Man Z, Gamache J, Garrett ME, Crawford GE, Ashley-Koch AE, Serrano GE, Beach TG, Lutz MW, Chiba-Falek O. Single-nucleus multi-omics of Parkinson's disease reveals a glutamatergic neuronal subtype susceptible to gene dysregulation via alteration of transcriptional networks. Acta Neuropathol Commun 2024; 12:111. [PMID: 38956662 PMCID: PMC11218415 DOI: 10.1186/s40478-024-01803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
The genetic architecture of Parkinson's disease (PD) is complex and multiple brain cell subtypes are involved in the neuropathological progression of the disease. Here we aimed to advance our understanding of PD genetic complexity at a cell subtype precision level. Using parallel single-nucleus (sn)RNA-seq and snATAC-seq analyses we simultaneously profiled the transcriptomic and chromatin accessibility landscapes in temporal cortex tissues from 12 PD compared to 12 control subjects at a granular single cell resolution. An integrative bioinformatic pipeline was developed and applied for the analyses of these snMulti-omics datasets. The results identified a subpopulation of cortical glutamatergic excitatory neurons with remarkably altered gene expression in PD, including differentially-expressed genes within PD risk loci identified in genome-wide association studies (GWAS). This was the only neuronal subtype showing significant and robust overexpression of SNCA. Further characterization of this neuronal-subpopulation showed upregulation of specific pathways related to axon guidance, neurite outgrowth and post-synaptic structure, and downregulated pathways involved in presynaptic organization and calcium response. Additionally, we characterized the roles of three molecular mechanisms in governing PD-associated cell subtype-specific dysregulation of gene expression: (1) changes in cis-regulatory element accessibility to transcriptional machinery; (2) changes in the abundance of master transcriptional regulators, including YY1, SP3, and KLF16; (3) candidate regulatory variants in high linkage disequilibrium with PD-GWAS genomic variants impacting transcription factor binding affinities. To our knowledge, this study is the first and the most comprehensive interrogation of the multi-omics landscape of PD at a cell-subtype resolution. Our findings provide new insights into a precise glutamatergic neuronal cell subtype, causal genes, and non-coding regulatory variants underlying the neuropathological progression of PD, paving the way for the development of cell- and gene-targeted therapeutics to halt disease progression as well as genetic biomarkers for early preclinical diagnosis.
Collapse
Affiliation(s)
- E Keats Shwab
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Daniel C Gingerich
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Zhaohui Man
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Julia Gamache
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Melanie E Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, 27701, USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, 27708, USA
- Center for Advanced Genomic Technologies, Duke University Medical Center, Durham, NC, 27708, USA
| | - Allison E Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, 27701, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, 27708, USA
| | - Geidy E Serrano
- Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Michael W Lutz
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA.
| |
Collapse
|
109
|
Umehara T, Mimori M, Kokubu T, Ozawa M, Shiraishi T, Sato T, Onda A, Matsuno H, Omoto S, Sengoku R, Murakami H, Oka H, Iguchi Y. Peripheral immune profile in drug-naïve dementia with Lewy bodies. J Neurol 2024; 271:4146-4157. [PMID: 38581545 DOI: 10.1007/s00415-024-12336-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Accumulating evidence suggests that peripheral inflammation is associated with the pathogenesis of Parkinson's disease (PD). We examined peripheral immune profiles and their association with clinical characteristics in patients with DLB and compared these with values in patients with PD. METHODS We analyzed peripheral blood from 93 participants (drug-naïve DLB, 31; drug-naïve PD, 31; controls, 31). Absolute leukocyte counts, absolute counts of leukocyte subpopulations, and peripheral blood inflammatory indices such as neutrophil-to-lymphocyte ratio were examined. Associations with clinical characteristics, cardiac sympathetic denervation, and striatal 123I-2-carbomethoxy-3-(4-iodophenyl)-N-(3-fluoropropyl) nortropane (123I-FP-CIT) binding were also examined. RESULTS Patients with DLB had lower absolute lymphocyte and basophil counts than did age-matched controls (both; p < 0.005). Higher basophil counts were marginally associated with higher global cognition (p = 0.054) and were significantly associated with milder motor severity (p = 0.020) and higher striatal 123I-FP-CIT binding (p = 0.038). By contrast, higher basophil counts were associated with more advanced PD characterized by decreased global cognition and severe cardiac sympathetic denervation. Although lower lymphocyte counts had relevance to more advanced PD, they had little relevance to clinical characteristics in patients with DLB. Higher peripheral blood inflammatory indices were associated with lower body mass index in both DLB and PD. CONCLUSIONS As in patients with PD, the peripheral immune profile is altered in patients with DLB. Some peripheral immune cell counts and inflammatory indices reflect the degree of disease progression. These findings may deepen our knowledge on the role of peripheral inflammation in the pathogenesis of DLB.
Collapse
Affiliation(s)
- Tadashi Umehara
- Department of Neurology, The Jikei University School of Medicine, 3-19-18, Tokyo, 105-8471, Japan.
| | - Masahiro Mimori
- Department of Neurology, The Jikei University School of Medicine, 3-19-18, Tokyo, 105-8471, Japan
| | - Tatsushi Kokubu
- Department of Neurology, Katsushika Medical Center, The Jikei University School of Medicine, Tokyo, Japan
| | - Masakazu Ozawa
- Department of Neurology, Daisan Hospital, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomotaka Shiraishi
- Department of Neurology, The Jikei University School of Medicine, 3-19-18, Tokyo, 105-8471, Japan
| | - Takeo Sato
- Department of Neurology, The Jikei University School of Medicine, 3-19-18, Tokyo, 105-8471, Japan
| | - Asako Onda
- Department of Neurology, The Jikei University School of Medicine, 3-19-18, Tokyo, 105-8471, Japan
| | - Hiromasa Matsuno
- Department of Neurology, The Jikei University School of Medicine, 3-19-18, Tokyo, 105-8471, Japan
| | - Shusaku Omoto
- Department of Neurology, Katsushika Medical Center, The Jikei University School of Medicine, Tokyo, Japan
| | - Renpei Sengoku
- Department of Neurology, Daisan Hospital, The Jikei University School of Medicine, Tokyo, Japan
| | - Hidetomo Murakami
- Department of Neurology, The Jikei University School of Medicine, 3-19-18, Tokyo, 105-8471, Japan
- Department of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Hisayoshi Oka
- Department of Neurology, The Jikei University School of Medicine, 3-19-18, Tokyo, 105-8471, Japan
| | - Yasuyuki Iguchi
- Department of Neurology, The Jikei University School of Medicine, 3-19-18, Tokyo, 105-8471, Japan
| |
Collapse
|
110
|
Kobayashi R, Iwata-Endo K, Fujishiro H. Clinical presentations and diagnostic application of proposed biomarkers in psychiatric-onset prodromal dementia with Lewy bodies. Psychogeriatrics 2024; 24:1004-1022. [PMID: 38837629 DOI: 10.1111/psyg.13147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Research criteria for the diagnosis of prodromal dementia with Lewy bodies (DLB) include three clinical subtypes: mild cognitive impairment with Lewy bodies (MCI-LB), delirium-onset prodromal DLB, and psychiatric-onset prodromal DLB. Late-onset psychiatric manifestations are at a higher risk of developing dementia, but its relation to prodromal DLB remains unclear. In addition to the risk of severe antipsychotic hypersensitivity reactions, accurate discrimination from non-DLB cases is important due to the potential differences in management and prognosis. This article aims to review a rapidly evolving psychiatric topic and outline clinical pictures of psychiatric-onset prodromal DLB, including the proposed biomarker findings of MCI-LB: polysomnography-confirmed rapid eye movement sleep behaviour disorder, cardiac [123I]metaiodobenzylguanidine scintigraphy, and striatal dopamine transporter imaging. We first reviewed clinical pictures of patients with autopsy-confirmed DLB. Regarding clinical reports, we focused on the patients who predominantly presented with psychiatric manifestations and subsequently developed DLB. Thereafter, we reviewed clinical studies regarding the diagnostic applications of the proposed biomarkers to patients with late-onset psychiatric disorders. Clinical presentations were mainly late-onset depression and psychosis; however, other clinical manifestations were also reported. Psychotropic medications before a DLB diagnosis may cause extrapyramidal signs, and potentially influences the proposed biomarker findings. These risks complicate clinical manifestation interpretation during the management of psychiatric symptoms. Longitudinal follow-up studies with standardised evaluations until conversion to DLB are needed to investigate the temporal trajectories of core features and proposed biomarker findings. In patients with late-onset psychiatric disorders, identification of patients with psychiatric-onset prodromal DLB provides the opportunity to better understanding the distinct prognostic subgroup that is at great risk of incident dementia. Advances in the establishment of direct biomarkers for the detection of pathological α-synuclein may encourage reorganising the phenotypic variability of prodromal DLB.
Collapse
Affiliation(s)
- Ryota Kobayashi
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Kuniyuki Iwata-Endo
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshige Fujishiro
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
111
|
Ferreira R, Bastos-Leite AJ. Arterial spin labelling magnetic resonance imaging and perfusion patterns in neurocognitive and other mental disorders: a systematic review. Neuroradiology 2024; 66:1065-1081. [PMID: 38536448 PMCID: PMC11150205 DOI: 10.1007/s00234-024-03323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/24/2024] [Indexed: 04/18/2024]
Abstract
We reviewed 33 original research studies assessing brain perfusion, using consensus guidelines from a "white paper" issued by the International Society for Magnetic Resonance in Medicine Perfusion Study Group and the European Cooperation in Science and Technology Action BM1103 ("Arterial Spin Labelling Initiative in Dementia"; https://www.cost.eu/actions/BM1103/ ). The studies were published between 2011 and 2023 and included participants with subjective cognitive decline plus; neurocognitive disorders, including mild cognitive impairment (MCI), Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD), dementia with Lewy bodies (DLB) and vascular cognitive impairment (VCI); as well as schizophrenia spectrum disorders, bipolar and major depressive disorders, autism spectrum disorder, attention-deficit/hyperactivity disorder, panic disorder and alcohol use disorder. Hypoperfusion associated with cognitive impairment was the major finding across the spectrum of cognitive decline. Regional hyperperfusion also was reported in MCI, AD, frontotemporal dementia phenocopy syndrome and VCI. Hypoperfused structures found to aid in diagnosing AD included the precunei and adjacent posterior cingulate cortices. Hypoperfused structures found to better diagnose patients with FTLD were the anterior cingulate cortices and frontal regions. Hypoperfusion in patients with DLB was found to relatively spare the temporal lobes, even after correction for partial volume effects. Hyperperfusion in the temporal cortices and hypoperfusion in the prefrontal and anterior cingulate cortices were found in patients with schizophrenia, most of whom were on medication and at the chronic stage of illness. Infratentorial structures were found to be abnormally perfused in patients with bipolar or major depressive disorders. Brain perfusion abnormalities were helpful in diagnosing most neurocognitive disorders. Abnormalities reported in VCI and the remaining mental disorders were heterogeneous and not generalisable.
Collapse
Affiliation(s)
- Rita Ferreira
- Faculty of Medicine, University of Porto, Porto, Portugal
| | | |
Collapse
|
112
|
Bestetti A, Zangheri B, Gabanelli SV, Parini V, Fornara C. Union is strength: the combination of radiomics features and 3D-deep learning in a sole model increases diagnostic accuracy in demented patients: a whole brain 18FDG PET-CT analysis. Nucl Med Commun 2024; 45:642-649. [PMID: 38632972 PMCID: PMC11149941 DOI: 10.1097/mnm.0000000000001853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
OBJECTIVE FDG PET imaging plays a crucial role in the evaluation of demented patients by assessing regional cerebral glucose metabolism. In recent years, both radiomics and deep learning techniques have emerged as powerful tools for extracting valuable information from medical images. This article aims to provide a comparative analysis of radiomics features, 3D-deep learning convolutional neural network (CNN) and the fusion of them, in the evaluation of 18F-FDG PET whole brain images in patients with dementia and normal controls. METHODS 18F-FDG brain PET and clinical score were collected in 85 patients with dementia and 125 healthy controls (HC). Patients were assigned to various form of dementia on the basis of clinical evaluation, follow-up and voxels comparison with HC using a two-sample Student's t -test, to determine the regions of brain involved. Radiomics analysis was performed on the whole brain after normalization to an optimized template. After selection using the minimum redundancy maximum relevance method and Pearson's correlation coefficients, the features obtained were added to a neural network model to find the accuracy in classifying HC and demented patients. Forty subjects not included in the training were used to test the models. The results of the three models (radiomics, 3D-CNN, combined model) were compared with each other. RESULTS Four radiomics features were selected. The sensitivity was 100% for the three models, but the specificity was higher with radiomics and combined one (100% vs. 85%). Moreover, the classification scores were significantly higher using the combined model in both normal and demented subjects. CONCLUSION The combination of radiomics features and 3D-CNN in a single model, applied to the whole brain 18FDG PET study, increases the accuracy in demented patients.
Collapse
Affiliation(s)
- Alberto Bestetti
- Department of Clinical and Community Sciences, State University of Milan, Milan
- Nuclear Medicine Department, MultiMedica Hospital
| | | | | | | | - Carla Fornara
- Division of Neurology, MultiMedica Hospital, Sesto San Giovanni, Italy
| |
Collapse
|
113
|
Kobylecki C, Thompson JC, Robinson AC, Roncaroli F, Snowden JS, Mann DM. Concomitant progressive supranuclear palsy and Lewy body pathology presenting with circumscribed visual memory loss: A clinicopathological case. Brain Pathol 2024; 34:e13219. [PMID: 37927160 PMCID: PMC11189767 DOI: 10.1111/bpa.13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/14/2023] [Indexed: 11/07/2023] Open
Abstract
A 70-year-old man presented to the clinic with impairment of visual memory and marked predominantly right sided mesial temporal lobe atrophy on imaging. He died 6 years following symptom onset and neuropathological examination showed concomitant progressive supranuclear palsy and Lewy body pathology. Although he did not fulfil clinical criteria for either condition at presentation, we propose that interactions between the two pathologies in mesial temporal regions could result in this atypical clinical phenotype.
Collapse
Affiliation(s)
- Christopher Kobylecki
- Department of Neurology, Manchester Centre for Clinical NeurosciencesNorthern Care Alliance NHS Foundation TrustSalfordUK
- Division of Neuroscience, Geoffrey Jefferson Brain Research Centre, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Jennifer C. Thompson
- Division of Neuroscience, Geoffrey Jefferson Brain Research Centre, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- Cerebral Function Unit, Manchester Centre for Clinical NeurosciencesNorthern Care Alliance NHS Foundation TrustSalfordUK
| | - Andrew C. Robinson
- Division of Neuroscience, Geoffrey Jefferson Brain Research Centre, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Federico Roncaroli
- Division of Neuroscience, Geoffrey Jefferson Brain Research Centre, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- Neuropathology Unit, Manchester Centre for Clinical NeurosciencesNorthern Care Alliance NHS Foundation TrustSalfordUK
| | - Julie S. Snowden
- Division of Neuroscience, Geoffrey Jefferson Brain Research Centre, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- Cerebral Function Unit, Manchester Centre for Clinical NeurosciencesNorthern Care Alliance NHS Foundation TrustSalfordUK
| | - David M. Mann
- Division of Neuroscience, Geoffrey Jefferson Brain Research Centre, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
114
|
Tseriotis VS, Mavridis T, Eleftheriadou K, Konstantis G, Chlorogiannis DD, Pavlidis P, Pourzitaki C, Arnaoutoglou M, Spyridon K. Loss of the "swallow tail sign" on susceptibility-weighted imaging in the diagnosis of dementia with Lewy bodies: a systematic review and meta-analysis. J Neurol 2024; 271:3754-3763. [PMID: 38801432 DOI: 10.1007/s00415-024-12381-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION Loss of dorsolateral nigral hyperintensity (DNH) on iron-sensitive brain MRI is useful for Parkinson's disease detection. DNH loss could also be of diagnostic value in dementia with Lewy bodies (DLB), an a-synuclein-related pathology. We aim to quantitatively synthesize evidence, investigating the role of MRI, a first-line imaging modality, in early DLB detection and differentiation from other dementias. METHODS Our study was conducted according to the PRISMA statement. MEDLINE, Scopus, Web of Science, and Cochrane Library were searched using the terms like "dementia with Lewy bodies", "dorsolateral nigral hyperintensity", and "MRI". Only English-written peer-reviewed diagnostic accuracy studies were included. We used QUADAS-2 for quality assessment. RESULTS Our search yielded 363 search results. Three studies were eligible, all with satisfying, high quality. The total population of 227 patients included 63 with DLB and 164 with other diseases (Alzheimer disease, frontotemporal dementia, mild cognitive impairment). Using a univariate random-effects logistic regression model, our meta-analysis resulted in pooled sensitivity, specificity and DOR of 0.82 [0.62; 0.92], 0.79 [0.70; 0.86] and 16.26 ([3.3276; 79.4702], p = 0.0006), respectively, for scans with mixed field strength (1.5 and 3 T). Subgroup analysis of 3 T scans showed pooled sensitivity, specificity and DOR of 0.82 [0.61; 0.93], 0.82 [0.72; 0.89] and 18.36 ([4.24; 79.46], p < 0.0001), respectively. DISCUSSION DNH loss on iron-sensitive MRI might comprise a supportive biomarker for DLB detection, that could augment the value of the DLB diagnostic criteria. Further evaluation using standardized protocols is needed, as well as direct comparison to other supportive and indicative biomarkers.
Collapse
Affiliation(s)
- Vasilis-Spyridon Tseriotis
- Department of Neurology, Agios Pavlos General Hospital of Thessaloniki, Thessaloniki, Greece.
- Laboratory of Clinical Pharmacology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Theodoros Mavridis
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, Tallaght University Hospital (TUH)/The Adelaide and Meath Hospital, Dublin, Incorporating the National Children's Hospital (AMNCH), Dublin, Ireland
| | - Kyriaki Eleftheriadou
- Department of Neurology, Agios Pavlos General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Georgios Konstantis
- Laboratory of Clinical Pharmacology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Pavlos Pavlidis
- Laboratory of Clinical Pharmacology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Chryssa Pourzitaki
- Laboratory of Clinical Pharmacology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marianthi Arnaoutoglou
- 1st Neurology Department of AHEPA University General Hospital of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
115
|
Adler CH, Halverson M, Zhang N, Shill HA, Driver-Dunckley E, Mehta SH, Atri A, Caviness JN, Serrano GE, Shprecher DR, Belden CM, Sabbagh MN, Long K, Beach TG. Conjugal Synucleinopathies: A Clinicopathologic Study. Mov Disord 2024; 39:1212-1217. [PMID: 38597193 PMCID: PMC11260251 DOI: 10.1002/mds.29783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND While preclinical studies have shown that alpha-synuclein can spread through cell-to-cell transmission whether it can be transmitted between humans is unknown. OBJECTIVES The aim was to assess the presence of a synucleinopathy in autopsied conjugal couples. METHODS Neuropathological findings in conjugal couples were categorized as Parkinson's disease (PD), dementia with Lewy bodies (DLB), Alzheimer's disease with Lewy bodies (ADLB), incidental Lewy body disease (ILBD), or no Lewy bodies. RESULTS Ninety conjugal couples were included; the mean age of death was 88.3 years; 32 couples had no Lewy bodies; 42 couples had 1 spouse with a synucleinopathy: 10 PD, 3 DLB, 13 ADLB, and 16 ILBD; 16 couples had both spouses with a synucleinopathy: in 4 couples both spouses had PD, 1 couple had PD and DLB, 4 couples had PD and ADLB, 2 couples had PD and ILBD, 1 couple had DLB and ADLB, in 3 couples both had ADLB, and 1 couple had ADLB and ILBD. No couples had both spouses with ILBD. CONCLUSIONS This large series of 90 autopsied conjugal couples found 16 conjugal couples with synucleinopathies, suggesting transmission of synucleinopathy between spouses is unlikely. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Charles H. Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ
| | | | - Nan Zhang
- Department of Biostatistics, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ
| | | | | | | | - Alireza Atri
- Cleo Roberts Center, Banner Sun Health Research Institute, Sun City, AZ
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | | | - Geidy E. Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ
| | | | | | | | - Kathy Long
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ
| | - Thomas G. Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ
| |
Collapse
|
116
|
O’Caoimh R, Foley MJ, Timmons S, Molloy DW. Screening for Cognitive Impairment in Movement Disorders: Comparison of the Montreal Cognitive Assessment and Quick Mild Cognitive Impairment Screen in Parkinson's Disease and Lewy Body Dementia. J Alzheimers Dis Rep 2024; 8:971-980. [PMID: 39114555 PMCID: PMC11305847 DOI: 10.3233/adr-230207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/04/2024] [Indexed: 08/10/2024] Open
Abstract
Background The Montreal Cognitive Assessment (MoCA) is recommended by the Movement Disorder Society for cognitive testing in movement disorders including Parkinson's disease (PD) and lewy body dementia. Few studies have compared cognitive screening instruments in these diseases, which overlap clinically. Objective To compare the MoCA and Quick Mild Cognitive Impairment (Qmci) screen in this population. Methods Patients attending memory and movement disorder clinics associated with a university hospital had the MoCA and Qmci screen performed and diagnostic accuracy compared with the area under the receiver operating characteristic curve (AUC). Duration and severity of movement disorders was assessed using the Unified PD Rating Scale (UPDRS). Results In total, 133 assessments were available, median age 74±5. Median education was 11±4 years and 65% were male. Median total UPDRS score was 37±26. Median Qmci screen was 51±27, median MoCA was 19±10. There were statistically significant differences in test scores between those with subjective symptoms but normal cognition, mild cognitive impairment (MCI) and dementia (p < 0.001). The Qmci screen had significantly greater accuracy differentiating normal cognition from MCI versus the MoCA (AUC 0.90 versus 0.72, p = 0.01). Both instruments had similar accuracy in identifying cognitive impairment and separating MCI from dementia. The median administration time for the Qmci screen and MoCA were 5.19 and 9.24 minutes (p < 0.001), respectively. Conclusions Both the MoCA and Qmci screen have good to excellent accuracy in a population with movement disorders experiencing cognitive symptoms. The Qmci screen was significantly more accurate for those with early symptoms and had a shorter administration time.
Collapse
Affiliation(s)
- Rónán O’Caoimh
- Department of Geriatric and Stroke Medicine, Mercy University Hospital, Grenville Place, Cork, Ireland
- Health Research Board Clinical Research Facility, University College Cork, Mercy University Hospital, Cork, Ireland
| | - Mary J. Foley
- Centre for Gerontology and Rehabilitation, St Finbarr’s Hospital, Cork, Ireland
| | - Suzanne Timmons
- Department of Geriatric and Stroke Medicine, Mercy University Hospital, Grenville Place, Cork, Ireland
- Centre for Gerontology and Rehabilitation, St Finbarr’s Hospital, Cork, Ireland
| | - D. William Molloy
- Department of Geriatric and Stroke Medicine, Mercy University Hospital, Grenville Place, Cork, Ireland
- Centre for Gerontology and Rehabilitation, St Finbarr’s Hospital, Cork, Ireland
| |
Collapse
|
117
|
Rothenberg KG, Bekris L, Leverenz JB, Wu J, Lee J, Statsevych V, Ruggieri P, Jones SE. Cerebral Amyloid Angiopathy in Patients with Cognitive Impairment: Cerebrospinal Fluid Biomarkers. Dement Geriatr Cogn Disord 2024; 53:248-254. [PMID: 38889704 PMCID: PMC11446477 DOI: 10.1159/000539884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION Cerebral amyloid angiopathy (CAA) is characterized by amyloid β (Aβ) deposition in brain vessels, leading to hemorrhagic phenomena and cognitive impairment. Magnetic resonance imaging (MRI)-based criteria allow a diagnosis of probable CAA in vivo, but such a diagnosis cannot predict the eventual development of CAA. METHODS We conducted a retrospective cohort study of 464 patients with cognitive disorders whose data were included in a brain health biobank. De-identified parameters including sex, age, cognitive score, APOE status, and cerebrospinal fluid (CSF) levels of Aβ 1-40, Aβ 1-42, phosphorylated tau, and total tau were assessed in those with and without CAA. Odds ratios (ORs) and 95% confidence intervals (CIs) were determined. RESULTS CAA was present in 53 of 464 (11.5%) patients. P-tau level was significantly higher in those with CAA (115 vs. 84.3 pg/mL p = 0.038). In univariate analyses, the risk of developing CAA was higher with increased age (OR, 1.036; 95% CI: 1.008, 1.064; p = 0.011) and decreased CSF level of Aβ 1-40 (OR, 0.685; 95% CI: 0.534, 0.878; p = 0.003). In multivariate analyses, the risk of CAA remained higher with a decreased CSF level of Aβ 1-40 (OR, 0.681; 95% CI: 0.531, 0.874; p = 0.003). CONCLUSION These findings suggest that Aβ 1-40 levels in the CSF might be a useful molecular biomarker of CAA in patients with dementia.
Collapse
Affiliation(s)
- Kasia Gustaw Rothenberg
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lynn Bekris
- Genomic Medicine Institute Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - James B. Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jenny Wu
- Department of Radiology, Cleveland Clinic, Cleveland, OH, USA
| | - Jonathan Lee
- Department of Radiology, Cleveland Clinic, Cleveland, OH, USA
| | | | - Paul Ruggieri
- Department of Radiology, Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|
118
|
Mastenbroek SE, Vogel JW, Collij LE, Serrano GE, Tremblay C, Young AL, Arce RA, Shill HA, Driver-Dunckley ED, Mehta SH, Belden CM, Atri A, Choudhury P, Barkhof F, Adler CH, Ossenkoppele R, Beach TG, Hansson O. Disease progression modelling reveals heterogeneity in trajectories of Lewy-type α-synuclein pathology. Nat Commun 2024; 15:5133. [PMID: 38879548 PMCID: PMC11180185 DOI: 10.1038/s41467-024-49402-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/04/2024] [Indexed: 06/19/2024] Open
Abstract
Lewy body (LB) diseases, characterized by the aggregation of misfolded α-synuclein proteins, exhibit notable clinical heterogeneity. This may be due to variations in accumulation patterns of LB neuropathology. Here we apply a data-driven disease progression model to regional neuropathological LB density scores from 814 brain donors with Lewy pathology. We describe three inferred trajectories of LB pathology that are characterized by differing clinicopathological presentation and longitudinal antemortem clinical progression. Most donors (81.9%) show earliest pathology in the olfactory bulb, followed by accumulation in either limbic (60.8%) or brainstem (21.1%) regions. The remaining donors (18.1%) initially exhibit abnormalities in brainstem regions. Early limbic pathology is associated with Alzheimer's disease-associated characteristics while early brainstem pathology is associated with progressive motor impairment and substantial LB pathology outside of the brain. Our data provides evidence for heterogeneity in the temporal spread of LB pathology, possibly explaining some of the clinical disparities observed in Lewy body disease.
Collapse
Affiliation(s)
- Sophie E Mastenbroek
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands.
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden.
| | - Jacob W Vogel
- Department of Clinical Sciences Malmö, Faculty of Medicine, SciLifeLab, Lund University, Lund, Sweden
| | - Lyduine E Collij
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | | | | | - Alexandra L Young
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | | | - Holly A Shill
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Erika D Driver-Dunckley
- Department of Neurology, Parkinson's Disease and Movement Disorders Center, Mayo Clinic, Scottsdale, AZ, USA
| | - Shyamal H Mehta
- Department of Neurology, Parkinson's Disease and Movement Disorders Center, Mayo Clinic, Scottsdale, AZ, USA
| | | | - Alireza Atri
- Banner Sun Health Research Institute, Sun City, AZ, USA
- Department of Neurology, Center for Mind/Brain Medicine, Brigham & Women's Hospital & Harvard Medical School, Boston, MA, USA
| | | | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Institutes of Neurology & Healthcare Engineering, University College London, London, UK
| | - Charles H Adler
- Department of Neurology, Parkinson's Disease and Movement Disorders Center, Mayo Clinic, Scottsdale, AZ, USA
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam University Medical Center location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | | | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
119
|
Goerss D, Köhler S, Rong E, Temp AG, Kilimann I, Bieber G, Teipel S. Smartwatch-Based Interventions for People With Dementia: User-Centered Design Approach. JMIR Aging 2024; 7:e50107. [PMID: 38848116 PMCID: PMC11193079 DOI: 10.2196/50107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/30/2024] [Accepted: 02/27/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Assistive technologies can help people living with dementia maintain their everyday activities. Nevertheless, there is a gap between the potential and use of these materials. Involving future users may help close this gap, but the impact on people with dementia is unclear. OBJECTIVE We aimed to determine if user-centered development of smartwatch-based interventions together with people with dementia is feasible. In addition, we evaluated the extent to which user feedback is plausible and therefore helpful for technological improvements. METHODS We examined the interactions between smartwatches and people with dementia or people with mild cognitive impairment. All participants were prompted to complete 2 tasks (drinking water and a specific cognitive task). Prompts were triggered using a smartphone as a remote control and were repeated up to 3 times if participants failed to complete a task. Overall, 50% (20/40) of the participants received regular prompts, and 50% (20/40) received intensive audiovisual prompts to perform everyday tasks. Participants' reactions were observed remotely via cameras. User feedback was captured via questionnaires, which included topics like usability, design, usefulness, and concerns. The internal consistency of the subscales was calculated. Plausibility was also checked using qualitative approaches. RESULTS Participants noted their preferences for particular functions and improvements. Patients struggled with rating using the Likert scale; therefore, we assisted them with completing the questionnaire. Usability (mean 78 out of 100, SD 15.22) and usefulness (mean 9 out of 12) were rated high. The smartwatch design was appealing to most participants (31/40, 76%). Only a few participants (6/40, 15%) were concerned about using the watch. Better usability was associated with better cognition. The observed success and self-rated task comprehension were in agreement for most participants (32/40, 80%). In different qualitative analyses, participants' responses were, in most cases, plausible. Only 8% (3/40) of the participants were completely unaware of their irregular task performance. CONCLUSIONS People with dementia can have positive experiences with smartwatches. Most people with dementia provided valuable information. Developing assistive technologies together with people with dementia can help to prioritize the future development of functional and nonfunctional features.
Collapse
Affiliation(s)
- Doreen Goerss
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen Rostock/Greifswald, Rostock, Germany
| | - Stefanie Köhler
- Deutsches Zentrum für Neurodegenerative Erkrankungen Rostock/Greifswald, Rostock, Germany
| | - Eleonora Rong
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Anna Gesine Temp
- Neurozentrum, Berufsgenossenschaftliches Klinikum Hamburg, Hamburg, Germany
| | - Ingo Kilimann
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen Rostock/Greifswald, Rostock, Germany
| | - Gerald Bieber
- Fraunhofer Institut für Graphische Datenverarbeitung, Rostock, Germany
| | - Stefan Teipel
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen Rostock/Greifswald, Rostock, Germany
| |
Collapse
|
120
|
Levin J, Baiardi S, Quadalti C, Rossi M, Mammana A, Vöglein J, Bernhardt A, Perrin RJ, Jucker M, Preische O, Hofmann A, Höglinger GU, Cairns NJ, Franklin EE, Chrem P, Cruchaga C, Berman SB, Chhatwal JP, Daniels A, Day GS, Ryan NS, Goate AM, Gordon BA, Huey ED, Ibanez L, Karch CM, Lee J, Llibre‐Guerra J, Lopera F, Masters CL, Morris JC, Noble JM, Renton AE, Roh JH, Frosch MP, Keene CD, McLean C, Sanchez‐Valle R, Schofield PR, Supnet‐Bell C, Xiong C, Giese A, Hansson O, Bateman RJ, McDade E, Parchi P. α-Synuclein seed amplification assay detects Lewy body co-pathology in autosomal dominant Alzheimer's disease late in the disease course and dependent on Lewy pathology burden. Alzheimers Dement 2024; 20:4351-4365. [PMID: 38666355 PMCID: PMC11180868 DOI: 10.1002/alz.13818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 06/01/2024]
Abstract
INTRODUCTION Amyloid beta and tau pathology are the hallmarks of sporadic Alzheimer's disease (AD) and autosomal dominant AD (ADAD). However, Lewy body pathology (LBP) is found in ≈ 50% of AD and ADAD brains. METHODS Using an α-synuclein seed amplification assay (SAA) in cerebrospinal fluid (CSF) from asymptomatic (n = 26) and symptomatic (n = 27) ADAD mutation carriers, including 12 with known neuropathology, we investigated the timing of occurrence and prevalence of SAA positive reactivity in ADAD in vivo. RESULTS No asymptomatic participant and only 11% (3/27) of the symptomatic patients tested SAA positive. Neuropathology revealed LBP in 10/12 cases, primarily affecting the amygdala or the olfactory areas. In the latter group, only the individual with diffuse LBP reaching the neocortex showed α-synuclein seeding activity in CSF in vivo. DISCUSSION Results suggest that in ADAD LBP occurs later than AD pathology and often as amygdala- or olfactory-predominant LBP, for which CSF α-synuclein SAA has low sensitivity. HIGHLIGHTS Cerebrospinal fluid (CSF) real-time quaking-induced conversion (RT-QuIC) detects misfolded α-synuclein in ≈ 10% of symptomatic autosomal dominant Alzheimer's disease (ADAD) patients. CSF RT-QuIC does not detect α-synuclein seeding activity in asymptomatic mutation carriers. Lewy body pathology (LBP) in ADAD mainly occurs as olfactory only or amygdala-predominant variants. LBP develops late in the disease course in ADAD. CSF α-synuclein RT-QuIC has low sensitivity for focal, low-burden LBP.
Collapse
Affiliation(s)
- Johannes Levin
- Department of NeurologyLMU University Hospital, LMU MunichMunichGermany
- German Center for Neurodegenerative DiseasesMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Simone Baiardi
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Corinne Quadalti
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Marcello Rossi
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Angela Mammana
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Jonathan Vöglein
- Department of NeurologyLMU University Hospital, LMU MunichMunichGermany
- German Center for Neurodegenerative DiseasesMunichGermany
| | - Alexander Bernhardt
- Department of NeurologyLMU University Hospital, LMU MunichMunichGermany
- German Center for Neurodegenerative DiseasesMunichGermany
| | - Richard J. Perrin
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMissouriUSA
- Department of NeurologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
- Hertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Oliver Preische
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
- Hertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Anna Hofmann
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
- Hertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Günter U. Höglinger
- Department of NeurologyLMU University Hospital, LMU MunichMunichGermany
- German Center for Neurodegenerative DiseasesMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Nigel J. Cairns
- Living Systems InstituteFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Erin E. Franklin
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMissouriUSA
- Department of NeurologyWashington University School of MedicineSaint LouisMissouriUSA
| | | | - Carlos Cruchaga
- Department of PsychiatryWashington University School of MedicineSaint LouisMissouriUSA
| | | | - Jasmeer P. Chhatwal
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Alisha Daniels
- Department of NeurologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Gregory S. Day
- Department of NeurologyMayo Clinic in FloridaJacksonvilleFloridaUSA
| | - Natalie S. Ryan
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | - Alison M. Goate
- Department of Genetics & Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Brian A. Gordon
- Department of NeurologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Edward D. Huey
- Butler HospitalBrown Center for Alzheimer's Disease ResearchAlpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Laura Ibanez
- Department of PsychiatryWashington University School of MedicineSaint LouisMissouriUSA
| | - Celeste M. Karch
- Department of PsychiatryWashington University School of MedicineSaint LouisMissouriUSA
| | - Jae‐Hong Lee
- Department of NeurologyAsan Medical CenterSeoulSouth Korea
| | - Jorge Llibre‐Guerra
- Department of NeurologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Francisco Lopera
- Grupo de Neurosciencias de Antioquia, Sede de Investigación Universitaria SIUMedellínColombia
| | - Colin L. Masters
- Florey Institute and The University of MelbourneMelbourneVictoriaAustralia
| | - John C. Morris
- Department of NeurologyWashington University School of MedicineSaint LouisMissouriUSA
| | - James M. Noble
- Department of NeurologyTaub Institute for Research on Alzheimer's Disease and the Aging Brain, and GH Sergievsky Center, Columbia UniversityNew YorkNew YorkUSA
| | - Alan E. Renton
- Department of Genetics and Genomic Sciences and Nash Family Dept of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jee Hoon Roh
- Departments of Neurology and PhysiologyKorea University College of MedicineSeoulSouth Korea
| | - Matthew P. Frosch
- MassGeneral Institute for Neurodegenerative Diseases, Neuropathology Service, Massachusetts General HospitalBostonMassachusettsUSA
| | - C. Dirk Keene
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
| | - Catriona McLean
- Department of Anatomical PathologyAlfredHealthMelbourneVictoriaAustralia
| | - Raquel Sanchez‐Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Service of Neurology, Hospital Clinic de Barcelona, FRCB‐IDIBAPSBarcelonaSpain
| | - Peter R. Schofield
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- School of Medical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Charlene Supnet‐Bell
- Department of NeurologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Chengjie Xiong
- Division of BiostatisticsWashington University School of MedicineSaint LouisMissouriUSA
| | | | - Oskar Hansson
- Clinical Memory Research UnitDepartment of Clinical Sciences MalmöFaculty of Medicine, Lund UniversityLundSweden
- Memory ClinicSkåne University HospitalLundSweden
| | - Randall J. Bateman
- Department of NeurologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Eric McDade
- Department of NeurologyWashington University School of MedicineSaint LouisMissouriUSA
| | | | - Piero Parchi
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| |
Collapse
|
121
|
Wang HP, Scalco R, Saito N, Beckett L, Nguyen ML, Huie EZ, Honig LS, DeCarli C, Rissman RA, Teich AF, Mungas DM, Jin LW, Dugger BN. The neuropathological landscape of small vessel disease and Lewy pathology in a cohort of Hispanic and non-Hispanic White decedents with Alzheimer disease. Acta Neuropathol Commun 2024; 12:81. [PMID: 38790074 PMCID: PMC11127432 DOI: 10.1186/s40478-024-01773-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/03/2024] [Indexed: 05/26/2024] Open
Abstract
Cerebrovascular and α-synuclein pathologies are frequently observed alongside Alzheimer disease (AD). The heterogeneity of AD necessitates comprehensive approaches to postmortem studies, including the representation of historically underrepresented ethnic groups. In this cohort study, we evaluated small vessel disease pathologies and α-synuclein deposits among Hispanic decedents (HD, n = 92) and non-Hispanic White decedents (NHWD, n = 184) from three Alzheimer's Disease Research Centers: Columbia University, University of California San Diego, and University of California Davis. The study included cases with a pathological diagnosis of Intermediate/High AD based on the National Institute on Aging- Alzheimer's Association (NIA-AA) and/or NIA-Reagan criteria. A 2:1 random comparison sample of NHWD was frequency-balanced and matched with HD by age and sex. An expert blinded to demographics and center origin evaluated arteriolosclerosis, cerebral amyloid angiopathy (CAA), and Lewy bodies/Lewy neurites (LBs/LNs) with a semi-quantitative approach using established criteria. There were many similarities and a few differences among groups. HD showed more severe Vonsattel grading of CAA in the cerebellum (p = 0.04), higher CAA density in the posterior hippocampus and cerebellum (ps = 0.01), and increased LBs/LNs density in the frontal (p = 0.01) and temporal cortices (p = 0.03), as determined by Wilcoxon's test. Ordinal logistic regression adjusting for age, sex, and center confirmed these findings except for LBs/LNs in the temporal cortex. Results indicate HD with AD exhibit greater CAA and α-synuclein burdens in select neuroanatomic regions when compared to age- and sex-matched NHWD with AD. These findings aid in the generalizability of concurrent arteriolosclerosis, CAA, and LBs/LNs topography and severity within the setting of pathologically confirmed AD, particularly in persons of Hispanic descent, showing many similarities and a few differences to those of NHW descent and providing insights into precision medicine approaches.
Collapse
Affiliation(s)
- Hsin-Pei Wang
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Rebeca Scalco
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Naomi Saito
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Laurel Beckett
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - My-Le Nguyen
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Emily Z Huie
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Lawrence S Honig
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Department of Neurology, Columbia University Medical Center, New York, USA
| | - Charles DeCarli
- Alzheimer's Disease Research Center, Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California San Diego, San Diego, La Jolla, CA, USA
| | - Andrew F Teich
- Taub Institute for Research on Alzheimer's Disease and Aging Brain, Department of Neurology, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, USA
| | - Dan M Mungas
- Alzheimer's Disease Research Center, Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
- Alzheimer's Disease Research Center, Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Brittany N Dugger
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA.
- Alzheimer's Disease Research Center, Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
122
|
Liampas I, Dimitriou N, Siokas V, Messinis L, Nasios G, Dardiotis E. Cognitive trajectories preluding the onset of different dementia entities: a descriptive longitudinal study using the NACC database. Aging Clin Exp Res 2024; 36:119. [PMID: 38780681 PMCID: PMC11116253 DOI: 10.1007/s40520-024-02769-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE To describe the 10-year preclinical cognitive trajectories of older, non-demented individuals towards the onset of the four most prevalent types of dementia, i.e., Alzheimer's disease(AD), Lewy body(LBD), vascular(VD) and frontotemporal dementia(FTD). METHODS Our analysis focused on data from older (≥ 60years) NACC (National Alzheimer's Coordinating Center) participants. Four distinct presymptomatic dementia groups (AD-LBD-VD-FTD) and a comparison group of cognitively unimpaired(CU) participants were formed. Comprehensive cognitive assessments involving verbal episodic memory, semantic verbal fluency, confrontation naming, mental processing speed - attention and executive function - cognitive flexibility were conducted at baseline and on an approximately yearly basis. Descriptive analyses (adjusted general linear models) were performed to determine and compare the yearly cognitive scores of each group throughout the follow-up. Exploratory analyses were conducted to estimate the rates of cognitive decline. RESULTS There were 3343 participants who developed AD, 247 LBD, 108 FTD, 155 VD and 3398 composed the CU group. Participants with AD performed worse on episodic memory than those with VD and LBD for about 3 to 4 years prior to dementia onset (the FTD group documented an intermediate course). Presymptomatic verbal fluency and confrontation naming trajectories differentiated quite well between the FTD group and the remaining dementia entities. Participants with incident LBD and VD performed worse than those with AD on executive functions and mental processing speed-attention since about 5 years prior to the onset of dementia, and worse than those with FTD more proximally to the diagnosis of the disorder. CONCLUSIONS Heterogeneous cognitive trajectories characterize the presymptomatic courses of the most prevalent dementia entities.
Collapse
Affiliation(s)
- Ioannis Liampas
- Department of Neurology, School of Medicine, University Hospital of Larissa, University of Thessaly, Mezourlo Hill, Larissa, 41100, Greece.
| | - Nefeli Dimitriou
- Department of Speech and Language Therapy, School of Health Sciences, University of Ioannina, Ioannina, 45500, Greece
| | - Vasileios Siokas
- Department of Neurology, School of Medicine, University Hospital of Larissa, University of Thessaly, Mezourlo Hill, Larissa, 41100, Greece
| | - Lambros Messinis
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Grigorios Nasios
- Department of Speech and Language Therapy, School of Health Sciences, University of Ioannina, Ioannina, 45500, Greece
| | - Efthimios Dardiotis
- Department of Neurology, School of Medicine, University Hospital of Larissa, University of Thessaly, Mezourlo Hill, Larissa, 41100, Greece
| |
Collapse
|
123
|
Jeong E, Woo Shin Y, Byun JI, Sunwoo JS, Roascio M, Mattioli P, Giorgetti L, Famà F, Arnulfo G, Arnaldi D, Kim HJ, Jung KY. EEG-based machine learning models for the prediction of phenoconversion time and subtype in isolated rapid eye movement sleep behavior disorder. Sleep 2024; 47:zsae031. [PMID: 38330231 DOI: 10.1093/sleep/zsae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/20/2024] [Indexed: 02/10/2024] Open
Abstract
STUDY OBJECTIVES Isolated rapid eye movement sleep behavior disorder (iRBD) is a prodromal stage of α-synucleinopathies and eventually phenoconverts to overt neurodegenerative diseases including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Associations of baseline resting-state electroencephalography (EEG) with phenoconversion have been reported. In this study, we aimed to develop machine learning models to predict phenoconversion time and subtype using baseline EEG features in patients with iRBD. METHODS At baseline, resting-state EEG and neurological assessments were performed on patients with iRBD. Calculated EEG features included spectral power, weighted phase lag index, and Shannon entropy. Three models were used for survival prediction, and four models were used for α-synucleinopathy subtype prediction. The models were externally validated using data from a different institution. RESULTS A total of 236 iRBD patients were followed up for up to 8 years (mean 3.5 years), and 31 patients converted to α-synucleinopathies (16 PD, 9 DLB, 6 MSA). The best model for survival prediction was the random survival forest model with an integrated Brier score of 0.114 and a concordance index of 0.775. The K-nearest neighbor model was the best model for subtype prediction with an area under the receiver operating characteristic curve of 0.901. Slowing of the EEG was an important feature for both models. CONCLUSIONS Machine learning models using baseline EEG features can be used to predict phenoconversion time and its subtype in patients with iRBD. Further research including large sample data from many countries is needed to make a more robust model.
Collapse
Affiliation(s)
- El Jeong
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, South Korea
| | - Yong Woo Shin
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung-Ick Byun
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - Jun-Sang Sunwoo
- Department of Neurology, Kangbuk Samsung Hospital, Seoul, South Korea
| | - Monica Roascio
- Department of Informatics, Bioengineering, Robotics and System engineering (DIBRIS), University of Genoa, Genoa, Italy
- RAISE (Robotics and AI for Socio-economic Empowerment) Ecosystem, Genoa, Italy
| | - Pietro Mattioli
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- Neurophysiopathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Laura Giorgetti
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Francesco Famà
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- Neurophysiopathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gabriele Arnulfo
- Department of Informatics, Bioengineering, Robotics and System engineering (DIBRIS), University of Genoa, Genoa, Italy
- RAISE (Robotics and AI for Socio-economic Empowerment) Ecosystem, Genoa, Italy
| | - Dario Arnaldi
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- Neurophysiopathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Han-Joon Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Ki-Young Jung
- Seoul National University Hospital, Seoul, South Korea
- Seoul National University Medical Research Center Neuroscience Research Institute, Sensory Organ Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
124
|
Meng Q, Chen C, Zhu M, Huang Y. Dietary factors and Alzheimer's disease risk: a Mendelian randomization study. Eur J Med Res 2024; 29:261. [PMID: 38698427 PMCID: PMC11067192 DOI: 10.1186/s40001-024-01821-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Prior observational research has investigated the association between dietary patterns and Alzheimer's disease (AD) risk. Nevertheless, due to constraints in past observational studies, establishing a causal link between dietary habits and AD remains challenging. METHODS Methodology involved the utilization of extensive cohorts sourced from publicly accessible genome-wide association study (GWAS) datasets of European descent for conducting Mendelian randomization (MR) analyses. The principal analytical technique utilized was the inverse-variance weighted (IVW) method. RESULTS The MR analysis conducted in this study found no statistically significant causal association between 20 dietary habits and the risk of AD (All p > 0.05). These results were consistent across various MR methods employed, including MR-Egger, weighted median, simple mode, and weighted mode approaches. Moreover, there was no evidence of horizontal pleiotropy detected (All p > 0.05). CONCLUSION In this MR analysis, our finding did not provide evidence to support the causal genetic relationships between dietary habits and AD risk.
Collapse
Affiliation(s)
- Qi Meng
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, 7 Weiwu Street, Zhengzhou, 450000, China.
| | - Chen Chen
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, 7 Weiwu Street, Zhengzhou, 450000, China
| | - Mingfang Zhu
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, 7 Weiwu Street, Zhengzhou, 450000, China
| | - Yue Huang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, 7 Weiwu Street, Zhengzhou, 450000, China
| |
Collapse
|
125
|
Mori E, Ikeda M, Ohdake M. Donepezil for dementia with Lewy bodies: meta-analysis of multicentre, randomised, double-blind, placebo-controlled phase II, III, and, IV studies. Psychogeriatrics 2024; 24:589-596. [PMID: 38439217 PMCID: PMC11578031 DOI: 10.1111/psyg.13101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Current evidence for the management of symptoms associated with dementia with Lewy bodies (DLB) using donepezil is limited. We conducted a meta-analysis of three randomised controlled trials of donepezil in patients with DLB to investigate the overall efficacy of donepezil on Mini-Mental State Examination (MMSE), Neuropsychiatric Inventory (NPI), and Clinician's Interview-Based Impression of Change-plus Caregiver Input (CIBIC-plus). METHODS A meta-analysis was performed using the data of 312 patients administered placebo or 10 mg donepezil. Overall mean score differences for MMSE, NPI-2, and NPI-10 from baseline to week 12 and their 95% confidence intervals (CI) were estimated. For CIBIC-plus, which was transformed from a seven-point grade to a dichotomous outcome (improvements/no improvements), odds ratio (OR) and its 95% CI were estimated. Random-effects models were used, and heterogeneity was evaluated using the Cochrane's Q test and I2 statistic. RESULTS Heterogeneity was suspected for NPI-2 (P < 0.05; I2 = 87.2%) and NPI-10 (P < 0.05; I2 = 67.7%) while it was not suspected for MMSE (P = 0.23; I2 = 32.4%) and CIBIC-plus (P = 0.26; I2 = 19.8%). The overall mean MMSE score difference (mean difference: 1.50; 95% CI, 0.67-2.34) and the overall odds of improving CIBIC-plus (OR: 2.20; 95% CI, 1.13-4.26) from baseline to week 12 were higher in the donepezil group than in the placebo group. CONCLUSION Results of our meta-analysis indicated overall efficacy of donepezil on cognitive impairment and global clinical status in patients with DLB.
Collapse
Affiliation(s)
- Etsuro Mori
- Department of Behavioural Neurology and NeuropsychiatryOsaka University United Graduate School of Child DevelopmentOsakaJapan
| | - Manabu Ikeda
- Department of PsychiatryOsaka University Graduate School of MedicineOsakaJapan
| | - Megumi Ohdake
- Clinical Planning and Development DepartmentMedical HQs, Eisai Co. LtdTokyoJapan
| |
Collapse
|
126
|
Hedna K, Sigström R, Johnell K, Waern M. Determinants of suicidal behavior in dementia: A Swedish national register-based study. Int Psychogeriatr 2024; 36:415-426. [PMID: 37642016 DOI: 10.1017/s1041610223000583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
OBJECTIVES To examine predictors of suicidal behavior (SB) in adults aged 75 years and above with dementia. DESIGN Longitudinal national register-based study. PARTICIPANTS AND SETTING Swedish residents aged ≥75 years with dementia identified in the Swedish Dementia Registry (SveDem) between 1 January 2007 and 31 December 2017 (N = 59 042) and followed until 31 December 2018. Data were linked with numerous national registers using personal identity numbers. MEASUREMENTS Outcomes were nonfatal self-harm and suicide. Fine and Gray regression models were used to investigate demographics, comorbidities, and psychoactive medications associated with fatal and nonfatal SB. RESULTS Suicidal behavior was observed in 160 persons after dementia diagnosis; 29 of these died by suicide. Adjusted sub-hazard ratio (aSHRs) for SB was increased in those who had a previous episode of self-harm (aSHR = 14.42; 95% confidence interval [CI] = 7.06-29.46), those with serious depression (aSHR = 4.33, 95%CI = 2.94-6.4), and in those born outside Sweden (aSHR = 1.53; 95% CI = 1.03-2.27). Use of hypnotics or anxiolytics was also associated with a higher risk of SB; use of antidepressants was not. Milder dementia and higher frailty score also increased risk of SB. Risk was decreased in those who received home care (aSHR = 0.52; 95%CI = 0.38-0.71) and in the oldest group (aSHR = 0.35; 95%CI = 0.25-0.49). CONCLUSION In addition to established targets for suicidal behavior prevention (improved identification and treatment of depression and previous self-harm), several new risk factors were suggested. There is a need for innovative public health strategies to meet the needs of older dementia patients with a foreign background. Home care may have a potential positive effect to prevent SB in people with dementia, but this needs to be further explored.
Collapse
Affiliation(s)
- Khedidja Hedna
- AgeCap Center, Department of Psychiatry and Neurochemistry, Gothenburg University, Gothenburg, Sweden
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Statistikkonsulterna Väst AB, Gothenburg, Sweden
| | - Robert Sigström
- AgeCap Center, Department of Psychiatry and Neurochemistry, Gothenburg University, Gothenburg, Sweden
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Cognition and Old Age Psychiatry, Gothenburg, Sweden
| | - Kristina Johnell
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Margda Waern
- AgeCap Center, Department of Psychiatry and Neurochemistry, Gothenburg University, Gothenburg, Sweden
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Psychosis Clinic, Gothenburg, Sweden
| |
Collapse
|
127
|
Wilson EN, Wang C, Swarovski MS, Zera KA, Ennerfelt HE, Wang Q, Chaney A, Gauba E, Ramos Benitez JA, Le Guen Y, Minhas PS, Panchal M, Tan YJ, Blacher E, A Iweka C, Cropper H, Jain P, Liu Q, Mehta SS, Zuckerman AJ, Xin M, Umans J, Huang J, Durairaj AS, Serrano GE, Beach TG, Greicius MD, James ML, Buckwalter MS, McReynolds MR, Rabinowitz JD, Andreasson KI. TREM1 disrupts myeloid bioenergetics and cognitive function in aging and Alzheimer disease mouse models. Nat Neurosci 2024; 27:873-885. [PMID: 38539014 PMCID: PMC11102654 DOI: 10.1038/s41593-024-01610-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 02/22/2024] [Indexed: 04/21/2024]
Abstract
Human genetics implicate defective myeloid responses in the development of late-onset Alzheimer disease. A decline in peripheral and brain myeloid metabolism, triggering maladaptive immune responses, is a feature of aging. The role of TREM1, a pro-inflammatory factor, in neurodegenerative diseases is unclear. Here we show that Trem1 deficiency prevents age-dependent changes in myeloid metabolism, inflammation and hippocampal memory function in mice. Trem1 deficiency rescues age-associated declines in ribose 5-phosphate. In vitro, Trem1-deficient microglia are resistant to amyloid-β42 oligomer-induced bioenergetic changes, suggesting that amyloid-β42 oligomer stimulation disrupts homeostatic microglial metabolism and immune function via TREM1. In the 5XFAD mouse model, Trem1 haploinsufficiency prevents spatial memory loss, preserves homeostatic microglial morphology, and reduces neuritic dystrophy and changes in the disease-associated microglial transcriptomic signature. In aging APPSwe mice, Trem1 deficiency prevents hippocampal memory decline while restoring synaptic mitochondrial function and cerebral glucose uptake. In postmortem Alzheimer disease brain, TREM1 colocalizes with Iba1+ cells around amyloid plaques and its expression is associated with Alzheimer disease clinical and neuropathological severity. Our results suggest that TREM1 promotes cognitive decline in aging and in the context of amyloid pathology.
Collapse
Affiliation(s)
- Edward N Wilson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Congcong Wang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle S Swarovski
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristy A Zera
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannah E Ennerfelt
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Qian Wang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Aisling Chaney
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Esha Gauba
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Javier A Ramos Benitez
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Yann Le Guen
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Paras S Minhas
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Maharshi Panchal
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuting J Tan
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Eran Blacher
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Chinyere A Iweka
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Haley Cropper
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Poorva Jain
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Qingkun Liu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Swapnil S Mehta
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Abigail J Zuckerman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew Xin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jacob Umans
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jolie Huang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Aarooran S Durairaj
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Michelle L James
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Melanie R McReynolds
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Katrin I Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
128
|
Samudra N, Fischer DL, Lenio S, Lario Lago A, Ljubenkov PA, Rojas JC, Seeley WW, Spina S, Staffaroni AM, Tablante J, Wekselman F, Lamoureux J, Concha‐Marambio L, Grinberg LT, Boxer AL, VandeVrede L. Clinicopathological correlation of cerebrospinal fluid alpha-synuclein seed amplification assay in a behavioral neurology autopsy cohort. Alzheimers Dement 2024; 20:3334-3341. [PMID: 38539061 PMCID: PMC11095442 DOI: 10.1002/alz.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/16/2024] [Accepted: 02/25/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Lewy body disease (LBD) is a common primary or co-pathology in neurodegenerative syndromes. An alpha-synuclein seed amplification assay (αSyn-SAA) is clinically available, but clinical performance, especially lower sensitivity in amygdala-predominant cases, is not well understood. METHODS Antemortem CSF from neuropathology-confirmed LBD cases was tested with αSyn-SAA (N = 56). Diagnostic performance and clinicopathological correlations were examined. RESULTS Similar to prior reports, sensitivity was 100% for diffuse and transitional LBD (9/9), and overall specificity was 96.3% (26/27). Sensitivity was lower in amygdala-predominant (6/14, 42.8%) and brainstem-predominant LBD (1/6, 16.7%), but early spread outside these regions (without meeting criteria for higher stage) was more common in αSyn-SAA-positive cases (6/7, 85.7%) than negative (2/13, 15.4%). DISCUSSION In this behavioral neurology cohort, αSyn-SAA had excellent diagnostic performance for cortical LBD. In amygdala- and brainstem-predominant cases, sensitivity was lower, but positivity was associated with anatomical spread, suggesting αSyn-SAA detects early LBD progression in these cohorts. HIGHLIGHTS A cerebrospinal fluid alpha-synuclein assay detects cortical LBD with high sensitivity/specificity. Positivity in prodromal stages of LBD was associated with early cortical spread. The assay provides precision diagnosis of LBD that could support clinical trials. The assay can also identify LBD co-pathology, which may impact treatment responses.
Collapse
Affiliation(s)
- Niyatee Samudra
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - D. Luke Fischer
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Steven Lenio
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Argentina Lario Lago
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Peter A. Ljubenkov
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Julio C. Rojas
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - William W. Seeley
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Salvatore Spina
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Adam M. Staffaroni
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Jonathan Tablante
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Fattin Wekselman
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | | | | - Lea T. Grinberg
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of PathologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Adam L. Boxer
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Lawren VandeVrede
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
129
|
Aiello EN, Pucci V, Diana L, Corvaglia A, Niang A, Mattiello S, Preti AN, Durante G, Ravelli A, Consonni L, Guerra C, Ponti AD, Sangalli G, Difonzo T, Scarano S, Perucca L, Zago S, Appollonio I, Mondini S, Bolognini N. The Telephone Language Screener (TLS): standardization of a novel telephone-based screening test for language impairment. Neurol Sci 2024; 45:1989-2001. [PMID: 38010584 PMCID: PMC11021315 DOI: 10.1007/s10072-023-07149-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/19/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND This study aimed at developing and standardizing the Telephone Language Screener (TLS), a novel, disease-nonspecific, telephone-based screening test for language disorders. METHODS The TLS was developed in strict pursuance to the current psycholinguistic standards. It comprises nine tasks assessing phonological, lexical-semantic and morpho-syntactic components, as well as an extra Backward Digit Span task. The TLS was administered to 480 healthy participants (HPs), along with the Telephone-based Semantic Verbal Fluency (t-SVF) test and a Telephone-based Composite Language Index (TBCLI), as well as to 37 cerebrovascular/neurodegenerative patients-who also underwent the language subscale of the Telephone Interview for Cognitive Status (TICS-L). An HP subsample was also administered an in-person language battery. Construct validity, factorial structure, internal consistency, test-retest and inter-rater reliability were tested. Norms were derived via Equivalent Scores. The capability of the TLS to discriminate patients from HPs and to identify, among the patient cohort, those with a defective TICS-L, was also examined. RESULTS The TLS was underpinned by a mono-component structure and converged with the t-SVF (p < .001), the TBCLI (p < .001) and the in-person language battery (p = .002). It was internally consistent (McDonald's ω = 0.67) and reliable between raters (ICC = 0.99) and at retest (ICC = 0.83). Age and education, but not sex, were predictors of TLS scores. The TLS optimally discriminated patients from HPs (AUC = 0.80) and successfully identified patients with an impaired TICS-L (AUC = 0.92). In patients, the TLS converged with TICS-L scores (p = 0.016). DISCUSSION The TLS is a valid, reliable, normed and clinically feasible telephone-based screener for language impairment.
Collapse
Affiliation(s)
- Edoardo Nicolò Aiello
- PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - Veronica Pucci
- Dipartimento di Filosofia, Pedagogia e Psicologia Applicata (FISPPA), University of Padova, SociologiaPadua, Italy
- Human Inspired Technology Research Centre (HIT), University of Padova, Padua, Italy
| | - Lorenzo Diana
- Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Alessia Corvaglia
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Aida Niang
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Silvia Mattiello
- Dipartimento di Filosofia, Pedagogia e Psicologia Applicata (FISPPA), University of Padova, SociologiaPadua, Italy
| | - Alice Naomi Preti
- PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giorgia Durante
- Dipartimento di Filosofia, Pedagogia e Psicologia Applicata (FISPPA), University of Padova, SociologiaPadua, Italy
| | - Adele Ravelli
- Dipartimento di Filosofia, Pedagogia e Psicologia Applicata (FISPPA), University of Padova, SociologiaPadua, Italy
| | - Lucia Consonni
- Dipartimento di Filosofia, Pedagogia e Psicologia Applicata (FISPPA), University of Padova, SociologiaPadua, Italy
| | - Carolina Guerra
- Dipartimento di Filosofia, Pedagogia e Psicologia Applicata (FISPPA), University of Padova, SociologiaPadua, Italy
| | - Adriana Delli Ponti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milano, Milan, Italy
| | - Gaia Sangalli
- Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Teresa Difonzo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milano, Milan, Italy
| | - Stefano Scarano
- Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Laura Perucca
- Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Stefano Zago
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milano, Milan, Italy
| | - Ildebrando Appollonio
- Neurology Section, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Sara Mondini
- Dipartimento di Filosofia, Pedagogia e Psicologia Applicata (FISPPA), University of Padova, SociologiaPadua, Italy
- Human Inspired Technology Research Centre (HIT), University of Padova, Padua, Italy
| | - Nadia Bolognini
- Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano, Milan, Italy.
- Department of Psychology, University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
130
|
Kok EH, Paetau A, Martiskainen M, Lyytikäinen LP, Lehtimäki T, Karhunen P, Myllykangas L. Accumulation of Lewy-Related Pathology Starts in Middle Age: The Tampere Sudden Death Study. Ann Neurol 2024; 95:843-848. [PMID: 38501694 DOI: 10.1002/ana.26912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 03/20/2024]
Abstract
When effective treatments against neurodegenerative diseases become a reality, it will be important to know the age these pathologies begin to develop. We investigated alpha-synuclein pathology in brain tissue of the Tampere Sudden Death Study-unselected forensic autopsies on individuals living outside hospital institutions in Finland. Of 562 (16-95 years) participants, 42 were positive for Lewy-related pathology (LRP). The youngest LRP case was aged 54 years, and the frequency of LRP in individuals aged ≥50 years was 9%. This forensic autopsy study indicates LRP starts already in middle age and is more common than expected in the ≥50 years-of-age non-hospitalized population. ANN NEUROL 2024;95:843-848.
Collapse
Affiliation(s)
- Eloise H Kok
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anders Paetau
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Mika Martiskainen
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Institute for Health and Welfare, Government Services, Forensic Medicine Unit, Helsinki, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Pekka Karhunen
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Liisa Myllykangas
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
131
|
Mori E, Ikeda M, Iseki E, Katayama S, Nagahama Y, Ohdake M, Takase T. Efficacy and safety of donepezil in patients with dementia with Lewy bodies: results from a 12-week multicentre, randomised, double-blind, and placebo-controlled phase IV study. Psychogeriatrics 2024; 24:542-554. [PMID: 38439118 DOI: 10.1111/psyg.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Donepezil has been approved in Japan for the treatment of dementia with Lewy bodies (DLB) based on clinical trials showing its beneficial effects on cognitive impairment. This phase IV study evaluated the efficacy of donepezil by focusing on global clinical status during a 12-week double-blind phase. METHODS Patients with probable DLB were randomly assigned to the placebo (n = 79) or 10 mg donepezil (n = 81) groups. The primary endpoint was changes in global clinical status, assessed using the Clinician's Interview-Based Impression of Change plus Caregiver Input (CIBIC-plus). We also assessed four CIBIC-plus domains (general condition, cognitive function, behaviour, and activities of daily living) and changes in cognitive impairment and behavioural and neuropsychiatric symptoms measured using the Mini-Mental State Examination (MMSE) and the Neuropsychiatric Inventory (NPI), respectively. RESULTS Although donepezil's superiority was not shown in the global clinical status, a significant favourable effect was detected in the cognitive domain (P = 0.006). MMSE scores improved in the donepezil group after adjustments in post hoc analysis (MMSE mean difference, 1.4 (95% confidence interval (CI), 0.42-2.30), P = 0.004). Improvements in NPIs were similar between the groups (NPI-2: -0.2 (95% CI, -1.48 to 1.01), P = 0.710; NPI-10: 0.1 (95% CI, -3.28 to 3.55), P = 0.937). CONCLUSION The results support the observation that the efficacy of 10 mg donepezil in improving cognitive function is clinically meaningful in DLB patients. The evaluation of global clinical status might be affected by mild to moderate DLB patients enrolled in this study. No new safety concerns were detected.
Collapse
Affiliation(s)
- Etsuro Mori
- Department of Behavioral Neurology and Neuropsychiatry, Osaka University United Graduate School of Child Development, Osaka, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eizo Iseki
- Senior Mental Clinic Nihonbashi Ningyocho, Tokyo, Japan
| | | | | | - Megumi Ohdake
- Clinical Planning and Development Department, Medical HQs, Eisai Co. Ltd, Tokyo, Japan
| | - Takao Takase
- Clinical Data Science Department, Medicine Development Center, Eisai Co. Ltd, Tokyo, Japan
| |
Collapse
|
132
|
Yıldırım E, Aktürk T, Hanoğlu L, Yener G, Babiloni C, Güntekin B. Lower oddball event-related EEG delta and theta responses in patients with dementia due to Parkinson's and Lewy body than Alzheimer's disease. Neurobiol Aging 2024; 137:78-93. [PMID: 38452574 DOI: 10.1016/j.neurobiolaging.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 01/04/2024] [Accepted: 02/11/2024] [Indexed: 03/09/2024]
Abstract
Oddball task-related EEG delta and theta responses are associated with frontal executive functions, which are significantly impaired in patients with dementia due to Parkinson's disease (PDD) and Lewy bodies (DLB). The present study investigated the oddball task-related EEG delta and theta responses in patients with PDD, DLB, and Alzheimer's disease dementia (ADD). During visual and auditory oddball paradigms, EEG activity was recorded in 20 ADD, 17 DLB, 20 PDD, and 20 healthy (HC) older adults. Event-related EEG power spectrum and phase-locking analysis were performed at the delta (1-4 Hz) and theta (4-7 Hz) frequency bands for target and nontarget stimuli. Compared to the HC persons, dementia groups showed lower frontal and central delta and theta power and phase-locking associated with task performance and neuropsychological test scores. Notably, this effect was more significant in the PDD and DLB than in the ADD. In conclusion, oddball task-related frontal and central EEG delta and theta responses may reflect frontal supramodal executive dysfunctions in PDD and DLB patients.
Collapse
Affiliation(s)
- Ebru Yıldırım
- Istanbul Medipol University, Vocational School, Program of Electroneurophysiology, Istanbul, Turkey; Istanbul Medipol University, Research Institute for Health Sciences and Technologies (SABITA), Neuroscience Research Center, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul, Turkey
| | - Tuba Aktürk
- Istanbul Medipol University, Vocational School, Program of Electroneurophysiology, Istanbul, Turkey; Istanbul Medipol University, Research Institute for Health Sciences and Technologies (SABITA), Neuroscience Research Center, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul, Turkey
| | - Lütfü Hanoğlu
- Istanbul Medipol University, Research Institute for Health Sciences and Technologies (SABITA), Neuroscience Research Center, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul, Turkey; Istanbul Medipol University, School of Medicine, Department of Neurology, Istanbul, Turkey
| | - Görsev Yener
- Izmir University of Economics, Faculty of Medicine, Izmir, Turkey; Izmir Biomedicine and Genome Center, Izmir, Turkey; Dokuz Eylül University, Brain Dynamics Multidisciplinary Research Center, Izmir, Turkey
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino (FR), Italy
| | - Bahar Güntekin
- Istanbul Medipol University, Research Institute for Health Sciences and Technologies (SABITA), Neuroscience Research Center, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul, Turkey; Istanbul Medipol University, School of Medicine, Department of Biophysics, Istanbul, Turkey.
| |
Collapse
|
133
|
Altunkalem Seydi K, Kaya D, Yavuz I, Ontan MS, Dost FS, Isik AT. Primitive reflexes and dementia in older adults: a meta-analysis of observational and cohort studies. Psychogeriatrics 2024; 24:688-700. [PMID: 38400649 DOI: 10.1111/psyg.13098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Primitive reflexes (PRs) are clinical signs that indicate diffuse cerebral dysfunction and frontal lesions. We aimed to present a comprehensive analysis of the prevalence and risk of PRs in patients with dementia. English-language articles published from January 1990 to April 2021 were searched in PubMed, ScienceDirect, Cochrane, and Web of Science with keywords. The titles and abstracts of the identified articles were screened to identify potentially relevant papers. Odds ratios and risk ratios were extracted with 95% confidence intervals and combined using the random-effects model after logarithmic transformation. The prevalence in dementia patients was also combined using the random-effects model. This meta-analysis involved 29 studies. The snout reflex (48% of cases) was the most prevalent. It was found that the risk of PRs in individuals with dementia was significantly elevated, ranging from 13.94 to 16.38 times higher than in healthy controls. The grasp reflex exhibited the highest risk for dementia. This meta-analysis showed that the prevalence and the risk of PRs is high in older patients with dementia. Therefore, PRs, especially the grasp reflex, should be carefully assessed as a part of routine physical examination in the diagnostic process for dementia.
Collapse
Affiliation(s)
- Kübra Altunkalem Seydi
- Unit for Ageing Brain and Dementia, Department of Geriatric Medicine, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Derya Kaya
- Unit for Ageing Brain and Dementia, Department of Geriatric Medicine, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Idil Yavuz
- Department of Statistics, Dokuz Eylul University, Faculty of Science, Izmir, Turkey
| | - Mehmet Selman Ontan
- Unit for Ageing Brain and Dementia, Department of Geriatric Medicine, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Fatma Sena Dost
- Department of Geriatric Medicine, Darica Farabi Training and Research Hospital, Kocaeli, Turkey
| | - Ahmet Turan Isik
- Unit for Ageing Brain and Dementia, Department of Geriatric Medicine, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
134
|
Caminiti SP, Galli A, Jonghi-Lavarini L, Boccalini C, Nicastro N, Chiti A, Garibotto V, Perani D. Mapping brain metabolism, connectivity and neurotransmitters topography in early and late onset dementia with lewy bodies. Parkinsonism Relat Disord 2024; 122:106061. [PMID: 38430691 DOI: 10.1016/j.parkreldis.2024.106061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
INTRODUCTION Early-onset dementia with Lewy bodies (EO-DLB) is associated with rapid cognitive decline and severe neuropsychiatric symptoms at onset. METHODS Using FDG-PET imaging for 62 patients (21 EO-DLB, 41 LO (late-onset)-DLB), we explored brain hypometabolism, and metabolic connectivity in the whole-brain network and resting-state networks (RSNs). We also evaluated the spatial association between brain hypometabolism and neurotransmitter pathways topography. RESULTS Direct comparisons between the two clinical subgroups showed that EO-DLB was characterized by a lower metabolism in posterior cingulate/precuneus and occipital cortex. Metabolic connectivity analysis revealed significant alterations in posterior regions in both EO-DLB and LO-DLB. The EO-DLB, however, showed more severe loss of connectivity between occipital and parietal nodes and hyperconnectivity between frontal and cerebellar nodes. Spatial topography association analysis indicated significant correlations between neurotransmitter maps (i.e. acetylcholine, GABA, serotonin, dopamine) and brain hypometabolism in both EO and LO-DLB, with significantly higher metabolic correlation in the presynaptic serotonergic system for EO-DLB, supporting its major dysfunction. CONCLUSIONS Our study revealed greater brain hypometabolism and loss of connectivity in posterior brain region in EO- than LO-DLB. Serotonergic mapping emerges as a relevant factor for further investigation addressing clinical differences between DLB subtypes.
Collapse
Affiliation(s)
- Silvia Paola Caminiti
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alice Galli
- Vita-Salute San Raffaele University, Milan, Italy
| | | | - Cecilia Boccalini
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Nicastro
- Division of Neurorehabilitation, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland; Faculty of Medicine, University of Geneva, Switzerland
| | - Arturo Chiti
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Garibotto
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland; Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland; Center for Biomedical Imaging (CIBM), Geneva, Switzerland
| | - Daniela Perani
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
135
|
Krüger L, Biskup K, Schipke CG, Kochnowsky B, Schneider LS, Peters O, Blanchard V. The Cerebrospinal Fluid Free-Glycans Hex 1 and HexNAc 1Hex 1Neu5Ac 1 as Potential Biomarkers of Alzheimer's Disease. Biomolecules 2024; 14:512. [PMID: 38785920 PMCID: PMC11117705 DOI: 10.3390/biom14050512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, affecting a growing number of elderly people. In order to improve the early and differential diagnosis of AD, better biomarkers are needed. Glycosylation is a protein post-translational modification that is modulated in the course of many diseases, including neurodegeneration. Aiming to improve AD diagnosis and differential diagnosis through glycan analytics methods, we report the glycoprotein glycome of cerebrospinal fluid (CSF) isolated from a total study cohort of 262 subjects. The study cohort consisted of patients with AD, healthy controls and patients suffering from other types of dementia. CSF free-glycans were also isolated and analyzed in this study, and the results reported for the first time the presence of 19 free glycans in this body fluid. The free-glycans consisted of complete or truncated N-/O-glycans as well as free monosaccharides. The free-glycans Hex1 and HexNAc1Hex1Neu5Ac1 were able to discriminate AD from controls and from patients suffering from other types of dementia. Regarding CSF N-glycosylation, high proportions of high-mannose, biantennary bisecting core-fucosylated N-glycans were found, whereby only about 20% of the N-glycans were sialylated. O-Glycans and free-glycan fragments were less sialylated in AD patients than in controls. To conclude, this comprehensive study revealed for the first time the biomarker potential of free glycans for the differential diagnosis of AD.
Collapse
Affiliation(s)
- Lynn Krüger
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (L.K.)
- Department of Human Medicine, Medical School Berlin, Rüdesheimer Str. 50, 14197 Berlin, Germany
| | - Karina Biskup
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (L.K.)
- Department of Human Medicine, Medical School Berlin, Rüdesheimer Str. 50, 14197 Berlin, Germany
| | - Carola G. Schipke
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (C.G.S.); (B.K.); (L.-S.S.); (O.P.)
| | - Bianca Kochnowsky
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (C.G.S.); (B.K.); (L.-S.S.); (O.P.)
| | - Luisa-Sophie Schneider
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (C.G.S.); (B.K.); (L.-S.S.); (O.P.)
| | - Oliver Peters
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (C.G.S.); (B.K.); (L.-S.S.); (O.P.)
| | - Véronique Blanchard
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (L.K.)
- Department of Human Medicine, Medical School Berlin, Rüdesheimer Str. 50, 14197 Berlin, Germany
| |
Collapse
|
136
|
O’Shea DM, Arkhipenko A, Galasko D, Goldman JG, Sheikh ZH, Petrides G, Toledo JB, Galvin JE. Practical use of DAT SPECT imaging in diagnosing dementia with Lewy bodies: a US perspective of current guidelines and future directions. Front Neurol 2024; 15:1395413. [PMID: 38711561 PMCID: PMC11073567 DOI: 10.3389/fneur.2024.1395413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/25/2024] [Indexed: 05/08/2024] Open
Abstract
Background Diagnosing Dementia with Lewy Bodies (DLB) remains a challenge in clinical practice. The use of 123I-ioflupane (DaTscan™) SPECT imaging, which detects reduced dopamine transporter (DAT) uptake-a key biomarker in DLB diagnosis-could improve diagnostic accuracy. However, DAT imaging is underutilized despite its potential, contributing to delays and suboptimal patient management. Methods This review evaluates DLB diagnostic practices and challenges faced within the U.S. by synthesizing information from current literature, consensus guidelines, expert opinions, and recent updates on DaTscan FDA filings. It contrasts DAT SPECT with alternative biomarkers, provides recommendations for when DAT SPECT imaging may be indicated and discusses the potential of emerging biomarkers in enhancing diagnostic approaches. Results The radiopharmaceutical 123I-ioflupane for SPECT imaging was initially approved in Europe (2000) and later in the US (2011) for Parkinsonism/Essential Tremor. Its application was extended in 2022 to include the diagnosis of DLB. DaTscan's diagnostic efficacy for DLB, with its sensitivity, specificity, and predictive values, confirms its clinical utility. However, US implementation faces challenges such as insurance barriers, costs, access issues, and regional availability disparities. Conclusion 123I-ioflupane SPECT Imaging is indicated for DLB diagnosis and differential diagnosis of Alzheimer's Disease, particularly in uncertain cases. Addressing diagnostic obstacles and enhancing physician-patient education could improve and expedite DLB diagnosis. Collaborative efforts among neurologists, geriatric psychiatrists, psychologists, and memory clinic staff are key to increasing diagnostic accuracy and care in DLB management.
Collapse
Affiliation(s)
- Deirdre M. O’Shea
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami, Miller School of Medicine, Coral Gables, FL, United States
| | | | - Douglas Galasko
- Department of Neurosciences, UC San Diego, San Diego, CA, United States
| | - Jennifer G. Goldman
- JPG Enterprises LLC, Chicago, IL, United States
- Barrow Neurological Institute, Phoenix, AZ, United States
| | | | - George Petrides
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Jon B. Toledo
- Nantz National Alzheimer Center, Stanley Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States
| | - James E. Galvin
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami, Miller School of Medicine, Coral Gables, FL, United States
| |
Collapse
|
137
|
Tisserand A, Blanc F, Mondino M, Muller C, Durand H, Demuynck C, Loureiro de Sousa P, Ravier A, Sanna L, Botzung A, Philippi N. Who am I with my Lewy bodies? The insula as a core region of the self-concept networks. Alzheimers Res Ther 2024; 16:85. [PMID: 38641653 PMCID: PMC11027417 DOI: 10.1186/s13195-024-01447-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 04/01/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Dementia with Lewy bodies (DLB) is characterized by insular atrophy, which occurs at the early stage of the disease. Damage to the insula has been associated with disorders reflecting impairments of the most fundamental components of the self, such as anosognosia, which is a frequently reported symptom in patients with Lewy bodies (LB). The purpose of this study was to investigate modifications of the self-concept (SC), another component of the self, and to identify neuroanatomical correlates, in prodromal to mild DLB. METHODS Twenty patients with prodromal to mild DLB were selected to participate in this exploratory study along with 20 healthy control subjects matched in terms of age, gender, and level of education. The Twenty Statements Test (TST) was used to assess the SC. Behavioral performances were compared between LB patients and control subjects. Three-dimensional magnetic resonance images (MRI) were acquired for all participants and correlational analyses were performed using voxel-based morphometry (VBM) in whole brain and using a mask for the insula. RESULTS The behavioral results on the TST showed significantly impaired performances in LB patients in comparison with control subjects (p < .0001). Correlational analyses using VBM revealed positive correlations between the TST and grey matter volume within insular cortex, right supplementary motor area, bilateral inferior temporal gyri, right inferior frontal gyrus, and left lingual gyrus, using a threshold of p = .001 uncorrected, including total intracranial volume (TIV), age, and MMSE as nuisance covariates. Additionally, correlational analysis using a mask for the insula revealed positive correlation with grey matter volume within bilateral insular cortex, using a threshold of p = .005. CONCLUSIONS The behavioral results confirm the existence of SC impairments in LB patients from the prodromal stage of the disease, compared to matched healthy controls. As we expected, VBM analyses revealed involvement of the insula, among that of other brain regions, already known to be involved in other self-components. While this study is exploratory, our findings provide important insights regarding the involvement of the insula within the self, confirming the insula as a core region of the self-networks, including for high-order self-representations such as the SC.
Collapse
Affiliation(s)
- Alice Tisserand
- University of Strasbourg and CNRS, ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS team and IRIS platform, Strasbourg, France.
- University Hospitals of Strasbourg,CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, Strasbourg, France.
| | - Frédéric Blanc
- University of Strasbourg and CNRS, ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS team and IRIS platform, Strasbourg, France
- University Hospitals of Strasbourg,CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, Strasbourg, France
| | - Mary Mondino
- University of Strasbourg and CNRS, ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS team and IRIS platform, Strasbourg, France
| | - Candice Muller
- University Hospitals of Strasbourg,CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, Strasbourg, France
| | - Hélène Durand
- University Hospitals of Strasbourg,CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, Strasbourg, France
| | - Catherine Demuynck
- University Hospitals of Strasbourg,CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, Strasbourg, France
| | - Paulo Loureiro de Sousa
- University of Strasbourg and CNRS, ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS team and IRIS platform, Strasbourg, France
| | - Alix Ravier
- University Hospitals of Strasbourg,CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, Strasbourg, France
| | - Léa Sanna
- University Hospitals of Strasbourg,CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, Strasbourg, France
| | - Anne Botzung
- University Hospitals of Strasbourg,CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, Strasbourg, France
| | - Nathalie Philippi
- University of Strasbourg and CNRS, ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS team and IRIS platform, Strasbourg, France
- University Hospitals of Strasbourg,CM2R (Research and Resources Memory Centre), Geriatric Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, Strasbourg, France
| |
Collapse
|
138
|
Singh NA, Goodrich AW, Graff-Radford J, Machulda MM, Sintini I, Carlos AF, Robinson CG, Reid RI, Lowe VJ, Jack CR, Petersen RC, Boeve BF, Josephs KA, Kantarci K, Whitwell JL. Altered structural and functional connectivity in Posterior Cortical Atrophy and Dementia with Lewy bodies. Neuroimage 2024; 290:120564. [PMID: 38442778 PMCID: PMC11019668 DOI: 10.1016/j.neuroimage.2024.120564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/03/2024] [Indexed: 03/07/2024] Open
Abstract
Posterior cortical atrophy (PCA) and dementia with Lewy bodies (DLB) show distinct atrophy and overlapping hypometabolism profiles, but it is unknown how disruptions in structural and functional connectivity compare between these disorders and whether breakdowns in connectivity relate to either atrophy or hypometabolism. Thirty amyloid-positive PCA patients, 24 amyloid-negative DLB patients and 30 amyloid-negative cognitively unimpaired (CU) healthy individuals were recruited at Mayo Clinic, Rochester, MN, and underwent a 3T head MRI, including structural MRI, resting state functional MRI (rsfMRI) and diffusion tensor imaging (DTI) sequences, as well as [18F] fluorodeoxyglucose (FDG) PET. We assessed functional connectivity within and between 12 brain networks using rsfMRI and the CONN functional connectivity toolbox and calculated regional DTI metrics using the Johns Hopkins atlas. Multivariate linear-regression models corrected for multiple comparisons and adjusted for age and sex compared DTI metrics and within-network and between-network functional connectivity across groups. Regional gray-matter volumes and FDG-PET standard uptake value ratios (SUVRs) were calculated and analyzed at the voxel-level using SPM12. We used univariate linear-regression models to investigate the relationship between connectivity measures, gray-matter volume, and FDG-PET SUVR. On DTI, PCA showed degeneration in occipito-parietal white matter, posterior thalamic radiations, splenium of the corpus collosum and sagittal stratum compared to DLB and CU, with greater degeneration in the temporal white matter and the fornix compared to CU. We observed no white-matter degeneration in DLB compared to CU. On rsfMRI, reduced within-network connectivity was present in dorsal and ventral default mode networks (DMN) and the dorsal-attention network in PCA compared to DLB and CU, with reduced within-network connectivity in the visual and sensorimotor networks compared to CU. DLB showed reduced connectivity in the cerebellar network compared to CU. Between-network analysis showed increased connectivity in both cerebellar-to-sensorimotor and cerebellar-to-dorsal attention network connectivity in PCA and DLB. PCA showed reduced anterior DMN-to-cerebellar and dorsal attention-to-sensorimotor connectivity, while DLB showed reduced posterior DMN-to-sensorimotor connectivity compared to CU. PCA showed reduced dorsal DMN-to-visual connectivity compared to DLB. The multimodal analysis revealed weak associations between functional connectivity and volume in PCA, and between functional connectivity and metabolism in DLB. These findings suggest that PCA and DLB have unique connectivity alterations, with PCA showing more widespread disruptions in both structural and functional connectivity; yet some overlap was observed with both disorders showing increased connectivity from the cerebellum.
Collapse
Affiliation(s)
| | - Austin W Goodrich
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | | | - Mary M Machulda
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, United States
| | - Irene Sintini
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Arenn F Carlos
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | | | - Robert I Reid
- Department of Radiology, Mayo Clinic, Rochester, MN, United States; Department of Information Technology, Mayo Clinic, Rochester, MN, United States
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | | | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | | |
Collapse
|
139
|
Habich A, Oltra J, Schwarz CG, Przybelski SA, Oppedal K, Inguanzo A, Blanc F, Lemstra AW, Hort J, Westman E, Segura B, Junque C, Lowe VJ, Boeve BF, Aarsland D, Dierks T, Kantarci K, Ferreira D. Grey matter networks in women and men with dementia with Lewy bodies. NPJ Parkinsons Dis 2024; 10:84. [PMID: 38615089 PMCID: PMC11016082 DOI: 10.1038/s41531-024-00702-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/02/2024] [Indexed: 04/15/2024] Open
Abstract
Sex differences permeate many aspects of dementia with Lewy bodies (DLB), yet sex differences in patterns of neurodegeneration in DLB remain largely unexplored. Here, we test whether grey matter networks differ between sexes in DLB and compare these findings to sex differences in healthy controls. In this cross-sectional study, we analysed clinical and neuroimaging data of patients with DLB and cognitively healthy controls matched for age and sex. Grey matter networks were constructed by pairwise correlations between 58 regional volumes after correction for age, intracranial volume, and centre. Network properties were compared between sexes and diagnostic groups. Additional analyses were conducted on w-scored data to identify DLB-specific sex differences. Data from 119 (68.7 ± 8.4 years) men and 45 women (69.9 ± 9.1 years) with DLB, and 164 healthy controls were included in this study. Networks of men had a lower nodal strength compared to women. In comparison to healthy women, the grey matter networks of healthy men showed a higher global efficiency, modularity, and fewer modules. None of the network measures showed significant sex differences in DLB. Comparing DLB patients with healthy controls revealed global differences in women and more local differences in men. Modular analyses showed a more distinct demarcation between cortical and subcortical regions in men compared with women. While topologies of grey matter networks differed between sexes in healthy controls, those sex differences were diluted in DLB patients. These findings suggest a disease-driven convergence of neurodegenerative patterns in women and men with DLB, which may inform precision medicine in DLB.
Collapse
Grants
- R01 AG041851 NIA NIH HHS
- C06 RR018898 NCRR NIH HHS
- P50 AG016574 NIA NIH HHS
- R01 AG040042 NIA NIH HHS
- R01 NS080820 NINDS NIH HHS
- R37 AG011378 NIA NIH HHS
- U01 NS100620 NINDS NIH HHS
- U01 AG006786 NIA NIH HHS
- ALF Medicine, Demensfonden, Center for Innovative Medicine (CIMED), Swedish Research Council (VR)
- Demensfonden, Foundation for Geriatric Diseases at Karolinska Institutet, Loo och Hans Osterman Stiftelse, Stiftelsen för Gamla Tjänarinnor, Stohnes Stiftelsen, KI Travel grants
- 2018 fellowship from the Spanish Ministry of Science, Innovation and Universities; and co-financed by the European Social Fund (PRE2018-086675)
- Stohnes Stiftelsen, Loo och Hans Osterman Stiftelse
- project nr. LX22NPO5107 (MEYS): Financed by EU – Next Generation EU
- Swedish Research Council (VR), Swedish Foundation for Strategic Research (SSF), Center for Innovative Medicine (CIMED), King Gustaf V:s and Queen Victorias Foundation, Hjärnfonden, Alzheimerfonden, Parkinsonfonden,
- Spanish Ministry of Economy and Competitiveness (MINECO PID2020-114640GB-I00/AEI/10.13039/501100011033) Generalitat de Catalunya (SGR 2021SGR00801) María de Maeztu Unit of Excellence (Institute of Neurosciences, University of Barcelona) CEX2021-001159-M, Ministry of Science and Innovation.
- National Institutes of Health (U01-NS100620; P50-AG016574)
- Western Norway Regional Health Authority
- National Institutes of Health (U01-NS100620; R01-AG040042)
Collapse
Affiliation(s)
- Annegret Habich
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
- University Hospital of Psychiatry and Psychotherapy Bern, University of Bern, Bern, Switzerland
| | - Javier Oltra
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | - Ketil Oppedal
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| | - Anna Inguanzo
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Frédéric Blanc
- Day Hospital of Geriatrics, Memory Resource and Research Centre (CM2R) of Strasbourg, Department of Geriatrics, Hopitaux Universitaires de Strasbourg, Strasbourg, France
- ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), University of Strasbourg and French National Centre for Scientific Research (CNRS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France
| | - Afina W Lemstra
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, Netherlands
| | - Jakub Hort
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- Motol University Hospital, Prague, Czech Republic
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Barbara Segura
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| | - Carme Junque
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Center for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Thomas Dierks
- University Hospital of Psychiatry and Psychotherapy Bern, University of Bern, Bern, Switzerland
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden.
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas, Spain.
| |
Collapse
|
140
|
Mak E, Reid RI, Przybelski SA, Lesnick TG, Schwarz CG, Senjem ML, Raghavan S, Vemuri P, Jack CR, Min HK, Jain MK, Miyagawa T, Forsberg LK, Fields JA, Savica R, Graff-Radford J, Jones DT, Botha H, St Louis EK, Knopman DS, Ramanan VK, Dickson DW, Graff-Radford NR, Ferman TJ, Petersen RC, Lowe VJ, Boeve BF, O'Brien JT, Kantarci K. Influences of amyloid-β and tau on white matter neurite alterations in dementia with Lewy bodies. NPJ Parkinsons Dis 2024; 10:76. [PMID: 38570511 PMCID: PMC10991290 DOI: 10.1038/s41531-024-00684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
Dementia with Lewy bodies (DLB) is a neurodegenerative condition often co-occurring with Alzheimer's disease (AD) pathology. Characterizing white matter tissue microstructure using Neurite Orientation Dispersion and Density Imaging (NODDI) may help elucidate the biological underpinnings of white matter injury in individuals with DLB. In this study, diffusion tensor imaging (DTI) and NODDI metrics were compared in 45 patients within the dementia with Lewy bodies spectrum (mild cognitive impairment with Lewy bodies (n = 13) and probable dementia with Lewy bodies (n = 32)) against 45 matched controls using conditional logistic models. We evaluated the associations of tau and amyloid-β with DTI and NODDI parameters and examined the correlations of AD-related white matter injury with Clinical Dementia Rating (CDR). Structural equation models (SEM) explored relationships among age, APOE ε4, amyloid-β, tau, and white matter injury. The DLB spectrum group exhibited widespread white matter abnormalities, including reduced fractional anisotropy, increased mean diffusivity, and decreased neurite density index. Tau was significantly associated with limbic and temporal white matter injury, which was, in turn, associated with worse CDR. SEM revealed that amyloid-β exerted indirect effects on white matter injury through tau. We observed widespread disruptions in white matter tracts in DLB that were not attributed to AD pathologies, likely due to α-synuclein-related injury. However, a fraction of the white matter injury could be attributed to AD pathology. Our findings underscore the impact of AD pathology on white matter integrity in DLB and highlight the utility of NODDI in elucidating the biological basis of white matter injury in DLB.
Collapse
Affiliation(s)
- Elijah Mak
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Robert I Reid
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Scott A Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Timothy G Lesnick
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Hoon Ki Min
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Manoj K Jain
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Toji Miyagawa
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Erik K St Louis
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
- Center for Sleep Medicine, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | - Dennis W Dickson
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Tanis J Ferman
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Ronald C Petersen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
141
|
Bestetti A, Calabrese L, Parini V, Fornara C. Greater accuracy of radiomics compared to deep learning to discriminate normal subjects from patients with dementia: a whole brain 18FDG PET analysis. Nucl Med Commun 2024; 45:321-328. [PMID: 38189449 PMCID: PMC10916749 DOI: 10.1097/mnm.0000000000001810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/18/2023] [Indexed: 01/09/2024]
Abstract
METHODS 18F-FDG brain PET and clinical score were collected in 85 patients with dementia and 125 healthy controls (HC). Patients were assigned to various form of dementia on the basis of clinical evaluation, follow-up and voxels comparison with HC using a two-sample Student's t -test, to determine the regions of brain involved. Radiomic analysis was performed on the whole brain after normalization to an optimized template. After feature selection using the minimum redundancy maximum relevance method and Pearson's correlation coefficients, a Neural Network model was tested to find the accuracy to classify HC and demented patients. Twenty subjects not included in the training were used to test the models. The results were compared with those obtained by conventional CNN model. RESULTS Four radiomic features were selected. The validation and test accuracies were 100% for both models, but the probability scores were higher with radiomics, in particular for HC group ( P = 0.0004). CONCLUSION Radiomic features extracted from standardized PET whole brain images seem to be more accurate than CNN to distinguish patients with and without dementia.
Collapse
Affiliation(s)
- Alberto Bestetti
- Department of Clinical and Community Sciences, State University of Milan, Sesto San Giovanni
- Nuclear Medicine Department, MultiMedica Hospital
| | | | | | - Carla Fornara
- Division of Neurology, MultiMedica Hospital, Sesto San Giovanni, Italy
| |
Collapse
|
142
|
McWilliam O, Gramkow MH, Blaabjerg M, Clemmensen FK, Hasselbalch SG, Frederiksen KS. Differentiating anti-IgLON5 disease and Lewy body dementia: a systematic review. J Neurol 2024; 271:1707-1716. [PMID: 38195895 DOI: 10.1007/s00415-023-12145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Anti-IgLON5 disease is a rare but potentially reversible cause of cognitive impairment, sleep disturbances, dysautonomia, and movement disorders. It is an autoimmune encephalitis which, due to its insidious onset, could mimic neurodegenerative disorders, and multiple symptoms overlap with those seen in dementia with Lewy bodies (DLB). We hypothesized that the symptomatology and findings in patients with anti-IgLON5 disease overlapped with that of DLB. OBJECTIVES To assess the commonality of features in anti-IgLON5 disease and DLB and identify potential red flags for anti-IgLON5 disease in patients undergoing diagnostic evaluation for DLB. METHODS We searched in MEDLINE, Web of Science, and Embase from inception on December the 8th, 2022 with the search term "IgLON5". We performed a systematic review of case reports and case series of anti-IgLON5 disease, and two reviewers independently extracted data on symptoms and findings. Frequencies of symptoms were compared with consensus criteria for DLB. RESULTS We included 57 studies with 127 individual case reports of anti-IgLON5 disease (mean age 63 years at diagnosis, median symptom duration 2 years). Cognitive dysfunction was reported in 45% of cases, REM-sleep behavioral disorder in 15%, and 14% had parkinsonism. Respiratory insufficiency was reported in 37%, and bulbar symptoms in 67%. CONCLUSIONS We found a significant overlap between anti-IgLON5 disease and DLB. We propose that anti-IgLON5 disease should be considered in young patients with DLB with chorea, gaze palsy, early dysphagia, or prominent respiratory symptoms. Our study contributes to the emerging knowledge on symptoms and biomarkers in anti-IgLON5 disease.
Collapse
Affiliation(s)
- Oskar McWilliam
- Danish Dementia Research Centre, Deptartment of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mathias H Gramkow
- Danish Dementia Research Centre, Deptartment of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Morten Blaabjerg
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Frederikke Kragh Clemmensen
- Danish Dementia Research Centre, Deptartment of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Steen G Hasselbalch
- Danish Dementia Research Centre, Deptartment of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Steen Frederiksen
- Danish Dementia Research Centre, Deptartment of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
143
|
Morderer D, Wren MC, Liu F, Kouri N, Maistrenko A, Khalil B, Pobitzer N, Salemi M, Phinney BS, Dickson DW, Murray ME, Rossoll W. Probe-dependent Proximity Profiling (ProPPr) Uncovers Similarities and Differences in Phospho-Tau-Associated Proteomes Between Tauopathies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.585597. [PMID: 38585836 PMCID: PMC10996607 DOI: 10.1101/2024.03.25.585597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Tauopathies represent a diverse group of neurodegenerative disorders characterized by the abnormal aggregation of the microtubule-associated protein tau. Despite extensive research, the precise mechanisms underlying the complexity of different types of tau pathology remain incompletely understood. Here we describe an approach for proteomic profiling of aggregate-associated proteomes on slides with formalin-fixed, paraffin-embedded (FFPE) tissue that utilizes proximity labelling upon high preservation of aggregate morphology, which permits the profiling of pathological aggregates regardless of their size. To comprehensively investigate the common and unique protein interactors associated with the variety of tau lesions present across different human tauopathies, Alzheimer's disease (AD), corticobasal degeneration (CBD), Pick's disease (PiD), and progressive supranuclear palsy (PSP), were selected to represent the major tauopathy diseases. Implementation of our widely applicable Probe-dependent Proximity Profiling (ProPPr) strategy, using the AT8 antibody, permitted identification and quantification of proteins associated with phospho-tau lesions in well-characterized human post-mortem tissue. The analysis revealed both common and disease-specific proteins associated with phospho-tau aggregates, highlighting potential targets for therapeutic intervention and biomarker development. Candidate validation through high-resolution co-immunofluorescence of distinct aggregates across disease and control cases, confirmed the association of retromer complex protein VPS35 with phospho-tau lesions across the studied tauopathies. Furthermore, we discovered disease-specific associations of proteins including ferritin light chain (FTL) and the neuropeptide precursor VGF within distinct pathological lesions. Notably, examination of FTL-positive microglia in CBD astrocytic plaques indicate a potential role for microglial involvement in the pathogenesis of these tau lesions. Our findings provide valuable insights into the proteomic landscape of tauopathies, shedding light on the molecular mechanisms underlying tau pathology. This first comprehensive characterization of tau-associated proteomes across different tauopathies enhances our understanding of disease heterogeneity and provides a resource for future functional investigation, as well as development of targeted therapies and diagnostic biomarkers.
Collapse
|
144
|
Maldonado-Díaz C, Hiya S, Yokoda RT, Farrell K, Marx GA, Kauffman J, Daoud EV, Gonzales MM, Parker AS, Canbeldek L, Kulumani Mahadevan LS, Crary JF, White CL, Walker JM, Richardson TE. Disentangling and quantifying the relative cognitive impact of concurrent mixed neurodegenerative pathologies. Acta Neuropathol 2024; 147:58. [PMID: 38520489 PMCID: PMC10960766 DOI: 10.1007/s00401-024-02716-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Neurodegenerative pathologies such as Alzheimer disease neuropathologic change (ADNC), Lewy body disease (LBD), limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC), and cerebrovascular disease (CVD) frequently coexist, but little is known about the exact contribution of each pathology to cognitive decline and dementia in subjects with mixed pathologies. We explored the relative cognitive impact of concurrent common and rare neurodegenerative pathologies employing multivariate logistic regression analysis adjusted for age, gender, and level of education. We analyzed a cohort of 6,262 subjects from the National Alzheimer's Coordinating Center database, ranging from 0 to 6 comorbid neuropathologic findings per individual, where 95.7% of individuals had at least 1 neurodegenerative finding at autopsy and 75.5% had at least 2 neurodegenerative findings. We identified which neuropathologic entities correlate most frequently with one another and demonstrated that the total number of pathologies per individual was directly correlated with cognitive performance as assessed by Clinical Dementia Rating (CDR®) and Mini-Mental State Examination (MMSE). We show that ADNC, LBD, LATE-NC, CVD, hippocampal sclerosis, Pick disease, and FTLD-TDP significantly impact overall cognition as independent variables. More specifically, ADNC significantly affected all assessed cognitive domains, LBD affected attention, processing speed, and language, LATE-NC primarily affected tests related to logical memory and language, while CVD and other less common pathologies (including Pick disease, progressive supranuclear palsy, and corticobasal degeneration) had more variable neurocognitive effects. Additionally, ADNC, LBD, and higher numbers of comorbid neuropathologies were associated with the presence of at least one APOE ε4 allele, and ADNC and higher numbers of neuropathologies were inversely correlated with APOE ε2 alleles. Understanding the mechanisms by which individual and concomitant neuropathologies affect cognition and the degree to which each contributes is an imperative step in the development of biomarkers and disease-modifying therapeutics, particularly as these medical interventions become more targeted and personalized.
Collapse
Affiliation(s)
- Carolina Maldonado-Díaz
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Satomi Hiya
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Raquel T Yokoda
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Kurt Farrell
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronal M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gabriel A Marx
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronal M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Justin Kauffman
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronal M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elena V Daoud
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mitzi M Gonzales
- Department of Neurology, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Alicia S Parker
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Leyla Canbeldek
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Lakshmi Shree Kulumani Mahadevan
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
| | - John F Crary
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronal M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
145
|
Walton RL, Koga S, Beasley AI, White LJ, Griesacker T, Murray ME, Kasanuki K, Hou X, Fiesel FC, Springer W, Uitti RJ, Fields JA, Botha H, Ramanan VK, Kantarci K, Lowe VJ, Jack CR, Ertekin-Taner N, Savica R, Graff-Radford J, Petersen RC, Parisi JE, Reichard RR, Graff-Radford NR, Ferman TJ, Boeve BF, Wszolek ZK, Dickson DW, Ross OA, Heckman MG. Role of GBA variants in Lewy body disease neuropathology. Acta Neuropathol 2024; 147:54. [PMID: 38472443 PMCID: PMC11049671 DOI: 10.1007/s00401-024-02699-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 03/14/2024]
Abstract
Rare and common GBA variants are risk factors for both Parkinson's disease (PD) and dementia with Lewy bodies (DLB). However, the degree to which GBA variants are associated with neuropathological features in Lewy body disease (LBD) is unknown. Herein, we assessed 943 LBD cases and examined associations of 15 different neuropathological outcomes with common and rare GBA variants. Neuropathological outcomes included LBD subtype, presence of a high likelihood of clinical DLB (per consensus guidelines), LB counts in five cortical regions, tyrosine hydroxylase immunoreactivity in the dorsolateral and ventromedial putamen, ventrolateral substantia nigra neuronal loss, Braak neurofibrillary tangle (NFT) stage, Thal amyloid phase, phospho-ubiquitin (pS65-Ub) level, TDP-43 pathology, and vascular disease. Sequencing of GBA exons revealed a total of 42 different variants (4 common [MAF > 0.5%], 38 rare [MAF < 0.5%]) in our series, and 165 cases (17.5%) had a copy of the minor allele for ≥ 1 variant. In analysis of common variants, p.L483P was associated with a lower Braak NFT stage (OR = 0.10, P < 0.001). In gene-burden analysis, presence of the minor allele for any GBA variant was associated with increased odds of a high likelihood of DLB (OR = 2.00, P < 0.001), a lower Braak NFT stage (OR = 0.48, P < 0.001), a lower Thal amyloid phase (OR = 0.55, P < 0.001), and a lower pS65-Ub level (β: -0.37, P < 0.001). Subgroup analysis revealed that GBA variants were most common in LBD cases with a combination of transitional/diffuse LBD and Braak NFT stage 0-II or Thal amyloid phase 0-1, and correspondingly that the aforementioned associations of GBA gene-burden with a decreased Braak NFT stage and Thal amyloid phase were observed only in transitional or diffuse LBD cases. Our results indicate that in LBD, GBA variants occur most frequently in cases with greater LB pathology and low AD pathology, further informing disease-risk associations of GBA in PD, PD dementia, and DLB.
Collapse
Affiliation(s)
- Ronald L Walton
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Launia J White
- Division of Clinical Trials and Biostatistics, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, USA
| | | | | | - Koji Kasanuki
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Julie A Fields
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Kejal Kantarci
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, USA
| | - Val J Lowe
- Department of Nuclear Medicine, Mayo Clinic, Rochester, MN, USA
| | - Clifford R Jack
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, USA
| | - Nilufer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Joseph E Parisi
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - R Ross Reichard
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Tanis J Ferman
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA
| | - Michael G Heckman
- Division of Clinical Trials and Biostatistics, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, USA.
| |
Collapse
|
146
|
Tsoy E, La Joie R, VandeVrede L, Rojas JC, Yballa C, Chan B, Lago AL, Rodriguez A, Goode CA, Erlhoff SJ, Tee BL, Windon C, Lanata S, Kramer JH, Miller BL, Dilworth‐Anderson P, Boxer AL, Rabinovici GD, Possin KL. Scalable plasma and digital cognitive markers for diagnosis and prognosis of Alzheimer's disease and related dementias. Alzheimers Dement 2024; 20:2089-2101. [PMID: 38224278 PMCID: PMC10942726 DOI: 10.1002/alz.13686] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 01/16/2024]
Abstract
INTRODUCTION With emergence of disease-modifying therapies, efficient diagnostic pathways are critically needed to identify treatment candidates, evaluate disease severity, and support prognosis. A combination of plasma biomarkers and brief digital cognitive assessments could provide a scalable alternative to current diagnostic work-up. METHODS We examined the accuracy of plasma biomarkers and a 10-minute supervised tablet-based cognitive assessment (Tablet-based Cognitive Assessment Tool Brain Health Assessment [TabCAT-BHA]) in predicting amyloid β positive (Aβ+) status on positron emission tomography (PET), concurrent disease severity, and functional decline in 309 older adults with subjective cognitive impairment (n = 49), mild cognitive impairment (n = 159), and dementia (n = 101). RESULTS Combination of plasma pTau181, Aβ42/40, neurofilament light (NfL), and TabCAT-BHA was optimal for predicting Aβ-PET positivity (AUC = 0.962). Whereas NfL and TabCAT-BHA optimally predicted concurrent disease severity, combining these with pTau181 and glial fibrillary acidic protein was most accurate in predicting functional decline. DISCUSSION Combinations of plasma and digital cognitive markers show promise for scalable diagnosis and prognosis of ADRD. HIGHLIGHTS The need for cost-efficient diagnostic and prognostic markers of AD is urgent. Plasma and digital cognitive markers provide complementary diagnostic contributions. Combination of these markers holds promise for scalable diagnosis and prognosis. Future validation in community cohorts is needed to inform clinical implementation.
Collapse
Affiliation(s)
- Elena Tsoy
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Global Brain Health InstituteUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Renaud La Joie
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Lawren VandeVrede
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Julio C. Rojas
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Claire Yballa
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Brandon Chan
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Argentina Lario Lago
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Anne‐Marie Rodriguez
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Collette A. Goode
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Sabrina J. Erlhoff
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Boon Lead Tee
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Global Brain Health InstituteUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Charles Windon
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Serggio Lanata
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Global Brain Health InstituteUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Joel H. Kramer
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Global Brain Health InstituteUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Bruce L. Miller
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Global Brain Health InstituteUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Peggye Dilworth‐Anderson
- Department of Health Policy and ManagementGillings School of Global Public HealthUniversity of North Carolina Chapel HillChapel HillCaliforniaUSA
| | - Adam L. Boxer
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Gil D. Rabinovici
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Katherine L. Possin
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Global Brain Health InstituteUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
147
|
Flores AC, Zhang X, Kris-Etherton PM, Sliwinski MJ, Shearer GC, Gao X, Na M. Metabolomics and Risk of Dementia: A Systematic Review of Prospective Studies. J Nutr 2024; 154:826-845. [PMID: 38219861 DOI: 10.1016/j.tjnut.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND The projected increase in the prevalence of dementia has sparked interest in understanding the pathophysiology and underlying causal factors in its development and progression. Identifying novel biomarkers in the preclinical or prodromal phase of dementia may be important for predicting early disease risk. Applying metabolomic techniques to prediagnostic samples in prospective studies provides the opportunity to identify potential disease biomarkers. OBJECTIVE The objective of this systematic review was to summarize the evidence on the associations between metabolite markers and risk of dementia and related dementia subtypes in human studies with a prospective design. DESIGN We searched PubMed, PsycINFO, and Web of Science databases from inception through December 8, 2023. Thirteen studies (mean/median follow-up years: 2.1-21.0 y) were included in the review. RESULTS Several metabolites detected in biological samples, including amino acids, fatty acids, acylcarnitines, lipid and lipoprotein variations, hormones, and other related metabolites, were associated with risk of developing dementia. Our systematic review summarized the adjusted associations between metabolites and dementia risk; however, our findings should be interpreted with caution because of the heterogeneity across the included studies and potential sources of bias. Further studies are warranted with well-designed prospective cohort studies that have defined study populations, longer follow-up durations, the inclusion of additional diverse biological samples, standardization of techniques in metabolomics and ascertainment methods for diagnosing dementia, and inclusion of other related dementia subtypes. CONCLUSIONS This study contributes to the limited systematic reviews on metabolomics and dementia by summarizing the prospective associations between metabolites in prediagnostic biological samples with dementia risk. Our review discovered additional metabolite markers associated with the onset of developing dementia and may help aid in the understanding of dementia etiology. The protocol is registered in the International Prospective Register of Systematic Reviews (PROSPERO) database (https://www.crd.york.ac.uk/prospero/; registration ID: CRD42022357521).
Collapse
Affiliation(s)
- Ashley C Flores
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Xinyuan Zhang
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Martin J Sliwinski
- Center for Healthy Aging, The Pennsylvania State University, University Park, PA, United States; Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA, United States
| | - Greg C Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Xiang Gao
- School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China.
| | - Muzi Na
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
148
|
Takasaki A, Hashimoto M, Fukuhara R, Sakuta S, Koyama A, Ishikawa T, Boku S, Ikeda M, Takebayashi M. Gesture imitation performance in community-dwelling older people: assessment of a gesture imitation task in the screening and diagnosis of mild cognitive impairment and dementia. Psychogeriatrics 2024; 24:404-414. [PMID: 38290836 DOI: 10.1111/psyg.13086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Gesture imitation, a simple tool for assessing visuospatial/visuoconstructive functions, is reportedly useful for screening and diagnosing dementia. However, gesture imitation performance in healthy older adults is largely unknown, as are the factors associated with lower performance. To address these unknowns, we examined the gesture imitation performance of a large number of community-dwelling older adults aged ≥65 years in Arao City, Kumamoto Prefecture (southern Japan). METHODS The examiner presented the participants with eight gesture patterns and considered it a success if they could imitate them within 10 s. The success rate of each gesture imitation was calculated for three diagnostic groups: cognitively normal (CN) (n = 1184), mild cognitive impairment (MCI) (n = 237), and dementia (n = 47). Next, we reorganised the original gesture imitation battery by combining six selected gestures with the following scoring method: if the participants successfully imitated the gestures, immediately or within 5 s, two points were assigned. If they succeeded within 5-10 s, one point was assigned. The sensitivity and specificity of the battery were investigated to detect the dementia and MCI groups. Factors associated with gesture imitation battery scores were examined. RESULTS Except one complex gesture, the success rate of imitation in the CN group was high, approximately 90%. The sensitivity and specificity of the gesture imitation battery for discriminating between the dementia and CN groups and between the MCI and CN groups were 70%/88%, and 45%/75%, respectively. Ageing, male sex, and a diagnosis of dementia or MCI were associated with lower scores on the gesture imitation battery. CONCLUSION Gesture imitation tasks alone may not be sufficient to detect MCI. However, by combining gestures with set time limits, gesture imitation tasks can be a low-burden and effective method for detecting dementia, even in community medicine, such as during health check-ups.
Collapse
Affiliation(s)
- Akihiro Takasaki
- Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mamoru Hashimoto
- Department of Neuropsychiatry, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Ryuji Fukuhara
- Department of Psychiatry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shizuka Sakuta
- Department of Neuropsychiatry, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Asuka Koyama
- Faculty of Social Welfare, Kumamoto Gakuen University, Kumamoto, Japan
| | | | - Shuken Boku
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Minoru Takebayashi
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
149
|
Chen Y, Spina S, Callahan P, Grinberg LT, Seeley WW, Rosen HJ, Kramer JH, Miller BL, Rankin KP. Pathology-specific patterns of cerebellar atrophy in neurodegenerative disorders. Alzheimers Dement 2024; 20:1771-1783. [PMID: 38109286 PMCID: PMC10984510 DOI: 10.1002/alz.13551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/20/2023]
Abstract
INTRODUCTION Associations of cerebellar atrophy with specific neuropathologies in Alzheimer's disease and related dementias (ADRD) have not been systematically analyzed. This study examined cerebellar gray matter volume across major pathological subtypes of ADRD. METHODS Cerebellar gray matter volume was examined using voxel-based morphometry in 309 autopsy-proven ADRD cases and 80 healthy controls. ADRD subtypes included AD, mixed Lewy body disease and AD (LBD-AD), and frontotemporal lobar degeneration (FTLD). Clinical function was assessed using the Clinical Dementia Rating (CDR) scale. RESULTS Distinct patterns of cerebellar atrophy were observed in all ADRD subtypes. Significant cerebellar gray matter changes appeared in the early stages of most subtypes and the very early stages of AD, LBD-AD, FTLD-TDP type A, and progressive supranuclear palsy. Cortical atrophy positively predicted cerebellar atrophy across all subtypes. DISCUSSION Our findings establish pathology-specific profiles of cerebellar atrophy in ADRD and propose cerebellar neuroimaging as a non-invasive biomarker for differential diagnosis and disease monitoring. HIGHLIGHTS Cerebellar atrophy was examined in 309 patients with autopsy-proven neurodegeneration. Distinct patterns of cerebellar atrophy are found in all pathological subtypes of Alzheimer's disease and related dementias (ADRD). Cerebellar atrophy is seen in early-stage (Clinical Dementia Rating [CDR] ≤1) AD, Lewy body dementia (LBD), frontotemporal lobar degeneration with tau-positive inclusion (FTLD-tau), and FTLD-transactive response DNA binding protein (FTLD-TDP). Cortical atrophy positively predicts cerebellar atrophy across all neuropathologies.
Collapse
Affiliation(s)
- Yu Chen
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Salvatore Spina
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Patrick Callahan
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Lea T. Grinberg
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of PathologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - William W. Seeley
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of PathologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Howard J. Rosen
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Joel H. Kramer
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Bruce L. Miller
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Katherine P. Rankin
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
150
|
Oltra J, Habich A, Schwarz CG, Nedelska Z, Przybelski SA, Inguanzo A, Diaz‐Galvan P, Lowe VJ, Oppedal K, Gonzalez MC, Philippi N, Blanc F, Barkhof F, Lemstra AW, Hort J, Padovani A, Rektorova I, Bonanni L, Massa F, Kramberger MG, Taylor J, Snædal JG, Walker Z, Antonini A, Dierks T, Segura B, Junque C, Westman E, Boeve BF, Aarsland D, Kantarci K, Ferreira D. Sex differences in brain atrophy in dementia with Lewy bodies. Alzheimers Dement 2024; 20:1815-1826. [PMID: 38131463 PMCID: PMC10947875 DOI: 10.1002/alz.13571] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/13/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION Sex influences neurodegeneration, but it has been poorly investigated in dementia with Lewy bodies (DLB). We investigated sex differences in brain atrophy in DLB using magnetic resonance imaging (MRI). METHODS We included 436 patients from the European-DLB consortium and the Mayo Clinic. Sex differences and sex-by-age interactions were assessed through visual atrophy rating scales (n = 327; 73 ± 8 years, 62% males) and automated estimations of regional gray matter volume and cortical thickness (n = 165; 69 ± 9 years, 72% males). RESULTS We found a higher likelihood of frontal atrophy and smaller volumes in six cortical regions in males and thinner olfactory cortices in females. There were significant sex-by-age interactions in volume (six regions) and cortical thickness (seven regions) across the entire cortex. DISCUSSION We demonstrate that males have more widespread cortical atrophy at younger ages, but differences tend to disappear with increasing age, with males and females converging around the age of 75. HIGHLIGHTS Male DLB patients had higher odds for frontal atrophy on radiological visual rating scales. Male DLB patients displayed a widespread pattern of cortical gray matter alterations on automated methods. Sex differences in gray matter measures in DLB tended to disappear with increasing age.
Collapse
Affiliation(s)
- Javier Oltra
- Medical Psychology UnitDepartment of MedicineInstitute of NeuroscienceUniversity of BarcelonaBarcelonaCataloniaSpain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS)BarcelonaCataloniaSpain
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Annegret Habich
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
- University Hospital of Psychiatry and Psychotherapy Bern, University of BernBernSwitzerland
| | | | - Zuzana Nedelska
- Memory ClinicDepartment of NeurologyCharles University2nd Faculty of Medicine and Motol University HospitalPragueCzech Republic
| | | | - Anna Inguanzo
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | | | - Val J. Lowe
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | - Ketil Oppedal
- Center for Age‐Related MedicineStavanger University HospitalStavangerNorway
- Stavanger Medical Imaging Laboratory (SMIL)Department of RadiologyStavanger University HospitalStavangerNorway
- The Norwegian Centre for Movement DisordersStavanger University HospitalStavangerNorway
| | - Maria C. Gonzalez
- Center for Age‐Related MedicineStavanger University HospitalStavangerNorway
- Stavanger Medical Imaging Laboratory (SMIL)Department of RadiologyStavanger University HospitalStavangerNorway
- The Norwegian Centre for Movement DisordersStavanger University HospitalStavangerNorway
- Department of Quality and Health TechnologyFaculty of Health SciencesUniversity of StavangerStavangerNorway
| | - Nathalie Philippi
- Geriatrics and Neurology UnitsResearch and Resources Memory Center (CM2R)Hôpitaux Universitaires de StrasbourgStrasbourgFrance
- ICube Laboratory (CNRS, UMR 7357)StrasbourgFrance
| | - Frederic Blanc
- Geriatrics and Neurology UnitsResearch and Resources Memory Center (CM2R)Hôpitaux Universitaires de StrasbourgStrasbourgFrance
- ICube Laboratory (CNRS, UMR 7357)StrasbourgFrance
| | - Frederik Barkhof
- Department of Radiology & Nuclear Medicine (AMC)Amsterdam UMC, Vrije UniversiteitAmsterdamthe Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing (CMIC)University College LondonLondonUK
| | - Afina W. Lemstra
- Alzheimer Center AmsterdamNeurologyVrije Universiteit Amsterdam, Amsterdam UMC location VumcAmsterdamThe Netherlands
- Amsterdam NeuroscienceNeurodegeneration, Vrije Universiteit Amsterdam, Amsterdam UMC location VumcAmsterdamThe Netherlands
| | - Jakub Hort
- Memory ClinicDepartment of NeurologyCharles University2nd Faculty of Medicine and Motol University HospitalPragueCzech Republic
| | - Alessandro Padovani
- Neurology UnitDepartment of Clinical and Experimental Sciences (DSCS)University of BresciaBresciaItaly
| | - Irena Rektorova
- Brain and Mind ResearchCentral European Institute of Technology (CEITET)Masaryk UniversityBrnoCzech Republic
| | - Laura Bonanni
- Department of Medicine and Aging Sciences University G. d'Annunzio of Chieti‐Pescara ChietiChietiItaly
| | - Federico Massa
- Department of NeuroscienceRehabilitationOphthalmology, Genetics, Maternal and Child HealthUniversity of GenovaGenovaItaly
| | | | - John‐Paul Taylor
- Translational and Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | | | - Zuzana Walker
- Division of PsychiatryUniversity College LondonLondonUK
- St Margaret's HospitalEssex Partnership University NHS Foundation TrustEssexUK
| | - Angelo Antonini
- Parkinson and Movement Disorders UnitStudy Center on Neurodegeneration (CESNE)PadovaItaly
| | - Thomas Dierks
- University Hospital of Psychiatry and Psychotherapy Bern, University of BernBernSwitzerland
| | - Barbara Segura
- Medical Psychology UnitDepartment of MedicineInstitute of NeuroscienceUniversity of BarcelonaBarcelonaCataloniaSpain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS)BarcelonaCataloniaSpain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED: CB06/05/0018‐ISCIII)BarcelonaCataloniaSpain
| | - Carme Junque
- Medical Psychology UnitDepartment of MedicineInstitute of NeuroscienceUniversity of BarcelonaBarcelonaCataloniaSpain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS)BarcelonaCataloniaSpain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED: CB06/05/0018‐ISCIII)BarcelonaCataloniaSpain
| | - Eric Westman
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | | | - Dag Aarsland
- Center for Age‐Related MedicineStavanger University HospitalStavangerNorway
- Department of Old Age PsychiatryInstitute of PsychiatryPsychology & Neuroscience (IoPPN)King's College LondonLondonUK
| | | | - Daniel Ferreira
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
- Facultad de Ciencias de la SaludUniversidad Fernando Pessoa CanariasLas PalmasEspaña
| |
Collapse
|