101
|
Abstract
Salivary gland branching morphogenesis involves coordinated cell growth, proliferation, differentiation, migration, apoptosis, and interaction of epithelial, mesenchymal, endothelial, and neuronal cells. The ex vivo analysis of embryonic mouse submandibular glands, which branch so reproducibly and beautifully in culture, is a powerful tool to investigate the molecular mechanisms regulating epithelium-mesenchyme interactions during development. The more recent analysis of genetically modified mice provides insight into the genetic regulation of branching morphogenesis. The review begins, as did the field historically, focusing on the role of the extracellular matrix (ECM), and its components such as glycosaminoglycans, collagens, and laminins. Following sections describe the modification of the ECM by proteases and the role of cell-matrix and cell-cell receptors. The review then focuses on two major families of growth factors implicated in salivary gland development, the fibroblast growth factors (FGFs) and the epidermal growth factors (EGFs). The salivary gland phenotypes in mice with genetic modification of FGFs and their receptors highlight the central role of FGFs during salivary gland branching morphogenesis. A broader section mentions other molecules implicated from analysis of the phenotypes of genetically modified mice or organ culture experiments. The review concludes with speculation on some future areas of research.
Collapse
Affiliation(s)
- Vaishali N Patel
- Matrix and Morphogenesis Unit, Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr Bethesda, MD 20892, USA
| | | | | |
Collapse
|
102
|
Abstract
The ureteric bud (UB) is an outgrowth of the Wolffian duct, which undergoes a complex process of growth, branching, and remodeling, to eventually give rise to the entire urinary collecting system during kidney development. Understanding the mechanisms that control this process is a fascinating problem in basic developmental biology, and also has considerable medical significance. Over the past decade, there has been significant progress in our understanding of renal branching morphogenesis and its regulation, and this review focuses on several areas in which there have been recent advances. The first section deals with the normal process of UB branching morphogenesis, and methods that have been developed to better observe and describe it. The next section discusses a number of experimental methodologies, both established and novel, that make kidney development in the mouse a powerful and attractive experimental system. The third section discusses some of the cellular processes that are likely to underlie UB branching morphogenesis, as well as recent data on cell lineages within the growing UB. The fourth section summarizes our understanding of the roles of two groups of growth factors that appear to be particularly important for the regulation of UB outgrowth and branching: GDNF and FGFs, which stimulate this process via tyrosine kinase receptors, and members of the TGFbeta family, including BMP4 and Activin A, which generally inhibit UB formation and branching.
Collapse
Affiliation(s)
- Frank Costantini
- Department of Genetics and Development, Columbia University Medical Center, 701 W. 168th St. New York, NY 10032, USA.
| |
Collapse
|
103
|
Zhang D, Kosman J, Carmean N, Grady R, Bassuk JA. FGF-10 and its receptor exhibit bidirectional paracrine targeting to urothelial and smooth muscle cells in the lower urinary tract. Am J Physiol Renal Physiol 2006; 291:F481-94. [PMID: 16597614 DOI: 10.1152/ajprenal.00025.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Control of the regenerative properties of urothelial tissue would greatly aid the clinician in the management of urinary tract disease and disorders. Fibroblast growth factor 10 (FGF-10) is a mitogen which is particularly promising as a protein therapy for urothelial injury. The spatial synthesis, transport, targeting, and mechanistic pathway of FGF-10 and its receptor were studied in a human urothelial cell culture model and in fixed sections of lower urinary tract tissue. Synthesis of FGF-10 was restricted to mesenchymal fibroblasts, and secreted FGF-10 exhibited paracrine transport to two proximal sites, transitional epithelium and smooth muscle cell bundles, both of which were also the exclusive sites of FGF-10 receptor synthesis. The addition of recombinant FGF-10 to quiescent urothelial cells in vitro was sufficient to stimulate DNA synthesis. This stimulation was through a pathway independent of the epidermal growth factor receptor pathway. Deconvolution, light and transmission electron microscopic studies captured FGF-10 and its receptor in association with the urothelial cell surface, in cytoplasm, and within nuclei, observations that describe the mechanism that transduces the mitogenic signal in these tissues. Localization of the FGF-10 receptor to the superficial urothelial layer is clinically significant because intravesical administration of FGF-10 may provide the clinician a means to control the turnover of transitional epithelium in bladder disorders such as interstitial cystitis.
Collapse
MESH Headings
- Cells, Cultured
- DNA/biosynthesis
- Fibroblast Growth Factor 10/analysis
- Fibroblast Growth Factor 10/genetics
- Fibroblast Growth Factor 10/physiology
- Fibroblasts/chemistry
- Fibroblasts/cytology
- Fibroblasts/physiology
- Gene Expression Regulation
- Humans
- Microscopy, Electron, Transmission
- Mucous Membrane/chemistry
- Mucous Membrane/cytology
- Mucous Membrane/physiology
- Myocytes, Smooth Muscle/chemistry
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/physiology
- Paracrine Communication/physiology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Receptor Cross-Talk/physiology
- Receptor, Fibroblast Growth Factor, Type 2/analysis
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/physiology
- Receptors, Fibroblast Growth Factor/analysis
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/physiology
- Urinary Tract Physiological Phenomena
- Urothelium/chemistry
- Urothelium/cytology
- Urothelium/physiology
- Urothelium/ultrastructure
Collapse
Affiliation(s)
- Dianzhong Zhang
- Program in Human Urothelial Biology, Children's Hospital and Regional Medical Center, 4800 NE Sand Point Way, Mail Stop A8938, Seattle, WA 98105, USA
| | | | | | | | | |
Collapse
|
104
|
Li Z, Jerebtsova M, Liu XH, Tang P, Ray PE. Novel cystogenic role of basic fibroblast growth factor in developing rodent kidneys. Am J Physiol Renal Physiol 2006; 291:F289-96. [PMID: 16597610 DOI: 10.1152/ajprenal.00382.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Basic fibroblast growth factor (bFGF) is a heparin-binding growth factor that is accumulated in human dysplastic and cystic renal diseases. Previous studies have shown that bFGF can modulate the growth of developing renal tubules; however, its role in the pathogenesis of renal cyst formation is not clearly understood. Here, we tested the hypothesis that overexpression of bFGF in developing rodent kidneys induces cyst formation in vivo. We used two different adenoviral-mediated gene-transferring approaches to overexpress bFGF in developing rodent kidneys. Initially, metanephric kidney (MK) explants harvested from embryonic day 15 Sprague-Dawley rats were infected with adenoviral vectors (rAd) encoding human bFGF or LacZ genes and transplanted under the renal capsule of adult female rats. Subsequently, to determine whether bFGF could induce renal cysts in developing kidneys with an intact renal collecting system, we injected rAd-bFGF or LacZ vectors in the retroorbital plexus of newborn mice. Basic FGF induced a more efficient integration of the MK explants into the host kidneys and increased the vascularization and proliferation of developing tubules, leading to tubular dilatation and rapid formation of renal cysts. In addition, we successfully expressed human bFGF in the kidney of newborn mice in vivo and induced tubular dilatation and renal cysts. In contrast, mice injected with rAd-lacZ did not develop tubular dilatation or renal cysts. To the best of our knowledge, these experiments show for the first time that overexpression of bFGF in developing rodent kidneys can induce the formation of renal cysts in vivo.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Animals, Newborn/physiology
- Cell Proliferation
- Female
- Fibroblast Growth Factor 2/genetics
- Fibroblast Growth Factor 2/physiology
- Gene Expression Regulation, Developmental/physiology
- Gene Transfer Techniques
- Genetic Vectors/genetics
- Humans
- Kidney/chemistry
- Kidney/cytology
- Kidney/growth & development
- Kidney/physiology
- Kidney Diseases, Cystic/etiology
- Kidney Diseases, Cystic/physiopathology
- Kidney Tubules, Collecting/chemistry
- Kidney Tubules, Collecting/cytology
- Kidney Tubules, Collecting/growth & development
- Kidney Tubules, Collecting/physiology
- Mice
- Mice, Inbred C57BL
- Organ Culture Techniques
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Zhuangwu Li
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | | | |
Collapse
|
105
|
Poladia DP, Kish K, Kutay B, Hains D, Kegg H, Zhao H, Bates CM. Role of fibroblast growth factor receptors 1 and 2 in the metanephric mesenchyme. Dev Biol 2006; 291:325-39. [PMID: 16442091 DOI: 10.1016/j.ydbio.2005.12.034] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 11/21/2005] [Accepted: 12/16/2005] [Indexed: 10/25/2022]
Abstract
To determine the importance of fibroblast growth factor receptors (fgfrs) 1 and 2 in the metanephric mesenchyme, we generated conditional knockout mice (fgfr(Mes-/-)). Fgfr1(Mes-/-) and fgfr2(Mes-/-) mice develop normal-appearing kidneys. Deletion of both receptors (fgfr1/2(Mes-/-)) results in renal aplasia. Fgfr1/2(Mes-/-) mice develop a ureteric bud (and occasionally an ectopic bud) that does not elongate or branch, and the mice do not develop an obvious metanephric mesenchyme. By in situ hybridization, regions of mutant mesenchyme near the ureteric bud(s) express Eya1 and Six1, but not Six2, Sall1, or Pax2, while the ureteric bud expresses Ret and Pax2 normally. Abnormally high rates of apoptosis and relatively low rates of proliferation are present in mutant mesenchyme dorsal to the mutant ureteric bud at embryonic day (E) 10.5, while mutant ureteric bud tissues undergo high rates of apoptosis by E11.5. Thus, fgfr1 and fgfr2 together are critical for normal formation of metanephric mesenchyme. While the ureteric bud(s) initiates, it does not elongate or branch infgfr1/2(Mes-/-) mice. In metanephric mesenchymal rudiments, fgfr1 and fgfr2 appear to function downstream of Eya1 and Six1, but upstream of Six2, Sall1, and Pax2. Finally, this is the first example of renal aplasia in a conditional knockout model.
Collapse
Affiliation(s)
- Deepali Pitre Poladia
- Center for Cell and Vascular Biology, Columbus Children's Research Institute, 700 Children's Drive, Columbus, OH 43205, USA
| | | | | | | | | | | | | |
Collapse
|
106
|
Abstract
Signaling by GDNF through the Ret receptor is required for normal growth of the ureteric bud during kidney development. However, the precise role of GDNF/Ret signaling in renal branching morphogenesis and the specific responses of ureteric bud cells to GDNF remain unclear. Recent studies have provided new insight into these issues. The localized expression of GDNF by the metanephric mesenchyme, together with several types of negative regulation, is important to elicit and correctly position the initial budding event from the Wolffian duct. GDNF also promotes the continued branching of the ureteric bud. However, it does not provide the positional information required to specify the pattern of ureteric bud growth and branching, as its site of synthesis can be drastically altered with minimal effects on kidney development. Cells that lack Ret are unable to contribute to the tip of the ureteric bud, apparently because GDNF-driven proliferation is required for the formation and growth of this specialized epithelial domain.
Collapse
Affiliation(s)
- Frank Costantini
- Department of Genetics and Development, Columbia University Medical Center, New York 10032, USA.
| | | |
Collapse
|
107
|
Mei C, Mao Z, Shen X, Wang W, Dai B, Tang B, Wu Y, Cao Y, Zhang S, Zhao H, Sun T. Role of keratinocyte growth factor in the pathogenesis of autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 2005; 20:2368-75. [PMID: 16141466 DOI: 10.1093/ndt/gfi040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Previous studies have shown that the expression and distribution of keratinocyte growth factor (KGF), also known as FGF-7 (fibroblast growth factor-7) or HBGF-7 (heparin-binding growth factor-7), may be implicated in kidney cyst formation and expansion. However, there are no data on KGF expression in human autosomal dominant polycystic kidney disease (ADPKD) tissue, and it is unknown whether it affects ADPKD cyst-lining epithelial cell epithelial cell proliferation. METHODS The expression and distribution of KGF and KGF receptor (KGFR) mRNA in ADPKD cystic and normal kidney tissues were examined using quantitative real-time polymerase chain reaction (PCR) and in situ hybridization. KGF and KGFR protein expression in the above tissues was analysed by immunohistochemistry and western blot. The effect of KGF on cyst-lining epithelial cell proliferation was assessed by MTT assay, and its effect on the cyst-lining epithelial cell cycle was analysed by flow cytometry. The effect of KGF on cyclin D1 and P21(wafl) gene expression in cyst-lining epithelial cells was also determined. RESULTS KGF and KGFR mRNA expression in ADPKD cysts was higher than in normal kidney tissues. KGF and KGFR protein expression was also higher in ADPKD cysts and was localized to cyst-lining epithelial cells, tubular and interstitial cells. In vitro experiments revealed that KGF promoted cyst-lining epithelial cell proliferation, and decreased the ratio of G0/G1 phase but increased that of S phase. In response to KGF, the expression of the cyclin D1 gene in cyst-lining epithelial cells increased markedly while P21(wafl) expression decreased. CONCLUSIONS KGF and KGFR expression was upregulated in ADPKD kidney tissues. KGF stimulated the proliferation of cyst-lining epithelial cell in vitro by regulating the expression of cyclin D1 and P21(wafl) genes. KGF may play a role in pathogenesis of ADPKD.
Collapse
MESH Headings
- Adult
- Aged
- Blotting, Western
- Cell Proliferation
- Cyclin D1/biosynthesis
- Cyclin D1/genetics
- Epithelium/metabolism
- Epithelium/pathology
- Female
- Fibroblast Growth Factor 7/biosynthesis
- Fibroblast Growth Factor 7/genetics
- Flow Cytometry
- Follow-Up Studies
- Gene Expression Regulation/physiology
- Humans
- Immunohistochemistry
- In Situ Hybridization
- In Vitro Techniques
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Male
- Middle Aged
- Polycystic Kidney, Autosomal Dominant/genetics
- Polycystic Kidney, Autosomal Dominant/metabolism
- Polycystic Kidney, Autosomal Dominant/pathology
- Polymerase Chain Reaction
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptor, Fibroblast Growth Factor, Type 2/biosynthesis
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Retrospective Studies
Collapse
Affiliation(s)
- Changlin Mei
- Division of Nephrology, Department of Internal Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Yosypiv IV, El-Dahr SS. Role of the renin-angiotensin system in the development of the ureteric bud and renal collecting system. Pediatr Nephrol 2005; 20:1219-29. [PMID: 15942783 DOI: 10.1007/s00467-005-1944-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 03/02/2005] [Accepted: 03/02/2005] [Indexed: 11/24/2022]
Abstract
Genetic, biochemical and physiological studies have demonstrated that the renin-angiotensin system (RAS) plays a fundamental role in kidney development. All of the components of the RAS are expressed in the metanephros. Mutations in the genes encoding components of the RAS in mice or pharmacological inhibition of RAS in animals or humans cause diverse congenital abnormalities of the kidney and lower urinary tract. The latter include renal vascular abnormalities, abnormal glomerulogenesis, renal papillary hypoplasia, hydronephrosis, aberrant UB budding, duplicated collecting system, and urinary concentrating defect. Thus, the actions of angiotensin (ANG) II during kidney development are pleiotropic both spatially and temporally. Whereas the role of ANG II in renovascular and glomerular development has received much attention, little is known about the potential role of ANG II and its receptors in the morphogenesis of the collecting system. In this review, we discuss recent genetic and functional evidence gathered from transgenic knockout mice and in vitro organ and cell culture implicating the RAS in the development of the ureteric bud and collecting ducts. A novel conceptual framework has emerged from this body of work which states that stroma-derived ANG II elicits activation of AT(1)/AT(2) receptors expressed on the ureteric bud to stimulate branching morphogenesis as well as collecting duct elongation and papillogenesis.
Collapse
Affiliation(s)
- Ihor V Yosypiv
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| | | |
Collapse
|
109
|
Zhao H, Kegg H, Grady S, Truong HT, Robinson ML, Baum M, Bates CM. Role of fibroblast growth factor receptors 1 and 2 in the ureteric bud. Dev Biol 2005; 276:403-15. [PMID: 15581874 PMCID: PMC4131686 DOI: 10.1016/j.ydbio.2004.09.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 08/20/2004] [Accepted: 09/01/2004] [Indexed: 10/26/2022]
Abstract
Fibroblast growth receptors (FGFRs) consist of four signaling family members. Mice with deletions of fgfr1 or fgfr2 are embryonic lethal prior to the onset of kidney development. To determine roles of FGFR1 and FGFR2 in the ureteric bud, we used a conditional targeting approach. First, we generated transgenic mice using the Hoxb7 promoter to drive cre recombinase and green fluorescent protein expression throughout ureteric bud tissue. We crossed Hoxb7creEGFP mice with mice carrying lox-p sites flanking critical regions of fgfr1 and/or fgfr2. Absence of fgfr1 from the ureteric bud (fgfr1(UB-/-)) results in no apparent renal abnormalities. In contrast, fgfr2(UB-/-) mice have very aberrant ureteric bud branching, thin ureteric bud stalks, and fewer ureteric bud tips. Fgfr2(UB-/-) ureteric bud tips also demonstrate inappropriate regions of apoptosis and reduced proliferation. The nephrogenic mesenchymal lineage in fgfr2(UB-/-) mice develops normal-appearing glomeruli and tubules, and only slightly fewer nephrons than controls. In contrast, fgfr2(UB-/-) kidneys have abnormally thickened subcapsular cortical stromal mesenchyme. Ultimately, fgfr2(UB-/-) adult kidneys are small and abnormally shaped or are hydronephrotic. Finally, there are no additional abnormalities in the fgfr1/2(UB-/-) kidneys versus the fgfr2(UB-/-) kidneys. In conclusion, FGFR2, but not FGFR1, appears crucial for ureteric bud branching morphogenesis and stromal mesenchyme patterning.
Collapse
Affiliation(s)
- Haotian Zhao
- Center for Human and Molecular Genetics, Columbus Children’s Research Institute, Columbus, OH 43205, United States
| | - Heather Kegg
- Center for Human and Molecular Genetics, Columbus Children’s Research Institute, Columbus, OH 43205, United States
| | - Sandy Grady
- Center for Human and Molecular Genetics, Columbus Children’s Research Institute, Columbus, OH 43205, United States
| | - Hoang-Trang Truong
- Department of Pediatrics, Division of Nephrology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75235, United States
| | - Michael L. Robinson
- Center for Human and Molecular Genetics, Columbus Children’s Research Institute, Columbus, OH 43205, United States
| | - Michel Baum
- Department of Pediatrics, Division of Nephrology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75235, United States
| | - Carlton M. Bates
- Center for Human and Molecular Genetics, Columbus Children’s Research Institute, Columbus, OH 43205, United States
- Department of Pediatrics, Division of Nephrology, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43210, United States
- Corresponding author. Center for Human and Molecular Genetics, Columbus Children’s Research Institute, 700 Children’s Drive Columbus, Ohio 43205. Fax: +1 614 722 2817. (C.M. Bates)
| |
Collapse
|
110
|
Cullen-McEwen LA, Caruana G, Bertram JF. The Where, What and Why of the Developing Renal Stroma. ACTA ACUST UNITED AC 2005; 99:e1-8. [PMID: 15637462 DOI: 10.1159/000081792] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 06/06/2004] [Indexed: 11/19/2022]
Abstract
In recent years, a great deal has been learnt about the molecular regulation of kidney development. While most research has focused on the molecular regulation of ureteric branching morphogenesis and nephron formation, significant insights into the definition and functions of the renal stroma have emerged. Many molecules expressed in the developing renal stroma are now known to play significant regulatory roles in kidney development. However, the term 'renal stroma' continues to have different meanings to different researchers. This review clarifies this situation and defines the derivation, location and functions of the stroma in the developing metanephros.
Collapse
Affiliation(s)
- Luise A Cullen-McEwen
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Vic., Australia
| | | | | |
Collapse
|
111
|
Sampogna RV, Nigam SK. Implications of gene networks for understanding resilience and vulnerability in the kidney branching program. Physiology (Bethesda) 2005; 19:339-47. [PMID: 15546851 DOI: 10.1152/physiol.00025.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Branching morphogenesis in the kidney is tightly regulated. Whereas disruption of certain pathways produces catastrophic effects, numerous instances exist in which mutation of ostensibly key molecules has minimal apparent phenotypic consequence. We suggest how the network structure of gene interactions in the branching program might explain these findings as well as apparant discrepancies between in vivo and in vitro studies. Emerging genetic, cell-biological, and microarray data should help test and/or clarify these ideas.
Collapse
Affiliation(s)
- Rosemary V Sampogna
- Department of Medicine, School of Medicine, University of California-San Diego, La Jolla, California 92093-0696, USA
| | | |
Collapse
|
112
|
Finch PW, Rubin JS. Keratinocyte growth factor/fibroblast growth factor 7, a homeostatic factor with therapeutic potential for epithelial protection and repair. Adv Cancer Res 2004; 91:69-136. [PMID: 15327889 DOI: 10.1016/s0065-230x(04)91003-2] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Keratinocyte growth factor (KGF) is a paracrine-acting, epithelial mitogen produced by cells of mesenchymal origin. It is a member of the fibroblast growth factor (FGF) family, and acts exclusively through a subset of FGF receptor isoforms (FGFR2b) expressed predominantly by epithelial cells. The upregulation of KGF after epithelial injury suggested it had an important role in tissue repair. This hypothesis was reinforced by evidence that intestinal damage was worse and healing impaired in KGF null mice. Preclinical data from several animal models demonstrated that recombinant human KGF could enhance the regenerative capacity of epithelial tissues and protect them from a variety of toxic exposures. These beneficial effects are attributed to multiple mechanisms that collectively act to strengthen the integrity of the epithelial barrier, and include the stimulation of cell proliferation, migration, differentiation, survival, DNA repair, and induction of enzymes involved in the detoxification of reactive oxygen species. KGF is currently being evaluated in clinical trials to test its ability to ameliorate severe oral mucositis (OM) that results from cancer chemoradiotherapy. In a phase 3 trial involving patients who were treated with myeloablative chemoradiotherapy before autologous peripheral blood progenitor cell transplantation for hematologic malignancies, KGF significantly reduced both the incidence and duration of severe OM. Similar investigations are underway in patients being treated for solid tumors. On the basis of its success in ameliorating chemoradiotherapy-induced OM in humans and tissue damage in a variety of animal models, additional clinical applications of KGF are worthy of investigation.
Collapse
Affiliation(s)
- Paul W Finch
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
113
|
Meyer TN, Schwesinger C, Bush KT, Stuart RO, Rose DW, Shah MM, Vaughn DA, Steer DL, Nigam SK. Spatiotemporal regulation of morphogenetic molecules during in vitro branching of the isolated ureteric bud: toward a model of branching through budding in the developing kidney. Dev Biol 2004; 275:44-67. [PMID: 15464572 DOI: 10.1016/j.ydbio.2004.07.022] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 06/10/2004] [Accepted: 07/21/2004] [Indexed: 11/17/2022]
Abstract
In search of guiding principles involved in the branching of epithelial tubes in the developing kidney, we analyzed branching of the ureteric bud (UB) in whole kidney culture as well as in isolated UB culture independent of mesenchyme but in the presence of mesenchymally derived soluble factors. Microinjection of the UB lumen (both in the isolated UB and in the whole kidney) with fluorescently labeled dextran sulfate demonstrated that branching occurred via smooth tubular epithelial outpouches with a lumen continuous with that of the original structure. Epithelial cells within these outpouches cells were wedge-shaped with actin, myosin-2 and ezrin localized to the luminal side, raising the possibility of a "purse-string" mechanism. Electron microscopy and decoration of heparan sulfates with biotinylated FGF2 revealed that the basolateral surface of the cells remained intact, without the type of cytoplasmic extensions (invadopodia) that are seen in three-dimensional MDCK, mIMCD, and UB cell culture models of branching tubulogenesis. Several growth factor receptors (i.e., FGFR1, FGFR2, c-Ret) and metalloproteases (i.e., MT1-MMP) were localized toward branching UB tips. A large survey of markers revealed the ER chaperone BiP to be highly expressed at UB tips, which, by electron microscopy, are enriched in rough endoplasmic reticulum and Golgi, supporting high activity in the synthesis of transmembrane and secretory proteins at UB tips. After early diffuse proliferation, proliferating and mitotic cells were mostly found within the branching ampullae, whereas apoptotic cells were mostly found in stalks. Gene array experiments, together with protein expression analysis by immunoblotting, revealed a differential spatiotemporal distribution of several proteins associated with epithelial maturation and polarization, including intercellular junctional proteins (e.g., ZO-1, claudin-3, E-cadherin) and the subapical cytoskeletal/microvillar protein ezrin. In addition, Ksp-cadherin was found at UB ampullary cells next to developing outpouches, suggesting a role in epithelial-mesenchymal interactions. These data from the isolated UB culture system support a model where UB branching occurs through outpouching possibly mediated by wedge-shaped cells created through an apical cytoskeletal purse-string mechanism. Additional potential mechanisms include (1) differential localization of growth factor receptors and metalloproteases at tips relative to stalks; (2) creation of a secretory epithelium, in part manifested by increased expression of the ER chaperone BiP, at tips relative to stalks; (3) after initial diffuse proliferation, coexistence of a balance of proliferation vs. apoptosis favoring tip growth with a very different balance in elongating stalks; and (4) differential maturation of the tight and adherens junctions as the structures develop. Because, without mesenchyme, both lateral and bifid branching occurs (including the ureter), the mesenchyme probably restricts lateral branching and provides guidance cues in vivo for directional branching and elongation as well as functioning to modulate tubular caliber and induce differentiation. Selective cadherin, claudin, and microvillar protein expression as the UB matures likely enables the formation of a tight, polarized differentiated epithelium. Although, in vivo, metanephric mesenchyme development occurs simultaneously with UB branching, these studies shed light on how (mesenchymally derived) soluble factors alone regulate spatial and temporal expression of morphogenetic molecules and processes (proliferation, apoptosis, etc.) postulated to be essential to the UB branching program as it forms an arborized structure with a continuous lumen.
Collapse
Affiliation(s)
- Tobias N Meyer
- Department of Medicine, School of Medicine, University of California, La Jolla, San Diego, CA 92093-0693, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Masui F, Matsuda M, Mori T. Involvement of keratinocyte growth factor (KGF)-KGF receptor signaling in developmental estrogenization syndrome of mouse vagina. Cell Tissue Res 2004; 318:591-8. [PMID: 15480797 DOI: 10.1007/s00441-004-0980-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 08/03/2004] [Indexed: 10/26/2022]
Abstract
Exposure of mice to estrogen or keratinocyte growth factor (KGF) in vivo during the neonatal period results in estrogen-independent persistent proliferation and cornification of the vaginal epithelium when the animals become adults. Here, whether and how KGF-signaling is involved in the effects of estrogen on the neonatal mouse vagina were studied with an in vitro method. Newborn mouse vaginae were cultured for 3 days in serum-free medium containing various combinations of estradiol-17beta (E2), KGF, anti-KGF antibody, KGFR inhibitory peptide and heparin, and then transplanted into ovariectomized host mice for 35 days. The vaginae cultured with 5 microg/ml E2 or 5 microg/ml KGF had a cornified thick epithelium, while the epithelium of the vehicle-treated controls stayed thin. The E2 effect was blocked by concurrent treatment with anti-KGF antibody or KGFR inhibitory peptide. KGF treatment alone at doses less than 500 ng/ml did not induce permanent vaginal changes but such changes did occur in vaginae treated with heparin plus as little as 10 ng/ml KGF. On the other hand, heparin inhibited the permanent vaginal changes induced by estrogen. These results suggest that irreversible vaginal changes are induced by the direct action of KGF on the developing vagina and that the developmental estrogenization syndrome of mouse vagina is caused by intensification of endogenous KGF/KGFR signaling by exogenous estrogen.
Collapse
Affiliation(s)
- Fujiko Masui
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, 113-0033, Tokyo, Japan
| | | | | |
Collapse
|
115
|
Shah MM, Sampogna RV, Sakurai H, Bush KT, Nigam SK. Branching morphogenesis and kidney disease. Development 2004; 131:1449-62. [PMID: 15023929 DOI: 10.1242/dev.01089] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Branching morphogenesis in the kidney is a tightly regulated, complex process and its disruption potentially can lead to a broad spectrum of diseases, ranging from rare hereditary syndromes to common conditions such as hypertension and chronic kidney failure. This review synthesizes data on branching during kidney development derived from in vitro and in vivo rodent studies and to apply them to human diseases. It discusses how the broad organization of molecular interactions during kidney development might provide a mechanistic framework for understanding disorders related to aberrant branching.
Collapse
Affiliation(s)
- Mita M Shah
- Department of Pediatrics, University of California, San Diego, CA 92093-0693, USA
| | | | | | | | | |
Collapse
|
116
|
Bush KT, Sakurai H, Steer DL, Leonard MO, Sampogna RV, Meyer TN, Schwesinger C, Qiao J, Nigam SK. TGF-β superfamily members modulate growth, branching, shaping, and patterning of the ureteric bud. Dev Biol 2004; 266:285-98. [PMID: 14738877 DOI: 10.1016/j.ydbio.2003.10.023] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein-rich fractions inhibitory for isolated ureteric bud (UB) growth were separated from a conditioned medium secreted by cells derived from the metanephric mesenchyme (MM). Elution profiles and immunoblotting indicated the presence of members of the transforming growth factor-beta (TGF-beta) superfamily. Treatment of cultured whole embryonic kidney with BMP2, BMP4, activin, or TGF-beta1 leads to statistically significant differences in the overall size of the kidney, the number of UB branches, the length and angle of the branches, as well as in the thickness of the UB stalks. Thus, the pattern of the ureteric tree is altered. LIF, however, appeared to have only minimal effect on growth and development of the whole embryonic kidney in organ culture. The factors all directly inhibited, in a concentration-dependent fashion, the growth and branching of the isolated UB, albeit to different extents. Antagonists of some of these factors reduced their inhibitory effect. Detailed examination of TGF-beta1-treated UBs revealed only a slight increase in the amount of apoptosis in tips by TUNEL staining, but diminished proliferation throughout by Ki67 staining. These data suggest an important direct modulatory role for BMP2, BMP4, LIF, TGF-beta1, and activin (as well as their antagonists) on growth and branching of the UB, possibly in shaping the growing UB by playing a role in determining the number of branches, as well as where and how the branches occur. In support of this notion, UBs cultured in the presence of fibroblast growth factor 7 (FGF7), which induces the formation of globular structures with little distinction between the stalk and ampullae [Mech. Dev. 109 (2001) 123], and TGF-beta superfamily members lead to the formation of UBs with clear stalks and ampullae. This indicates that positive (i.e., growth and branch promoting) and negative (i.e., growth and branch inhibiting) modulators of UB morphogenesis can cooperate in the formation of slender arborized UB structures similar to those observed in the intact developing kidney or in whole embryonic kidney organ culture. Finally, purification data also indicate the presence of an as yet unidentified soluble non-heparin-binding activity modulating UB growth and branching. The data suggest how contributions of positive and negative growth factors can together (perhaps as local bipolar morphogenetic gradients existing within the mesenchyme) modulate the vectoral arborization pattern of the UB and shape branches as they develop, thereby regulating both nephron number and tubule/duct caliber. We suggest that TGF-beta-like molecules and other non-heparin-binding inhibitory factors can, in the appropriate matrix context, facilitate "braking" of the branching program as the UB shifts from a rapid branching stage (governed by a feed-forward mechanism) to a stage where branching slows down (negative feedback) and eventually stops.
Collapse
Affiliation(s)
- Kevin T Bush
- Department of Medicine, Pediatrics and Cellular Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0693, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Leimeister C, Schumacher N, Diez H, Gessler M. Cloning and expression analysis of the mouse stroma marker Snep encoding a novel nidogen domain protein. Dev Dyn 2004; 230:371-7. [PMID: 15162516 DOI: 10.1002/dvdy.20056] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vertebrate kidney develops through a series of mesenchymal-epithelial interactions between the ureteric bud and the metanephrogenic mesenchyme to form nephrons and the collecting system, which are both embedded in the renal interstitium. The interstitial stromal cells are an essential prerequisite for regular kidney development, but their origin and function is poorly understood. They are found in the kidney periphery and the medulla and are likely derived from the kidney mesenchyme and/or from migrating neural crest cells. During late kidney development, stromal cells are lost through massive apoptosis. We have identified a novel marker of kidney stroma cells, Snep (stromal nidogen extracellular matrix protein), that is additionally expressed in mesenchymal cells of other embryonic tissues and within the nervous system. Of interest, Snep transcripts are also found at sites of embryonic apoptosis. Furthermore, comparative expression analysis of kidney stroma markers suggests that Snep is expressed in a specific subpopulation of stromal cells and may provide environmental cues to support regular development.
Collapse
Affiliation(s)
- Cornelia Leimeister
- Theodor-Boveri-Institute, Physiological Chemistry I, University of Wuerzburg, Wuerzburg, Germany
| | | | | | | |
Collapse
|
118
|
Abstract
Specification of embryonic progenitors to generate the branched collecting duct system and tubular epithelia of the nephron in the metanephros is mediated by families of soluble factors that cooperate to regulate morphogenesis. These include multiple members of the FGF, TGF-beta, and Wnt families; however, the complexity of interactions through cell-cell and extracellular matrix-mediated contacts, the redundancy of factors involved, and multiplicity of cooperative signaling mechanisms limit our understanding of events responsible for this development. With available in vitro and targeted mutagenesis models, we are now beginning to comprehend how the secreted inductive proteins and associated transcription factors direct competent cells to produce a functional filtering tubular epithelium and its tightly integrated vascular network.
Collapse
Affiliation(s)
- Alan O Perantoni
- Laboratory of Comparative Carcinogenesis, National Cancer Institute--Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
119
|
Abstract
Branching morphogenesis, defined as growth and branching of epithelial tubules during embryogenesis, is a fundamental feature of renal, lung, mammary gland, submandibular gland, and pancreatic morphogenesis in mammals. Disruption of branching morphogenesis has been demonstrated to result in maldevelopment of some of these organs. Genetic studies performed in affected humans and mutant mice have implicated transcription factors, secreted growth factors, and cell surface signaling molecules as critical regulators of branching morphogenesis. These factors function within networks that appear to exert tight control over the number and location of branches. This review summarizes current knowledge regarding the molecular control of branching morphogenesis in vivo with particular emphasis on the genetic contribution to perturbed branching morphogenesis in mice and humans.
Collapse
Affiliation(s)
- Ming Chang Hu
- Program in Developmental Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
120
|
Steiling H, Werner S. Fibroblast growth factors: key players in epithelial morphogenesis, repair and cytoprotection. Curr Opin Biotechnol 2003; 14:533-7. [PMID: 14580585 DOI: 10.1016/j.copbio.2003.08.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fibroblast growth factors (FGFs) regulate early development and organogenesis. In particular, a subfamily of FGFs is essential for the formation and differentiation of epithelial tissues and organs. Recent studies revealed a crucial role for these FGFs in repair of the skin, intestine and liver. In addition, the cytoprotective potential of FGFs suggests their use for the protection of epithelial cells under conditions of stress in vivo. Indeed, the first successful clinical trials using FGFs for the treatment of radiation- and chemotherapy-induced mucosal epithelial damage have been announced.
Collapse
Affiliation(s)
- Heike Steiling
- Institute of Cell Biology, Department of Biology, ETH Zürich, Hönggerberg, CH-8093 Zürich, Switzerland.
| | | |
Collapse
|
121
|
Iosipiv IV, Schroeder M. A role for angiotensin II AT1 receptors in ureteric bud cell branching. Am J Physiol Renal Physiol 2003; 285:F199-207. [PMID: 12657564 DOI: 10.1152/ajprenal.00401.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gene-targeting studies in mice demonstrate that the renin-angiotensin system is required for the proper development of the renal medulla. In the absence of angiotensin II (ANG II) or the ANG II type 1 (AT1) receptor, mice exhibit poor papillary development and a severe urinary-concentrating defect. These findings imply that the ureteric bud (UB) and its branches are targets for ANG II actions during renal development. However, direct evidence linking ANG II with UB-branching morphogenesis does not exist. Using immunohistochemistry, we demonstrated that UB-derived epithelia express angiotensinogen (Ao) and the AT1 receptor during murine metanephrogenesis. Ao and AT1 receptors are expressed in the UB branches and to a lesser extent in the stromal mesenchyme. AT1 receptor expression in UB-derived epithelia increased from embryo day 12 to day 16 and was observed on both luminal and basolateral membranes. In accord with these findings, cultured murine UB cells express AT1 receptor protein and mRNA. Treatment of UB cells cultured in three-dimensional type I collagen gels with ANG II (10-7 to 10-5 M) elicits a dose-related increase in the number of cells that have primary and secondary branches. These effects of ANG II on UB branching are abrogated by pretreatment with the AT1 receptor antagonist candesartan. These data demonstrate a direct and independent role for ANG II acting via AT1 receptors on UB cell branching in vitro. The presence of Ao in the stroma and AT1 on UB cells supports the notion that cross talk between stroma and epithelial cells is crucial to epithelial branching morphogenesis in the developing kidney.
Collapse
Affiliation(s)
- Igor V Iosipiv
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences, New Orleans, LA 70112, USA.
| | | |
Collapse
|
122
|
Abstract
The urinary collecting system is derived from an epithelial protrusion arising from the Wolffian duct called the ureteric bud (UB) by the signal from its inductive tissue, metanephric mesenchyme (MM). Targeted gene mutation studies have shown that several transcription factors and MM-secreted glial cell line-derived neurotrophic factor (GDNF) are critical for initiation of the UB. After initiation, the UB undergoes branching morphogenesis. Results obtained from in vitro culture systems, including an isolated UB culture, together with gene mutation studies suggest that interplay of multiple positive and negative soluble factors as well as extracellular matrix (ECM) and matrix-degrading proteinases regulate branching morphogenesis.
Collapse
Affiliation(s)
- Hiroyuki Sakurai
- Division of Nephrology-Hypertension, Department of Medicine, University of California, San Diego, 9500 Gilman Drive 0693, La Jolla, CA 92093-0693, USA.
| |
Collapse
|
123
|
Bonventre JV. Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J Am Soc Nephrol 2003; 14 Suppl 1:S55-61. [PMID: 12761240 DOI: 10.1097/01.asn.0000067652.51441.21] [Citation(s) in RCA: 431] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In contrast to the heart or brain, the kidney can completely recover from an ischemic or toxic insult that results in cell death. During recovery from ischemia/reperfusion injury, surviving tubular epithelial cells dedifferentiate and proliferate, eventually replacing the irreversibly injured tubular epithelial cells and restoring tubular integrity. Repair of the kidney parallels kidney organogenesis in the high rate of DNA synthesis and apoptosis and in patterns of gene expression. As has been shown by proliferating cell nuclear antigen and 5-bromo 2'-deoxyuridine labeling studies and, in unpublished studies, by counting mitotic spindles identified by labeling with antitubulin antibody, the proliferative response is rapid and extensive, involving many of the remaining cells of the proximal tubule. This extensive proliferative capacity is interpreted to reflect the intrinsic ability of the surviving epithelial cell to adapt to the loss of adjacent cells by dedifferentiating and proliferating. Adhesion molecules likely play important roles in the regulation of renal epithelial cell migration, proliferation, and differentiation, as do cytokines and chemokines. Better understanding of all of the characteristics resulting in dedifferentiation and proliferation of the proximal tubule epithelial cell and cell-cell and cell-matrix interactions important for this repair function will lead to novel approaches to therapies designed to facilitate the processes of recovery in humans.
Collapse
Affiliation(s)
- Joseph V Bonventre
- Brigham and Women's Hospital, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Massachusetts, USA.
| |
Collapse
|
124
|
Abstract
BACKGROUND Renal organogenesis is routinely studied using cultured murine embryonic kidneys, but the application of this model has not yet been subjected to rigorous standards. METHODS We measured ex vivo growth and morphogenesis of day 13 murine kidneys and evaluated the importance of culture conditions and biological variables. RESULTS Kidney size was measured in two dimensions as planar surface area and was shown to correlate highly with volume (R2 = 0.60, P < 0.005). The final surface area of kidneys was directly dependent on the initial starting size (R2 = 0.61, P < 0.05), suggesting that the final surface area is not a valid outcome measurement unless starting size is equal among treatments. Relative growth rate, defined as (final surface area - initial surface area)/initial surface area, was a good measure of growth and independent of size and anatomical position (P> 0.05). Significant differences in size and growth rates were observed among litters (P < 0.05), implying that kidneys from a given litter must be randomized to avoid confounding results. Planar surface area of each explant increased in proportion to ureteric bud branching (R2 = 0.6854, P < 0.05). In a comparison of a variety of base media and supplements, kidney explants were observed to grow best in Dulbecco's modified Eagle's medium (DMEM)/F12 with 5% fetal bovine serum and to sustain growth for up to 96 hours, despite decreased proliferation and increased apoptosis at this time point. CONCLUSIONS These results represent an important step in establishing standardized procedures for the use of cultured embryonic kidneys and will improve our ability to apply the model to better understand kidney morphogenesis.
Collapse
Affiliation(s)
- Indra Rani Gupta
- Department of Pediatrics and Human Genetics, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
125
|
Merry CLR, Wilson VA. Role of heparan sulfate-2-O-sulfotransferase in the mouse. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1573:319-27. [PMID: 12417414 DOI: 10.1016/s0304-4165(02)00399-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Heparan sulfate (HS) is a long unbranched polysaccharide found covalently attached to various proteins at the cell surface and in the extracellular matrix. It plays a central role in embryonic development and cellular function by modulating the activities of an extensive range of growth factors and morphogens. HS 2-O-sulfotransferase (Hs2st) occupies a critical position in the succession of enzymes responsible for the biosynthesis of HS, catalysing the transfer of sulfate to the C2-position of selected hexuronic acid residues within the nascent HS chain. Previous studies have concluded that 2-O-sulfation of HS is essential for it to cooperate in many growth factor/receptor interactions. Surprisingly therefore, embryos lacking functional Hs2st survive until birth, but die perinatally, suffering complete failure to form kidneys. However, this rather late lethality belies a more intricate involvement of 2-O-sulfated HS during development. The purpose of this review is to summarise the requirements for 2-O-sulfated HS during mouse development, at the morphological and molecular level. The implications that altered HS structure may have on growth factor/receptor signalling in vivo will be discussed.
Collapse
Affiliation(s)
- Catherine L R Merry
- Cancer Research Campaign, Department of Medical Oncology, Christie Hospital NHS Trust, Manchester, United Kingdom
| | | |
Collapse
|
126
|
Almeida-Porada G, El Shabrawy D, Porada C, Zanjani ED. Differentiative potential of human metanephric mesenchymal cells. Exp Hematol 2002; 30:1454-62. [PMID: 12482508 DOI: 10.1016/s0301-472x(02)00967-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To evaluate the ability of mesenchymal cells derived from nonhematopoietic organs to form blood and other tissues in vitro and in vivo. MATERIALS AND METHODS Because of its mesodermic derivation, human fetal kidney was used as a source of mesenchymal cells. Two populations of kidney cells were studied at a nonclonal level: a crude preparation, and an adherent fraction that was derived from the first by propagation in vitro (MNMC). Both populations were transplanted into sheep fetuses and analyzed at intervals for the presence of human cells in different organs by flow cytometry, PCR, immunohistochemistry, and in situ hybridization. Secondary transplantation studies were performed using human hematopoietic cells obtained from the bone marrow (BM) of primary recipients. RESULTS MNMC were Thy-1(+), CD51(+), CD44(+), CD45(-), and vimentin(+), a phenotype consistent with that of metanephric mesenchyme. The crude population displayed the same phenotype but was contaminated with 0.4% CD34(+)CD45(+) cells. Cells with hepatocyte-like morphology and phenotype were obtained from the MNMC after culture in specific inducing media. After transplantation, both populations of cells produced multilineage hematopoietic engraftment and gave rise to CD34(+) cells. Successful hematopoietic engraftment in secondary recipients demonstrated the generation of long-term engrafting hematopoietic stem cells from MNMC. PCR analysis confirmed human hematopoietic engraftment and revealed that human cells were also present within other organs. Liver sections of transplanted animals contained human albumin-producing hepatocyte-like cells. CONCLUSION A human metanephric mesenchymal cell population simultaneously gave rise to human blood and liver-like cells, suggesting that mesenchymal cells may represent a broad population of putative stem cells in multiple adult organs.
Collapse
Affiliation(s)
- Graça Almeida-Porada
- Department of Animal Biotechnology, University of Nevada-Reno, Mail Stop 202, Reno, NV 89557-0104, USA.
| | | | | | | |
Collapse
|
127
|
Piscione TD, Rosenblum ND. The molecular control of renal branching morphogenesis: current knowledge and emerging insights. Differentiation 2002; 70:227-46. [PMID: 12190985 DOI: 10.1046/j.1432-0436.2002.700602.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mammalian kidney development requires the formation of a patterned, branched network of collecting ducts, a process termed renal branching morphogenesis. Disruption of renal branching morphogenesis during human kidney development results in renal dysplasia, the major cause of renal failure in young children. Genetic evidence, combined with in vitro data, have implicated transcription factors, secreted growth factors, and cell surface signaling peptides as critical regulators of renal branching morphogenesis. This review discusses the current knowledge regarding the regulation of renal branching morphogenesis in vivo provided by the analysis of genetic mutations in mice and humans which disrupt collecting duct system development. In addition, in vivo and in vitro evidence regarding the functions of several other gene families are considered, rendering new insight into emerging regulatory roles for these molecules in renal branching morphogenesis.
Collapse
Affiliation(s)
- Tino D Piscione
- Program in Development Biology, Division of Nephrology, The Hospital for Sick Children, University of Toronto, 555 University Ave., Ontario, M5G1X8, Canada
| | | |
Collapse
|
128
|
Abstract
The kidney is widely used to study the mechanisms of organogenesis. Its development involves fundamental processes, such as epithelial branching, induced morphogenesis and cytodifferentiation, which are common to the development of many other organs. Gene-targeting experiments have greatly improved our understanding of kidney development, and have revealed many important genes that regulate early kidney organogenesis, some of which have a role in inherited human kidney disorders. Although our understanding of how the kidney is assembled is still limited, these studies are beginning to provide insights into the genetic and cellular interactions that regulate early organogenesis.
Collapse
Affiliation(s)
- Seppo Vainio
- Biocenter Oulu and Department of Biochemistry, Linnanmaa, Faculties of Science and Medicine, University of Oulu, P.O. Box 3000, FIN-90014, Finland.
| | | |
Collapse
|
129
|
Bard JBL. Growth and death in the developing mammalian kidney: signals, receptors and conversations. Bioessays 2002; 24:72-82. [PMID: 11782952 DOI: 10.1002/bies.10024] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Because the kidney (metanephros) starts to function before completing development, its patterning and morphogenesis need to be closely integrated with its growth. This is achieved by blast cells at the kidney periphery generating new nephrons that link up to the extending collecting-duct arborisation, while earlier-formed and more internal nephrons are maturing and beginning to filter serum. This pattern of development requires that cell division and apoptosis be co-ordinated in the various kidney compartments (collecting-ducts, blast cells, metanephric mesenchyme, nephrons and vascular system). The underlying regulatory networks for cell proliferation are beginning to be unravelled, mainly through expression studies, mutation analysis and experimentation in vitro. This article summarises current knowledge of kidney growth and apoptosis, and analyses some of the 80 or so ligand-receptor pairings that seem to sustain development and growth. It also points to some unanswered questions, the most intriguing being what role does apoptosis play during normal kidney development?
Collapse
Affiliation(s)
- Jonathan B L Bard
- Department of Biomedical Science, Edinburgh University, Edinburgh EH8 9XD, Scotland, UK.
| |
Collapse
|
130
|
Pohl M, Bhatnagar V, Mendoza SA, Nigam SK. Toward an etiological classification of developmental disorders of the kidney and upper urinary tract. Kidney Int 2002; 61:10-9. [PMID: 11786080 DOI: 10.1046/j.1523-1755.2002.00086.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Toward an etiological classification of developmental disorders of the kidney and upper urinary tract. There are a large number of developmental disorders and syndromes that affect the kidney and upper urinary tract. These have generally been classified according to morphological criteria established decades ago. Although these classifications have been useful, they are incomplete, including some developmental disorders while excluding others. Here, basic cellular and molecular biology studies of kidney and upper urinary tract development in both rodents and humans are utilized to suggest the basis of a new etiologic, if still tentative, classification scheme. This classification may help to identify candidate genes for human diseases by correlating morphology with pathogenetic mechanisms.
Collapse
Affiliation(s)
- Martin Pohl
- Division of Nephrology and Hypertension, Department of Pediatrics, University of California, San Diego, La Jolla, California 92093-0693, USA
| | | | | | | |
Collapse
|
131
|
TASH JENNIFERA, DAVID SCOTTG, VAUGHAN E, HERZLINGER DORISA. FIBROBLAST GROWTH FACTOR-7 REGULATES STRATIFICATION OF THE BLADDER UROTHELIUM. J Urol 2001. [DOI: 10.1016/s0022-5347(05)65630-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- JENNIFER A. TASH
- From the Department of Urology, James Buchanan Brady Urology Foundation, and Department of Physiology and Biophysics, New York Presbyterian Hospital-Weill Medical College of Cornell University, New York, New York
| | - SCOTT G. DAVID
- From the Department of Urology, James Buchanan Brady Urology Foundation, and Department of Physiology and Biophysics, New York Presbyterian Hospital-Weill Medical College of Cornell University, New York, New York
| | - E.DARRACOTT VAUGHAN
- From the Department of Urology, James Buchanan Brady Urology Foundation, and Department of Physiology and Biophysics, New York Presbyterian Hospital-Weill Medical College of Cornell University, New York, New York
| | - DORIS A. HERZLINGER
- From the Department of Urology, James Buchanan Brady Urology Foundation, and Department of Physiology and Biophysics, New York Presbyterian Hospital-Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
132
|
Qiao J, Bush KT, Steer DL, Stuart RO, Sakurai H, Wachsman W, Nigam SK. Multiple fibroblast growth factors support growth of the ureteric bud but have different effects on branching morphogenesis. Mech Dev 2001; 109:123-35. [PMID: 11731227 DOI: 10.1016/s0925-4773(01)00592-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Together with glial-derived neurotrophic factor (GDNF), soluble factors present in a metanephric mesenchyme (MM) cell conditioned medium (BSN-CM) are necessary to induce branching morphogenesis of the isolated ureteric bud (UB) in vitro (Proc. Natl. Acad. Sci. USA 96 (1999) 7330). Several lines of evidence are presented here in support of a modulating role for fibroblast growth factors (FGFs) in this process. RT-PCR revealed the expression of two FGF receptors, FGFR1(IIIc) and FGFR2(IIIb), in isolated embryonic day 13 rat UBs, which by indirect immunofluorescence displayed a uniform distribution. Rat kidney organ culture experiments in the presence of a soluble FGFR2(IIIb) chimera or a neutralizing antibody to FGF7 suggested an important contribution of FGFs other than FGF7 to the branching program. Several FGFs, including FGF1, FGF2, FGF7 and FGF10, in combination with GDNF and BSN-CM were found to affect growth and branching of the isolated UB, albeit with very different effects. FGF1 and FGF7 were at extreme ends of the spectrum, with FGF10 (more FGF1-like) and FGF2 (more FGF7-like) falling in between. FGF1 induced the formation of elongated UB branching stalks with distinct proliferative ampullary tips, whereas FGF7 induced amorphous buds displaying nonselective proliferation with little distinction between stalks and ampullae. Electron microscopic examination demonstrated that FGF1 treatment induced cytoskeletal organization, intercellular junctions and lumens along the stalk portion of the developing tubules, while the ampullary regions contained 'less differentiated' cells with an abundant secretory apparatus. In contrast, FGF7-induced UBs displayed this 'less differentiated' morphology regardless of position on the structure and were virtually indistinguishable from FGF1-induced ampullae. Consistent with this, GeneChip array analysis (employing a novel nanogram-scale assay consisting of two rounds of amplification and in vitro transcription for analyzing small quantities of RNA) revealed that FGF7-induced UBs expressed more markers of cell proliferation than FGF1, which caused the UB to express cytoskeletal proteins, extracellular matrix proteins, and at least one integrin, some of which may be important in UB branch elongation. Thus, while the various FGFs examined all support UB growth, FGF1 and FGF10 appear to be more important for branching and branch elongation, and may thus play a role in determination of nephron number and patterning in the developing kidney. These in vitro data may help to explain results from knockout and transgenic studies and suggest how different FGFs may, together with GDNF and other factor(s) secreted by MM cells, regulate branching morphogenesis of the UB by their relative effects on its growth, branching and branch elongation and differentiation, thereby affecting patterning in the developing kidney.
Collapse
Affiliation(s)
- J Qiao
- Department of Medicine, VASD HS and Cancer Center, University of California, San Diego, CA 92093-0693, USA
| | | | | | | | | | | | | |
Collapse
|
133
|
|
134
|
Karihaloo A, Karumanchi SA, Barasch J, Jha V, Nickel CH, Yang J, Grisaru S, Bush KT, Nigam S, Rosenblum ND, Sukhatme VP, Cantley LG. Endostatin regulates branching morphogenesis of renal epithelial cells and ureteric bud. Proc Natl Acad Sci U S A 2001; 98:12509-14. [PMID: 11606725 PMCID: PMC60084 DOI: 10.1073/pnas.221205198] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endostatin (ES) inhibits endothelial cell migration and has been found to bind to glypicans (Gpcs) on both endothelial cells and renal epithelial cells. We examined the possibility that ES might regulate epithelial cell morphogenesis. The addition of ES to cultured epithelial cells causes an inhibition of both hepatocyte growth factor- and epidermal growth factor-dependent process formation and migration. In contrast, ES does not inhibit epidermal growth factor-dependent morphogenesis in renal epithelial cells derived from Gpc-3 -/mice, whereas expression of Gpc-1 in these cells reconstitutes ES responsiveness. Gpc-3 -/mice have been shown to display enhanced ureteric bud (UB) branching early in development, and cultured UB cells release ES into the media, suggesting that ES binding to Gpcs may regulate UB branching. The addition of ES inhibits branching of the explanted UB, whereas a neutralizing Ab to ES enhances UB outgrowth and branching. Thus, local expression of ES at the tips of the UB may play a role in the regulation of UB arborization.
Collapse
Affiliation(s)
- A Karihaloo
- Section of Nephrology, Yale University School of Medicine, 333 Cedar Street, LMP 2093, New Haven, CT 06520, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Affiliation(s)
- J Filmus
- Molecular and Cellular Biology Research, Sunnybrook and Women's College Health Sciences Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
136
|
Lin Y, Liu A, Zhang S, Ruusunen T, Kreidberg JA, Peltoketo H, Drummond I, Vainio S. Induction of ureter branching as a response to Wnt-2b signaling during early kidney organogenesis. Dev Dyn 2001; 222:26-39. [PMID: 11507767 DOI: 10.1002/dvdy.1164] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Epithelial-mesenchymal tissue interactions play a central role in vertebrate organogenesis, but the molecular mediators and mechanisms of these morphogenetic interactions are still not well characterized. We report here on the expression pattern of Wnt-2b during mouse organogenesis and on tests of its function in epithelial- mesenchymal interactions during kidney development. Wnt-2b is expressed in numerous developing organs in the mouse embryo, including the kidney, lung, salivary gland, gut, pancreas, adrenal gland, and genital tubercle. Additional sites of expression include the branchial arches and craniofacial placodes such as the eye and ear. The data suggest that the expression of Wnt-2b is associated with organs regulated by epithelial-mesenchymal interactions. It is typically localized in the capsular epithelium or peripheral mesenchymal cells of organ rudiments, e.g., the perinephric mesenchymal cells in the region of the presumptive renal stroma in the developing kidney at E11.5. Functional studies of the kidney demonstrate that cells expressing Wnt-2b are not capable of inducing tubule formation but instead stimulate ureter development. Incubation of isolated ureteric buds on such cells supports bud growth and branching. In addition, recombination of Wnt-2b-pretreated ureteric bud tissue with isolated nephrogenic mesenchyme results in a recovery of organogenesis and the expression of epithelial genes within the reconstituted organ explant. Lithium, a known activator of Wnt signaling (Hedgepeth et al. [1997] Dev Biol 185:82-91), is also sufficient to promote ureter branching in the reconstituted kidney in a comparable manner to Wnt-2b signaling, whereas Wnt-4, which induces tubules, neither supports the growth of a ureteric bud nor leads to reconstitution of the ureteric bud with the kidney mesenchyme. We conclude that Wnt-2b may act in the mouse kidney as an early mesenchymal signal controlling morphogenesis of epithelial tissue, and that the Wnt pathway may regulate ureter branching directly. In addition, Wnt signals in the kidney differ qualitatively and are specific to either the epithelial ureteric bud or the kidney mesenchyme.
Collapse
Affiliation(s)
- Y Lin
- Biocenter Oulu and Department of Biochemistry, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Sakurai H, Bush KT, Nigam SK. Identification of pleiotrophin as a mesenchymal factor involved in ureteric bud branching morphogenesis. Development 2001; 128:3283-93. [PMID: 11546745 DOI: 10.1242/dev.128.17.3283] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Branching morphogenesis is central to epithelial organogenesis. In the developing kidney, the epithelial ureteric bud invades the metanephric mesenchyme, which directs the ureteric bud to undergo repeated branching. A soluble factor(s) in the conditioned medium of a metanephric mesenchyme cell line is essential for multiple branching morphogenesis of the isolated ureteric bud. The identity of this factor had proved elusive, but it appeared distinct from factors such as HGF and EGF receptor ligands that have been previously implicated in branching morphogenesis of mature epithelial cell lines. Using sequential column chromatography, we have now purified to apparent homogeneity an 18 kDa protein, pleiotrophin, from the conditioned medium of a metanephric mesenchyme cell line that induces isolated ureteric bud branching morphogenesis in the presence of glial cell-derived neurotrophic factor. Pleiotrophin alone was also found to induce the formation of branching tubules in an immortalized ureteric bud cell line cultured three-dimensionally in an extracellular matrix gel. Consistent with an important role in ureteric bud morphogenesis during kidney development, pleiotrophin was found to localize to the basement membrane of the developing ureteric bud in the embryonic kidney. We suggest that pleiotrophin could act as a key mesenchymally derived factor regulating branching morphogenesis of the ureteric bud and perhaps other embryonic epithelial structures.
Collapse
Affiliation(s)
- H Sakurai
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693, USA
| | | | | |
Collapse
|
138
|
Cancilla B, Davies A, Cauchi JA, Risbridger GP, Bertram JF. Fibroblast growth factor receptors and their ligands in the adult rat kidney. Kidney Int 2001; 60:147-55. [PMID: 11422746 DOI: 10.1046/j.1523-1755.2001.00781.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Fibroblast growth factors (FGFs) are a family of at least 21 heparin-binding proteins involved in many biological processes, both during development and in the adult, including cell proliferation, differentiation, and angiogenesis. FGFs mediate their effects through high-affinity tyrosine kinase receptors (FGFRs), which are encoded by four genes. The aims of the present study were to localize FGFR-1 through FGFR-3 in the normal adult rat kidney and to determine which functional FGFR variants and FGFs were expressed. METHODS Avidin-biotin-enhanced horseradish peroxidase immunohistochemistry was used on paraffin sections of rat kidney to localize FGFR-1 through FGFR-3, whereas reverse transcriptase-polymerase chain reaction was used to examine expression of the receptor variants and also of FGF-1 through FGF-10 in cortex, outer medulla, and inner medulla. RESULTS By immunohistochemistry, each receptor was localized to distinct and overlapping nephron segments, such that one or more FGFRs were localized to all nephron and collecting duct epithelia. FGFR-1 and FGFR-3 were localized to glomeruli, FGFR-3 to proximal tubules and FGFR-1 to thin limbs. FGFR-1 through FGFR-3 were localized to distal straight tubules, with FGFR-1 and FGFR-3 localized to distal convoluted tubules. FGFR-1 and FGFR-3 were localized to medullary collecting ducts. In addition, FGFR-1 was localized to the smooth muscle of renal arteries. All seven FGFR variants were expressed in the cortex and outer medulla, with fewer FGFRs in the inner medulla. FGF-1, FGF-2, FGF-7, FGF-8, and FGF-9 were expressed in the kidney, with FGF-10 expression found only in the cortex. CONCLUSIONS Mapping of these receptors is critical to the determination of the effects of FGF ligands in discrete regions of the kidney. The distributions of the FGFRs in the normal adult kidney and the restricted expression of FGF ligands suggest that specific FGFs have distinct and important roles in the maintenance of normal kidney structure and function.
Collapse
Affiliation(s)
- B Cancilla
- Monash Institute of Reproduction and Development, Monash University, Clayton, Victoria, Australia
| | | | | | | | | |
Collapse
|
139
|
Grisaru S, Cano-Gauci D, Tee J, Filmus J, Rosenblum ND. Glypican-3 modulates BMP- and FGF-mediated effects during renal branching morphogenesis. Dev Biol 2001; 231:31-46. [PMID: 11180950 DOI: 10.1006/dbio.2000.0127] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The kidney of the Gpc3-/ mouse, a novel model of human renal dysplasia, is characterized by selective degeneration of medullary collecting ducts preceded by enhanced cell proliferation and overgrowth during branching morphogenesis. Here, we identify cellular and molecular mechanisms underlying this renal dysplasia. Glypican-3 (GPC3) deficiency was associated with abnormal and contrasting rates of proliferation and apoptosis in cortical (CCD) and medullary collecting duct (MCD) cells. In CCD, cell proliferation was increased threefold. In MCD, apoptosis was increased 16-fold. Expression of Gpc3 mRNA in ureteric bud and collecting duct cells suggested that GPC3 can exert direct effects in these cells. Indeed, GPC3 deficiency abrogated the inhibitory activity of BMP2 on branch formation in embryonic kidney explants, converted BMP7-dependent inhibition to stimulation, and enhanced the stimulatory effects of KGF. Similar comparative differences were found in collecting duct cell lines derived from GPC3-deficient and wild type mice and induced to form tubular progenitors in vitro, suggesting that GPC3 directly controls collecting duct cell responses. We propose that GPC3 modulates the actions of stimulatory and inhibitory growth factors during branching morphogenesis.
Collapse
Affiliation(s)
- S Grisaru
- Division of Nephrology, Program in Developmental Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
140
|
Revest JM, Spencer-Dene B, Kerr K, De Moerlooze L, Rosewell I, Dickson C. Fibroblast growth factor receptor 2-IIIb acts upstream of Shh and Fgf4 and is required for limb bud maintenance but not for the induction of Fgf8, Fgf10, Msx1, or Bmp4. Dev Biol 2001; 231:47-62. [PMID: 11180951 DOI: 10.1006/dbio.2000.0144] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mice deficient for FgfR2-IIIb were generated by placing translational stop codons and an IRES-LacZ cassette into exon IIIb of FgfR2. Expression of the alternatively spliced receptor isoform, FgfR2-IIIc, was not affected in mice deficient for the IIIb isoform. FgfR2-IIIb(-/-) (lac)(Z) mice survive to term but show dysgenesis of the kidneys, salivary glands, adrenal glands, thymus, pancreas, skin, otic vesicles, glandular stomach, and hair follicles, and agenesis of the lungs, anterior pituitary, thyroid, teeth, and limbs. Detailed analysis of limb development revealed an essential role for FgfR2-IIIb in maintaining the AER. Its absence did not prevent expression of Fgf8, Fgf10, Bmp4, and Msx1, but did prevent induction of Shh and Fgf4, indicating that they are downstream targets of FgfR2-IIIb activation. In the absence of FgfR2-IIIb, extensive apoptosis of the limb bud ectoderm and mesenchyme occurs between E10 and E10.5, providing evidence that Fgfs act primarily as survival factors. We propose that FgfR2-IIIb is not required for limb bud initiation, but is essential for its maintenance and growth.
Collapse
Affiliation(s)
- J M Revest
- Imperial Cancer Research Fund, Lincoln's Inn Fields, London, WC2A 3PX, United Kingdom
| | | | | | | | | | | |
Collapse
|
141
|
Bullock SL, Johnson TM, Bao QI, Hughes RC, Winyard PJD, Woolf AS. Galectin-3 modulates ureteric bud branching in organ culture of the developing mouse kidney. J Am Soc Nephrol 2001; 12:515-523. [PMID: 11181799 DOI: 10.1681/asn.v123515] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Galectin-3 is a mammalian beta-galactoside-specific lectin with functions in cell growth, adhesion, and neoplastic transformation. On the basis of expression patterns in humans, it is proposed that galectin-3 modulates fetal collecting duct growth. This article provides evidence that galectin-3 can modulate branching morphogenesis of the mouse ureteric bud/collecting duct lineage. With the use of immunohistochemistry, galectin-3 was not detected in early metanephrogenesis but was upregulated later in fetal kidney maturation when the protein was prominent in basal domains of medullary collecting ducts. Addition of galectin-3 to embryonic days 11 and 12 whole metanephric cultures inhibited ureteric bud branching, whereas galectin-1 did not perturb morphogenesis, nor did a galectin-3 mutant lacking wild-type high-affinity binding to extended oligosaccharides. Exogenous galectin-3 retarded conversion of renal mesenchyme to nephrons in whole metanephric explants but did not affect nephron induction by spinal cord in isolated renal mesenchymes. Finally, addition of a blocking antiserum to galectin-3 caused dilation and distortion of developing epithelia in embryonic day 12 metanephroi cultured for 1 wk. The upregulation of galectin-3 protein during kidney maturation, predominantly at sites where it could mediate cell/matrix interactions, seems to modulate growth of the ureteric tree.
Collapse
Affiliation(s)
- Simon L Bullock
- Division of Mammalian Development, National Institute for Medical Research, London, United Kingdom
| | - Tanya M Johnson
- Division of Protein Structure, National Institute for Medical Research, London, United Kingdom
| | - Q I Bao
- Nephro-Urology Unit, Institute of Child Health, London, United Kingdom
| | - R Colin Hughes
- Nephro-Urology Unit, Institute of Child Health, London, United Kingdom
| | - Paul J D Winyard
- Division of Protein Structure, National Institute for Medical Research, London, United Kingdom
| | - Adrian S Woolf
- Division of Protein Structure, National Institute for Medical Research, London, United Kingdom
| |
Collapse
|
142
|
Stasko SE, Wagner GF. Stanniocalcin gene expression during mouse urogenital development: a possible role in mesenchymal-epithelial signalling. Dev Dyn 2001; 220:49-59. [PMID: 11146507 DOI: 10.1002/1097-0177(2000)9999:9999<::aid-dvdy1086>3.0.co;2-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Stanniocalcin (STC) is a polypeptide hormone first discovered in fish and more recently in mammals. In mammals, the STC gene is widely expressed and the hormone is involved in a variety of functions, but STC does not normally circulate in the blood. In both kidney and gut, STC regulates phosphate fluxes across the transporting epithelia, whereas in brain it protects neurons against cerebral ischemia and promotes neuronal cell differentiation. However, the gene is most highly expressed in ovary and expression is dramatically up-regulated by both pregnancy and nursing. STC mRNA levels are also high in the developing mouse embryo, but literally nothing is known of the tissue pattern of gene expression. Therefore, the aim of this study was to map the temporal and spatial patterns of gene expression during mouse embryologic development, starting with the urogenital system where the gene is so highly expressed in adults. STC mRNA was evident as early as E10.5 in both the mesonephros and genital ridge. Between E10.5 and 14.5 in developing kidney, STC was produced in undifferentiated mesenchyme cells and sequestered by ureteric bud epithelial cells that did not express the gene but nonetheless contained high levels of STC protein. Thereafter, the distribution pattern resembled that in adults such that gene expression predominated in collecting duct cells, whereas protein was present in most nephron segments. The pattern of gene expression during gonadal development was sexually dimorphic. In males, expression was first evident on E12.5 in interstitial mesenchyme cells surrounding the developing sex cords, whereas the protein accumulated in developing gonocytes within the sex cords that did not express the gene. This pattern became more pronounced over the course of gestation. In contrast, ovarian gene expression was only weakly evident during development. Collectively, the evidence suggests that in addition to its regulatory effects in adults, STC has novel and distinctive roles in the mesenchymal-epithelial interactions that are vital to normal organogenesis.
Collapse
Affiliation(s)
- S E Stasko
- Department of Physiology, Faculty of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
143
|
Abstract
Epithelial tissues such as kidney, lung, and breast arise through branching morphogenesis of a pre-existing epithelial structure. They share common morphological stages and a need for regulation of a similar set of developmental decisions--where to start; when, where, and in which direction to branch; and how many times to branch--decisions requiring regulation of cell proliferation, apoptosis, invasiveness, and cell motility. It is likely that similar molecular mechanisms exist for the epithelial branching program. Here we focus on the development of the collecting system of the kidney, where, from recent data using embryonic organ culture, cell culture models of branching morphogenesis, and targeted gene deletion experiments, the outlines of a working model for branching morphogenesis begin to emerge. Key branching morphogenetic molecules in this model include growth factors, transcription factors, distal effector molecules (such as extracellular matrix proteins, integrins, proteinases and their inhibitors), and genes regulating apoptosis and cell proliferation.
Collapse
Affiliation(s)
- M Pohl
- Department of Pediatrics, University of California, San Diego, La Jolla 92093-0693, USA
| | | | | | | |
Collapse
|
144
|
BASSUK JAMESA, GRADY RICHARD, MITCHELL MICHAEL. REVIEW ARTICLE: THE MOLECULAR ERA OF BLADDER RESEARCH. TRANSGENIC MICE AS EXPERIMENTAL TOOLS IN THE STUDY OF OUTLET OBSTRUCTION. J Urol 2000. [DOI: 10.1016/s0022-5347(05)67490-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- JAMES A. BASSUK
- From the Division of Pediatric Urology, Department of Surgery, Children’s Hospital and Regional Medical Center, Seattle, Washington
| | - RICHARD GRADY
- From the Division of Pediatric Urology, Department of Surgery, Children’s Hospital and Regional Medical Center, Seattle, Washington
| | - MICHAEL MITCHELL
- From the Division of Pediatric Urology, Department of Surgery, Children’s Hospital and Regional Medical Center, Seattle, Washington
| |
Collapse
|
145
|
BASSUK JAMESA, GRADY RICHARD, MITCHELL MICHAEL. REVIEW ARTICLE: THE MOLECULAR ERA OF BLADDER RESEARCH. TRANSGENIC MICE AS EXPERIMENTAL TOOLS IN THE STUDY OF OUTLET OBSTRUCTION. J Urol 2000. [DOI: 10.1097/00005392-200007000-00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
146
|
Miyazaki Y, Oshima K, Fogo A, Hogan BL, Ichikawa I. Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest 2000; 105:863-73. [PMID: 10749566 PMCID: PMC377476 DOI: 10.1172/jci8256] [Citation(s) in RCA: 297] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the normal mouse embryo, Bmp4 is expressed in mesenchymal cells surrounding the Wolffian duct (WD) and ureter stalk, whereas bone morphogenetic protein (BMP) type I receptor genes are transcribed either ubiquitously (Alk3) or exclusively in the WD and ureter epithelium (Alk6). Bmp4 heterozygous null mutant mice display, with high penetrance, abnormalities that mimic human congenital anomalies of the kidney and urinary tract (CAKUT), including hypo/dysplastic kidneys, hydroureter, ectopic ureterovesical (UV) junction, and double collecting system. Analysis of mutant embryos suggests that the kidney hypo/dysplasia results from reduced branching of the ureter, whereas the ectopic UV junction and double collecting system are due to ectopic ureteral budding from the WD and accessory budding from the main ureter, respectively. In the cultured metanephros deprived of sulfated glycosaminoglycans (S-GAGs), BMP4-loaded beads partially rescue growth and elongation of the ureter. By contrast, when S-GAGs synthesis is not inhibited, BMP4 beads inhibit ureter branching and expression of Wnt 11, a target of glial cell-derived neurotrophic factor signaling. Thus, Bmp4 has 2 functions in the early morphogenesis of the kidney and urinary tract. One is to inhibit ectopic budding from the WD or the ureter stalk by antagonizing inductive signals from the metanephric mesenchyme to the illegitimate sites on the WD. The other is to promote the elongation of the branching ureter within the metanephros, thereby promoting kidney morphogenesis.
Collapse
Affiliation(s)
- Y Miyazaki
- Department of Pediatrics, Department of Pathology, Department of Cell Biology, and. Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
147
|
Abstract
Development of an organ is directed by cell and tissue interactions and these also occur during the formation of functional kidney. During vertebrate development inductive signalling between mesenchyme and epithelium controls the organogenesis of all three kinds of kidneys: pronephros, mesonephros and metanephros. In higher animals the metanephros differentiates into the permanent kidney and in this review we will mainly concentrate on its development. Molecular interactions currently known to function during nephrogenesis have primarily been based on the use of knockout techniques. These studies have highlighted the role for transcription factors, signalling molecules, growth factors and their receptors and also for extracellular matrix components in kidney development. Finally in this review we will represent our own model for kidney development according to the knowledge of the genes involved in the development of the functional excretory organ, kidney.
Collapse
Affiliation(s)
- S Kuure
- Department of Biochemistry and Biocenter Oulu, Faculties of Science and Medicine, University of Oulu, FIN-90570, Oulu, Finland
| | | | | |
Collapse
|
148
|
De Moerlooze L, Spencer-Dene B, Revest JM, Hajihosseini M, Rosewell I, Dickson C. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development 2000; 127:483-92. [PMID: 10631169 DOI: 10.1242/dev.127.3.483] [Citation(s) in RCA: 553] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The fibroblast growth factor receptor 2 gene is differentially spliced to encode two transmembrane tyrosine kinase receptor proteins that have different ligand-binding specificities and exclusive tissue distributions. We have used Cre-mediated excision to generate mice lacking the IIIb form of fibroblast growth factor receptor 2 whilst retaining expression of the IIIc form. Fibroblast growth factor receptor 2(IIIb) null mice are viable until birth, but have severe defects of the limbs, lung and anterior pituitary gland. The development of these structures appears to initiate, but then fails with the tissues undergoing extensive apoptosis. There are also developmental abnormalities of the salivary glands, inner ear, teeth and skin, as well as minor defects in skull formation. Our findings point to a key role for fibroblast growth factor receptor 2(IIIb) in mesenchymal-epithelial signalling during early organogenesis.
Collapse
Affiliation(s)
- L De Moerlooze
- Imperial Cancer Research Fund, Lincoln's Inn Fields, London WC2A 3PX, UK.
| | | | | | | | | | | |
Collapse
|
149
|
Cancilla B, Ford-Perriss MD, Bertram JF. Expression and localization of fibroblast growth factors and fibroblast growth factor receptors in the developing rat kidney. Kidney Int 1999; 56:2025-39. [PMID: 10594778 DOI: 10.1046/j.1523-1755.1999.00781.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED Expression and localization of fibroblast growth factors and fibroblast growth factor receptors in the developing rat kidney. BACKGROUND The permanent kidney, or metanephros, develops through a complex series of reciprocal inductive events and involves branching morphogenesis, tubulogenesis, angiogenesis, and tissue remodeling. Fibroblast growth factors (FGFs) are a family of growth and differentiation factors that have been implicated in metanephric development. FGFs exert their actions through tyrosine kinase receptors, FGFRs, which are encoded by four FGFR genes (FGFR1 through FGFR4). METHODS Reverse transcriptase-polymerase chain reaction was used to detect the expression of FGFs and FGFRs in rat metanephroi from embryonic day (E) 14 to E21. Nonradioactive in situ hybridization was used to localize FGF1 mRNA in E20 rat metanephroi, and immunohistochemistry was used to localize FGFRs in E15 and E20 rat metanephroi. RESULTS We detected the expression of mRNAs for FGF1 through FGF5, FGF7 through FGF10, and FGFR1 through FGFR4 (IIIb and IIIc splice variants) in rat metanephroi from E14 to E21. By in situ hybridization, FGF1 mRNA was detected in the nephrogenic zone, ureteric epithelium, and developing nephron elements. FGFR proteins were localized in a distinct pattern that altered with maturation. FGFR1 was widely distributed in developing metanephric epithelia and mesenchyme, but not in developing interstitium. FGFR2 was also widely distributed in nephron epithelia, particularly in proximal convoluted tubules, but was not detected in metanephric mesenchyme, mesenchymal condensates, or developing interstitium. FGFR3 was localized to mesenchymal condensates, nephron elements, and medullary interstitium but not proximal convoluted tubules. FGFR4 was localized mostly to maturing nephron structures and was not detected in nephrogenic mesenchyme, mesenchymal condensates, or developing interstitium. CONCLUSIONS These results indicate that FGFs and FGFRs are expressed in the developing rat metanephros from at least E14 and that they likely play important roles in metanephric development and maturation.
Collapse
MESH Headings
- Animals
- DNA Primers
- Female
- Fibroblast Growth Factor 1/analysis
- Fibroblast Growth Factor 1/genetics
- Fibroblast Growth Factor 2/analysis
- Fibroblast Growth Factor 2/genetics
- Gene Expression Regulation, Developmental
- Immunoenzyme Techniques
- In Situ Hybridization
- Nephrons/chemistry
- Nephrons/embryology
- Pregnancy
- Protein-Tyrosine Kinases
- RNA, Messenger/analysis
- Rats
- Rats, Sprague-Dawley
- Receptor Protein-Tyrosine Kinases/analysis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Fibroblast Growth Factor, Type 2
- Receptor, Fibroblast Growth Factor, Type 3
- Receptor, Fibroblast Growth Factor, Type 4
- Receptors, Fibroblast Growth Factor/analysis
- Receptors, Fibroblast Growth Factor/genetics
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- B Cancilla
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Australia
| | | | | |
Collapse
|
150
|
Lee SB, Huang K, Palmer R, Truong VB, Herzlinger D, Kolquist KA, Wong J, Paulding C, Yoon SK, Gerald W, Oliner JD, Haber DA. The Wilms tumor suppressor WT1 encodes a transcriptional activator of amphiregulin. Cell 1999; 98:663-73. [PMID: 10490105 DOI: 10.1016/s0092-8674(00)80053-7] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
WT1 encodes a zinc finger transcription factor implicated in kidney differentiation and tumorigenesis. In reporter assays, WT1 represses transcription from GC- and TC-rich promoters, but its physiological targets remain uncertain. We used hybridization to high-density oligonucleotide arrays to search for native genes whose expression is altered following inducible expression of WT1. The major target of WT1 was amphiregulin, a member of the epidermal growth factor family. The WT1(-KTS) isoform binds directly to the amphiregulin promoter, resulting in potent transcriptional activation. The in vivo expression profile of amphiregulin during fetal kidney development mirrors the highly specific pattern of WT1 itself, and recombinant Amphiregulin stimulates epithelial branching in organ cultures of embryonic mouse kidney. These observations suggest a model for WT1 as a transcriptional regulator during kidney differentiation.
Collapse
Affiliation(s)
- S B Lee
- Laboratory of Molecular Genetics, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|