101
|
Onai T, Yu JK, Blitz IL, Cho KWY, Holland LZ. Opposing Nodal/Vg1 and BMP signals mediate axial patterning in embryos of the basal chordate amphioxus. Dev Biol 2010; 344:377-89. [PMID: 20488174 PMCID: PMC4781670 DOI: 10.1016/j.ydbio.2010.05.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Revised: 05/10/2010] [Accepted: 05/11/2010] [Indexed: 12/12/2022]
Abstract
The basal chordate amphioxus resembles vertebrates in having a dorsal, hollow nerve cord, a notochord and somites. However, it lacks extensive gene duplications, and its embryos are small and gastrulate by simple invagination. Here we demonstrate that Nodal/Vg1 signaling acts from early cleavage through the gastrula stage to specify and maintain dorsal/anterior development while, starting at the early gastrula stage, BMP signaling promotes ventral/posterior identity. Knockdown and gain-of-function experiments show that these pathways act in opposition to one another. Signaling by these pathways is modulated by dorsally and/or anteriorly expressed genes including Chordin, Cerberus, and Blimp1. Overexpression and/or reporter assays in Xenopus demonstrate that the functions of these proteins are conserved between amphioxus and vertebrates. Thus, a fundamental genetic mechanism for axial patterning involving opposing Nodal and BMP signaling is present in amphioxus and probably also in the common ancestor of amphioxus and vertebrates or even earlier in deuterostome evolution.
Collapse
Affiliation(s)
- Takayuki Onai
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202 USA
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica,128 Academia Road, Sec., Nankang, Taipei 11529, Taiwan
| | - Ira L. Blitz
- Department of Developmental and Cell Biology, and Developmental Biology Center, University of California Irvine, Irvine CA 92697-2300
| | - Ken W. Y. Cho
- Department of Developmental and Cell Biology, and Developmental Biology Center, University of California Irvine, Irvine CA 92697-2300
| | - Linda Z. Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202 USA
| |
Collapse
|
102
|
Wang Y, Fu Y, Gao L, Zhu G, Liang J, Gao C, Huang B, Fenger U, Niehrs C, Chen YG, Wu W. Xenopus skip modulates Wnt/beta-catenin signaling and functions in neural crest induction. J Biol Chem 2010; 285:10890-901. [PMID: 20103590 PMCID: PMC2856295 DOI: 10.1074/jbc.m109.058347] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 12/30/2009] [Indexed: 11/06/2022] Open
Abstract
The beta-catenin-lymphoid enhancer factor (LEF) protein complex is the key mediator of canonical Wnt signaling and initiates target gene transcription upon ligand stimulation. In addition to beta-catenin and LEF themselves, many other proteins have been identified as necessary cofactors. Here we report that the evolutionally conserved splicing factor and transcriptional co-regulator, SKIP/SNW/NcoA62, forms a ternary complex with LEF1 and HDAC1 and mediates the repression of target genes. Loss-of-function studies showed that SKIP is obligatory for Wnt signaling-induced target gene transactivation, suggesting an important role of SKIP in the canonical Wnt signaling. Consistent with its involvement in beta-catenin signaling, the C-terminally truncated forms of SKIP are able to stabilize beta-catenin and enhance Wnt signaling. In Xenopus embryos, both overexpression and knockdown of Skip lead to reduced neural crest induction, consistent with down-regulated Wnt signaling in both cases. Our results indicate that SKIP is a novel component of the beta-catenin transcriptional complex.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Blotting, Western
- Chromatin Immunoprecipitation
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/metabolism
- Gene Expression Regulation, Developmental
- Gene Library
- HeLa Cells
- Humans
- Immunoenzyme Techniques
- Luciferases/metabolism
- Mice
- Neural Crest/cytology
- Neural Crest/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Wnt1 Protein/genetics
- Wnt1 Protein/metabolism
- Xenopus laevis
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Ying Wang
- From the School of Life Sciences
- Protein Science Laboratory of the Ministry of Education, and
| | - Yu Fu
- From the School of Life Sciences
- Protein Science Laboratory of the Ministry of Education, and
| | - Lei Gao
- From the School of Life Sciences
- Protein Science Laboratory of the Ministry of Education, and
| | - Guixin Zhu
- From the School of Life Sciences
- Protein Science Laboratory of the Ministry of Education, and
| | - Juan Liang
- From the School of Life Sciences
- Protein Science Laboratory of the Ministry of Education, and
| | - Chan Gao
- From the School of Life Sciences
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China and
| | - Binlu Huang
- From the School of Life Sciences
- Protein Science Laboratory of the Ministry of Education, and
| | - Ursula Fenger
- the Division of Molecular Embryology, German Cancer Research Center, Im Neuenheimer Feld 581, D-69120 Heidelberg, Germany
| | - Christof Niehrs
- the Division of Molecular Embryology, German Cancer Research Center, Im Neuenheimer Feld 581, D-69120 Heidelberg, Germany
| | - Ye-Guang Chen
- From the School of Life Sciences
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China and
| | - Wei Wu
- From the School of Life Sciences
- Protein Science Laboratory of the Ministry of Education, and
| |
Collapse
|
103
|
Harvey SA, Tümpel S, Dubrulle J, Schier AF, Smith JC. no tail integrates two modes of mesoderm induction. Development 2010; 137:1127-35. [PMID: 20215349 PMCID: PMC2835328 DOI: 10.1242/dev.046318] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2010] [Indexed: 11/20/2022]
Abstract
During early zebrafish development the nodal signalling pathway patterns the embryo into three germ layers, in part by inducing the expression of no tail (ntl), which is essential for correct mesoderm formation. When nodal signalling is inhibited ntl fails to be expressed in the dorsal margin, but ventral ntl expression is unaffected. These observations indicate that ntl transcription is under both nodal-dependent and nodal-independent regulation. Consistent with these observations and with a role for ntl in mesoderm formation, some somites form within the tail region of embryos lacking nodal signalling. In an effort to understand how ntl is regulated and thus how mesoderm forms, we have mapped the elements responsible for nodal-dependent and nodal-independent expression of ntl in the margin of the embryo. Our work demonstrates that expression of ntl in the margin is the consequence of two separate enhancers, which act to mediate different mechanisms of mesoderm formation. One of these enhancers responds to nodal signalling, and the other to Wnt and BMP signalling. We demonstrate that the nodal-independent regulation of ntl is essential for tail formation. Misexpression of Wnt and BMP ligands can induce the formation of an ectopic tail, which contains somites, in embryos devoid of nodal signalling, and this tail formation is dependent on ntl function. Similarly, nodal-independent tail somite formation requires ntl. At later stages in development ntl is required for notochord formation, and our analysis has also led to the identification of the enhancer required for ntl expression in the developing notochord.
Collapse
Affiliation(s)
- Steven A. Harvey
- Wellcome Trust and Cancer Research UK, Gurdon Institute and Department of Zoology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Stefan Tümpel
- Wellcome Trust and Cancer Research UK, Gurdon Institute and Department of Zoology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Julien Dubrulle
- Department of Molecular and Cellular Biology, Centre for Brain Science, Broad Institute, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Alexander F. Schier
- Department of Molecular and Cellular Biology, Centre for Brain Science, Broad Institute, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - James C. Smith
- Wellcome Trust and Cancer Research UK, Gurdon Institute and Department of Zoology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA
| |
Collapse
|
104
|
Cell adhesion glycoprotein vitronectin during Xenopus laevis embryogenesis. Gene Expr Patterns 2010; 10:207-13. [PMID: 20302971 DOI: 10.1016/j.gep.2010.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 03/05/2010] [Accepted: 03/10/2010] [Indexed: 11/22/2022]
Abstract
Vitronectin (vn) is a cell-adhesive glycoprotein present in blood and extracellular matrix of all vertebrates. In the present study we reported the cDNA cloning of Xenopus laevisvitronectin and its spatial and temporal expression pattern during the embryonic development of this important model organism. The deduced amino acid sequence of Xenopus laevis vn showed 49%, 47% and 43% identity with human, chicken and zebrafish orthologs, respectively, whereas the comparison with Xenopus tropicalis vn presented 85% identity. The structural organization consisting of a somatomedin B domain and two hemopexin-like domains was similar to higher vertebrate vitronectins. The vn transcripts were detected from stage 28 onward. At tadpole stages, vn is expressed in heart, gut derivatives and in the notochord. The protein was detected in heart, liver, foregut, pronephros and notochord at stages 43 and 47 of Xenopus embryos. Our results suggest that vitronectin is developmentally regulated and could participate in embryo organogenesis.
Collapse
|
105
|
Goda T, Takagi C, Ueno N. Xenopus Rnd1 and Rnd3 GTP-binding proteins are expressed under the control of segmentation clock and required for somite formation. Dev Dyn 2010; 238:2867-76. [PMID: 19795516 DOI: 10.1002/dvdy.22099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The process of segmentation in vertebrates is described by a clock and wavefront model consisting of a Notch signal and an fibroblast growth factor-8 (FGF8) gradient, respectively. To further investigate the segmentation process, we screened gene expression profiles for downstream targets of the segmentation clock. The Rnd1 and Rnd3 GTP-binding proteins comprise a subgroup of the Rho GTPase family that show a specific expression pattern similar to the Notch signal component ESR5, suggesting an association between Rnd1/3 and the segmentation clock. Rnd1/3 expression patterns are disrupted by overexpression of dominant-negative or active forms of Notch signaling genes, and responds to the FGF inhibitor SU5402 by a posterior shift analogous to other segmentation-related genes, suggesting that Rnd1/3 expressions are regulated by the segmentation clock machinery. We also show that antisense morpholino oligonucleotides to Rnd1/3 inhibit somite segmentation and differentiation in Xenopus embryos. These results suggest that Rnd1/3 are required for Xenopus somitogenesis.
Collapse
Affiliation(s)
- Tadahiro Goda
- Division of Morphogenesis, National Institute for Basic Biology, Myodaiji, Okazaki, Japan.
| | | | | |
Collapse
|
106
|
Duboc V, Lapraz F, Saudemont A, Bessodes N, Mekpoh F, Haillot E, Quirin M, Lepage T. Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo. Development 2010; 137:223-35. [PMID: 20040489 DOI: 10.1242/dev.042531] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nodal factors play fundamental roles in induction and patterning of the mesoderm and endoderm in vertebrates, but whether this reflects an ancient role or one that evolved recently in vertebrates is not known. Here, we report that in addition to its primary role in patterning the ectoderm, sea urchin Nodal is crucial for patterning of the endoderm and skeletogenic mesoderm through the regulation of the expression of key transcription factors and signalling molecules, including BMP2/4 and FGFA. In addition, we uncovered an essential role for Nodal and BMP2/4 in the formation and patterning of the non-skeletogenic mesoderm. By comparing the effects of misexpressing Nodal or an activated Nodal receptor in clones of cells, we provide evidence that Nodal acts over a long range in the endomesoderm and that its effects on the blastocoelar cell precursors are likely to be direct. The activity of Nodal and BMP2/4 are antagonistic, and although bmp2/4 is transcribed in the ventral ectoderm downstream of Nodal, the BMP2/4 ligand is translocated to the dorsal side, where it activates signalling in the dorsal primary mesenchyme cells, the dorsal endoderm and in pigment cell precursors. Therefore, correct patterning of the endomesoderm depends on a balance between ventralising Nodal signals and dorsalising BMP2/4 signals. These experiments confirm that Nodal is a key regulator of dorsal-ventral polarity in the sea urchin and support the idea that the ventral ectoderm, like the Spemann organiser in vertebrates, is an organising centre that is required for patterning all three germ layers of the embryo.
Collapse
Affiliation(s)
- Véronique Duboc
- UPMC Univ Paris 06-CNRS, UMR 7009 Biologie du Développement Observatoire Océanologique, 06230 Villefranche-sur-mer, France
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Cao Y, Oswald F, Wacker SA, Bundschu K, Knöchel W. Reversal of Xenopus Oct25 function by disruption of the POU domain structure. J Biol Chem 2010; 285:8408-21. [PMID: 20064932 DOI: 10.1074/jbc.m109.064386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Xenopus Oct25 is a POU family subclass V (POU-V) transcription factor with a distinct domain structure. To investigate the contribution of different domains to the function of Oct25, we have performed gain of function analyses. Deletions of the N- or C-terminal regions and of the Hox domain (except its nuclear localization signal) result in mutants being indistinguishable from the wild type protein in the suppression of genes promoting germ layer formation. Deletion of the complete POU domain generates a mutant that has no effect on embryogenesis. However, disruption of the alpha-helical structures in the POU domain, even by a single amino acid mutation, causes reversal of protein function. Overexpression of such mutants leads to dorsalization of embryos and formation of secondary axial structures. The underlying mechanism is an enhanced transcription of genes coding for antagonists of the ligands for ventralizing bone morphogenetic protein and Wnt pathways. Corresponding deletion mutants of Xenopus Oct60, Oct91, or mouse Oct4 also exhibit such a dominant-negative effect. Therefore, our results reveal that the integrity of the POU domain is crucial for the function of POU-V transcription factors in the regulation of genes that promote germ layer formation.
Collapse
Affiliation(s)
- Ying Cao
- Institute of Biochemistry, University of Ulm, D-89081 Ulm, Germany
| | | | | | | | | |
Collapse
|
108
|
Luxardi G, Marchal L, Thomé V, Kodjabachian L. Distinct Xenopus Nodal ligands sequentially induce mesendoderm and control gastrulation movements in parallel to the Wnt/PCP pathway. Development 2010; 137:417-26. [PMID: 20056679 DOI: 10.1242/dev.039735] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vertebrate body plan is established in two major steps. First, mesendoderm induction singles out prospective endoderm, mesoderm and ectoderm progenitors. Second, these progenitors are spatially rearranged during gastrulation through numerous and complex movements to give rise to an embryo comprising three concentric germ layers, polarised along dorsoventral, anteroposterior and left-right axes. Although much is known about the molecular mechanisms of mesendoderm induction, signals controlling gastrulation movements are only starting to be revealed. In vertebrates, Nodal signalling is required to induce the mesendoderm, which has precluded an analysis of its potential role during the later process of gastrulation. Using time-dependent inhibition, we show that in Xenopus, Nodal signalling plays sequential roles in mesendoderm induction and gastrulation movements. Nodal activity is necessary for convergent extension in axial mesoderm and for head mesoderm migration. Using morpholino-mediated knockdown, we found that the Nodal ligands Xnr5 and Xnr6 are together required for mesendoderm induction, whereas Xnr1 and Xnr2 act later to control gastrulation movements. This control is operated via the direct regulation of key movement-effector genes, such as papc, has2 and pdgfralpha. Interestingly, however, Nodal does not appear to mobilise the Wnt/PCP pathway, which is known to control cell and tissue polarity. This study opens the way to the analysis of the genetic programme and cell behaviours that are controlled by Nodal signalling during vertebrate gastrulation. It also provides a good example of the sub-functionalisation that results from the expansion of gene families in evolution.
Collapse
Affiliation(s)
- Guillaume Luxardi
- Institut de Biologie du Développement de Marseille Luminy, UMR 6216, CNRS-Université de la Méditerranée, Case 907, 13288 Marseille Cedex 09, France
| | | | | | | |
Collapse
|
109
|
|
110
|
Siegel D, Schuff M, Oswald F, Cao Y, Knöchel W. Functional dissection of XDppa2/4 structural domains in Xenopus development. Mech Dev 2009; 126:974-89. [DOI: 10.1016/j.mod.2009.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 09/13/2009] [Accepted: 09/15/2009] [Indexed: 10/20/2022]
|
111
|
Foley A. Cardiac lineage selection: integrating biological complexity into computational models. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2009; 1:334-347. [DOI: 10.1002/wsbm.43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ann Foley
- Greenberg Division of Cardiology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
112
|
Seuntjens E, Umans L, Zwijsen A, Sampaolesi M, Verfaillie CM, Huylebroeck D. Transforming Growth Factor type beta and Smad family signaling in stem cell function. Cytokine Growth Factor Rev 2009; 20:449-58. [PMID: 19892581 DOI: 10.1016/j.cytogfr.2009.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ligands of the Transforming Growth Factor type beta (TGFbeta) family exert multiple and sometimes opposite effects on most cell types in vivo depending on cellular context, which mainly includes the stage of the target cell, the local environment of this cell or niche, and the identity and the dosage of the ligand. Significant progress has been made in the molecular dissection of the regulation of the activity of the ligands and their intracellular signal transduction pathways, including via the canonical Smad pathway where Smads interact with many transcription factors. This knowledge together with results from functional studies within the embryology and stem cell research fields is giving us insight in the role of individual ligands and other components of this signaling system and where and how it regulates many properties of embryonic and adult stem/progenitor cells, which is anticipated to contribute to successful cell-based therapy in the future. We review and discuss recent progress on the effects of Nodal/Activin and Bone Morphogenetic Proteins (BMPs) and their canonical signaling in cells with stem cell properties. We focus on embryonic stem cells and their maintenance and pluripotency, and conversion into selected cell types of neuroectoderm, mesoderm and endoderm, on induced pluripotent cells and on neurogenic cells in the adult brain.
Collapse
Affiliation(s)
- Eve Seuntjens
- Laboratory of Molecular Biology (Celgen) of the Center for Human Genetics, University of Leuven, Flanders Institute of Biotechnology (VIB), Campus Gasthuisberg, B-3000 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
113
|
Samuel LJ, Latinkić BV. Early activation of FGF and nodal pathways mediates cardiac specification independently of Wnt/beta-catenin signaling. PLoS One 2009; 4:e7650. [PMID: 19862329 PMCID: PMC2763344 DOI: 10.1371/journal.pone.0007650] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 10/07/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cardiac induction, the first step in heart development in vertebrate embryos, is thought to be initiated by anterior endoderm during gastrulation, but what the signals are and how they act is unknown. Several signaling pathways, including FGF, Nodal, BMP and Wnt have been implicated in cardiac specification, in both gain- and loss-of-function experiments. However, as these pathways regulate germ layer formation and patterning, their specific roles in cardiac induction have been difficult to define. METHODOLOGY/PRINCIPAL FINDINGS To investigate the mechanisms of cardiac induction directly we devised an assay based on conjugates of anterior endoderm from early gastrula stage Xenopus embryos as the inducing tissue and pluripotent ectodermal explants as the responding tissue. We show that the anterior endoderm produces a specific signal, as skeletal muscle is not induced. Cardiac inducing signal needs up to two hours of interaction with the responding tissue to produce an effect. While we found that the BMP pathway was not necessary, our results demonstrate that the FGF and Nodal pathways are essential for cardiogenesis. They were required only during the first hour of cardiogenesis, while sustained activation of ERK was required for at least four hours. Our results also show that transient early activation of the Wnt/beta-catenin pathway has no effect on cardiogenesis, while later activation of the pathway antagonizes cardiac differentiation. CONCLUSIONS/SIGNIFICANCE We have described an assay for investigating the mechanisms of cardiac induction by anterior endoderm. The assay was used to provide evidence for a direct, early and transient requirement of FGF and Nodal pathways. In addition, we demonstrate that Wnt/beta-catenin pathway plays no direct role in vertebrate cardiac specification, but needs to be suppressed just prior to differentiation.
Collapse
Affiliation(s)
- Lee J. Samuel
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Branko V. Latinkić
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| |
Collapse
|
114
|
Rogers C, Moody SA, Casey E. Neural induction and factors that stabilize a neural fate. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2009; 87:249-62. [PMID: 19750523 PMCID: PMC2756055 DOI: 10.1002/bdrc.20157] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The neural ectoderm of vertebrates forms when the bone morphogenetic protein (BMP) signaling pathway is suppressed. Herein, we review the molecules that directly antagonize extracellular BMP and the signaling pathways that further contribute to reduce BMP activity in the neural ectoderm. Downstream of neural induction, a large number of "neural fate stabilizing" (NFS) transcription factors are expressed in the presumptive neural ectoderm, developing neural tube and ultimately in neural stem cells. Herein, we review what is known about their activities during normal development to maintain a neural fate and regulate neural differentiation. Further elucidation of how the NFS genes interact to regulate neural specification and differentiation should ultimately prove useful for regulating the expansion and differentiation of neural stem and progenitor cells.
Collapse
Affiliation(s)
| | - Sally A. Moody
- Department of Anatomy and Regenerative Biology, The George Washington University
| | - Elena Casey
- Department of Biology, Georgetown University
| |
Collapse
|
115
|
Zhang C, Klymkowsky MW. Unexpected functional redundancy between Twist and Slug (Snail2) and their feedback regulation of NF-kappaB via Nodal and Cerberus. Dev Biol 2009; 331:340-9. [PMID: 19389392 PMCID: PMC2747320 DOI: 10.1016/j.ydbio.2009.04.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 04/08/2009] [Accepted: 04/09/2009] [Indexed: 10/20/2022]
Abstract
A NF-kappaB-Twist-Snail network controls axis and mesoderm formation in Drosophila. Using translation-blocking morpholinos and hormone-regulated proteins, we demonstrate the presence of an analogous network in the early Xenopus embryo. Loss of twist (twist1) function leads to a reduction of mesoderm and neural crest markers, an increase in apoptosis, and a decrease in snail1 (snail) and snail2 (slug) mRNA levels. Injection of snail2 mRNA rescues twist's loss of function phenotypes and visa versa. In the early embryo NF-kappaB/RelA regulates twist, snail2, and snail1 mRNA levels; similarly Nodal/Smad2 regulate twist, snail2, snail1, and relA RNA levels. Both Twist and Snail2 negatively regulate levels of cerberus RNA, which encodes a Nodal, bone morphogenic protein (BMP), and Wnt inhibitor. Cerberus's anti-Nodal activity inhibits NF-kappaB activity and decreases relA RNA levels. These results reveal both conserved and unexpected regulatory interactions at the core of a vertebrate's mesodermal specification network.
Collapse
Affiliation(s)
| | - Michael W. Klymkowsky
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, CO 80309-0347, U.S.A
| |
Collapse
|
116
|
Zhu H, Doherty JR, Kuliyev E, Mead PE. CDK9/cyclin complexes modulate endoderm induction by direct interaction with Mix.3/mixer. Dev Dyn 2009; 238:1346-57. [PMID: 19347956 PMCID: PMC2832930 DOI: 10.1002/dvdy.21920] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Mix-related homeodomain proteins are involved in endoderm formation in the early vertebrate embryo. We used a yeast two-hybrid screen to identify proteins that interact with Mix.3/mixer to regulate endoderm induction. We demonstrate that cyclin-dependent kinase 9 (CDK9) interacts with the carboxyl terminal domain of Mix.3. CDK9 is the catalytic subunit of the PTEF-b transcription elongation complex that phosphorylates the C-terminal domain of RNA polymerase II to promote efficient elongation of nascent transcripts. Using whole embryo transcription reporter and animal pole explant assays, we show that Mix.3 activity is regulated by CDK9/cyclin complexes. Co-expression of cyclin T2 and cyclin K had different effects on Mix.3 transcriptional activity and endoderm induction. Our data suggest that binding of CDK9, and the recruitment of different cyclin partners, can modulate the endoderm-inducing activity of Mix.3 during embryonic development. Developmental Dynamics 238:1346-1357, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Haiqing Zhu
- Department of Pathology, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - Joanne R. Doherty
- Department of Pathology, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - Emin Kuliyev
- Department of Pathology, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - Paul E. Mead
- Department of Pathology, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| |
Collapse
|
117
|
Middleton AM, King JR, Loose M. Bistability in a model of mesoderm and anterior mesendoderm specification in Xenopus laevis. J Theor Biol 2009; 260:41-55. [PMID: 19490918 DOI: 10.1016/j.jtbi.2009.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 04/10/2009] [Accepted: 05/16/2009] [Indexed: 11/20/2022]
Abstract
In this paper we develop a model of mesendoderm specification in Xenopus laevis based on an existing gene regulation network. The mesendoderm is a population of cells that may contribute to either the mesoderm or endoderm. The model that we develop encompasses the time evolution of transcription factor concentrations in a single cell and is shown to have stable steady states that correspond to mesoderm and anterior mesendodermal cell types, but not endoderm (except in cells where Goosecoid expression is inhibited). Both in vitro and in vivo versions of the model are developed and analysed, the former indicating how cell fate is determined in large part by the concentration of Activin administered to a cell, with the model results comparing favourably with current quantitative experimental data. A numerical investigation of the in vivo model suggests that cell fate is determined largely by a VegT and beta-Catenin pre-pattern, subsequently being reinforced by Nodal. We argue that this sensitivity of the model to a VegT and beta-Catenin pre-pattern indicates that a key VegT self-limiting mechanism (for which there is experimental evidence) is absent from the model. Furthermore, we find that the lack of a steady state corresponding to endoderm is entirely consistent with current in vivo data, and that the in vivo model corresponds to mesendoderm specification on the dorsal, but not the ventral, side of the embryo.
Collapse
|
118
|
The miR-430/427/302 family controls mesendodermal fate specification via species-specific target selection. Dev Cell 2009; 16:517-27. [PMID: 19386261 DOI: 10.1016/j.devcel.2009.02.007] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 12/18/2008] [Accepted: 02/06/2009] [Indexed: 11/22/2022]
Abstract
The role of microRNAs in embryonic cell fate specification is largely unknown. In vertebrates, the miR-430/427/302 family shows a unique expression signature and is exclusively expressed during early embryogenesis. Here, we comparatively address the embryonic function of miR-302 in human embryonic stem cells (hESCs) and its ortholog miR-427 in Xenopus laevis. Interestingly, we found that this miRNA family displays species-specific target selection among ligands of the Nodal pathway, with a striking conservation of the inhibitors, Lefties, but differential targeting of the activators, Nodals. The Nodal pathway plays a crucial role in germ layer specification. Accordingly, by gain and loss of function experiments in hESCs, we show that miR-302 promotes the mesendodermal lineage at the expense of neuroectoderm formation. Similarly, depletion of miR-427 in Xenopus embryos hinders the organizer formation and leads to severe dorsal mesodermal patterning defects. These findings suggest a crucial role for the miR-430/427/302 family in vertebrate embryogenesis by controlling germ layer specification.
Collapse
|
119
|
Takeuchi M, Takahashi M, Okabe M, Aizawa S. Germ layer patterning in bichir and lamprey; an insight into its evolution in vertebrates. Dev Biol 2009; 332:90-102. [PMID: 19433081 DOI: 10.1016/j.ydbio.2009.05.543] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 04/21/2009] [Accepted: 05/05/2009] [Indexed: 11/30/2022]
Abstract
Amphibian holoblastic cleavage in which all blastomeres contribute to any one of the three primary germ layers has been widely thought to be a developmental pattern in the stem lineage of vertebrates, and meroblastic cleavage to have evolved independently in each vertebrate lineage. In extant primitive vertebrates, agnathan lamprey and basal bony fishes also undergo holoblastic cleavage, and their vegetal blastomeres have been generally thought to contribute to embryonic endoderm. However, the present marker analyses in basal ray-finned fish bichir and agnathan lamprey embryos indicated that their mesoderm and endoderm develop in the equatorial marginal zone, and their vegetal cell mass is extraembryonic nutritive yolk cells, having non-cell autonomous meso-endoderm inducing activity. Eomesodermin (eomes), but not VegT, orthologs are expressed maternally in these animals, suggesting that VegT is a maternal factor for endoderm differentiation only in amphibian. The study raises the viewpoint that the lamprey/bichir type holoblastic development would have been ancestral to extant vertebrates and retained in their stem lineage; amphibian-type holoblastic development would have been acquired secondarily, accompanied by the exploitation of new molecular machinery such as maternal VegT.
Collapse
Affiliation(s)
- Masaki Takeuchi
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology, RIKEN Kobe, Hyogo 650-0047, Japan
| | | | | | | |
Collapse
|
120
|
Barton CE, Tahinci E, Barbieri CE, Johnson KN, Hanson AJ, Jernigan KK, Chen TW, Lee E, Pietenpol JA. DeltaNp63 antagonizes p53 to regulate mesoderm induction in Xenopus laevis. Dev Biol 2009; 329:130-9. [PMID: 19272371 PMCID: PMC2690611 DOI: 10.1016/j.ydbio.2009.02.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 02/25/2009] [Accepted: 02/25/2009] [Indexed: 01/20/2023]
Abstract
p63, a homolog of the tumor suppressor p53, is critical for the development and maintenance of complex epithelia. The developmentally regulated p63 isoform, DeltaNp63, can act as a transcriptional repressor, but the link between the transcriptional functions of p63 and its biological roles is unclear. Based on our initial finding that the mesoderm-inducing factor activin A is suppressed by DeltaNp63 in human keratinocytes, we investigated the role of DeltaNp63 in regulating mesoderm induction during early Xenopus laevis development. We find that down-regulation of DeltaNp63 by morpholino injection in the early Xenopus embryo potentiates mesoderm formation whereas ectopic expression of DeltaNp63 inhibits mesoderm formation. Furthermore, we show that mesodermal induction after down-regulation of DeltaNp63 is dependent on p53. We propose that a key function for p63 in defining a squamous epithelial phenotype is to actively suppress mesodermal cell fates during early development. Collectively, we show that there is a distinct requirement for different p53 family members during the development of both mesodermal and ectodermal tissues. These findings have implications for the role of p63 and p53 in both development and tumorigenesis of human epithelia.
Collapse
Affiliation(s)
- Christopher E Barton
- Department of Biochemistry, Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Borowiak M, Maehr R, Chen S, Chen AE, Tang W, Fox JO, Schreiber SL, Melton DA. Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell 2009; 4:348-58. [PMID: 19341624 PMCID: PMC4564293 DOI: 10.1016/j.stem.2009.01.014] [Citation(s) in RCA: 326] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/02/2008] [Accepted: 01/16/2009] [Indexed: 12/14/2022]
Abstract
An essential step for therapeutic and research applications of stem cells is the ability to differentiate them into specific cell types. Endodermal cell derivatives, including lung, liver, and pancreas, are of interest for regenerative medicine, but efforts to produce these cells have been met with only modest success. In a screen of 4000 compounds, two cell-permeable small molecules were indentified that direct differentiation of ESCs into the endodermal lineage. These compounds induce nearly 80% of ESCs to form definitive endoderm, a higher efficiency than that achieved by Activin A or Nodal, commonly used protein inducers of endoderm. The chemically induced endoderm expresses multiple endodermal markers, can participate in normal development when injected into developing embryos, and can form pancreatic progenitors. The application of small molecules to differentiate mouse and human ESCs into endoderm represents a step toward achieving a reproducible and efficient production of desired ESC derivatives.
Collapse
Affiliation(s)
- Malgorzata Borowiak
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - René Maehr
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Shuibing Chen
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Alice E. Chen
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Weiping Tang
- Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Julia O. Fox
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Stuart L. Schreiber
- Howard Hughes Medical Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
- Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Douglas A. Melton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
122
|
MicroRNA in cell differentiation and development. ACTA ACUST UNITED AC 2009; 52:205-11. [PMID: 19294345 DOI: 10.1007/s11427-009-0040-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 11/28/2008] [Indexed: 12/21/2022]
Abstract
The regulation of gene expression by microRNAs (miRNAs) is a recently discovered pattern of gene regulation in animals and plants. MiRNAs have been implicated in various aspects of animal development and cell differentiation, such as early embryonic development, neuronal development, muscle development, and lymphocyte development, by the analysis of genetic deletions of individual miRNAs in mammals. These studies show that miRNAs are key regulators in animal development and are potential causes of human diseases. Here we review some recent discoveries about the functions of miRNAs in cell differentiation and development.
Collapse
|
123
|
Cha SW, Lee JW, Hwang YS, Chae JP, Park KM, Cho HJ, Kim DS, Bae YC, Park MJ. Spatiotemporal regulation of fibroblast growth factor signal blocking for endoderm formation in Xenopus laevis. Exp Mol Med 2009; 40:550-7. [PMID: 18985013 DOI: 10.3858/emm.2008.40.5.550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have previously shown that the inhibition of fibroblast growth factor (FGF) signaling induced endodermal gene expression in the animal cap and caused the expansion of the endodermal mass in Xenopus embryos. However, we still do not know whether or not the alteration of FGF signaling controls embryonic cell fate, or when FGF signal blocking is required for endoderm formation in Xenopus. Here, we show that FGF signal blocking in embryonic cells causes their descendants to move into the endodermal region and to express endodermal genes. It is also interesting that blocking FGF signaling between fertilization and embryonic stage 10.5 promotes endoderm formation, but persistent FGF signaling blocking after stage 10.5 restricts endoderm formation and differentiation.
Collapse
Affiliation(s)
- Sang-wook Cha
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu 700-412, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Abstract
Transforming growth factor-beta (TGF-beta)/bone morphogenic protein (BMP) signaling is involved in the vast majority of cellular processes and is fundamentally important during the entire life of all metazoans. Deregulation of TGF-beta/BMP activity almost invariably leads to developmental defects and/or diseases, including cancer. The proper functioning of the TGF-beta/BMP pathway depends on its constitutive and extensive communication with other signaling pathways, leading to synergistic or antagonistic effects and eventually desirable biological outcomes. The nature of such signaling cross-talk is overwhelmingly complex and highly context-dependent. Here we review the different modes of cross-talk between TGF-beta/BMP and the signaling pathways of Mitogen-activated protein kinase, phosphatidylinositol-3 kinase/Akt, Wnt, Hedgehog, Notch, and the interleukin/interferon-gamma/tumor necrosis factor-alpha cytokines, with an emphasis on the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Xing Guo
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
125
|
Kerr TC, Cuykendall TN, Luettjohann LC, Houston DW. Maternal Tgif1 regulates nodal gene expression in Xenopus. Dev Dyn 2008; 237:2862-73. [PMID: 18816846 DOI: 10.1002/dvdy.21707] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In Xenopus, the maternal transcription factor VegT is necessary and sufficient to initiate the expression of nodal-related genes, which are central to many aspects of early development. However, little is known about regulation of VegT activity. Using maternal loss-of-function experiments, we show that the maternal homeoprotein, Tgif1, antagonizes VegT and plays a central role in anteroposterior patterning by negatively regulating a subset of nodal-related genes. Depletion of Tgif1 causes the anteriorization of embryos and the up-regulation of nodal paralogues nr5 and nr6. Furthermore, Tgif1 inhibits activation of nr5 by VegT in a manner that requires a C-terminal Sin3 corepressor-interacting domain. Tgif1 has been implicated in the transcriptional corepression of transforming growth factor-beta (TGFbeta) and retinoid signaling. However, we show that Tgif1 does not inhibit these pathways in early development. These results identify an essential role for Tgif1 in the control of nodal expression and provide insight into Tgif1 function and mechanisms controlling VegT activity.
Collapse
Affiliation(s)
- Tyler C Kerr
- University of Iowa, Department of Biology, Iowa City, Iowa 52246-1324, USA
| | | | | | | |
Collapse
|
126
|
Cao Y, Siegel D, Oswald F, Knöchel W. Oct25 represses transcription of nodal/activin target genes by interaction with signal transducers during Xenopus gastrulation. J Biol Chem 2008; 283:34168-77. [PMID: 18922797 DOI: 10.1074/jbc.m803532200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The balance between differentiation signals and signals maintaining the undifferentiated state of embryonic cells ensures proper formation of germ layers. The nodal/activin pathway represents one of the major signaling chains responsible for the differentiation of embryonic cells into mesodermal and endodermal germ layers, while Oct4 is one of the major players in the maintenance of an undifferentiated state. Here we show that Oct25, an Oct4 homologue in Xenopus, antagonizes the activity of nodal/activin signaling by inhibiting the transcription of its target genes, Gsc and Mix2. The inhibitory effect is achieved by forming repression complexes on the promoters of Gsc and Mix2 between Oct25 and the signal transducers of the nodal/activin pathway, WBSCR11, FAST1, and Smad2. We have analyzed the significance of the Oct binding site for its inhibitory effect within the Gsc promoter. Albeit VP16-Oct25 fusion protein demonstrated a stimulating effect and EVE-Oct25 revealed a repression effect on an artificial reporter that is composed of eight repeats of Oct binding motifs, both fusions, like wild-type Oct25, inhibited mesendoderm formation and the activity of Gsc and Mix2 promoters. These results suggest that the regulatory effect of Oct25 on the expression of Gsc and Mix2 is mediated by specific protein/protein interactions. Furthermore, we demonstrate that histone deacetylase activities are not required for the inhibitory effect of Oct25. Our results provide a novel view in that Oct25 controls the nodal/activin pathway and thus maintains the undifferentiated state of embryonic cells in preventing them from premature differentiation.
Collapse
Affiliation(s)
- Ying Cao
- Institute of Biochemistry, University of Ulm, Ulm, Germany
| | | | | | | |
Collapse
|
127
|
Choi SC, Kim GH, Lee SJ, Park E, Yeo CY, Han JK. Regulation of activin/nodal signaling by Rap2-directed receptor trafficking. Dev Cell 2008; 15:49-61. [PMID: 18606140 DOI: 10.1016/j.devcel.2008.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 03/10/2008] [Accepted: 05/12/2008] [Indexed: 10/21/2022]
Abstract
We show that Rap2, a member of the Ras GTPase family, positively regulates Activin/Nodal signaling activity by controlling the trafficking of its receptors. In the absence of ligand activation, Rap2 directs internalized Activin/Nodal receptors into a recycling pathway, thereby preventing their degradation and maintaining their levels on the cell surface. Upon ligand activation, Rap2 no longer promotes receptor recycling but delays its turnover. In both cases, Rap2 contributes to upregulation of signaling activity by antagonizing Smad7. In addition, we found that the efficiency of Activin/Nodal receptor recycling is different between dorsal and ventral halves of Xenopus early embryo, which results from the asymmetric expression of Rap2 and Smad7. Consequently, they regulate cell responsiveness to ligands and the spatiotemporally dynamic activation of Smad2 along the dorsoventral axis of the embryo. Therefore, these findings suggest a molecular basis for the regulation of signaling activity and embryonic patterning by Activin/Nodal receptor trafficking.
Collapse
Affiliation(s)
- Sun-Cheol Choi
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, San31, Hyoja-dong, Pohang, Kyungbuk 790-784, Korea
| | | | | | | | | | | |
Collapse
|
128
|
Wills A, Dickinson K, Khokha M, Baker JC. Bmp signaling is necessary and sufficient for ventrolateral endoderm specification in Xenopus. Dev Dyn 2008; 237:2177-86. [PMID: 18651654 PMCID: PMC4497515 DOI: 10.1002/dvdy.21631] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Here we show that Bmp signaling is necessary and sufficient for the specification of ventral endoderm in Xenopus embryos. Overexpression of Bmp4 in ectoderm induces markers of endoderm, including Sox17beta, Mixer, and VegT, but cannot induce the expression of the dorsoanterior markers, Xhex and Cerberus. Furthermore, knockdown approaches using overexpression of Bmp antagonists and morpholinos designed against Bmp4, Bmp2, and Bmp7 demonstrate that Bmp signaling is critical for ventral, but not dorsoanterior endoderm formation. This activity is not simply a result of embryonic dorsalization as markers for dorsal endoderm are not expanded. We further show that endodermal cells of either ventral or dorsal character do not form when both Wnt and Bmp signals are abolished. Overall, this report strongly suggests that Bmp plays an essential role in ventral endoderm specification.
Collapse
Affiliation(s)
- Andrea Wills
- Department of Molecular and Cellular Biology, University of California, Berkeley, California, USA
| | | | | | | |
Collapse
|
129
|
Luque ME, Crespo PM, Mónaco ME, Aybar MJ, Daniotti JL, Sánchez SS. Cloning and functional characterization of two key enzymes of glycosphingolipid biosynthesis in the amphibian Xenopus laevis. Dev Dyn 2008; 237:112-23. [PMID: 18095347 DOI: 10.1002/dvdy.21406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Gangliosides are a subfamily of complex glycosphingolipids (GSLs) with important roles in many biological processes. In this study, we report the cDNA cloning, functional characterization, and the spatial and temporal expression of Xlcgt and Xlgd3 synthase during Xenopus laevis development. Xlcgt was expressed both maternally and zigotically persisting at least until stage 35. Maternal Xlgd3 synthase mRNA could not be detected and showed a steady-state expression from gastrula to late tailbud stage. Xlcgt is mainly present in involuted paraxial mesoderm, neural folds, and their derivatives. Xlgd3 synthase transcripts were detected in the dorsal blastoporal lip, in the presumptive neuroectoderm, and later in the head region, branchial arches, otic and optic primordia. We determined the effect of glycosphingolipid depletion with 1-phenyl-2-palmitoyl-3-morpholino-1-propanol (PPMP) in mesodermal layer. PPMP-injected embryos showed altered expression domains in the mesodermal markers. Our results suggest that GSL are involved in convergent-extension movements during early development in Xenopus.
Collapse
Affiliation(s)
- Melchor E Luque
- CONICET, UNT, INSIBIO, Departamento de Biología del Desarrollo, San Miguel de Tucumán, Argentina
| | | | | | | | | | | |
Collapse
|
130
|
Smith JC, Hagemann A, Saka Y, Williams PH. Understanding how morphogens work. Philos Trans R Soc Lond B Biol Sci 2008; 363:1387-92. [PMID: 18198154 DOI: 10.1098/rstb.2007.2256] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In this article, we describe the mechanisms by which morphogens in the Xenopus embryo exert their long-range effects. Our results are consistent with the idea that signalling molecules such as activin and the nodal-related proteins traverse responding tissue not by transcytosis or by cytonemes but by movement through the extracellular space. We suggest, however, that additional experiments, involving real-time imaging of morphogens, are required for a real understanding of what influences signalling range and the shape of a morphogen gradient.
Collapse
Affiliation(s)
- J C Smith
- Wellcome Trust/CR-UK Gurdon Institute, Department of Zoology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| | | | | | | |
Collapse
|
131
|
Keller R, Shook D. Dynamic determinations: patterning the cell behaviours that close the amphibian blastopore. Philos Trans R Soc Lond B Biol Sci 2008; 363:1317-32. [PMID: 18192174 DOI: 10.1098/rstb.2007.2250] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We review the dynamic patterns of cell behaviours in the marginal zone of amphibians with a focus on how the progressive nature and the geometry of these behaviours drive blastopore closure. Mediolateral cell intercalation behaviour and epithelial-mesenchymal transition are used in different combinations in several species of amphibian to generate a conserved pattern of circumblastoporal hoop stresses. Although these cell behaviours are quite different and involve different germ layers and tissue organization, they are expressed in similar patterns. They are expressed progressively along presumptive lateral-medial and anterior-posterior axes of the body plan in highly ordered geometries of functional significance in the context of the biomechanics of blastopore closure, thereby accounting for the production of similar patterns of circumblastoporal forces. It is not the nature of the cell behaviour alone, but the context, the biomechanical connectivity and spatial and temporal pattern of its expression that determine specificity of morphogenic output during gastrulation and blastopore closure. Understanding the patterning of these dynamic features of cell behaviour is important and will require analysis of signalling at much greater spatial and temporal resolution than that has been typical in the analysis of patterning tissue differentiation.
Collapse
Affiliation(s)
- Ray Keller
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| | | |
Collapse
|
132
|
Fletcher RB, Harland RM. The role of FGF signaling in the establishment and maintenance of mesodermal gene expression in Xenopus. Dev Dyn 2008; 237:1243-54. [PMID: 18386826 PMCID: PMC3000043 DOI: 10.1002/dvdy.21517] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
FGF signaling is important for the formation of mesoderm in vertebrates, and when it is perturbed in Xenopus, most trunk and tail mesoderm fails to form. Here we have further dissected the activities of FGF in patterning the embryo by addressing its inductive and maintenance roles. We show that FGF signaling is necessary for the establishment of xbra expression in addition to its well-characterized role in maintaining xbra expression. The role of FGF signaling in organizer formation is not clear in Xenopus. We find that FGF signaling is essential for the initial specification of paraxial mesoderm but not for activation of several pan-mesodermal and most organizer genes; however, early FGF signaling is necessary for the maintenance of organizer gene expression into the neurula stage. Inhibition of FGF signaling prevents VegT activation of specific mesodermal transcripts. These findings illuminate how FGF signaling contributes to the establishment of distinct types of mesoderm.
Collapse
Affiliation(s)
| | - Richard M. Harland
- Department of Molecular & Cell Biology, Center for Integrative Genomics, University of California, Berkeley. 571 LSA, #3200, Berkeley, CA 94720-3200
| |
Collapse
|
133
|
Abstract
The modulation of gene expression by small non-coding RNAs is a recently discovered level of gene regulation in animals and plants. In particular, microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs) have been implicated in various aspects of animal development, such as neuronal, muscle and germline development. During the past year, an improved understanding of the biological functions of small non-coding RNAs has been fostered by the analysis of genetic deletions of individual miRNAs in mammals. These studies show that miRNAs are key regulators of animal development and are potential human disease loci.
Collapse
|
134
|
Mir A, Kofron M, Heasman J, Mogle M, Lang S, Birsoy B, Wylie C. Long- and short-range signals control the dynamic expression of an animal hemisphere-specific gene in Xenopus. Dev Biol 2008; 315:161-72. [PMID: 18234171 PMCID: PMC2323448 DOI: 10.1016/j.ydbio.2007.12.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 12/17/2007] [Accepted: 12/17/2007] [Indexed: 11/22/2022]
Abstract
Little is known of the control of gene expression in the animal hemisphere of the Xenopus embryo. Here we show that expression of FoxI1e, a gene essential for normal ectoderm formation, is expressed regionally within the animal hemisphere, in a highly dynamic fashion. In situ hybridization shows that FoxI1e is expressed in a wave-like fashion that is initiated on the dorsal side of the animal hemisphere, extends across to the ventral side by the mid-gastrula stage, and is then turned off in the dorsal ectoderm, the neural plate, at the neurula stage. It is confined to the inner layers of cells in the animal cap, and is expressed in a mosaic fashion throughout. We show that this dynamic pattern of expression is controlled by both short- and long-range signals. Notch signaling controls both the mosaic, and dorsal/ventral changes in expression, and is controlled, in turn, by Vg1 signaling from the vegetal mass. FoxI1e expression is also regulated by nodal signaling downstream of VegT. Canonical Wnt signaling contributes only to late changes in the FoxI1e expression pattern. These results provide new insights into the roles of vegetally localized mRNAs in controlling zygotic genes expressed in the animal hemisphere by long-range signaling. They also provide novel insights into the role of Notch signaling at the earliest stages of vertebrate development.
Collapse
Affiliation(s)
- Adnan Mir
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
135
|
Matsui H, Sakabe M, Sakata H, Yanagawa N, Ikeda K, Yamagishi T, Nakajima Y. Induction of initial heart α-actin, smooth muscle α-actin, in chick pregastrula epiblast: The role of hypoblast and fibroblast growth factor-8. Dev Growth Differ 2008; 50:143-57. [DOI: 10.1111/j.1440-169x.2008.00987.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
136
|
Yuan L, Cao Y, Knöchel W. Endoplasmic reticulum stress induced by tunicamycin disables germ layer formation in Xenopus laevis embryos. Dev Dyn 2008; 236:2844-51. [PMID: 17849439 DOI: 10.1002/dvdy.21299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Maintenance of endoplasmic reticulum (ER) homeostasis is essential for correct protein targeting and secretion. ER stress caused by accumulation of unfolded or misfolded proteins leads to disruption of cellular functions. We have investigated the effect of ER stress on Xenopus embryogenesis. ER stress induced by tunicamycin (TM) treatment of embryos resulted in defects affecting germ layer formation. We observed up-regulation of ER stress response genes, enhanced cytoplasmic splicing of xXBP1 RNA, and increased rate of apoptosis. In animal cap assays, TM treatment inhibited mesoderm formation induced by overexpression of activin/nodal RNA but did not affect mesoderm formation induced by functional activin protein, suggesting that dysfunction of ER caused a failure in activin/nodal processing and/or secretion. The observation that activin protein renders mesoderm formation under ER stress strengthens the role of activin/nodal for mesoderm induction. The results underline the functional significance of ER homeostasis in germ layer formation during Xenopus embryogenesis.
Collapse
Affiliation(s)
- Li Yuan
- Institute of Biochemistry, University of Ulm, Ulm, Germany
| | | | | |
Collapse
|
137
|
Lou X, Fang P, Li S, Hu RY, Kuerner KM, Steinbeisser H, Ding X. Xenopus Tbx6 mediates posterior patterning via activation of Wnt and FGF signalling. Cell Res 2008; 16:771-9. [PMID: 16953215 DOI: 10.1038/sj.cr.7310093] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In vertebrates, the patterning of anterior-posterior (AP) axis is a fundamental process during embryogenesis. Wnt and FGF signalling pathways play important roles in regulating the patterning of embryo AP axis. Mouse Tbx6 encodes a transcription factor that has been demonstrated to be involved in the specification of the posterior tissue in mouse embryonic body. Here, we prove that morpholino-induced knockdown of XTbx6 impairs posterior development, indicating the requirement of XTbx6 in this process. Meanwhile, gain of XTbx6 function is sufficient to induce ectopic posterior structures in Xenopus embryos. Furthermore, XTbx6 activates the expression of Xwnt8 and FGF8, which are two mediators of posterior development, suggesting a mechanism by which XTbx6 modulates posterior patterning via Wnt and FGF signalling pathway activation.
Collapse
Affiliation(s)
- Xin Lou
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
138
|
Ishibashi H, Matsumura N, Hanafusa H, Matsumoto K, De Robertis E, Kuroda H. Expression of Siamois and Twin in the blastula Chordin/Noggin signaling center is required for brain formation in Xenopus laevis embryos. Mech Dev 2008; 125:58-66. [PMID: 18036787 PMCID: PMC2292103 DOI: 10.1016/j.mod.2007.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 10/04/2007] [Accepted: 10/09/2007] [Indexed: 11/17/2022]
Abstract
The blastula Chordin- and Noggin-expressing (BCNE) center located in the dorsal animal region of the Xenopus blastula embryo contains both prospective anterior neuroectoderm and Spemann organizer precursor cells. Here we show that, contrary to previous reports, the canonical Wnt target homeobox genes, Double knockdown of these genes using antisense morpholinos in Xenopus laevis blocked head formation, reduced the expression of the other BCNE center genes, upregulated Bmp4 expression, and nullified hyperdorsalization by lithium chloride. Moreover, gain- and loss-of-function experiments showed that Siamois and Twin expression is repressed by the vegetal transcription factor VegT. We propose that VegT expression causes maternal beta-Catenin signals to restrict Siamois and Twin expression to the BCNE region. A two-step inhibition of BMP signals by Siamois and Twin-- first by transcriptional repression of Bmp4 and then by activation of the expression of the BMP inhibitors Chordin and Noggin--in the BCNE center is required for head formation.
Collapse
Affiliation(s)
- Hideyuki Ishibashi
- Faculty of Education (Biology), Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Noriko Matsumura
- Faculty of Education (Biology), Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hiroshi Hanafusa
- Department of Molecular Biology, Graduate School of Science, Institute for Advanced Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
- CREST, Japan Science and Technology Corporation, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kunihiro Matsumoto
- Department of Molecular Biology, Graduate School of Science, Institute for Advanced Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
- CREST, Japan Science and Technology Corporation, Chikusa-ku, Nagoya 464-8602, Japan
| | - E.M. De Robertis
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | - Hiroki Kuroda
- Faculty of Education (Biology), Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
139
|
Vonica A, Gumbiner BM. The Xenopus Nieuwkoop center and Spemann-Mangold organizer share molecular components and a requirement for maternal Wnt activity. Dev Biol 2007; 312:90-102. [PMID: 17964564 PMCID: PMC2170525 DOI: 10.1016/j.ydbio.2007.09.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 09/06/2007] [Accepted: 09/06/2007] [Indexed: 10/22/2022]
Abstract
In Xenopus embryos, the dorso-ventral and antero-posterior axes are established by the Spemann-Mangold organizer. According to the prevalent model of early development, the organizer is induced by the dorsalizing Nieuwkoop signal, which is secreted by the Nieuwkoop center. Formation of the center requires the maternal Wnt pathway, which is active on the dorsal side of embryos. Nevertheless, the molecular nature of the Nieuwkoop signal remains unclear. Since the Nieuwkoop center and the organizer both produce dorsalizing signals in vitro, we asked if they might share molecular components. We find that vegetal explants, the source of Nieuwkoop signal in recombination assays, express a number of organizer genes. The product of one of these genes, chordin, is required for signaling, suggesting that the organizer and the center share at least some molecular components. Furthermore, experiments with whole embryos show that maternal Wnt activity is required in the organizer just as it is needed in the Nieuwkoop center in vitro. We conclude that the maternal Wnt pathway generates the Nieuwkoop center in vitro and the organizer in vivo by activating a common set of genes, without the need of an intermediary signaling step.
Collapse
Affiliation(s)
- Alin Vonica
- The Laboratory of Vertebrate Embryology, The Rockefeller University, P.O. Box 32, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
140
|
Sakai M. Cell-autonomous and inductive processes among three embryonic domains control dorsal-ventral and anterior-posterior development of Xenopus laevis. Dev Growth Differ 2007; 50:49-62. [DOI: 10.1111/j.1440-169x.2007.00975.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
141
|
Morris SA, Almeida AD, Tanaka H, Ohta K, Ohnuma SI. Tsukushi modulates Xnr2, FGF and BMP signaling: regulation of Xenopus germ layer formation. PLoS One 2007; 2:e1004. [PMID: 17925852 PMCID: PMC1994590 DOI: 10.1371/journal.pone.0001004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 09/11/2007] [Indexed: 11/28/2022] Open
Abstract
Background Cell-cell communication is essential in tissue patterning. In early amphibian development, mesoderm is formed in the blastula-stage embryo through inductive interactions in which vegetal cells act on overlying equatorial cells. Members of the TGF-β family such as activin B, Vg1, derrière and Xenopus nodal-related proteins (Xnrs) are candidate mesoderm inducing factors, with further activity to induce endoderm of the vegetal region. TGF-β-like ligands, including BMP, are also responsible for patterning of germ layers. In addition, FGF signaling is essential for mesoderm formation whereas FGF signal inhibition has been implicated in endoderm induction. Clearly, several signaling pathways are coordinated to produce an appropriate developmental output; although intracellular crosstalk is known to integrate multiple pathways, relatively little is known about extracellular coordination. Methodology/Principal Findings Here, we show that Xenopus Tsukushi (X-TSK), a member of the secreted small leucine rich repeat proteoglycan (SLRP) family, is expressed in ectoderm, endoderm, and the organizer during early development. We have previously reported that X-TSK binds to and inhibits BMP signaling in cooperation with chordin. We now demonstrate two novel interactions: X-TSK binds to and inhibits signaling by FGF8b, in addition to binding to and enhancement of Xnr2 signaling. This signal integration by X-TSK at the extracellular level has an important role in germ layer formation and patterning. Vegetally localized X-TSK potentiates endoderm formation through coordination of BMP, FGF and Xnr2 signaling. In contrast, X-TSK inhibition of FGF-MAPK signaling blocks ventrolateral mesoderm formation, while BMP inhibition enhances organizer formation. These actions of X-TSK are reliant upon its expression in endoderm and dorsal mesoderm, with relative exclusion from ventrolateral mesoderm, in a pattern shaped by FGF signals. Conclusions/Significance Based on our observations, we propose a novel mechanism by which X-TSK refines the field of positional information by integration of multiple pathways in the extracellular space.
Collapse
Affiliation(s)
- Samantha A. Morris
- Department of Oncology, The Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, United Kingdom
- * To whom correspondence should be addressed. E-mail: (SM); (SO)
| | - Alexandra D. Almeida
- Department of Oncology, The Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Hideaki Tanaka
- Department of Developmental Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kunimasa Ohta
- Department of Developmental Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shin-ichi Ohnuma
- Department of Oncology, The Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, United Kingdom
- * To whom correspondence should be addressed. E-mail: (SM); (SO)
| |
Collapse
|
142
|
Guémar L, de Santa Barbara P, Vignal E, Maurel B, Fort P, Faure S. The small GTPase RhoV is an essential regulator of neural crest induction in Xenopus. Dev Biol 2007; 310:113-28. [PMID: 17761159 DOI: 10.1016/j.ydbio.2007.07.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 07/06/2007] [Accepted: 07/23/2007] [Indexed: 11/26/2022]
Abstract
In vertebrates, the Rho family of GTPases is made of 20 members which regulate a variety of cellular functions, including actin cytoskeleton dynamics, cell adhesion and motility, cell growth and survival, gene transcription and membrane trafficking. To get a comprehensive view of Rho implication in physiological epithelial-mesenchymal transition, we carried out an in situ hybridization-based screen to identify Rho members expressed in Xenopus neural crest cells, in which we previously reported RhoB expression at the migrating stage. In the present study, we identify RhoV as an early expressed neural crest marker and provide evidence that its activity is essential for neural crest cell induction. RhoV mRNA is maternally expressed and accumulates shortly after gastrulation in the neural crest forming region. Using antisense morpholino injection, we show that at neurula stages, RhoV depletion impairs expression of the neural crest markers Sox9, Slug or Twist but has no effect on Snail induction. At the tailbud stage, RhoV knockdown causes a dramatic loss of cranial neural crest derived structures. All these defects are rescued by ectopic wild-type RhoV, whose overexpression on its own expands the neural crest territory. Our findings disclose an unprecedented Rho function in pathways that control neural crest cells specification.
Collapse
Affiliation(s)
- Linda Guémar
- Centre de Recherches en Biochimie Macromoléculaire, UMR 5237 CNRS, 1919 route de Mende, 34293 Montpellier, France
| | | | | | | | | | | |
Collapse
|
143
|
Martello G, Zacchigna L, Inui M, Montagner M, Adorno M, Mamidi A, Morsut L, Soligo S, Tran U, Dupont S, Cordenonsi M, Wessely O, Piccolo S. MicroRNA control of Nodal signalling. Nature 2007; 449:183-8. [PMID: 17728715 DOI: 10.1038/nature06100] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 07/18/2007] [Indexed: 01/29/2023]
Abstract
MicroRNAs are crucial modulators of gene expression, yet their involvement as effectors of growth factor signalling is largely unknown. Ligands of the transforming growth factor-beta superfamily are essential for development and adult tissue homeostasis. In early Xenopus embryos, signalling by the transforming growth factor-beta ligand Nodal is crucial for the dorsal induction of the Spemann's organizer. Here we report that Xenopus laevis microRNAs miR-15 and miR-16 restrict the size of the organizer by targeting the Nodal type II receptor Acvr2a. Endogenous miR-15 and miR-16 are ventrally enriched as they are negatively regulated by the dorsal Wnt/beta-catenin pathway. These findings exemplify the relevance of microRNAs as regulators of early embryonic patterning acting at the crossroads of fundamental signalling cascades.
Collapse
Affiliation(s)
- Graziano Martello
- Department of Histology, Microbiology and Medical Biotechnologies, Section of Histology and Embryology, University of Padua, viale Colombo 3, 35126 Padua, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Kennedy MW, Green KA, Ford RL, Andrews PG, Paterno GD, Gillespie LL, Kao KR. Regulation of the response to Nodal-mediated mesoderm induction by Xrel3. Dev Biol 2007; 311:383-95. [PMID: 17920056 DOI: 10.1016/j.ydbio.2007.08.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 08/20/2007] [Accepted: 08/22/2007] [Indexed: 11/15/2022]
Abstract
The Xenopus egg has a yolk-laden vegetal hemisphere juxtaposed to a darkly pigmented animal hemisphere. Mesoderm is derived from the marginal zone, located at the interface between the two hemispheres. The vegetal-most cells become endoderm and release TGF-beta-related factors, including the Xenopus Nodal related (Xnr) proteins, which diffuse to induce the marginal zone to form mesoderm. The remaining animal cells become ectoderm, but our understanding of the mechanisms that limit the response to induction is incomplete. In this study, we provide evidence to suggest that Xrel3, a member of the Rel/NF-kappaB family, plays a role in defining the boundary separating induced from uninduced cells by regulating Xnr-responsive gene transcription. Ectopic Xrel3 expressed in prospective mesoderm caused repression of mesoderm-specific genes resulting in loss-of-function phenotypes that were rescued by co-expression of Xnr2. Depletion of Xrel3 from embryos with antisense morpholinos increased Xnr-dependent transcription, broadened expression of the pan-mesoderm marker Xbra and sensitized animal cells to mesoderm induction by Xnr2. We propose that an additional component to the mechanism that differentiates the ectoderm from the mesoderm involves regulation of nodal-dependent gene transcription by Xrel3.
Collapse
Affiliation(s)
- Mark W Kennedy
- Terry Fox Cancer Research Labs, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | | | | | | | | | | |
Collapse
|
145
|
Hagos EG, Fan X, Dougan ST. The role of maternal Activin-like signals in zebrafish embryos. Dev Biol 2007; 309:245-58. [PMID: 17692308 DOI: 10.1016/j.ydbio.2007.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2007] [Revised: 06/24/2007] [Accepted: 07/12/2007] [Indexed: 12/15/2022]
Abstract
Maternal Activin-like proteins, a subgroup of the TGF-beta superfamily, play a key role in establishing the body axes in many vertebrates, but their role in teleosts is unclear. At least two maternal Activin-like proteins are expressed in zebrafish, including the Vg1 orthologue, zDVR-1, and the nodal-related gene, Squint. Our analysis of embryos lacking both maternal and zygotic squint function revealed that maternal squint is required in some genetic backgrounds for the formation of dorsal and anterior tissues. Conditional inactivation of the ALK4, 5 and 7 receptors by SB-505124 treatment during the cleavage stages ruled out a role for maternal Squint, zDVR-1, or other Activin-like ligands before the mid-blastula transition, when the dorsal axis is established. Furthermore, we show that maternal Squint and zDVR-1 are not required during the cleavage stages to induce zygotic nodal-related gene expression. nodal-related gene expression decreases when receptor inhibition continues past the mid-blastula transition, resulting in a progressive loss of mesoderm and endoderm. We conclude that maternally expressed Activin-like signals do not act before the mid-blastula transition in zebrafish, but do have a variably penetrant role in the later stages of axis formation. This contrasts with the early role for these signals during Xenopus development.
Collapse
Affiliation(s)
- Engda G Hagos
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
146
|
Abstract
Asymmetries in the egg, established during oogenesis, set the stage for a cascade of intercellular signaling events leading to differential gene expression and subsequent tissue and organ formation. Maternally supplied Sox-type transcription factors have recently emerged as key components in the patterning of the early embryo and the regulation of embryonic stem cell differentiation. In deuterostomes, B1-type Soxs are asymmetrically localized to the future animal/ectodermal region where they act to suppress mesendodermal, and favor neuroectodermal differentiation, while vegetally localized F-type Soxs are involved in mesendodermal differentiation. Here, we review past observations and present new data from studies on the clawed frog Xenopus laevis. Animally localized Sox3 acts to inhibit Nodal (Xnr5 and Xnr6) expression, and induces the expression of genes (Ectodermin, Xema, and Coco) whose products repress Nodal signaling. Vegetally localized Sox7 positively regulates Nodal (Xnr4, Xnr5, and Xnr6) expression, as well as the expression of genes involved in mesodermal (Xmenf, Slug, and Snail) and endodermal (Endodermin and Sox17beta) differentiation. Given the evolutionary strategy of using common regulatory networks, it seems likely that a homologous Sox-Axis is active during embryonic development in many metazoans.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Molecular, Cellular and Developmental Biology University of Colorado at Boulder Boulder, CO 80309-0347, USA
| | | |
Collapse
|
147
|
Tran U, Mary Pickney L, Duygu Özpolat B, Wessely O. Xenopus Bicaudal-C is required for the differentiation of the amphibian pronephros. Dev Biol 2007; 307:152-64. [PMID: 17521625 PMCID: PMC1976305 DOI: 10.1016/j.ydbio.2007.04.030] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 04/18/2007] [Accepted: 04/24/2007] [Indexed: 12/11/2022]
Abstract
The RNA-binding molecule Bicaudal-C regulates embryonic development in Drosophila and Xenopus. Interestingly, mouse mutants of Bicaudal-C do not show early patterning defects, but instead develop polycystic kidney disease (PKD). To further investigate the molecular mechanism of Bicaudal-C in kidney development, we analyzed its function in the developing amphibian pronephros. Bicaudal-C mRNA was present in the epithelial structures of the Xenopus pronephros, the tubules and the duct, but not the glomus. Inhibition of the translation of endogenous Bicaudal-C with antisense morpholino oligomers (xBic-C-MO) led to a PKD-like phenotype in Xenopus. Embryos lacking Bicaudal-C developed generalized edemas and dilated pronephric tubules and ducts. This phenotype was caused by impaired differentiation of the pronephros. Molecular markers specifically expressed in the late distal tubule were absent in xBic-C-MO-injected embryos. Furthermore, Bicaudal-C was not required for primary cilia formation, an important organelle affected in PKD. These data support the idea that Bicaudal-C functions downstream or parallel of a cilia-regulated signaling pathway. This pathway is required for terminal differentiation of the late distal tubule of the Xenopus pronephros and regulates renal epithelial cell differentiation, which--when disrupted--results in PKD.
Collapse
Affiliation(s)
- Uyen Tran
- LSU Health Sciences Center, Departments of Cell Biology & Anatomy and Genetics, MEB-6A12, 1901 Perdido Street, New Orleans, LA. 70112, USA
| | - L. Mary Pickney
- LSU Health Sciences Center, Departments of Cell Biology & Anatomy and Genetics, MEB-6A12, 1901 Perdido Street, New Orleans, LA. 70112, USA
| | - B. Duygu Özpolat
- LSU Health Sciences Center, Departments of Cell Biology & Anatomy and Genetics, MEB-6A12, 1901 Perdido Street, New Orleans, LA. 70112, USA
| | - Oliver Wessely
- LSU Health Sciences Center, Departments of Cell Biology & Anatomy and Genetics, MEB-6A12, 1901 Perdido Street, New Orleans, LA. 70112, USA
| |
Collapse
|
148
|
Smith J, Wardle F, Loose M, Stanley E, Patient R. Germ layer induction in ESC--following the vertebrate roadmap. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2007; Chapter 1:Unit 1D.1. [PMID: 18785165 DOI: 10.1002/9780470151808.sc01d01s1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Controlled differentiation of pluripotential cells takes place routinely and with great success in developing vertebrate embryos. It therefore makes sense to take note of how this is achieved and use this knowledge to control the differentiation of embryonic stem cells (ESCs). An added advantage is that the differentiated cells resulting from this process in embryos have proven functionality and longevity. This unit reviews what is known about the embryonic signals that drive differentiation in one of the most informative of the vertebrate animal models of development, the amphibian Xenopus laevis. It summarizes their identities and the extent to which their activities are dose-dependent. The unit details what is known about the transcription factor responses to these signals, describing the networks of interactions that they generate. It then discusses the target genes of these transcription factors, the effectors of the differentiated state. Finally, how these same developmental programs operate during germ layer formation in the context of ESC differentiation is summarized.
Collapse
Affiliation(s)
- Jim Smith
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
149
|
Cao Y, Siegel D, Donow C, Knöchel S, Yuan L, Knöchel W. POU-V factors antagonize maternal VegT activity and beta-Catenin signaling in Xenopus embryos. EMBO J 2007; 26:2942-54. [PMID: 17541407 PMCID: PMC1894774 DOI: 10.1038/sj.emboj.7601736] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 05/07/2007] [Indexed: 11/09/2022] Open
Abstract
VegT and beta-Catenin are key players in the hierarchy of factors that are required for induction and patterning of mesendoderm in Xenopus embryogenesis. By descending the genetic cascades, cells lose their pluripotent status and are determined to differentiate into distinct tissues. Mammalian Oct-3/4, a POU factor of subclass V (POU-V), is required for the maintenance of pluripotency of embryonic stem cells. However, its molecular function within the early embryo is yet poorly understood. We here show that the two maternal Xenopus POU-V factors, Oct-60 and Oct-25, inhibit transcription of genes activated by VegT and beta-Catenin. Maternal POU-V factors and maternal VegT show an opposite distribution along the animal/vegetal axis. Oct-25, VegT and Tcf3 interact with each other and form repression complexes on promoters of VegT and beta-Catenin target genes. We suggest that POU-V factors antagonize primary inducers to allow germ layer specification in a temporally and spatially coordinated manner.
Collapse
Affiliation(s)
- Ying Cao
- Institute of Biochemistry, University of Ulm, Ulm, Germany
| | - Doreen Siegel
- Institute of Biochemistry, University of Ulm, Ulm, Germany
| | - Cornelia Donow
- Institute of Biochemistry, University of Ulm, Ulm, Germany
| | - Sigrun Knöchel
- Institute of Biochemistry, University of Ulm, Ulm, Germany
| | - Li Yuan
- Institute of Biochemistry, University of Ulm, Ulm, Germany
| | - Walter Knöchel
- Institute of Biochemistry, University of Ulm, Ulm, Germany
- Institut für Biochemie, Universität Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany. Tel.: 0049 731/502 3280; Fax: 0049 731/502 3277; E-mail:
| |
Collapse
|
150
|
Yan B, Moody SA. The competence of Xenopus blastomeres to produce neural and retinal progeny is repressed by two endo-mesoderm promoting pathways. Dev Biol 2007; 305:103-19. [PMID: 17428460 PMCID: PMC1892348 DOI: 10.1016/j.ydbio.2007.01.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 01/11/2007] [Accepted: 01/31/2007] [Indexed: 10/23/2022]
Abstract
Only a subset of cleavage stage blastomeres in the Xenopus embryo is competent to contribute cells to the retina; ventral vegetal blastomeres do not form retina even when provided with neuralizing factors or transplanted to the most retinogenic position of the embryo. These results suggest that endogenous maternal factors in the vegetal region repress the ability of blastomeres to form retina. Herein we provide three lines of evidence that two vegetal-enriched maternal factors (VegT, Vg1), which are known to promote endo-mesodermal fates, negatively regulate which cells are competent to express anterior neural and retinal fates. First, both molecules can repress the ability of dorsal-animal retinogenic blastomeres to form retina, converting the lineage from neural/retinal to non-neural ectodermal and endo-mesodermal fates. Second, reducing the endogenous levels of either factor in dorsal-animal retinogenic blastomeres expands expression of neural/retinal genes and enlarges the retina. The dorsal-animal repression of neural/retinal fates by VegT and Vg1 is likely mediated by Sox17alpha and Derriere but not by XNr1. VegT and Vg1 likely exert their effects on neural/retinal fates through at least partially independent pathways because Notch1 can reverse the effects of VegT and Derriere but not those of Vg1 or XNr1. Third, reduction of endogenous VegT and/or Vg1 in ventral vegetal blastomeres can induce a neural fate, but only allows expression of a retinal fate when both BMP and Wnt signaling pathways are concomitantly repressed.
Collapse
Affiliation(s)
- Bo Yan
- Department of Anatomy and Cell Biology, The George Washington University Medical Center, 2300 Eye Street, N.W., Washington, DC 20037, USA
| | | |
Collapse
|