101
|
He W, Jia Y, Takimoto K. Interaction between transcription factors Iroquois proteins 4 and 5 controls cardiac potassium channel Kv4.2 gene transcription. Cardiovasc Res 2008; 81:64-71. [PMID: 18815185 DOI: 10.1093/cvr/cvn259] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS The homeobox transcription factor, Iroquois protein 5 (Irx5), plays an essential role in the generation of region-selective expression of Kv4.2 gene across the left ventricular wall of rodent hearts. Here, we analyse molecular mechanisms underlying the Irx5-induced regulation of the rat Kv4.2 promoter. METHODS AND RESULTS The mRNA levels for Irx members in various heart regions were assessed by RT-PCR. A luciferase reporter gene with the rat Kv4.2 promoter was used to test the effects of Irx members on channel promoter activity. Irx3 and Irx5 mRNAs were differentially distributed across the left ventricular wall, whereas Irx4 message was equally abundant in various ventricular regions. Irx5, but not Irx3 or Irx4, increased Kv4.2 promoter activity in 10T1/2 fibroblasts, whereas the transcription factor decreased promoter activity in neonatal ventricular myocytes. These effects were mediated by the C-terminal portion of Irx5. Irx4 appeared to inhibit the Irx5-induced increase in channel promoter activity in 10T1/2 cells. The N-terminal region of Irx4 was necessary and sufficient for this inhibition. Furthermore, when endogenous Irx4 expression was suppressed with siRNA, Irx5 increased channel promoter activity in neonatal myocytes. CONCLUSION These results indicate that Irx5 possesses the ability to activate the Kv4.2 promoter. The abundant Irx4 expression throughout the rat ventricle may play a role in the inverse relationship between Irx5 and Kv4.2 levels across the left ventricular wall.
Collapse
Affiliation(s)
- Wenjie He
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, 100 Technology Drive, Bridgeside Point, Pittsburgh, PA 15219, USA
| | | | | |
Collapse
|
102
|
Ikmi A, Netter S, Coen D. Prepatterning the Drosophila notum: the three genes of the iroquois complex play intrinsically distinct roles. Dev Biol 2008; 317:634-48. [PMID: 18394597 DOI: 10.1016/j.ydbio.2007.12.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 12/21/2007] [Accepted: 12/22/2007] [Indexed: 12/24/2022]
Abstract
The Drosophila thorax exhibits 11 pairs of large sensory organs (macrochaetes) identified by their unique position. Remarkably precise, this pattern provides an excellent model system to study the genetic basis of pattern formation. In imaginal wing discs, the achaete-scute proneural genes are expressed in clusters of cells that prefigure the positions of each macrochaete. The activities of prepatterning genes provide positional cues controlling this expression pattern. The three homeobox genes clustered in the iroquois complex (araucan, caupolican and mirror) are such prepattern genes. mirror is generally characterized as performing functions predominantly different from the other iroquois genes. Conversely, araucan and caupolican are described in previous studies as performing redundant functions in most if not all processes in which they are involved. We have addressed the question of the specific role of each iroquois gene in the prepattern of the notum and we clearly demonstrate that they are intrinsically different in their contribution to this process: caupolican and mirror, but not araucan, are required for the neural patterning of the lateral notum. However, when caupolican and/or mirror expression is reduced, araucan loss of function has an effect on thoracic bristles development. Moreover, the overexpression of araucan is able to rescue caupolican loss of function. We conclude that, although retaining some common functionalities, the Drosophila iroquois genes are in the process of diversification. In addition, caupolican and mirror are required for stripe expression and, therefore, to specify the muscular attachment sites prepattern. Thus, caupolican and mirror may act as common prepattern genes for all structures in the lateral notum.
Collapse
Affiliation(s)
- Aissam Ikmi
- Développement, Morphogenèse et Evolution, CNRS UMR 8080, Université Paris-Sud, 91405 Orsay, France
| | | | | |
Collapse
|
103
|
Cheng CW, Yan CHM, Choy SW, Hui MNY, Hui CC, Cheng SH. Zebrafish homologue irx1a is required for the differentiation of serotonergic neurons. Dev Dyn 2007; 236:2661-7. [PMID: 17685478 DOI: 10.1002/dvdy.21272] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Serotonergic (5HT) neurons produce neurotransmitter serotonin, which modulates various neuronal circuits. The specification and differentiation of 5HT neurons require both extrinsic signals such as Shh and Fgf, as well as intrinsic transcription factors such as nkx2.2, mash1, phox2b, Gata2, and pet1. In this study, we show that iroquois homeodomain factor irx1a, but not irx1b, is expressed in the 5HT neurons. Knockdown of irx1a by antisense morpholino nucleotides reveals that it is a critical determinant for the differentiation of 5HT neurons in the hindbrain. However, irx1a morphants do not show a reduction of the progenitors of 5HT neurons. Hence, irx1a is not required for the initial specification but it is required for the complete differentiation of 5HT neurons.
Collapse
Affiliation(s)
- Chi Wa Cheng
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | | | | | | | | | | |
Collapse
|
104
|
Reggiani L, Raciti D, Airik R, Kispert A, Brändli AW. The prepattern transcription factor Irx3 directs nephron segment identity. Genes Dev 2007; 21:2358-70. [PMID: 17875669 PMCID: PMC1973149 DOI: 10.1101/gad.450707] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The nephron, the basic structural and functional unit of the vertebrate kidney, is organized into discrete segments, which are composed of distinct renal epithelial cell types. Each cell type carries out highly specific physiological functions to regulate fluid balance, osmolarity, and metabolic waste excretion. To date, the genetic basis of regionalization of the nephron has remained largely unknown. Here we show that Irx3, a member of the Iroquois (Irx) gene family, acts as a master regulator of intermediate tubule fate. Comparative studies in Xenopus and mouse have identified Irx1, Irx2, and Irx3 as an evolutionary conserved subset of Irx genes, whose expression represents the earliest manifestation of intermediate compartment patterning in the developing vertebrate nephron discovered to date. Intermediate tubule progenitors will give rise to epithelia of Henle's loop in mammals. Loss-of-function studies indicate that irx1 and irx2 are dispensable, whereas irx3 is necessary for intermediate tubule formation in Xenopus. Furthermore, we demonstrate that misexpression of irx3 is sufficient to direct ectopic development of intermediate tubules in the Xenopus mesoderm. Taken together, irx3 is the first gene known to be necessary and sufficient to specify nephron segment fate in vivo.
Collapse
Affiliation(s)
- Luca Reggiani
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Daniela Raciti
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Rannar Airik
- Institute of Molecular Biology, Hannover Medical School, D-30625 Hannover, Germany
| | - Andreas Kispert
- Institute of Molecular Biology, Hannover Medical School, D-30625 Hannover, Germany
| | - André W. Brändli
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
- Corresponding author.E-MAIL ; FAX 41-44-633-1358
| |
Collapse
|
105
|
Villa-Cuesta E, González-Pérez E, Modolell J. Apposition of iroquois expressing and non-expressing cells leads to cell sorting and fold formation in the Drosophila imaginal wing disc. BMC DEVELOPMENTAL BIOLOGY 2007; 7:106. [PMID: 17880703 PMCID: PMC2039746 DOI: 10.1186/1471-213x-7-106] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 09/19/2007] [Indexed: 11/30/2022]
Abstract
Background The organization of the different tissues of an animal requires mechanisms that regulate cell-cell adhesion to promote and maintain the physical separation of adjacent cell populations. In the Drosophila imaginal wing disc the iroquois homeobox genes are expressed in the notum anlage and contribute to the specification of notum identity. These genes are not expressed in the adjacent wing hinge territory. These territories are separated by an approximately straight boundary that in the mature disc is associated with an epithelial fold. The mechanism by which these two cell populations are kept separate is unclear. Results Here we show that the Iro-C genes participate in keeping the notum and wing cell populations separate. Indeed, within the notum anlage, cells not expressing Iro-C tend to join together and sort out from their Iro-C expressing neighbours. We also show that apposition of Iro-C expressing and non-expressing cells induces invagination and apico-basal shortening of the Iro-C- cells. This effect probably underlies formation of the fold that separates the notum and wing hinge territories. In addition, cells overexpressing a member of the Iro-C contact one another and become organized in a network of thin strings that surrounds and isolates large groups of non-overexpressing cells. The strings appear to exert a pulling force along their longitudinal axis. Conclusion Apposition of cells expressing and non-expressing the Iro-C, as it occurs in the notum-wing hinge border of the Drosophila wing disc, influences cell behaviour. It leads to cell sorting, and cellular invagination and apical-basal shortening. These effects probably account for keeping the prospective notum and wing hinge cell populations separate and underlie epithelial fold formation. Cells that overexpress a member of the Iro-C and that confront non-expressing cells establish contacts between themselves and become organized in a network of thin strings. This is a complex and unique phenotype that might be important for the generation of a straight notum-wing hinge border.
Collapse
Affiliation(s)
- Eugenia Villa-Cuesta
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Cantoblanco, 28049 Madrid, Spain
- Department of Ecology and Evolutionary Biology, Bow G-W, Brown University, Providence, RI 02912, USA
| | - Esther González-Pérez
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Cantoblanco, 28049 Madrid, Spain
| | - Juan Modolell
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
106
|
Simpson P. The stars and stripes of animal bodies: evolution of regulatory elements mediating pigment and bristle patterns in Drosophila. Trends Genet 2007; 23:350-8. [PMID: 17499383 DOI: 10.1016/j.tig.2007.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 04/11/2007] [Accepted: 04/23/2007] [Indexed: 11/22/2022]
Abstract
Evolution has generated enormous morphological diversity in animals and one of the genetic processes that might have contributed to this is evolution of the cis-regulatory sequences responsible for the temporal and spatial expression of genes regulating embryonic development. This could be particularly relevant to pleiotropic genes with multiple independently acting regulatory modules. Loss or gain of modules enables altered expression without loss of other functions. Here I focus on recent studies correlating differences in morphological traits between related species of Drosophila to changes in cis-regulatory sequences. They show that ancestral regulatory modules have evolved to mediate different transcriptional outputs and suggest that evolution of cis-regulatory sequences might reflect a general mechanism driving evolutionary change.
Collapse
Affiliation(s)
- Pat Simpson
- Department of Zoology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
107
|
Abelló G, Khatri S, Giráldez F, Alsina B. Early regionalization of the otic placode and its regulation by the Notch signaling pathway. Mech Dev 2007; 124:631-45. [PMID: 17532192 DOI: 10.1016/j.mod.2007.04.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 04/11/2007] [Accepted: 04/13/2007] [Indexed: 01/30/2023]
Abstract
Otic neuronal precursors are the first cells to be specified and do so in the anterior domain of the otic placode, the proneural domain. In the present study, we have explored the early events of otic proneural regionalization in relation to the activity of the Notch signaling pathway. The proneural domain was characterized by the expression of Sox3, Fgf10 and members of the Notch pathway such as Delta1, Hes5 and Lunatic Fringe. The complementary non-neural domain expressed two patterning genes, Lmx1b and Iroquois1, and the members of the Notch pathway, Serrate1 and Hairy1. Fate map studies and double injections with DiI/DiO showed that labeled cells remained confined to anterior or posterior territories with limited cell intermingling. To explore whether Notch signaling pathway plays a role in the initial regionalization of the otic placode, Notch activity was blocked by a gamma-secretase inhibitor (DAPT). Notch blockade induced the expansion of non-neural genes, Lmx1 and Iroquois1, into the proneural domain. Combined gene expression and DiI experiments showed that these effects were not due to migration of non-neural cells into the proneural domain, suggesting that Notch activity regulates the expression of non-neural genes. This was further confirmed by the electroporation of a dominant-negative form of the Mastermind-like1 gene that caused the up-regulation of Lmx1 within the proneural domain. In addition, Notch pathway was involved in neuronal precursor selection, probably by a classical mechanism of lateral inhibition. We propose that the regionalization of the otic domain into a proneural and a non-neural territory is a very early event in otic development, and that Notch signaling activity is required to exclude the expression of non-neural genes from the proneural territory.
Collapse
Affiliation(s)
- Gina Abelló
- DCEXS-Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | | | | |
Collapse
|
108
|
Anselme I, Laclef C, Lanaud M, Rüther U, Schneider-Maunoury S. Defects in brain patterning and head morphogenesis in the mouse mutant Fused toes. Dev Biol 2007; 304:208-20. [PMID: 17241623 DOI: 10.1016/j.ydbio.2006.12.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 11/17/2006] [Accepted: 12/12/2006] [Indexed: 01/25/2023]
Abstract
During vertebrate development, brain patterning and head morphogenesis are tightly coordinated. In this paper, we study these processes in the mouse mutant Fused toes (Ft), which presents severe head defects at midgestation. The Ft line carries a 1.6-Mb deletion on chromosome 8. This deletion eliminates six genes, three members of the Iroquois gene family, Irx3, Irx5 and Irx6, which form the IrxB cluster, and three other genes of unknown function, Fts, Ftm and Fto. We show that in Ft/Ft embryos, both anteroposterior and dorsoventral patterning of the brain are affected. As soon as the beginning of somitogenesis, the forebrain is expanded caudally and the midbrain is reduced. Within the expanded forebrain, the most dorsomedial (medial pallium) and ventral (hypothalamus) regions are severely reduced or absent. Morphogenesis of the forebrain and optic vesicles is strongly perturbed, leading to reduction of the eyes and delayed or absence of neural tube closure. Finally, facial structures are hypoplastic. Given the diversity, localisation and nature of the defects, we propose that some of them are caused by the elimination of the IrxB cluster, while others result from the loss of one or several of the Fts, Ftm and Fto genes.
Collapse
Affiliation(s)
- Isabelle Anselme
- Biologie du Développement, CNRS UMR7622, Université Pierre et Marie Curie, 9 Quai Saint-Bernard, 75252 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
109
|
Doroquez DB, Rebay I. Signal integration during development: mechanisms of EGFR and Notch pathway function and cross-talk. Crit Rev Biochem Mol Biol 2007; 41:339-85. [PMID: 17092823 DOI: 10.1080/10409230600914344] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Metazoan development relies on a highly regulated network of interactions between conserved signal transduction pathways to coordinate all aspects of cell fate specification, differentiation, and growth. In this review, we discuss the intricate interplay between the epidermal growth factor receptor (EGFR; Drosophila EGFR/DER) and the Notch signaling pathways as a paradigm for signal integration during development. First, we describe the current state of understanding of the molecular architecture of the EGFR and Notch signaling pathways that has resulted from synergistic studies in vertebrate, invertebrate, and cultured cell model systems. Then, focusing specifically on the Drosophila eye, we discuss how cooperative, sequential, and antagonistic relationships between these pathways mediate the spatially and temporally regulated processes that generate this sensory organ. The common themes underlying the coordination of the EGFR and Notch pathways appear to be broadly conserved and should, therefore, be directly applicable to elucidating mechanisms of information integration and signaling specificity in vertebrate systems.
Collapse
Affiliation(s)
- David B Doroquez
- Department of Biology, Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|
110
|
Liu H, Liu W, Maltby KM, Lan Y, Jiang R. Identification and developmental expression analysis of a novel homeobox gene closely linked to the mouse Twirler mutation. Gene Expr Patterns 2006; 6:632-6. [PMID: 16426902 PMCID: PMC3869088 DOI: 10.1016/j.modgep.2005.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 11/11/2005] [Accepted: 11/21/2005] [Indexed: 10/25/2022]
Abstract
The Twirler mutation arose spontaneously and causes inner ear defects in heterozygous and cleft lip and/or cleft palate in homozygous mutant mice, providing a unique animal model for investigating the molecular mechanisms of inner ear and craniofacial development. Here, we report the identification of a novel homeobox gene, Iroquois-related homeobox like-1 (Irxl1), from the Twirler locus. Irxl1 encodes a TALE-family homeodomain protein with its homeodomain exhibiting the highest amino acid sequence identity (54%) to those of invertebrate Iroquois and vertebrate Irx subfamily members. The putative Irxl1 protein lacks the Iro-box, a conserved motif in all known members of the Irx subfamily. Searching the databases showed that Irxl1 orthologs exist in Xenopus, chick, and mammals. In situ hybridization analyses of mouse embryos at various developmental stages showed that Irxl1 mRNA is highly expressed in the frontonasal process and palatal mesenchyme during primary and secondary palate development. In addition, Irxl1 mRNA is strongly expressed in mesenchyme surrounding the developing inner ear, in discrete regions of the developing mandible, in the dermamyotome during somite differentiation, and in a subset of muscular structures in late embryonic stages. The developmental expression pattern indicates that Irxl1 is a good candidate gene for the Twirler gene.
Collapse
Affiliation(s)
- Han Liu
- Department of Biology, University of Rochester, Rochester, NY 14627
| | - Wenjin Liu
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Kathleen M. Maltby
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Yu Lan
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Rulang Jiang
- Department of Biology, University of Rochester, Rochester, NY 14627
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| |
Collapse
|
111
|
Takeuchi JK, Bruneau BG. Irxl1, a divergent Iroquois homeobox family transcription factor gene. Gene Expr Patterns 2006; 7:51-6. [PMID: 16824806 DOI: 10.1016/j.modgep.2006.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 05/19/2006] [Accepted: 05/23/2006] [Indexed: 11/17/2022]
Abstract
Iroquois homeodomain (Irx) transcription factors are encoded by a conserved family of six genes that are found in two clusters of three genes each. Irx proteins are highly conserved, and their expression patterns overlap considerably during embryonic development, suggesting genetically redundant functions. We have identified a highly divergent Irx gene, which we term Iroquois homeobox-like 1 (Irxl1). The chromosomal location of Irxl1 is distinct from the Irx gene clusters. Irxl1 is conserved in most vertebrates, and the deduced amino acid sequence of its protein product predicts a homeodomain that bears significant homology to Irx homeodomains, but is clearly very divergent. We also identified in Irxl1 a divergent Iro box, a motif that is the defining feature of the Irx family. Expression of Irxl1 during mouse embryogenesis was distinct from that of most Irx genes, and was largely restricted to the epaxial and hypaxial components of the somites, limb buds, otic vescicle, craniofacial mesenchyme, retinal ganglion cell layer, and lens. We conclude that Irxl1 is a newly identified highly divergent member of the Irx gene family with specific expression patterns in mouse embryogenesis.
Collapse
Affiliation(s)
- Jun K Takeuchi
- Programs in Cardiovascular Research and Developmental Biology, The Hospital for Sick Children, Toronto, Ont., Canada
| | | |
Collapse
|
112
|
Schlosser G. Induction and specification of cranial placodes. Dev Biol 2006; 294:303-51. [PMID: 16677629 DOI: 10.1016/j.ydbio.2006.03.009] [Citation(s) in RCA: 289] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/22/2005] [Accepted: 12/23/2005] [Indexed: 12/17/2022]
Abstract
Cranial placodes are specialized regions of the ectoderm, which give rise to various sensory ganglia and contribute to the pituitary gland and sensory organs of the vertebrate head. They include the adenohypophyseal, olfactory, lens, trigeminal, and profundal placodes, a series of epibranchial placodes, an otic placode, and a series of lateral line placodes. After a long period of neglect, recent years have seen a resurgence of interest in placode induction and specification. There is increasing evidence that all placodes despite their different developmental fates originate from a common panplacodal primordium around the neural plate. This common primordium is defined by the expression of transcription factors of the Six1/2, Six4/5, and Eya families, which later continue to be expressed in all placodes and appear to promote generic placodal properties such as proliferation, the capacity for morphogenetic movements, and neuronal differentiation. A large number of other transcription factors are expressed in subdomains of the panplacodal primordium and appear to contribute to the specification of particular subsets of placodes. This review first provides a brief overview of different cranial placodes and then synthesizes evidence for the common origin of all placodes from a panplacodal primordium. The role of various transcription factors for the development of the different placodes is addressed next, and it is discussed how individual placodes may be specified and compartmentalized within the panplacodal primordium. Finally, tissues and signals involved in placode induction are summarized with a special focus on induction of the panplacodal primordium itself (generic placode induction) and its relation to neural induction and neural crest induction. Integrating current data, new models of generic placode induction and of combinatorial placode specification are presented.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Brain Research Institute, AG Roth, University of Bremen, FB2, 28334 Bremen, Germany.
| |
Collapse
|
113
|
Cheng CW, Yan CHM, Hui CC, Strähle U, Cheng SH. The homeobox gene irx1a is required for the propagation of the neurogenic waves in the zebrafish retina. Mech Dev 2006; 123:252-63. [PMID: 16457994 DOI: 10.1016/j.mod.2005.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 11/26/2005] [Accepted: 12/02/2005] [Indexed: 11/20/2022]
Abstract
Neurogenesis in the compound eyes of Drosophila and the camera eyes of vertebrates spreads in a wave-like fashion. In both phyla, waves of hedgehog expression are known to drive the wave of neuronal differentiation. The mechanism controlling the propagation of hedgehog expression during retinogenesis of the vertebrate eye is poorly understood. The Iroquois homeobox genes play important roles in Drosophila eye development; they are required for the up-regulation of hedgehog expression during propagation of the morphogenetic furrow. Here, we show that the zebrafish Iroquois homolog irx1a is expressed during retinogenesis and knockdown of irx1a results in a retinal phenotype strikingly similar to those of sonic hedgehog (shh) mutants. Analysis of shh-GFP transgene expression in irx1a knockdown retinas revealed that irx1a is required for the propagation of shh expression through the retina. Transplantation experiments illustrated that the effects of irx1a on shh expression are both cell-autonomous and non-cell-autonomous. Our results reveal a role for Iroquois genes in controlling hedgehog expression during vertebrate retinogenesis.
Collapse
Affiliation(s)
- Chi Wa Cheng
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | | | | | | | | |
Collapse
|
114
|
Costantini DL, Arruda EP, Agarwal P, Kim KH, Zhu Y, Zhu W, Lebel M, Cheng CW, Park CY, Pierce SA, Guerchicoff A, Pollevick GD, Chan TY, Kabir MG, Cheng SH, Husain M, Antzelevitch C, Srivastava D, Gross GJ, Hui CC, Backx PH, Bruneau BG. The homeodomain transcription factor Irx5 establishes the mouse cardiac ventricular repolarization gradient. Cell 2005; 123:347-58. [PMID: 16239150 PMCID: PMC1480411 DOI: 10.1016/j.cell.2005.08.004] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 07/04/2005] [Accepted: 08/01/2005] [Indexed: 01/09/2023]
Abstract
Rhythmic cardiac contractions depend on the organized propagation of depolarizing and repolarizing wavefronts. Repolarization is spatially heterogeneous and depends largely on gradients of potassium currents. Gradient disruption in heart disease may underlie susceptibility to fatal arrhythmias, but it is not known how this gradient is established. We show that, in mice lacking the homeodomain transcription factor Irx5, the cardiac repolarization gradient is abolished due to increased Kv4.2 potassium-channel expression in endocardial myocardium, resulting in a selective increase of the major cardiac repolarization current, I(to,f), and increased susceptibility to arrhythmias. Myocardial Irx5 is expressed in a gradient opposite that of Kv4.2, and Irx5 represses Kv4.2 expression by recruiting mBop, a cardiac transcriptional repressor. Thus, an Irx5 repressor gradient negatively regulates potassium-channel-gene expression in the heart, forming an inverse I(to,f) gradient that ensures coordinated cardiac repolarization while also preventing arrhythmias.
Collapse
MESH Headings
- Action Potentials/genetics
- Action Potentials/physiology
- Animals
- Blotting, Western
- Crosses, Genetic
- Dogs
- Electrocardiography
- Electrophysiology
- Endocardium/cytology
- Endocardium/physiology
- Genes, Reporter
- Heart Ventricles/cytology
- Heterozygote
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Homozygote
- Immunohistochemistry
- Luciferases/metabolism
- Male
- Mice
- Mice, Knockout
- Models, Biological
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/physiology
- Patch-Clamp Techniques
- Pericardium/cytology
- Pericardium/physiology
- Potassium Channels, Voltage-Gated/genetics
- Potassium Channels, Voltage-Gated/metabolism
- Potassium Channels, Voltage-Gated/physiology
- Precipitin Tests
- Proteins/analysis
- RNA, Messenger/analysis
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Ventricular Function
- Ventricular Function, Left/physiology
Collapse
Affiliation(s)
- Danny L. Costantini
- Program in Cardiovascular Research
- Program in Developmental Biology
- The Heart and Stroke/Richard Lewar Centre of Excellence
- Department of Physiology
| | - Eric P. Arruda
- Program in Cardiovascular Research
- Program in Developmental Biology
- The Heart and Stroke/Richard Lewar Centre of Excellence
- Department of Molecular and Medical Genetics
| | - Pooja Agarwal
- Program in Cardiovascular Research
- Program in Developmental Biology
- The Heart and Stroke/Richard Lewar Centre of Excellence
- Department of Molecular and Medical Genetics
| | - Kyoung-Han Kim
- The Heart and Stroke/Richard Lewar Centre of Excellence
- Department of Physiology
| | - Yonghong Zhu
- Program in Cardiovascular Research
- The Heart and Stroke/Richard Lewar Centre of Excellence
| | - Wei Zhu
- Program in Cardiovascular Research
| | - Melanie Lebel
- Program in Developmental Biology
- Department of Molecular and Medical Genetics
| | - Chi Wa Cheng
- Program in Developmental Biology
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong, China
| | - Chong Y. Park
- Departments of Pediatrics and Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Stephanie A. Pierce
- Departments of Pediatrics and Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | | | | | - Toby Y. Chan
- Division of Cellular and Molecular Biology, The Toronto General Hospital Research Institute, Toronto, Ontario M5G 2C4, Canada
| | - M. Golam Kabir
- The Heart and Stroke/Richard Lewar Centre of Excellence
- Division of Cellular and Molecular Biology, The Toronto General Hospital Research Institute, Toronto, Ontario M5G 2C4, Canada
| | - Shuk Han Cheng
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong, China
| | - Mansoor Husain
- The Heart and Stroke/Richard Lewar Centre of Excellence
- Department of Physiology
- Department of Medicine
- McLaughlin Centre for Molecular Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Division of Cellular and Molecular Biology, The Toronto General Hospital Research Institute, Toronto, Ontario M5G 2C4, Canada
| | | | - Deepak Srivastava
- Departments of Pediatrics and Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Gil J. Gross
- Program in Cardiovascular Research
- Cardiology Division The Hospital for Sick Children Toronto, Ontario M5G 1X8 Canada
- The Heart and Stroke/Richard Lewar Centre of Excellence
- Department of Pediatrics
| | - Chi-chung Hui
- Program in Developmental Biology
- Department of Molecular and Medical Genetics
| | - Peter H. Backx
- The Heart and Stroke/Richard Lewar Centre of Excellence
- Department of Physiology
- Department of Medicine
- Division of Cardiology, University Health Network, Toronto, Ontario M5G 2C4, Canada
- *Correspondence: (P.H.B.); (B.G.B.)
| | - Benoit G. Bruneau
- Program in Cardiovascular Research
- Program in Developmental Biology
- The Heart and Stroke/Richard Lewar Centre of Excellence
- Department of Molecular and Medical Genetics
- *Correspondence: (P.H.B.); (B.G.B.)
| |
Collapse
|
115
|
Cheng CW, Chow RL, Lebel M, Sakuma R, Cheung HOL, Thanabalasingham V, Zhang X, Bruneau BG, Birch DG, Hui CC, McInnes RR, Cheng SH. The Iroquois homeobox gene, Irx5, is required for retinal cone bipolar cell development. Dev Biol 2005; 287:48-60. [PMID: 16182275 DOI: 10.1016/j.ydbio.2005.08.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 08/11/2005] [Accepted: 08/11/2005] [Indexed: 12/14/2022]
Abstract
In the mouse retina, at least ten distinct types of bipolar interneurons are involved in the transmission of visual signals from photoreceptors to ganglion cells. How bipolar interneuron diversity is generated during retinal development is poorly understood. Here, we show that Irx5, a member of the Iroquois homeobox gene family, is expressed in developing bipolar cells starting at postnatal day 5 and is localized to a subset of cone bipolar cells in the mature mouse retina. In Irx5-deficient mice, defects were observed in the expression of some, but not all, immunohistological markers that define mature Type 2 and Type 3 OFF cone bipolar cells, indicating a role for Irx5 in bipolar cell differentiation. The differentiation of these two bipolar cell types has previously been shown to require the homeodomain-CVC transcription factor, Vsx1. However, the defects observed in Irx5-deficient retinas do not coincide with a reduction of Vsx1 expression, and conversely, the expression of Irx5 in cone bipolar cells does not require the presence of a functional Vsx1 allele. These results indicate that there are at least two distinct genetic pathways (Irx5-dependent and Vsx1-dependent) regulating the development of Type 2 and Type 3 cone bipolar cells.
Collapse
Affiliation(s)
- Chi Wa Cheng
- Program in Developmental Biology, The Hospital for Sick Children, and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Abstract
Across the animal kingdom, color discrimination is achieved by comparing the outputs of photoreceptor cells (PRs) that have different spectral sensitivities. Much remains to be understood about how the pattern of these different PRs is generated and maintained. The Drosophila eye has long provided a beautiful system for understanding various aspects of retinal-cell differentiation. Recent progress in this field is revealing that a highly ordered series of events, involving cell-cell communication, localized signaling and stochastic choices, creates a complex mosaic of PRs that is reminiscent of the human retina. Notably, several of the factors used in generating the retinal mosaic of the fruitfly have corresponding functions in vertebrates that are likely to have similar roles.
Collapse
Affiliation(s)
- Mathias F Wernet
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Place, New York, NY 10003, USA
| | | |
Collapse
|
117
|
Lecaudey V, Anselme I, Dildrop R, Rüther U, Schneider-Maunoury S. Expression of the zebrafish Iroquois genes during early nervous system formation and patterning. J Comp Neurol 2005; 492:289-302. [PMID: 16217788 DOI: 10.1002/cne.20765] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Iroquois genes are involved in many patterning processes during development. In particular, they act as prepattern genes to control proneural gene expression both in Drosophila and in vertebrates. In this paper, we have analyzed the expression during embryogenesis of the 11 zebrafish Iroquois genes, with special interest for nervous system formation and patterning. During the first 2 days of development, Iroquois genes are expressed in distinct domains in the neuroepithelium, as well as in groups of neuronal progenitors and neurons. They are also expressed at different stages of placodal development. These expression patterns are similar to the patterns of the murine irx genes and also show features specific to teleosts. For the zebrafish Iroquois gene family, we find both specific patterns and patterns conserved within a cluster, between paralogues, or in most genes of the family. Overall, these expression data suggest functions for the Iroquois family of transcription factors in neural and placodal patterning, neurogenesis, and neuronal specification.
Collapse
Affiliation(s)
- Virginie Lecaudey
- Biologie du Développement, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7622, Université Pierre et Marie Curie, 75252 Paris, France
| | | | | | | | | |
Collapse
|
118
|
Dorsoventral boundary for organizing growth and planar polarity in the Drosophila eye. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1574-3349(05)14004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
119
|
Glavic A, Maris Honoré S, Gloria Feijóo C, Bastidas F, Allende ML, Mayor R. Role of BMP signaling and the homeoprotein iroquois in the specification of the cranial placodal field. Dev Biol 2004; 272:89-103. [PMID: 15242793 DOI: 10.1016/j.ydbio.2004.04.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Revised: 03/30/2004] [Accepted: 04/19/2004] [Indexed: 01/24/2023]
Abstract
Different types of placodes originate at the anterior border of the neural plate but it is still an unresolved question whether individual placodes arise as distinct ectodermal specializations in situ or whether all or a subset of the placodes originate from a common preplacodal field. We have analyzed the expression and function of the homeoprotein Iro1 in Xenopus and zebrafish embryos, and we have compared its expression with several preplacodal and placodal markers. Our results indicate that the iro1 genes are expressed in the preplacodal region, being one of the earliest markers for this area. We show that an interaction between the neural plate and the epidermis is able to induce the expression of several preplacodal markers, including Xiro1, by a similar mechanism to that previously shown for neural crest induction. In addition, we analyzed the role of BMP in the specification of the preplacodal field by studying the expression of the preplacodal markers Six1, Xiro1, and several specific placodal markers. We experimentally modified the level of BMP activity by three different methods. First, we implanted beads soaked with noggin in early neurula stage Xenopus embryos; second, we injected the mRNA that encodes a dominant negative of the BMP receptor into Xenopus and zebrafish embryos; and third, we grafted cells expressing chordin into zebrafish embryos. The results obtained using all three methods show that a reduction in the level of BMP activity leads to an expansion of the preplacodal and placodal region similar to what has been described for neural crest regions. By using conditional constructs of Xiro1, we performed gain and loss of function experiments. We show that Xiro1 play an important role in the specification of both the preplacodal field as well as individual placodes. We have also used inducible dominant negative and activator constructs of Notch signaling components to analyze the role of these factors on placodal development. Our results indicate that the a precise level of BMP activity is required to induce the neural plate border, including placodes and neural crest cells, that in this border the iro1 gene is activated, and that this activation is required for the specification of the placodes.
Collapse
Affiliation(s)
- Alvaro Glavic
- Millennium Nucleus in Developmental Biology, Laboratory of Developmental Biology, Facultad de Ciencias, Universidad de Chile, Santiago
| | | | | | | | | | | |
Collapse
|
120
|
Feijóo CG, Manzanares M, de la Calle-Mustienes E, Gómez-Skarmeta JL, Allende ML. The Irx gene family in zebrafish: genomic structure, evolution and initial characterization of irx5b. Dev Genes Evol 2004; 214:277-84. [PMID: 15064948 DOI: 10.1007/s00427-004-0401-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Accepted: 03/09/2004] [Indexed: 10/26/2022]
Abstract
Genes of the iroquois ( Iro/Irx) family are highly conserved from Drosophila to mammals and they have been implicated in a number of developmental processes. In flies, the Iro genes participate in patterning events in the early larva and in imaginal disk specification. In vertebrates, the Irx genes regulate developmental events during gastrulation, nervous system regionalization, activation of proneural genes and organ patterning. The Iro genes in Drosophila and the Irx genes of mammals show a clustered organization in the genome. Flies have a single cluster comprising three genes while mammals have two clusters also having three genes each. Moreover, experimental evidence in flies shows that transcriptional regulatory elements are shared among genes within the Iro cluster, suggesting that the same may be true in vertebrates. To date, the genomic organization of the Irx genes in non-mammalian species has not been studied. In this work, we have isolated the irx5b gene from zebrafish, Danio rerio, and have characterized its expression pattern. Furthermore, we have identified the complete set of Irx genes in two fish species, the zebrafish and pufferfish, Takifugu rubripes, and have determined the genomic organization of these genes. Our analysis indicates that early in fish evolutionary history, the Irx gene clusters have been duplicated and that subsequent events have maintained the clustered organization for some of the genes, while others have been lost. In total there are 11 existing Irx genes in zebrafish and 10 in pufferfish. We propose a new nomenclature for the zebrafish Irx genes based on the analysis of their sequences and their genomic relationships.
Collapse
Affiliation(s)
- Carmen Gloria Feijóo
- Millennium Nucleus in Developmental Biology and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | | | | | | | | |
Collapse
|
121
|
Dildrop R, Rüther U. Organization of Iroquois genes in fish. Dev Genes Evol 2004; 214:267-76. [PMID: 15133664 DOI: 10.1007/s00427-004-0402-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Accepted: 03/09/2004] [Indexed: 10/26/2022]
Abstract
In mammals, a total of six iroquois ( Irx) genes exist, which are organized into two clusters. Here we report on the organization of all iroquois genes present in fish, using zebrafish ( Danio rerio) and pufferfish ( Fugu rubripes and Tetraodon nigroviridis) as examples. A total of 10 Irx genes were found in pufferfish, and 11 in zebrafish; all but one of these genes are organized into clusters (four clusters plus one isolated gene locus). The "extra" fish clusters result from chromosome duplication in the fish lineage, after its divergence from tetrapod vertebrates. Two of the four fish clusters are highly conserved to the ones in mammals, with regard to similarity of genes and cluster architecture. Irx genes within the other two clusters have diverged in sequence and cluster organization, suggesting functional divergence. These results will allow us to use the zebrafish system for functional and comparative studies of iroquois genes in vertebrate development.
Collapse
Affiliation(s)
- Renate Dildrop
- Institute for Animal Developmental and Molecular Biology, University of Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | | |
Collapse
|
122
|
Singh A, Kango-Singh M, Choi KW, Sun YH. Dorso-ventral asymmetric functions of teashirt in Drosophila eye development depend on spatial cues provided by early DV patterning genes. Mech Dev 2004; 121:365-70. [PMID: 15110046 DOI: 10.1016/j.mod.2004.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Revised: 02/07/2004] [Accepted: 02/09/2004] [Indexed: 11/23/2022]
Abstract
The teashirt (tsh) gene has dorso-ventral (DV) asymmetric functions in Drosophila eye development: promoting eye development in dorsal and suppressing eye development in ventral by Wingless mediated Homothorax (HTH) induction [Development 129 (2002) 4271]. We looked for DV spatial cues required by tsh for its asymmetric functions. The dorsal Iroquois-Complex (Iro-C) genes and Delta (Dl) are required and sufficient for the tsh dorsal functions. The ventral Serrate (Ser), but not fringe (fng) or Lobe (L), is required and sufficient for the tsh ventral function. We propose that DV asymmetric function of tsh represents a novel tier of DV pattern regulation, which takes place after the spatial expression patterns of early DV patterning genes are established in the eye.
Collapse
Affiliation(s)
- Amit Singh
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
123
|
Lebel M, Agarwal P, Cheng CW, Kabir MG, Chan TY, Thanabalasingham V, Zhang X, Cohen DR, Husain M, Cheng SH, Bruneau BG, Hui CC. The Iroquois homeobox gene Irx2 is not essential for normal development of the heart and midbrain-hindbrain boundary in mice. Mol Cell Biol 2003; 23:8216-25. [PMID: 14585979 PMCID: PMC262378 DOI: 10.1128/mcb.23.22.8216-8225.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Iroquois homeobox (Irx) genes have been implicated in the specification and patterning of several organs in Drosophila and several vertebrate species. Misexpression studies of chick, Xenopus, and zebra fish embryos have demonstrated that Irx genes are involved in the specification of the midbrain-hindbrain boundary. All six murine Irx genes are expressed in the developing heart, suggesting that they might possess distinct functions during heart development, and a role for Irx4 in normal heart development has been recently demonstrated by gene-targeting experiments. Here we describe the generation and phenotypic analysis of an Irx2-deficient mouse strain. By targeted insertion of a lacZ reporter gene into the Irx2 locus, we show that lacZ expression reproduces most of the endogenous Irx2 expression pattern. Despite the dynamic expression of Irx2 in the developing heart, nervous system, and other organs, Irx2-deficient mice are viable, are fertile, and appear to be normal. Although chick Irx2 has been implicated in the development of the midbrain-hindbrain region, we show that Irx2-deficient mice develop a normal midbrain-hindbrain boundary. Furthermore, Irx2-deficient mice have normal cardiac morphology and function. Functional compensation by other Irx genes might account for the absence of a phenotype in Irx2-deficient mice. Further studies of mutant mice of other Irx genes as well as compound mutant mice will be necessary to uncover the functional roles of these evolutionarily conserved transcriptional regulators in development and disease.
Collapse
Affiliation(s)
- Mélanie Lebel
- Program in Developmental Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
de la Calle-Mustienes E, Lu Z, Cortés M, Andersen B, Modolell J, Gómez-Skarmeta JL. Xenopus Xlmo4 is a GATA cofactor during ventral mesoderm formation and regulates Ldb1 availability at the dorsal mesoderm and the neural plate. Dev Biol 2003; 264:564-81. [PMID: 14651938 DOI: 10.1016/j.ydbio.2003.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have identified and functionally characterized the Xenopus Xlmo4 gene, which encodes a member of the LIM-domain-only protein family. Xlmo4 is activated at gastrula stages in the mesodermal marginal zone probably in response to BMP4 signaling. Soon after, Xlmo4 is downregulated in the dorsal region of the mesoderm. This repression seems to be mediated by organizer-expressed repressors, such as Gsc. Xlmo4 downregulation is necessary for the proper formation of this territory. Increasing Xlmo4 function in this region downregulates Spemman Organizer genes and suppresses dorsal-anterior structures. By binding to Ldb1, Xlmo4 may restrict the availability of this cofactor for transcription factors expressed at the Spemman Organizer. In the ventral mesoderm, Xlmo4 is required to establish the identity of this territory by acting as a positive cofactor of GATA factors. In the neural ectoderm, Xlmo4 expression depends on Xiro homeoprotein activity. In this region, Xlmo4 suppresses differentiation of primary neurons and interferes with gene expression at the Isthmic Organizer, most likely by displacing Ldb1 from active transcription factor complexes required for these processes. Together, our data suggest that Xlmo4 uses distinct mechanisms to participate in different processes during development.
Collapse
Affiliation(s)
- Elisa de la Calle-Mustienes
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
125
|
Wernet MF, Labhart T, Baumann F, Mazzoni EO, Pichaud F, Desplan C. Homothorax Switches Function of Drosophila Photoreceptors from Color to Polarized Light Sensors. Cell 2003; 115:267-79. [PMID: 14636555 DOI: 10.1016/s0092-8674(03)00848-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Different classes of photoreceptors (PRs) allow animals to perceive various types of visual information. In the Drosophila eye, the outer PRs of each ommatidium are involved in motion detection while the inner PRs mediate color vision. In addition, flies use a specialized class of inner PRs in the "dorsal rim area" of the eye (DRA) to detect the e-vector of polarized light, allowing them to exploit skylight polarization for orientation. We show that homothorax is both necessary and sufficient for inner PRs to adopt the polarization-sensitive DRA fate instead of the color-sensitive default state. Homothorax increases rhabdomere size and uncouples R7-R8 communication to allow both cells to express the same opsin rather than different ones as required for color vision. Homothorax expression is induced by the iroquois complex and the wingless (wg) pathway. However, crucial wg pathway components are not required, suggesting that additional signals are involved.
Collapse
Affiliation(s)
- Mathias F Wernet
- New York University, Department of Biology, 100 Washington Square East, New York, NY 10003, USA
| | | | | | | | | | | |
Collapse
|
126
|
Diez del Corral R, Olivera-Martinez I, Goriely A, Gale E, Maden M, Storey K. Opposing FGF and Retinoid Pathways Control Ventral Neural Pattern, Neuronal Differentiation, and Segmentation during Body Axis Extension. Neuron 2003; 40:65-79. [PMID: 14527434 DOI: 10.1016/s0896-6273(03)00565-8] [Citation(s) in RCA: 449] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Vertebrate body axis extension involves progressive generation and subsequent differentiation of new cells derived from a caudal stem zone; however, molecular mechanisms that preserve caudal progenitors and coordinate differentiation are poorly understood. FGF maintains caudal progenitors and its attenuation is required for neuronal and mesodermal differentiation and to position segment boundaries. Furthermore, somitic mesoderm promotes neuronal differentiation in part by downregulating Fgf8. Here we identify retinoic acid (RA) as this somitic signal and show that retinoid and FGF pathways have opposing actions. FGF is a general repressor of differentiation, including ventral neural patterning, while RA attenuates Fgf8 in neuroepithelium and paraxial mesoderm, where it controls somite boundary position. RA is further required for neuronal differentiation and expression of key ventral neural patterning genes. Our data demonstrate that FGF and RA pathways are mutually inhibitory and suggest that their opposing actions provide a global mechanism that controls differentiation during axis extension.
Collapse
Affiliation(s)
- Ruth Diez del Corral
- Division of Cell and Developmental Biology, Faculty of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | | | | | | | | | | |
Collapse
|
127
|
Lowe CJ, Wu M, Salic A, Evans L, Lander E, Stange-Thomann N, Gruber CE, Gerhart J, Kirschner M. Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell 2003; 113:853-65. [PMID: 12837244 DOI: 10.1016/s0092-8674(03)00469-0] [Citation(s) in RCA: 351] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The chordate central nervous system has been hypothesized to originate from either a dorsal centralized, or a ventral centralized, or a noncentralized nervous system of a deuterostome ancestor. In an effort to resolve these issues, we examined the hemichordate Saccoglossus kowalevskii and studied the expression of orthologs of genes that are involved in patterning the chordate central nervous system. All 22 orthologs studied are expressed in the ectoderm in an anteroposterior arrangement nearly identical to that found in chordates. Domain topography is conserved between hemichordates and chordates despite the fact that hemichordates have a diffuse nerve net, whereas chordates have a centralized system. We propose that the deuterostome ancestor may have had a diffuse nervous system, which was later centralized during the evolution of the chordate lineage.
Collapse
Affiliation(s)
- Christopher J Lowe
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Schraets D, Lehmann T, Dingermann T, Marschalek R. MLL-mediated transcriptional gene regulation investigated by gene expression profiling. Oncogene 2003; 22:3655-68. [PMID: 12789274 DOI: 10.1038/sj.onc.1206438] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human mixed lineage leukemia (MLL) gene is involved in about 50 different chromosomal translocations, associated with the disease phenotype of acute leukemia. However, the normal function of MLL is less understood. Homozygous knockouts of murine Mll were embryonal lethal, while heterozygous disruption led to aberrant hox gene expression associated with skeletal malformations, growth retardation, and impaired hematopoiesis. To understand MLL functions on the molecular level, gene expression profiling experiments were performed with a pair of murine cell lines (MLL(+/+) and MLL(-/-)). Microarray hybridization experiments revealed 197 potential target genes that are differentially expressed, providing new and important clues about MLL functions.
Collapse
Affiliation(s)
- Dorothe Schraets
- Institute of Pharmaceutical Biology, Biocenter N230, University of Frankfurt/Main, Marie-Curie-Str. 9, D-60439 Frankfurt/Main, Germany
| | | | | | | |
Collapse
|
129
|
Perović S, Schröder HC, Sudek S, Grebenjuk VA, Batel R, Stifanić M, Müller IM, Müller WEG. Expression of one sponge Iroquois homeobox gene in primmorphs from Suberites domuncula during canal formation. Evol Dev 2003; 5:240-50. [PMID: 12752763 DOI: 10.1046/j.1525-142x.2003.03023.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sponges (Porifera) represent the evolutionary oldest multicellular animals. They are provided with the basic molecules involved in cell-cell and cell-matrix interactions. We report here the isolation and characterization of a complementary DNA from the sponge Suberites domuncula coding for the sponge homeobox gene, SUBDOIRX-a. The deduced polypeptide with a predicted Mr of 44,375 possesses the highly conserved Iroquois-homeodomain. We applied in situ hybridization to localize Iroquois in the sponge. The expression of this gene is highest in cells adjacent to the canals of the sponge in the medulla region. To study the expression of Iroquois during development, the in vitro primmorph system from S. domuncula was used. During the formation of these three-dimensional aggregates composed of proliferating cells, the expression of Iroquois depends on ferric iron and water current. An increased expression in response to water current is paralleled with the formation of canal-like pores in the primmorphs. It is suggested that Iroquois expression is involved in the formation of the aquiferous system, the canals in sponges and the canal-like structures in primmorphs.
Collapse
Affiliation(s)
- Sanja Perović
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Theokli C, Morsi El-Kadi AS, Morgan R. TALE class homeodomain gene Irx5 is an immediate downstream target for Hoxb4 transcriptional regulation. Dev Dyn 2003; 227:48-55. [PMID: 12701098 DOI: 10.1002/dvdy.10287] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Hox genes are a family of homeodomain-containing transcription factors that determine anteroposterior identity early on in development. Although much is now known about their regulation and function, very little is known of their effector (downstream target) genes. Here, we show that the TALE class homeodomain transcription factor Irx5 is a direct, positively regulated target of Hoxb4.
Collapse
Affiliation(s)
- Christopher Theokli
- Department of Anatomy and Developmental Biology, St. George's Hospital Medical School, London, United Kingdom
| | | | | |
Collapse
|
131
|
de la Calle-Mustienes E, Glavic A, Modolell J, Gómez-Skarmeta JL. Xiro homeoproteins coordinate cell cycle exit and primary neuron formation by upregulating neuronal-fate repressors and downregulating the cell-cycle inhibitor XGadd45-gamma. Mech Dev 2002; 119:69-80. [PMID: 12385755 DOI: 10.1016/s0925-4773(02)00296-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The iroquois (iro) homeobox genes participate in many developmental processes both in vertebrates and invertebrates, among them are neural plate formation and neural patterning. In this work, we study in detail Xenopus Iro (Xiro) function in primary neurogenesis. We show that misexpression of Xiro genes promotes the activation of the proneural gene Xngnr1 but suppresses neuronal differentiation. This is probably due to upregulation of at least two neuronal-fate repressors: XHairy2A and XZic2. Accordingly, primary neurons arise at the border of the Xiro expression domains. In addition, we identify XGadd45-gamma as a new gene repressed by Xiro. XGadd45-gamma encodes a cell-cycle inhibitor and is expressed in territories where cells will exit mitosis, such as those where primary neurons arise. Indeed, XGadd45-gamma misexpression causes cell cycle arrest. We conclude that, during Xenopus primary neuron formation, in Xiro expressing territories neuronal differentiation is impaired, while in adjacent cells, XGadd45-gamma may help cells stop dividing and differentiate as neurons.
Collapse
Affiliation(s)
- Elisa de la Calle-Mustienes
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
132
|
Gómez-Skarmeta JL, Modolell J. Iroquois genes: genomic organization and function in vertebrate neural development. Curr Opin Genet Dev 2002; 12:403-8. [PMID: 12100884 DOI: 10.1016/s0959-437x(02)00317-9] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We review recent work that shows that the iroquois (Iro/Irx) homeobox genes have conserved genomic organization in Drosophila and vertebrates. In addition, these genes play pivotal functions in the initial specification of the vertebrate neuroectoderm, and, in collaboration with other transcription factors, later subdivision of the anterior-posterior and dorso-ventral axis of the neuroectoderm.
Collapse
Affiliation(s)
- José Luis Gómez-Skarmeta
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | |
Collapse
|
133
|
Calleja M, Renaud O, Usui K, Pistillo D, Morata G, Simpson P. How to pattern an epithelium: lessons from achaete-scute regulation on the notum of Drosophila. Gene 2002; 292:1-12. [PMID: 12119094 DOI: 10.1016/s0378-1119(02)00628-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The notum of Drosophila is a good model system for the study of two-dimensional pattern formation. Attention has mainly focused on the regulation of the spatial expression of the genes of the achaete-scute complex (AS-C) that results in a stereotyped bristle pattern. Expression of AS-C genes has traditionally been viewed as a consequence of the activity of a group of factors that constitute a prepattern [Stern, 1954. Am. Sci. 42, 213]. The prepattern is thought to be composed of a mosaic of transcription factors that act in combination, through discrete cis-regulatory sequences, to activate expression of genes of the AS-C in small clusters of cells at the sites of each future bristle. Recent results challenge this view and suggest a hierarchy of activity amongst prepattern genes. It is suggested that in the medial notum, the selector-like gene pannier regulates the entire pattern, and is the only factor to directly activate AS-C genes. Other factors may play subsidiary roles. On the lateral notum genes of the iroquois complex appear to regulate the lateral pattern. Regulation of pannier and iroquois depends upon the signalling molecule Decapentaplegic. The majority of genes are expressed in either longitudinal or transverse domains on the notum and we discuss the possibility that pattern formation may rely on these two axial coordinates. We also discuss preliminary results suggesting that prepattern factors also regulate genes required for other, little studied, aspects of notal morphology, such as the muscle attachment sites and pigment distribution. Thus there may be a common prepattern for the entire structure.
Collapse
Affiliation(s)
- Manuel Calleja
- Centro de Biologia Molecular, Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
134
|
de la Calle-Mustienes E, Modolell J, Gómez-Skarmeta JL. The Xiro-repressed gene CoREST is expressed in Xenopus neural territories. Mech Dev 2002; 110:209-11. [PMID: 11744385 DOI: 10.1016/s0925-4773(01)00565-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The iroquois (iro) genes encode evolutionary conserved homeoproteins that participate in many developmental processes [reviewed in Development 128 (2001) 2847]. In Xenopus, the Iro protein Xiro1 is a repressor, required during gastrulation for neural plate formation, that downregulates Bmp4. During neurulation, Xiro1 participates in the pattering of the neuroectoderm. In this work, we report the cloning and pattern of expression of XCoREST, another gene repressed by Xiro1. During Xenopus development, XCoREST is expressed in territories in which neurogenesis takes place.
Collapse
Affiliation(s)
- Elisa de la Calle-Mustienes
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|