101
|
Lee SH, Oh KN, Han Y, Choi YH, Lee KY. Estrogen Receptor α Regulates Dlx3-Mediated Osteoblast Differentiation. Mol Cells 2016; 39:156-62. [PMID: 26674964 PMCID: PMC4757804 DOI: 10.14348/molcells.2016.2291] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 10/31/2015] [Accepted: 11/03/2015] [Indexed: 01/01/2023] Open
Abstract
Estrogen receptor α (ER-α), which is involved in bone metabolism and breast cancer, has been shown to have transcriptional targets. Dlx3 is essential for the skeletal development and plays an important role in osteoblast differentiation. Various osteogenic stimulators and transcription factors can induce the protein expression of Dlx3. However, the regulatory function of ER-α in the Dlx3 mediated osteogenic process remains unknown. Therefore, we investigated the regulation of Dlx3 and found that ER-α is a positive regulator of Dlx3 transcription in BMP2-induced osteoblast differentiation. We also found that ER-α interacts with Dlx3 and increases its transcriptional activity and DNA binding affinity. Furthermore, we demonstrated that the regulation of Dlx3 activity by ER-α is independent of the ligand (estradiol) binding domain. These results indicate that Dlx3 is a novel target of ER-α, and that ER-α regulates the osteoblast differentiation through modulation of Dlx3 expression and/or interaction with Dlx3.
Collapse
Affiliation(s)
- Sung Ho Lee
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757,
Korea
| | - Kyo-Nyeo Oh
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757,
Korea
| | - Younho Han
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757,
Korea
| | - You Hee Choi
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757,
Korea
| | - Kwang-Youl Lee
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757,
Korea
| |
Collapse
|
102
|
Morino Y, Koga H, Wada H. The conserved genetic background for pluteus arm development in brittle stars and sea urchin. Evol Dev 2016; 18:89-95. [DOI: 10.1111/ede.12174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yoshiaki Morino
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8572 Japan
| | - Hiroyuki Koga
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8572 Japan
| | - Hiroshi Wada
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8572 Japan
| |
Collapse
|
103
|
Córdoba S, Requena D, Jory A, Saiz A, Estella C. The evolutionary conserved transcription factor Sp1 controls appendage growth through Notch signaling. Development 2016; 143:3623-3631. [DOI: 10.1242/dev.138735] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/12/2016] [Indexed: 12/25/2022]
Abstract
The appendages of arthropods and vertebrates are not homologous structures, although the underlying genetic mechanisms that pattern them are highly conserved. Members of the Sp family of transcription factors are expressed in the developing limbs and their function is required for limb growth in both insects and chordates. Despite the fundamental and conserved role that these transcription factors play during appendage development, their target genes and the mechanisms in which they participate to control limb growth are mostly unknown. We analyzed here the individual contributions of two Drosophila Sp members, buttonhead (btd) and Sp1, during leg development. We show that Sp1 plays a more prominent role controlling leg growth than btd. We identified a regulatory function of Sp1 in Notch signaling, and performed a genome wide transcriptome analysis to identify other potential Sp1 target genes contributing to leg growth. Our data suggest a mechanism by which the Sp factors control appendage growth through the Notch signaling.
Collapse
Affiliation(s)
- Sergio Córdoba
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - David Requena
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Aurelie Jory
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Almudena Saiz
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Carlos Estella
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
104
|
Conte D, Garaffo G, Lo Iacono N, Mantero S, Piccolo S, Cordenonsi M, Perez-Morga D, Orecchia V, Poli V, Merlo GR. The apical ectodermal ridge of the mouse model of ectrodactyly Dlx5;Dlx6-/- shows altered stratification and cell polarity, which are restored by exogenous Wnt5a ligand. Hum Mol Genet 2015; 25:740-54. [PMID: 26685160 PMCID: PMC4743692 DOI: 10.1093/hmg/ddv514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/10/2015] [Indexed: 02/06/2023] Open
Abstract
The congenital malformation split hand/foot (SHFM) is characterized by missing central fingers and dysmorphology or fusion of the remaining ones. Type-1 SHFM is linked to deletions/rearrangements of the DLX5–DLX6 locus and point mutations in the DLX5 gene. The ectrodactyly phenotype is reproduced in mice by the double knockout (DKO) of Dlx5 and Dlx6. During limb development, the apical ectodermal ridge (AER) is a key-signaling center responsible for early proximal–distal growth and patterning. In Dlx5;6 DKO hindlimbs, the central wedge of the AER loses multilayered organization and shows down-regulation of FGF8 and Dlx2. In search for the mechanism, we examined the non-canonical Wnt signaling, considering that Dwnt-5 is a target of distalless in Drosophila and the knockout of Wnt5, Ryk, Ror2 and Vangl2 in the mouse causes severe limb malformations. We found that in Dlx5;6 DKO limbs, the AER expresses lower levels of Wnt5a, shows scattered β-catenin responsive cells and altered basolateral and planar cell polarity (PCP). The addition of Wnt5a to cultured embryonic limbs restored the expression of AER markers and its stratification. Conversely, the inhibition of the PCP molecule c-jun N-terminal kinase caused a loss of AER marker expression. In vitro, the addition of Wnt5a on mixed primary cultures of embryonic ectoderm and mesenchyme was able to confer re-polarization. We conclude that the Dlx-related ectrodactyly defect is associated with the loss of basoapical and PCP, due to reduced Wnt5a expression and that the restoration of the Wnt5a level is sufficient to partially reverts AER misorganization and dysmorphology.
Collapse
Affiliation(s)
- Daniele Conte
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Giulia Garaffo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Nadia Lo Iacono
- Human Genome Department, Istituto Tecnologie Biomediche, CNR Milano, Italy
| | - Stefano Mantero
- Human Genome Department, Istituto Tecnologie Biomediche, CNR Milano, Italy
| | - Stefano Piccolo
- Department of Molecular Medicine, University of Padova, Padova, Italy and
| | | | - David Perez-Morga
- Laboratoire de Parasitologie Moléculaire, IBMM-DBM, Université Libre de Bruxelles, B-6041 Gosselies, Belgium
| | - Valeria Orecchia
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Giorgio R Merlo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy,
| |
Collapse
|
105
|
Plavicki JS, Squirrell JM, Eliceiri KW, Boekhoff-Falk G. Expression of the Drosophila homeobox gene, Distal-less, supports an ancestral role in neural development. Dev Dyn 2015; 245:87-95. [PMID: 26472170 DOI: 10.1002/dvdy.24359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/26/2015] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Distal-less (Dll) encodes a homeodomain transcription factor expressed in developing appendages of organisms throughout metazoan phylogeny. Based on earlier observations in the limbless nematode Caenorhabditis elegans and the primitive chordate amphioxus, it was proposed that Dll had an ancestral function in nervous system development. Consistent with this hypothesis, Dll is necessary for the development of both peripheral and central components of the Drosophila olfactory system. Furthermore, vertebrate homologs of Dll, the Dlx genes, play critical roles in mammalian brain development. RESULTS Using fluorescent immunohistochemistry of fixed samples and multiphoton microscopy of living Drosophila embryos, we show that Dll is expressed in the embryonic, larval and adult central nervous system and peripheral nervous system (PNS) in embryonic and larval neurons, brain and ventral nerve cord glia, as well as in PNS structures associated with chemosensation. In adult flies, Dll expression is expressed in the optic lobes, central brain regions and the antennal lobes. CONCLUSIONS Characterization of Dll expression in the developing nervous system supports a role of Dll in neural development and function and establishes an important basis for determining the specific functional roles of Dll in Drosophila development and for comparative studies of Drosophila Dll functions with those of its vertebrate counterparts.
Collapse
Affiliation(s)
- Jessica S Plavicki
- Neuroscience Training Program, University of Wisconsin-Madison.,School of Pharmacy, University of Wisconsin-Madison
| | - Jayne M Squirrell
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison.,Department of Biomedical Engineering, University of Wisconsin-Madison
| | - Grace Boekhoff-Falk
- Neuroscience Training Program, University of Wisconsin-Madison.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison
| |
Collapse
|
106
|
Stouffer MA, Golden JA, Francis F. Neuronal migration disorders: Focus on the cytoskeleton and epilepsy. Neurobiol Dis 2015; 92:18-45. [PMID: 26299390 DOI: 10.1016/j.nbd.2015.08.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/05/2015] [Accepted: 08/12/2015] [Indexed: 01/28/2023] Open
Abstract
A wide spectrum of focal, regional, or diffuse structural brain abnormalities, collectively known as malformations of cortical development (MCDs), frequently manifest with intellectual disability (ID), epilepsy, and/or autistic spectrum disorder (ASD). As the acronym suggests, MCDs are perturbations of the normal architecture of the cerebral cortex and hippocampus. The pathogenesis of these disorders remains incompletely understood; however, one area that has provided important insights has been the study of neuronal migration. The amalgamation of human genetics and experimental studies in animal models has led to the recognition that common genetic causes of neurodevelopmental disorders, including many severe epilepsy syndromes, are due to mutations in genes regulating the migration of newly born post-mitotic neurons. Neuronal migration genes often, though not exclusively, code for proteins involved in the function of the cytoskeleton. Other cellular processes, such as cell division and axon/dendrite formation, which similarly depend on cytoskeletal functions, may also be affected. We focus here on how the susceptibility of the highly organized neocortex and hippocampus may be due to their laminar organization, which involves the tight regulation, both temporally and spatially, of gene expression, specialized progenitor cells, the migration of neurons over large distances and a birthdate-specific layering of neurons. Perturbations in neuronal migration result in abnormal lamination, neuronal differentiation defects, abnormal cellular morphology and circuit formation. Ultimately this results in disorganized excitatory and inhibitory activity leading to the symptoms observed in individuals with these disorders.
Collapse
Affiliation(s)
- Melissa A Stouffer
- INSERM UMRS 839, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Jeffrey A Golden
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Fiona Francis
- INSERM UMRS 839, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Paris, France; Institut du Fer à Moulin, Paris, France.
| |
Collapse
|
107
|
Potts MB, Siu JJ, Price JD, Salinas RD, Cho MJ, Ramos AD, Hahn J, Margeta M, Oldham MC, Lim DA. Analysis of Mll1 deficiency identifies neurogenic transcriptional modules and Brn4 as a factor for direct astrocyte-to-neuron reprogramming. Neurosurgery 2015; 75:472-82; discussion 482. [PMID: 24887289 DOI: 10.1227/neu.0000000000000452] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Mixed lineage leukemia-1 (Mll1) epigenetically regulates gene expression patterns that specify cellular identity in both embryonic development and adult stem cell populations. In the adult mouse brain, multipotent neural stem cells (NSCs) in the subventricular zone generate new neurons throughout life, and Mll1 is required for this postnatal neurogenesis but not for glial cell differentiation. Analysis of Mll1-dependent transcription may identify neurogenic genes useful for the direct reprogramming of astrocytes into neurons. OBJECTIVE To identify Mll1-dependent transcriptional modules and to determine whether genes in the neurogenic modules can be used to directly reprogram astrocytes into neurons. METHODS We performed gene coexpression module analysis on microarray data from differentiating wild-type and Mll1-deleted subventricular zone NSCs. Key developmental regulators belonging to the neurogenic modules were overexpressed in Mll1-deleted cells and cultured cortical astrocytes, and cell phenotypes were analyzed by immunocytochemistry and electrophysiology. RESULTS Transcriptional modules that correspond to neurogenesis were identified in wild-type NSCs. Modules related to astrocytes and oligodendrocytes were enriched in Mll1-deleted NSCs, consistent with their gliogenic potential. Overexpression of genes selected from the neurogenic modules enhanced the production of neurons from Mll1-deleted cells, and overexpression of Brn4 (Pou3f4) in nonneurogenic cortical astroglia induced their transdifferentiation into electrophysiologically active neurons. CONCLUSION Our results demonstrate that Mll1 is required for the expression of neurogenic but not gliogenic transcriptional modules in a multipotent NSC population and further indicate that specific Mll1-dependent genes may be useful for direct reprogramming strategies.
Collapse
Affiliation(s)
- Matthew B Potts
- *Department of Neurological Surgery, ‡The Eli and Edythe Broad Institute of Regeneration Medicine and Stem Cell Research, §Department of Pathology, and ¶Department of Neurology University of California, San Francisco, San Francisco, California; and ‖Surgical Service, San Francisco Veterans Affairs Medical Center, San Francisco, California
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Trinh BQ, Barengo N, Kim SB, Lee JS, Zweidler-McKay PA, Naora H. The homeobox gene DLX4 regulates erythro-megakaryocytic differentiation by stimulating IL-1β and NF-κB signaling. J Cell Sci 2015. [PMID: 26208636 PMCID: PMC4541043 DOI: 10.1242/jcs.168187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Megakaryocyte and erythroid development are tightly controlled by a repertoire of cytokines, but it is not clear how cytokine-activated signaling pathways are controlled during development of these two lineages. Here, we identify that expression of DLX4, a transcription factor encoded by a homeobox gene, increases during megakaryopoiesis but decreases during erythropoiesis. Enforced expression of DLX4 in CD34(+) stem and progenitor cells and in bipotent K562 cells induced lineage markers and morphologic features of megakaryocytes and repressed erythroid marker expression and hemoglobin levels. Converse results were obtained when DLX4 was knocked down. Gene Ontology and Gene Set Enrichment Analyses of genome-wide changes in gene expression revealed that DLX4 induces a megakaryocytic transcriptional program and inhibits an erythroid transcriptional program. DLX4 also induced gene signatures that are associated with nuclear factor κB (NF-κB) signaling. The ability of DLX4 to promote megakaryocyte development at the expense of erythroid generation was diminished by blocking NF-κB activity or by repressing IL1B, a transcriptional target of DLX4. Collectively, our findings indicate that DLX4 exerts opposing effects on the megakaryocytic and erythroid lineages in part by inducing IL-1β and NF-κB signaling.
Collapse
Affiliation(s)
- Bon Q Trinh
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Box 108, Houston, TX 77030, USA
| | - Nicolas Barengo
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Box 108, Houston, TX 77030, USA
| | - Sang Bae Kim
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Box 950, Houston, TX 77030, USA
| | - Ju-Seog Lee
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Box 950, Houston, TX 77030, USA
| | - Patrick A Zweidler-McKay
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Box 853, Houston, TX 77030, USA
| | - Honami Naora
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Box 108, Houston, TX 77030, USA
| |
Collapse
|
109
|
Cajigas I, Leib DE, Cochrane J, Luo H, Swyter KR, Chen S, Clark BS, Thompson J, Yates JR, Kingston RE, Kohtz JD. Evf2 lncRNA/BRG1/DLX1 interactions reveal RNA-dependent inhibition of chromatin remodeling. Development 2015; 142:2641-52. [PMID: 26138476 DOI: 10.1242/dev.126318] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 06/09/2015] [Indexed: 01/12/2023]
Abstract
Transcription-regulating long non-coding RNAs (lncRNAs) have the potential to control the site-specific expression of thousands of target genes. Previously, we showed that Evf2, the first described ultraconserved lncRNA, increases the association of transcriptional activators (DLX homeodomain proteins) with key DNA enhancers but represses gene expression. In this report, mass spectrometry shows that the Evf2-DLX1 ribonucleoprotein (RNP) contains the SWI/SNF-related chromatin remodelers Brahma-related gene 1 (BRG1, SMARCA4) and Brahma-associated factor (BAF170, SMARCC2) in the developing mouse forebrain. Evf2 RNA colocalizes with BRG1 in nuclear clouds and increases BRG1 association with key DNA regulatory enhancers in the developing forebrain. While BRG1 directly interacts with DLX1 and Evf2 through distinct binding sites, Evf2 directly inhibits BRG1 ATPase and chromatin remodeling activities. In vitro studies show that both RNA-BRG1 binding and RNA inhibition of BRG1 ATPase/remodeling activity are promiscuous, suggesting that context is a crucial factor in RNA-dependent chromatin remodeling inhibition. Together, these experiments support a model in which RNAs convert an active enhancer to a repressed enhancer by directly inhibiting chromatin remodeling activity, and address the apparent paradox of RNA-mediated stabilization of transcriptional activators at enhancers with a repressive outcome. The importance of BRG1/RNA and BRG1/homeodomain interactions in neurodevelopmental disorders is underscored by the finding that mutations in Coffin-Siris syndrome, a human intellectual disability disorder, localize to the BRG1 RNA-binding and DLX1-binding domains.
Collapse
Affiliation(s)
- Ivelisse Cajigas
- Developmental Biology and Department of Pediatrics, Stanley Manne Children's Research Institute and Feinberg School of Medicine, Northwestern University, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | - David E Leib
- Developmental Biology and Department of Pediatrics, Stanley Manne Children's Research Institute and Feinberg School of Medicine, Northwestern University, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | - Jesse Cochrane
- Department of Molecular Biology, Harvard University, Boston, MA 02114, USA
| | - Hao Luo
- Developmental Biology and Department of Pediatrics, Stanley Manne Children's Research Institute and Feinberg School of Medicine, Northwestern University, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | - Kelsey R Swyter
- Developmental Biology and Department of Pediatrics, Stanley Manne Children's Research Institute and Feinberg School of Medicine, Northwestern University, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | - Sean Chen
- Developmental Biology and Department of Pediatrics, Stanley Manne Children's Research Institute and Feinberg School of Medicine, Northwestern University, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | - Brian S Clark
- Developmental Biology and Department of Pediatrics, Stanley Manne Children's Research Institute and Feinberg School of Medicine, Northwestern University, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | | | - John R Yates
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert E Kingston
- Department of Molecular Biology, Harvard University, Boston, MA 02114, USA
| | - Jhumku D Kohtz
- Developmental Biology and Department of Pediatrics, Stanley Manne Children's Research Institute and Feinberg School of Medicine, Northwestern University, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| |
Collapse
|
110
|
Apterous A modulates wing size, bristle formation and patterning in Nilaparvata lugens. Sci Rep 2015; 5:10526. [PMID: 25995006 PMCID: PMC4440214 DOI: 10.1038/srep10526] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 04/17/2015] [Indexed: 11/24/2022] Open
Abstract
Apterous A (apA), a member of the LIM-homeobox gene family, plays a critical role in the development of wing. The achaete-scute Complex (AS-C) encodes basic helix-loop-helix (bHLH) transcription factors and functions in bristle development. In the present study, we cloned apA (NlapA) and an achaete-scute homologue (NlASH) from N. lugens. Levels of NlapA and NlASH were higher in nymphs than adults, with particularly high expression in the thorax of nymphs. NlapA expressed more highly in nymphs of the macropterous strain (MS) than those of the brachypterous strain (BS) at 2nd and 4th instar. Knockdown of NlapA and NlASH in vivo generated similar phenotypic defects in the wing (loss-of-bristles, twisted or erect wing). Silencing of NlapA in nymphs of MS led to decreased wing size in adults. Moreover, depletion of NlapA suppressed expression of NlDl, Nlsal, Nlser, Nlvg and Nlwg, both in MS and BS, but induced differential responses of Nlubx and Nlnotch expression between MS and BS. Notably, expression of NlASH was regulated by NlapA. These results collectively indicate that NlapA is an upstream modulator of wing size, bristle formation and patterning. Further studies on DNA-protein and protein-protein interactions are required to elucidate NlapA-mediated regulation of wing development.
Collapse
|
111
|
Wu D, Mandal S, Choi A, Anderson A, Prochazkova M, Perry H, Gil-Da-Silva-Lopes VL, Lao R, Wan E, Tang PLF, Kwok PY, Klein O, Zhuan B, Slavotinek AM. DLX4 is associated with orofacial clefting and abnormal jaw development. Hum Mol Genet 2015; 24:4340-52. [PMID: 25954033 DOI: 10.1093/hmg/ddv167] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/05/2015] [Indexed: 01/10/2023] Open
Abstract
Cleft lip and/or palate (CL/P) are common structural birth defects in humans. We used exome sequencing to study a patient with bilateral CL/P and identified a single nucleotide deletion in the patient and her similarly affected son—c.546_546delG, predicting p.Gln183Argfs*57 in the Distal-less 4 (DLX4) gene. The sequence variant was absent from databases, predicted to be deleterious and was verified by Sanger sequencing. In mammals, there are three Dlx homeobox clusters with closely located gene pairs (Dlx1/Dlx2, Dlx3/Dlx4, Dlx5/Dlx6). In situ hybridization showed that Dlx4 was expressed in the mesenchyme of the murine palatal shelves at E12.5, prior to palate closure. Wild-type human DLX4, but not mutant DLX4_c.546delG, could activate two murine Dlx conserved regulatory elements, implying that the mutation caused haploinsufficiency. We showed that reduced DLX4 expression after short interfering RNA treatment in a human cell line resulted in significant up-regulation of DLX3, DLX5 and DLX6, with reduced expression of DLX2 and significant up-regulation of BMP4, although the increased BMP4 expression was demonstrated only in HeLa cells. We used antisense morpholino oligonucleotides to target the orthologous Danio rerio gene, dlx4b, and found reduced cranial size and abnormal cartilaginous elements. We sequenced DLX4 in 155 patients with non-syndromic CL/P and CP, but observed no sequence variants. From the published literature, Dlx1/Dlx2 double homozygous null mice and Dlx5 homozygous null mice both have clefts of the secondary palate. This first finding of a DLX4 mutation in a family with CL/P establishes DLX4 as a potential cause of human clefts.
Collapse
Affiliation(s)
- Di Wu
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shyamali Mandal
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alex Choi
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - August Anderson
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michaela Prochazkova
- Division of Craniofacial Anomalies, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA, Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the ASCR, v. v.i., Prague, Czech Republic, Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94114, USA
| | - Hazel Perry
- Division of Craniofacial Anomalies, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | | | - Richard Lao
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, USA and
| | - Eunice Wan
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, USA and
| | - Paul Ling-Fung Tang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, USA and
| | - Pui-yan Kwok
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, USA and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Ophir Klein
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA, Division of Craniofacial Anomalies, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA, Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94114, USA
| | - Bian Zhuan
- Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, China
| | - Anne M Slavotinek
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA,
| |
Collapse
|
112
|
Methylated DLX4 Predicts Response to Pathologic Stage I Non-Small Cell Lung Cancer Resection. Ann Thorac Surg 2015; 99:1746-54. [DOI: 10.1016/j.athoracsur.2014.12.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 12/05/2014] [Accepted: 12/16/2014] [Indexed: 12/31/2022]
|
113
|
Levi G, Gitton Y. Dlx genes and the maintenance of bone homeostasis and skeletal integrity. Cell Death Differ 2015; 21:1345-6. [PMID: 25109593 DOI: 10.1038/cdd.2014.94] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- G Levi
- 201;volution des Régulations Endocriniennes, CNRS UMR7221, Muséum National d'Histoire Naturelle, Paris 75005, France
| | - Y Gitton
- 201;volution des Régulations Endocriniennes, CNRS UMR7221, Muséum National d'Histoire Naturelle, Paris 75005, France
| |
Collapse
|
114
|
Arshad A, Vose LR, Vinukonda G, Hu F, Yoshikawa K, Csiszar A, Brumberg JC, Ballabh P. Extended Production of Cortical Interneurons into the Third Trimester of Human Gestation. Cereb Cortex 2015; 26:2242-2256. [PMID: 25882040 DOI: 10.1093/cercor/bhv074] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In humans, the developmental origins of interneurons in the third trimester of pregnancy and the timing of completion of interneuron neurogenesis have remained unknown. Here, we show that the total and cycling Nkx2.1(+)and Dlx2(+)interneuron progenitors as well as Sox2(+)precursor cells were higher in density in the medial ganglionic eminence (MGE) compared with the lateral ganglionic eminence and cortical ventricular/subventricular zone (VZ/SVZ) of 16-35 gw subjects. The proliferation of these progenitors reduced as a function of gestational age, almost terminating by 35 gw. Proliferating Dlx2(+)cells were higher in density in the caudal ganglionic eminence (CGE) compared with the MGE, and persisted beyond 35 gw. Consistent with these findings, Sox2, Nkx2.1, Dlx2, and Mash1 protein levels were higher in the ganglionic eminences relative to the cortical VZ/SVZ. The density of gamma-aminobutyric acid-positive (GABA(+)) interneurons was higher in the cortical VZ/SVZ relative to MGE, but Nkx2.1 or Dlx2-expressing GABA(+)cells were more dense in the MGE compared with the cortical VZ/SVZ. The data suggest that the MGE and CGE are the primary source of cortical interneurons. Moreover, their generation continues nearly to the end of pregnancy, which may predispose premature infants to neurobehavioral disorders.
Collapse
Affiliation(s)
| | - Linnea R Vose
- Department of Pediatrics.,Department of Cell Biology and Anatomy, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA
| | - Govindaiah Vinukonda
- Department of Pediatrics.,Department of Cell Biology and Anatomy, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA
| | | | - Kazuaki Yoshikawa
- Institute for Protein Research Osaka University Yamadaoka, Osaka, Japan
| | - Anna Csiszar
- Department of Geriatric Medicine, Reynolds Oklahoma Center of Aging, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Joshua C Brumberg
- Psychology and Biology PhD Programs, The Graduate Center, City University of New York, New York, NY, USA.,Department of Psychology, Queens College, City University of New York, Flushing, NY, USA
| | - Praveen Ballabh
- Department of Pediatrics.,Department of Cell Biology and Anatomy, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA
| |
Collapse
|
115
|
Liu J, Wang H, Chua NH. Long noncoding RNA transcriptome of plants. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:319-28. [PMID: 25615265 DOI: 10.1111/pbi.12336] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/09/2014] [Accepted: 12/16/2014] [Indexed: 05/20/2023]
Abstract
Since their discovery more than two decades ago, animal long noncoding RNAs (lncRNAs) have emerged as important regulators of many biological processes. Recently, a large number of lncRNAs have also been identified in higher plants, and here, we review their identification, classification and known regulatory functions in various developmental events and stress responses. Knowledge gained from a deeper understanding of this special group of noncoding RNAs may lead to biotechnological improvement of crops. Some possible examples in this direction are discussed.
Collapse
Affiliation(s)
- Jun Liu
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York, NY, USA
| | | | | |
Collapse
|
116
|
Newman SA. The Developmental Genetic Toolkit and the Molecular Homology—Analogy Paradox. ACTA ACUST UNITED AC 2015. [DOI: 10.1162/biot.2006.1.1.12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
117
|
Sun H, Liu Z, Li B, Dai J, Wang X. Effects of DLX2 overexpression on the osteogenic differentiation of MC3T3-E1 cells. Exp Ther Med 2015; 9:2173-2179. [PMID: 26136955 DOI: 10.3892/etm.2015.2378] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 01/30/2015] [Indexed: 11/06/2022] Open
Abstract
Distal-less genes (DLX) play important roles in regulating organism development. DLX2 is crucial for the differentiation and development of the primordium, which determines the subsequent development and phenotype of the maxillofacial skeletal patterns, and is the primary candidate gene that regulates the development of the first branchial arch. The aim of the present study was to investigate the effects of DLX2 overexpression on the osteogenic differentiation of MC3T3-E1 cells in vitro. A DLX2-expression retrovirus vector was constructed by subcloning with a murine stem cell virus (MSCV) and verified by sequencing. MC3T3-E1 cells were transfected with pMSCV-DLX2 and stable clones were selected with puromycin. The mRNA and protein expression levels of DLX2 were determined using quantitative polymerase chain reaction (PCR) and western blot analysis, respectively. In addition, the expression levels of the osteogenic biomarkers, alkaline phosphatase (ALP), osteocalcin (OCN), runt-related transcription factor (RUNX)2 and Msh homeobox (MSX)2, were assessed by quantitative PCR. ALP detection and Alizarin red staining were conducted to evaluate the effect of DLX2 overexpression on osteogenic differentiation. The data were analyzed by analysis of variance using the Student-Newman-Keuls method. Successful pMSCV-DLX2 construction, as verified by direct sequencing, enabled DLX2 overexpression in vitro. Enhanced ALP activity and Alizarin red staining were observed in the MC3T3-E1-DLX2 cells when compared with the control group. During osteogenic induction, DLX2 overexpression was demonstrated to upregulate ALP and MSX2 expression at the early stage and OCN expression at the late stage, while no statistically significant difference was observed in RUNX2 expression when compared with the control group. Therefore, DLX2 overexpression in vitro induced the osteogenic differentiation of MC3T3-E1 cells via upregulating bone formation-associated genes, such as ALP and MSX2.
Collapse
Affiliation(s)
- Hao Sun
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Zhixu Liu
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Biao Li
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Jiewen Dai
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Xudong Wang
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| |
Collapse
|
118
|
Qadir AS, Um S, Lee H, Baek K, Seo BM, Lee G, Kim GS, Woo KM, Ryoo HM, Baek JH. miR-124 Negatively Regulates Osteogenic Differentiation and In vivo Bone Formation of Mesenchymal Stem Cells. J Cell Biochem 2015; 116:730-42. [DOI: 10.1002/jcb.25026] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 11/21/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Abdul S. Qadir
- Department of Molecular Genetics; School of Dentistry and Dental Research Institute; Seoul National University; Seoul 110-744 Korea
| | - Soyoun Um
- Department of Dental Science; School of Dentistry and Dental Research Institute; Seoul National University; Seoul 110-744 Korea
| | - Heesu Lee
- Department of Oral Anatomy; Research Institute of Oral Science; College of Dentistry; Gangneung-Wonju National University; Gangwondo 210-702 Korea
| | - Kyunghwa Baek
- Department of Pharmacology; Research Institute of Oral Science; College of Dentistry, Gangneung-Wonju National University; Gangwondo 210-702 Korea
| | - Byoung Moo Seo
- Department of Oral and Maxillofacial Surgery; School of Dentistry and Dental Research Institute; Seoul National University; Seoul 110-744 Korea
| | - Gene Lee
- Department of Molecular Genetics; School of Dentistry and Dental Research Institute; Seoul National University; Seoul 110-744 Korea
| | - Gwan-Shik Kim
- Department of Molecular Genetics; School of Dentistry and Dental Research Institute; Seoul National University; Seoul 110-744 Korea
| | - Kyung Mi Woo
- Department of Molecular Genetics; School of Dentistry and Dental Research Institute; Seoul National University; Seoul 110-744 Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics; School of Dentistry and Dental Research Institute; Seoul National University; Seoul 110-744 Korea
| | - Jeong-Hwa Baek
- Department of Molecular Genetics; School of Dentistry and Dental Research Institute; Seoul National University; Seoul 110-744 Korea
| |
Collapse
|
119
|
Lee SY, Jeon HM, Ju MK, Jeong EK, Kim CH, Yoo MA, Park HG, Han SI, Kang HS. Dlx-2 is implicated in TGF-β- and Wnt-induced epithelial-mesenchymal, glycolytic switch, and mitochondrial repression by Snail activation. Int J Oncol 2015; 46:1768-80. [PMID: 25651912 DOI: 10.3892/ijo.2015.2874] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/05/2015] [Indexed: 01/09/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) and oncogenic metabolism (including glycolytic switch) are important for tumor development and progression. Here, we show that Dlx-2, one of distal-less (Dlx) homeobox genes, induces EMT and glycolytic switch by activation of Snail. In addition, it was induced by TGF-β and Wnt and regulates TGF-β- and Wnt-induced EMT and glycolytic switch by activating Snail. We also found that TGF-β/Wnt suppressed cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial respiratory chain, in a Dlx-2/Snail-dependent manner. TGF-β/Wnt appeared to downregulate the expression of various COX subunits including COXVIc, COXVIIa and COXVIIc; among these COX subunits, COXVIc was a common target of TGF-β, Wnt, Dlx-2 and Snail, indicating that COXVIc downregulation plays an important role(s) in TGF-β/Wnt-induced COX inhibition. Taken together, our results showed that Dlx-2 is involved in TGF-β- and Wnt-induced EMT, glycolytic switch, and mitochondrial repression by Snail activation.
Collapse
Affiliation(s)
- Su Yeon Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan 609-735, Republic of Korea
| | - Hyun Min Jeon
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan 609-735, Republic of Korea
| | - Min Kyung Ju
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan 609-735, Republic of Korea
| | - Eui Kyong Jeong
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan 609-735, Republic of Korea
| | - Cho Hee Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan 609-735, Republic of Korea
| | - Mi-Ae Yoo
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan 609-735, Republic of Korea
| | - Hye Gyeong Park
- Nanobiotechnology Center, Pusan National University, Pusan 609-735, Republic of Korea
| | - Song Iy Han
- The Division of Natural Medical Sciences, College of Health Science, Chosun University, Gwangju 501-759, Republic of Korea
| | - Ho Sung Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan 609-735, Republic of Korea
| |
Collapse
|
120
|
Song H, Lee B, Pyun D, Guimera J, Son Y, Yoon J, Baek K, Wurst W, Jeong Y. Ascl1 and Helt act combinatorially to specify thalamic neuronal identity by repressing Dlxs activation. Dev Biol 2015; 398:280-91. [DOI: 10.1016/j.ydbio.2014.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 11/25/2022]
|
121
|
Sun M, Kraus WL. From discovery to function: the expanding roles of long noncoding RNAs in physiology and disease. Endocr Rev 2015; 36:25-64. [PMID: 25426780 PMCID: PMC4309736 DOI: 10.1210/er.2014-1034] [Citation(s) in RCA: 323] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a relatively poorly understood class of RNAs with little or no coding capacity transcribed from a set of incompletely annotated genes. They have received considerable attention in the past few years and are emerging as potentially important players in biological regulation. Here we discuss the evolving understanding of this new class of molecular regulators that has emerged from ongoing research, which continues to expand our databases of annotated lncRNAs and provide new insights into their physical properties, molecular mechanisms of action, and biological functions. We outline the current strategies and approaches that have been employed to identify and characterize lncRNAs, which have been instrumental in revealing their multifaceted roles ranging from cis- to trans-regulation of gene expression and from epigenetic modulation in the nucleus to posttranscriptional control in the cytoplasm. In addition, we highlight the molecular and biological functions of some of the best characterized lncRNAs in physiology and disease, especially those relevant to endocrinology, reproduction, metabolism, immunology, neurobiology, muscle biology, and cancer. Finally, we discuss the tremendous diagnostic and therapeutic potential of lncRNAs in cancer and other diseases.
Collapse
Affiliation(s)
- Miao Sun
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | |
Collapse
|
122
|
Sakane J, Taniyama K, Miyamoto K, Saito A, Kuraoka K, Nishimura T, Sentani K, Oue N, Yasui W. Aberrant DNA methylation of DLX4 and SIM1 is a predictive marker for disease progression of uterine cervical low-grade squamous intraepithelial lesion. Diagn Cytopathol 2015; 43:462-70. [PMID: 25614457 DOI: 10.1002/dc.23256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 12/12/2014] [Accepted: 12/23/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND A few uterine cervical low-grade squamous intraepithelial lesions (LSILs) are known to progress with high-risk human papillomavirus (hrHPV). METHODS One hundred and thirteen patients were classified into four groups according to their cervical cytology, hrHPV infection, and follow up. Cytology samples were examined for aberrant DNA methylation of DLX4 and SIM1 genes and protein expressions. CaSki cells were treated with 5-Aza-2'-deoxycytidine (5-aza-dC). RESULTS Group 1 was negative for intraepithelial lesions or malignancies. LSIL in group 2 showed a continuance of LSIL for longer than 365 days and LSIL in group 3 showed an upgrading to high-grade (H) SIL or higher (HSIL+) within 365 days of LSIL diagnosis. Group 4 was squamous cell carcinoma. All but group 1 were infected with hrHPV. Significant differences existed in the frequency of DNA methylation between groups 2 and 3 (p = 0.044), between groups 3 and 4 (p = 0.020) for DLX4, and between groups 1 and 3 (p = 0.0003), and groups 2 and 3 (p = 0.005) for the SIM1 gene. DLX4 protein expression was significantly reduced in the DLX4 methylation positive tissues (p = 0.008). The 5-aza-dC treatment restored DLX4 mRNA expressions of CaSki cells (p < 0.005). The LSIL cases with DNA methylation of the SIM1 gene, or both genes, progressed faster to HSIL+ than did the others (p = 0.033 and p = 0.045, respectively). CONCLUSION Aberrant DNA methylation of the DLX4 and SIM1 genes should be a novel progression marker for uterine cervical LSIL with hrHPV infection.
Collapse
Affiliation(s)
- Junichi Sakane
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan; Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan; Department of Diagnostic Pathology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
The homeobox gene DLX4 promotes generation of human induced pluripotent stem cells. Sci Rep 2014; 4:7283. [PMID: 25471527 PMCID: PMC4255186 DOI: 10.1038/srep07283] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/14/2014] [Indexed: 12/26/2022] Open
Abstract
The reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by defined transcription factors has been a well-established technique and will provide an invaluable resource for regenerative medicine. However, the low reprogramming efficiency of human iPSC is still a limitation for clinical application. Here we showed that the reprogramming potential of human dental pulp cells (DPCs) obtained from immature teeth is much higher than those of mature teeth DPCs. Furthermore, immature teeth DPCs can be reprogrammed by OCT3/4 and SOX2, conversely these two factors are insufficient to convert mature teeth DPCs to pluripotent states. Using a gene expression profiles between these two DPC groups, we identified a new transcript factor, distal-less homeobox 4 (DLX4), which was highly expressed in immature teeth DPCs and significantly promoted human iPSC generation in combination with OCT3/4, SOX2, and KLF4. We further show that activation of TGF-β signaling suppresses the expression of DLX4 in DPCs and impairs the iPSC generation of DPCs. Our findings indicate that DLX4 can functionally replace c-MYC and supports efficient reprogramming of immature teeth DPCs.
Collapse
|
124
|
Hiruta C, Ogino Y, Sakuma T, Toyota K, Miyagawa S, Yamamoto T, Iguchi T. Targeted gene disruption by use of transcription activator-like effector nuclease (TALEN) in the water flea Daphnia pulex. BMC Biotechnol 2014; 14:95. [PMID: 25404042 PMCID: PMC4239399 DOI: 10.1186/s12896-014-0095-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 10/28/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cosmopolitan microcrustacean Daphnia pulex provides a model system for both human health research and monitoring ecosystem integrity. It is the first crustacean to have its complete genome sequenced, an unprecedented ca. 36% of which has no known homologs with any other species. Moreover, D. pulex is ideally suited for experimental manipulation because of its short reproductive cycle, large numbers of offspring, synchronization of oocyte maturation, and other life history characteristics. However, existing gene manipulation techniques are insufficient to accurately define gene functions. Although our previous investigations developed an RNA interference (RNAi) system in D. pulex, the possible time period of functional analysis was limited because the effectiveness of RNAi is transient. Thus, in this study, we developed a genome editing system for D. pulex by first microinjecting transcription activator-like effector nuclease (TALEN) mRNAs into early embryos and then evaluating TALEN activity and mutation phenotypes. RESULTS We assembled a TALEN construct specific to the Distal-less gene (Dll), which is a homeobox transcription factor essential for distal limb development in invertebrates and vertebrates, and evaluated its activity in vitro by single-strand annealing assay. Then, we injected TALEN mRNAs into eggs within 1 hour post-ovulation. Injected embryos presented with defects in the second antenna and altered appendage development, and indel mutations were detected in Dll loci, indicating that this technique successfully knocked out the target gene. CONCLUSIONS We succeeded, for the first time in D. pulex, in targeted mutagenesis by use of Platinum TALENs. This genome editing technique makes it possible to conduct reverse genetic analysis in D. pulex, making this species an even more appropriate model organism for environmental, evolutionary, and developmental genomics.
Collapse
Affiliation(s)
- Chizue Hiruta
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| | - Yukiko Ogino
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan. .,Faculty of Life Science, Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan.
| | - Kenji Toyota
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan. .,Faculty of Life Science, Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| | - Shinichi Miyagawa
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan. .,Faculty of Life Science, Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan.
| | - Taisen Iguchi
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan. .,Faculty of Life Science, Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
125
|
Zhang Z, Yin C, Liu Y, Jie W, Lei W, Li F. iPathCons and iPathDB: an improved insect pathway construction tool and the database. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau105. [PMID: 25388589 PMCID: PMC4227299 DOI: 10.1093/database/bau105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Insects are one of the most successful animal groups on earth. Some insects, such as the silkworm and honeybee, are beneficial to humans, whereas others are notorious pests of crops. At present, the genomes of 38 insects have been sequenced and made publically available. In addition, the transcriptomes of dozens of insects have been sequenced. As gene data rapidly accumulate, constructing the pathway of molecular interactions becomes increasingly important for entomological research. Here, we developed an improved tool, iPathCons, for knowledge-based construction of pathways from the transcriptomes or the official gene sets of genomes. Considering the high evolution diversity in insects, iPathCons uses a voting system for Kyoto Encyclopedia of Genes and Genomes Orthology assignment. Both stand-alone software and a web server of iPathCons are provided. Using iPathCons, we constructed the pathways of molecular interactions of 52 insects, including 37 genome-sequenced and 15 transcriptome-sequenced ones. These pathways are available in the iPathDB, which provides searches, web server, data downloads, etc. This database will be highly useful for the insect research community. Database URL:http://ento.njau.edu.cn/ipath/
Collapse
Affiliation(s)
- Zan Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University and The Key laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, No. 1, Weigang Road, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Chuanlin Yin
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University and The Key laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, No. 1, Weigang Road, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Ying Liu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University and The Key laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, No. 1, Weigang Road, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Wencai Jie
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University and The Key laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, No. 1, Weigang Road, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Wenjie Lei
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University and The Key laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, No. 1, Weigang Road, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Fei Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University and The Key laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, No. 1, Weigang Road, Xuanwu District, Nanjing, Jiangsu 210095, China
| |
Collapse
|
126
|
Bokolia NP, Mishra M. Hearing molecules, mechanism and transportation: modeled in Drosophila melanogaster. Dev Neurobiol 2014; 75:109-30. [PMID: 25081222 DOI: 10.1002/dneu.22221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/29/2014] [Accepted: 07/29/2014] [Indexed: 01/19/2023]
Abstract
Mechanosensory transduction underlies the perception of touch, sound and acceleration. The mechanical signals exist in the environment are resensed by the specialized mechanosensory cells, which convert the external forces into the electrical signals. Hearing is a magnificent example that relies on the mechanotransduction mediated by the auditory cells, for example the inner-ear hair cells in vertebrates and the Johnston's organ (JO) in fly. Previous studies have shown the fundamental physiological processes in the fly and vertebrate auditory organs are similar, suggesting that there might be a set of similar molecules underlying these processes. The molecular studies of the fly JO have been shown to be remarkably successful in discovering the developmental and functional genes that provided further implications in vertebrates. Several evolutionarily conserved molecules and signaling pathways have been shown to govern the development of the auditory organs in both vertebrates and invertebrates. The current review describes the similarities and differences between the vertebrate and fly auditory organs at developmental, structural, molecular, and transportation levels.
Collapse
Affiliation(s)
- Naveen Prakash Bokolia
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Orissa, India
| | | |
Collapse
|
127
|
Zagozewski JL, Zhang Q, Pinto VI, Wigle JT, Eisenstat DD. The role of homeobox genes in retinal development and disease. Dev Biol 2014; 393:195-208. [PMID: 25035933 DOI: 10.1016/j.ydbio.2014.07.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/02/2014] [Accepted: 07/08/2014] [Indexed: 11/18/2022]
Abstract
Homeobox genes are an evolutionarily conserved class of transcription factors that are critical for development of many organ systems, including the brain and eye. During retinogenesis, homeodomain-containing transcription factors, which are encoded by homeobox genes, play essential roles in the regionalization and patterning of the optic neuroepithelium, specification of retinal progenitors and differentiation of all seven of the retinal cell classes that derive from a common progenitor. Homeodomain transcription factors control retinal cell fate by regulating the expression of target genes required for retinal progenitor cell fate decisions and for terminal differentiation of specific retinal cell types. The essential role of homeobox genes during retinal development is demonstrated by the number of human eye diseases, including colobomas and anophthalmia, which are attributed to homeobox gene mutations. In the following review, we highlight the role of homeodomain transcription factors during retinogenesis and regulation of their gene targets. Understanding the complexities of vertebrate retina development will enhance our ability to drive differentiation of specific retinal cell types towards novel cell-based replacement therapies for retinal degenerative diseases.
Collapse
Affiliation(s)
- Jamie L Zagozewski
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Qi Zhang
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada R3E 0J9
| | - Vanessa I Pinto
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada R3E 0J9
| | - Jeffrey T Wigle
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada R3E 0J9; Institute of Cardiovascular Sciences, St. Boniface Hospital Research Institute, Winnipeg, MB, Canada R2H 2A6
| | - David D Eisenstat
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada T6G 2H7; Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada R3E 0J9; Department of Pediatrics, University of Alberta, Edmonton, AB, Canada T6G 1C9.
| |
Collapse
|
128
|
Isaac J, Erthal J, Gordon J, Duverger O, Sun HW, Lichtler AC, Stein GS, Lian JB, Morasso MI. DLX3 regulates bone mass by targeting genes supporting osteoblast differentiation and mineral homeostasis in vivo. Cell Death Differ 2014; 21:1365-76. [PMID: 24948010 DOI: 10.1038/cdd.2014.82] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 04/25/2014] [Accepted: 05/07/2014] [Indexed: 01/23/2023] Open
Abstract
Human mutations and in vitro studies indicate that DLX3 has a crucial function in bone development, however, the in vivo role of DLX3 in endochondral ossification has not been established. Here, we identify DLX3 as a central attenuator of adult bone mass in the appendicular skeleton. Dynamic bone formation, histologic and micro-computed tomography analyses demonstrate that in vivo DLX3 conditional loss of function in mesenchymal cells (Prx1-Cre) and osteoblasts (OCN-Cre) results in increased bone mass accrual observed as early as 2 weeks that remains elevated throughout the lifespan owing to increased osteoblast activity and increased expression of bone matrix genes. Dlx3OCN-conditional knockout mice have more trabeculae that extend deeper in the medullary cavity and thicker cortical bone with an increased mineral apposition rate, decreased bone mineral density and increased cortical porosity. Trabecular TRAP staining and site-specific Q-PCR demonstrated that osteoclastic resorption remained normal on trabecular bone, whereas cortical bone exhibited altered osteoclast patterning on the periosteal surface associated with high Opg/Rankl ratios. Using RNA sequencing and chromatin immunoprecipitation-Seq analyses, we demonstrate that DLX3 regulates transcription factors crucial for bone formation such as Dlx5, Dlx6, Runx2 and Sp7 as well as genes important to mineral deposition (Ibsp, Enpp1, Mepe) and bone turnover (Opg). Furthermore, with the removal of DLX3, we observe increased occupancy of DLX5, as well as increased and earlier occupancy of RUNX2 on the bone-specific osteocalcin promoter. Together, these findings provide novel insight into mechanisms by which DLX3 attenuates bone mass accrual to support bone homeostasis by osteogenic gene pathway regulation.
Collapse
Affiliation(s)
- J Isaac
- Laboratory of Skin Biology, NIAMS, NIH, Bethesda, MD, USA
| | - J Erthal
- Laboratory of Skin Biology, NIAMS, NIH, Bethesda, MD, USA
| | - J Gordon
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - O Duverger
- Laboratory of Skin Biology, NIAMS, NIH, Bethesda, MD, USA
| | - H-W Sun
- Biodata Mining and Discovery Section, NIAMS, NIH, Bethesda, MD, USA
| | - A C Lichtler
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - G S Stein
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - J B Lian
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - M I Morasso
- Laboratory of Skin Biology, NIAMS, NIH, Bethesda, MD, USA
| |
Collapse
|
129
|
Clark BS, Blackshaw S. Long non-coding RNA-dependent transcriptional regulation in neuronal development and disease. Front Genet 2014; 5:164. [PMID: 24936207 PMCID: PMC4047558 DOI: 10.3389/fgene.2014.00164] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/18/2014] [Indexed: 01/17/2023] Open
Abstract
Comprehensive analysis of the mammalian transcriptome has revealed that long non-coding RNAs (lncRNAs) may make up a large fraction of cellular transcripts. Recent years have seen a surge of studies aimed at functionally characterizing the role of lncRNAs in development and disease. In this review, we discuss new findings implicating lncRNAs in controlling development of the central nervous system (CNS). The evolution of the higher vertebrate brain has been accompanied by an increase in the levels and complexities of lncRNAs expressed within the developing nervous system. Although a limited number of CNS-expressed lncRNAs are now known to modulate the activity of proteins important for neuronal differentiation, the function of the vast majority of neuronal-expressed lncRNAs is still unknown. Topics of intense current interest include the mechanism by which CNS-expressed lncRNAs might function in epigenetic and transcriptional regulation during neuronal development, and how gain and loss of function of individual lncRNAs contribute to neurological diseases.
Collapse
Affiliation(s)
- Brian S Clark
- Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Seth Blackshaw
- Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Ophthalmology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Neurology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Center for High-Throughput Biology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Institute for Cell Engineering, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
130
|
Heude É, Shaikho S, Ekker M. The dlx5a/dlx6a genes play essential roles in the early development of zebrafish median fin and pectoral structures. PLoS One 2014; 9:e98505. [PMID: 24858471 PMCID: PMC4032342 DOI: 10.1371/journal.pone.0098505] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/02/2014] [Indexed: 11/18/2022] Open
Abstract
The Dlx5 and Dlx6 genes encode homeodomain transcription factors essential for the proper development of limbs in mammalian species. However, the role of their teleost counterparts in fin development has received little attention. Here, we show that dlx5a is an early marker of apical ectodermal cells of the pectoral fin buds and of the median fin fold, but also of cleithrum precursor cells during pectoral girdle development. We propose that early median fin fold establishment results from the medial convergence of dlx5a-expressing cells at the lateral edges of the neural keel. Expression analysis also shows involvement of dlx5a during appendage skeletogenesis. Using morpholino-mediated knock down, we demonstrate that disrupted dlx5a/6a function results in pectoral fin agenesis associated with misexpression of bmp4, fgf8a, and1 and msx genes. In contrast, the median fin fold presents defects in mesenchymal cell migration and actinotrichia formation, whereas the initial specification seems to occur normally. Our results demonstrate that the dlx5a/6a genes are essential for the induction of pectoral fin outgrowth, but are not required during median fin fold specification. The dlx5a/6a knock down also causes a failure of cleithrum formation associated with a drastic loss of runx2b and col10a1 expression. The data indicate distinct requirements for dlx5a/6a during median and pectoral fin development suggesting that initiation of unpaired and paired fin formation are not directed through the same molecular mechanisms. Our results refocus arguments on the mechanistic basis of paired appendage genesis during vertebrate evolution.
Collapse
Affiliation(s)
- Églantine Heude
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Sarah Shaikho
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Marc Ekker
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
131
|
|
132
|
Transcriptional Regulation of cGMP-Dependent Protein Kinase II (cGK-II) in Chondrocytes. Biosci Biotechnol Biochem 2014; 74:44-9. [DOI: 10.1271/bbb.90529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
133
|
Torresan C, Oliveira MMC, Pereira SRF, Ribeiro EMSF, Marian C, Gusev Y, Lima RS, Urban CA, Berg PE, Haddad BR, Cavalli IJ, Cavalli LR. Increased copy number of the DLX4 homeobox gene in breast axillary lymph node metastasis. Cancer Genet 2014; 207:177-87. [PMID: 24947980 DOI: 10.1016/j.cancergen.2014.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/08/2014] [Accepted: 04/20/2014] [Indexed: 10/25/2022]
Abstract
DLX4 is a homeobox gene strongly implicated in breast tumor progression and invasion. Our main objective was to determine the DLX4 copy number status in sentinel lymph node (SLN) metastasis to assess its involvement in the initial stages of the axillary metastatic process. A total of 37 paired samples of SLN metastasis and primary breast tumors (PBT) were evaluated by fluorescence in situ hybridization, quantitative polymerase chain reaction and array comparative genomic hybridization assays. DLX4 increased copy number was observed in 21.6% of the PBT and 24.3% of the SLN metastasis; regression analysis demonstrated that the DLX4 alterations observed in the SLN metastasis were dependent on the ones in the PBT, indicating that they occur in the primary tumor cell populations and are maintained in the early axillary metastatic site. In addition, regression analysis demonstrated that DLX4 alterations (and other DLX and HOXB family members) occurred independently of the ones in the HER2/NEU gene, the main amplification driver on the 17q region. Additional studies evaluating DLX4 copy number in non-SLN axillary lymph nodes and/or distant breast cancer metastasis are necessary to determine if these alterations are carried on and maintained during more advanced stages of tumor progression and if could be used as a predictive marker for axillary involvement.
Collapse
Affiliation(s)
- Clarissa Torresan
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Silma R F Pereira
- Department of Biology, Federal University of Maranhão, São Luis, MA, Brazil
| | | | - Catalin Marian
- Department of Biochemistry, University of Medicine and Pharmacy, Timisoara, Romania
| | - Yuriy Gusev
- Innovation Center for Biomedical Informatics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Rubens S Lima
- Breast Unit, Hospital Nossa Senhora das Graças, Curitiba, PR, Brazil
| | - Cicero A Urban
- Breast Unit, Hospital Nossa Senhora das Graças, Curitiba, PR, Brazil; Positivo University, Curitiba, PR, Brazil
| | - Patricia E Berg
- Department of Biochemistry and Molecular Medicine, George Washington University Medical Center, Washington, DC, USA
| | - Bassem R Haddad
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Iglenir J Cavalli
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Luciane R Cavalli
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.
| |
Collapse
|
134
|
Brooks YS, Ostano P, Jo SH, Dai J, Getsios S, Dziunycz P, Hofbauer GFL, Cerveny K, Chiorino G, Lefort K, Dotto GP. Multifactorial ERβ and NOTCH1 control of squamous differentiation and cancer. J Clin Invest 2014; 124:2260-76. [PMID: 24743148 DOI: 10.1172/jci72718] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 02/10/2014] [Indexed: 12/19/2022] Open
Abstract
Downmodulation or loss-of-function mutations of the gene encoding NOTCH1 are associated with dysfunctional squamous cell differentiation and development of squamous cell carcinoma (SCC) in skin and internal organs. While NOTCH1 receptor activation has been well characterized, little is known about how NOTCH1 gene transcription is regulated. Using bioinformatics and functional screening approaches, we identified several regulators of the NOTCH1 gene in keratinocytes, with the transcription factors DLX5 and EGR3 and estrogen receptor β (ERβ) directly controlling its expression in differentiation. DLX5 and ERG3 are required for RNA polymerase II (PolII) recruitment to the NOTCH1 locus, while ERβ controls NOTCH1 transcription through RNA PolII pause release. Expression of several identified NOTCH1 regulators, including ERβ, is frequently compromised in skin, head and neck, and lung SCCs and SCC-derived cell lines. Furthermore, a keratinocyte ERβ-dependent program of gene expression is subverted in SCCs from various body sites, and there are consistent differences in mutation and gene-expression signatures of head and neck and lung SCCs in female versus male patients. Experimentally increased ERβ expression or treatment with ERβ agonists inhibited proliferation of SCC cells and promoted NOTCH1 expression and squamous differentiation both in vitro and in mouse xenotransplants. Our data identify a link between transcriptional control of NOTCH1 expression and the estrogen response in keratinocytes, with implications for differentiation therapy of squamous cancer.
Collapse
MESH Headings
- Animals
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Differentiation
- Cell Line, Tumor
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Genetic Loci
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Heterografts
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasm Transplantation
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- Receptor, Notch1/biosynthesis
- Receptor, Notch1/genetics
- Transcription, Genetic/genetics
Collapse
|
135
|
Achim K, Salminen M, Partanen J. Mechanisms regulating GABAergic neuron development. Cell Mol Life Sci 2014; 71:1395-415. [PMID: 24196748 PMCID: PMC11113277 DOI: 10.1007/s00018-013-1501-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/10/2013] [Accepted: 10/14/2013] [Indexed: 12/17/2022]
Abstract
Neurons using gamma-aminobutyric acid (GABA) as their neurotransmitter are the main inhibitory neurons in the mature central nervous system (CNS) and show great variation in their form and function. GABAergic neurons are produced in all of the main domains of the CNS, where they develop from discrete regions of the neuroepithelium. Here, we review the gene expression and regulatory mechanisms controlling the main steps of GABAergic neuron development: early patterning of the proliferative neuroepithelium, production of postmitotic neural precursors, establishment of their identity and migration. By comparing the molecular regulation of these events across CNS, we broadly identify three regions utilizing distinct molecular toolkits for GABAergic fate determination: telencephalon-anterior diencephalon (DLX2 type), posterior diencephalon-midbrain (GATA2 type) and hindbrain-spinal cord (PTF1A and TAL1 types). Similarities and differences in the molecular regulatory mechanisms reveal the core determinants of a GABAergic neuron as well as provide insights into generation of the vast diversity of these neurons.
Collapse
Affiliation(s)
- Kaia Achim
- EMBL Heidelberg, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Marjo Salminen
- Department of Veterinary Biosciences, University of Helsinki, Agnes Sjobergin katu 2, PO Box 66, 00014 Helsinki, Finland
| | - Juha Partanen
- Department of Biosciences, University of Helsinki, Viikinkaari 5, PO Box 56, 00014 Helsinki, Finland
| |
Collapse
|
136
|
Yang G, Yuan G, Li X, Liu P, Chen Z, Fan M. BMP-2 Induction of Dlx3 Expression Is Mediated by p38/Smad5 Signaling Pathway in Osteoblastic MC3T3-E1 Cells. J Cell Physiol 2014; 229:943-54. [PMID: 24647893 DOI: 10.1002/jcp.24525] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/04/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Guobin Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Guohua Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Xiaoyan Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Pingxian Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Mingwen Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| |
Collapse
|
137
|
Lin X, Yao Y, Jin M, Li Q. Characterization of the Distal-less gene homologue, NlDll, in the brown planthopper, Nilaparvata lugens (Stål). Gene 2014; 535:112-8. [DOI: 10.1016/j.gene.2013.11.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/15/2013] [Accepted: 11/22/2013] [Indexed: 10/25/2022]
|
138
|
Bökenkamp R, van Brempt R, van Munsteren JC, van den Wijngaert I, de Hoogt R, Finos L, Goeman J, Groot ACGD, Poelmann RE, Blom NA, DeRuiter MC. Dlx1 and Rgs5 in the ductus arteriosus: vessel-specific genes identified by transcriptional profiling of laser-capture microdissected endothelial and smooth muscle cells. PLoS One 2014; 9:e86892. [PMID: 24489801 PMCID: PMC3904938 DOI: 10.1371/journal.pone.0086892] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 12/17/2013] [Indexed: 12/31/2022] Open
Abstract
Closure of the ductus arteriosus (DA) is a crucial step in the transition from fetal to postnatal life. Patent DA is one of the most common cardiovascular anomalies in children with significant clinical consequences especially in premature infants. We aimed to identify genes that specify the DA in the fetus and differentiate it from the aorta. Comparative microarray analysis of laser-captured microdissected endothelial (ECs) and vascular smooth muscle cells (SMCs) from the DA and aorta of fetal rats (embryonic day 18 and 21) identified vessel-specific transcriptional profiles. We found a strong age-dependency of gene expression. Among the genes that were upregulated in the DA the regulator of the G-protein coupled receptor 5 (Rgs5) and the transcription factor distal-less homeobox 1 (Dlx1) exhibited the highest and most significant level of differential expression. The aorta showed a significant preferential expression of the Purkinje cell protein 4 (Pcp4) gene. The results of the microarray analysis were validated by real-time quantitative PCR and immunohistochemistry. Our study confirms vessel-specific transcriptional profiles in ECs and SMCs of rat DA and aorta. Rgs5 and Dlx1 represent novel molecular targets for the regulation of DA maturation and closure.
Collapse
Affiliation(s)
- Regina Bökenkamp
- Department of Pediatric Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Intensive Care, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| | - Ronald van Brempt
- Department of Intensive Care, Leiden University Medical Center, Leiden, The Netherlands
- Johnson and Johnson Pharmaceutical Research and Development, Beerse, Belgium
| | | | | | - Ronald de Hoogt
- Johnson and Johnson Pharmaceutical Research and Development, Beerse, Belgium
| | - Livio Finos
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jelle Goeman
- Biostatistics, Department for Health Evidence, Radboud University Medical Center, Nimegen, The Netherlands
| | - Adriana Cornelia Gittenberger-de Groot
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert Eugen Poelmann
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nicolaas Andreas Blom
- Department of Pediatric Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
139
|
Singh DK, Prasanth KV. Functional insights into the role of nuclear-retained long noncoding RNAs in gene expression control in mammalian cells. Chromosome Res 2013; 21:695-711. [PMID: 24233053 PMCID: PMC3951185 DOI: 10.1007/s10577-013-9391-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mammalian genome harbors thousands of long noncoding RNA (lncRNA) genes. Recent studies have indicated the involvement of several of these lncRNAs in the regulation of gene expression. lncRNAs play crucial roles in various biological processes ranging from epigenetic gene regulation, transcriptional control,to post-transcriptional regulation. lncRNAs are localized in various subcellular compartments, and major proportion of these are retained in the cell nucleus and could be broadly classified as nuclear-retained lncRNAs (nrRNAs). Based on the identified functions,members of the nrRNAs execute diverse roles, including providing architectural support to the hierarchical subnuclear organization and influencing the recruitment of chromatin modifier factors to specific chromatin sites. In this review, we will summarize the recently described roles of mammalian nrRNAs in controlling gene expression by influencing chromatin organization, transcription,pre-mRNA processing, nuclear organization, and their involvement in disease.
Collapse
Affiliation(s)
- Deepak K. Singh
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL-61801, USA
| | - Kannanganattu V. Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL-61801, USA
| |
Collapse
|
140
|
Dai X, Iwasaki H, Watanabe M, Okabe S. Dlx1 transcription factor regulates dendritic growth and postsynaptic differentiation through inhibition of neuropilin-2 and PAK3 expression. Eur J Neurosci 2013; 39:531-47. [DOI: 10.1111/ejn.12413] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 10/02/2013] [Accepted: 10/07/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaojing Dai
- Department of Cellular Neurobiology; Graduate School of Medicine; The University of Tokyo; Tokyo Japan
| | - Hirohide Iwasaki
- Department of Cellular Neurobiology; Graduate School of Medicine; The University of Tokyo; Tokyo Japan
| | - Masahiko Watanabe
- Department of Anatomy; Hokkaido University School of Medicine; Sapporo Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology; Graduate School of Medicine; The University of Tokyo; Tokyo Japan
| |
Collapse
|
141
|
Hiruta C, Toyota K, Miyakawa H, Ogino Y, Miyagawa S, Tatarazako N, Shaw JR, Iguchi T. Development of a microinjection system for RNA interference in the water flea Daphnia pulex. BMC Biotechnol 2013; 13:96. [PMID: 24188141 PMCID: PMC4228505 DOI: 10.1186/1472-6750-13-96] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/31/2013] [Indexed: 11/25/2022] Open
Abstract
Background The ubiquitous, freshwater microcrustacean Daphnia pulex provides a model system for both human health research and monitoring ecosystem integrity. It is the first crustacean to have a well annotated, reference genome assembly that revealed an unusually high gene count highlighted by a large gene orphanage,-i.e., previously uncharacterized genes. Daphnia are capable of either clonal or sexual reproduction, making them ideally suited for genetic manipulation, but the establishment of gene manipulation techniques is needed to accurately define gene functions. Although previous investigations developed an RNA interference (RNAi) system for one congener D. magna, these methods are not appropriate for D. pulex because of the smaller size of their early embryos. In these studies, we develop RNAi techniques for D. pulex by first determining the optimum culture conditions of their isolated embryos and then applying these conditions to the development of microinjection techniques and proof-of-principle RNAi experiments. Results We found that isolated embryos were best cultured on a 2% agar plate bathed in 60 mM sucrose dissolved in M4 media, providing optimal conditions for microinjections. Then, we injected double-stranded (ds)RNA specific to the Distal-less gene (Dll), which is a homeobox transcription factor essential for limb development in invertebrates and vertebrates. Injected embryos presented with defects in the second antenna and appendage development, and dsRNA induced the degradation of Dll mRNAs, indicating that this technique successfully inhibited transcription of the target gene. Conclusions We developed a microinjection system for RNAi studies in D. pulex. These techniques add to the growing genomic toolbox and enhance the genetic tractability of this important model for environmental, evolutionary, and developmental genomics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Taisen Iguchi
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| |
Collapse
|
142
|
Abstract
The past two decades have seen an explosion in research on non-coding RNAs and their physiological and pathological functions. Several classes of small (20-30 nucleotides) and long (>200 nucleotides) non-coding RNAs have been firmly established as key regulators of gene expression in myriad processes ranging from embryonic development to innate immunity. In this review, we focus on our current understanding of the molecular mechanisms underlying the biogenesis and function of small interfering RNAs (siRNAs), microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs). In addition, we briefly review the relevance of small and long non-coding RNAs to human physiology and pathology and their potential to be exploited as therapeutic agents.
Collapse
Affiliation(s)
- Veena S Patil
- Program for RNA Biology, Sanford-Burnham Medical Research Institute , La Jolla, CA , USA
| | | | | |
Collapse
|
143
|
Berghoff EG, Clark MF, Chen S, Cajigas I, Leib DE, Kohtz JD. Evf2 (Dlx6as) lncRNA regulates ultraconserved enhancer methylation and the differential transcriptional control of adjacent genes. Development 2013; 140:4407-16. [PMID: 24089468 DOI: 10.1242/dev.099390] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Several lines of evidence suggest that long non-coding RNA (lncRNA)-dependent mechanisms regulate transcription and CpG DNA methylation. Whereas CpG island methylation has been studied in detail, the significance of enhancer DNA methylation and its relationship with lncRNAs is relatively unexplored. Previous experiments proposed that the ultraconserved lncRNA Evf2 represses transcription through Dlx6 antisense (Dlx6as) transcription and methyl-CpG binding protein (MECP2) recruitment to the Dlx5/6 ultraconserved DNA regulatory enhancer (Dlx5/6ei) in embryonic day 13.5 medial ganglionic eminence (E13.5 MGE). Here, genetic epistasis experiments show that MECP2 transcriptional repression of Evf2 and Dlx5, but not Dlx6, occurs through antagonism of DLX1/2 in E13.5 MGE. Analysis of E13.5 MGE from mice lacking Evf2 and of partially rescued Evf2 transgenic mice shows that Evf2 prevents site-specific CpG DNA methylation of Dlx5/6ei in trans, without altering Dlx5/6 expression. Dlx1/2 loss increases CpG DNA methylation, whereas Mecp2 loss does not affect Dlx5/6ei methylation. Based on these studies, we propose a model in which Evf2 inhibits enhancer DNA methylation, effectively modulating competition between the DLX1/2 activator and MECP2 repressor. Evf2 antisense transcription and Evf2-dependent balanced recruitment of activator and repressor proteins enables differential transcriptional control of adjacent genes with shared DNA regulatory elements.
Collapse
Affiliation(s)
- Emily G Berghoff
- Developmental Biology and Department of Pediatrics, Lurie Children's Research Center, and Feinberg School of Medicine, Northwestern University, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | | | | | | | | | | |
Collapse
|
144
|
Díaz-Guerra E, Pignatelli J, Nieto-Estévez V, Vicario-Abejón C. Transcriptional Regulation of Olfactory Bulb Neurogenesis. Anat Rec (Hoboken) 2013; 296:1364-82. [DOI: 10.1002/ar.22733] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 11/13/2012] [Accepted: 12/08/2012] [Indexed: 12/21/2022]
Affiliation(s)
- Eva Díaz-Guerra
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC); Madrid Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII); Madrid Spain
| | - Jaime Pignatelli
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC); Madrid Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII); Madrid Spain
| | - Vanesa Nieto-Estévez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC); Madrid Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII); Madrid Spain
| | - Carlos Vicario-Abejón
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC); Madrid Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII); Madrid Spain
| |
Collapse
|
145
|
Gomes AQ, Nolasco S, Soares H. Non-coding RNAs: multi-tasking molecules in the cell. Int J Mol Sci 2013; 14:16010-39. [PMID: 23912238 PMCID: PMC3759897 DOI: 10.3390/ijms140816010] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/15/2013] [Accepted: 07/19/2013] [Indexed: 12/15/2022] Open
Abstract
In the last years it has become increasingly clear that the mammalian transcriptome is highly complex and includes a large number of small non-coding RNAs (sncRNAs) and long noncoding RNAs (lncRNAs). Here we review the biogenesis pathways of the three classes of sncRNAs, namely short interfering RNAs (siRNAs), microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs). These ncRNAs have been extensively studied and are involved in pathways leading to specific gene silencing and the protection of genomes against virus and transposons, for example. Also, lncRNAs have emerged as pivotal molecules for the transcriptional and post-transcriptional regulation of gene expression which is supported by their tissue-specific expression patterns, subcellular distribution, and developmental regulation. Therefore, we also focus our attention on their role in differentiation and development. SncRNAs and lncRNAs play critical roles in defining DNA methylation patterns, as well as chromatin remodeling thus having a substantial effect in epigenetics. The identification of some overlaps in their biogenesis pathways and functional roles raises the hypothesis that these molecules play concerted functions in vivo, creating complex regulatory networks where cooperation with regulatory proteins is necessary. We also highlighted the implications of biogenesis and gene expression deregulation of sncRNAs and lncRNAs in human diseases like cancer.
Collapse
Affiliation(s)
- Anita Quintal Gomes
- Health Technology College of Lisbon—Polytechnic Institute of Lisbon, 1990-096 Lisbon, Portugal; E-Mails: (A.Q.G.); (S.N.)
- Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Sofia Nolasco
- Health Technology College of Lisbon—Polytechnic Institute of Lisbon, 1990-096 Lisbon, Portugal; E-Mails: (A.Q.G.); (S.N.)
- Gulbenkian Science Institute, 2780-256 Oeiras, Portugal
- Interdisciplinary Centre of Research in Animal Health (CIISA), Faculty of Veterinary Medicine, 1300-666 Lisbon, Portugal
| | - Helena Soares
- Health Technology College of Lisbon—Polytechnic Institute of Lisbon, 1990-096 Lisbon, Portugal; E-Mails: (A.Q.G.); (S.N.)
- Gulbenkian Science Institute, 2780-256 Oeiras, Portugal
- Center for Chemistry and Biochemistry, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +351-217-500-853; Fax: +351-217-500-088
| |
Collapse
|
146
|
Abstract
The oskar gene is critical for germ plasm formation and reproduction in higher insects. A recent study reports that oskar has more ancient roots than previously thought, indicating it was co-opted for its reproductive role in higher insects.
Collapse
Affiliation(s)
- Ehab Abouheif
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada.
| |
Collapse
|
147
|
Debiais-Thibaud M, Metcalfe CJ, Pollack J, Germon I, Ekker M, Depew M, Laurenti P, Borday-Birraux V, Casane D. Heterogeneous conservation of Dlx paralog co-expression in jawed vertebrates. PLoS One 2013; 8:e68182. [PMID: 23840829 PMCID: PMC3695995 DOI: 10.1371/journal.pone.0068182] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/27/2013] [Indexed: 01/10/2023] Open
Abstract
Background The Dlx gene family encodes transcription factors involved in the development of a wide variety of morphological innovations that first evolved at the origins of vertebrates or of the jawed vertebrates. This gene family expanded with the two rounds of genome duplications that occurred before jawed vertebrates diversified. It includes at least three bigene pairs sharing conserved regulatory sequences in tetrapods and teleost fish, but has been only partially characterized in chondrichthyans, the third major group of jawed vertebrates. Here we take advantage of developmental and molecular tools applied to the shark Scyliorhinus canicula to fill in the gap and provide an overview of the evolution of the Dlx family in the jawed vertebrates. These results are analyzed in the theoretical framework of the DDC (Duplication-Degeneration-Complementation) model. Results The genomic organisation of the catshark Dlx genes is similar to that previously described for tetrapods. Conserved non-coding elements identified in bony fish were also identified in catshark Dlx clusters and showed regulatory activity in transgenic zebrafish. Gene expression patterns in the catshark showed that there are some expression sites with high conservation of the expressed paralog(s) and other expression sites with events of paralog sub-functionalization during jawed vertebrate diversification, resulting in a wide variety of evolutionary scenarios within this gene family. Conclusion Dlx gene expression patterns in the catshark show that there has been little neo-functionalization in Dlx genes over gnathostome evolution. In most cases, one tandem duplication and two rounds of vertebrate genome duplication have led to at least six Dlx coding sequences with redundant expression patterns followed by some instances of paralog sub-functionalization. Regulatory constraints such as shared enhancers, and functional constraints including gene pleiotropy, may have contributed to the evolutionary inertia leading to high redundancy between gene expression patterns.
Collapse
Affiliation(s)
- Mélanie Debiais-Thibaud
- Institut des Sciences de l’Evolution, Université de Montpellier II, UMR5554, Montpellier, France
- * E-mail:
| | - Cushla J. Metcalfe
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
| | - Jacob Pollack
- Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Canada
| | - Isabelle Germon
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
| | - Marc Ekker
- Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Canada
| | - Michael Depew
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Patrick Laurenti
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
- Université Paris Diderot, Paris, France
| | - Véronique Borday-Birraux
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
- Université Paris Diderot, Paris, France
| | - Didier Casane
- Laboratoire Evolution Génome et Spéciation UPR9034 CNRS, Gif-sur-Yvette, France
- Université Paris Diderot, Paris, France
| |
Collapse
|
148
|
Kmet M, Guo C, Edmondson C, Chen B. Directed differentiation of human embryonic stem cells into corticofugal neurons uncovers heterogeneous Fezf2-expressing subpopulations. PLoS One 2013; 8:e67292. [PMID: 23826257 PMCID: PMC3691138 DOI: 10.1371/journal.pone.0067292] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/17/2013] [Indexed: 12/24/2022] Open
Abstract
Understanding how neuronal diversity is achieved within the cerebral cortex remains a major challenge in neuroscience. The advent of human embryonic stem cells (hESCs) as a model system provides a unique opportunity to study human corticogenesis in vitro and to identify the mechanisms that promote neuronal differentiation to achieve neuronal diversity in human brain. The transcription factor Fezf2 is necessary and sufficient for the specification of subcerebral projection neurons in mouse. However, its function during human corticogenesis is poorly understood. This study reports the differentiation of a hFezf2-YFP hESC reporter line into corticofugal projection neurons capable of extending axons toward the spinal cord upon transplantation into neonatal mouse brains. Additionally, we show that triple inhibition of the TGFß/BMP/Wnt-Shh pathway promotes the generation of hFezf2-expressing cells in vitro. Finally, this study unveils the isolation of two novel and distinct populations of hFezf2-YFP expressing cells reminiscent of the distinct Fezf2-expressing neuronal subtypes in the developing mouse brain. Overall our data suggest that the directed differentiation of hESCs into corticofugal neurons provides a useful model to identify the molecular mechanisms regulating human corticofugal differentiation and survival.
Collapse
Affiliation(s)
- Muriel Kmet
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Chao Guo
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Carina Edmondson
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Bin Chen
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
149
|
Arguello A, Yang X, Vogt D, Stanco A, Rubenstein JLR, Cheyette BNR. Dapper antagonist of catenin-1 cooperates with Dishevelled-1 during postsynaptic development in mouse forebrain GABAergic interneurons. PLoS One 2013; 8:e67679. [PMID: 23826333 PMCID: PMC3691262 DOI: 10.1371/journal.pone.0067679] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 05/21/2013] [Indexed: 11/24/2022] Open
Abstract
Synaptogenesis has been extensively studied along with dendritic spine development in glutamatergic pyramidal neurons, however synapse development in cortical interneurons, which are largely aspiny, is comparatively less well understood. Dact1, one of 3 paralogous Dact (Dapper/Frodo) family members in mammals, is a scaffold protein implicated in both the Wnt/β-catenin and the Wnt/Planar Cell Polarity pathways. We show here that Dact1 is expressed in immature cortical interneurons. Although Dact1 is first expressed in interneuron precursors during proliferative and migratory stages, constitutive Dact1 mutant mice have no major defects in numbers or migration of these neurons. However, cultured cortical interneurons derived from these mice have reduced numbers of excitatory synapses on their dendrites. We selectively eliminated Dact1 from mouse cortical interneurons using a conditional knock-out strategy with a Dlx-I12b enhancer-Cre allele, and thereby demonstrate a cell-autonomous role for Dact1 during postsynaptic development. Confirming this cell-autonomous role, we show that synapse numbers in Dact1 deficient cortical interneurons are rescued by virally-mediated re-expression of Dact1 specifically targeted to these cells. Synapse numbers in these neurons are also rescued by similarly targeted expression of the Dact1 binding partner Dishevelled-1, and partially rescued by expression of Disrupted in Schizophrenia-1, a synaptic protein genetically implicated in susceptibility to several major mental illnesses. In sum, our results support a novel cell-autonomous postsynaptic role for Dact1, in cooperation with Dishevelled-1 and possibly Disrupted in Schizophrenia-1, in the formation of synapses on cortical interneuron dendrites.
Collapse
Affiliation(s)
- Annie Arguello
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
| | - XiaoYong Yang
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
| | - Daniel Vogt
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
| | - Amelia Stanco
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
| | - John L. R. Rubenstein
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
| | - Benjamin N. R. Cheyette
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
150
|
Doitsidou M, Flames N, Topalidou I, Abe N, Felton T, Remesal L, Popovitchenko T, Mann R, Chalfie M, Hobert O. A combinatorial regulatory signature controls terminal differentiation of the dopaminergic nervous system in C. elegans. Genes Dev 2013; 27:1391-405. [PMID: 23788625 PMCID: PMC3701194 DOI: 10.1101/gad.217224.113] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/16/2013] [Indexed: 01/25/2023]
Abstract
Terminal differentiation programs in the nervous system are encoded by cis-regulatory elements that control the expression of terminal features of individual neuron types. We decoded the regulatory information that controls the expression of five enzymes and transporters that define the terminal identity of all eight dopaminergic neurons in the nervous system of the Caenorhabditis elegans hermaphrodite. We show that the tightly coordinated, robust expression of these dopaminergic enzymes and transporters ("dopamine pathway") is ensured through a combinatorial cis-regulatory signature that is shared by all dopamine pathway genes. This signature is composed of an Ets domain-binding site, recognized by the previously described AST-1 Ets domain factor, and two distinct types of homeodomain-binding sites that act in a partially redundant manner. Through genetic screens, we identified the sole C. elegans Distalless/Dlx ortholog, ceh-43, as a factor that acts through one of the homeodomain sites to control both induction and maintenance of terminal dopaminergic fate. The second type of homeodomain site is a Pbx-type site, which is recognized in a partially redundant and neuron subtype-specific manner by two Pbx factors, ceh-20 and ceh-40, revealing novel roles of Pbx factors in the context of terminal neuron differentiation. Taken together, we revealed a specific regulatory signature and cognate, terminal selector-type transcription factors that define the entire dopaminergic nervous system of an animal. Dopaminergic neurons in the mouse olfactory bulb express a similar combinatorial transcription factor collective of Ets/Dlx/Pbx factors, suggesting deep phylogenetic conservation of dopaminergic regulatory programs.
Collapse
Affiliation(s)
- Maria Doitsidou
- Department of Biochemistry and Molecular Biophysics
- Howard Hughes Medical Institute, Columbia University Medical Center, New York, New York 10032, USA
- Norwegian Center for Movement Disorders, Stavanger University Hospital, Stavanger N-4068, Norway
- Center for Organelle Research, University of Stavanger, Stavanger N-4036, Norway
| | - Nuria Flames
- Department of Biochemistry and Molecular Biophysics
- Howard Hughes Medical Institute, Columbia University Medical Center, New York, New York 10032, USA
- Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Científicas (IBV-CSIC), 46010 Valencia, Spain
| | - Irini Topalidou
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Namiko Abe
- Department of Biochemistry and Molecular Biophysics
| | - Terry Felton
- Department of Biochemistry and Molecular Biophysics
- Howard Hughes Medical Institute, Columbia University Medical Center, New York, New York 10032, USA
| | - Laura Remesal
- Department of Biochemistry and Molecular Biophysics
- Howard Hughes Medical Institute, Columbia University Medical Center, New York, New York 10032, USA
- Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Científicas (IBV-CSIC), 46010 Valencia, Spain
| | - Tatiana Popovitchenko
- Department of Biochemistry and Molecular Biophysics
- Howard Hughes Medical Institute, Columbia University Medical Center, New York, New York 10032, USA
- Norwegian Center for Movement Disorders, Stavanger University Hospital, Stavanger N-4068, Norway
- Center for Organelle Research, University of Stavanger, Stavanger N-4036, Norway
| | - Richard Mann
- Department of Biochemistry and Molecular Biophysics
| | - Martin Chalfie
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Oliver Hobert
- Department of Biochemistry and Molecular Biophysics
- Howard Hughes Medical Institute, Columbia University Medical Center, New York, New York 10032, USA
| |
Collapse
|