101
|
Hellwinkel JE, Miclau T, Provencher MT, Bahney CS, Working ZM. The Life of a Fracture: Biologic Progression, Healing Gone Awry, and Evaluation of Union. JBJS Rev 2020; 8:e1900221. [PMID: 32796195 PMCID: PMC11147169 DOI: 10.2106/jbjs.rvw.19.00221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
New knowledge about the molecular biology of fracture-healing provides opportunities for intervention and reduction of risk for specific phases that are affected by disease and medications. Modifiable and nonmodifiable risk factors can prolong healing, and the informed clinician should optimize each patient to provide the best chance for union. Techniques to monitor progression of fracture-healing have not changed substantially over time; new objective modalities are needed.
Collapse
Affiliation(s)
- Justin E Hellwinkel
- Department of Orthopedic Surgery, New York Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY
- Center for Regenerative Sports Medicine, The Steadman Clinic and Steadman Philippon Research Institute, Vail, Colorado
| | - Theodore Miclau
- Orthopaedic Trauma Institute, University of California, San Francisco (UCSF) and Zuckerberg San Francisco General Hospital (ZSFG), San Francisco, California
| | - Matthew T Provencher
- Center for Regenerative Sports Medicine, The Steadman Clinic and Steadman Philippon Research Institute, Vail, Colorado
| | - Chelsea S Bahney
- Center for Regenerative Sports Medicine, The Steadman Clinic and Steadman Philippon Research Institute, Vail, Colorado
- Orthopaedic Trauma Institute, University of California, San Francisco (UCSF) and Zuckerberg San Francisco General Hospital (ZSFG), San Francisco, California
| | - Zachary M Working
- Orthopaedic Trauma Institute, University of California, San Francisco (UCSF) and Zuckerberg San Francisco General Hospital (ZSFG), San Francisco, California
- Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
102
|
Khajuria DK, Soliman M, Elfar JC, Lewis GS, Abraham T, Kamal F, Elbarbary RA. Aberrant structure of fibrillar collagen and elevated levels of advanced glycation end products typify delayed fracture healing in the diet-induced obesity mouse model. Bone 2020; 137:115436. [PMID: 32439570 PMCID: PMC7938873 DOI: 10.1016/j.bone.2020.115436] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/17/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022]
Abstract
Impaired fracture healing in patients with obesity-associated type 2 diabetes (T2D) is a significant unmet clinical problem that affects millions of people worldwide. However, the underlying causes are poorly understood. Additionally, limited clinical information is available on how pre-diabetic hyperglycemia in obese individuals impacts bone healing. Here, we use the diet-induced obesity (DIO) mouse (C57BL/6J) model to study the impact of obesity-associated pre-diabetic hyperglycemia on bone healing and fibrillar collagen organization as healing proceeds from one phase to another. We show that DIO mice exhibit defective healing characterized by reduced bone mineral density, bone volume, and bone volume density. Differences in the healing pattern between lean and DIO mice occur early in the healing process as evidenced by faster resorption of the fibrocartilaginous callus in DIO mice. However, the major differences between lean and DIO mice occur during the later phases of endochondral ossification and bone remodeling. Comprehensive analyses of fibrillar collagen microstructure and expression pattern during these phases, using a set of complementary techniques that include histomorphometry, immunofluorescence staining, and second harmonic generation microscopy, demonstrate significant defects in DIO mice. Defects include strikingly sparse and disorganized collagen fibers, as well as pathological accumulation of unfolded collagen triple helices. We also demonstrate that DIO-associated changes in fibrillar collagen structure are attributable, at least in part, to the accumulation of advanced glycation end products, which increase the collagen-fiber crosslink density. These major changes impair fibrillar collagens functions, culminating in defective callus mineralization, remodeling, and strength. Our data extend the understanding of mechanisms by which obesity and its associated hyperglycemia impair fracture healing and underline defective fibrillar collagen microstructure as a novel and important contributor.
Collapse
Affiliation(s)
- Deepak Kumar Khajuria
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Marwa Soliman
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - John C Elfar
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Gregory S Lewis
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Thomas Abraham
- Microscopy Imaging Facility, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Neural and Behavioural Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Fadia Kamal
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Reyad A Elbarbary
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
103
|
Zhou Z, Yao B, Zhao D. Runx3 regulates chondrocyte phenotype by controlling multiple genes involved in chondrocyte proliferation and differentiation. Mol Biol Rep 2020; 47:5773-5792. [PMID: 32661874 DOI: 10.1007/s11033-020-05646-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/08/2020] [Indexed: 12/22/2022]
Abstract
Chondrocytes are the sole cell type present within cartilage, and play pivotal roles in controlling the formation and composition of health cartilage. Chondrocytes maintain cartilage homeostasis through proliferating, differentiating and synthesizing different types of extracellular matrices. Thus, the coordinated proliferation and differentiation of chondrocytes are essential for cartilage growth, repair and the conversion from cartilage to bone during the processes of bone formation and fracture healing. Runx3, a transcription factor that belongs to the Runx family, is significantly upregulated at the onset of cartilage mineralization and regulates both early and late markers of chondrocyte maturation. Therefore, Runx3 may serve as an accelerator of chondrocyte differentiation and maturation. However, the underlying molecular mechanism of Runx3 in regulating chondrocyte proliferation and differentiation remains largely to be elucidated. In the present study, we used state-of-the-art RNA-seq technology combined with validation methods to investigate the effect of Runx3 overexpression or silencing on primary chondrocyte proliferation and differentiation, and demonstrated that Runx3 overexpression possibly inhibited chondrocyte proliferation but accelerated differentiation, whereas Runx3 silencing possibly promoted chondrocyte proliferation but suppressed differentiation. Furthermore, Runx3 overexpression possibly decreased the expression levels of Sox9 and its downstream genes via Sox9 cartilage-specific enhancers, and vice versa for Runx3 silencing.
Collapse
Affiliation(s)
- Zhenwei Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Baojin Yao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
104
|
Martineau C, Kaufmann M, Arabian A, Jones G, St-Arnaud R. Preclinical safety and efficacy of 24R,25-dihydroxyvitamin D 3 or lactosylceramide treatment to enhance fracture repair. J Orthop Translat 2020; 23:77-88. [PMID: 32518749 PMCID: PMC7270532 DOI: 10.1016/j.jot.2020.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/05/2020] [Accepted: 03/25/2020] [Indexed: 01/22/2023] Open
Abstract
Background/Objective Cyp24a1-null mice deficient in 24,25(OH)2D3 display impaired callus formation during the endochondral phase of bone fracture repair. The 24,25(OH)2D3 metabolite acted by binding to the TLC domain containing 3B isoform 2 (TLCD3B2, previously named FAM57B2) effector protein, which then synthesizes lactosylceramide (LacCer). Treatment with 24,25(OH)2D3 or LacCer restored callus size and mechanical properties in Cyp24a1-null mice. Methods To assess the safety of these molecules and test their efficacy for bone healing in wild-type, non-genetically modified mice, we treated 12-week-old, osteotomized C57BL/6 female mice with each compound for up to 21 days post-osteotomy. Control cohorts were injected with vehicle. Results Neither compound was found to exhibit any nephro- nor hepato-toxicity. Calcemia remained stable throughout the experiment and was unaffected by either treatment. Supplementation with 24,25(OH)2D3 increased circulating levels of this metabolite about 8-fold, decreased 1,25(OH)2D3 levels, and significantly increased circulating 1,24,25(OH)3D3 levels, suggesting 1?-hydroxylation of 24,25(OH)2D3. TLCD3B2 was found to be expressed in fracture callus at the surface of unmineralized or pre-mineralized cartilage on day 10 and day 12 post-osteotomy and to progressively recede to become undetectable by day 18. Treatment with 24,25(OH)2D3 or LacCer reduced the number of TLCD3B2-positive cells. Both treatments also significantly increased stiffness and elastic modulus of the healing bone callus. Conclusion Exogenous administration of 24,25(OH)2D3 or LacCer improved the biomechanical properties of repaired bones in wild-type animals without affecting circulating calcium levels or other blood parameters, demonstrating preclinical safety and efficacy. Translational potential Our data suggest the use of 24R,25-dihydroxyvitamin D3 or lactosylceramide for ameliorating fracture healing in clinical practice.
Collapse
Affiliation(s)
- Corine Martineau
- Research Centre, Shriners Hospitals for Children – Canada, Montreal, Quebec, H4A 0A9, Canada
| | - Martin Kaufmann
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
- Department of Surgery, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Alice Arabian
- Research Centre, Shriners Hospitals for Children – Canada, Montreal, Quebec, H4A 0A9, Canada
| | - Glenville Jones
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - René St-Arnaud
- Research Centre, Shriners Hospitals for Children – Canada, Montreal, Quebec, H4A 0A9, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, H3A 1A1, Canada
- Department of Surgery, McGill University, Montreal, Quebec, H3A 1A1, Canada
- Department of Medicine, McGill University, Montreal, Quebec, H3A 1A1, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, H3H 2R9, Canada
- Corresponding author. Research Centre, Shriners Hospitals for Children – Canada, 1003 Decarie Boulevard, Montreal, Quebec, H4A 0A9, Canada.
| |
Collapse
|
105
|
Jing Y, Wang Z, Li H, Ma C, Feng J. Chondrogenesis Defines Future Skeletal Patterns Via Cell Transdifferentiation from Chondrocytes to Bone Cells. Curr Osteoporos Rep 2020; 18:199-209. [PMID: 32219639 PMCID: PMC7717675 DOI: 10.1007/s11914-020-00586-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to obtain a better understanding of how chondrogenesis defines skeletal development via cell transdifferentiation from chondrocytes to bone cells. RECENT FINDINGS A breakthrough in cell lineage tracing allows bone biologists to trace the cell fate and demonstrate that hypertrophic chondrocytes can directly transdifferentiate into bone cells during endochondral bone formation. However, there is a knowledge gap for the biological significance of this lineage extension and the mechanisms controlling this process. This review first introduces the history of the debate on the cell fate of chondrocytes in endochondral bone formation; then summarizes key findings obtained in recent years, which strongly support a new theory: the direct cell transdifferentiation from chondrocytes to bone cells precisely connects chondrogenesis (for providing a template of the future skeleton, classified as phase I) and osteogenesis (for finishing skeletal construction, or phase II) in a continuous lineage-linked process of endochondral bone formation and limb elongation; and finally outlines nutrition factors and molecules that regulate the cell transdifferentiation process during the relay from chondrogenesis to osteogenesis.
Collapse
Affiliation(s)
- Yan Jing
- Department of Orthodontics, Texas A&M University College of Dentistry, 3302 Gaston ave, Dallas, TX, 75246, USA.
| | - Zheng Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Hui Li
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
- State Key Laboratory of Oral Diseases, Department of Traumatic and Plastic Surgery, , West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chi Ma
- Department of Research, Texas Scottish Rite Hospital for Children, Dallas, TX, USA
| | - Jian Feng
- Department of Orthodontics, Texas A&M University College of Dentistry, 3302 Gaston ave, Dallas, TX, 75246, USA.
| |
Collapse
|
106
|
Abstract
PURPOSE OF REVIEW Bone elongation is a complex process driven by multiple intrinsic (hormones, growth factors) and extrinsic (nutrition, environment) variables. Bones grow in length by endochondral ossification in cartilaginous growth plates at ends of developing long bones. This review provides an updated overview of the important factors that influence this process. RECENT FINDINGS Insulin-like growth factor-1 (IGF-1) is the major hormone required for growth and a drug for treating pediatric skeletal disorders. Temperature is an underrecognized environmental variable that also impacts linear growth. This paper reviews the current state of knowledge regarding the interaction of IGF-1 and environmental factors on bone elongation. Understanding how internal and external variables regulate bone lengthening is essential for developing and improving treatments for an array of bone elongation disorders. Future studies may benefit from understanding how these unique relationships could offer realistic new approaches for increasing bone length in different growth-limiting conditions.
Collapse
Affiliation(s)
- Holly L Racine
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV, 26074, USA
| | - Maria A Serrat
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA.
- Department of Orthopaedics, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA.
| |
Collapse
|
107
|
Marconi A, Hancock-Ronemus A, Gillis JA. Adult chondrogenesis and spontaneous cartilage repair in the skate, Leucoraja erinacea. eLife 2020; 9:e53414. [PMID: 32393435 PMCID: PMC7217701 DOI: 10.7554/elife.53414] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Mammalian articular cartilage is an avascular tissue with poor capacity for spontaneous repair. Here, we show that embryonic development of cartilage in the skate (Leucoraja erinacea) mirrors that of mammals, with developing chondrocytes co-expressing genes encoding the transcription factors Sox5, Sox6 and Sox9. However, in skate, transcriptional features of developing cartilage persist into adulthood, both in peripheral chondrocytes and in cells of the fibrous perichondrium that ensheaths the skeleton. Using pulse-chase label retention experiments and multiplexed in situ hybridization, we identify a population of cycling Sox5/6/9+ perichondral progenitor cells that generate new cartilage during adult growth, and we show that persistence of chondrogenesis in adult skates correlates with ability to spontaneously repair cartilage injuries. Skates therefore offer a unique model for adult chondrogenesis and cartilage repair and may serve as inspiration for novel cell-based therapies for skeletal pathologies, such as osteoarthritis.
Collapse
Affiliation(s)
| | - Amy Hancock-Ronemus
- Charles River LaboratoriesWilmington, MassachusettsUnited States
- Marine Biological LaboratoryWoods Hole, MassachusettsUnited States
| | - J Andrew Gillis
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Marine Biological LaboratoryWoods Hole, MassachusettsUnited States
| |
Collapse
|
108
|
Lin W, Xu L, Li G. Molecular Insights Into Lysyl Oxidases in Cartilage Regeneration and Rejuvenation. Front Bioeng Biotechnol 2020; 8:359. [PMID: 32426343 PMCID: PMC7204390 DOI: 10.3389/fbioe.2020.00359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Articular cartilage remains among the most difficult tissues to regenerate due to its poor self-repair capacity. The lysyl oxidase family (LOX; also termed as protein-lysine 6-oxidase), mainly consists of lysyl oxidase (LO) and lysyl oxidase-like 1-4 (LOXL1-LOXL4), has been traditionally defined as cuproenzymes that are essential for stabilization of extracellular matrix, particularly cross-linking of collagen and elastin. LOX is essential in the musculoskeletal system, particularly cartilage. LOXs-mediated collagen cross-links are essential for the functional integrity of articular cartilage. Appropriate modulation of the expression or activity of certain LOX members selectively may become potential promising strategy for cartilage repair. In the current review, we summarized the advances of LOX in cartilage homeostasis and functioning, as well as copper-mediated activation of LOX through hypoxia-responsive signaling axis during recent decades. Also, the molecular signaling network governing LOX expression has been summarized, indicating that appropriate modulation of hypoxia-responsive-signaling-directed LOX expression through manipulation of bioavailability of copper and oxygen is promising for further clinical implications of cartilage regeneration, which has emerged as a potential therapeutic approach for cartilage rejuvenation in tissue engineering and regenerative medicine. Therefore, targeted regulation of copper-mediated hypoxia-responsive signalling axis for selective modulation of LOX expression may become potential effective therapeutics for enhanced cartilage regeneration and rejuvenation in future clinical implications.
Collapse
Affiliation(s)
- Weiping Lin
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Liangliang Xu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
109
|
Leppik L, Oliveira KMC, Bhavsar MB, Barker JH. Electrical stimulation in bone tissue engineering treatments. Eur J Trauma Emerg Surg 2020; 46:231-244. [PMID: 32078704 PMCID: PMC7113220 DOI: 10.1007/s00068-020-01324-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/04/2020] [Indexed: 12/20/2022]
Abstract
Electrical stimulation (EStim) has been shown to promote bone healing and regeneration both in animal experiments and clinical treatments. Therefore, incorporating EStim into promising new bone tissue engineering (BTE) therapies is a logical next step. The goal of current BTE research is to develop combinations of cells, scaffolds, and chemical and physical stimuli that optimize treatment outcomes. Recent studies demonstrating EStim's positive osteogenic effects at the cellular and molecular level provide intriguing clues to the underlying mechanisms by which it promotes bone healing. In this review, we discuss results of recent in vitro and in vivo research focused on using EStim to promote bone healing and regeneration and consider possible strategies for its application to improve outcomes in BTE treatments. Technical aspects of exposing cells and tissues to EStim in in vitro and in vivo model systems are also discussed.
Collapse
Affiliation(s)
- Liudmila Leppik
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Frankfurt/Main, Germany.
| | - Karla Mychellyne Costa Oliveira
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Frankfurt/Main, Germany
| | - Mit Balvantray Bhavsar
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Frankfurt/Main, Germany
| | - John Howard Barker
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
110
|
Shimo T, Takebe H, Okui T, Kunisada Y, Ibaragi S, Obata K, Kurio N, Shamsoon K, Fujii S, Hosoya A, Irie K, Sasaki A, Iwamoto M. Expression and Role of IL-1β Signaling in Chondrocytes Associated with Retinoid Signaling during Fracture Healing. Int J Mol Sci 2020; 21:ijms21072365. [PMID: 32235405 PMCID: PMC7177407 DOI: 10.3390/ijms21072365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/15/2020] [Accepted: 03/26/2020] [Indexed: 01/08/2023] Open
Abstract
The process of fracture healing consists of an inflammatory reaction and cartilage and bone tissue reconstruction. The inflammatory cytokine interleukin-1β (IL-1β) signal is an important major factor in fracture healing, whereas its relevance to retinoid receptor (an RAR inverse agonist, which promotes endochondral bone formation) remains unclear. Herein, we investigated the expressions of IL-1β and retinoic acid receptor gamma (RARγ) in a rat fracture model and the effects of IL-1β in the presence of one of several RAR inverse agonists on chondrocytes. An immunohistochemical analysis revealed that IL-1β and RARγ were expressed in chondrocytes at the fracture site in the rat ribs on day 7 post-fracture. In chondrogenic ATDC5 cells, IL-1β decreases the levels of aggrecan and type II collagen but significantly increased the metalloproteinase-13 (Mmp13) mRNA by real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis. An RAR inverse agonist (AGN194310) inhibited IL-1β-stimulated Mmp13 and Ccn2 mRNA in a dose-dependent manner. Phosphorylated extracellular signal regulated-kinases (pERK1/2) and p-p38 mitogen-activated protein kinase (MAPK) were increased time-dependently by IL-1β treatment, and the IL-1β-induced p-p38 MAPK was inhibited by AGN194310. Experimental p38 inhibition led to a drop in the IL-1β-stimulated expressions of Mmp13 and Ccn2 mRNA. MMP13, CCN2, and p-p38 MAPK were expressed in hypertrophic chondrocytes near the invaded vascular endothelial cells. As a whole, these results point to role of the IL-1β via p38 MAPK as important signaling in the regulation of the endochondral bone formation in fracture healing, and to the actions of RAR inverse agonists as potentially relevant modulators of this process.
Collapse
Affiliation(s)
- Tsuyoshi Shimo
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan;
- Correspondence: ; Tel./Fax: +81-133-23-1429
| | - Hiroaki Takebe
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan; (H.T.); (A.H.); (K.I.)
| | - Tatsuo Okui
- Departments of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8525, Japan; (T.O.); (Y.K.); (S.I.); (K.O.); (A.S.)
| | - Yuki Kunisada
- Departments of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8525, Japan; (T.O.); (Y.K.); (S.I.); (K.O.); (A.S.)
| | - Soichiro Ibaragi
- Departments of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8525, Japan; (T.O.); (Y.K.); (S.I.); (K.O.); (A.S.)
| | - Kyoichi Obata
- Departments of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8525, Japan; (T.O.); (Y.K.); (S.I.); (K.O.); (A.S.)
| | - Naito Kurio
- Department of Oral Surgery, Tokushima University Graduate School, Tokushima 770-8504, Japan;
| | - Karnoon Shamsoon
- Division of Clinical Cariology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, University of Hokkaido, School of Dentistry, Hokkaido 061-0293, Japan;
| | - Saki Fujii
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan;
| | - Akihiro Hosoya
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan; (H.T.); (A.H.); (K.I.)
| | - Kazuharu Irie
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan; (H.T.); (A.H.); (K.I.)
| | - Akira Sasaki
- Departments of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8525, Japan; (T.O.); (Y.K.); (S.I.); (K.O.); (A.S.)
| | - Masahiro Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|
111
|
Kronemberger GS, Matsui RAM, Miranda GDASDCE, Granjeiro JM, Baptista LS. Cartilage and bone tissue engineering using adipose stromal/stem cells spheroids as building blocks. World J Stem Cells 2020; 12:110-122. [PMID: 32184936 PMCID: PMC7062040 DOI: 10.4252/wjsc.v12.i2.110] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/19/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Scaffold-free techniques in the developmental tissue engineering area are designed to mimic in vivo embryonic processes with the aim of biofabricating, in vitro, tissues with more authentic properties. Cell clusters called spheroids are the basis for scaffold-free tissue engineering. In this review, we explore the use of spheroids from adult mesenchymal stem/stromal cells as a model in the developmental engineering area in order to mimic the developmental stages of cartilage and bone tissues. Spheroids from adult mesenchymal stromal/stem cells lineages recapitulate crucial events in bone and cartilage formation during embryogenesis, and are capable of spontaneously fusing to other spheroids, making them ideal building blocks for bone and cartilage tissue engineering. Here, we discuss data from ours and other labs on the use of adipose stromal/stem cell spheroids in chondrogenesis and osteogenesis in vitro. Overall, recent studies support the notion that spheroids are ideal "building blocks" for tissue engineering by “bottom-up” approaches, which are based on tissue assembly by advanced techniques such as three-dimensional bioprinting. Further studies on the cellular and molecular mechanisms that orchestrate spheroid fusion are now crucial to support continued development of bottom-up tissue engineering approaches such as three-dimensional bioprinting.
Collapse
Affiliation(s)
- Gabriela S Kronemberger
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Post-graduate Program in Translational Biomedicine (Biotrans), Unigranrio, Campus I, Duque de Caxias, RJ 25250-020, Brazil
| | - Renata Akemi Morais Matsui
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Post-graduate Program in Biotechnology, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
| | - Guilherme de Almeida Santos de Castro e Miranda
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Federal University of Rio de Janeiro (UFRJ), Campus Duque de Caxias, Duque de Caxias, RJ 25250-020, Brazil
| | - José Mauro Granjeiro
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Post-graduate Program in Biotechnology, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Laboratory of Clinical Research in Odontology, Fluminense Federal University (UFF), Niterói 25255-030 Brazil
| | - Leandra Santos Baptista
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Post-graduate Program in Translational Biomedicine (Biotrans), Unigranrio, Campus I, Duque de Caxias, RJ 25250-020, Brazil
- Post-graduate Program in Biotechnology, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Multidisciplinary Center for Biological Research (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Campus Duque de Caxias, Duque de Caxias, RJ 25245-390, Brazil
| |
Collapse
|
112
|
Ruscitto A, Morel MM, Shawber CJ, Reeve G, Lecholop MK, Bonthius D, Yao H, Embree MC. Evidence of vasculature and chondrocyte to osteoblast transdifferentiation in craniofacial synovial joints: Implications for osteoarthritis diagnosis and therapy. FASEB J 2020; 34:4445-4461. [PMID: 32030828 DOI: 10.1096/fj.201902287r] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
Temporomandibular joint osteoarthritis (TMJ OA) leads to permanent cartilage destruction, jaw dysfunction, and compromises the quality of life. However, the pathological mechanisms governing TMJ OA are poorly understood. Unlike appendicular articular cartilage, the TMJ has two distinct functions as the synovial joint of the craniofacial complex and also as the site for endochondral jaw bone growth. The established dogma of endochondral bone ossification is that hypertrophic chondrocytes undergo apoptosis, while invading vasculature with osteoprogenitors replace cartilage with bone. However, contemporary murine genetic studies support the direct differentiation of chondrocytes into osteoblasts and osteocytes in the TMJ. Here we sought to characterize putative vasculature and cartilage to bone transdifferentiation using healthy and diseased TMJ tissues from miniature pigs and humans. During endochondral ossification, the presence of fully formed vasculature expressing CD31+ endothelial cells and α-SMA+ vascular smooth muscle cells were detected within all cellular zones in growing miniature pigs. Arterial, endothelial, venous, angiogenic, and mural cell markers were significantly upregulated in miniature pig TMJ tissues relative to donor matched knee meniscus fibrocartilage tissue. Upon surgically creating TMJ OA in miniature pigs, we discovered increased vasculature and putative chondrocyte to osteoblast transformation dually marked by COL2 and BSP or RUNX2 within the vascular bundles. Pathological human TMJ tissues also exhibited increased vasculature, while isolated diseased human TMJ cells exhibited marked increased in vasculature markers relative to control 293T cells. Our study provides evidence to suggest that the TMJ in higher order species are in fact vascularized. There have been no reports of cartilage to bone transdifferentiation or vasculature in human-relevant TMJ OA large animal models or in human TMJ tissues and cells. Therefore, these findings may potentially alter the clinical management of TMJ OA by defining new drugs that target angiogenesis or block the cartilage to bone transformation.
Collapse
Affiliation(s)
- Angela Ruscitto
- Cartilage Biology and Regenerative Medicine Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Mallory M Morel
- Cartilage Biology and Regenerative Medicine Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Carrie J Shawber
- Department of OB/GYN, Division of Reproductive Sciences, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Gwendolyn Reeve
- Division of Oral and Maxillofacial Surgery, New York Presbyterian Weill Cornell Medical Center, New York, NY, USA
| | - Michael K Lecholop
- Department of Oral and Maxillofacial Surgery, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Daniel Bonthius
- Clemson-MUSC Bioengineering Program, Department of Bioengineering, Clemson University, Greenville, SC, USA
| | - Hai Yao
- Clemson-MUSC Bioengineering Program, Department of Bioengineering, Clemson University, Greenville, SC, USA.,Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Mildred C Embree
- Cartilage Biology and Regenerative Medicine Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
113
|
Harvestine JN, Gonzalez-Fernandez T, Sebastian A, Hum NR, Genetos DC, Loots GG, Leach JK. Osteogenic preconditioning in perfusion bioreactors improves vascularization and bone formation by human bone marrow aspirates. SCIENCE ADVANCES 2020; 6:eaay2387. [PMID: 32095526 PMCID: PMC7015678 DOI: 10.1126/sciadv.aay2387] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/26/2019] [Indexed: 05/05/2023]
Abstract
Cell-derived extracellular matrix (ECM) provides a niche to promote osteogenic differentiation, cell adhesion, survival, and trophic factor secretion. To determine whether osteogenic preconditioning would improve the bone-forming potential of unfractionated bone marrow aspirate (BMA), we perfused cells on ECM-coated scaffolds to generate naïve and preconditioned constructs, respectively. The composition of cells selected from BMA was distinct on each scaffold. Naïve constructs exhibited robust proangiogenic potential in vitro, while preconditioned scaffolds contained more mesenchymal stem/stromal cells (MSCs) and endothelial cells (ECs) and exhibited an osteogenic phenotype. Upon implantation into an orthotopic calvarial defect, BMA-derived ECs were present in vessels in preconditioned implants, resulting in robust perfusion and greater vessel density over the first 14 days compared to naïve implants. After 10 weeks, human ECs and differentiated MSCs were detected in de novo tissues derived from naïve and preconditioned scaffolds. These results demonstrate that bioreactor-based preconditioning augments the bone-forming potential of BMA.
Collapse
Affiliation(s)
- J. N. Harvestine
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - T. Gonzalez-Fernandez
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - A. Sebastian
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - N. R. Hum
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - D. C. Genetos
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - G. G. Loots
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - J. K. Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA 95817, USA
| |
Collapse
|
114
|
Sonic Hedgehog Regulates Bone Fracture Healing. Int J Mol Sci 2020; 21:ijms21020677. [PMID: 31968603 PMCID: PMC7013927 DOI: 10.3390/ijms21020677] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
Bone fracture healing involves the combination of intramembranous and endochondral ossification. It is known that Indian hedgehog (Ihh) promotes chondrogenesis during fracture healing. Meanwhile, Sonic hedgehog (Shh), which is involved in ontogeny, has been reported to be involved in fracture healing, but the details had not been clarified. In this study, we demonstrated that Shh participated in fracture healing. Six-week-old Sprague–Dawley rats and Gli-CreERT2; tdTomato mice were used in this study. The right rib bones of experimental animals were fractured. The localization of Shh and Gli1 during fracture healing was examined. The localization of Gli1 progeny cells and osterix (Osx)-positive cells was similar during fracture healing. Runt-related transcription factor 2 (Runx2) and Osx, both of which are osteoblast markers, were observed on the surface of the new bone matrix and chondrocytes on day seven after fracture. Shh and Gli1 were co-localized with Runx2 and Osx. These findings suggest that Shh is involved in intramembranous and endochondral ossification during fracture healing.
Collapse
|
115
|
Limraksasin P, Kondo T, Zhang M, Okawa H, Osathanon T, Pavasant P, Egusa H. In Vitro Fabrication of Hybrid Bone/Cartilage Complex Using Mouse Induced Pluripotent Stem Cells. Int J Mol Sci 2020; 21:ijms21020581. [PMID: 31963264 PMCID: PMC7014254 DOI: 10.3390/ijms21020581] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 11/25/2022] Open
Abstract
Cell condensation and mechanical stimuli play roles in osteogenesis and chondrogenesis; thus, they are promising for facilitating self-organizing bone/cartilage tissue formation in vitro from induced pluripotent stem cells (iPSCs). Here, single mouse iPSCs were first seeded in micro-space culture plates to form 3-dimensional spheres. At day 12, iPSC spheres were subjected to shaking culture and maintained in osteogenic induction medium for 31 days (Os induction). In another condition, the osteogenic induction medium was replaced by chondrogenic induction medium at day 22 and maintained for a further 21 days (Os-Chon induction). Os induction produced robust mineralization and some cartilage-like tissue, which promoted expression of osteogenic and chondrogenic marker genes. In contrast, Os-Chon induction resulted in partial mineralization and a large area of cartilage tissue, with greatly increased expression of chondrogenic marker genes along with osterix and collagen 1a1. Os-Chon induction enhanced mesodermal lineage commitment with brachyury expression followed by high expression of lateral plate and paraxial mesoderm marker genes. These results suggest that combined use of micro-space culture and mechanical stimuli facilitates hybrid bone/cartilage tissue formation from iPSCs, and that the bone/cartilage tissue ratio in iPSC constructs could be manipulated through the induction protocol.
Collapse
Affiliation(s)
- Phoonsuk Limraksasin
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| | - Takeru Kondo
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| | - Maolin Zhang
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| | - Hiroko Okawa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
- Weintraub Center for Reconstructive Biotechnology, UCLA (University of California, Los Angeles) School of Dentistry, Los Angeles, CA 90095-1668, USA
| | - Thanaphum Osathanon
- Center of Excellence for Regenerative Dentistry and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prasit Pavasant
- Center of Excellence for Regenerative Dentistry and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
- Correspondence:
| |
Collapse
|
116
|
Cheng Z, Li A, Tu CL, Maria CS, Szeto N, Herberger A, Chen TH, Song F, Wang J, Liu X, Shoback DM, Chang W. Calcium-Sensing Receptors in Chondrocytes and Osteoblasts Are Required for Callus Maturation and Fracture Healing in Mice. J Bone Miner Res 2020; 35:143-154. [PMID: 31498905 PMCID: PMC7700777 DOI: 10.1002/jbmr.3864] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/25/2022]
Abstract
Calcium and its putative receptor (CaSR) control skeletal development by pacing chondrocyte differentiation and mediating osteoblast (OB) function during endochondral bone formation-an essential process recapitulated during fracture repair. Here, we delineated the role of the CaSR in mediating transition of callus chondrocytes into the OB lineage and subsequent bone formation at fracture sites and explored targeting CaSRs pharmacologically to enhance fracture repair. In chondrocytes cultured from soft calluses at a closed, unfixed fracture site, extracellular [Ca2+ ] and the allosteric CaSR agonist (NPS-R568) promoted terminal differentiation of resident cells and the attainment of an osteoblastic phenotype. Knockout (KO) of the Casr gene in chondrocytes lengthened the chondrogenic phase of fracture repair by increasing cell proliferation in soft calluses but retarded subsequent osteogenic activity in hard calluses. Tracing growth plate (GP) and callus chondrocytes that express Rosa26-tdTomato showed reduced chondrocyte transition into OBs (by >80%) in the spongiosa of the metaphysis and in hard calluses. In addition, KO of the Casr gene specifically in mature OBs suppressed osteogenic activity and mineralizing function in bony calluses. Importantly, in experiments using PTH (1-34) to enhance fracture healing, co-injection of NPS-R568 not only normalized the hypercalcemic side effects of intermittent PTH (1-34) treatment in mice but also produced synergistic osteoanabolic effects in calluses. These data indicate a functional role of CaSR in mediating chondrogenesis and osteogenesis in the fracture callus and the potential of CaSR agonism to facilitate fracture repair. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Zhiqiang Cheng
- Endocrine Research Unit, Department of Veterans Affairs Medical Center, NCIRE, University of California, San Francisco, CA, USA
| | - Alfred Li
- Endocrine Research Unit, Department of Veterans Affairs Medical Center, NCIRE, University of California, San Francisco, CA, USA
| | - Chia-Ling Tu
- Endocrine Research Unit, Department of Veterans Affairs Medical Center, NCIRE, University of California, San Francisco, CA, USA
| | - Christian Santa Maria
- Endocrine Research Unit, Department of Veterans Affairs Medical Center, NCIRE, University of California, San Francisco, CA, USA
| | - Nicholas Szeto
- Endocrine Research Unit, Department of Veterans Affairs Medical Center, NCIRE, University of California, San Francisco, CA, USA
| | - Amanda Herberger
- Endocrine Research Unit, Department of Veterans Affairs Medical Center, NCIRE, University of California, San Francisco, CA, USA
| | - Tsui-Hua Chen
- Endocrine Research Unit, Department of Veterans Affairs Medical Center, NCIRE, University of California, San Francisco, CA, USA
| | - Fuqing Song
- Endocrine Research Unit, Department of Veterans Affairs Medical Center, NCIRE, University of California, San Francisco, CA, USA
| | - Jiali Wang
- Endocrine Research Unit, Department of Veterans Affairs Medical Center, NCIRE, University of California, San Francisco, CA, USA
| | - Xiaodong Liu
- Endocrine Research Unit, Department of Veterans Affairs Medical Center, NCIRE, University of California, San Francisco, CA, USA
| | - Dolores M Shoback
- Endocrine Research Unit, Department of Veterans Affairs Medical Center, NCIRE, University of California, San Francisco, CA, USA
| | - Wenhan Chang
- Endocrine Research Unit, Department of Veterans Affairs Medical Center, NCIRE, University of California, San Francisco, CA, USA
| |
Collapse
|
117
|
Wang D, Gilbert JR, Zhang X, Zhao B, Ker DFE, Cooper GM. Calvarial Versus Long Bone: Implications for Tailoring Skeletal Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2019; 26:46-63. [PMID: 31588853 DOI: 10.1089/ten.teb.2018.0353] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tissue-engineered graft substitutes have shown great potential to treat large bone defects. While we usually assume that therapeutic approaches developed for appendicular bone healing could be similarly translated for application in craniofacial reconstruction and vice versa, this is not necessarily accurate. In addition to those more well-known healing-associated factors, such as age, lifestyle (e.g., nutrition and smoking), preexisting disease (e.g., diabetes), medication, and poor blood supply, the developmental origins and surrounding tissue of the wound sites can largely affect the fracture healing outcome as well as designed treatments. Therefore, the strategies developed for long bone fracture repair might not be suitable or directly applicable to skull bone repair. In this review, we discuss aspects of development, healing process, structure, and tissue engineering considerations between calvarial and long bones to assist in designing the tailored bone repair strategies. Impact Statement We summarized, in this review, the existing body of knowledge between long bone and calvarial bone with regard to their development and healing, tissue structure, and consideration of current tissue engineering strategies. By highlighting their similarities and differences, we propose that tailored tissue engineering strategies, such as scaffold features, growth factor usage, and the source of cells for tissue or region-specific bone repair, are necessary to ensure an optimized healing outcome.
Collapse
Affiliation(s)
- Dan Wang
- Department of Stomatology, Tenth People's Hospital of Tongji University, Shanghai, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James R Gilbert
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Bingkun Zhao
- Department of Stomatology, Tenth People's Hospital of Tongji University, Shanghai, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Gregory M Cooper
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
118
|
Mesenchymal VEGFA induces aberrant differentiation in heterotopic ossification. Bone Res 2019; 7:36. [PMID: 31840004 PMCID: PMC6904752 DOI: 10.1038/s41413-019-0075-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/11/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
Heterotopic ossification (HO) is a debilitating condition characterized by the pathologic formation of ectopic bone. HO occurs commonly following orthopedic surgeries, burns, and neurologic injuries. While surgical excision may provide palliation, the procedure is often burdened with significant intra-operative blood loss due to a more robust contribution of blood supply to the pathologic bone than to native bone. Based on these clinical observations, we set out to examine the role of vascular signaling in HO. Vascular endothelial growth factor A (VEGFA) has previously been shown to be a crucial pro-angiogenic and pro-osteogenic cue during normal bone development and homeostasis. Our findings, using a validated mouse model of HO, demonstrate that HO lesions are highly vascular, and that VEGFA is critical to ectopic bone formation, despite lacking a contribution of endothelial cells within the developing anlagen.
Collapse
|
119
|
Haffner-Luntzer M, Hankenson KD, Ignatius A, Pfeifer R, Khader BA, Hildebrand F, van Griensven M, Pape HC, Lehmicke M. Review of Animal Models of Comorbidities in Fracture-Healing Research. J Orthop Res 2019; 37:2491-2498. [PMID: 31444806 DOI: 10.1002/jor.24454] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/13/2019] [Indexed: 02/04/2023]
Abstract
There is clinical evidence that patient-specific comorbidities like osteoporosis, concomitant tissue injury, and ischemia may strongly interfere with bone regeneration. However, underlying mechanisms are still unclear. To study these mechanisms in detail, appropriate animal models are needed. For decades, bone healing has been studied in large animals, including dogs, rabbits, pigs, or sheep. However, large animal models display a limited ability to study molecular pathways and cellular functions. Therefore in recent years, mice and rats have become increasingly popular as a model organism for fracture healing research due to the availability of molecular analysis tools and transgenic models. Both large and small animals can be used to study comorbidities and risk factors, modelling the human clinical situation. However, attention has to be paid when choosing an appropriate model due to species differences between large animals, rodents, and humans. This review focuses on large and small animal models for the common comorbidities ischemic injury/reduced vascularization, osteoporosis, and polytrauma, and critically discusses the translational and molecular aspects of these models. Here, we review material which was presented at the workshop "Animal Models of Comorbidities in Fracture Healing Research" at the 2019 ORS Annual Meeting in Austin Texas. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2491-2498, 2019.
Collapse
Affiliation(s)
- Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Roman Pfeifer
- Department of Trauma, University Hospital Zurich, Zurich, Switzerland
| | - Basel A Khader
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Frank Hildebrand
- Department of Orthopaedic Trauma, University Hospital RWTH Aachen, Aachen, Germany
| | - Martijn van Griensven
- Department of Experimental Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Michael Lehmicke
- Alliance for Regenerative Medicine, Washington, District of Columbia
| |
Collapse
|
120
|
Sun X, Gao X, Deng Z, Zhang L, McGilvray K, Gadomski BC, Amra S, Bao G, Huard J. High bone microarchitecture, strength, and resistance to bone loss in MRL/MpJ mice correlates with activation of different signaling pathways and systemic factors. FASEB J 2019; 34:789-806. [PMID: 31914651 DOI: 10.1096/fj.201901229rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 12/27/2022]
Abstract
The MRL/MpJ mice have demonstrated an enhanced tissue regeneration capacity for various tissues. In the present study, we systematically characterized bone microarchitecture and found that MRL/MpJ mice exhibit higher bone microarchitecture and strength compared to both C57BL/10J and C57BL/6J WT mice at 2, 4, and 10 months of age. The higher bone mass in MRL/MpJ mice was correlated to increased osteoblasts, decreased osteoclasts, higher cell proliferation, and bone formation, and enhanced pSMAD5 signaling earlier during postnatal development (2-month old) in the spine trabecular bone, and lower bone resorption rate at later age. Furthermore, these mice exhibit accelerated fracture healing via enhanced pSMAD5, pAKT and p-P38MAPK pathways compared to control groups. Moreover, MRL/MpJ mice demonstrated resistance to ovariectomy-induced bone loss as evidenced by maintaining higher bone volume/tissue volume (BV/TV) and lower percentage of bone loss later after ovariectomy. The consistently higher serum IGF1 level and lower RANKL level in MRL/MpJ mice may contribute to the maintenance of high bone mass in uninjured and injured bone. In conclusion, our results indicate that enhanced pSMAD5, pAKT, and p-P38MAPK signaling, higher serum IGF-1, and lower RANKL level contribute to the higher bone microarchitecture and strength, accelerated healing, and resistance to osteoporosis in MRL/MpJ mice.
Collapse
Affiliation(s)
- Xuying Sun
- Department of Orthopaedic Surgery, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Xueqin Gao
- Department of Orthopaedic Surgery, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, Colorado
| | - Zhenhan Deng
- Department of Orthopaedic Surgery, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Linlin Zhang
- Department of Biomedical Engineering, Rice University, Houston, Texas
| | - Kirk McGilvray
- Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado
| | - Benjamin C Gadomski
- Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado
| | - Sarah Amra
- Department of Orthopaedic Surgery, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Gang Bao
- Department of Biomedical Engineering, Rice University, Houston, Texas
| | - Johnny Huard
- Department of Orthopaedic Surgery, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, Colorado
| |
Collapse
|
121
|
Prondvai E, Witten PE, Abourachid A, Huysseune A, Adriaens D. Extensive chondroid bone in juvenile duck limbs hints at accelerated growth mechanism in avian skeletogenesis. J Anat 2019; 236:463-473. [PMID: 31670843 PMCID: PMC7018642 DOI: 10.1111/joa.13109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2019] [Indexed: 12/03/2022] Open
Abstract
Modern altricial birds are the fastest growing vertebrates, whereas various degrees of precocity (functional maturity) result in slower growth. Diaphyseal osteohistology, the best proxy for inferring relative growth rates in fossils, suggests that in the earliest birds, posthatching growth rates were more variable than in modern representatives, with some showing considerably slow growth that was attributed to their assumed precocial flight abilities. For finding clues how precocial or altricial skeletogenesis and related growth acceleration could be traced in avian evolution, as a case study we investigated the growing limb diaphyseal histology in an ontogenetic series of ducks which, among several other avian taxa, show a combination of altricial wing and precocial leg development. Here we report the unexpected discovery that chondroid bone, a skeletal tissue family intermediate between cartilage and bone, extensively contributes to the development of limb bone shaft in ducks up to at least 30 days posthatching age. To our knowledge, chondroid bone has never been reported in such quantities and with an ontogenetically extended deposition period in post‐embryonic, non‐pathological periosteal bone formation of any tetrapod limb. It shows transitional cellular/lacunar morphologies and matrix staining properties between cartilage and woven bone and takes a significant part in the diametric growth of the limb bone shaft. Its amount and distribution through duckling ontogeny seems to be associated with the disparate functional and growth trajectories of the altricial wings vs. precocial legs characteristic of duck limb development. The presence of isogenous cell groups in the periosteal chondroid bone implies that cartilage‐like interstitial growth took place before matrix mineralization complementing appositional bone growth. Based on these characteristics and on its fast formation rate in all previously reported normal as well as pathological cases, we suggest that chondroid bone in ducks significantly accelerates diametric limb bone growth. Related to this growth acceleration, we hypothesize that chondroid bone may be generally present in the growing limb bones of modern birds and hence may have key skeletogenic importance in achieving extreme avian growth rates and placing birds among the fastest growing vertebrates. Thus, we encourage future studies to test this hypothesis by investigating the occurrence of chondroid bone in a variety of precocial and altricial bird species, and to explore the presence of similar tissues in the growing limbs of other extant and extinct tetrapods in order to understand the evolutionary significance of chondroid bone in accelerated appendicular skeletogenesis.
Collapse
Affiliation(s)
- Edina Prondvai
- Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium.,MTA-MTM-ELTE Research Group for Paleontology, Budapest, Hungary
| | - P Eckhard Witten
- Department of Biology, Evolutionary Developmental Biology, Ghent University, Ghent, Belgium
| | - Anick Abourachid
- Département Adaptations du Vivant, UMR 7179 Muséum National d'Histoire Naturelle - CNRS, Paris, France
| | - Ann Huysseune
- Department of Biology, Evolutionary Developmental Biology, Ghent University, Ghent, Belgium
| | - Dominique Adriaens
- Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium
| |
Collapse
|
122
|
Tsang KY, Cheah KS. The extended chondrocyte lineage: implications for skeletal homeostasis and disorders. Curr Opin Cell Biol 2019; 61:132-140. [PMID: 31541943 DOI: 10.1016/j.ceb.2019.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 01/14/2023]
Abstract
Endochondral bone formation relies on a finely controlled sequence of chondrocyte proliferation, maturation and hypertrophy that establishes the growth plate which, combined with the deposition of bone upon the cartilage template, mediates longitudinal skeletal growth. Recent lineage studies support a chondrocyte-osteoblast differentiation continuum and the presence of skeletal stem cells within cartilage. The biological significance of the lineage extension and the mechanisms controlling the process are unclear. In this review, we describe recent work on the extended chondrocyte-osteoblast lineage and its contribution to the development, growth and repair of bone and to bone disorders that provides insight into the process and the molecular controls involved. The implications for skeletal homeostasis are discussed.
Collapse
Affiliation(s)
- Kwok Yeung Tsang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kathryn Se Cheah
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
123
|
Raftery RM, Walsh DP, Blokpoel Ferreras L, Mencía Castaño I, Chen G, LeMoine M, Osman G, Shakesheff KM, Dixon JE, O'Brien FJ. Highly versatile cell-penetrating peptide loaded scaffold for efficient and localised gene delivery to multiple cell types: From development to application in tissue engineering. Biomaterials 2019; 216:119277. [PMID: 31252371 DOI: 10.1016/j.biomaterials.2019.119277] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 01/10/2023]
Abstract
Gene therapy has recently come of age with seven viral vector-based therapies gaining regulatory approval in recent years. In tissue engineering, non-viral vectors are preferred over viral vectors, however, lower transfection efficiencies and difficulties with delivery remain major limitations hampering clinical translation. This study describes the development of a novel multi-domain cell-penetrating peptide, GET, designed to enhance cell interaction and intracellular translocation of nucleic acids; combined with a series of porous collagen-based scaffolds with proven regenerative potential for different indications. GET was capable of transfecting cell types from all three germ layers, including stem cells, with an efficiency comparable to Lipofectamine® 3000, without inducing cytotoxicity. When implanted in vivo, GET gene-activated scaffolds allowed for host cell infiltration, transfection localized to the implantation site and sustained, but transient, changes in gene expression - demonstrating both the efficacy and safety of the approach. Finally, GET carrying osteogenic (pBMP-2) and angiogenic (pVEGF) genes were incorporated into collagen-hydroxyapatite scaffolds and with a single 2 μg dose of therapeutic pDNA, induced complete repair of critical-sized bone defects within 4 weeks. GET represents an exciting development in gene therapy and by combining it with a scaffold-based delivery system offers tissue engineering solutions for a myriad of regenerative indications.
Collapse
Affiliation(s)
- Rosanne M Raftery
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - David P Walsh
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland; Translational Research in Nanomedical Devices, School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Lia Blokpoel Ferreras
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Irene Mencía Castaño
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Gang Chen
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Microsurgical Research and Training Facility (MRTF), Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mark LeMoine
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Gizem Osman
- Centre for Biomedical Sciences, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Kevin M Shakesheff
- Centre for Biomedical Sciences, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - James E Dixon
- Centre for Biomedical Sciences, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.
| |
Collapse
|
124
|
Differential fracture response to traumatic brain injury suggests dominance of neuroinflammatory response in polytrauma. Sci Rep 2019; 9:12199. [PMID: 31434912 PMCID: PMC6704103 DOI: 10.1038/s41598-019-48126-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/24/2019] [Indexed: 12/16/2022] Open
Abstract
Polytraumatic injuries, specifically long bone fracture and traumatic brain injury (TBI), frequently occur together. Clinical observation has long held that TBI can accelerate fracture healing, yet the complexity and heterogeneity of these injuries has produced conflicting data with limited information on underlying mechanisms. We developed a murine polytrauma model with TBI and fracture to evaluate healing in a controlled system. Fractures were created both contralateral and ipsilateral to the TBI to test whether differential responses of humoral and/or neuronal systems drove altered healing patterns. Our results show increased bone formation after TBI when injuries occur contralateral to each other, rather than ipsilateral, suggesting a role of the nervous system based on the crossed neuroanatomy of motor and sensory systems. Analysis of the humoral system shows that blood cell counts and inflammatory markers are differentially modulated by polytrauma. A data-driven multivariate analysis integrating all outcome measures showed a distinct pathological state of polytrauma and co-variations between fracture, TBI and systemic markers. Taken together, our results suggest that a contralateral bone fracture and TBI alter the local neuroinflammatory state to accelerate early fracture healing. We believe applying a similar data-driven approach to clinical polytrauma may help to better understand the complicated pathophysiological mechanisms of healing.
Collapse
|
125
|
Abstract
PURPOSE OF REVIEW This article reviews the past 2 years of research on Notch signaling as it relates to bone physiology, with the goal of reconciling seemingly discrepant findings and identifying fruitful areas of potential future research. RECENT FINDINGS Conditional animal models and high-throughput omics have contributed to a greater understanding of the context-dependent role of Notch signaling in bone. However, significant gaps remain in our understanding of how spatiotemporal context and epigenetic state dictate downstream Notch phenotypes. Biphasic activation of Notch signaling orchestrates progression of mesenchymal progenitor cells through the osteoblast lineage, but there is a limited understanding of ligand- and receptor-specific functions. Paracrine Notch signaling through non-osteoblastic cell types contributes additional layers of complexity, and we anticipate impactful future work related to the integration of these cell types and signaling mechanisms.
Collapse
Affiliation(s)
- Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Pl, Ann Arbor, MI, 48872, USA.
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Pl, Ann Arbor, MI, 48872, USA
| |
Collapse
|
126
|
Lin W, Xu L, Pan Q, Lin S, Feng L, Wang B, Chen S, Li Y, Wang H, Li Y, Wang Y, Lee WYW, Sun D, Li G. Lgr5-overexpressing mesenchymal stem cells augment fracture healing through regulation of Wnt/ERK signaling pathways and mitochondrial dynamics. FASEB J 2019; 33:8565-8577. [PMID: 30991839 DOI: 10.1096/fj.201900082rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fracture remains one of the most common traumatic conditions in orthopedic surgery. The use of mesenchymal stem cells (MSCs) to augment fracture repair is promising. Leucine-rich repeat-containing GPCR 5 (Lgr5), a transmembrane protein, has been identified as a novel adult stem cell marker in various organs and tissues. However, the roles of Lgr5 in MSCs are not fully understood. In this study, we investigated cellular functions of Lgr5 in MSCs and its potential implications in treating fracture. Lgr5-overexpressing MSCs (MSCLgr5) were established in murine SV40 promoter-driven luciferase reporter MSC line through virus transfection. Results of real-time quantitative PCR and Western blot analysis confirmed the increased expression of Lgr5 in MSCLgr5. MSCLgr5 exhibited increased osteogenic capacity, which may result from elevated expression of β-catenin and phosphorylated ERK1/2 within the nuclear region of cells. In contrast, inhibition of Lgr5 expression decreased the osteogenic differentiation ability of MSCs, accompanied with increased mitochondrial fragmentation and reduced expression of β-catenin. Local transplantation of MSCLgr5 at fracture sites accelerated fracture healing via enhanced osteogenesis and angiogenesis. MSCLgr5 stimulated the tube formation capacity of HUVECs in a Matrigel coculture system in vitro significantly. Taken together, results suggest that Lgr5 is implicated in the cellular processes of osteogenic differentiation of MSCs through regulation of Wnt and ERK signaling pathways and mitochondrial dynamics in fusion and fission. Inhibition of Lgr5 expression induced increased mitochondrial fragmentation and suppression of osteogenesis. MSCLgr5 exhibited enhanced therapeutic efficacy for fracture healing, which may serve as a superior cell source for bone tissue repair.-Lin, W., Xu, L., Pan, Q., Lin, S., Feng, L., Wang, B., Chen, S., Li, Y., Wang, H., Li, Y., Wang, Y., Lee, W. Y. W., Sun, D., Li, G. Lgr5-overexpressing mesenchymal stem cells augment fracture healing through regulation of Wnt/ERK signaling pathways and mitochondrial dynamics.
Collapse
Affiliation(s)
- Weiping Lin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Liangliang Xu
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Pan
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Sien Lin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Lu Feng
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Bin Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Shuxun Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Ying Li
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haixing Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Yucong Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Yan Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Wayne Yuk Wai Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Dong Sun
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- The Chinese University of Hong Kong-China Astronaut Research and Training Center, Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
127
|
Sheehy E, Kelly D, O'Brien F. Biomaterial-based endochondral bone regeneration: a shift from traditional tissue engineering paradigms to developmentally inspired strategies. Mater Today Bio 2019; 3:100009. [PMID: 32159148 PMCID: PMC7061547 DOI: 10.1016/j.mtbio.2019.100009] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
There is an urgent, clinical need for an alternative to the use of autologous grafts for the ever increasing number of bone grafting procedures performed annually. Herein, we describe a developmentally inspired approach to bone tissue engineering, which focuses on leveraging biomaterials as platforms for recapitulating the process of endochondral ossification. To begin, we describe the traditional biomaterial-based approaches to tissue engineering that have been investigated as methods to promote in vivo bone regeneration, including the use of three-dimensional biomimetic scaffolds, the delivery of growth factors and recombinant proteins, and the in vitro engineering of mineralized bone-like tissue. Thereafter, we suggest that some of the hurdles encountered by these traditional tissue engineering approaches may be circumvented by modulating the endochondral route to bone repair and, to that end, we assess various biomaterials that can be used in combination with cells and signaling factors to engineer hypertrophic cartilaginous grafts capable of promoting endochondral bone formation. Finally, we examine the emerging trends in biomaterial-based approaches to endochondral bone regeneration, such as the engineering of anatomically shaped templates for bone and osteochondral tissue engineering, the fabrication of mechanically reinforced constructs using emerging three-dimensional bioprinting techniques, and the generation of gene-activated scaffolds, which may accelerate the field towards its ultimate goal of clinically successful bone organ regeneration.
Collapse
Affiliation(s)
- E.J. Sheehy
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - D.J. Kelly
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - F.J. O'Brien
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
128
|
Abstract
PURPOSE OF REVIEW The goal of the review is to summarize the current knowledge on the process of chondrocyte-to-osteoblast transdifferentiation during endochondral bone formation and its potential implications in fracture healing and disease. RECENT FINDINGS Lineage tracing experiments confirmed the transdifferentiation of chondrocytes into osteoblasts. More recent studies lead to the discovery of molecules involved in this process, as well as to the hypothesis that these cells may re-enter a stem cell-like phase prior to their osteoblastic differentiation. This review recapitulates the current knowledge regarding chondrocyte transdifferentiating into osteoblasts, the developmental and postnatal events where transdifferentiation appears to be relevant, and the molecules implicated in this process.
Collapse
Affiliation(s)
- Lena Ingeborg Wolff
- Institute of Musculoskeletal Medicine, Department of Bone and Skeletal Research, Medical Faculty of the Westphalian Wilhelms University Münster, Munster, Germany
| | - Christine Hartmann
- Institute of Musculoskeletal Medicine, Department of Bone and Skeletal Research, Medical Faculty of the Westphalian Wilhelms University Münster, Munster, Germany.
| |
Collapse
|
129
|
Wang Y, Chen L, Kang M, Ling L, Tian F, Won-Kim SH, Ho S, Bikle DD. The Fracture Callus Is Formed by Progenitors of Different Skeletal Origins in a Site-Specific Manner. JBMR Plus 2019; 3:e10193. [PMID: 31667451 PMCID: PMC6808225 DOI: 10.1002/jbm4.10193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/05/2019] [Accepted: 03/10/2019] [Indexed: 01/05/2023] Open
Abstract
We evaluated repair following a mid‐diaphyseal fracture of the tibia in 3‐month‐old mice. We observed differences in the repair process at three different sites of the callus. Site 1: bone developing from the outer layer of the periosteum of the cortex; site 2: bone developing within the bridge/central region of the fracture; and site 3: bone developing within the marrow of the ends of broken bones. We characterized these sites by correlating datasets from X‐ray CT and histology. Correlated data demonstrated the involvement of different cells and different rates of mineralization. The origin of the progenitors and mechanism of progenitor differentiation involved at these sites was then evaluated using lineage tracing of cells expressing Prx1 and Col.2. The Prx1 progeny contributed to intramembranous bone formation (IBF) at site 1 and endochondral bone formation (EndoBF) at site 2 but not to intramedullary bone formation (IMBF) at site 3. IBF at site 1 was confirmed without a chondrocyte intermediate unlike EndoBF at site 2. Additionally, the presence of Col.2 progeny contributed to EndoBF in site 2 and IMBF in site 3 but not to IBF in site 1. However, the Col.2 progeny in IMBF in site 3 appeared to come from Col.2‐expressing osteocytes originating in the cortices of the ends of the fractured bone. In conclusion we have identified three sites of bone fracture repair that differ in their origin of cells and their mechanisms of bone formation. © 2019 The Authors JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yongmei Wang
- Endocrine Unit, University of California San Francisco and Veterans Affairs Medical Center San Francisco CA USA
| | - Ling Chen
- Bioengineering & Biomaterials Micro-CT and Imaging Facility University of California, San Francisco San Francisco CA USA
| | - Misun Kang
- Bioengineering & Biomaterials Micro-CT and Imaging Facility University of California, San Francisco San Francisco CA USA
| | - Lin Ling
- Endocrine Unit, University of California San Francisco and Veterans Affairs Medical Center San Francisco CA USA
| | - Faming Tian
- Endocrine Unit, University of California San Francisco and Veterans Affairs Medical Center San Francisco CA USA
| | - Sun Hee Won-Kim
- Endocrine Unit, University of California San Francisco and Veterans Affairs Medical Center San Francisco CA USA
| | - Sunita Ho
- Bioengineering & Biomaterials Micro-CT and Imaging Facility University of California, San Francisco San Francisco CA USA
| | - Daniel D Bikle
- Endocrine Unit, University of California San Francisco and Veterans Affairs Medical Center San Francisco CA USA
| |
Collapse
|
130
|
Hadjiargyrou M, Komatsu DE. The Therapeutic Potential of MicroRNAs as Orthobiologics for Skeletal Fractures. J Bone Miner Res 2019; 34:797-809. [PMID: 30866092 PMCID: PMC6536331 DOI: 10.1002/jbmr.3708] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/04/2019] [Accepted: 02/23/2019] [Indexed: 12/19/2022]
Abstract
The repair of a fractured bone is critical to the well-being of humans. Failure of the repair process to proceed normally can lead to complicated fractures, exemplified by either a delay in union or a complete nonunion. Both of these conditions lead to pain, the possibility of additional surgery, and impairment of life quality. Additionally, work productivity decreases, income is reduced, and treatment costs increase, resulting in financial hardship. Thus, developing effective treatments for these difficult fractures or even accelerating the normal physiological repair process is warranted. Accumulating evidence shows that microRNAs (miRNAs), small noncoding RNAs, can serve as key regulatory molecules of fracture repair. In this review, a brief description of the fracture repair process and miRNA biogenesis is presented, as well as a summary of our current knowledge of the involvement of miRNAs in physiological fracture repair, osteoporotic fractures, and bone defect healing. Further, miRNA polymorphisms associated with fractures, miRNA presence in exosomes, and miRNAs as potential therapeutic orthobiologics are also discussed. This is a timely review as several miRNA-based therapeutics have recently entered clinical trials for nonskeletal applications and thus it is incumbent upon bone researchers to explore whether miRNAs can become the next class of orthobiologics for the treatment of skeletal fractures.
Collapse
Affiliation(s)
- Michael Hadjiargyrou
- Department of Life Sciences, New York Institute of Technology, Old Westbury, NY 11568-8000
| | - David E. Komatsu
- Department of Orthopaedics, Stony Brook University, Stony Brook, NY 11794-8181
| |
Collapse
|
131
|
Chronic psychosocial stress compromises the immune response and endochondral ossification during bone fracture healing via β-AR signaling. Proc Natl Acad Sci U S A 2019; 116:8615-8622. [PMID: 30948630 DOI: 10.1073/pnas.1819218116] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic psychosocial stress/trauma represents an increasing burden in our modern society and a risk factor for the development of mental disorders, including posttraumatic stress disorder (PTSD). PTSD, in turn, is highly comorbid with a plethora of inflammatory disorders and has been associated with increased bone fracture risk. Since a balanced inflammatory response after fracture is crucial for successful bone healing, we hypothesize that stress/trauma alters the inflammatory response after fracture and, consequently, compromises fracture healing. Here we show, employing the chronic subordinate colony housing (CSC) paradigm as a clinically relevant mouse model for PTSD, that mice subjected to CSC displayed increased numbers of neutrophils in the early fracture hematoma, whereas T lymphocytes and markers for cartilage-to-bone transition and angiogenesis were reduced. At late stages of fracture healing, CSC mice were characterized by decreased bending stiffness and bony bridging of the fracture callus. Strikingly, a single systemic administration of the β-adrenoreceptor (AR) blocker propranolol before femur osteotomy prevented bone marrow mobilization of neutrophils and invasion of neutrophils into the fracture hematoma, both seen in the early phase after fracture, as well as a compromised fracture healing in CSC mice. We conclude that chronic psychosocial stress leads to an imbalanced immune response after fracture via β-AR signaling, accompanied by disturbed fracture healing. These findings offer possibilities for clinical translation in patients suffering from PTSD and fracture.
Collapse
|
132
|
Abstract
PURPOSE OF REVIEW Proper cartilage development is critical to bone formation during endochondral ossification. This review highlights the current understanding of various aspects of glucose metabolism in chondrocytes during cartilage development. RECENT FINDINGS Recent studies indicate that chondrocytes transdifferentiate into osteoblasts and bone marrow stromal cells during endochondral ossification. In cartilage development, signaling molecules, including IGF2 and BMP2, tightly control glucose uptake and utilization in a stage-specific manner. Perturbation of glucose metabolism alters the course of chondrocyte maturation, suggesting a key role for glucose metabolism during endochondral ossification. During prenatal and postnatal growth, chondrocytes experience bursts of nutrient availability and energy expenditure, which demand sophisticated control of the glucose-dependent processes of cartilage matrix production, cell proliferation, and hypertrophy. Investigating the regulation of glucose metabolism may therefore lead to a unifying mechanism for signaling events in cartilage development and provide insight into causes of skeletal growth abnormalities.
Collapse
Affiliation(s)
- Judith M Hollander
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - Li Zeng
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA.
- Program of Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA.
- Program of Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA.
- Department of Immunology, Tufts University School of Medicine, Boston, MA, 02111, USA.
- Department of Orthopaedics, Tufts Medical Center, Boston, MA, 02111, USA.
| |
Collapse
|
133
|
Zhang C, Feinberg D, Alharbi M, Ding Z, Lu C, O’Connor JP, Graves DT. Chondrocytes Promote Vascularization in Fracture Healing Through a FOXO1-Dependent Mechanism. J Bone Miner Res 2019; 34:547-556. [PMID: 30347467 PMCID: PMC6414243 DOI: 10.1002/jbmr.3610] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022]
Abstract
Chondrocytes play an essential role in fracture healing by producing cartilage, which forms an anlage for endochondral ossification that stabilizes the healing fracture callus. More recently it has been appreciated that chondrocytes have the capacity to produce factors that may affect the healing process. We examined the role of chondrocytes in angiogenesis during fracture healing and the role of the transcription factor forkhead box-O 1 (FOXO1), which upregulates wound healing in soft tissue. Closed fractures were induced in experimental mice with lineage-specific FOXO1 deletion by Cre recombinase under the control of a collagen-2α1 promoter element (Col2α1Cre+ FOXO1L/L ) and Cre recombinase negative control littermates containing flanking loxP sites (Col2α1Cre- FOXO1L/L ). Experimental mice had significantly reduced CD31+ new vessel formation. Deletion of FOXO1 in chondrocytes in vivo suppressed the expression of vascular endothelial growth factor-A (VEGFA) at both the protein and mRNA levels. Overexpression of FOXO1 in chondrocytes in vitro increased VEGFA mRNA levels and VEGFA transcriptional activity whereas silencing FOXO1 reduced it. Moreover, FOXO1 interacted directly with the VEGFA promoter and a deacetylated FOXO1 mutant enhanced VEGFA expression whereas an acetylated FOXO1 mutant did not. Lastly, FOXO1 knockdown by siRNA significantly reduced the capacity of chondrocytes to stimulate microvascular endothelial cell tube formation in vitro. The results indicate that chondrocytes play a key role in angiogenesis which is FOXO1 dependent and that FOXO1 in chondrocytes regulates a potent angiogenic factor, VEGFA. These studies provide new insight into fracture healing given the important role of vessel formation in the fracture repair process. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Citong Zhang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Implantology, School of Stomatology, Jilin University, Changchun, China
| | - Daniel Feinberg
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohammed Alharbi
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Endodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, KSA
| | - Zhenjiang Ding
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatric Dentistry, School of Stomatology, China Medical University, Shenyang, China
- Key Laboratory of Oral Disease and Liaoning Province, Shenyang, China
| | - Chanyi Lu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J Patrick O’Connor
- Department of Orthopaedics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
134
|
Abstract
SOX transcription factors participate in the specification, differentiation and activities of many cell types in development and beyond. The 20 mammalian family members are distributed into eight groups based on sequence identity, and while co-expressed same-group proteins often have redundant functions, different-group proteins typically have distinct functions. More than a handful of SOX proteins have pivotal roles in skeletogenesis. Heterozygous mutations in their genes cause human diseases, in which skeletal dysmorphism is a major feature, such as campomelic dysplasia (SOX9), or a minor feature, such as LAMSHF syndrome (SOX5) and Coffin-Siris-like syndromes (SOX4 and SOX11). Loss- and gain-of-function experiments in animal models have revealed that SOX4 and SOX11 (SOXC group) promote skeletal progenitor survival and control skeleton patterning and growth; SOX8 (SOXE group) delays the differentiation of osteoblast progenitors; SOX9 (SOXE group) is essential for chondrocyte fate maintenance and differentiation, and works in cooperation with SOX5 and SOX6 (SOXD group) and other types of transcription factors. These and other SOX proteins have also been proposed, mainly through in vitro experiments, to have key roles in other aspects of skeletogenesis, such as SOX2 in osteoblast stem cell self-renewal. We here review current knowledge of well-established and proposed skeletogenic roles of SOX proteins, their transcriptional and non-transcriptional actions, and their modes of regulation at the gene, RNA and protein levels. We also discuss gaps in knowledge and directions for future research to further decipher mechanisms underlying skeletogenesis in health and diseases and identify treatment options for skeletal malformation and degeneration diseases.
Collapse
Affiliation(s)
- Véronique Lefebvre
- The Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| |
Collapse
|
135
|
Lin MC, Hu D, Marmor M, Herfat ST, Bahney CS, Maharbiz MM. Smart bone plates can monitor fracture healing. Sci Rep 2019; 9:2122. [PMID: 30765721 PMCID: PMC6375940 DOI: 10.1038/s41598-018-37784-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/07/2018] [Indexed: 11/08/2022] Open
Abstract
There are currently no standardized methods for assessing fracture healing, with physicians relying on X-rays which are only useful at later stages of repair. Using in vivo mouse fracture models, we present the first evidence that microscale instrumented implants provide a route for post-operative fracture monitoring, utilizing electrical impedance spectroscopy (EIS) to track the healing tissue with high sensitivity. In this study, we fixed mouse long bone fractures with external fixators and bone plates. EIS measurements taken across two microelectrodes within the fracture gap were able to track longitudinal differences between individual mice with good versus poor healing. We additionally present an equivalent circuit model that combines the EIS data to classify fracture repair states. Lastly, we show that EIS measurements strongly correlated with standard quantitative µCT values and that these correlations validate clinically-relevant operating frequencies for implementation of this technique. These results demonstrate that EIS can be integrated into current fracture management strategies such as bone plating, providing physicians with quantitative information about the state of fracture repair to guide clinical decision-making for patients.
Collapse
Affiliation(s)
- Monica C Lin
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA.
| | - Diane Hu
- UCSF Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, San Francisco, CA, 94110, USA
| | - Meir Marmor
- UCSF Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, San Francisco, CA, 94110, USA
| | - Safa T Herfat
- UCSF Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, San Francisco, CA, 94110, USA
| | - Chelsea S Bahney
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- UCSF Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, San Francisco, CA, 94110, USA
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO, 81657, USA
| | - Michel M Maharbiz
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| |
Collapse
|
136
|
Bahney CS, Zondervan RL, Allison P, Theologis A, Ashley JW, Ahn J, Miclau T, Marcucio RS, Hankenson KD. Cellular biology of fracture healing. J Orthop Res 2019; 37:35-50. [PMID: 30370699 PMCID: PMC6542569 DOI: 10.1002/jor.24170] [Citation(s) in RCA: 351] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/27/2018] [Indexed: 02/04/2023]
Abstract
The biology of bone healing is a rapidly developing science. Advances in transgenic and gene-targeted mice have enabled tissue and cell-specific investigations of skeletal regeneration. As an example, only recently has it been recognized that chondrocytes convert to osteoblasts during healing bone, and only several years prior, seminal publications reported definitively that the primary tissues contributing bone forming cells during regeneration were the periosteum and endosteum. While genetically modified animals offer incredible insights into the temporal and spatial importance of various gene products, the complexity and rapidity of healing-coupled with the heterogeneity of animal models-renders studies of regenerative biology challenging. Herein, cells that play a key role in bone healing will be reviewed and extracellular mediators regulating their behavior discussed. We will focus on recent studies that explore novel roles of inflammation in bone healing, and the origins and fates of various cells in the fracture environment. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Chelsea S. Bahney
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Robert L. Zondervan
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Patrick Allison
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| | - Alekos Theologis
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Jason W. Ashley
- Department of Biology, Eastern Washington University, Cheney, Washington
| | - Jaimo Ahn
- Department of Biology, Eastern Washington University, Cheney, Washington
| | - Theodore Miclau
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Ralph S. Marcucio
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
137
|
Duchamp de Lageneste O, Colnot C. Periostin in Bone Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1132:49-61. [PMID: 31037624 DOI: 10.1007/978-981-13-6657-4_6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bone regeneration is an efficient regenerative process depending on the recruitment and activation of skeletal stem cells that allow cartilage and bone formation leading to fracture consolidation. Periosteum, the tissue located at the outer surface of bone is now recognized as an essential player in the bone repair process and contains skeletal stem cells with high regenerative potential. The matrix composition of the periosteum defines its roles in bone growth, in cortical bone modeling and remodeling in response to mechanical strain, and in bone repair. Periostin is a key extracellular matrix component of the periosteum involved in periosteum functions. In this chapter, we summarize the current knowledge on the bone regeneration process, the role of the periosteum and skeletal stem cells, and Periostin functions in this context. The matricellular protein Periostin has several roles through all stages of bone repair: in the early days of repair during the initial activation of stem cells within periosteum, in the active phase of cartilage and bone deposition in the facture callus, and in the final phase of bone bridging and reconstitution of the stem cell pool within periosteum.
Collapse
Affiliation(s)
| | - Céline Colnot
- INSERM UMR1163, Imagine Institute, Paris Descartes University, Paris, France.
| |
Collapse
|
138
|
Critchley S, Cunniffe G, O'Reilly A, Diaz-Payno P, Schipani R, McAlinden A, Withers D, Shin J, Alsberg E, Kelly DJ. Regeneration of Osteochondral Defects Using Developmentally Inspired Cartilaginous Templates. Tissue Eng Part A 2018; 25:159-171. [PMID: 30358516 DOI: 10.1089/ten.tea.2018.0046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPACT STATEMENT Successfully treating osteochondral defects involves regenerating both the damaged articular cartilage and the underlying subchondral bone, in addition to the complex interface that separates these tissues. In this study, we demonstrate that a cartilage template, engineered using bone marrow-derived mesenchymal stem cells, can enhance the regeneration of such defects and promote the development of a more mechanically functional repair tissue. We also use a computational mechanobiological model to understand how joint-specific environmental factors, specifically oxygen levels and tissue strains, regulate the conversion of the engineered template into cartilage and bone in vivo.
Collapse
Affiliation(s)
- Susan Critchley
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Gráinne Cunniffe
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Adam O'Reilly
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Pedro Diaz-Payno
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Rossana Schipani
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Aidan McAlinden
- 3 Section of Veterinary Clinical Studies, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | | | - Jungyoun Shin
- 5 Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Eben Alsberg
- 5 Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio.,6 Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, Ohio.,7 National Centre for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Daniel J Kelly
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,8 Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland.,9 Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
139
|
Baker CE, Moore-Lotridge SN, Hysong AA, Posey SL, Robinette JP, Blum DM, Benvenuti MA, Cole HA, Egawa S, Okawa A, Saito M, McCarthy JR, Nyman JS, Yuasa M, Schoenecker JG. Bone Fracture Acute Phase Response-A Unifying Theory of Fracture Repair: Clinical and Scientific Implications. Clin Rev Bone Miner Metab 2018; 16:142-158. [PMID: 30930699 PMCID: PMC6404386 DOI: 10.1007/s12018-018-9256-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone fractures create five problems that must be resolved: bleeding, risk of infection, hypoxia, disproportionate strain, and inability to bear weight. There have been enormous advancements in our understanding of the molecular mechanisms that resolve these problems after fractures, and in best clinical practices of repairing fractures. We put forth a modern, comprehensive model of fracture repair that synthesizes the literature on the biology and biomechanics of fracture repair to address the primary problems of fractures. This updated model is a framework for both fracture management and future studies aimed at understanding and treating this complex process. This model is based upon the fracture acute phase response (APR), which encompasses the molecular mechanisms that respond to injury. The APR is divided into sequential stages of "survival" and "repair." Early in convalescence, during "survival," bleeding and infection are resolved by collaborative efforts of the hemostatic and inflammatory pathways. Later, in "repair," avascular and biomechanically insufficient bone is replaced by a variable combination of intramembranous and endochondral ossification. Progression to repair cannot occur until survival has been ensured. A disproportionate APR-either insufficient or exuberant-leads to complications of survival (hemorrhage, thrombosis, systemic inflammatory response syndrome, infection, death) and/or repair (delayed- or non-union). The type of ossification utilized for fracture repair is dependent on the relative amounts of strain and vascularity in the fracture microenvironment, but any failure along this process can disrupt or delay fracture healing and result in a similar non-union. Therefore, incomplete understanding of the principles herein can result in mismanagement of fracture care or application of hardware that interferes with fracture repair. This unifying model of fracture repair not only informs clinicians how their interventions fit within the framework of normal biological healing but also instructs investigators about the critical variables and outputs to assess during a study of fracture repair.
Collapse
Affiliation(s)
- Courtney E Baker
- 1Department of Orthopaedics, Mayo Clinic, 200 1st Ave SW, Rochester, MN 55903 USA
| | - Stephanie N Moore-Lotridge
- 2Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN 37232 USA.,3Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1161 21st Ave. South, Nashville, TN 37232 USA
| | - Alexander A Hysong
- 4Vanderbilt University School of Medicine, 1161 21st Ave S, #D3300, Nashville, TN 37232 USA
| | - Samuel L Posey
- 4Vanderbilt University School of Medicine, 1161 21st Ave S, #D3300, Nashville, TN 37232 USA
| | - J Patton Robinette
- 4Vanderbilt University School of Medicine, 1161 21st Ave S, #D3300, Nashville, TN 37232 USA
| | - Deke M Blum
- 4Vanderbilt University School of Medicine, 1161 21st Ave S, #D3300, Nashville, TN 37232 USA
| | - Michael A Benvenuti
- 2Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN 37232 USA
| | - Heather A Cole
- 2Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN 37232 USA
| | - Satoru Egawa
- 2Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN 37232 USA.,5Department of Orthopaedic Surgery, Tokyo Medical and Dental University, Yushima Bunkyo Ward, Tokyo, 113-8519 Japan
| | - Atsushi Okawa
- 5Department of Orthopaedic Surgery, Tokyo Medical and Dental University, Yushima Bunkyo Ward, Tokyo, 113-8519 Japan
| | - Masanori Saito
- 2Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN 37232 USA.,5Department of Orthopaedic Surgery, Tokyo Medical and Dental University, Yushima Bunkyo Ward, Tokyo, 113-8519 Japan
| | - Jason R McCarthy
- Masonic Research Institute, 2150 Bleecker St, Utica, NY 13501 USA
| | - Jeffry S Nyman
- 2Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN 37232 USA.,7Department of Biomedical Engineering, Vanderbilt University, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235 USA.,Department of Veterans Affairs, Tennessee Valley Health Care System, F-519 VA Acre Building, 1210 24th Ave. South, Nashville, TN 37232 USA
| | - Masato Yuasa
- 2Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN 37232 USA.,5Department of Orthopaedic Surgery, Tokyo Medical and Dental University, Yushima Bunkyo Ward, Tokyo, 113-8519 Japan
| | - Jonathan G Schoenecker
- 2Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN 37232 USA.,3Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1161 21st Ave. South, Nashville, TN 37232 USA.,9Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave, Robinson Research Building, Nashville, TN 37232 USA.,10Department of Pediatrics, Vanderbilt University Medical Center, 4202 Doctor's Office Tower, 2200 Children's Way, Nashville, TN 37232 USA
| |
Collapse
|
140
|
Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous scaffolds by mediating vascularization. Acta Biomater 2018; 82:1-11. [PMID: 30321630 DOI: 10.1016/j.actbio.2018.10.016] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/04/2018] [Accepted: 10/11/2018] [Indexed: 01/09/2023]
Abstract
In the U.S., 30% of adults suffer joint pain, most commonly in the knee, which severely limits mobility and is often attributed to injury of cartilage and underlying bone in the joint. Current treatment methods such as microfracture result in less resilient fibrocartilage with eventual failure; autografting can cause donor site morbidity and poor integration. To overcome drawbacks in treatment, tissue engineers can design cell-instructive biomimetic scaffolds using biocompatible materials as alternate therapies for osteochondral defects. Nanofibrous poly (l-lactic acid) (PLLA) scaffolds of uniform, spherical, interconnected and well-defined pore sizes that are fabricated using a thermally-induced phase separation and sugar porogen template method create an extracellular matrix-like environment which facilitates cell adhesion and proliferation. Herein we report that chondrogenesis and endochondral ossification of rabbit and human bone marrow stromal cells (BMSCs) can be controlled by scaffold pore architecture, particularly pore size. Small-pore scaffolds support enhanced chondrogenic differentiation in vitro and cartilage formation in vivo compared to large-pore scaffolds. Endochondral ossification is prevented in scaffolds with very small pore sizes; pore interconnectivity is critical to promote capillary ingrowth for mature bone formation. These results provide a novel strategy to control tissue regenerative processes by tunable architecture of macroporous nanofibrous scaffolds. STATEMENT OF SIGNIFICANCE: Progress in understanding the relationship between cell fate and architectural features of tissue engineering scaffolds is critical for engineering physiologically functional tissues. Sugar porogen template scaffolds have uniform, spherical, highly interconnected macropores. Tunable pore-size guides the fate of bone marrow stromal cells (BMSCs) towards chondrogenesis and endochondral ossification, and is a critical design parameter to mediate neotissue vascularization. Preventing vascularization favors a chondrogenic cell fate while allowing vascularization results in endochondral ossification and mineralized bone formation. These results provide a novel strategy to control tissue regenerative processes by tunable architecture of macroporous nanofibrous scaffolds.
Collapse
|
141
|
Marshall J, Barnes A, Genever P. Analysis of the Intrinsic Self-Organising Properties of Mesenchymal Stromal Cells in Three-Dimensional Co-Culture Models with Endothelial Cells. Bioengineering (Basel) 2018; 5:E92. [PMID: 30373192 PMCID: PMC6315484 DOI: 10.3390/bioengineering5040092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are typically characterised by their ability to differentiate into skeletal (osteogenic, chondrogenic and adipogenic) lineages. MSCs also appear to have additional non-stem cell functions in coordinating tissue morphogenesis and organising vascular networks through interactions with endothelial cells (ECs). However, suitable experimental models to examine these apparently unique MSC properties are lacking. Following previous work, we have developed our 3D in vitro co-culture models to enable us to track cellular self-organisation events in heterotypic cell spheroids combining ECs, MSCs and their differentiated progeny. In these systems, MSCs, but not related fibroblastic cell types, promote the assembly of ECs into interconnected networks through intrinsic mechanisms, dependent on the relative abundance of MSC and EC numbers. Perturbation of endogenous platelet-derived growth factor (PDGF) signalling significantly increased EC network length, width and branching. When MSCs were pre-differentiated towards an osteogenic or chondrogenic lineage and co-cultured as mixed 3D spheroids, they segregated into polarised osseous and chondral regions. In the presence of ECs, the pre-differentiated MSCs redistributed to form a central mixed cell core with an outer osseous layer. Our findings demonstrate the intrinsic self-organising properties of MSCs, which may broaden their use in regenerative medicine and advance current approaches.
Collapse
Affiliation(s)
- Julia Marshall
- Department of Biology, University of York, York YO10 5DD, UK.
| | - Amanda Barnes
- Department of Biology, University of York, York YO10 5DD, UK.
| | - Paul Genever
- Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
142
|
Kang H, Zhang K, Pan Q, Lin S, Wong DSH, Li J, Lee WY, Yang B, Han F, Li G, Li B, Bian L. Remote Control of Intracellular Calcium Using Upconversion Nanotransducers Regulates Stem Cell Differentiation In Vivo. ADVANCED FUNCTIONAL MATERIALS 2018; 28. [DOI: 10.1002/adfm.201802642] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Indexed: 10/04/2024]
Abstract
AbstractRemote control of stem cell differentiation in vivo by stimuli‐responsive nanomaterials with the use of tissue‐penetrative stimuli is an appealing strategy for versatile regulation in stem cell therapy. In this study, an upconversion nanotransducer (UCNT)‐based nanocomplex with photolabile caging of chondro‐inductive kartogenin (KGN) and/or either calcium chelator or calcium supplier (caged calcium), and subsequent coupling of integrin‐binding ligand via cyclodextrin‐adamantine supramolecular complexation is utilized. Near‐infrared (NIR)‐to‐ultraviolet light conversion by UCNT nanocomplex triggered intracellular photo‐uncaging and release of cargo molecules, thereby allowing direct regulation of real‐time intracellular calcium levels. While intracellular KGN delivery led to the differentiation of human mesenchymal stem cells (hMSCs) into hypertrophic chondrocytes, NIR‐regulated intracellular calcium decrease and KGN delivery induced their differentiation into chondrocytes by inhibiting hypertrophy. Conversely, intracellular calcium increase and KGN delivery promoted the differentiation of hMSCs into osteoblasts via endochondral pathway. To the best of knowledge, this is the first demonstration of utilizing NIR‐controllable nanomaterials for regulating stem cell differentiation by controlling intracellular calcium, both in vitro and in vivo. This versatile control can facilitate the translation of stem cells to remotely controlled treatment of diseases in composite tissues involving various cell types.
Collapse
Affiliation(s)
- Heemin Kang
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin New Territories 999077 Hong Kong China
| | - Kunyu Zhang
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin New Territories 999077 Hong Kong China
| | - Qi Pan
- Department of Orthopaedics and Traumatology Faculty of Medicine The Chinese University of Hong Kong Prince of Wales Hospital Shatin Hong Kong China
- Stem Cells and Regenerative Medicine Laboratory Lui Che Woo Institute of Innovative Medicine Li Ka Shing Institute of Health Sciences The Chinese University of Hong Kong Prince of Wales Hospital Shatin Hong Kong China
| | - Sien Lin
- Department of Orthopaedics and Traumatology Faculty of Medicine The Chinese University of Hong Kong Prince of Wales Hospital Shatin Hong Kong China
- Stem Cells and Regenerative Medicine Laboratory Lui Che Woo Institute of Innovative Medicine Li Ka Shing Institute of Health Sciences The Chinese University of Hong Kong Prince of Wales Hospital Shatin Hong Kong China
- Department of Pharmacology Guangdong Key Laboratory for Research and Development of Natural Drugs Guangdong Medical University Zhanjiang Guangdong 524023 China
| | - Dexter Siu Hong Wong
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin New Territories 999077 Hong Kong China
| | - Jinming Li
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin New Territories 999077 Hong Kong China
| | - Wayne Yuk‐Wai Lee
- Department of Orthopaedics and Traumatology Faculty of Medicine The Chinese University of Hong Kong Prince of Wales Hospital Shatin Hong Kong China
- Stem Cells and Regenerative Medicine Laboratory Lui Che Woo Institute of Innovative Medicine Li Ka Shing Institute of Health Sciences The Chinese University of Hong Kong Prince of Wales Hospital Shatin Hong Kong China
| | - Boguang Yang
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin New Territories 999077 Hong Kong China
| | - Fengxuan Han
- Department of Orthopaedic Surgery The First Affiliated Hospital Orthopaedic Institute Soochow University Suzhou Jiangsu 215006 China
| | - Gang Li
- Department of Orthopaedics and Traumatology Faculty of Medicine The Chinese University of Hong Kong Prince of Wales Hospital Shatin Hong Kong China
- Stem Cells and Regenerative Medicine Laboratory Lui Che Woo Institute of Innovative Medicine Li Ka Shing Institute of Health Sciences The Chinese University of Hong Kong Prince of Wales Hospital Shatin Hong Kong China
- The CUHK‐ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System Shenzhen Research Institute The Chinese University of Hong Kong Shenzhen 518172 China
| | - Bin Li
- Department of Orthopaedic Surgery The First Affiliated Hospital Orthopaedic Institute Soochow University Suzhou Jiangsu 215006 China
- China Orthopaedic Regenerative Medicine Group (CORMed) Hangzhou Zhejiang 310058 China
| | - Liming Bian
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin New Territories 999077 Hong Kong China
- Department of Pharmacology Guangdong Key Laboratory for Research and Development of Natural Drugs Guangdong Medical University Zhanjiang Guangdong 524023 China
- China Orthopaedic Regenerative Medicine Group (CORMed) Hangzhou Zhejiang 310058 China
- The CUHK‐ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System Shenzhen Research Institute The Chinese University of Hong Kong Shenzhen 518172 China
| |
Collapse
|
143
|
Noguchi T, Hussein AI, Horowitz N, Carroll D, Gower AC, Demissie S, Gerstenfeld LC. Hypophosphatemia Regulates Molecular Mechanisms of Circadian Rhythm. Sci Rep 2018; 8:13756. [PMID: 30213970 PMCID: PMC6137060 DOI: 10.1038/s41598-018-31830-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022] Open
Abstract
Transcriptomic analysis showed that the central circadian pathway genes had significantly altered expression in fracture calluses from mice fed a low phosphate diet. This led us to hypothesize that phosphate deficiency altered the circadian cycle in peripheral tissues. Analysis of the expression of the central clock genes over a 24-36 hour period in multiple peripheral tissues including fracture callus, proximal tibia growth plate and cardiac tissues after 12 days on a low phosphate diet showed higher levels of gene expression in the hypophosphatemia groups (p < 0.001) and a 3 to 6 hour elongation of the circadian cycle. A comparative analysis of the callus tissue transcriptome genes that were differentially regulated by hypophosphatemia with published data for the genes in bone that are diurnally regulated identified 1879 genes with overlapping differential regulation, which were shown by ontology assessment to be associated with oxidative metabolism and apoptosis. Network analysis of the central circadian pathway genes linked their expression to the up regulated expression of the histone methyltransferase gene EZH2, a gene that when mutated in both humans and mice controls overall skeletal growth. These data suggest that phosphate is an essential metabolite that controls circadian function in both skeletal and non skeletal peripheral tissues and associates its levels with the overall oxidative metabolism and skeletal growth of animals.
Collapse
Affiliation(s)
- Takashi Noguchi
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, USA
| | - Amira I Hussein
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, USA
| | - Nina Horowitz
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, USA
| | - Deven Carroll
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, USA
| | - Adam C Gower
- Clinical and Translational Science Institute, Boston University School of Medicine, Boston, USA
| | - Serkalem Demissie
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Louis C Gerstenfeld
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, USA.
| |
Collapse
|
144
|
Abstract
PURPOSE OF REVIEW The identity and functional roles of stem cell population(s) that contribute to fracture repair remains unclear. This review provides a brief history of mesenchymal stem cell (MSCs) and provides an updated view of the many stem/progenitor cell populations contributing to fracture repair. RECENT FINDINGS Functional studies show MSCs are not the multipotential stem cell population that form cartilage and bone during fracture repair. Rather, multiple studies have confirmed the periosteum is the primary source of stem/progenitor cells for fracture repair. Newer work is also identifying other stem/progenitor cells that may also contribute to healing. Although the heterogenous periosteal cells migrate to the fracture site and contribute directly to callus formation, other cell populations are involved. Pericytes and bone marrow stromal cells are now thought of as key secretory centers that mostly coordinate the repair process. Other populations of stem/progenitor cells from the muscle and transdifferentiated chondroctyes may also contribute to repair, and their functional role is an area of active research.
Collapse
Affiliation(s)
- Beth C Bragdon
- Department of Orthopaedic Surgery, Boston University School of Medicine, 72 East Concord St, Evans 243, Boston, MA, 02118, USA.
| | - Chelsea S Bahney
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
145
|
Muñoz D, Castillo H, Henríquez JP, Marcellini S. Bone regeneration after traumatic skull injury in Xenopus tropicalis. Mech Dev 2018; 154:153-161. [PMID: 30420272 DOI: 10.1016/j.mod.2018.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 10/28/2022]
Abstract
The main purpose of regenerative biology is to improve human health by exploiting cellular and molecular mechanisms favoring tissue repair. In recent years, non-mammalian vertebrates have emerged as powerful model organisms to tackle the problem of tissue regeneration. Here, we analyze the process of bone repair in metamorphosing Xenopus tropicalis tadpoles subjected to traumatic skull injury. Five days after skull perforation, a dense and highly vascularized mesenchymal is apparent over the injury site. Using an in vivo bone staining procedure based on independent pulses of Alizarin red and Calcein green, we show that the deposition of new bone matrix completely closes the wound in 15 days. The absence of cartilage implies that bone repair follows an intramembranous ossification route. Collagen second harmonic imaging reveals that while a well-organized lamellar type of bone is deposited during development, a woven type of bone is produced during the early-phase of the regeneration process. Osteoblasts lying against the regenerating bone robustly express fibrillar collagen 1a1, SPARC and Dlx5. These analyses establish Xenopus tropicalis as a new model system to improve traumatic skull injury recovery.
Collapse
Affiliation(s)
- David Muñoz
- Group for the Study of Developmental Processes (GDeP), Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Chile; Laboratory of Development and Evolution (LADE), University of Concepción, Chile
| | - Héctor Castillo
- Group for the Study of Developmental Processes (GDeP), Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Chile; Laboratory of Development and Evolution (LADE), University of Concepción, Chile
| | - Juan Pablo Henríquez
- Group for the Study of Developmental Processes (GDeP), Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Chile; Center for Advanced Microscopy (CMA Bio-Bio), University of Concepción, Chile
| | - Sylvain Marcellini
- Group for the Study of Developmental Processes (GDeP), Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Chile; Laboratory of Development and Evolution (LADE), University of Concepción, Chile.
| |
Collapse
|
146
|
The art of building bone: emerging role of chondrocyte-to-osteoblast transdifferentiation in endochondral ossification. Bone Res 2018. [PMID: 29928541 DOI: 10.1038/s41413‐018‐0021‐z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There is a worldwide epidemic of skeletal diseases causing not only a public health issue but also accounting for a sizable portion of healthcare expenditures. The vertebrate skeleton is known to be formed by mesenchymal cells condensing into tissue elements (patterning phase) followed by their differentiation into cartilage (chondrocytes) or bone (osteoblasts) cells within the condensations. During the growth and remodeling phase, bone is formed directly via intramembranous ossification or through a cartilage to bone conversion via endochondral ossification routes. The canonical pathway of the endochondral bone formation process involves apoptosis of hypertrophic chondrocytes followed by vascular invasion that brings in osteoclast precursors to remove cartilage and osteoblast precursors to form bone. However, there is now an emerging role for chondrocyte-to-osteoblast transdifferentiation in the endochondral ossification process. Although the concept of "transdifferentiation" per se is not recent, new data using a variety of techniques to follow the fate of chondrocytes in different bones during embryonic and post-natal growth as well as during fracture repair in adults have identified three different models for chondrocyte-to-osteoblast transdifferentiation (direct transdifferentiation, dedifferentiation to redifferentiation, and chondrocyte to osteogenic precursor). This review focuses on the emerging models of chondrocyte-to-osteoblast transdifferentiation and their implications for the treatment of skeletal diseases as well as the possible signaling pathways that contribute to chondrocyte-to-osteoblast transdifferentiation processes.
Collapse
|
147
|
Aghajanian P, Mohan S. The art of building bone: emerging role of chondrocyte-to-osteoblast transdifferentiation in endochondral ossification. Bone Res 2018; 6:19. [PMID: 29928541 PMCID: PMC6002476 DOI: 10.1038/s41413-018-0021-z] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022] Open
Abstract
There is a worldwide epidemic of skeletal diseases causing not only a public health issue but also accounting for a sizable portion of healthcare expenditures. The vertebrate skeleton is known to be formed by mesenchymal cells condensing into tissue elements (patterning phase) followed by their differentiation into cartilage (chondrocytes) or bone (osteoblasts) cells within the condensations. During the growth and remodeling phase, bone is formed directly via intramembranous ossification or through a cartilage to bone conversion via endochondral ossification routes. The canonical pathway of the endochondral bone formation process involves apoptosis of hypertrophic chondrocytes followed by vascular invasion that brings in osteoclast precursors to remove cartilage and osteoblast precursors to form bone. However, there is now an emerging role for chondrocyte-to-osteoblast transdifferentiation in the endochondral ossification process. Although the concept of "transdifferentiation" per se is not recent, new data using a variety of techniques to follow the fate of chondrocytes in different bones during embryonic and post-natal growth as well as during fracture repair in adults have identified three different models for chondrocyte-to-osteoblast transdifferentiation (direct transdifferentiation, dedifferentiation to redifferentiation, and chondrocyte to osteogenic precursor). This review focuses on the emerging models of chondrocyte-to-osteoblast transdifferentiation and their implications for the treatment of skeletal diseases as well as the possible signaling pathways that contribute to chondrocyte-to-osteoblast transdifferentiation processes.
Collapse
Affiliation(s)
- Patrick Aghajanian
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, Loma Linda, California USA
- Department of Medicine, Loma Linda University, Loma Linda, California USA
- Department of Orthopedics, Loma Linda University, Loma Linda, California USA
- Department of Biochemistry, Loma Linda University, Loma Linda, California USA
| |
Collapse
|
148
|
Wong SA, Rivera KO, Miclau T, Alsberg E, Marcucio RS, Bahney CS. Microenvironmental Regulation of Chondrocyte Plasticity in Endochondral Repair-A New Frontier for Developmental Engineering. Front Bioeng Biotechnol 2018; 6:58. [PMID: 29868574 PMCID: PMC5962790 DOI: 10.3389/fbioe.2018.00058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022] Open
Abstract
The majority of fractures heal through the process of endochondral ossification, in which a cartilage intermediate forms between the fractured bone ends and is gradually replaced with bone. Recent studies have provided genetic evidence demonstrating that a significant portion of callus chondrocytes transform into osteoblasts that derive the new bone. This evidence has opened a new field of research aimed at identifying the regulatory mechanisms that govern chondrocyte transformation in the hope of developing improved fracture therapies. In this article, we review known and candidate molecular pathways that may stimulate chondrocyte-to-osteoblast transformation during endochondral fracture repair. We also examine additional extrinsic factors that may play a role in modulating chondrocyte and osteoblast fate during fracture healing such as angiogenesis and mineralization of the extracellular matrix. Taken together the mechanisms reviewed here demonstrate the promising potential of using developmental engineering to design therapeutic approaches that activate endogenous healing pathways to stimulate fracture repair.
Collapse
Affiliation(s)
- Sarah A Wong
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States.,School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| | - Kevin O Rivera
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States.,School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| | - Theodore Miclau
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Eben Alsberg
- Department of Orthopaedic Surgery and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Ralph S Marcucio
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States.,School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| | - Chelsea S Bahney
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
149
|
Williams JN, Kambrath AV, Patel RB, Kang KS, Mével E, Li Y, Cheng YH, Pucylowski AJ, Hassert MA, Voor MJ, Kacena MA, Thompson WR, Warden SJ, Burr DB, Allen MR, Robling AG, Sankar U. Inhibition of CaMKK2 Enhances Fracture Healing by Stimulating Indian Hedgehog Signaling and Accelerating Endochondral Ossification. J Bone Miner Res 2018; 33:930-944. [PMID: 29314250 PMCID: PMC6549722 DOI: 10.1002/jbmr.3379] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/18/2017] [Accepted: 12/29/2017] [Indexed: 01/15/2023]
Abstract
Approximately 10% of all bone fractures do not heal, resulting in patient morbidity and healthcare costs. However, no pharmacological treatments are currently available to promote efficient bone healing. Inhibition of Ca2+ /calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) reverses age-associated loss of trabecular and cortical bone volume and strength in mice. In the current study, we investigated the role of CaMKK2 in bone fracture healing and show that its pharmacological inhibition using STO-609 accelerates early cellular and molecular events associated with endochondral ossification, resulting in a more rapid and efficient healing of the fracture. Within 7 days postfracture, treatment with STO-609 resulted in enhanced Indian hedgehog signaling, paired-related homeobox (PRX1)-positive mesenchymal stem cell (MSC) recruitment, and chondrocyte differentiation and hypertrophy, along with elevated expression of osterix, vascular endothelial growth factor, and type 1 collagen at the fracture callus. Early deposition of primary bone by osteoblasts resulted in STO-609-treated mice possessing significantly higher callus bone volume by 14 days following fracture. Subsequent rapid maturation of the bone matrix bestowed fractured bones in STO-609-treated animals with significantly higher torsional strength and stiffness by 28 days postinjury, indicating accelerated healing of the fracture. Previous studies indicate that fixed and closed femoral fractures in the mice take 35 days to fully heal without treatment. Therefore, our data suggest that STO-609 potentiates a 20% acceleration of the bone healing process. Moreover, inhibiting CaMKK2 also imparted higher mechanical strength and stiffness at the contralateral cortical bone within 4 weeks of treatment. Taken together, the data presented here underscore the therapeutic potential of targeting CaMKK2 to promote efficacious and rapid healing of bone fractures and as a mechanism to strengthen normal bones. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Justin N. Williams
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | | | - Roshni B. Patel
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Kyung Shin Kang
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Elsa Mével
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Yong Li
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Ying-Hua Cheng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Austin J Pucylowski
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Mariah A. Hassert
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri
| | - Michael J. Voor
- Department of Orthopaedic Surgery, University of Louisville School of Medicine, Louisville, KY
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY
| | - Melissa A. Kacena
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - William R. Thompson
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN
| | - Stuart J. Warden
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN
| | - David B. Burr
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Matthew R. Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Alexander G Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Uma Sankar
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
150
|
Pirosa A, Gottardi R, Alexander PG, Tuan RS. Engineering in-vitro stem cell-based vascularized bone models for drug screening and predictive toxicology. Stem Cell Res Ther 2018; 9:112. [PMID: 29678192 PMCID: PMC5910611 DOI: 10.1186/s13287-018-0847-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The production of veritable in-vitro models of bone tissue is essential to understand the biology of bone and its surrounding environment, to analyze the pathogenesis of bone diseases (e.g., osteoporosis, osteoarthritis, osteomyelitis, etc.), to develop effective therapeutic drug screening, and to test potential therapeutic strategies. Dysregulated interactions between vasculature and bone cells are often related to the aforementioned pathologies, underscoring the need for a bone model that contains engineered vasculature. Due to ethical restraints and limited prediction power of animal models, human stem cell-based tissue engineering has gained increasing relevance as a candidate approach to overcome the limitations of animals and to serve as preclinical models for drug testing. Since bone is a highly vascularized tissue, the concomitant development of vasculature and mineralized matrix requires a synergistic interaction between osteogenic and endothelial precursors. A number of experimental approaches have been used to achieve this goal, such as the combination of angiogenic factors and three-dimensional scaffolds, prevascularization strategies, and coculture systems. In this review, we present an overview of the current models and approaches to generate in-vitro stem cell-based vascularized bone, with emphasis on the main challenges of vasculature engineering. These challenges are related to the choice of biomaterials, scaffold fabrication techniques, and cells, as well as the type of culturing conditions required, and specifically the application of dynamic culture systems using bioreactors.
Collapse
Affiliation(s)
- Alessandro Pirosa
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| | - Riccardo Gottardi
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
- Ri.MED Foundation, Via Bandiera 11, Palermo, 90133 Italy
| | - Peter G. Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| | - Rocky S. Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| |
Collapse
|