101
|
Sinkus R, Lambert S, Abd-Elmoniem KZ, Morse C, Heller T, Guenthner C, Ghanem AM, Holm S, Gharib AM. Rheological determinants for simultaneous staging of hepatic fibrosis and inflammation in patients with chronic liver disease. NMR IN BIOMEDICINE 2018; 31:e3956. [PMID: 30059174 PMCID: PMC6141320 DOI: 10.1002/nbm.3956] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 05/05/2018] [Accepted: 05/07/2018] [Indexed: 05/12/2023]
Abstract
The purpose of this study is to investigate the use of fundamental rheological parameters as quantified by MR elastography (MRE) to measure liver fibrosis and inflammation simultaneously in humans. MRE was performed on 45 patients at 3 T using a vibration frequency of 56 Hz. Fibrosis and inflammation scores were obtained from liver biopsies. Biomechanical properties were quantified in terms of complex shear modulus G* as well as shear wave phase velocity c and shear wave attenuation α. A rheological fractional derivative order model was used to investigate the linear dependence of the free model parameters (dispersion slope y, intrinsic speed c0 , and intrinsic relaxation time τ) on histopathology. Leave-one-out cross-validation was then utilized to demonstrate the effectiveness of the model. The intrinsic speed c0 increases with hepatic fibrosis, while an increased relaxation time τ is reflective of more inflammation of the liver parenchyma. The dispersion slope y does not depend either on fibrosis or on inflammation. The proposed rheological model, given this specific parameterization, establishes the functional dependences of biomechanical parameters on histological fibrosis and inflammation. The leave-one-out cross-validation demonstrates that the model allows identification, from the MRE measurements, of the histology scores when grouped into low-/high-grade fibrosis and low-/high-grade inflammation with significance levels of P = 0.0004 (fibrosis) and P = 0.035 (inflammation). The functional dependences of intrinsic speed and relaxation time on fibrosis and inflammation, respectively, shed new light onto the impact hepatic pathological changes on liver tissue biomechanics in humans. The dispersion slope y appears to represent a structural parameter of liver parenchyma not impacted by the severity of fibrosis/inflammation present in this patient cohort. This specific parametrization of the well-established rheological fractional order model is valuable for the clinical assessment of both fibrosis and inflammation scores, going beyond the capability of the plain shear modulus measurement commonly used for MRE.
Collapse
Affiliation(s)
- Ralph Sinkus
- Inserm U1148, LVTS, University Paris Diderot, University Paris 13, Paris, France
- King's College London, BHF Centre of Excellence, Division of Imaging Sciences and Biomedical Engineering, UK
| | - Simon Lambert
- King's College London, BHF Centre of Excellence, Division of Imaging Sciences and Biomedical Engineering, UK
| | - Khaled Z Abd-Elmoniem
- Biomedical and Metabolic Imaging Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Caryn Morse
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, USA
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Christian Guenthner
- Institute for Biomedical Engineering, University and ETH, Zurich, Zurich, Switzerland
| | - Ahmed M Ghanem
- Biomedical and Metabolic Imaging Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Sverre Holm
- Department of Informatics, University of Oslo, Norway
| | - Ahmed M Gharib
- Biomedical and Metabolic Imaging Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| |
Collapse
|
102
|
Mierke CT, Sauer F, Grosser S, Puder S, Fischer T, Käs JA. The two faces of enhanced stroma: Stroma acts as a tumor promoter and a steric obstacle. NMR IN BIOMEDICINE 2018; 31:e3831. [PMID: 29215759 DOI: 10.1002/nbm.3831] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/24/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
In addition to genetic, morphological and biochemical alterations in cells, a key feature of the malignant progression of cancer is the stroma, including cancer cell motility as well as the emergence of metastases. Our current knowledge with regard to the biophysically driven experimental approaches of cancer progression indicates that mechanical aberrations are major contributors to the malignant progression of cancer. In particular, the mechanical probing of the stroma is of great interest. However, the impact of the tumor stroma on cellular motility, and hence the metastatic cascade leading to the malignant progression of cancer, is controversial as there are two different and opposing effects within the stroma. On the one hand, the stroma can promote and enhance the proliferation, survival and migration of cancer cells through mechanotransduction processes evoked by fiber alignment as a result of increased stroma rigidity. This enables all types of cancer to overcome restrictive biological capabilities. On the other hand, as a result of its structural constraints, the stroma acts as a steric obstacle for cancer cell motility in dense three-dimensional extracellular matrices, when the pore size is smaller than the cell's nucleus. The mechanical properties of the stroma, such as the tissue matrix stiffness and the entire architectural network of the stroma, are the major players in providing the optimal environment for cancer cell migration. Thus, biophysical methods determining the mechanical properties of the stroma, such as magnetic resonance elastography, are critical for the diagnosis and prediction of early cancer stages. Fibrogenesis and cancer are tightly connected, as there is an elevated risk of cancer on cystic fibrosis or, subsequently, cirrhosis. This also applies to the subsequent metastatic process.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| | - Frank Sauer
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Soft Matter Physics Division, University of Leipzig, Leipzig, Germany
| | - Steffen Grosser
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Soft Matter Physics Division, University of Leipzig, Leipzig, Germany
| | - Stefanie Puder
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| | - Tony Fischer
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| | - Josef Alfons Käs
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Soft Matter Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
103
|
Wang P, Dreger M, Madrazo E, Williams CJ, Samaniego R, Hodson NW, Monroy F, Baena E, Sánchez-Mateos P, Hurlstone A, Redondo-Muñoz J. WDR5 modulates cell motility and morphology and controls nuclear changes induced by a 3D environment. Proc Natl Acad Sci U S A 2018; 115:8581-8586. [PMID: 29987046 PMCID: PMC6112728 DOI: 10.1073/pnas.1719405115] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cell migration through extracellular matrices requires nuclear deformation, which depends on nuclear stiffness. In turn, chromatin structure contributes to nuclear stiffness, but the mechanosensing pathways regulating chromatin during cell migration remain unclear. Here, we demonstrate that WD repeat domain 5 (WDR5), an essential component of H3K4 methyltransferase complexes, regulates cell polarity, nuclear deformability, and migration of lymphocytes in vitro and in vivo, independent of transcriptional activity, suggesting nongenomic functions for WDR5. Similarly, depletion of RbBP5 (another H3K4 methyltransferase subunit) promotes similar defects. We reveal that a 3D environment increases the H3K4 methylation dependent on WDR5 and results in a globally less compacted chromatin conformation. Further, using atomic force microscopy, nuclear particle tracking, and nuclear swelling experiments, we detect changes in nuclear mechanics that accompany the epigenetic changes induced in 3D conditions. Indeed, nuclei from cells in 3D environments were softer, and thereby more deformable, compared with cells in suspension or cultured in 2D conditions, again dependent on WDR5. Dissecting the underlying mechanism, we determined that actomyosin contractility, through the phosphorylation of myosin by MLCK (myosin light chain kinase), controls the interaction of WDR5 with other components of the methyltransferase complex, which in turn up-regulates H3K4 methylation activation in 3D conditions. Taken together, our findings reveal a nongenomic function for WDR5 in regulating H3K4 methylation induced by 3D environments, physical properties of the nucleus, cell polarity, and cell migratory capacity.
Collapse
Affiliation(s)
- Pengbo Wang
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, School of Medical Sciences, Division of Cell Matrix Biology and Regenerative Medicine, The University of Manchester, M13 9PT Manchester, United Kingdom
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, SK10 4TG Manchester, United Kingdom
| | - Marcel Dreger
- Faculty of Biology, Medicine and Health, Division of Cancer Sciences, School of Medical Sciences, The University of Manchester, M13 9PT Manchester, United Kingdom
| | - Elena Madrazo
- Section of Immuno-oncology, Instituto de Investigación Sanitaria Gregorio Marañón, Complutense University, School of Medicine, 28007 Madrid, Spain
- Department of Immunology, Hospital 12 de Octubre Health Research Institute (imas12), Complutense University, School of Medicine, 28040 Madrid, Spain
| | - Craig J Williams
- School of Materials, The University of Manchester, M13 9PL Manchester, United Kingdom
| | - Rafael Samaniego
- Confocal Microscopy Unit, Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
| | - Nigel W Hodson
- BioAFM Facility, The University of Manchester, M13 9PG Manchester, United Kingdom
| | - Francisco Monroy
- Department of Physical Chemistry, Hospital 12 de Octubre Health Research Institute (imas12), Complutense University, 28040 Madrid, Spain
| | - Esther Baena
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, SK10 4TG Manchester, United Kingdom
| | - Paloma Sánchez-Mateos
- Section of Immuno-oncology, Instituto de Investigación Sanitaria Gregorio Marañón, Complutense University, School of Medicine, 28007 Madrid, Spain
| | - Adam Hurlstone
- Faculty of Biology, Medicine and Health, Division of Cancer Sciences, School of Medical Sciences, The University of Manchester, M13 9PT Manchester, United Kingdom
| | - Javier Redondo-Muñoz
- Department of Immunology, Hospital 12 de Octubre Health Research Institute (imas12), Complutense University, School of Medicine, 28040 Madrid, Spain;
| |
Collapse
|
104
|
Bell R, Gendron NR, Anderson M, Flatow EL, Andarawis-Puri N. A potential new role for myofibroblasts in remodeling of sub-rupture fatigue tendon injuries by exercise. Sci Rep 2018; 8:8933. [PMID: 29895865 PMCID: PMC5997675 DOI: 10.1038/s41598-018-27196-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/30/2018] [Indexed: 12/14/2022] Open
Abstract
Tendons are ineffective at repairing sub-rupture fatigue injuries. Accordingly, we evaluated whether an exercise protocol that we have previously found to decrease structural damage kinks in fatigue damaged tendons, leads to improvement in mechanical properties. We hypothesized that exercise that promotes repair of fatigue damage will decrease apoptosis and increase the population of myofibroblasts. Rat patellar tendons underwent in vivo fatigue loading for 500 or 7200 cycles. Animals resumed cage activity for 2-weeks, then either remained cage active or began treadmill running until sacrifice at 4- or 10-weeks post-fatigue loading. Exercise following fatigue damage increased the stiffness back towards naïve levels, decreased apoptosis and increased the population of myofibroblasts. Next, proteins associated with inhibition of apoptosis (Collagen VI) or activation of myofibroblast (pSmad 2/3, fibrillin, integrin subunits αV and α5) were evaluated. Data suggests that collagen VI may not be integral to inhibition of apoptosis in this context. Exercise increased pSmad 2/3 and fibrillin in the insertion region for the 7200-cycles group. In addition, exercise decreased integrin αV and increased integrin α5 in fatigue damaged tendons. Data suggests that a decrease in apoptosis and an increase in population of myofibroblasts may be integral to remodeling of fatigue damaged tendons.
Collapse
Affiliation(s)
- Rebecca Bell
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - N Remi Gendron
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Anderson
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evan L Flatow
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA. .,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA. .,Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
105
|
Abstract
Time series generated by complex systems like financial markets and the earth’s atmosphere often represent superstatistical random walks: on short time scales, the data follow a simple low-level model, but the model parameters are not constant and can fluctuate on longer time scales according to a high-level model. While the low-level model is often dictated by the type of the data, the high-level model, which describes how the parameters change, is unknown in most cases. Here we present a computationally efficient method to infer the time course of the parameter variations from time-series with short-range correlations. Importantly, this method evaluates the model evidence to objectively select between competing high-level models. We apply this method to detect anomalous price movements in financial markets, characterize cancer cell invasiveness, identify historical policies relevant for working safety in coal mines, and compare different climate change scenarios to forecast global warming. Systematic changes in stock market prices or in the migration behaviour of cancer cells may be hidden behind random fluctuations. Here, Mark et al. describe an empirical approach to identify when and how such real-world systems undergo systematic changes.
Collapse
|
106
|
Jeong Y, You D, Kang HG, Yu J, Kim SW, Nam SJ, Lee JE, Kim S. Berberine Suppresses Fibronectin Expression through Inhibition of c-Jun Phosphorylation in Breast Cancer Cells. J Breast Cancer 2018; 21:21-27. [PMID: 29628980 PMCID: PMC5880962 DOI: 10.4048/jbc.2018.21.1.21] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/12/2017] [Indexed: 12/11/2022] Open
Abstract
Purpose The exact mechanism regulating fibronectin (FN) expression in breast cancer cells has not been fully elucidated. In this study, we investigated the pharmacological mechanism of berberine (BBR) with respect to FN expression in triple-negative breast cancer (TNBC) cells. Methods The clinical significance of FN mRNA expression was analyzed using the Kaplan-Meier plotter database (http://kmplot.com/breast). FN mRNA and protein expression levels were analyzed by real-time polymerase chain reaction and western blotting, respectively. Results Using publicly available clinical data, we observed that high FN expression was associated with poor prognosis in patients with breast cancer. FN mRNA and protein expression was increased in TNBC cells compared with non-TNBC cells. As expected, recombinant human FN significantly induced cell spreading and adhesion in MDA-MB231 TNBC cells. We also investigated the regulatory mechanism underlying FN expression. Basal levels of FN mRNA and protein expression were downregulated by a specific activator protein-1 (AP-1) inhibitor, SR11302. Interestingly, FN expression in TNBC cells was dose-dependently decreased by BBR treatment. The level of c-Jun phosphorylation was also decreased by BBR treatment. Conclusion Our findings demonstrate that FN expression is regulated via an AP-1–dependent mechanism, and that BBR suppresses FN expression in TNBC cells through inhibition of AP-1 activity.
Collapse
Affiliation(s)
- Yisun Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea
| | - Daeun You
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea
| | - Hyun-Gu Kang
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea
| | - Jonghan Yu
- Breast Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok Won Kim
- Breast Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok Jin Nam
- Breast Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong Eon Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea.,Breast Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sangmin Kim
- Breast Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
107
|
Meta-analysis of gene expression and integrin-associated signaling pathways in papillary renal cell carcinoma subtypes. Oncotarget 2018; 7:84178-84189. [PMID: 27705936 PMCID: PMC5356653 DOI: 10.18632/oncotarget.12390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/24/2016] [Indexed: 12/02/2022] Open
Abstract
Papillary renal cell carcinoma (PRCC) is the second most common renal cell carcinoma (RCC) that can be further subdivided into type 1 (PRCC1) and type 2 (PRCC2) RCCs based on histological and genetic features. PRCC2 is often more aggressive than PRCC1. While integrin-associated protein complexes mediate tumorigenesis and metastases in many types of cancers it is not known whether integrin-mediated signaling impacts PRCC and differs between PRCC1 and PRCC2. In this study, we combined the analysis of five PRCC gene expression datasets derived from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) by using integrative bioinformatics pipelines. We found 1475 differentially expressed genes among which 37 genes were associated with integrin pathways. In comparison with PRCC1, PRCC2 cases showed upregulated expression of α5-integrin (ITGA5) whereas the expression of α6- (ITGA6) and β8-integrins (ITGB8) was downregulated. Because PRCC2 occurs more frequently in men, the meta-analysis was extended to explore the gender effects. This analysis revealed 8 genes but none of them was related to integrin pathways suggesting that other mechanisms than integrin-mediated signaling underlie the observed gender differences in the pathogenicity of PRCC2.
Collapse
|
108
|
Lin F, Zhang H, Huang J, Xiong C. Substrate Stiffness Coupling TGF-β1 Modulates Migration and Traction Force of MDA-MB-231 Human Breast Cancer Cells in Vitro. ACS Biomater Sci Eng 2018; 4:1337-1345. [DOI: 10.1021/acsbiomaterials.7b00835] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
109
|
Malandrino A, Kamm RD, Moeendarbary E. In Vitro Modeling of Mechanics in Cancer Metastasis. ACS Biomater Sci Eng 2018; 4:294-301. [PMID: 29457129 PMCID: PMC5811931 DOI: 10.1021/acsbiomaterials.7b00041] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/16/2017] [Indexed: 02/06/2023]
Abstract
In addition to a multitude of genetic and biochemical alterations, abnormal morphological, structural, and mechanical changes in cells and their extracellular environment are key features of tumor invasion and metastasis. Furthermore, it is now evident that mechanical cues alongside biochemical signals contribute to critical steps of cancer initiation, progression, and spread. Despite its importance, it is very challenging to study mechanics of different steps of metastasis in the clinic or even in animal models. While considerable progress has been made in developing advanced in vitro models for studying genetic and biological aspects of cancer, less attention has been paid to models that can capture both biological and mechanical factors realistically. This is mainly due to lack of appropriate models and measurement tools. After introducing the central role of mechanics in cancer metastasis, we provide an outlook on the emergence of novel in vitro assays and their combination with advanced measurement technologies to probe and recapitulate mechanics in conditions more relevant to the metastatic disease.
Collapse
Affiliation(s)
- Andrea Malandrino
- Department of Mechanical Engineering and Department of Biological
Engineering, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
- Institute
for Bioengineering of Catalonia, Barcelona 08028, Spain
| | - Roger D. Kamm
- Department of Mechanical Engineering and Department of Biological
Engineering, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Emad Moeendarbary
- Department of Mechanical Engineering and Department of Biological
Engineering, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
- Department
of Mechanical Engineering, University College
London, London WC1E 6BT, United Kingdom
| |
Collapse
|
110
|
MicroRNA-31 functions as a tumor suppressor and increases sensitivity to mitomycin-C in urothelial bladder cancer by targeting integrin α5. Oncotarget 2018; 7:27445-57. [PMID: 27050274 PMCID: PMC5053662 DOI: 10.18632/oncotarget.8479] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/16/2016] [Indexed: 11/25/2022] Open
Abstract
Urothelial bladder cancer (UBC) is a common genitourinary malignancy. MiR-31, a well-identified miRNA, exhibits diverse properties in different cancers. However, the specific functions and mechanisms of miR-31 in UBC have not been investigated. In this study, tumor samples, especially invasive UBC, showed significantly reduced level of miR-31, as compared with normal urothelium. Prognostic analysis using the EORTC model showed that down-regulation of miR-31 correlated with higher risks of recurrence and progression in noninvasive UBC cases. Remarkably, overexpression of miR-31 mimics in UBC cell lines inhibited cell proliferation, migration and invasion. Integrin α5 (ITGA5), an integrin family member, was subsequently identified as a direct target of miR-31 in UBC cells. When treated with mitomycin-C (MMC), miR-31-expressing UBC cells displayed lower survival and higher apoptotic rates, and deactivated Akt and ERK. These effects arising from miR-31 overexpression were abrogated by ITGA5 restoration. Furthermore, miR-31 markedly inhibited tumor growth and increased the effectiveness of MMC in UBC xenografts. In summary, our data suggest that miR-31 is a prognostic predictor and can serve as a potential therapeutic target of UBC.
Collapse
|
111
|
The Two Faces of Adjuvant Glucocorticoid Treatment in Ovarian Cancer. Discov Oncol 2018; 9:95-107. [PMID: 29313170 DOI: 10.1007/s12672-017-0319-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022] Open
Abstract
Adjuvant glucocorticoid treatment is routinely used in the treatment of ovarian cancer to mitigate the undesirable side effects of chemotherapy, thereby enhancing tolerability to higher cytotoxic drug doses and frequency of treatment cycles. However, in vitro and preclinical in vivo and ex vivo studies indicate that glucocorticoids may spare tumor cells from undergoing cell death through enhanced cell adhesion, promotion of anti-inflammatory signaling, and/or inhibition of apoptotic pathways. The implications of laboratory studies showing potential negative impact on the efficacy of chemotherapy have been long overlooked since clinical investigations have found no apparent survival detriment attributable to adjuvant glucocorticoid use. Importantly, these clinical studies were not randomized and most did not consider glucocorticoid receptor status, a vital determinant of tumor response to glucocorticoid administration. Additionally, the clinically beneficial elements of increased chemotherapy treatment adherence and dosing afforded by adjuvant glucocorticoids may offset and therefore mask their anti-chemotherapy activities. This review summarizes the current evidence on the impact of glucocorticoids in ovarian cancer and discusses the need for further research and development of alternative strategies to ameliorate untoward side effects of chemotherapy.
Collapse
|
112
|
Weidle UH, Dickopf S, Hintermair C, Kollmorgen G, Birzele F, Brinkmann U. The Role of micro RNAs in Breast Cancer Metastasis: Preclinical Validation and Potential Therapeutic Targets. Cancer Genomics Proteomics 2018; 15:17-39. [PMID: 29275360 PMCID: PMC5822183 DOI: 10.21873/cgp.20062] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/18/2022] Open
Abstract
Despite the approval of several molecular therapies in the last years, breast cancer-associated death ranks as the second highest in women. This is due to metastatic disease, which represents a challenge for treatment. A better understanding of the molecular mechanisms of metastasis is, therefore, of paramount importance. In this review we summarize the role of micro RNAs (miRs) involved in metastasis of breast cancer. We present an overview on metastasis-promoting, -suppressing and context-dependent miRs with both activities. We have categorized the corresponding miRs according to their target classes, interaction with stromal cells or exosomes. The pathways affected by individual miRs are outlined in regard to in vitro properties, activity in metastasis-related in vivo models and clinical significance. Current approaches that may be suitable for therapeutic inhibition or restauration of miR activity are outlined. Finally, we discuss the delivery bottlenecks which present as a major challenge in nucleic acid (miR)-based therapies.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Steffen Dickopf
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | | | - Gwendlyn Kollmorgen
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
113
|
Liu M, Zhang X, Long C, Xu H, Cheng X, Chang J, Zhang C, Zhang C, Wang X. Collagen-based three-dimensional culture microenvironment promotes epithelial to mesenchymal transition and drug resistance of human ovarian cancerin vitro. RSC Adv 2018; 8:8910-8919. [PMID: 35539845 PMCID: PMC9078576 DOI: 10.1039/c7ra13742g] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/15/2018] [Indexed: 11/21/2022] Open
Abstract
OV-NC and OV-206 cells cultured in collagen I hydrogel scaffolds, could gradually generate multicellular spheroids.
Collapse
Affiliation(s)
- Ming Liu
- Department of Cell Biology
- College of Basic Medical Sciences
- Dalian Medical University
- Dalian 116044
- PR China
| | - Xiuzhen Zhang
- Department of Human Histology and Embryology
- College of Basic Medical Sciences
- Dalian Medical University
- Dalian 116044
- PR China
| | - Canling Long
- Department of Human Histology and Embryology
- College of Basic Medical Sciences
- Dalian Medical University
- Dalian 116044
- PR China
| | - Hong Xu
- Laboratory of Medical Function
- College of Basic Medical Sciences
- Dalian Medical University
- Dalian 116044
- PR China
| | - Xu Cheng
- Department of Human Histology and Embryology
- College of Basic Medical Sciences
- Dalian Medical University
- Dalian 116044
- PR China
| | - Jingjie Chang
- Department of Human Histology and Embryology
- College of Basic Medical Sciences
- Dalian Medical University
- Dalian 116044
- PR China
| | - Chengzhao Zhang
- Department of Human Histology and Embryology
- College of Basic Medical Sciences
- Dalian Medical University
- Dalian 116044
- PR China
| | - Chenghong Zhang
- Morphological Laboratory
- College of Basic Medical Sciences
- Dalian Medical University
- Dalian 116044
- PR China
| | - Xiuli Wang
- Department of Human Histology and Embryology
- College of Basic Medical Sciences
- Dalian Medical University
- Dalian 116044
- PR China
| |
Collapse
|
114
|
Fischer T, Wilharm N, Hayn A, Mierke CT. Matrix and cellular mechanical properties are the driving factors for facilitating human cancer cell motility into 3D engineered matrices. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [DOI: 10.1088/2057-1739/aa8bbb] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
115
|
Azevedo R, Peixoto A, Gaiteiro C, Fernandes E, Neves M, Lima L, Santos LL, Ferreira JA. Over forty years of bladder cancer glycobiology: Where do glycans stand facing precision oncology? Oncotarget 2017; 8:91734-91764. [PMID: 29207682 PMCID: PMC5710962 DOI: 10.18632/oncotarget.19433] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022] Open
Abstract
The high molecular heterogeneity of bladder tumours is responsible for significant variations in disease course, as well as elevated recurrence and progression rates, thereby hampering the introduction of more effective targeted therapeutics. The implementation of precision oncology settings supported by robust molecular models for individualization of patient management is warranted. This effort requires a comprehensive integration of large sets of panomics data that is yet to be fully achieved. Contributing to this goal, over 40 years of bladder cancer glycobiology have disclosed a plethora of cancer-specific glycans and glycoconjugates (glycoproteins, glycolipids, proteoglycans) accompanying disease progressions and dissemination. This review comprehensively addresses the main structural findings in the field and consequent biological and clinical implications. Given the cell surface and secreted nature of these molecules, we further discuss their potential for non-invasive detection and therapeutic development. Moreover, we highlight novel mass-spectrometry-based high-throughput analytical and bioinformatics tools to interrogate the glycome in the postgenomic era. Ultimately, we outline a roadmap to guide future developments in glycomics envisaging clinical implementation.
Collapse
Affiliation(s)
- Rita Azevedo
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
- New Therapies Group, INEB-Institute for Biomedical Engineering, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Cristiana Gaiteiro
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Elisabete Fernandes
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Biomaterials for Multistage Drug and Cell Delivery, INEB-Institute for Biomedical Engineering, Porto, Portugal
| | - Manuel Neves
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Luís Lima
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Department of Surgical Oncology, Portuguese Institute of Oncology, Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| |
Collapse
|
116
|
Rajakylä K, Krishnan R, Tojkander S. Analysis of Contractility and Invasion Potential of Two Canine Mammary Tumor Cell Lines. Front Vet Sci 2017; 4:149. [PMID: 28955712 PMCID: PMC5600937 DOI: 10.3389/fvets.2017.00149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 08/28/2017] [Indexed: 01/30/2023] Open
Abstract
Cancer cells are surrounded by a mechanically and biochemically distinct microenvironment that undergoes dynamic changes throughout the neoplastic progression. During this progression, some cancer cells acquire abnormal characteristics that potentiate their escape from the primary tumor site, to establish secondary tumors in distant organs. Recent studies with several human cancer cell lines have shown that the altered physical properties of tumor cells, such as their ability to apply high traction forces to the surroundings, are directly linked with their potential to invade and metastasize. To test the hypothetical interconnection between actomyosin-mediated traction forces and invasion potential within 3D-microenvironment, we utilized two canine mammary tumor cell lines with different contractile properties. These cell lines, canine mammary tumor (CMT)-U27 and CMT-U309, were found to have distinct expression patterns of lineage-specific markers and organization of actin-based structures. In particular, CMT-U309 carcinoma cells were typified by thick contractile actomyosin bundles that exerted high forces to their environment, as measured by traction force microscopy. These high contractile forces also correlated with the prominent invasiveness of the CMT-U309 cell line. Furthermore, we found high contractility and 3D-invasion potential to be dependent on the activity of 5′AMP-activated protein kinase (AMPK), as blocking AMPK signaling was found to reverse both of these features. Taken together, our findings implicate that actomyosin forces correlate with the invasion potential of the studied cell lines.
Collapse
Affiliation(s)
- Kaisa Rajakylä
- Faculty of Veterinary Medicine, Department of Veterinary Biosciences, Section of Pathology, University of Helsinki, Helsinki, Finland
| | - Ramaswamy Krishnan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Sari Tojkander
- Faculty of Veterinary Medicine, Department of Veterinary Biosciences, Section of Pathology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
117
|
Miroshnikova YA, Rozenberg GI, Cassereau L, Pickup M, Mouw JK, Ou G, Templeman KL, Hannachi EI, Gooch KJ, Sarang-Sieminski AL, García AJ, Weaver VM. α5β1-Integrin promotes tension-dependent mammary epithelial cell invasion by engaging the fibronectin synergy site. Mol Biol Cell 2017; 28:2958-2977. [PMID: 28877984 PMCID: PMC5662256 DOI: 10.1091/mbc.e17-02-0126] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 12/13/2022] Open
Abstract
Fibronectin-ligated α5β1 integrin promotes malignancy by inducing tissue tension. Tumors are fibrotic and characterized by abundant, remodeled, and cross-linked collagen that stiffens the extracellular matrix stroma. The stiffened collagenous stroma fosters malignant transformation of the tissue by increasing tumor cell tension to promote focal adhesion formation and potentiate growth factor receptor signaling through kinase. Importantly, collagen cross-linking requires fibronectin (FN). Fibrotic tumors contain abundant FN, and tumor cells frequently up-regulate the FN receptor α5β1 integrin. Using transgenic and xenograft models and tunable two- and three-dimensional substrates, we show that FN-bound α5β1 integrin promotes tension-dependent malignant transformation through engagement of the synergy site that enhances integrin adhesion force. We determined that ligation of the synergy site of FN permits tumor cells to engage a zyxin-stabilized, vinculin-linked scaffold that facilitates nucleation of phosphatidylinositol (3,4,5)-triphosphate at the plasma membrane to enhance phosphoinositide 3-kinase (PI3K)-dependent tumor cell invasion. The data explain why rigid collagen fibrils potentiate PI3K activation to promote malignancy and offer a perspective regarding the consistent up-regulation of α5β1 integrin and FN in many tumors and their correlation with cancer aggression.
Collapse
Affiliation(s)
- Y A Miroshnikova
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143
| | - G I Rozenberg
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - L Cassereau
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143
| | - M Pickup
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143
| | - J K Mouw
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143
| | - G Ou
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143
| | - K L Templeman
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - E-I Hannachi
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - K J Gooch
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - A L Sarang-Sieminski
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - A J García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - V M Weaver
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143 .,Department of Anatomy and Department of Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
118
|
Exploring the Role of RGD-Recognizing Integrins in Cancer. Cancers (Basel) 2017; 9:cancers9090116. [PMID: 28869579 PMCID: PMC5615331 DOI: 10.3390/cancers9090116] [Citation(s) in RCA: 312] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 12/18/2022] Open
Abstract
Integrins are key regulators of communication between cells and with their microenvironment. Eight members of the integrin superfamily recognize the tripeptide motif Arg-Gly-Asp (RGD) within extracelluar matrix (ECM) proteins. These integrins constitute an important subfamily and play a major role in cancer progression and metastasis via their tumor biological functions. Such transmembrane adhesion and signaling receptors are thus recognized as promising and well accessible targets for novel diagnostic and therapeutic applications for directly attacking cancer cells and their fatal microenvironment. Recently, specific small peptidic and peptidomimetic ligands as well as antibodies binding to distinct integrin subtypes have been developed and synthesized as new drug candidates for cancer treatment. Understanding the distinct functions and interplay of integrin subtypes is a prerequisite for selective intervention in integrin-mediated diseases. Integrin subtype-specific ligands labelled with radioisotopes or fluorescent molecules allows the characterization of the integrin patterns in vivo and later the medical intervention via subtype specific drugs. The coating of nanoparticles, larger proteins, or encapsulating agents by integrin ligands are being explored to guide cytotoxic reagents directly to the cancer cell surface. These ligands are currently under investigation in clinical studies for their efficacy in interference with tumor cell adhesion, migration/invasion, proliferation, signaling, and survival, opening new treatment approaches in personalized medicine.
Collapse
|
119
|
Blaha L, Zhang C, Cabodi M, Wong JY. A microfluidic platform for modeling metastatic cancer cell matrix invasion. Biofabrication 2017; 9:045001. [PMID: 28812983 DOI: 10.1088/1758-5090/aa869d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Invasion of the extracellular matrix is a critical step in the colonization of metastatic tumors. The invasion process is thought to be driven by both chemokine signaling and interactions between invading cancer cells and physical components of the metastatic niche, including endothelial cells that line capillary walls and serve as a barrier to both diffusion and invasion of the underlying tissue. Transwell chambers, a tool for generating artificial chemokine gradients to induce cell migration, have facilitated recent work to investigate the chemokine contributions to matrix invasion. These chambers, however, are poorly designed for imaging, which limits their use in investigating the physical cell-cell and cell-matrix interactions driving matrix invasion. Microfluidic devices offer a promising model in which the invasion process can be imaged. Many current designs, however, have limited surface areas and possess intricate geometries that preclude the use of standard staining protocols to visualize cells and matrix proteins. In this work, we present a novel microfluidic platform for imaging cell-cell and cell-matrix interactions driving metastatic cancer cell matrix invasion. Our model is applied to investigate how endothelial cell-secreted matrix proteins and the physical endothelial monolayer itself interact with invading metastatic breast cancer cells to facilitate invasion of an underlying type I collagen gel. The results show that matrix invasion of metastatic breast cancer cells is significantly enhanced in the presence of live endothelial cells. Probing this interaction further, our platform revealed that, while the fibronectin-rich matrix deposited by endothelial cells was not sufficient to drive invasion alone, metastatic breast cancer cells were able to exploit components of energetically inactivated endothelial cells to gain entry into the underlying matrix. These findings reveal novel cell-cell interactions driving a key step in the colonization of metastatic tumors and have important implications for designing drugs targeted at preventing cancer metastasis.
Collapse
Affiliation(s)
- Laura Blaha
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States of America
| | | | | | | |
Collapse
|
120
|
Cardoso Dos Santos M, Déturche R, Vézy C, Jaffiol R. Topography of Cells Revealed by Variable-Angle Total Internal Reflection Fluorescence Microscopy. Biophys J 2017; 111:1316-1327. [PMID: 27653490 DOI: 10.1016/j.bpj.2016.06.043] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/24/2016] [Accepted: 06/28/2016] [Indexed: 11/17/2022] Open
Abstract
We propose an improved version of variable-angle total internal reflection fluorescence microscopy (vaTIRFM) adapted to modern TIRF setup. This technique involves the recording of a stack of TIRF images, by gradually increasing the incident angle of the light beam on the sample. A comprehensive theory was developed to extract the membrane/substrate separation distance from fluorescently labeled cell membranes. A straightforward image processing was then established to compute the topography of cells with a nanometric axial resolution, typically 10-20 nm. To highlight the new opportunities offered by vaTIRFM to quantify adhesion process of motile cells, adhesion of MDA-MB-231 cancer cells on glass substrate coated with fibronectin was examined.
Collapse
Affiliation(s)
- Marcelina Cardoso Dos Santos
- Laboratoire de Nanotechnologie et d'Instrumentation Optique, Institut Charles Delaunay - UMR 6281 Centre National de la Recherche Scientifique, Université de Technologie de Troyes, Troyes, France
| | - Régis Déturche
- Laboratoire de Nanotechnologie et d'Instrumentation Optique, Institut Charles Delaunay - UMR 6281 Centre National de la Recherche Scientifique, Université de Technologie de Troyes, Troyes, France
| | - Cyrille Vézy
- Laboratoire de Nanotechnologie et d'Instrumentation Optique, Institut Charles Delaunay - UMR 6281 Centre National de la Recherche Scientifique, Université de Technologie de Troyes, Troyes, France
| | - Rodolphe Jaffiol
- Laboratoire de Nanotechnologie et d'Instrumentation Optique, Institut Charles Delaunay - UMR 6281 Centre National de la Recherche Scientifique, Université de Technologie de Troyes, Troyes, France.
| |
Collapse
|
121
|
Sant GR, Knopf KB, Albala DM. Live-single-cell phenotypic cancer biomarkers-future role in precision oncology? NPJ Precis Oncol 2017; 1:21. [PMID: 29872705 PMCID: PMC5871838 DOI: 10.1038/s41698-017-0025-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/21/2017] [Accepted: 05/05/2017] [Indexed: 01/08/2023] Open
Abstract
The promise of precision and personalized medicine is rooted in accurate, highly sensitive, and specific disease biomarkers. This is particularly true for cancer-a disease characterized by marked tumor heterogeneity and diverse molecular signatures. Although thousands of biomarkers have been described, only a very small number have been successfully translated into clinical use. Undoubtedly, there is need for rapid, quantitative, and more cost effective biomarkers for tumor diagnosis and prognosis, to allow for better risk stratification and aid clinicians in making personalized treatment decisions. This is particularly true for cancers where specific biomarkers are either not available (e.g., renal cell carcinoma) or where current biomarkers tend to classify individuals into broad risk categories unable to accurately assess individual tumor aggressiveness and adverse pathology potential (e.g., prostate cancer), thereby leading to problems of over-diagnosis and over-treatment of indolent cancer and under-treatment of aggressive cancer. This perspective highlights an emerging class of cancer biomarkers-live-single-cell phenotypic biomarkers, as compared to genomic biomarkers, and their potential application for cancer diagnosis, risk-stratification, and prognosis.
Collapse
Affiliation(s)
- Grannum R Sant
- Department of Urology, Tufts University School of Medicine, 82 Dennison Street, Gloucester, MA 01930 UK
| | - Kevin B Knopf
- Cancer Commons, 35050 El Camino Real, Los Altos, CA 94022 USA
| | - David M Albala
- 3Department of Urology, Crouse Hospital, Syracuse, NY USA
| |
Collapse
|
122
|
Leal-Egaña A, Letort G, Martiel JL, Christ A, Vignaud T, Roelants C, Filhol O, Théry M. The size-speed-force relationship governs migratory cell response to tumorigenic factors. Mol Biol Cell 2017; 28:1612-1621. [PMID: 28428257 PMCID: PMC5469605 DOI: 10.1091/mbc.e16-10-0694] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/28/2017] [Accepted: 04/10/2017] [Indexed: 12/18/2022] Open
Abstract
Normal and transformed motile cells follow a common trend in which size and contractile forces are negatively correlated with cell speed. However, tumorigenic factors amplify the preexisting population heterogeneity and lead some cells to exhibit biomechanical properties that are more extreme than those observed with normal cells. Tumor development progresses through a complex path of biomechanical changes leading first to cell growth and contraction and then cell deadhesion, scattering, and invasion. Tumorigenic factors may act specifically on one of these steps or have a wider spectrum of actions, leading to a variety of effects and thus sometimes to apparent contradictory outcomes. Here we used micropatterned lines of collagen type I/fibronectin on deformable surfaces to standardize cell behavior and measure simultaneously cell size, speed of motion and magnitude of the associated traction forces at the level of a single cell. We analyzed and compared the normal human breast cell line MCF10A in control conditions and in response to various tumorigenic factors. In all conditions, a wide range of biomechanical properties was identified. Despite this heterogeneity, normal and transformed motile cells followed a common trend whereby size and contractile forces were negatively correlated with cell speed. Some tumorigenic factors, such as activation of ErbB2 or loss of the βsubunit of casein kinase 2, shifted the whole population toward a faster speed and lower contractility state. Treatment with transforming growth factor β induced some cells to adopt opposing behaviors such as extremely high versus extremely low contractility. Thus tumor transformation amplified preexisting population heterogeneity and led some cells to exhibit biomechanical properties that were more extreme than those observed with normal cells.
Collapse
Affiliation(s)
- Aldo Leal-Egaña
- CytoMorpho Lab, LPCV, Biosciences and Biotechnology Institute of Grenoble, UMR5168, CEA, CNRS, INRA, Université Grenoble-Alpes, 38054 Grenoble, France
| | - Gaelle Letort
- CytoMorpho Lab, LPCV, Biosciences and Biotechnology Institute of Grenoble, UMR5168, CEA, CNRS, INRA, Université Grenoble-Alpes, 38054 Grenoble, France
| | - Jean-Louis Martiel
- CytoMorpho Lab, LPCV, Biosciences and Biotechnology Institute of Grenoble, UMR5168, CEA, CNRS, INRA, Université Grenoble-Alpes, 38054 Grenoble, France
| | - Andreas Christ
- CytoMorpho Lab, LPCV, Biosciences and Biotechnology Institute of Grenoble, UMR5168, CEA, CNRS, INRA, Université Grenoble-Alpes, 38054 Grenoble, France
| | - Timothée Vignaud
- CytoMorpho Lab, LPCV, Biosciences and Biotechnology Institute of Grenoble, UMR5168, CEA, CNRS, INRA, Université Grenoble-Alpes, 38054 Grenoble, France
| | - Caroline Roelants
- Biologie du Cancer et de l'Infection, Biosciences and Biotechnology Institute of Grenoble, UMRS1036, CEA, INSERM, CNRS, Université Grenoble-Alpes, 38054 Grenoble, France
| | - Odile Filhol
- Biologie du Cancer et de l'Infection, Biosciences and Biotechnology Institute of Grenoble, UMRS1036, CEA, INSERM, CNRS, Université Grenoble-Alpes, 38054 Grenoble, France
| | - Manuel Théry
- CytoMorpho Lab, LPCV, Biosciences and Biotechnology Institute of Grenoble, UMR5168, CEA, CNRS, INRA, Université Grenoble-Alpes, 38054 Grenoble, France .,CytoMorpho Lab, A2T, Hopital Saint Louis, Institut Universitaire d'Hematologie, UMRS1160, CEA, INSERM, AP-HP, Université Paris Diderot, 75010 Paris, France
| |
Collapse
|
123
|
Mekhdjian AH, Kai F, Rubashkin MG, Prahl LS, Przybyla LM, McGregor AL, Bell ES, Barnes JM, DuFort CC, Ou G, Chang AC, Cassereau L, Tan SJ, Pickup MW, Lakins JN, Ye X, Davidson MW, Lammerding J, Odde DJ, Dunn AR, Weaver VM. Integrin-mediated traction force enhances paxillin molecular associations and adhesion dynamics that increase the invasiveness of tumor cells into a three-dimensional extracellular matrix. Mol Biol Cell 2017; 28:1467-1488. [PMID: 28381423 PMCID: PMC5449147 DOI: 10.1091/mbc.e16-09-0654] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 12/21/2022] Open
Abstract
Mammary tumor cells adopt a basal-like phenotype when invading through a dense, stiffened, 3D matrix. These cells exert higher integrin-mediated traction forces, consistent with a physical motor-clutch model, display an altered molecular organization at the nanoscale, and recruit a suite of paxillin-associated proteins implicated in metastasis. Metastasis requires tumor cells to navigate through a stiff stroma and squeeze through confined microenvironments. Whether tumors exploit unique biophysical properties to metastasize remains unclear. Data show that invading mammary tumor cells, when cultured in a stiffened three-dimensional extracellular matrix that recapitulates the primary tumor stroma, adopt a basal-like phenotype. Metastatic tumor cells and basal-like tumor cells exert higher integrin-mediated traction forces at the bulk and molecular levels, consistent with a motor-clutch model in which motors and clutches are both increased. Basal-like nonmalignant mammary epithelial cells also display an altered integrin adhesion molecular organization at the nanoscale and recruit a suite of paxillin-associated proteins implicated in invasion and metastasis. Phosphorylation of paxillin by Src family kinases, which regulates adhesion turnover, is similarly enhanced in the metastatic and basal-like tumor cells, fostered by a stiff matrix, and critical for tumor cell invasion in our assays. Bioinformatics reveals an unappreciated relationship between Src kinases, paxillin, and survival of breast cancer patients. Thus adoption of the basal-like adhesion phenotype may favor the recruitment of molecules that facilitate tumor metastasis to integrin-based adhesions. Analysis of the physical properties of tumor cells and integrin adhesion composition in biopsies may be predictive of patient outcome.
Collapse
Affiliation(s)
- Armen H Mekhdjian
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - FuiBoon Kai
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Matthew G Rubashkin
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Louis S Prahl
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - Laralynne M Przybyla
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Alexandra L McGregor
- Nancy E. and Peter C. Meinig School of Biomedical Engineering and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Emily S Bell
- Nancy E. and Peter C. Meinig School of Biomedical Engineering and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - J Matthew Barnes
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Christopher C DuFort
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Guanqing Ou
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Alice C Chang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Luke Cassereau
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Steven J Tan
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Michael W Pickup
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Jonathan N Lakins
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Xin Ye
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Michael W Davidson
- National High Magnetic Field Laboratory and Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Jan Lammerding
- Nancy E. and Peter C. Meinig School of Biomedical Engineering and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143 .,Departments of Anatomy, Bioengineering and Therapeutic Sciences, and Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
124
|
Manica GCM, Ribeiro CF, Oliveira MASD, Pereira IT, Chequin A, Ramos EAS, Klassen LMB, Sebastião APM, Alvarenga LM, Zanata SM, Noronha LD, Rabinovich I, Costa FF, Souza EM, Klassen G. Down regulation of ADAM33 as a Predictive Biomarker of Aggressive Breast Cancer. Sci Rep 2017; 7:44414. [PMID: 28294120 PMCID: PMC5353751 DOI: 10.1038/srep44414] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 02/10/2017] [Indexed: 01/13/2023] Open
Abstract
Breast cancer is a heterogeneous disease with differences in its clinical, molecular and biological features. Traditionally, immunohistochemical markers together with clinicopathologic parameters are used to classify breast cancer and to predict disease outcome. Triple-negative breast cancer (TNBC) is a particular type of breast cancer that is defined by a lack of expression of hormonal receptors and the HER2 gene. Most cases of TNBC also have a basal-like phenotype (BLBC) with expression of cytokeratin 5/6 and/or EGFR. A basal marker alone is insufficient for a better understanding of the tumor biology of TNBC. In that regard, the ADAM33 gene is silenced by DNA hypermethylation in breast cancer, which suggests that ADAM33 might be useful as a molecular marker. In the present study, we have produced monoclonal antibodies against the ADAM33 protein and have investigated the role of ADAM33 protein in breast cancer. We used 212 breast tumor samples and lower levels of ADAM33 were correlated with TNBC and basal-like markers. A lower level of ADAM33 was also correlated with shorter overall survival and metastasis-free survival and was considered an independent prognostic factor suggesting that ADAM33 is a novel molecular biomarker of TNBC and BLBC that might be useful as a prognostic factor.
Collapse
Affiliation(s)
- Graciele C M Manica
- Department of Basic Pathology, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Caroline F Ribeiro
- Department of Basic Pathology, Federal University of Parana, Curitiba, Paraná, Brazil
| | | | - Isabela T Pereira
- Department of Basic Pathology, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Andressa Chequin
- Department of Basic Pathology, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Edneia A S Ramos
- Department of Basic Pathology, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Liliane M B Klassen
- Department of Basic Pathology, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Ana Paula M Sebastião
- Department of Medical Pathology, Federal University of Parana, Curitiba, Parana, Brazil
| | - Larissa M Alvarenga
- Department of Basic Pathology, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Silvio M Zanata
- Department of Basic Pathology, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Lucia De Noronha
- School of Medicine, Pontifical Catholic University of Parana, Curitiba, Paraná, Brazil
| | - Iris Rabinovich
- Department of Tocogynecology, Federal University of Parana, Curitiba, Parana, Brazil
| | - Fabricio F Costa
- Genomic Sciences and Biotechnology Program, University Catholic of Brasilia, DF, Brazil
| | - Emanuel M Souza
- Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba, Parana, Brazil
| | - Giseli Klassen
- Department of Basic Pathology, Federal University of Parana, Curitiba, Paraná, Brazil
| |
Collapse
|
125
|
Wang JP, Hielscher A. Fibronectin: How Its Aberrant Expression in Tumors May Improve Therapeutic Targeting. J Cancer 2017; 8:674-682. [PMID: 28367247 PMCID: PMC5370511 DOI: 10.7150/jca.16901] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/23/2016] [Indexed: 11/24/2022] Open
Abstract
Fibronectin is a matrix glycoprotein which has not only been found to be over-expressed in several cancers, but has been shown to participate in several steps of tumorigenesis. The purpose of this review is to illustrate how aberrant fibronectin expression influences tumor growth, invasion, metastasis and therapy resistance. In particular, this review will focus on the interactions between cell receptor ligands and fibronectin and how this interaction influences downstream signaling events that aid tumor progression. This review will further discuss the possible implications of therapeutic drugs directed against fibronectin and/or cellular interactions with fibronectin and will additionally discuss novel approaches by which to limit intra- and extra-tumoral fibronectin expression and the cellular events which lead to aberrant fibronectin expression. It is anticipated that these studies will set a basis for future research that will not only aid understanding of fibronectin and its prognostic significance, but will further elucidate novel targets for therapeutics.
Collapse
Affiliation(s)
- Jennifer Peyling Wang
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, USA
| | - Abigail Hielscher
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, USA
| |
Collapse
|
126
|
Mierke CT, Fischer T, Puder S, Kunschmann T, Soetje B, Ziegler WH. Focal adhesion kinase activity is required for actomyosin contractility-based invasion of cells into dense 3D matrices. Sci Rep 2017; 7:42780. [PMID: 28202937 PMCID: PMC5311912 DOI: 10.1038/srep42780] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 01/16/2017] [Indexed: 02/07/2023] Open
Abstract
The focal adhesion kinase (FAK) regulates the dynamics of integrin-based cell adhesions important for motility. FAK's activity regulation is involved in stress-sensing and focal-adhesion turnover. The effect of FAK on 3D migration and cellular mechanics is unclear. We analyzed FAK knock-out mouse embryonic fibroblasts and cells expressing a kinase-dead FAK mutant, R454-FAK, in comparison to FAK wild-type cells. FAK knock-out and FAKR454/R454 cells invade dense 3D matrices less efficiently. These results are supported by FAK knock-down in wild-type fibroblasts and MDA-MB-231 human breast cancer cells showing reduced invasiveness. Pharmacological interventions indicate that in 3D matrices, cells deficient in FAK or kinase-activity behave similarly to wild-type cells treated with inhibitors of Src-activity or actomyosin-contractility. Using magnetic tweezers experiments, FAKR454/R454 cells are shown to be softer and exhibit impaired adhesion to fibronectin and collagen, which is consistent with their reduced 3D invasiveness. In line with this, FAKR454/R454 cells cannot contract the matrix in contrast to FAK wild-type cells. Finally, our findings demonstrate that active FAK facilitates 3D matrix invasion through increased cellular stiffness and transmission of actomyosin-dependent contractile force in dense 3D extracellular matrices.
Collapse
Affiliation(s)
- Claudia T. Mierke
- Institute of Experimental Physics I, Biological Physics Division, Faculty of Physics and Earth Science, University of Leipzig, Leipzig, Germany
| | - Tony Fischer
- Institute of Experimental Physics I, Biological Physics Division, Faculty of Physics and Earth Science, University of Leipzig, Leipzig, Germany
| | - Stefanie Puder
- Institute of Experimental Physics I, Biological Physics Division, Faculty of Physics and Earth Science, University of Leipzig, Leipzig, Germany
| | - Tom Kunschmann
- Institute of Experimental Physics I, Biological Physics Division, Faculty of Physics and Earth Science, University of Leipzig, Leipzig, Germany
| | - Birga Soetje
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Wolfgang H. Ziegler
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| |
Collapse
|
127
|
Thompson C, Rahim S, Arnold J, Hielscher A. Loss of caveolin-1 alters extracellular matrix protein expression and ductal architecture in murine mammary glands. PLoS One 2017; 12:e0172067. [PMID: 28187162 PMCID: PMC5302825 DOI: 10.1371/journal.pone.0172067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/30/2017] [Indexed: 12/13/2022] Open
Abstract
The extracellular matrix (ECM) is abnormal in breast tumors and has been reported to contribute to breast tumor progression. One factor, which may drive ongoing matrix synthesis in breast tumors, is the loss of stromal caveolin-1 (cav-1), a scaffolding protein of caveolae, which has been linked to breast tumor aggressiveness. To determine whether loss of cav-1 results in the abnormal expression of matrix proteins, mammary glands from cav- 1-/- and cav- 1 +/+ mice were investigated for differences in expression of several ECM proteins. In addition, the presence of myofibroblasts, changes in the vessel density, and differences in duct number and size were assessed in the mammary glands of both animal models. Using immunohistochemistry, expression of fibronectin, tenascin-C, collagens and αSMA were significantly increased in the mammary glands of cav-1-/- mice. Second harmonic generation revealed more organized collagen fibers in cav-1 -/- glands and supported immunohistochemical analyses of increased collagen abundance in the glands of cav-1 -/- mice. Analysis of the ductal structure demonstrated a significant increase in the number of proliferating ducts in addition to significant increases in the duct circumference and area in cav-1 -/- glands compared to cav- 1 +/+ glands. Differences in microvessel density weren't apparent between the animal models. In summary, we found that the loss of cav-1 resulted in increased ECM and α-SMA protein expression in murine mammary glands. Furthermore, we found that an abnormal ductal architecture accompanied the loss of cav-1. These data support a role for cav-1 in maintaining mammary gland structure.
Collapse
Affiliation(s)
- Christopher Thompson
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, Georgia, United States of America
| | - Sahar Rahim
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, Georgia, United States of America
| | - Jeremiah Arnold
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, Georgia, United States of America
| | - Abigail Hielscher
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, Georgia, United States of America
- * E-mail:
| |
Collapse
|
128
|
Tanja Mierke C. Physical role of nuclear and cytoskeletal confinements in cell migration mode selection and switching. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.4.615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
129
|
Hedrick E, Li X, Safe S. Penfluridol Represses Integrin Expression in Breast Cancer through Induction of Reactive Oxygen Species and Downregulation of Sp Transcription Factors. Mol Cancer Ther 2017; 16:205-216. [PMID: 27811009 PMCID: PMC5222719 DOI: 10.1158/1535-7163.mct-16-0451] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/14/2016] [Accepted: 10/26/2016] [Indexed: 12/21/2022]
Abstract
It was recently demonstrated the penfluridol inhibited breast tumor growth and metastasis and this was associated with downregulation of α6- and β4-integrins. In this study, we observed the penfluridol induced reactive oxygen species (ROS) and this was the primary mechanism of action. Penfluridol-mediated growth inhibition, induction of apoptosis, and inhibition of breast cancer cell migration was attenuated after cotreatment with glutathione. Penfluridol also downregulated Sp transcription factors Sp1, Sp3, and Sp4 through epigenetic downregulation of cMyc and cMyc-regulated miRNAs (miR27a and miR20a/miR17) and induction of the miR-regulated Sp transcriptional repressors ZBTB10 and ZBTB4. α6- and β4-integrins as well as α5- and β1-integrins are Sp-regulated genes that are also coregulated by the orphan nuclear receptor NR4A1 and these integrins can be targeted by agents such as penfluridol that suppress Sp1, Sp3, and Sp4 and also by NR4A1 antagonists. Mol Cancer Ther; 16(1); 205-16. ©2016 AACR.
Collapse
Affiliation(s)
- Erik Hedrick
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, Texas
| | - Xi Li
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, Texas
| | - Stephen Safe
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, Texas
| |
Collapse
|
130
|
Kunschmann T, Puder S, Fischer T, Perez J, Wilharm N, Mierke CT. Integrin-linked kinase regulates cellular mechanics facilitating the motility in 3D extracellular matrices. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:580-593. [PMID: 28011283 DOI: 10.1016/j.bbamcr.2016.12.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022]
Abstract
The motility of cells plays an important role for many processes such as wound healing and malignant progression of cancer. The efficiency of cell motility is affected by the microenvironment. The connection between the cell and its microenvironment is facilitated by cell-matrix adhesion receptors and upon their activation focal adhesion proteins such as integrin-linked kinase (ILK) are recruited to sites of focal adhesion formation. In particular, ILK connects cell-matrix receptors to the actomyosin cytoskeleton. However, ILK's role in cell mechanics regulating cellular motility in 3D collagen matrices is still not well understood. We suggest that ILK facilitates 3D motility by regulating cellular mechanical properties such as stiffness and force transmission. Thus, ILK wild-type and knock-out cells are analyzed for their ability to migrate on 2D substrates serving as control and in dense 3D extracellular matrices. Indeed, ILK wild-type cells migrated faster on 2D substrates and migrated more numerous and deeper in 3D matrices. Hence, we analyzed cellular deformability, Young's modulus (stiffness) and adhesion forces. We found that ILK wild-type cells are less deformable (stiffer) and produce higher cell-matrix adhesion forces compared to ILK knock-out cells. Finally, ILK is essential for providing cellular mechanical stiffness regulating 3D motility.
Collapse
Affiliation(s)
- Tom Kunschmann
- University of Leipzig, Faculty of Physics and Earth Science, Institute for Experimental Physics I, Biological Physics Division, Linnestrasse 5, 04103 Leipzig, Germany
| | - Stefanie Puder
- University of Leipzig, Faculty of Physics and Earth Science, Institute for Experimental Physics I, Biological Physics Division, Linnestrasse 5, 04103 Leipzig, Germany
| | - Tony Fischer
- University of Leipzig, Faculty of Physics and Earth Science, Institute for Experimental Physics I, Biological Physics Division, Linnestrasse 5, 04103 Leipzig, Germany
| | - Jeremy Perez
- University of Leipzig, Faculty of Physics and Earth Science, Institute for Experimental Physics I, Biological Physics Division, Linnestrasse 5, 04103 Leipzig, Germany
| | - Nils Wilharm
- University of Leipzig, Faculty of Physics and Earth Science, Institute for Experimental Physics I, Biological Physics Division, Linnestrasse 5, 04103 Leipzig, Germany
| | - Claudia Tanja Mierke
- University of Leipzig, Faculty of Physics and Earth Science, Institute for Experimental Physics I, Biological Physics Division, Linnestrasse 5, 04103 Leipzig, Germany.
| |
Collapse
|
131
|
Milloud R, Destaing O, de Mets R, Bourrin-Reynard I, Oddou C, Delon A, Wang I, Albigès-Rizo C, Balland M. αvβ3 integrins negatively regulate cellular forces by phosphorylation of its distal NPXY site. Biol Cell 2016; 109:127-137. [PMID: 27990663 DOI: 10.1111/boc.201600041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND INFORMATION Integrins are key receptors that allow cells to sense and respond to their mechanical environment. Although they bind the same ligand, β1 and β3 integrins have distinct and cooperative roles in mechanotransduction. RESULTS Using traction force microscopy on unconstrained cells, we show that deleting β3 causes traction forces to increase, whereas the deletion of β1 integrin results in a strong decrease of contractile forces. Consistently, loss of β3 integrin also induces an increase in β1 integrin activation. Using a genetic approach, we identified the phosphorylation of the distal NPXY domain as an essential process for β3 integrin to be able to modulate traction forces. Loss of β3 integrins also impacted cell shape and the spatial distribution of traction forces, by causing forces to be generated closer to the cell edge, and the cell shape. CONCLUSIONS Our results emphasize the role of β3 integrin in spatial distribution of cellular forces. We speculate that, by modulating its affinity with kindlin, β3 integrins may be able to locate near the cell edge where it can control β1 integrin activation and clustering. SIGNIFICANCE Tensional homeostasis at the single cell level is performed by the ability of β3 adhesions to negatively regulate the activation degree and spatial localization of β1 integrins. By combining genetic approaches and new tools to analyze traction distribution and cell morphology on a population of cells we were able to identify the molecular partners involved in cellular forces regulation.
Collapse
Affiliation(s)
- Rachel Milloud
- Laboratoire Interdisciplinaire de Physique, UMR CNRS 5588, Université Grenoble Alpes, Grenoble, France
| | - Olivier Destaing
- Institute for Advanced Biosciences, Institut Albert Bonniot, Inserm U1209, CNRS 5309, Dynamique de l'adhérence cellulaire et de la différenciation, Université Grenoble Alpes, Grenoble, France
| | - Richard de Mets
- Laboratoire Interdisciplinaire de Physique, UMR CNRS 5588, Université Grenoble Alpes, Grenoble, France
| | - Ingrid Bourrin-Reynard
- Institute for Advanced Biosciences, Institut Albert Bonniot, Inserm U1209, CNRS 5309, Dynamique de l'adhérence cellulaire et de la différenciation, Université Grenoble Alpes, Grenoble, France
| | - Christiane Oddou
- Institute for Advanced Biosciences, Institut Albert Bonniot, Inserm U1209, CNRS 5309, Dynamique de l'adhérence cellulaire et de la différenciation, Université Grenoble Alpes, Grenoble, France
| | - Antoine Delon
- Laboratoire Interdisciplinaire de Physique, UMR CNRS 5588, Université Grenoble Alpes, Grenoble, France
| | - Irène Wang
- Laboratoire Interdisciplinaire de Physique, UMR CNRS 5588, Université Grenoble Alpes, Grenoble, France
| | - Corinne Albigès-Rizo
- Institute for Advanced Biosciences, Institut Albert Bonniot, Inserm U1209, CNRS 5309, Dynamique de l'adhérence cellulaire et de la différenciation, Université Grenoble Alpes, Grenoble, France
| | - Martial Balland
- Laboratoire Interdisciplinaire de Physique, UMR CNRS 5588, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
132
|
Adams CF, Dickson AW, Kuiper JH, Chari DM. Nanoengineering neural stem cells on biomimetic substrates using magnetofection technology. NANOSCALE 2016; 8:17869-17880. [PMID: 27714076 DOI: 10.1039/c6nr05244d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tissue engineering studies are witnessing a major paradigm shift to cell culture on biomimetic materials that replicate native tissue features from which the cells are derived. Few studies have been performed in this regard for neural cells, particularly in nanomedicine. For example, platforms such as magnetic nanoparticles (MNPs) have proven efficient as multifunctional tools for cell tracking and genetic engineering of neural transplant populations. However, as far as we are aware, all current studies have been conducted using neural cells propagated on non-neuromimetic substrates that fail to represent the mechano-elastic properties of brain and spinal cord microenvironments. Accordingly, it can be predicted that such data is of less translational and physiological relevance than that derived from cells grown in neuromimetic environments. Therefore, we have performed the first test of magnetofection technology (enhancing MNP delivery using applied magnetic fields with significant potential for therapeutic application) and its utility in genetically engineering neural stem cells (NSCs; a population of high clinical relevance) propagated in biomimetic hydrogels. We demonstrate magnetic field application safely enhances MNP mediated transfection of NSCs grown as 3D spheroid structures in collagen which more closely replicates the intrinsic mechanical and structural properties of neural tissue than routinely used hard substrates. Further, as it is well known that MNP uptake is mediated by endocytosis we also investigated NSC membrane activity grown on both soft and hard substrates. Using high resolution scanning electron microscopy we were able to prove that NSCs display lower levels of membrane activity on soft substrates compared to hard, a finding which could have particular impact on MNP mediated engineering strategies of cells propagated in physiologically relevant systems.
Collapse
Affiliation(s)
- Christopher F Adams
- Institute of Science and Technology in Medicine, Keele University, Newcastle-under-Lyme, ST5 5BG, UK.
| | - Andrew W Dickson
- School of Medicine, Keele University, Newcastle-under-Lyme, ST5 5BG, UK
| | - Jan-Herman Kuiper
- Institute of Science and Technology in Medicine, Keele University, Newcastle-under-Lyme, ST5 5BG, UK. and Institute of Science and Technology in Medicine, The Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, SY10 7AG, UK
| | - Divya M Chari
- Institute of Science and Technology in Medicine, Keele University, Newcastle-under-Lyme, ST5 5BG, UK. and School of Medicine, Keele University, Newcastle-under-Lyme, ST5 5BG, UK
| |
Collapse
|
133
|
Abstract
Cellular motility is essential for many processes such as embryonic development, wound healing processes, tissue assembly and regeneration, immune cell trafficing and diseases such as cancer. The migration efficiency and the migratory potential depend on the type of migration mode. The previously established migration modes such as epithelial (non-migratory) and mesenchymal (migratory) as well as amoeboid (squeezing motility) relay mainly on phenomenological criteria such as cell morphology and molecular biological criteria such as gene expression. However, the physical view on the migration modes is still not well understood. As the process of malignant cancer progression such as metastasis depends on the migration of single cancer cells and their migration mode, this review focuses on the different migration strategies and discusses which mechanical prerequisites are necessary to perform a special migration mode through a 3-dimensional microenvironment. In particular, this review discusses how cells can distinguish and finally switch between the migration modes and what impact do the physical properties of cells and their microenvironment have on the transition between the novel migration modes such as blebbing and protrusive motility.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- a Faculty of Physics and Earth Science; Institute of Experimental Physics I; Biological Physics Division; University of Leipzig ; Leipzig , Germany
| |
Collapse
|
134
|
Orso F, Quirico L, Virga F, Penna E, Dettori D, Cimino D, Coppo R, Grassi E, Elia AR, Brusa D, Deaglio S, Brizzi MF, Stadler MB, Provero P, Caselle M, Taverna D. miR-214 and miR-148b Targeting Inhibits Dissemination of Melanoma and Breast Cancer. Cancer Res 2016; 76:5151-62. [PMID: 27328731 DOI: 10.1158/0008-5472.can-15-1322] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/05/2016] [Indexed: 11/16/2022]
Abstract
miR-214 and miR-148b have been proposed to antagonize the effects of each other in enabling or blocking metastasis, respectively. In this study, we provide evidence deepening their role and interrelationship in the process of metastatic dissemination. Depleting miR-214 or elevating miR-148b blocked the dissemination of melanoma or breast cancer cells, an effect that could be accentuated by dual alteration. Mechanistic investigations indicated that dual alteration suppressed passage of malignant cells through the blood vessel endothelium by reducing expression of the cell adhesion molecules ITGA5 and ALCAM. Notably, transendothelial migration in vitro and extravasation in vivo impaired by singly alternating miR-214 or miR-148b could be overridden by overexpression of ITGA5 or ALCAM in the same tumor cells. In clinical specimens of primary breast cancer or metastatic melanoma, we found a positive correlation between miR-214 and ITGA5 or ALCAM along with an inverse correlation of miR-214 and miR-148b in the same specimens. Our findings define an antagonistic relationship of miR-214 and miR-148b in determining the dissemination of cancer cells via tumor-endothelial cell interactions, with possible implications for microRNA-mediated therapeutic interventions aimed at blocking cancer extravasation. Cancer Res; 76(17); 5151-62. ©2016 AACR.
Collapse
Affiliation(s)
- Francesca Orso
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy. Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy. Center for Complex Systems in Molecular Biology and Medicine, University of Torino, Torino, Italy
| | - Lorena Quirico
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy. Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Federico Virga
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy. Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elisa Penna
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy. Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Daniela Dettori
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy. Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Daniela Cimino
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy. Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy. Center for Complex Systems in Molecular Biology and Medicine, University of Torino, Torino, Italy
| | - Roberto Coppo
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy. Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elena Grassi
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy. Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Angela Rita Elia
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Davide Brusa
- Department of Medical Sciences, University of Torino, Torino, Italy. Immunogenetics Unit, Human Genetics Foundation, Torino, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Torino, Torino, Italy. Immunogenetics Unit, Human Genetics Foundation, Torino, Italy
| | | | - Michael B Stadler
- Friederich Miescher Institute and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Paolo Provero
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy. Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy. Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy
| | - Michele Caselle
- Center for Complex Systems in Molecular Biology and Medicine, University of Torino, Torino, Italy. Department of Physics University of Torino, Torino, Italy
| | - Daniela Taverna
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy. Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy. Center for Complex Systems in Molecular Biology and Medicine, University of Torino, Torino, Italy.
| |
Collapse
|
135
|
Williams KC, Wong E, Leong HS, Jackson DN, Allan AL, Chambers AF. Cancer dissemination from a physical sciences perspective. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2016. [DOI: 10.1088/2057-1739/2/2/023001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
136
|
Lautscham LA, Kämmerer C, Lange JR, Kolb T, Mark C, Schilling A, Strissel PL, Strick R, Gluth C, Rowat AC, Metzner C, Fabry B. Migration in Confined 3D Environments Is Determined by a Combination of Adhesiveness, Nuclear Volume, Contractility, and Cell Stiffness. Biophys J 2016; 109:900-13. [PMID: 26331248 DOI: 10.1016/j.bpj.2015.07.025] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 01/13/2023] Open
Abstract
In cancer metastasis and other physiological processes, cells migrate through the three-dimensional (3D) extracellular matrix of connective tissue and must overcome the steric hindrance posed by pores that are smaller than the cells. It is currently assumed that low cell stiffness promotes cell migration through confined spaces, but other factors such as adhesion and traction forces may be equally important. To study 3D migration under confinement in a stiff (1.77 MPa) environment, we use soft lithography to fabricate polydimethylsiloxane (PDMS) devices consisting of linear channel segments with 20 μm length, 3.7 μm height, and a decreasing width from 11.2 to 1.7 μm. To study 3D migration in a soft (550 Pa) environment, we use self-assembled collagen networks with an average pore size of 3 μm. We then measure the ability of four different cancer cell lines to migrate through these 3D matrices, and correlate the results with cell physical properties including contractility, adhesiveness, cell stiffness, and nuclear volume. Furthermore, we alter cell adhesion by coating the channel walls with different amounts of adhesion proteins, and we increase cell stiffness by overexpression of the nuclear envelope protein lamin A. Although all cell lines are able to migrate through the smallest 1.7 μm channels, we find significant differences in the migration velocity. Cell migration is impeded in cell lines with larger nuclei, lower adhesiveness, and to a lesser degree also in cells with lower contractility and higher stiffness. Our data show that the ability to overcome the steric hindrance of the matrix cannot be attributed to a single cell property but instead arises from a combination of adhesiveness, nuclear volume, contractility, and cell stiffness.
Collapse
Affiliation(s)
- Lena A Lautscham
- Biophysics Group, Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany.
| | - Christoph Kämmerer
- Biophysics Group, Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Janina R Lange
- Biophysics Group, Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Thorsten Kolb
- Biophysics Group, Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christoph Mark
- Biophysics Group, Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Achim Schilling
- Biophysics Group, Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Pamela L Strissel
- Laboratory for Molecular Medicine, Department of Gynecology and Obstetrics, University-Clinic Erlangen, Erlangen, Germany
| | - Reiner Strick
- Laboratory for Molecular Medicine, Department of Gynecology and Obstetrics, University-Clinic Erlangen, Erlangen, Germany
| | - Caroline Gluth
- Biophysics Group, Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California
| | - Claus Metzner
- Biophysics Group, Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ben Fabry
- Biophysics Group, Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
137
|
Kim TH, Rowat AC, Sloan EK. Neural regulation of cancer: from mechanobiology to inflammation. Clin Transl Immunology 2016; 5:e78. [PMID: 27350878 PMCID: PMC4910118 DOI: 10.1038/cti.2016.18] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 12/17/2022] Open
Abstract
Despite recent progress in cancer research, the exact nature of malignant transformation and its progression is still not fully understood. Particularly metastasis, which accounts for most cancer death, is a very complex process, and new treatment strategies require a more comprehensive understanding of underlying regulatory mechanisms. Recently, the sympathetic nervous system (SNS) has been implicated in cancer progression and beta-blockers have been identified as a novel strategy to limit metastasis. This review discusses evidence that SNS signaling regulates metastasis by modulating the physical characteristics of tumor cells, tumor-associated immune cells and the extracellular matrix (ECM). Altered mechanotype is an emerging hallmark of cancer cells that is linked to invasive phenotype and treatment resistance. Mechanotype also influences crosstalk between tumor cells and their environment, and may thus have a critical role in cancer progression. First, we discuss how neural signaling regulates metastasis and how SNS signaling regulates both biochemical and mechanical properties of tumor cells, immune cells and the ECM. We then review our current knowledge of the mechanobiology of cancer with a focus on metastasis. Next, we discuss links between SNS activity and tumor-associated inflammation, the mechanical properties of immune cells, and how the physical properties of the ECM regulate cancer and metastasis. Finally, we discuss the potential for clinical translation of our knowledge of cancer mechanobiology to improve diagnosis and treatment.
Collapse
Affiliation(s)
- Tae-Hyung Kim
- Cousins Center for PNI, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA; The Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Erica K Sloan
- Cousins Center for PNI, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; The Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; Division of Cancer Surgery, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia
| |
Collapse
|
138
|
Lange JR, Steinwachs J, Kolb T, Lautscham LA, Harder I, Whyte G, Fabry B. Microconstriction arrays for high-throughput quantitative measurements of cell mechanical properties. Biophys J 2016; 109:26-34. [PMID: 26153699 DOI: 10.1016/j.bpj.2015.05.029] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 12/15/2022] Open
Abstract
We describe a method for quantifying the mechanical properties of cells in suspension with a microfluidic device consisting of a parallel array of micron-sized constrictions. Using a high-speed charge-coupled device camera, we measure the flow speed, cell deformation, and entry time into the constrictions of several hundred cells per minute during their passage through the device. From the flow speed and the occupation state of the microconstriction array with cells, the driving pressure across each constriction is continuously computed. Cell entry times into microconstrictions decrease with increased driving pressure and decreased cell size according to a power law. From this power-law relationship, the cell elasticity and fluidity can be estimated. When cells are treated with drugs that depolymerize or stabilize the cytoskeleton or the nucleus, elasticity and fluidity data from all treatments collapse onto a master curve. Power-law rheology and collapse onto a master curve are predicted by the theory of soft glassy materials and have been previously shown to describe the mechanical behavior of cells adhering to a substrate. Our finding that this theory also applies to cells in suspension provides the foundation for a quantitative high-throughput measurement of cell mechanical properties with microfluidic devices.
Collapse
Affiliation(s)
- Janina R Lange
- Biophysics Group, Department of Physics, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Julian Steinwachs
- Biophysics Group, Department of Physics, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Thorsten Kolb
- Biophysics Group, Department of Physics, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany; Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Lena A Lautscham
- Biophysics Group, Department of Physics, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Irina Harder
- Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Graeme Whyte
- Institute of Biological Chemistry, Biophysics and Bioengineering, Department of Physics, Heriot-Watt University, Edinburgh, UK
| | - Ben Fabry
- Biophysics Group, Department of Physics, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
139
|
Corvaglia V, Marega R, De Leo F, Michiels C, Bonifazi D. Unleashing Cancer Cells on Surfaces Exposing Motogenic IGDQ Peptides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:321-329. [PMID: 26583377 DOI: 10.1002/smll.201501963] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/02/2015] [Indexed: 06/05/2023]
Abstract
Thiolated peptides bearing the Ile-Gly-Asp (IGD) motif, a highly conserved sequence of fibronectin, are used for the preparation of anisotropic self-assembled monolayers (SAM gradients) to study the whole-population migratory behavior of metastatic breast cancer cells (MDA-MB-231 cells). Ile-Gly-Asp-Gln-(IGDQ)-exposing SAMs sustain the adhesion of MDA-MB-231 cells by triggering focal adhesion kinase phosphorylation, similarly to the analogous Gly-Arg-Gly-Asp-(GRGD)-terminating surfaces. However, the biological responses of different cell lines interfaced with the SAM gradients show that only those exposing the IGDQ sequence induce significant migration of MDA-MB-231 cells. In particular, the observed migratory behavior suggests the presence of cell subpopulations associated with a "stationary" or a "migratory" phenotype, the latter determining a considerable cell migration at the sub-cm length scale. These findings are of great importance as they suggest for the first time an active role of biological surfaces exposing the IGD motif in the multicomponent orchestration of cellular signaling involved in the metastatic progression.
Collapse
Affiliation(s)
- Valentina Corvaglia
- Namur Research College (NARC) and Department of Chemistry, University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, P.le Europa 1, 34127, Trieste, Italy
| | - Riccardo Marega
- Namur Research College (NARC) and Department of Chemistry, University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Federica De Leo
- Namur Research College (NARC) and Department of Chemistry, University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Carine Michiels
- Cellular Biology Research Unit-NARILIS, University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Davide Bonifazi
- Namur Research College (NARC) and Department of Chemistry, University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, P.le Europa 1, 34127, Trieste, Italy
| |
Collapse
|
140
|
Thievessen I, Fakhri N, Steinwachs J, Kraus V, McIsaac RS, Gao L, Chen BC, Baird MA, Davidson MW, Betzig E, Oldenbourg R, Waterman CM, Fabry B. Vinculin is required for cell polarization, migration, and extracellular matrix remodeling in 3D collagen. FASEB J 2015. [PMID: 26195589 DOI: 10.1096/fj.14-268235] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Vinculin is filamentous (F)-actin-binding protein enriched in integrin-based adhesions to the extracellular matrix (ECM). Whereas studies in 2-dimensional (2D) tissue culture models have suggested that vinculin negatively regulates cell migration by promoting cytoskeleton-ECM coupling to strengthen and stabilize adhesions, its role in regulating cell migration in more physiologic, 3-dimensional (3D) environments is unclear. To address the role of vinculin in 3D cell migration, we analyzed the morphodynamics, migration, and ECM remodeling of primary murine embryonic fibroblasts (MEFs) with cre/loxP-mediated vinculin gene disruption in 3D collagen I cultures. We found that vinculin promoted 3D cell migration by increasing directional persistence. Vinculin was necessary for persistent cell protrusion, cell elongation, and stable cell orientation in 3D collagen, but was dispensable for lamellipodia formation, suggesting that vinculin-mediated cell adhesion to the ECM is needed to convert actin-based cell protrusion into persistent cell shape change and migration. Consistent with this finding, vinculin was necessary for efficient traction force generation in 3D collagen without affecting myosin II activity and promoted 3D collagen fiber alignment and macroscopical gel contraction. Our results suggest that vinculin promotes directionally persistent cell migration and tension-dependent ECM remodeling in complex 3D environments by increasing cell-ECM adhesion and traction force generation.
Collapse
Affiliation(s)
- Ingo Thievessen
- *Laboratory of Cell and Tissue Morphodynamics, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Biophysics Group, Department of Physics, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany; Physiology Course and Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, Massachusetts, USA; Third Physics Institute-Biophysics, Georg-August-University, Göttingen, Germany; Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA; California Life Company, South San Francisco, California, USA; **Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA; Department of Chemistry, Stony Brook University, Stony Brook, New York, USA; Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan; Department of Biological Science, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| | - Nikta Fakhri
- *Laboratory of Cell and Tissue Morphodynamics, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Biophysics Group, Department of Physics, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany; Physiology Course and Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, Massachusetts, USA; Third Physics Institute-Biophysics, Georg-August-University, Göttingen, Germany; Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA; California Life Company, South San Francisco, California, USA; **Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA; Department of Chemistry, Stony Brook University, Stony Brook, New York, USA; Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan; Department of Biological Science, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| | - Julian Steinwachs
- *Laboratory of Cell and Tissue Morphodynamics, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Biophysics Group, Department of Physics, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany; Physiology Course and Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, Massachusetts, USA; Third Physics Institute-Biophysics, Georg-August-University, Göttingen, Germany; Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA; California Life Company, South San Francisco, California, USA; **Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA; Department of Chemistry, Stony Brook University, Stony Brook, New York, USA; Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan; Department of Biological Science, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| | - Viola Kraus
- *Laboratory of Cell and Tissue Morphodynamics, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Biophysics Group, Department of Physics, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany; Physiology Course and Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, Massachusetts, USA; Third Physics Institute-Biophysics, Georg-August-University, Göttingen, Germany; Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA; California Life Company, South San Francisco, California, USA; **Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA; Department of Chemistry, Stony Brook University, Stony Brook, New York, USA; Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan; Department of Biological Science, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| | - R Scott McIsaac
- *Laboratory of Cell and Tissue Morphodynamics, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Biophysics Group, Department of Physics, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany; Physiology Course and Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, Massachusetts, USA; Third Physics Institute-Biophysics, Georg-August-University, Göttingen, Germany; Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA; California Life Company, South San Francisco, California, USA; **Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA; Department of Chemistry, Stony Brook University, Stony Brook, New York, USA; Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan; Department of Biological Science, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| | - Liang Gao
- *Laboratory of Cell and Tissue Morphodynamics, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Biophysics Group, Department of Physics, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany; Physiology Course and Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, Massachusetts, USA; Third Physics Institute-Biophysics, Georg-August-University, Göttingen, Germany; Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA; California Life Company, South San Francisco, California, USA; **Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA; Department of Chemistry, Stony Brook University, Stony Brook, New York, USA; Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan; Department of Biological Science, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| | - Bi-Chang Chen
- *Laboratory of Cell and Tissue Morphodynamics, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Biophysics Group, Department of Physics, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany; Physiology Course and Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, Massachusetts, USA; Third Physics Institute-Biophysics, Georg-August-University, Göttingen, Germany; Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA; California Life Company, South San Francisco, California, USA; **Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA; Department of Chemistry, Stony Brook University, Stony Brook, New York, USA; Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan; Department of Biological Science, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| | - Michelle A Baird
- *Laboratory of Cell and Tissue Morphodynamics, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Biophysics Group, Department of Physics, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany; Physiology Course and Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, Massachusetts, USA; Third Physics Institute-Biophysics, Georg-August-University, Göttingen, Germany; Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA; California Life Company, South San Francisco, California, USA; **Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA; Department of Chemistry, Stony Brook University, Stony Brook, New York, USA; Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan; Department of Biological Science, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| | - Michael W Davidson
- *Laboratory of Cell and Tissue Morphodynamics, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Biophysics Group, Department of Physics, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany; Physiology Course and Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, Massachusetts, USA; Third Physics Institute-Biophysics, Georg-August-University, Göttingen, Germany; Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA; California Life Company, South San Francisco, California, USA; **Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA; Department of Chemistry, Stony Brook University, Stony Brook, New York, USA; Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan; Department of Biological Science, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| | - Eric Betzig
- *Laboratory of Cell and Tissue Morphodynamics, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Biophysics Group, Department of Physics, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany; Physiology Course and Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, Massachusetts, USA; Third Physics Institute-Biophysics, Georg-August-University, Göttingen, Germany; Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA; California Life Company, South San Francisco, California, USA; **Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA; Department of Chemistry, Stony Brook University, Stony Brook, New York, USA; Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan; Department of Biological Science, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| | - Rudolf Oldenbourg
- *Laboratory of Cell and Tissue Morphodynamics, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Biophysics Group, Department of Physics, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany; Physiology Course and Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, Massachusetts, USA; Third Physics Institute-Biophysics, Georg-August-University, Göttingen, Germany; Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA; California Life Company, South San Francisco, California, USA; **Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA; Department of Chemistry, Stony Brook University, Stony Brook, New York, USA; Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan; Department of Biological Science, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| | - Clare M Waterman
- *Laboratory of Cell and Tissue Morphodynamics, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Biophysics Group, Department of Physics, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany; Physiology Course and Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, Massachusetts, USA; Third Physics Institute-Biophysics, Georg-August-University, Göttingen, Germany; Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA; California Life Company, South San Francisco, California, USA; **Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA; Department of Chemistry, Stony Brook University, Stony Brook, New York, USA; Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan; Department of Biological Science, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| | - Ben Fabry
- *Laboratory of Cell and Tissue Morphodynamics, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Biophysics Group, Department of Physics, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany; Physiology Course and Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, Massachusetts, USA; Third Physics Institute-Biophysics, Georg-August-University, Göttingen, Germany; Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA; California Life Company, South San Francisco, California, USA; **Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA; Department of Chemistry, Stony Brook University, Stony Brook, New York, USA; Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan; Department of Biological Science, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
141
|
Li W, Liu Z, Zhao C, Zhai L. Binding of MMP-9-degraded fibronectin to β6 integrin promotes invasion via the FAK-Src-related Erk1/2 and PI3K/Akt/Smad-1/5/8 pathways in breast cancer. Oncol Rep 2015; 34:1345-52. [PMID: 26134759 DOI: 10.3892/or.2015.4103] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/16/2015] [Indexed: 11/06/2022] Open
Abstract
Fibronectin (FN) has been recognized as the key element in promoting cell adhesion, migration and oncogenic transformation. αvβ6 integrin binds with FN in an RGD-dependent manner and is associated with invasion and poor prognosis in many types of cancers. The extracellular matrix (ECM) is commonly degraded and becomes disorganized in cancers. Previous studies have shown that FN can be degraded into fragments by MMP-9 in vitro; MMP-9 expression is upregulated in breast cancer, therefore, the role of degraded FN in breast cancer progression needs to be investigated. In the present study, expression of β6 integrin in breast cancer tissues was analyzed. The data were quite consistent with the hypothesis that β6 integrin expression is an indicator of poor prognosis. Cell surface expression of β6 integrin was correlated with the invasive behavior of the breast cancer cell lines. MMP-9-degraded FN was used to explore its effects on cell invasion and expression of β6 integrin. The results indicated that MMP-9-degraded FN can adjust constituents of the αvβ6 heterodimers at the early phase and significantly elevate amounts of β6 integrin subunits at a later period. To better elucidate the mechanism by which β6 integrin regulates FN-induced cell migration and invasion, we determined the expression and activity of the downstream kinases of β6 integrin, and elucidated that focal adhesion kinase (FAK)-Src interaction promoted the invasion and migration of breast cancer cells after treatment of MMP-9-degraded FN through the Erk1/2 and PI3K/Akt/Smad‑1/5/8 pathways.
Collapse
Affiliation(s)
- Wentong Li
- Department of Pathology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Zhijun Liu
- Department of Medical Biology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Chunling Zhao
- Department of Medical Biology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Limin Zhai
- Department of Pathology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
142
|
Hindman B, Goeckeler Z, Sierros K, Wysolmerski R. Non-Muscle Myosin II Isoforms Have Different Functions in Matrix Rearrangement by MDA-MB-231 Cells. PLoS One 2015; 10:e0131920. [PMID: 26136073 PMCID: PMC4489869 DOI: 10.1371/journal.pone.0131920] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/08/2015] [Indexed: 01/15/2023] Open
Abstract
The role of a stiffening extra-cellular matrix (ECM) in cancer progression is documented but poorly understood. Here we use a conditioning protocol to test the role of nonmuscle myosin II isoforms in cell mediated ECM arrangement using collagen constructs seeded with breast cancer cells expressing shRNA targeted to either the IIA or IIB heavy chain isoform. While there are several methods available to measure changes in the biophysical characteristics of the ECM, we wanted to use a method which allows for the measurement of global stiffness changes as well as a dynamic response from the sample over time. The conditioning protocol used allows the direct measurement of ECM stiffness. Using various treatments, it is possible to determine the contribution of various construct and cellular components to the overall construct stiffness. Using this assay, we show that both the IIA and IIB isoforms are necessary for efficient matrix remodeling by MDA-MB-231 breast cancer cells, as loss of either isoform changes the stiffness of the collagen constructs as measured using our conditioning protocol. Constructs containing only collagen had an elastic modulus of 0.40 Pascals (Pa), parental MDA-MB-231 constructs had an elastic modulus of 9.22 Pa, while IIA and IIB KD constructs had moduli of 3.42 and 7.20 Pa, respectively. We also calculated the cell and matrix contributions to the overall sample elastic modulus. Loss of either myosin isoform resulted in decreased cell stiffness, as well as a decrease in the stiffness of the cell-altered collagen matrices. While the total construct modulus for the IIB KD cells was lower than that of the parental cells, the IIB KD cell-altered matrices actually had a higher elastic modulus than the parental cell-altered matrices (4.73 versus 4.38 Pa). These results indicate that the IIA and IIB heavy chains play distinct and non-redundant roles in matrix remodeling.
Collapse
Affiliation(s)
- Bridget Hindman
- Mary Babb Randolph Cancer Center, West Virginia University, Robert C. Byrd Health Sciences Center, Morgantown, West Virginia, United States of America
| | - Zoe Goeckeler
- Center for Cardiovascular and Respiratory Diseases, West Virginia University, Robert C. Byrd Health Sciences Center, Morgantown, West Virginia, United States of America
| | - Kostas Sierros
- Mechanical and Aerospace Engineering, Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, West Virginia, United States of America
| | - Robert Wysolmerski
- Mary Babb Randolph Cancer Center, West Virginia University, Robert C. Byrd Health Sciences Center, Morgantown, West Virginia, United States of America
- Center for Cardiovascular and Respiratory Diseases, West Virginia University, Robert C. Byrd Health Sciences Center, Morgantown, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
143
|
Metzner C, Mark C, Steinwachs J, Lautscham L, Stadler F, Fabry B. Superstatistical analysis and modelling of heterogeneous random walks. Nat Commun 2015; 6:7516. [PMID: 26108639 PMCID: PMC4491834 DOI: 10.1038/ncomms8516] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/16/2015] [Indexed: 01/21/2023] Open
Abstract
Stochastic time series are ubiquitous in nature. In particular, random walks with time-varying statistical properties are found in many scientific disciplines. Here we present a superstatistical approach to analyse and model such heterogeneous random walks. The time-dependent statistical parameters can be extracted from measured random walk trajectories with a Bayesian method of sequential inference. The distributions and correlations of these parameters reveal subtle features of the random process that are not captured by conventional measures, such as the mean-squared displacement or the step width distribution. We apply our new approach to migration trajectories of tumour cells in two and three dimensions, and demonstrate the superior ability of the superstatistical method to discriminate cell migration strategies in different environments. Finally, we show how the resulting insights can be used to design simple and meaningful models of the underlying random processes. Conventional methods to quantify the migratory behaviour of cells assume that underlying parameters are constant. Mark et al. apply a superstatistical approach to extract time-dependent parameters of motile cells, and demonstrate an enhanced ability to distinguish between different migration strategies.
Collapse
Affiliation(s)
- Claus Metzner
- Department of Physics, Biophysics Group, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91052, Germany
| | - Christoph Mark
- Department of Physics, Biophysics Group, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91052, Germany
| | - Julian Steinwachs
- Department of Physics, Biophysics Group, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91052, Germany
| | - Lena Lautscham
- Department of Physics, Biophysics Group, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91052, Germany
| | - Franz Stadler
- Department of Physics, Biophysics Group, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91052, Germany
| | - Ben Fabry
- Department of Physics, Biophysics Group, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91052, Germany
| |
Collapse
|
144
|
Abstract
Glioblastoma multiforme (GBM) tumor invasion is facilitated by cell migration and degradation of the extracellular matrix. Invadopodia are actin-rich structures that protrude from the plasma membrane in direct contact with the extracellular matrix and are proposed to participate in epithelial-mesenchymal transition. We characterized the invasiveness of 9 established GBM cell lines using an invadopodia assay and performed quantitative mass spectrometry-based proteomic analyses on enriched membrane fractions. All GBM cells produced invadopodia, with a 65% difference between the most invasive cell line (U87MG) and the least invasive cell line (LN229) (p = 0.0001). Overall, 1,141 proteins were identified in the GBM membrane proteome; the levels of 49 proteins correlated with cell invasiveness. Ingenuity Pathway Analysis predicted activation "cell movement" (z-score = 2.608, p = 3.94E(-04)) in more invasive cells and generated a network of invasion-associated proteins with direct links to key regulators of invadopodia formation. Gene expression data relating to the invasion-associated proteins ITGA5 (integrin α5), CD97, and ANXA1 (annexin A1) showed prognostic significance in independent GBM cohorts. Fluorescence microscopy demonstrated ITGA5, CD97, and ANXA1 localization in invadopodia assays, and small interfering RNA knockdown of ITGA5 reduced invadopodia formation in U87MG cells. Thus, invasion-associated proteins, including ITGA5, may prove to be useful anti-invasive targets; volociximab, a therapeutic antibody against integrin α5β1, may be useful for treatment of patients with GBM.
Collapse
|
145
|
Sapudom J, Rubner S, Martin S, Kurth T, Riedel S, Mierke CT, Pompe T. The phenotype of cancer cell invasion controlled by fibril diameter and pore size of 3D collagen networks. Biomaterials 2015; 52:367-75. [DOI: 10.1016/j.biomaterials.2015.02.022] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/02/2015] [Indexed: 01/27/2023]
|
146
|
Maffei JS, Srivastava J, Fallica B, Zaman MH. Combinative in vitro studies and computational model to predict 3D cell migration response to drug insult. Integr Biol (Camb) 2015; 6:957-72. [PMID: 25174457 DOI: 10.1039/c4ib00167b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The development of drugs to counter diseases related to cell migration has resulted in a multi-billion dollar endeavor. Unfortunately, few drugs have emerged from this effort highlighting the need for new methods to enhance assays to study, analyze and control cell migration. In response to this complex process, computational models have emerged as potent tools to describe migration providing a high throughput and low cost method. However, most models are unable to predict migration response to drug with direct application to in vitro experiments. In addition to this, no model to date has attempted to describe migration in response to drugs while incorporating simultaneously protein signaling, proteolytic activity, and 3D culture. In this paper, we describe an integrated computational approach, in conjunction with in vitro observations, to serve as a platform to accurately predict migration in 3D matrices incorporating the function of matrix metalloproteinases (MMPs) and their interaction with the Extracellular signal-related kinase (ERK) signaling pathway. Our results provide biological insight into how matrix density, MMP activity, integrin adhesions, and p-ERK expression all affect speed and persistence in 3D. Predictions from the model provide insight toward improving drug combinations to more effectively reduce both speed and persistence during migration and the role of integrin adhesions in motility. In this way our integrated platform provides future potential to streamline and improve throughput toward the testing and development of migration targeting drugs with tangible application to current in vitro assays.
Collapse
Affiliation(s)
- Joseph S Maffei
- Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
147
|
Celecoxib inhibits Ewing sarcoma cell migration via actin modulation. J Surg Res 2015; 198:424-33. [PMID: 25934222 DOI: 10.1016/j.jss.2015.03.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/16/2015] [Accepted: 03/27/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND Ewing sarcoma (ES) is an aggressive childhood solid tumor in which 30% of cases are metastatic at presentation, and subsequently carry a poor prognosis. We have previously shown that treatment with celecoxib significantly reduces invasion and metastasis of ES cells in a cyclooxygenase-2-independent fashion. Celecoxib is known to downregulate β-catenin independently of cyclooxygenase-2. Additionally, the actin cytoskeleton is known to play an important role in tumor micrometastasis. We hypothesized that celecoxib's antimetastatic effect in ES acts via modulation of one of these two targets. METHODS ES cells were treated with celecoxib, and the levels of β-catenin and total actin were examined by Western blot and quantitative polymerase chain reaction. Cells were transfected with small interfering RNA targeting β-catenin, and invasion assays were performed. Immunofluorescence staining for β-catenin and F-actin was performed on treated and untreated cells. Additionally, cells were subjected to a wound healing assay to assess migration. RESULTS Celecoxib had no effect on the messenger RNA or protein levels of β-catenin but did significantly decrease the amount of total actin within ES cells. Reduction of β-catenin by small interfering RNA had no effect on invasion, and celecoxib treatment of the β-catenin depleted cells continued to inhibit invasion. Immunofluorescence staining demonstrated no change in β-catenin with treatment but did show a significant reduction in the amount of F-actin, as well as morphologic changes of the cells. Wound healing assays demonstrated that celecoxib significantly inhibited migration. CONCLUSIONS Celecoxib does not exert its antimetastatic effects in ES through alteration of β-catenin but does significantly modulate the actin cytoskeleton.
Collapse
|
148
|
Fedotov S, Tan A, Zubarev A. Persistent random walk of cells involving anomalous effects and random death. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:042124. [PMID: 25974455 DOI: 10.1103/physreve.91.042124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Indexed: 06/04/2023]
Abstract
The purpose of this paper is to implement a random death process into a persistent random walk model which produces sub-ballistic superdiffusion (Lévy walk). We develop a stochastic two-velocity jump model of cell motility for which the switching rate depends upon the time which the cell has spent moving in one direction. It is assumed that the switching rate is a decreasing function of residence (running) time. This assumption leads to the power law for the velocity switching time distribution. This describes the anomalous persistence of cell motility: the longer the cell moves in one direction, the smaller the switching probability to another direction becomes. We derive master equations for the cell densities with the generalized switching terms involving the tempered fractional material derivatives. We show that the random death of cells has an important implication for the transport process through tempering of the superdiffusive process. In the long-time limit we write stationary master equations in terms of exponentially truncated fractional derivatives in which the rate of death plays the role of tempering of a Lévy jump distribution. We find the upper and lower bounds for the stationary profiles corresponding to the ballistic transport and diffusion with the death-rate-dependent diffusion coefficient. Monte Carlo simulations confirm these bounds.
Collapse
Affiliation(s)
- Sergei Fedotov
- School of Mathematics, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Abby Tan
- Department of Mathematics, Universiti Brunei Darussalam, Brunei
| | - Andrey Zubarev
- Department of Mathematical Physics, Ural Federal University, Yekaterinburg, Russia
| |
Collapse
|
149
|
Role of dynamin in elongated cell migration in a 3D matrix. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:611-8. [DOI: 10.1016/j.bbamcr.2014.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 11/18/2022]
|
150
|
Hashim YZHY, Worthington J, Allsopp P, Ternan NG, Brown EM, McCann MJ, Rowland IR, Esposto S, Servili M, Gill CIR. Virgin olive oil phenolics extract inhibit invasion of HT115 human colon cancer cells in vitro and in vivo. Food Funct 2015; 5:1513-9. [PMID: 24836598 DOI: 10.1039/c4fo00090k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The decreased cancer risk associated with consumption of olive oil may be due to the presence of phenolics which can modulate pathways including apoptosis and invasion that are relevant to carcinogenesis. We have previously shown that a virgin olive oil phenolics extract (OVP) inhibited invasion of HT115 colon cancer cells in vitro. In the current study we assessed the in vitro effects of OVP (25 μg mL(-1)) on HT115 cell migration, spreading and integrin expression. Furthermore, the anti-metastatic activity of OVP - at a dose equivalent to 25 mg per kg per day for 2, 8 or 10 weeks - was assessed in a Severe Combined ImmunoDeficiency (SCID) Balb-c mouse model. After 24 h OVP did not inhibit cell migration but significantly reduced cell spreading on fibronectin (65% of control; p < 0.05) and expression of a range of α and β integrins was modulated. In vivo, OVP by gavage significantly (p < 0.05) decreased not only tumour volume but also the number of metastases in SCID Balb-c mice. Collectively, the data suggest that - possibly through modulation of integrin expression - OVP decreases invasion in vitro and also inhibits metastasis in vivo.
Collapse
Affiliation(s)
- Yumi Z H-Y Hashim
- Department of Biotechnology Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Malaysia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|