101
|
Li C, Pan Y, Tan Y, Wang Y, Sun X. PINK1-Dependent Mitophagy Reduced Endothelial Hyperpermeability and Cell Migration Capacity Under Simulated Microgravity. Front Cell Dev Biol 2022; 10:896014. [PMID: 35874841 PMCID: PMC9300855 DOI: 10.3389/fcell.2022.896014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The effect of cardiovascular dysfunction including orthostatic intolerance and disability on physical exercise is one of the health problems induced by long-term spaceflight astronauts face. As an important part of vascular structure, the vascular endothelium, uniquely sensitive to mechanical force, plays a pivotal role in coordinating vascular functions. Our study found that simulated microgravity induced PINK1-dependent mitophagy in human umbilical vein endothelial cells (HUVECs). Here, we explored the underlying mechanism of mitophagy induction. The ER stress induced by proteostasis failure in HUVECs promoted the Ca2+ transfer from ER to mitochondria, resulting in mitochondria Ca2+ overload, decreased mitochondrial membrane potential, mitochondria fission, and accumulation of Parkin and p62 in mitochondria and mitophagy under simulated microgravity. Moreover, we assumed that mitophagy played a vital role in functional changes in endothelial cells under simulated microgravity. Using mdivi-1 and PINK1 knockdown, we found that NLRP3 inflammasome activation was enhanced after mitophagy was inhibited. The NLRP3 inflammasome contributed to endothelial hyperpermeability and cellular migration by releasing IL-1β. Thus, mitophagy inhibited cell migration ability and hyperpermeability in HUVECs exposed to clinostat-simulated microgravity. Collectively, we here clarify the mechanism of mitophagy induction by simulated microgravity in vitro and demonstrate the relationship between mitophagy and vascular endothelial functional changes including cellular migration and permeability. This study deepens the understanding of vascular functional changes under microgravity.
Collapse
Affiliation(s)
- Chengfei Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Yikai Pan
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Yingjun Tan
- China Astronaut Research and Training Center, Beijing, China
| | - Yongchun Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
- *Correspondence: Xiqing Sun, , Yongchun Wang,
| | - Xiqing Sun
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
- *Correspondence: Xiqing Sun, , Yongchun Wang,
| |
Collapse
|
102
|
Kunimasa K, Ikeda-Ishikawa C, Tani Y, Tsukahara S, Sakurai J, Okamoto Y, Koido M, Dan S, Tomida A. Spautin-1 inhibits mitochondrial complex I and leads to suppression of the unfolded protein response and cell survival during glucose starvation. Sci Rep 2022; 12:11533. [PMID: 35798783 PMCID: PMC9262966 DOI: 10.1038/s41598-022-15673-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/28/2022] [Indexed: 11/09/2022] Open
Abstract
The unfolded protein response (UPR) is an adaptive stress response pathway that is essential for cancer cell survival under endoplasmic reticulum stress such as during glucose starvation. In this study, we identified spautin-1, an autophagy inhibitor that suppresses ubiquitin-specific peptidase 10 (USP10) and USP13, as a novel UPR inhibitor under glucose starvation conditions. Spautin-1 prevented the induction of UPR-associated proteins, including glucose-regulated protein 78, activating transcription factor 4, and a splicing variant of x-box-binding protein-1, and showed preferential cytotoxicity in glucose-starved cancer cells. However, USP10 and USP13 silencing and treatment with other autophagy inhibitors failed to result in UPR inhibition and preferential cytotoxicity during glucose starvation. Using transcriptome and chemosensitivity-based COMPARE analyses, we identified a similarity between spautin-1 and mitochondrial complex I inhibitors and found that spautin-1 suppressed the activity of complex I extracted from isolated mitochondria. Our results indicated that spautin-1 may represent an attractive mitochondria-targeted seed compound that inhibits the UPR and cancer cell survival during glucose starvation.
Collapse
Affiliation(s)
- Kazuhiro Kunimasa
- Division of Genome Research, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Chika Ikeda-Ishikawa
- Division of Genome Research, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Yuri Tani
- Division of Genome Research, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Satomi Tsukahara
- Division of Genome Research, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Junko Sakurai
- Division of Genome Research, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Yuka Okamoto
- Division of Genome Research, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Masaru Koido
- Division of Genome Research, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan.,Division of Molecular Pathology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Akihiro Tomida
- Division of Genome Research, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan.
| |
Collapse
|
103
|
Carreras-Sureda A, Kroemer G, Cardenas JC, Hetz C. Balancing energy and protein homeostasis at ER-mitochondria contact sites. Sci Signal 2022; 15:eabm7524. [DOI: 10.1126/scisignal.abm7524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The endoplasmic reticulum (ER) is the largest organelle of the cell and participates in multiple essential functions, including the production of secretory proteins, lipid synthesis, and calcium storage. Sustaining proteostasis requires an intimate coupling with energy production. Mitochondrial respiration evolved to be functionally connected to ER physiology through a physical interface between both organelles known as mitochondria-associated membranes. This quasi-synaptic structure acts as a signaling hub that tunes the function of both organelles in a bidirectional manner and controls proteostasis, cell death pathways, and mitochondrial bioenergetics. Here, we discuss the main signaling mechanisms governing interorganellar communication and their putative role in diseases including cancer and neurodegeneration.
Collapse
Affiliation(s)
- Amado Carreras-Sureda
- Department of Cell Physiology and Metabolism, University of Geneva, 1, rue Michel-Servet, 1211 Geneva, Switzerland
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - Julio Cesar Cardenas
- Center for Integrative Biology, Mayor University, 7510041 Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, 70086 Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Claudio Hetz
- Center for Geroscience, Brain Health, and Metabolism, 70086 Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, 70086 Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, 70086 Santiago, Chile
| |
Collapse
|
104
|
Miglioranza Scavuzzi B, Holoshitz J. Endoplasmic Reticulum Stress, Oxidative Stress, and Rheumatic Diseases. Antioxidants (Basel) 2022; 11:1306. [PMID: 35883795 PMCID: PMC9312221 DOI: 10.3390/antiox11071306] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
BACKGROUND The endoplasmic reticulum (ER) is a multi-functional organelle responsible for cellular homeostasis, protein synthesis, folding and secretion. It has been increasingly recognized that the loss of ER homeostasis plays a central role in the development of autoimmune inflammatory disorders, such as rheumatic diseases. Purpose/Main contents: Here, we review current knowledge of the contribution of ER stress to the pathogenesis of rheumatic diseases, with a focus on rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We also review the interplay between protein folding and formation of reactive oxygen species (ROS), where ER stress induces oxidative stress (OS), which further aggravates the accumulation of misfolded proteins and oxidation, in a vicious cycle. Intervention studies targeting ER stress and oxidative stress in the context of rheumatic diseases are also reviewed. CONCLUSIONS Loss of ER homeostasis is a significant factor in the pathogeneses of RA and SLE. Targeting ER stress, unfolded protein response (UPR) pathways and oxidative stress in these diseases both in vitro and in animal models have shown promising results and deserve further investigation.
Collapse
Affiliation(s)
| | - Joseph Holoshitz
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
105
|
Proulx J, Stacy S, Park IW, Borgmann K. A Non-Canonical Role for IRE1α Links ER and Mitochondria as Key Regulators of Astrocyte Dysfunction: Implications in Methamphetamine use and HIV-Associated Neurocognitive Disorders. Front Neurosci 2022; 16:906651. [PMID: 35784841 PMCID: PMC9247407 DOI: 10.3389/fnins.2022.906651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Astrocytes are one of the most numerous glial cells in the central nervous system (CNS) and provide essential support to neurons to ensure CNS health and function. During a neuropathological challenge, such as during human immunodeficiency virus (HIV)-1 infection or (METH)amphetamine exposure, astrocytes shift their neuroprotective functions and can become neurotoxic. Identifying cellular and molecular mechanisms underlying astrocyte dysfunction are of heightened importance to optimize the coupling between astrocytes and neurons and ensure neuronal fitness against CNS pathology, including HIV-1-associated neurocognitive disorders (HAND) and METH use disorder. Mitochondria are essential organelles for regulating metabolic, antioxidant, and inflammatory profiles. Moreover, endoplasmic reticulum (ER)-associated signaling pathways, such as calcium and the unfolded protein response (UPR), are important messengers for cellular fate and function, including inflammation and mitochondrial homeostasis. Increasing evidence supports that the three arms of the UPR are involved in the direct contact and communication between ER and mitochondria through mitochondria-associated ER membranes (MAMs). The current study investigated the effects of HIV-1 infection and chronic METH exposure on astrocyte ER and mitochondrial homeostasis and then examined the three UPR messengers as potential regulators of astrocyte mitochondrial dysfunction. Using primary human astrocytes infected with pseudotyped HIV-1 or exposed to low doses of METH for 7 days, astrocytes had increased mitochondrial oxygen consumption rate (OCR), cytosolic calcium flux and protein expression of UPR mediators. Notably, inositol-requiring protein 1α (IRE1α) was most prominently upregulated following both HIV-1 infection and chronic METH exposure. Moreover, pharmacological inhibition of the three UPR arms highlighted IRE1α as a key regulator of astrocyte metabolic function. To further explore the regulatory role of astrocyte IRE1α, astrocytes were transfected with an IRE1α overexpression vector followed by activation with the proinflammatory cytokine interleukin 1β. Overall, our findings confirm IRE1α modulates astrocyte mitochondrial respiration, glycolytic function, morphological activation, inflammation, and glutamate uptake, highlighting a novel potential target for regulating astrocyte dysfunction. Finally, these findings suggest both canonical and non-canonical UPR mechanisms of astrocyte IRE1α. Thus, additional studies are needed to determine how to best balance astrocyte IRE1α functions to both promote astrocyte neuroprotective properties while preventing neurotoxic properties during CNS pathologies.
Collapse
|
106
|
Hussain Y, Khan H, Efferth T, Alam W. Regulation of endoplasmic reticulum stress by hesperetin: Focus on antitumor and cytoprotective effects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:153985. [PMID: 35358935 DOI: 10.1016/j.phymed.2022.153985] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 10/14/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cancer is still an all-times issue due to a large and even increasing number of deaths. Impaired genes regulating cell proliferation and apoptosis are targets for the development of novel cancer treatments. HYPOTHESIS Increased transcription of NADPH oxidase activator (NOXA), Bcl2-like11 (BIM), BH3-only proteins and p53 unregulated apoptosis modulator (PUMA) is caused by the imbalance between pro- and anti-apoptotic Bcl-2 proteins due to endoplasmic reticulum (ER) stress. The membranous network of ER is present in all eukaryotic cells. ER stress facilitates the interaction between Bax and PUMA, triggering the release of cytochrome C. As a main intracellular organelle, ER is responsible for translocation as well as post-translation modification and protein folding. RESULTS Hesperetin is a cytoprotective flavonone, which acts against ER stress and protects from cell damage induced by reactive oxygen species (ROS) and reactive nitrogen species (RNS). Hesperetin inhibits lipid peroxidation induced by Fe2+ and l-ascorbic acid in rat brain homogenates. CONCLUSION This review deals with the anticancer effects of hesperetin regarding the regulation of ER stress as a principal mechanism in the pathogenesis of tumors.
Collapse
Affiliation(s)
- Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, 215123, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| |
Collapse
|
107
|
Chakraborty P, Parikh RY, Choi S, Tran D, Gooz M, Hedley ZT, Kim DS, Pytel D, Kang I, Nadig SN, Beeson GC, Ball L, Mehrotra M, Wang H, Berto S, Palanisamy V, Li H, Chatterjee S, Rodriguez PC, Maldonado EN, Diehl JA, Gangaraju VK, Mehrotra S. Carbon Monoxide Activates PERK-Regulated Autophagy to Induce Immunometabolic Reprogramming and Boost Antitumor T-cell Function. Cancer Res 2022; 82:1969-1990. [PMID: 35404405 PMCID: PMC9117468 DOI: 10.1158/0008-5472.can-21-3155] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/27/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022]
Abstract
Mitochondria and endoplasmic reticulum (ER) share structural and functional networks and activate well-orchestrated signaling processes to shape cells' fate and function. While persistent ER stress (ERS) response leads to mitochondrial collapse, moderate ERS promotes mitochondrial function. Strategies to boost antitumor T-cell function by targeting ER-mitochondria cross-talk have not yet been exploited. Here, we used carbon monoxide (CO), a short-lived gaseous molecule, to test whether engaging moderate ERS conditions can improve mitochondrial and antitumor functions in T cells. In melanoma antigen-specific T cells, CO-induced transient activation of ERS sensor protein kinase R-like endoplasmic reticulum kinase (PERK) significantly increased antitumor T-cell function. Furthermore, CO-induced PERK activation temporarily halted protein translation and induced protective autophagy, including mitophagy. The use of LC3-GFP enabled differentiation between the cells that prepare themselves to undergo active autophagy (LC3-GFPpos) and those that fail to enter the process (LC3-GFPneg). LC3-GFPpos T cells showed strong antitumor potential, whereas LC3-GFPneg cells exhibited a T regulatory-like phenotype, harbored dysfunctional mitochondria, and accumulated abnormal metabolite content. These anomalous ratios of metabolites rendered the cells with a hypermethylated state and distinct epigenetic profile, limiting their antitumor activity. Overall, this study shows that ERS-activated autophagy pathways modify the mitochondrial function and epigenetically reprogram T cells toward a superior antitumor phenotype to achieve robust tumor control. SIGNIFICANCE Transient activation of ER stress with carbon monoxide drives mitochondrial biogenesis and protective autophagy that elicits superior antitumor T-cell function, revealing an approach to improving adoptive cell efficacy therapy.
Collapse
Affiliation(s)
- Paramita Chakraborty
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Rasesh Y Parikh
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Seungho Choi
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Danh Tran
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Monika Gooz
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Zachariah T Hedley
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Do-Sung Kim
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Dariusz Pytel
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Inhong Kang
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Satish N Nadig
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Gyda C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Lauren Ball
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | - Meenal Mehrotra
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Viswanathan Palanisamy
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Hong Li
- Department of Public Health, Medical University of South Carolina, Charleston, South Carolina
| | - Shilpak Chatterjee
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Paulo C Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Eduardo N Maldonado
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - J Alan Diehl
- Department of Biochemistry, Case Western University, Cleveland, Ohio
| | - Vamsi K Gangaraju
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
- Department of Microbiology & Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
108
|
Role of Mitochondrial Dynamics in Cocaine's Neurotoxicity. Int J Mol Sci 2022; 23:ijms23105418. [PMID: 35628228 PMCID: PMC9145816 DOI: 10.3390/ijms23105418] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 01/25/2023] Open
Abstract
The dynamic balance of mitochondrial fission and fusion maintains mitochondrial homeostasis and optimal function. It is indispensable for cells such as neurons, which rely on the finely tuned mitochondria to carry out their normal physiological activities. The potent psychostimulant cocaine impairs mitochondria as one way it exerts its neurotoxicity, wherein the disturbances in mitochondrial dynamics have been suggested to play an essential role. In this review, we summarize the neurotoxicity of cocaine and the role of mitochondrial dynamics in cellular physiology. Subsequently, we introduce current findings that link disturbed neuronal mitochondrial dynamics with cocaine exposure. Finally, the possible role and potential therapeutic value of mitochondrial dynamics in cocaine neurotoxicity are discussed.
Collapse
|
109
|
Kny M, Fielitz J. Hidden Agenda - The Involvement of Endoplasmic Reticulum Stress and Unfolded Protein Response in Inflammation-Induced Muscle Wasting. Front Immunol 2022; 13:878755. [PMID: 35615361 PMCID: PMC9124858 DOI: 10.3389/fimmu.2022.878755] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Critically ill patients at the intensive care unit (ICU) often develop a generalized weakness, called ICU-acquired weakness (ICUAW). A major contributor to ICUAW is muscle atrophy, a loss of skeletal muscle mass and function. Skeletal muscle assures almost all of the vital functions of our body. It adapts rapidly in response to physiological as well as pathological stress, such as inactivity, immobilization, and inflammation. In response to a reduced workload or inflammation muscle atrophy develops. Recent work suggests that adaptive or maladaptive processes in the endoplasmic reticulum (ER), also known as sarcoplasmic reticulum, contributes to this process. In muscle cells, the ER is a highly specialized cellular organelle that assures calcium homeostasis and therefore muscle contraction. The ER also assures correct folding of proteins that are secreted or localized to the cell membrane. Protein folding is a highly error prone process and accumulation of misfolded or unfolded proteins can cause ER stress, which is counteracted by the activation of a signaling network known as the unfolded protein response (UPR). Three ER membrane residing molecules, protein kinase R-like endoplasmic reticulum kinase (PERK), inositol requiring protein 1a (IRE1a), and activating transcription factor 6 (ATF6) initiate the UPR. The UPR aims to restore ER homeostasis by reducing overall protein synthesis and increasing gene expression of various ER chaperone proteins. If ER stress persists or cannot be resolved cell death pathways are activated. Although, ER stress-induced UPR pathways are known to be important for regulation of skeletal muscle mass and function as well as for inflammation and immune response its function in ICUAW is still elusive. Given recent advances in the development of ER stress modifying molecules for neurodegenerative diseases and cancer, it is important to know whether or not therapeutic interventions in ER stress pathways have favorable effects and these compounds can be used to prevent or treat ICUAW. In this review, we focus on the role of ER stress-induced UPR in skeletal muscle during critical illness and in response to predisposing risk factors such as immobilization, starvation and inflammation as well as ICUAW treatment to foster research for this devastating clinical problem.
Collapse
Affiliation(s)
- Melanie Kny
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jens Fielitz
- Department of Molecular Cardiology, DZHK (German Center for Cardiovascular Research), Partner Site, Greifswald, Germany
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
110
|
Guéguinou M, Ibrahim S, Bourgeais J, Robert A, Pathak T, Zhang X, Crottès D, Dupuy J, Ternant D, Monbet V, Guibon R, Flores-Romero H, Lefèvre A, Lerondel S, Le Pape A, Dumas JF, Frank PG, Girault A, Chautard R, Guéraud F, García-Sáez AJ, Ouaissi M, Emond P, Sire O, Hérault O, Fromont-Hankard G, Vandier C, Tougeron D, Trebak M, Raoul W, Lecomte T. Curcumin and NCLX inhibitors share anti-tumoral mechanisms in microsatellite-instability-driven colorectal cancer. Cell Mol Life Sci 2022; 79:284. [PMID: 35526196 PMCID: PMC11072810 DOI: 10.1007/s00018-022-04311-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/05/2022] [Accepted: 04/15/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND AIMS Recent evidences highlight a role of the mitochondria calcium homeostasis in the development of colorectal cancer (CRC). To overcome treatment resistance, we aimed to evaluate the role of the mitochondrial sodium-calcium-lithium exchanger (NCLX) and its targeting in CRC. We also identified curcumin as a new inhibitor of NCLX. METHODS We examined whether curcumin and pharmacological compounds induced the inhibition of NCLX-mediated mitochondrial calcium (mtCa2+) extrusion, the role of redox metabolism in this process. We evaluated their anti-tumorigenic activity in vitro and in a xenograft mouse model. We analyzed NCLX expression and associations with survival in The Cancer Genome Atlas (TCGA) dataset and in tissue microarrays from 381 patients with microsatellite instability (MSI)-driven CRC. RESULTS In vitro, curcumin exerted strong anti-tumoral activity through its action on NCLX with mtCa2+ and reactive oxygen species overload associated with a mitochondrial membrane depolarization, leading to reduced ATP production and apoptosis. NCLX inhibition with pharmacological and molecular approaches reproduced the effects of curcumin. NCLX inhibitors decreased CRC tumor growth in vivo. Both transcriptomic analysis of TCGA dataset and immunohistochemical analysis of tissue microarrays demonstrated that higher NCLX expression was associated with MSI status, and for the first time, NCLX expression was significantly associated with recurrence-free survival. CONCLUSIONS Our findings highlight a novel anti-tumoral mechanism of curcumin through its action on NCLX and mitochondria calcium overload that could benefit for therapeutic schedule of patients with MSI CRC.
Collapse
Affiliation(s)
- Maxime Guéguinou
- EA 7501 GICC, Université de Tours, Tours, France.
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France.
| | | | | | - Alison Robert
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - Trayambak Pathak
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, 500 University Dr, Hershey, PA, 17033, USA
| | - Xuexin Zhang
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, 500 University Dr, Hershey, PA, 17033, USA
| | - David Crottès
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - Jacques Dupuy
- TOXALIM (Research Centre in Food Toxicology)-Team E9-PPCA, Université de Toulouse, UMR 1331 INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - David Ternant
- EA 7501 GICC, Université de Tours, Tours, France
- EA4245 Transplant Immunology and Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Valérie Monbet
- IRMAR Mathematics Research Institute of Rennes, UMR-CNRS 6625, Rennes, France
| | - Roseline Guibon
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - Hector Flores-Romero
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Antoine Lefèvre
- UMR 1253, iBrain, Université de Tours, Inserm, 37000, Tours, France
| | | | | | - Jean-François Dumas
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - Philippe G Frank
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - Alban Girault
- Laboratory of Cellular and Molecular Physiology, UR UPJV 4667, University of Picardie Jules Verne, Amiens, France
| | | | - Françoise Guéraud
- TOXALIM (Research Centre in Food Toxicology)-Team E9-PPCA, Université de Toulouse, UMR 1331 INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Ana J García-Sáez
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Mehdi Ouaissi
- EA4245 Transplant Immunology and Inflammation, Université de Tours, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Patrick Emond
- UMR 1253, iBrain, Université de Tours, Inserm, 37000, Tours, France
| | - Olivier Sire
- IRDL Institut de Recherche Dupuy de Lôme, UMR-CNRS, 06027, Vannes, France
| | | | - Gaëlle Fromont-Hankard
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - Christophe Vandier
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - David Tougeron
- Hepato-Gastroenterology Department, Poitiers University Hospital and Faculty of Medicine of Poitiers, 86000, Poitiers, France
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, 500 University Dr, Hershey, PA, 17033, USA
| | - William Raoul
- EA 7501 GICC, Université de Tours, Tours, France
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France
| | - Thierry Lecomte
- EA 7501 GICC, Université de Tours, Tours, France.
- N2C, Nutrition Growth and Cancer, Faculté de Médecine, Université de Tours, Inserm, UMR 1069, Tours, France.
- Department of Hepato-Gastroenterology and Digestive Oncology, CHRU de Tours, Tours, France.
| |
Collapse
|
111
|
Ke M, Lin F, Wang H, He G, Feng J, Song L, Xu Y, Liu J. Sigma‑1 receptor overexpression promotes proliferation and ameliorates cell apoptosis in β‑cells. Mol Med Rep 2022; 25:170. [PMID: 35302175 PMCID: PMC8971912 DOI: 10.3892/mmr.2022.12686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/16/2022] [Indexed: 11/24/2022] Open
Abstract
Sigma‑1 receptor (Sig‑1R) is a class of orphan receptors, the potential role of which in pancreatic islet cells remains poorly understood. The present study aimed to investigate the role of Sig‑1R in islet β‑cell proliferation and examine the effects of Sig‑1R on islet β‑cell injury under lipotoxic conditions. Sig‑1R‑overexpressing MIN6 cells were generated by lentiviral vector transfection. The effect of Sig‑1R overexpression on cell proliferation detected by EdU staining, cell cycle progression by propidium iodide (PI), apoptosis by Annexin V‑APC/PI, mitochondrial membrane potential by Mitolite Red and cytoplasmic Ca2+ levelsby Fura‑2/AM in islet β‑cells were measured by flow cytometry. Western blot analysis was used to measure protein expression levels of endoplasmic reticulum (ER) stress markers glucose‑regulated protein 78 and C/EBP homologous protein, mitochondrial apoptotic proteins Bcl‑2‑associated X and Bcl‑2 and cytochrome c. In addition, ATP levels and insulin secretion were separately measured using ATP Assay and mouse insulin ELISA. Mitochondria‑associated ER membrane (MAM) structures in MIN6 cells were then detected using transmission electron microscopy. Protein disulfide isomerase expression and possible colocalization between inositol 1,4,5‑trisphosphate receptor and voltage‑dependent anion channel 1 were examined using immunofluorescence. Sig‑1R overexpression was found to promote β‑cell proliferation by accelerating cell cycle progression. Furthermore, Sig‑1R overexpression ameliorated the apoptosis rate whilst impairing insulin secretion induced by palmitic acid by relieving ER stress and mitochondrial dysfunction in MIN6 cells. Sig‑1R overexpression also promoted Ca2+ transport between mitochondria and ER by increasing the quantity of ER adjacent to mitochondria in the 50‑nm range. It was concluded that Sig‑1R overexpression conferred protective effects on β‑cells against lipotoxicity as a result of the promotion of cell proliferation and inhibition of ER stress and oxidative stress, by regulating the structure of MAM.
Collapse
Affiliation(s)
- Mengting Ke
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Fengping Lin
- Department of Endocrinology, Xianning Central Hospital, Xianning, Hubei 437100, P.R. China
| | - Huawei Wang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Guangzhen He
- Department of Pediatrics, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, Hubei 442002, P.R. China
| | - Jieyuan Feng
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Linyang Song
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yancheng Xu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jie Liu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
112
|
Almeida LM, Pinho BR, Duchen MR, Oliveira JMA. The PERKs of mitochondria protection during stress: insights for PERK modulation in neurodegenerative and metabolic diseases. Biol Rev Camb Philos Soc 2022; 97:1737-1748. [PMID: 35475315 DOI: 10.1111/brv.12860] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/06/2023]
Abstract
Protein kinase RNA-like ER kinase (PERK) is an endoplasmic reticulum (ER) stress sensor that responds to the accumulation of misfolded proteins. Once activated, PERK initiates signalling pathways that halt general protein production, increase the efficiency of ER quality control, and maintain redox homeostasis. PERK activation also protects mitochondrial homeostasis during stress. The location of PERK at the contact sites between the ER and the mitochondria creates a PERK-mitochondria axis that allows PERK to detect stress in both organelles, adapt their functions and prevent apoptosis. During ER stress, PERK activation triggers mitochondrial hyperfusion, preventing premature apoptotic fragmentation of the mitochondria. PERK activation also increases the formation of mitochondrial cristae and the assembly of respiratory supercomplexes, enhancing cellular ATP-generating capacity. PERK strengthens mitochondrial quality control during stress by promoting the expression of mitochondrial chaperones and proteases and by increasing mitochondrial biogenesis and mitophagy, resulting in renewal of the mitochondrial network. But how does PERK mediate all these changes in mitochondrial homeostasis? In addition to the classic PERK-eukaryotic translation initiation factor 2α (eIF2α)-activating transcription factor 4 (ATF4) pathway, PERK can activate other protective pathways - PERK-O-linked N-acetyl-glucosamine transferase (OGT), PERK-transcription factor EB (TFEB), and PERK-nuclear factor erythroid 2-related factor 2 (NRF2) - contributing to broader regulation of mitochondrial dynamics, metabolism, and quality control. The pharmacological activation of PERK is protective in models of neurodegenerative and metabolic diseases, such as Huntington's disease, progressive supranuclear palsy and obesity, while the inhibition of PERK was protective in models of Parkinson's and prion diseases and diabetes. In this review, we address the molecular mechanisms by which PERK regulates mitochondrial dynamics, metabolism and quality control, and discuss the therapeutic potential of targeting PERK in neurodegenerative and metabolic diseases.
Collapse
Affiliation(s)
- Liliana M Almeida
- UCIBIO-REQUIMTE - Applied Molecular Biosciences Unit, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313, Porto, Portugal.,Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313, Porto, Portugal
| | - Brígida R Pinho
- UCIBIO-REQUIMTE - Applied Molecular Biosciences Unit, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313, Porto, Portugal.,Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313, Porto, Portugal
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, U.K.,Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, London, WC1E 6BT, U.K
| | - Jorge M A Oliveira
- UCIBIO-REQUIMTE - Applied Molecular Biosciences Unit, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313, Porto, Portugal.,Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313, Porto, Portugal.,Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, London, WC1E 6BT, U.K
| |
Collapse
|
113
|
Qian L, Mehrabi Nasab E, Athari SM, Athari SS. Mitochondria signaling pathways in allergic asthma. J Investig Med 2022; 70:863-882. [PMID: 35168999 PMCID: PMC9016245 DOI: 10.1136/jim-2021-002098] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 12/23/2022]
Abstract
Mitochondria, as the powerhouse organelle of cells, are greatly involved in regulating cell signaling pathways, including those related to the innate and acquired immune systems, cellular differentiation, growth, death, apoptosis, and autophagy as well as hypoxic stress responses in various diseases. Asthma is a chronic complicated airway disease characterized by airway hyperresponsiveness, eosinophilic inflammation, mucus hypersecretion, and remodeling of airway. The asthma mortality and morbidity rates have increased worldwide, so understanding the molecular mechanisms underlying asthma progression is necessary for new anti-asthma drug development. The lung is an oxygen-rich organ, and mitochondria, by sensing and processing O2, contribute to the generation of ROS and activation of pro-inflammatory signaling pathways. Asthma pathophysiology has been tightly associated with mitochondrial dysfunction leading to reduced ATP synthase activity, increased oxidative stress, apoptosis induction, and abnormal calcium homeostasis. Defects of the mitochondrial play an essential role in the pro-remodeling mechanisms of lung fibrosis and airway cells' apoptosis. Identification of mitochondrial therapeutic targets can help repair mitochondrial biogenesis and dysfunction and reverse related pathological changes and lung structural remodeling in asthma. Therefore, we here overviewed the relationship between mitochondrial signaling pathways and asthma pathogenic mechanisms.
Collapse
Affiliation(s)
- Ling Qian
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai, China
| | - Entezar Mehrabi Nasab
- Department of Cardiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran (the Islamic Republic of)
| | | | - Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran (the Islamic Republic of)
| |
Collapse
|
114
|
Molecular dissection of cellular response of pancreatic islet cells to Bisphenol-A (BPA): a comprehensive review. Biochem Pharmacol 2022; 201:115068. [DOI: 10.1016/j.bcp.2022.115068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/11/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022]
|
115
|
Pereira AC, De Pascale J, Resende R, Cardoso S, Ferreira I, Neves BM, Carrascal MA, Zuzarte M, Madeira N, Morais S, Macedo A, do Carmo A, Moreira PI, Cruz MT, Pereira CF. ER-mitochondria communication is involved in NLRP3 inflammasome activation under stress conditions in the innate immune system. Cell Mol Life Sci 2022; 79:213. [PMID: 35344105 PMCID: PMC11072401 DOI: 10.1007/s00018-022-04211-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022]
Abstract
Endoplasmic reticulum (ER) stress and mitochondrial dysfunction, which are key events in the initiation and/or progression of several diseases, are correlated with alterations at ER-mitochondria contact sites, the so-called "Mitochondria-Associated Membranes" (MAMs). These intracellular structures are also implicated in NLRP3 inflammasome activation which is an important driver of sterile inflammation, however, the underlying molecular basis remains unclear. This work aimed to investigate the role of ER-mitochondria communication during ER stress-induced NLRP3 inflammasome activation in both peripheral and central innate immune systems, by using THP-1 human monocytes and BV2 microglia cells, respectively, as in vitro models. Markers of ER stress, mitochondrial dynamics and mass, as well as NLRP3 inflammasome activation were evaluated by Western Blot, IL-1β secretion was measured by ELISA, and ER-mitochondria contacts were quantified by transmission electron microscopy. Mitochondrial Ca2+ uptake and polarization were analyzed with fluorescent probes, and measurement of aconitase and SOD2 activities monitored mitochondrial ROS accumulation. ER stress was demonstrated to activate the NLRP3 inflammasome in both peripheral and central immune cells. Studies in monocytes indicate that ER stress-induced NLRP3 inflammasome activation occurs by a Ca2+-dependent and ROS-independent mechanism, which is coupled with upregulation of MAMs-resident chaperones, closer ER-mitochondria contacts, as well as mitochondrial depolarization and impaired dynamics. Moreover, enhanced ER stress-induced NLRP3 inflammasome activation in the immune system was found associated with pathological conditions since it was observed in monocytes derived from bipolar disorder (BD) patients, supporting a pro-inflammatory status in BD. In conclusion, by demonstrating that ER-mitochondria communication plays a key role in the response of the innate immune cells to ER stress, this work contributes to elucidate the molecular mechanisms underlying NLRP3 inflammasome activation under stress conditions, and to disclose novel potential therapeutic targets for diseases associated with sterile inflammation.
Collapse
Affiliation(s)
- Ana Catarina Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University Coimbra, Coimbra, Portugal
- Faculty of Medicine, University Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Jessica De Pascale
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University Coimbra, Coimbra, Portugal
| | - Rosa Resende
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Susana Cardoso
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Isabel Ferreira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University Coimbra, Coimbra, Portugal
| | - Bruno Miguel Neves
- iBiMED-Department of Medical Sciences and Institute for Biomedicine, University Aveiro, Aveiro, Portugal
| | - Mylène A Carrascal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- Tecnimede Group, Sintra, Portugal
| | - Mónica Zuzarte
- Faculty of Medicine, University Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- iCBR-Institute for Clinical and Biomedical Research, University Coimbra, Coimbra, Portugal
| | - Nuno Madeira
- Faculty of Medicine, University Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University Coimbra, Coimbra, Portugal
- Department of Psychiatry, CHUC-UC-Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Sofia Morais
- Faculty of Medicine, University Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- Department of Psychiatry, CHUC-UC-Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - António Macedo
- Faculty of Medicine, University Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- Department of Psychiatry, CHUC-UC-Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Anália do Carmo
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- Department of Clinical Pathology, CHUC-UC-Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Paula I Moreira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University Coimbra, Coimbra, Portugal
- Faculty of Medicine, University Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Maria Teresa Cruz
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University Coimbra, Coimbra, Portugal
| | - Cláudia F Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University Coimbra, Coimbra, Portugal.
- Faculty of Medicine, University Coimbra, Coimbra, Portugal.
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal.
- , Coimbra, Portugal.
| |
Collapse
|
116
|
Xu Y, Chen J, Chen J, Teng J. EI24 promotes cell adaption to ER stress by coordinating IRE1 signaling and calcium homeostasis. EMBO Rep 2022; 23:e51679. [PMID: 35005829 PMCID: PMC8892245 DOI: 10.15252/embr.202051679] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022] Open
Abstract
The endoplasmic reticulum (ER) is a subcellular organelle crucial for protein folding and calcium storage. Accumulation of unfolded proteins or calcium depletion causes ER stress. Deficiency of ER stress adaptation leads to apoptosis, which is associated with several human disorders. Here, we reveal that ER transmembrane protein EI24 promotes cell adaptation to ER stress by coordinating the IRE1 branch of the unfolded protein response (UPR) and calcium signaling. Under nonstressed conditions, EI24 binds to the kinase domain of IRE1 to inhibit its activation. Upon ER stress, EI24 disassociates from IRE1 to permit UPR activation, and meanwhile targets IP3R1 to prevent ER calcium depletion, which together promote cell adaptation to ER stress. EI24 knockout causes failure of ER stress adaptation and apoptosis. Thus, EI24 is a novel anti-apoptotic factor implicated in ER stress signaling.
Collapse
Affiliation(s)
- Yiwei Xu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of EducationCollege of Life SciencesPeking UniversityBeijingChina,Postdoctoral ProgrammeGuosen SecuritiesShenzhenChina
| | - Jie Chen
- Institute of Molecular MedicinePeking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of EducationCollege of Life SciencesPeking UniversityBeijingChina,Center for Quantitative BiologyPeking UniversityBeijingChina
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of EducationCollege of Life SciencesPeking UniversityBeijingChina
| |
Collapse
|
117
|
PERK is a critical metabolic hub for immunosuppressive function in macrophages. Nat Immunol 2022; 23:431-445. [PMID: 35228694 PMCID: PMC9112288 DOI: 10.1038/s41590-022-01145-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
Chronic inflammation triggers compensatory immunosuppression to stop inflammation and minimize tissue damage. Studies have demonstrated that endoplasmic reticulum (ER) stress augments the suppressive phenotypes of immune cells; however, the molecular mechanisms underpinning this process and how it links to the metabolic reprogramming of immunosuppressive macrophages remain elusive. In the present study, we report that the helper T cell 2 cytokine interleukin-4 and the tumor microenvironment increase the activity of a protein kinase RNA-like ER kinase (PERK)-signaling cascade in macrophages and promote immunosuppressive M2 activation and proliferation. Loss of PERK signaling impeded mitochondrial respiration and lipid oxidation critical for M2 macrophages. PERK activation mediated the upregulation of phosphoserine aminotransferase 1 (PSAT1) and serine biosynthesis via the downstream transcription factor ATF-4. Increased serine biosynthesis resulted in enhanced mitochondrial function and α-ketoglutarate production required for JMJD3-dependent epigenetic modification. Inhibition of PERK suppressed macrophage immunosuppressive activity and could enhance the efficacy of immune checkpoint programmed cell death protein 1 inhibition in melanoma. Our findings delineate a previously undescribed connection between PERK signaling and PSAT1-mediated serine metabolism critical for promoting immunosuppressive function in M2 macrophages.
Collapse
|
118
|
Picca A, Guerra F, Calvani R, Romano R, Coelho-Junior HJ, Damiano FP, Bucci C, Marzetti E. Circulating Mitochondrial DNA and Inter-Organelle Contact Sites in Aging and Associated Conditions. Cells 2022; 11:cells11040675. [PMID: 35203322 PMCID: PMC8870554 DOI: 10.3390/cells11040675] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are primarily involved in cell bioenergetics, regulation of redox homeostasis, and cell death/survival signaling. An immunostimulatory property of mitochondria has also been recognized which is deployed through the extracellular release of entire or portioned organelle and/or mitochondrial DNA (mtDNA) unloading. Dynamic homo- and heterotypic interactions involving mitochondria have been described. Each type of connection has functional implications that eventually optimize mitochondrial activity according to the bioenergetic demands of a specific cell/tissue. Inter-organelle communications may also serve as molecular platforms for the extracellular release of mitochondrial components and subsequent ignition of systemic inflammation. Age-related chronic inflammation (inflamm-aging) has been associated with mitochondrial dysfunction and increased extracellular release of mitochondrial components—in particular, cell-free mtDNA. The close relationship between mitochondrial dysfunction and cellular senescence further supports the central role of mitochondria in the aging process and its related conditions. Here, we provide an overview of (1) the mitochondrial genetic system and the potential routes for generating and releasing mtDNA intermediates; (2) the pro-inflammatory pathways elicited by circulating mtDNA; (3) the participation of inter-organelle contacts to mtDNA homeostasis; and (4) the link of these processes with senescence and age-associated conditions.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.R.); (C.B.)
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
- Correspondence: ; Tel.: +39-06-3015-5559; Fax: +39-06-3051-911
| | - Roberta Romano
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.R.); (C.B.)
| | - Hélio José Coelho-Junior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Francesco P. Damiano
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.R.); (C.B.)
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
119
|
Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives. Cells 2022; 11:cells11030552. [PMID: 35159361 PMCID: PMC8833991 DOI: 10.3390/cells11030552] [Citation(s) in RCA: 353] [Impact Index Per Article: 117.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Reactive oxygen and nitrogen species (RONS) are generated through various endogenous and exogenous processes; however, they are neutralized by enzymatic and non-enzymatic antioxidants. An imbalance between the generation and neutralization of oxidants results in the progression to oxidative stress (OS), which in turn gives rise to various diseases, disorders and aging. The characteristics of aging include the progressive loss of function in tissues and organs. The theory of aging explains that age-related functional losses are due to accumulation of reactive oxygen species (ROS), their subsequent damages and tissue deformities. Moreover, the diseases and disorders caused by OS include cardiovascular diseases [CVDs], chronic obstructive pulmonary disease, chronic kidney disease, neurodegenerative diseases and cancer. OS, induced by ROS, is neutralized by different enzymatic and non-enzymatic antioxidants and prevents cells, tissues and organs from damage. However, prolonged OS decreases the content of antioxidant status of cells by reducing the activities of reductants and antioxidative enzymes and gives rise to different pathological conditions. Therefore, the aim of the present review is to discuss the mechanism of ROS-induced OS signaling and their age-associated complications mediated through their toxic manifestations in order to devise effective preventive and curative natural therapeutic remedies.
Collapse
|
120
|
Hu Y, Tian L, Ma K, Han L, Li W, Hu L, Fei G, Zhang T, Yu D, Xu L, Wang F, Xiao B, Chen L. ER stress-related protein, CHOP, may serve as a biomarker of mechanical asphyxia: a primary study. Int J Legal Med 2022; 136:1091-1104. [PMID: 35122137 DOI: 10.1007/s00414-021-02770-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022]
Abstract
The precise authentication of death from mechanical asphyxia (DMA) has been a complex problem in forensic medicine. Besides the traditional methods that concern the superficial characterization of the body, researchers are now paying more attention to the biomarkers that may help the identification of DMA. It has been reported that the extremely hypoxic environment created by DMA can cause the specific expression of mitochondria-related protein, which may sever as the biomarkers of DMA authentication. Since endoplasmic reticulum stress (ER stress) has been found to be related to the dysfunction of mitochondria, it is promising to look for the biomarkers of DMA among ER stress-related proteins. In this article, animal and cell experiments were conducted to examine how ER-mitochondria interaction may be influenced in the hypoxic condition caused by DMA primarily. Human samples were then used to verify the possible biomarkers of DMA. We found that ER stress-related protein CHOP was significantly up-regulated within a short-term postmortem interval (PMI) in brain tissue of DMA samples, which may interact with a series of ER stress- and mitochondria-related protein, leading to the apoptosis of the cells. It was also verified in human samples that the expression level of CHOP can sever as a potential biomarker of DMA within a specific PMI.
Collapse
Affiliation(s)
- Yikai Hu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Shanghai, 200032, People's Republic of China
| | - Lu Tian
- Forensic Lab, Criminal Science and Technology Institute, Pudong Branch, Shanghai Public Security Bureau, 255 Yanzhong Road, Shanghai, 200125, People's Republic of China
| | - Kaijun Ma
- Forensic Lab, Criminal Science and Technology Institute, Shanghai Public Security Bureau, 803 North Zhongshan Road, Shanghai, 200082, People's Republic of China
| | - Liujun Han
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Shanghai, 200032, People's Republic of China
| | - Wencan Li
- Forensic Lab, Criminal Science and Technology Institute, Pudong Branch, Shanghai Public Security Bureau, 255 Yanzhong Road, Shanghai, 200125, People's Republic of China
| | - Luyuyan Hu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Shanghai, 200032, People's Republic of China
| | - Geng Fei
- Department of Criminal Science and Technology, Shanghai Police College, 100 Chongjing Road, Shanghai, 200137, People's Republic of China
| | - Tianye Zhang
- Forensic Lab, Criminal Science and Technology Institute, Shanghai Public Security Bureau, 803 North Zhongshan Road, Shanghai, 200082, People's Republic of China
| | - Delun Yu
- Forensic Lab, Criminal Science and Technology Institute, Shanghai Public Security Bureau, 803 North Zhongshan Road, Shanghai, 200082, People's Republic of China
| | - Luyi Xu
- Forensic Lab, Criminal Science and Technology Institute, Shanghai Public Security Bureau, 803 North Zhongshan Road, Shanghai, 200082, People's Republic of China
| | - Feng Wang
- Forensic Lab, Criminal Science and Technology Institute, Qianjiang Public Security Bureau, 27 Nanpu Road, Qianjiang, 433199, People's Republic of China
| | - Bi Xiao
- Forensic Lab, Criminal Science and Technology Institute, Shanghai Public Security Bureau, 803 North Zhongshan Road, Shanghai, 200082, People's Republic of China.
| | - Long Chen
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
121
|
Warren JT, Cupo RR, Wattanasirakul P, Spencer DH, Locke AE, Makaryan V, Bolyard AA, Kelley ML, Kingston NL, Shorter J, Bellanné-Chantelot C, Donadieu J, Dale DC, Link DC. Heterozygous variants of CLPB are a cause of severe congenital neutropenia. Blood 2022; 139:779-791. [PMID: 34115842 PMCID: PMC8814677 DOI: 10.1182/blood.2021010762] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023] Open
Abstract
Severe congenital neutropenia is an inborn disorder of granulopoiesis. Approximately one third of cases do not have a known genetic cause. Exome sequencing of 104 persons with congenital neutropenia identified heterozygous missense variants of CLPB (caseinolytic peptidase B) in 5 severe congenital neutropenia cases, with 5 more cases identified through additional sequencing efforts or clinical sequencing. CLPB encodes an adenosine triphosphatase that is implicated in protein folding and mitochondrial function. Prior studies showed that biallelic mutations of CLPB are associated with a syndrome of 3-methylglutaconic aciduria, cataracts, neurologic disease, and variable neutropenia. However, 3-methylglutaconic aciduria was not observed and, other than neutropenia, these clinical features were uncommon in our series. Moreover, the CLPB variants are distinct, consisting of heterozygous variants that cluster near the adenosine triphosphate-binding pocket. Both genetic loss of CLPB and expression of CLPB variants result in impaired granulocytic differentiation of human hematopoietic progenitor cells and increased apoptosis. These CLPB variants associate with wild-type CLPB and inhibit its adenosine triphosphatase and disaggregase activity in a dominant-negative fashion. Finally, expression of CLPB variants is associated with impaired mitochondrial function but does not render cells more sensitive to endoplasmic reticulum stress. Together, these data show that heterozygous CLPB variants are a new and relatively common cause of congenital neutropenia and should be considered in the evaluation of patients with congenital neutropenia.
Collapse
Affiliation(s)
- Julia T Warren
- Division of Hematology-Oncology, Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO
| | - Ryan R Cupo
- Department of Biochemistry and Biophysics, Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Peeradol Wattanasirakul
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St, MO
| | - David H Spencer
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St, MO
| | - Adam E Locke
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St, MO
| | - Vahagn Makaryan
- Department of Medicine, University of Washington, Seattle, WA
| | | | | | - Natalie L Kingston
- Medical Scientist Training Program, Washington University School of Medicine, St, MO
| | - James Shorter
- Department of Biochemistry and Biophysics, Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Christine Bellanné-Chantelot
- Département de Génétique, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié Salpêtrière, Sorbonne Université, Paris, France; and
| | - Jean Donadieu
- Sorbonne Université, INSERM, AP-HP, Registre français des Neutropénies Chroniques, Centre de Référence des Neutropénies Chroniques, Hôpital Trousseau, Service Hémato Oncologie Pédiatrique, Paris, France
| | - David C Dale
- Department of Medicine, University of Washington, Seattle, WA
| | - Daniel C Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St, MO
| |
Collapse
|
122
|
Dissecting the Mechanism of Action of Spiperone-A Candidate for Drug Repurposing for Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14030776. [PMID: 35159043 PMCID: PMC8834219 DOI: 10.3390/cancers14030776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Despite advances in primary and adjuvant treatments, approximately 50% of colorectal cancer (CRC) patients still die from recurrence and metastatic disease. Thus, alternative and more effective therapeutic approaches are expected to be developed. Drug repurposing is increasing interest in cancer therapy, as it represents a cheaper and faster alternative strategy to de novo drug synthesis. Psychiatric medications are promising as a new generation of antitumor drugs. Here, we demonstrate that spiperone—a licensed drug for the treatment of schizophrenia—induces apoptosis in CRC cells. Our data reveal that spiperone’s cytotoxicity in CRC cells is mediated by phospholipase C activation, intracellular calcium homeostasis dysregulation, and irreversible endoplasmic reticulum stress induction, resulting in lipid metabolism alteration and Golgi apparatus damage. By identifying new targetable pathways in CRC cells, our findings represent a promising starting point for the design of novel therapeutic strategies for CRC. Abstract Approximately 50% of colorectal cancer (CRC) patients still die from recurrence and metastatic disease, highlighting the need for novel therapeutic strategies. Drug repurposing is attracting increasing attention because, compared to traditional de novo drug discovery processes, it may reduce drug development periods and costs. Epidemiological and preclinical evidence support the antitumor activity of antipsychotic drugs. Herein, we dissect the mechanism of action of the typical antipsychotic spiperone in CRC. Spiperone can reduce the clonogenic potential of stem-like CRC cells (CRC-SCs) and induce cell cycle arrest and apoptosis, in both differentiated and CRC-SCs, at clinically relevant concentrations whose toxicity is negligible for non-neoplastic cells. Analysis of intracellular Ca2+ kinetics upon spiperone treatment revealed a massive phospholipase C (PLC)-dependent endoplasmic reticulum (ER) Ca2+ release, resulting in ER Ca2+ homeostasis disruption. RNA sequencing revealed unfolded protein response (UPR) activation, ER stress, and induction of apoptosis, along with IRE1-dependent decay of mRNA (RIDD) activation. Lipidomic analysis showed a significant alteration of lipid profile and, in particular, of sphingolipids. Damage to the Golgi apparatus was also observed. Our data suggest that spiperone can represent an effective drug in the treatment of CRC, and that ER stress induction, along with lipid metabolism alteration, represents effective druggable pathways in CRC.
Collapse
|
123
|
Markovinovic A, Greig J, Martín-Guerrero SM, Salam S, Paillusson S. Endoplasmic reticulum-mitochondria signaling in neurons and neurodegenerative diseases. J Cell Sci 2022; 135:274270. [PMID: 35129196 DOI: 10.1242/jcs.248534] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent advances have revealed common pathological changes in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis with related frontotemporal dementia (ALS/FTD). Many of these changes can be linked to alterations in endoplasmic reticulum (ER)-mitochondria signaling, including dysregulation of Ca2+ signaling, autophagy, lipid metabolism, ATP production, axonal transport, ER stress responses and synaptic dysfunction. ER-mitochondria signaling involves specialized regions of ER, called mitochondria-associated membranes (MAMs). Owing to their role in neurodegenerative processes, MAMs have gained attention as they appear to be associated with all the major neurodegenerative diseases. Furthermore, their specific role within neuronal maintenance is being revealed as mutant genes linked to major neurodegenerative diseases have been associated with damage to these specialized contacts. Several studies have now demonstrated that these specialized contacts regulate neuronal health and synaptic transmission, and that MAMs are damaged in patients with neurodegenerative diseases. This Review will focus on the role of MAMs and ER-mitochondria signaling within neurons and how damage of the ER-mitochondria axis leads to a disruption of vital processes causing eventual neurodegeneration.
Collapse
Affiliation(s)
- Andrea Markovinovic
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK
| | - Jenny Greig
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK.,Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44093, Nantes, France
| | - Sandra María Martín-Guerrero
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK
| | - Shaakir Salam
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK
| | - Sebastien Paillusson
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK.,Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, 1 rue Gaston Veil, 44035, Nantes, France
| |
Collapse
|
124
|
Evinova A, Hatokova Z, Tatarkova Z, Brodnanova M, Dibdiakova K, Racay P. Endoplasmic reticulum stress induces mitochondrial dysfunction but not mitochondrial unfolded protein response in SH-SY5Y cells. Mol Cell Biochem 2022; 477:965-975. [DOI: 10.1007/s11010-021-04344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/22/2021] [Indexed: 12/06/2022]
|
125
|
Koshenov Z, Oflaz FE, Hirtl M, Gottschalk B, Rost R, Malli R, Graier WF. Citrin mediated metabolic rewiring in response to altered basal subcellular Ca 2+ homeostasis. Commun Biol 2022; 5:76. [PMID: 35058562 PMCID: PMC8776887 DOI: 10.1038/s42003-022-03019-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/28/2021] [Indexed: 01/19/2023] Open
Abstract
In contrast to long-term metabolic reprogramming, metabolic rewiring represents an instant and reversible cellular adaptation to physiological or pathological stress. Ca2+ signals of distinct spatio-temporal patterns control a plethora of signaling processes and can determine basal cellular metabolic setting, however, Ca2+ signals that define metabolic rewiring have not been conclusively identified and characterized. Here, we reveal the existence of a basal Ca2+ flux originating from extracellular space and delivered to mitochondria by Ca2+ leakage from inositol triphosphate receptors in mitochondria-associated membranes. This Ca2+ flux primes mitochondrial metabolism by maintaining glycolysis and keeping mitochondria energized for ATP production. We identified citrin, a well-defined Ca2+-binding component of malate-aspartate shuttle in the mitochondrial intermembrane space, as predominant target of this basal Ca2+ regulation. Our data emphasize that any manipulation of this ubiquitous Ca2+ system has the potency to initiate metabolic rewiring as an instant and reversible cellular adaptation to physiological or pathological stress.
Collapse
Affiliation(s)
- Zhanat Koshenov
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Furkan E Oflaz
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Martin Hirtl
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Benjamin Gottschalk
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Rene Rost
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
- BioTechMed Graz, 8010, Graz, Austria
| | - Wolfgang F Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria.
- BioTechMed Graz, 8010, Graz, Austria.
| |
Collapse
|
126
|
Air Plasma-Activated Medium Evokes a Death-Associated Perinuclear Mitochondrial Clustering. Int J Mol Sci 2022; 23:ijms23031124. [PMID: 35163042 PMCID: PMC8835529 DOI: 10.3390/ijms23031124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/01/2022] Open
Abstract
Intractable cancers such as osteosarcoma (OS) and oral cancer (OC) are highly refractory, recurrent, and metastatic once developed, and their prognosis is still disappointing. Tumor-targeted therapy, which eliminates cancers effectively and safely, is the current clinical choice. Since aggressive tumors are substantially resistant to multidisciplinary therapies that target apoptosis, tumor-specific activation of another cell death modality is a promising avenue for meeting this goal. Here, we report that a cold atmospheric air plasma-activated medium (APAM) can kill OS and OC by causing a unique mitochondrial clustering. This event was named monopolar perinuclear mitochondrial clustering (MPMC) based on its characteristic unipolar mitochondrial perinuclear accumulation. The APAM caused apoptotic and nonapoptotic cell death. The APAM increased mitochondrial ROS (mROS) and cell death, and the antioxidants such as N-acetylcysteine (NAC) prevented them. MPMC occurred following mitochondrial fragmentation, which coincided with nuclear damages. MPMC was accompanied by mitochondrial lipid peroxide (mLPO) accumulation and prevented by NAC, Ferrostatin-1, and Nocodazole. In contrast, the APAM induced minimal cell death, mROS generation, mLPO accumulation, and MPMC in fibroblasts. These results suggest that MPMC occurs in a tumor-specific manner via mitochondrial oxidative stress and microtubule-driven mitochondrial motility. MPMC induction might serve as a promising target for exerting tumor-specific cytotoxicity.
Collapse
|
127
|
Wang WA, Demaurex N. The mammalian trafficking chaperone protein UNC93B1 maintains the ER calcium sensor STIM1 in a dimeric state primed for translocation to the ER cortex. J Biol Chem 2022; 298:101607. [PMID: 35065962 PMCID: PMC8857484 DOI: 10.1016/j.jbc.2022.101607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 01/28/2023] Open
Abstract
The stromal interaction molecule 1 (STIM1) is an endoplasmic reticulum (ER) Ca2+ sensor that regulates the activity of Orai plasma membrane Ca2+ channels to mediate the store-operated Ca2+ entry pathway essential for immunity. Uncoordinated 93 homolog B1 (UNC93B1) is a multiple membrane-spanning ER protein that acts as a trafficking chaperone by guiding nucleic-acid sensing toll-like receptors to their respective endosomal signaling compartments. We previously showed that UNC93B1 interacts with STIM1 to promote antigen cross-presentation in dendritic cells, but the STIM1 binding site(s) and activation step(s) impacted by this interaction remained unknown. In this study, we show that UNC93B1 interacts with STIM1 in the ER lumen by binding to residues in close proximity to the transmembrane domain. Cysteine crosslinking in vivo showed that UNC93B1 binding promotes the zipping of transmembrane and proximal cytosolic helices within resting STIM1 dimers, priming STIM1 for translocation. In addition, we show that UNC93B1 deficiency reduces store-operated Ca2+ entry and STIM1-Orai1 interactions and targets STIM1 to lighter ER domains, whereas UNC93B1 expression accelerates the recruitment of STIM1 to cortical ER domains. We conclude that UNC93B1 therefore acts as a trafficking chaperone by maintaining the pool of resting STIM1 proteins in a state primed for activation, enabling their rapid translocation in an extended conformation to cortical ER signaling compartments.
Collapse
Affiliation(s)
- Wen-An Wang
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
128
|
Sánchez-Adriá IE, Sanmartín G, Prieto JA, Estruch F, Randez-Gil F. Slt2 Is Required to Activate ER-Stress-Protective Mechanisms through TORC1 Inhibition and Hexosamine Pathway Activation. J Fungi (Basel) 2022; 8:jof8020092. [PMID: 35205847 PMCID: PMC8877190 DOI: 10.3390/jof8020092] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/07/2023] Open
Abstract
Slt2, the MAPK of the cell wall integrity (CWI) pathway, connects different signaling pathways and performs different functions in the protective response of S. cerevisiae to stress. Previous work has evidenced the relation of the CWI pathway and the unfolded protein response (UPR), a transcriptional program activated upon endoplasmic reticulum (ER) stress. However, the mechanisms of crosstalk between these pathways and the targets regulated by Slt2 under ER stress remain unclear. Here, we demonstrated that ectopic expression of GFA1, the gene encoding the first enzyme in the synthesis of UDP-GlcNAc by the hexosamine biosynthetic pathway (HBP) or supplementation of the growth medium with glucosamine (GlcN), increases the tolerance of slt2 mutant cells to different ER-stress inducers. Remarkably, GlcN also alleviates the sensitivity phenotype of cells lacking IRE1 or HAC1, the main actors in controlling the UPR. The exogenous addition of GlcN reduced the abundance of glycosylated proteins and triggered autophagy. We also found that TORC1, the central stress and growth controller, is inhibited by tunicamycin exposure in cells of the wild-type strain but not in those lacking Slt2. Consistent with this, the tunicamycin-induced activation of autophagy and the increased synthesis of ATP in response to ER stress were absent by knock-out of SLT2. Altogether, our data placed Slt2 as an essential actor of the ER stress response by regulating the HBP activity and the TORC1-dependent signaling.
Collapse
Affiliation(s)
- Isabel E. Sánchez-Adriá
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain; (I.E.S.-A.); (G.S.); (J.A.P.)
| | - Gemma Sanmartín
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain; (I.E.S.-A.); (G.S.); (J.A.P.)
| | - Jose A. Prieto
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain; (I.E.S.-A.); (G.S.); (J.A.P.)
| | - Francisco Estruch
- Departament of Biochemistry and Molecular Biology, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain;
| | - Francisca Randez-Gil
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain; (I.E.S.-A.); (G.S.); (J.A.P.)
- Correspondence:
| |
Collapse
|
129
|
Hijazi I, Wang E, Orozco M, Pelton S, Chang A. Peroxisomal support of mitochondrial respiratory efficiency promotes ER stress survival. J Cell Sci 2022; 135:273605. [PMID: 34854901 PMCID: PMC8767275 DOI: 10.1242/jcs.259254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/18/2021] [Indexed: 01/12/2023] Open
Abstract
Endoplasmic reticulum stress (ERS) occurs when cellular demand for protein folding exceeds the capacity of the organelle. Adaptation and cell survival in response to ERS requires a critical contribution by mitochondria and peroxisomes. During ERS responses, mitochondrial respiration increases to ameliorate reactive oxygen species (ROS) accumulation. We now show in yeast that peroxisome abundance also increases to promote an adaptive response. In pox1Δ cells, which are defective in peroxisomal β-oxidation of fatty acids, the respiratory response to ERS is impaired and ROS accrues. However, the respiratory response to ERS is rescued and ROS production is mitigated in pox1Δ cells overexpressing Mpc1, the mitochondrial pyruvate carrier that provides another source of acetyl CoA to fuel the tricarboxylic acid cycle and oxidative phosphorylation. Using proteomics, select mitochondrial proteins were identified that undergo upregulation upon ERS to remodel the respiratory machinery. The abundance of several peroxisome-based proteins was also increased, corroborating the role of peroxisomes in ERS adaptation. Finally, ERS stimulates assembly of respiratory complexes into higher-order supercomplexes, underlying increased electron transfer efficiency. Our results highlight peroxisomal and mitochondrial support for ERS adaptation to favor cell survival.
Collapse
|
130
|
Tian C, Li D, Fu J. Molecular Mechanism of Caffeine in Preventing Bronchopulmonary Dysplasia in Premature Infants. Front Pediatr 2022; 10:902437. [PMID: 35795332 PMCID: PMC9251307 DOI: 10.3389/fped.2022.902437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic respiratory complication commonly seen in premature infants. Following continuous advances in neonatal intensive care diagnosis and treatment technology, an increasing number of premature babies are being treated successfully. Despite these remarkable improvements, there has been no significant decline in the incidence of BPD; in fact, its incidence has increased as more extremely preterm infants survive. Therefore, in view of the impact of BPD on the physical and mental health of children and the increased familial and social burden on these children, early prevention of BPD is emphasized. In recent decades, the clinical application of caffeine in treating primary apnea in premature infants was shown not only to stimulate the respiratory center but also to confer obvious protection to the nervous and respiratory systems. Numerous clinical cross-sectional and longitudinal studies have shown that caffeine plays a significant role in the prevention and treatment of BPD, but there is a lack of overall understanding of its potential molecular mechanisms. In this review, we summarize the possible molecular mechanisms of caffeine in the prevention or treatment of BPD, aiming to better guide its clinical application.
Collapse
Affiliation(s)
- Congliang Tian
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Pediatrics, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Danni Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
131
|
Dey S, Fageria L, Sharma A, Mukherjee S, Pande S, Chowdhury R, Chowdhury S. Silver nanoparticle-induced alteration of mitochondrial and ER homeostasis affects human breast cancer cell fate. Toxicol Rep 2022; 9:1977-1984. [DOI: 10.1016/j.toxrep.2022.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
|
132
|
Soto-Moreno EJ, Balboula A, Spinka C, Rivera RM. Serum supplementation during bovine embryo culture affects their development and proliferation through macroautophagy and endoplasmic reticulum stress regulation. PLoS One 2021; 16:e0260123. [PMID: 34882691 PMCID: PMC8659681 DOI: 10.1371/journal.pone.0260123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/02/2021] [Indexed: 11/18/2022] Open
Abstract
Serum supplementation during bovine embryo culture has been demonstrated to promote cell proliferation and preimplantation embryo development. However, these desirable outcomes, have been associated with gene expression alterations of pathways involved in macroautophagy, growth, and development at the blastocyst stage, as well as with developmental anomalies such as fetal overgrowth and placental malformations. In order to start dissecting the molecular pathways by which serum supplementation of the culture medium during the preimplantation stage promotes developmental abnormalities, we examined blastocyst morphometry, inner cell mass and trophectoderm cell allocations, macroautophagy, and endoplasmic reticulum stress. On day 5 post-insemination, > 16 cells embryos were selected and cultured in medium containing 10% serum or left as controls. Embryo diameter, inner cell mass and trophectoderm cell number, and macroautophagy were measured on day 8 blastocysts (BL) and expanded blastocysts (XBL). On day 5 and day 8, we assessed transcript level of the ER stress markers HSPA5, ATF4, MTHFD2, and SHMT2 as well as XBP1 splicing (a marker of the unfolded protein response). Serum increased diameter and proliferation of embryos when compared to the no-serum group. In addition, serum increased macroautophagy of BL when compared to controls, while the opposite was true for XBL. None of the genes analyzed was differentially expressed at any stage, except that serum decreased HSPA5 in day 5 > 16 cells stage embryos. XBP1 splicing was decreased in BL when compared to XBL, but only in the serum group. Our data suggest that serum rescues delayed embryos by alleviating endoplasmic reticulum stress and promotes development of advanced embryos by decreasing macroautophagy.
Collapse
Affiliation(s)
- Edgar Joel Soto-Moreno
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States of America
| | - Ahmed Balboula
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States of America
| | - Christine Spinka
- College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States of America
| | - Rocío Melissa Rivera
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States of America
| |
Collapse
|
133
|
Wu B, Zhao TV, Jin K, Hu Z, Abdel MP, Warrington KJ, Goronzy JJ, Weyand CM. Mitochondrial aspartate regulates TNF biogenesis and autoimmune tissue inflammation. Nat Immunol 2021; 22. [PMID: 34811544 PMCID: PMC8756813 DOI: 10.1038/s41590-021-01065-2 10.1038/s41590-021-01065-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Misdirected immunity gives rise to the autoimmune tissue inflammation of rheumatoid arthritis, in which excess production of the cytokine tumor necrosis factor (TNF) is a central pathogenic event. Mechanisms underlying the breakdown of self-tolerance are unclear, but T cells in the arthritic joint have a distinctive metabolic signature of ATPlo acetyl-CoAhi proinflammatory effector cells. Here we show that a deficiency in the production of mitochondrial aspartate is an important abnormality in these autoimmune T cells. Shortage of mitochondrial aspartate disrupted the regeneration of the metabolic cofactor nicotinamide adenine dinucleotide, causing ADP deribosylation of the endoplasmic reticulum (ER) sensor GRP78/BiP. As a result, ribosome-rich ER membranes expanded, promoting co-translational translocation and enhanced biogenesis of transmembrane TNF. ERrich T cells were the predominant TNF producers in the arthritic joint. Transfer of intact mitochondria into T cells, as well as supplementation of exogenous aspartate, rescued the mitochondria-instructed expansion of ER membranes and suppressed TNF release and rheumatoid tissue inflammation.
Collapse
Affiliation(s)
- Bowen Wu
- Department of Medicine, Mayo College of Medicine, Rochester, MN 55905, USA
| | - Tuantuan V. Zhao
- Department of Medicine, Mayo College of Medicine, Rochester, MN 55905, USA
| | - Ke Jin
- Department of Medicine, Mayo College of Medicine, Rochester, MN 55905, USA
| | - Zhaolan Hu
- Department of Medicine, Mayo College of Medicine, Rochester, MN 55905, USA
| | - Matthew P. Abdel
- Department of Orthopedic Surgery, Mayo College of Medicine, Rochester, MN 55905, USA
| | - Ken J. Warrington
- Department of Medicine, Mayo College of Medicine, Rochester, MN 55905, USA
| | - Jörg J. Goronzy
- Department of Medicine, Mayo College of Medicine, Rochester, MN 55905, USA
| | - Cornelia M. Weyand
- Department of Medicine, Mayo College of Medicine, Rochester, MN 55905, USA,Corresponding author: Cornelia M. Weyand, Department of Medicine, Mayo College of Medicine and Sciences, Rochester, MN 55901;
| |
Collapse
|
134
|
Wu B, Zhao TV, Jin K, Hu Z, Abdel MP, Warrington KJ, Goronzy JJ, Weyand CM. Mitochondrial aspartate regulates TNF biogenesis and autoimmune tissue inflammation. Nat Immunol 2021; 22:1551-1562. [PMID: 34811544 PMCID: PMC8756813 DOI: 10.1038/s41590-021-01065-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/01/2021] [Indexed: 01/03/2023]
Abstract
Misdirected immunity gives rise to the autoimmune tissue inflammation of rheumatoid arthritis, in which excess production of the cytokine tumor necrosis factor (TNF) is a central pathogenic event. Mechanisms underlying the breakdown of self-tolerance are unclear, but T cells in the arthritic joint have a distinctive metabolic signature of ATPlo acetyl-CoAhi proinflammatory effector cells. Here we show that a deficiency in the production of mitochondrial aspartate is an important abnormality in these autoimmune T cells. Shortage of mitochondrial aspartate disrupted the regeneration of the metabolic cofactor nicotinamide adenine dinucleotide, causing ADP deribosylation of the endoplasmic reticulum (ER) sensor GRP78/BiP. As a result, ribosome-rich ER membranes expanded, promoting co-translational translocation and enhanced biogenesis of transmembrane TNF. ERrich T cells were the predominant TNF producers in the arthritic joint. Transfer of intact mitochondria into T cells, as well as supplementation of exogenous aspartate, rescued the mitochondria-instructed expansion of ER membranes and suppressed TNF release and rheumatoid tissue inflammation.
Collapse
Affiliation(s)
- Bowen Wu
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Tuantuan V Zhao
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Ke Jin
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Zhaolan Hu
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Matthew P Abdel
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Ken J Warrington
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Jörg J Goronzy
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- School of Medicine, Stanford University, Stanford, CA, USA
| | - Cornelia M Weyand
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
- School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
135
|
Ziegler DV, Martin N, Bernard D. Cellular senescence links mitochondria-ER contacts and aging. Commun Biol 2021; 4:1323. [PMID: 34819602 PMCID: PMC8613202 DOI: 10.1038/s42003-021-02840-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/30/2021] [Indexed: 12/11/2022] Open
Abstract
Membrane contact sites emerged in the last decade as key players in the integration, regulation and transmission of many signals within cells, with critical impact in multiple pathophysiological contexts. Numerous studies accordingly point to a role for mitochondria-endoplasmic reticulum contacts (MERCs) in modulating aging. Nonetheless, the driving cellular mechanisms behind this role remain unclear. Recent evidence unravelled that MERCs regulate cellular senescence, a state of permanent proliferation arrest associated with a pro-inflammatory secretome, which could mediate MERC impact on aging. Here we discuss this idea in light of recent advances supporting an interplay between MERCs, cellular senescence and aging.
Collapse
Affiliation(s)
- Dorian V Ziegler
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France.
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| | - Nadine Martin
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France.
| | - David Bernard
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France.
| |
Collapse
|
136
|
Williamson M, Moustaid-Moussa N, Gollahon L. The Molecular Effects of Dietary Acid Load on Metabolic Disease (The Cellular PasaDoble: The Fast-Paced Dance of pH Regulation). FRONTIERS IN MOLECULAR MEDICINE 2021; 1:777088. [PMID: 39087082 PMCID: PMC11285710 DOI: 10.3389/fmmed.2021.777088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/27/2021] [Indexed: 08/02/2024]
Abstract
Metabolic diseases are becoming more common and more severe in populations adhering to western lifestyle. Since metabolic conditions are highly diet and lifestyle dependent, it is suggested that certain diets are the cause for a wide range of metabolic dysfunctions. Oxidative stress, excess calcium excretion, inflammation, and metabolic acidosis are common features in the origins of most metabolic disease. These primary manifestations of "metabolic syndrome" can lead to insulin resistance, diabetes, obesity, and hypertension. Further complications of the conditions involve kidney disease, cardiovascular disease, osteoporosis, and cancers. Dietary analysis shows that a modern "Western-style" diet may facilitate a disruption in pH homeostasis and drive disease progression through high consumption of exogenous acids. Because so many physiological and cellular functions rely on acid-base reactions and pH equilibrium, prolonged exposure of the body to more acids than can effectively be buffered, by chronic adherence to poor diet, may result in metabolic stress followed by disease. This review addresses relevant molecular pathways in mammalian cells discovered to be sensitive to acid - base equilibria, their cellular effects, and how they can cascade into an organism-level manifestation of Metabolic Syndromes. We will also discuss potential ways to help mitigate this digestive disruption of pH and metabolic homeostasis through dietary change.
Collapse
Affiliation(s)
- Morgan Williamson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Naima Moustaid-Moussa
- Department of Nutrition Sciences, Texas Tech University, Lubbock, TX, United States
- Obesity Research Institute, Texas Tech University, Lubbock, TX, United States
| | - Lauren Gollahon
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
- Department of Nutrition Sciences, Texas Tech University, Lubbock, TX, United States
- Obesity Research Institute, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
137
|
Lim Y, Cho IT, Rennke HG, Cho G. β2-adrenergic receptor regulates ER-mitochondria contacts. Sci Rep 2021; 11:21477. [PMID: 34728663 PMCID: PMC8563895 DOI: 10.1038/s41598-021-00801-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/07/2021] [Indexed: 12/05/2022] Open
Abstract
Interactions between the endoplasmic reticulum (ER) and mitochondria (Mito) are crucial for many cellular functions, and their interaction levels change dynamically depending on the cellular environment. Little is known about how the interactions between these organelles are regulated within the cell. Here we screened a compound library to identify chemical modulators for ER-Mito contacts in HEK293T cells. Multiple agonists of G-protein coupled receptors (GPCRs), beta-adrenergic receptors (β-ARs) in particular, scored in this screen. Analyses in multiple orthogonal assays validated that β2-AR activation promotes physical and functional interactions between the two organelles. Furthermore, we have elucidated potential downstream effectors mediating β2-AR-induced ER-Mito contacts. Together our study identifies β2-AR signaling as an important regulatory pathway for ER-Mito coupling and highlights the role of these contacts in responding to physiological demands or stresses.
Collapse
Affiliation(s)
- Youngshin Lim
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Il-Taeg Cho
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Helmut G Rennke
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ginam Cho
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
138
|
Proulx J, Park IW, Borgmann K. Cal'MAM'ity at the Endoplasmic Reticulum-Mitochondrial Interface: A Potential Therapeutic Target for Neurodegeneration and Human Immunodeficiency Virus-Associated Neurocognitive Disorders. Front Neurosci 2021; 15:715945. [PMID: 34744606 PMCID: PMC8566765 DOI: 10.3389/fnins.2021.715945] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/10/2021] [Indexed: 01/21/2023] Open
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle and serves as the primary site for intracellular calcium storage, lipid biogenesis, protein synthesis, and quality control. Mitochondria are responsible for producing the majority of cellular energy required for cell survival and function and are integral for many metabolic and signaling processes. Mitochondria-associated ER membranes (MAMs) are direct contact sites between the ER and mitochondria that serve as platforms to coordinate fundamental cellular processes such as mitochondrial dynamics and bioenergetics, calcium and lipid homeostasis, autophagy, apoptosis, inflammation, and intracellular stress responses. Given the importance of MAM-mediated mechanisms in regulating cellular fate and function, MAMs are now known as key molecular and cellular hubs underlying disease pathology. Notably, neurons are uniquely susceptible to mitochondrial dysfunction and intracellular stress, which highlights the importance of MAMs as potential targets to manipulate MAM-associated mechanisms. However, whether altered MAM communication and connectivity are causative agents or compensatory mechanisms in disease development and progression remains elusive. Regardless, exploration is warranted to determine if MAMs are therapeutically targetable to combat neurodegeneration. Here, we review key MAM interactions and proteins both in vitro and in vivo models of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. We further discuss implications of MAMs in HIV-associated neurocognitive disorders (HAND), as MAMs have not yet been explored in this neuropathology. These perspectives specifically focus on mitochondrial dysfunction, calcium dysregulation and ER stress as notable MAM-mediated mechanisms underlying HAND pathology. Finally, we discuss potential targets to manipulate MAM function as a therapeutic intervention against neurodegeneration. Future investigations are warranted to better understand the interplay and therapeutic application of MAMs in glial dysfunction and neurotoxicity.
Collapse
Affiliation(s)
| | | | - Kathleen Borgmann
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center (HSC), Fort Worth, TX, United States
| |
Collapse
|
139
|
Qaisar R, Ustrana S, Muhammad T, Shah I. Sarcopenia in pulmonary diseases is associated with elevated sarcoplasmic reticulum stress and myonuclear disorganization. Histochem Cell Biol 2021; 157:93-105. [PMID: 34665327 DOI: 10.1007/s00418-021-02043-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is frequently associated with age-related muscle loss or sarcopenia. However, the exact molecular mechanism of muscle loss in COPD remains elusive. We investigated the association of chronic dysregulation of sarcoplasmic reticulum (SR) protein homeostasis (a condition called SR stress) and myonuclear disorganization with sarcopenia in patients with COPD. Markers of SR stress and their downstream consequences, including apoptosis and inflammation, were upregulated in patients with COPD. The maximal SR Ca2+ ATPase (SERCA) activity was significantly reduced in advanced COPD as compared to healthy controls. Single muscle fiber diameter and cytoplasmic domain per myonucleus were significantly smaller in patients with advanced COPD than in healthy controls. Increased disruption of myonuclear organization was found in the COPD patients as compared to healthy controls. These changes in SR dysfunction were accompanied by elevated global levels of oxidative stress, including lipid peroxidation and mitochondrial reactive oxygen species (ROS) production. Altogether, our data suggest that muscle weakness in advanced COPD is in part associated with the disruption of SR protein and calcium homeostasis and their pathological consequences.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Basic Medical Sciences, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates.
| | - Shahjahan Ustrana
- Department of Biochemistry, Gomal Medical College, Dera Ismail Khan, 29050, Pakistan
| | - Tahir Muhammad
- Department of Biochemistry, Gomal Medical College, Dera Ismail Khan, 29050, Pakistan
| | - Islam Shah
- Al-Qassimi Hospital, 27272, Sharjah, United Arab Emirates
| |
Collapse
|
140
|
Specific subdomain localization of ER resident proteins and membrane contact sites resolved by electron microscopy. Eur J Cell Biol 2021; 100:151180. [PMID: 34653930 DOI: 10.1016/j.ejcb.2021.151180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022] Open
Abstract
The endoplasmic reticulum (ER) is a large, single-copy, membrane-bound organelle that comprises an elaborate 3D network of diverse structural subdomains, including highly curved tubules, flat sheets, and parts that form contacts with nearly every other organelle. The dynamic and complex organization of the ER poses a major challenge on understanding how its functioning - maintenance of the structure, distribution of its functions and communication with other organelles - is orchestrated. In this study, we resolved a unique localization profile within the ER network for several resident ER proteins representing a broad range of functions associated with the ER using immuno-electron microscopy and calculation of a relative labeling index (RLI). Our results demonstrated the effect of changing cellular environment on protein localization and highlighted the importance of correct protein expression level when analyzing its localization at subdomain resolution. We present new software tools for anonymization of images for blind analysis and for quantitative assessment of membrane contact sites (MCSs) from thin section transmission electron microscopy micrographs. The analysis of ER-mitochondria contacts suggested the presence of at least three different types of MCSs that responded differently to changes in cellular lipid loading status.
Collapse
|
141
|
Mohamed Asik R, Suganthy N, Aarifa MA, Kumar A, Szigeti K, Mathe D, Gulyás B, Archunan G, Padmanabhan P. Alzheimer's Disease: A Molecular View of β-Amyloid Induced Morbific Events. Biomedicines 2021; 9:biomedicines9091126. [PMID: 34572312 PMCID: PMC8468668 DOI: 10.3390/biomedicines9091126] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022] Open
Abstract
Amyloid-β (Aβ) is a dynamic peptide of Alzheimer’s disease (AD) which accelerates the disease progression. At the cell membrane and cell compartments, the amyloid precursor protein (APP) undergoes amyloidogenic cleavage by β- and γ-secretases and engenders the Aβ. In addition, externally produced Aβ gets inside the cells by receptors mediated internalization. An elevated amount of Aβ yields spontaneous aggregation which causes organelles impairment. Aβ stimulates the hyperphosphorylation of tau protein via acceleration by several kinases. Aβ travels to the mitochondria and interacts with its functional complexes, which impairs the mitochondrial function leading to the activation of apoptotic signaling cascade. Aβ disrupts the Ca2+ and protein homeostasis of the endoplasmic reticulum (ER) and Golgi complex (GC) that promotes the organelle stress and inhibits its stress recovery machinery such as unfolded protein response (UPR) and ER-associated degradation (ERAD). At lysosome, Aβ precedes autophagy dysfunction upon interacting with autophagy molecules. Interestingly, Aβ act as a transcription regulator as well as inhibits telomerase activity. Both Aβ and p-tau interaction with neuronal and glial receptors elevate the inflammatory molecules and persuade inflammation. Here, we have expounded the Aβ mediated events in the cells and its cosmopolitan role on neurodegeneration, and the current clinical status of anti-amyloid therapy.
Collapse
Affiliation(s)
- Rajmohamed Mohamed Asik
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Natarajan Suganthy
- Department of Nanoscience and Technology, Alagappa University, Karaikudi 630003, Tamil Nadu, India;
| | - Mohamed Asik Aarifa
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Arvind Kumar
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India;
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (K.S.); (D.M.)
- CROmed Translational Research Centers, 1094 Budapest, Hungary
| | - Domokos Mathe
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (K.S.); (D.M.)
- CROmed Translational Research Centers, 1094 Budapest, Hungary
- In Vivo Imaging Advanced Core Facility, Hungarian Center of Excellence for Molecular Medicine (HCEMM), 1094 Budapest, Hungary
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Govindaraju Archunan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
- Marudupandiyar College, Thanjavur 613403, Tamil Nadu, India
- Correspondence: (G.A.); (P.P.)
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Correspondence: (G.A.); (P.P.)
| |
Collapse
|
142
|
Lam J, Katti P, Biete M, Mungai M, AshShareef S, Neikirk K, Garza Lopez E, Vue Z, Christensen TA, Beasley HK, Rodman TA, Murray SA, Salisbury JL, Glancy B, Shao J, Pereira RO, Abel ED, Hinton A. A Universal Approach to Analyzing Transmission Electron Microscopy with ImageJ. Cells 2021; 10:2177. [PMID: 34571826 PMCID: PMC8465115 DOI: 10.3390/cells10092177] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Transmission electron microscopy (TEM) is widely used as an imaging modality to provide high-resolution details of subcellular components within cells and tissues. Mitochondria and endoplasmic reticulum (ER) are organelles of particular interest to those investigating metabolic disorders. A straightforward method for quantifying and characterizing particular aspects of these organelles would be a useful tool. In this protocol, we outline how to accurately assess the morphology of these important subcellular structures using open source software ImageJ, originally developed by the National Institutes of Health (NIH). Specifically, we detail how to obtain mitochondrial length, width, area, and circularity, in addition to assessing cristae morphology and measuring mito/endoplasmic reticulum (ER) interactions. These procedures provide useful tools for quantifying and characterizing key features of sub-cellular morphology, leading to accurate and reproducible measurements and visualizations of mitochondria and ER.
Collapse
Affiliation(s)
- Jacob Lam
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, USA; (J.L.); (S.A.); (R.O.P.); (E.D.A.)
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, USA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA; (P.K.); (B.G.)
| | - Michelle Biete
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili St, Hilo, HI 96720, USA; (M.B.); (K.N.)
| | - Margaret Mungai
- Department of Molecular and Cell Biology, University of California Berkeley, 142 Weill Hall, Berkeley, CA 94720, USA;
| | - Salma AshShareef
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, USA; (J.L.); (S.A.); (R.O.P.); (E.D.A.)
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, USA
| | - Kit Neikirk
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili St, Hilo, HI 96720, USA; (M.B.); (K.N.)
| | - Edgar Garza Lopez
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235, USA; (E.G.L.); (Z.V.); (H.K.B.); (T.A.R.)
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235, USA; (E.G.L.); (Z.V.); (H.K.B.); (T.A.R.)
| | - Trace A. Christensen
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; (T.A.C.); (J.L.S.)
| | - Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235, USA; (E.G.L.); (Z.V.); (H.K.B.); (T.A.R.)
| | - Taylor A. Rodman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235, USA; (E.G.L.); (Z.V.); (H.K.B.); (T.A.R.)
| | - Sandra A. Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, 3550 Terrace St., Pittsburgh, PA 15213, USA;
| | - Jeffrey L. Salisbury
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; (T.A.C.); (J.L.S.)
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Brian Glancy
- National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA; (P.K.); (B.G.)
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA 52242, USA;
| | - Renata O. Pereira
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, USA; (J.L.); (S.A.); (R.O.P.); (E.D.A.)
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, USA
| | - E. Dale Abel
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, USA; (J.L.); (S.A.); (R.O.P.); (E.D.A.)
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235, USA; (E.G.L.); (Z.V.); (H.K.B.); (T.A.R.)
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; (T.A.C.); (J.L.S.)
| |
Collapse
|
143
|
GRP78 Overexpression Triggers PINK1-IP 3R-Mediated Neuroprotective Mitophagy. Biomedicines 2021; 9:biomedicines9081039. [PMID: 34440243 PMCID: PMC8391647 DOI: 10.3390/biomedicines9081039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
An experimental model of spinal root avulsion (RA) is useful to study causal molecular programs that drive retrograde neurodegeneration after neuron-target disconnection. This neurodegenerative process shares common characteristics with neuronal disease-related processes such as the presence of endoplasmic reticulum (ER) stress and autophagy flux blockage. We previously found that the overexpression of GRP78 promoted motoneuronal neuroprotection after RA. After that, we aimed to unravel the underlying mechanism by carrying out a comparative unbiased proteomic analysis and pharmacological and genetic interventions. Unexpectedly, mitochondrial factors turned out to be most altered when GRP78 was overexpressed, and the abundance of engulfed mitochondria, a hallmark of mitophagy, was also observed by electronic microscopy in RA-injured motoneurons after GRP78 overexpression. In addition, GRP78 overexpression increased LC3-mitochondria tagging, promoted PINK1 translocation, mitophagy induction, and recovered mitochondrial function in ER-stressed cells. Lastly, we found that GRP78-promoted pro-survival mitophagy was mediated by PINK1 and IP3R in our in vitro model of motoneuronal death. This data indicates a novel relationship between the GRP78 chaperone and mitophagy, opening novel therapeutical options for drug design to achieve neuroprotection.
Collapse
|
144
|
Lin W, Chen S, Wang Y, Wang M, Lee WYW, Jiang X, Li G. Dynamic regulation of mitochondrial-endoplasmic reticulum crosstalk during stem cell homeostasis and aging. Cell Death Dis 2021; 12:794. [PMID: 34400615 PMCID: PMC8368094 DOI: 10.1038/s41419-021-03912-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023]
Abstract
Cellular therapy exerts profound therapeutic potential for curing a broad spectrum of diseases. Adult stem cells reside within a specified dynamic niche in vivo, which is essential for continuous tissue homeostatic maintenance through balancing self-renewal with lineage selection. Meanwhile, adult stem cells may be multipotent or unipotent, and are present in both quiescent and actively dividing states in vivo of the mammalians, which may switch to each other state in response to biophysical cues through mitochondria-mediated mechanisms, such as alterations in mitochondrial respiration and metabolism. In general, stem cells facilitate tissue repair after tissue-specific homing through various mechanisms, including immunomodulation of local microenvironment, differentiation into functional cells, cell "empowerment" via paracrine secretion, immunoregulation, and intercellular mitochondrial transfer. Interestingly, cell-source-specific features have been reported between different tissue-derived adult stem cells with distinct functional properties due to the different microenvironments in vivo, as well as differential functional properties in different tissue-derived stem cell-derived extracellular vehicles, mitochondrial metabolism, and mitochondrial transfer capacity. Here, we summarized the current understanding on roles of mitochondrial dynamics during stem cell homeostasis and aging, and lineage-specific differentiation. Also, we proposed potential unique mitochondrial molecular signature features between different source-derived stem cells and potential associations between stem cell aging and mitochondria-endoplasmic reticulum (ER) communication, as well as potential novel strategies for anti-aging intervention and healthy aging.
Collapse
Affiliation(s)
- Weiping Lin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Shuxun Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Yan Wang
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ming Wang
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wayne Yuk-Wai Lee
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiaohua Jiang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Faculty of Medicine, MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Gang Li
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
- Faculty of Medicine, MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
145
|
Bhardwaj G, Penniman CM, Jena J, Suarez Beltran PA, Foster C, Poro K, Junck TL, Hinton AO, Souvenir R, Fuqua JD, Morales PE, Bravo-Sagua R, Sivitz WI, Lira VA, Abel ED, O'Neill BT. Insulin and IGF-1 receptors regulate complex-I dependent mitochondrial bioenergetics and supercomplexes via FoxOs in muscle. J Clin Invest 2021; 131:e146415. [PMID: 34343133 DOI: 10.1172/jci146415] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/28/2021] [Indexed: 12/25/2022] Open
Abstract
Decreased skeletal muscle strength and mitochondrial dysfunction are characteristic of diabetes. Action of insulin and IGF-1 through insulin receptor (IR) and IGF-1 receptor (IGF1R) maintain muscle mass via suppression of FoxOs, but whether FoxO activation coordinates atrophy in concert with mitochondrial dysfunction is unknown. We show that mitochondrial respiration and complex-I activity were decreased in streptozotocin (STZ) diabetic muscle, but these defects were reversed following muscle-specific FoxO1/3/4 triple knockout in STZ-FoxO TKO. In the absence of systemic glucose or lipid abnormalities, muscle-specific IR knockout (M-IR-/-) or combined IR/IGF1R knockout (MIGIRKO) impaired mitochondrial respiration, decreased ATP production, and increased ROS. These mitochondrial abnormalities were not present in muscle-specific IR/IGF1R and FoxO1/3/4 quintuple knockout mice (M-QKO). Acute tamoxifen-inducible deletion of IR/IGF1R also decreased muscle pyruvate respiration, complex-I activity, and supercomplex assembly. Although autophagy was increased when IR/IGF1R were deleted in muscle, mitophagy was not increased. Mechanistically, RNA-seq revealed that complex-I core subunits were decreased in STZ-diabetic and MIGIRKO muscle, and these changes were not present with FoxO knockout in STZ-FoxO TKO and M-QKO. Thus, insulin-deficient diabetes or loss of insulin/IGF-1 action in muscle decreases complex-I driven mitochondrial respiration and supercomplex assembly, in part by FoxO-mediated repression of Complex-I subunit expression.
Collapse
Affiliation(s)
- Gourav Bhardwaj
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, United States of America
| | - Christie M Penniman
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, United States of America
| | - Jayashree Jena
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, United States of America
| | - Pablo A Suarez Beltran
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, United States of America
| | - Collin Foster
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, United States of America
| | - Kennedy Poro
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, United States of America
| | - Taylor L Junck
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, United States of America
| | - Antentor O Hinton
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, United States of America
| | - Rhonda Souvenir
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, United States of America
| | - Jordan D Fuqua
- Department of Health and Human Physiology, University of Iowa, Iowa City, United States of America
| | - Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - William I Sivitz
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, United States of America
| | - Vitor A Lira
- Department of Health and Human Physiology, University of Iowa, Iowa City, United States of America
| | - E Dale Abel
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, United States of America
| | - Brian T O'Neill
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, United States of America
| |
Collapse
|
146
|
Hartwick Bjorkman S, Oliveira Pereira R. The Interplay Between Mitochondrial Reactive Oxygen Species, Endoplasmic Reticulum Stress, and Nrf2 Signaling in Cardiometabolic Health. Antioxid Redox Signal 2021; 35:252-269. [PMID: 33599550 PMCID: PMC8262388 DOI: 10.1089/ars.2020.8220] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Mitochondria-derived reactive oxygen species (mtROS) are by-products of normal physiology that may disrupt cellular redox homeostasis on a regular basis. Nonetheless, failure to resolve sustained mitochondrial stress to mitigate high levels of mtROS might contribute to the etiology of numerous pathological conditions, such as obesity, insulin resistance, and cardiovascular disease (CVD). Recent Advances: Notably, recent studies have demonstrated that moderate mitochondrial stress might result in the induction of different stress response pathways that ultimately improve the organism's ability to deal with subsequent stress, a process termed mitohormesis. mtROS have been shown to play a key role in regulating this adaptation. Critical Issue: mtROS regulate the convergence of different signaling pathways that, when disturbed, might impair cardiometabolic health. Conversely, mtROS seem to be required to mediate activation of prosurvival pathways, contributing to improved cardiometabolic fitness. In the present review, we will primarily focus on the role of mtROS in the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway and examine the role of endoplasmic reticulum (ER) stress in coordinating the convergence of ER stress and oxidative stress signaling through activation of Nrf2 and activating transcription factor 4 (ATF4). Future Directions: The mechanisms underlying cardiometabolic protection in response to mitochondrial stress have only started to be investigated. Integrated understanding of how mtROS and ER stress cooperatively promote activation of prosurvival pathways might shed mechanistic insight into the role of mitohormesis in mediating cardiometabolic protection and might inform future therapeutic avenues for the treatment of metabolic diseases contributing to CVD. Antioxid. Redox Signal. 35, 252-269.
Collapse
Affiliation(s)
- Sarah Hartwick Bjorkman
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Renata Oliveira Pereira
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
147
|
Das H, Sarkar S, Paidi RK, Biswas SC. Subtle genomic DNA damage induces intraneuronal production of amyloid-β (1-42) by increasing β-secretase activity. FASEB J 2021; 35:e21569. [PMID: 33864420 DOI: 10.1096/fj.202001676rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 11/11/2022]
Abstract
Aberrant accumulation of amyloid-β (Aβ) in brain is the major trigger for pathogenesis in Alzheimer's disease (AD). It is imperative to understand how Aβ attains such toxic levels in the brain parenchyma. We detected that a subtle and tolerable amount of DNA damage, related to aging, increased intraneuronal Aβ1-42 production both in cultured neuron and in cortex of rodent brain. Strikingly, we also observed elevated levels of mitochondrial fusion and of its major driver protein, MFN2. Hyperfusion of mitochondria may be seen as an adaptive stress response resulting from the induction of ER stress since we detected the activation of both PERK and IRE1α arms of unfolded protein response of ER stress. We found increased phosphorylation of PERK substrate eukaryotic initiation factor 2 α (eIF2α), and upregulation of the downstream effector proteins, ATF4 and CHOP. Concomitantly, increased XBP1 level, the direct effecter protein of IRE-1α, was observed. Reports suggest that eIF2α phosphorylation can increase BACE1 activity, the rate limiting enzyme in Aβ production. Here, we show that inhibiting PERK, decreased Aβ1-42 level while direct BACE1 inhibition, reduced the mitochondrial fusion. We found increased MFN2 expression in young 5xFAD mice when Aβ plaques and neurodegeneration were absent. Thus, our study indicates that mild DNA damage leads to increased Aβ1-42 production almost as a consequence of an initial ER stress-directed protective mitochondrial fusion in brain. We propose that an age-related subtle genomic DNA damage may trigger enhanced intraneuronal Aβ1-42 production in an apparently healthy neuron way before the appearance of clinical symptoms in AD.
Collapse
Affiliation(s)
- Hrishita Das
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sukanya Sarkar
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Ramesh K Paidi
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Subhas C Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
148
|
Hypoxia and the integrated stress response promote pulmonary hypertension and preeclampsia: Implications in drug development. Drug Discov Today 2021; 26:2754-2773. [PMID: 34302972 DOI: 10.1016/j.drudis.2021.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/31/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022]
Abstract
Chronic hypoxia is a common cause of pulmonary hypertension, preeclampsia, and intrauterine growth restriction (IUGR). The molecular mechanisms underlying these diseases are not completely understood. Chronic hypoxia may induce the generation of reactive oxygen species (ROS) in mitochondria, promote endoplasmic reticulum (ER) stress, and result in the integrated stress response (ISR) in the pulmonary artery and uteroplacental tissues. Numerous studies have implicated hypoxia-inducible factors (HIFs), oxidative stress, and ER stress/unfolded protein response (UPR) in the development of pulmonary hypertension, preeclampsia and IUGR. This review highlights the roles of HIFs, mitochondria-derived ROS and UPR, as well as their interplay, in the pathogenesis of pulmonary hypertension and preeclampsia, and their implications in drug development.
Collapse
|
149
|
Casellas-Díaz S, Larramona-Arcas R, Riqué-Pujol G, Tena-Morraja P, Müller-Sánchez C, Segarra-Mondejar M, Gavaldà-Navarro A, Villarroya F, Reina M, Martínez-Estrada OM, Soriano FX. Mfn2 localization in the ER is necessary for its bioenergetic function and neuritic development. EMBO Rep 2021; 22:e51954. [PMID: 34296790 PMCID: PMC8419703 DOI: 10.15252/embr.202051954] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 06/10/2021] [Accepted: 06/23/2021] [Indexed: 12/31/2022] Open
Abstract
Mfn2 is a mitochondrial fusion protein with bioenergetic functions implicated in the pathophysiology of neuronal and metabolic disorders. Understanding the bioenergetic mechanism of Mfn2 may aid in designing therapeutic approaches for these disorders. Here we show using endoplasmic reticulum (ER) or mitochondria‐targeted Mfn2 that Mfn2 stimulation of the mitochondrial metabolism requires its localization in the ER, which is independent of its fusion function. ER‐located Mfn2 interacts with mitochondrial Mfn1/2 to tether the ER and mitochondria together, allowing Ca2+ transfer from the ER to mitochondria to enhance mitochondrial bioenergetics. The physiological relevance of these findings is shown during neurite outgrowth, when there is an increase in Mfn2‐dependent ER‐mitochondria contact that is necessary for correct neuronal arbor growth. Reduced neuritic growth in Mfn2 KO neurons is recovered by the expression of ER‐targeted Mfn2 or an artificial ER‐mitochondria tether, indicating that manipulation of ER‐mitochondria contacts could be used to treat pathologic conditions involving Mfn2.
Collapse
Affiliation(s)
- Sergi Casellas-Díaz
- Department of Cell Biology, Physiology and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Raquel Larramona-Arcas
- Department of Cell Biology, Physiology and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Guillem Riqué-Pujol
- Department of Cell Biology, Physiology and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Paula Tena-Morraja
- Department of Cell Biology, Physiology and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Claudia Müller-Sánchez
- Department of Cell Biology, Physiology and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain
| | - Marc Segarra-Mondejar
- Department of Cell Biology, Physiology and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Aleix Gavaldà-Navarro
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona, Barcelona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona, Barcelona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Manuel Reina
- Department of Cell Biology, Physiology and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain
| | - Ofelia M Martínez-Estrada
- Department of Cell Biology, Physiology and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Francesc X Soriano
- Department of Cell Biology, Physiology and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
150
|
Zhou Y, Murugan DD, Khan H, Huang Y, Cheang WS. Roles and Therapeutic Implications of Endoplasmic Reticulum Stress and Oxidative Stress in Cardiovascular Diseases. Antioxidants (Basel) 2021; 10:antiox10081167. [PMID: 34439415 PMCID: PMC8388996 DOI: 10.3390/antiox10081167] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
In different pathological states that cause endoplasmic reticulum (ER) calcium depletion, altered glycosylation, nutrient deprivation, oxidative stress, DNA damage or energy perturbation/fluctuations, the protein folding process is disrupted and the ER becomes stressed. Studies in the past decade have demonstrated that ER stress is closely associated with pathogenesis of obesity, insulin resistance and type 2 diabetes. Excess nutrients and inflammatory cytokines associated with metabolic diseases can trigger or worsen ER stress. ER stress plays a critical role in the induction of endothelial dysfunction and atherosclerosis. Signaling pathways including AMP-activated protein kinase and peroxisome proliferator-activated receptor have been identified to regulate ER stress, whilst ER stress contributes to the imbalanced production between nitric oxide (NO) and reactive oxygen species (ROS) causing oxidative stress. Several drugs or herbs have been proved to protect against cardiovascular diseases (CVD) through inhibition of ER stress and oxidative stress. The present article reviews the involvement of ER stress and oxidative stress in cardiovascular dysfunction and the potential therapeutic implications.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China;
| | - Dharmani Devi Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Yu Huang
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China;
- Correspondence: ; Tel.: +853-8822-4914
| |
Collapse
|