101
|
Current advanced therapy cell-based medicinal products for type-1-diabetes treatment. Int J Pharm 2018; 543:107-120. [PMID: 29597032 DOI: 10.1016/j.ijpharm.2018.03.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/19/2018] [Accepted: 03/24/2018] [Indexed: 12/11/2022]
Abstract
In the XXI century diabetes mellitus has become one of the main threats to human health with higher incidence in regions such as Europe and North America. Type 1 diabetes mellitus (T1DM) occurs as a consequence of the immune-mediated destruction of insulin producing β-cells located in the endocrine part of the pancreas, the islets of Langerhans. The administration of exogenous insulin through daily injections is the most prominent treatment for T1DM but its administration is frequently associated to failure in glucose metabolism control, finally leading to hyperglycemia episodes. Other approaches have been developed in the past decades, such as whole pancreas and islet allotransplantation, but they are restricted to patients who exhibit frequent episodes of hypoglycemia or renal failure because the lack of donors and islet survival. Moreover, patients transplanted with either whole pancreas or islets require of immune suppression to avoid the rejection of the transplant. Currently, advanced therapy medicinal products (ATMP), such as implantable devices, have been developed in order to reduce immune rejection response while increasing cell survival. To overcome these issues, ATMPs must promote vascularization, guaranteeing the nutritional contribution, while providing O2 until vasculature can surround the device. Moreover, it should help in the immune-protection to avoid acute and chronic rejection. The transplanted cells or islets should be embedded within biomaterials with tunable properties like injectability, stiffness and porosity mimicking natural ECM structural characteristics. And finally, an infinitive cell source that solves the donor scarcity should be found such as insulin producing cells derived from mesenchymal stem cells (MSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Several companies have registered their ATMPs and future studies envision new prototypes. In this review, we will discuss the mechanisms and etiology of diabetes, comparing the clinical trials in the last decades in order to define the main characteristics for future ATMPs.
Collapse
|
102
|
Current developments and applications of microfluidic technology toward clinical translation of nanomedicines. Adv Drug Deliv Rev 2018; 128:54-83. [PMID: 28801093 DOI: 10.1016/j.addr.2017.08.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/21/2017] [Accepted: 08/04/2017] [Indexed: 11/23/2022]
Abstract
Nanoparticulate drug delivery systems hold great potential for the therapy of many diseases, especially cancer. However, the translation of nanoparticulate drug delivery systems from academic research to industrial and clinical practice has been slow. This slow translation can be ascribed to the high batch-to-batch variations and insufficient production rate of the conventional preparation methods, and the lack of technologies for rapid screening of nanoparticulate drug delivery systems with high correlation to the in vivo tests. These issues can be addressed by the microfluidic technologies. For example, microfluidics can not only produce nanoparticles in a well-controlled, reproducible, and high-throughput manner, but also create 3D environments with continuous flow to mimic the physiological and/or pathological processes. This review provides an overview of the microfluidic devices developed to prepare nanoparticulate drug delivery systems, including drug nanosuspensions, polymer nanoparticles, polyplexes, structured nanoparticles and theranostic nanoparticles. We also highlight the recent advances of microfluidic systems in fabricating the increasingly realistic models of the in vivo milieu for rapid screening of nanoparticles. Overall, the microfluidic technologies offer a promise approach to accelerate the clinical translation of nanoparticulate drug delivery systems.
Collapse
|
103
|
Zhang H, Freitas D, Kim HS, Fabijanic K, Li Z, Chen H, Mark MT, Molina H, Martin AB, Bojmar L, Fang J, Rampersaud S, Hoshino A, Matei I, Kenific CM, Nakajima M, Mutvei AP, Sansone P, Buehring W, Wang H, Jimenez JP, Cohen-Gould L, Paknejad N, Brendel M, Manova-Todorova K, Magalhães A, Ferreira JA, Osório H, Silva AM, Massey A, Cubillos-Ruiz JR, Galletti G, Giannakakou P, Cuervo AM, Blenis J, Schwartz R, Brady MS, Peinado H, Bromberg J, Matsui H, Reis CA, Lyden D. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol 2018; 20:332-343. [PMID: 29459780 DOI: 10.1038/s41556-018-0040-4] [Citation(s) in RCA: 1188] [Impact Index Per Article: 169.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/12/2018] [Indexed: 12/11/2022]
Abstract
The heterogeneity of exosomal populations has hindered our understanding of their biogenesis, molecular composition, biodistribution and functions. By employing asymmetric flow field-flow fractionation (AF4), we identified two exosome subpopulations (large exosome vesicles, Exo-L, 90-120 nm; small exosome vesicles, Exo-S, 60-80 nm) and discovered an abundant population of non-membranous nanoparticles termed 'exomeres' (~35 nm). Exomere proteomic profiling revealed an enrichment in metabolic enzymes and hypoxia, microtubule and coagulation proteins as well as specific pathways, such as glycolysis and mTOR signalling. Exo-S and Exo-L contained proteins involved in endosomal function and secretion pathways, and mitotic spindle and IL-2/STAT5 signalling pathways, respectively. Exo-S, Exo-L and exomeres each had unique N-glycosylation, protein, lipid, DNA and RNA profiles and biophysical properties. These three nanoparticle subsets demonstrated diverse organ biodistribution patterns, suggesting distinct biological functions. This study demonstrates that AF4 can serve as an improved analytical tool for isolating extracellular vesicles and addressing the complexities of heterogeneous nanoparticle subpopulations.
Collapse
Affiliation(s)
- Haiying Zhang
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| | - Daniela Freitas
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Han Sang Kim
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.,Yonsei Cancer Center, Division of Medical Oncology, Departments of Internal Medicine, and Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | - Kristina Fabijanic
- Department of Chemistry and Biochemistry, City University of New York, Hunter College, New York, NY, USA
| | - Zhong Li
- Metabolomics Center, University of Illinois, Urbana, IL, USA
| | - Haiyan Chen
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.,Department of Surgical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Milica Tesic Mark
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Alberto Benito Martin
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Linda Bojmar
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Justin Fang
- Department of Chemistry and Biochemistry, City University of New York, Hunter College, New York, NY, USA
| | - Sham Rampersaud
- Department of Chemistry and Biochemistry, City University of New York, Hunter College, New York, NY, USA
| | - Ayuko Hoshino
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Candia M Kenific
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Miho Nakajima
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Anders Peter Mutvei
- Department of Pharmacology, Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Pasquale Sansone
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Weston Buehring
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Huajuan Wang
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Juan Pablo Jimenez
- Microscopy & Image Analysis Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Leona Cohen-Gould
- Microscopy & Image Analysis Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Navid Paknejad
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew Brendel
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katia Manova-Todorova
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ana Magalhães
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Porto, Portugal
| | - José Alexandre Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Porto, Portugal.,Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Dr. António Bernardino de Almeida, Porto, Portugal
| | - Hugo Osório
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Porto, Portugal.,Medical Faculty, University of Porto, Al. Prof. Hernâni Monteiro, Porto, Portugal
| | - André M Silva
- LAVQ-REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Ashish Massey
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Juan R Cubillos-Ruiz
- Microbiology & Immunology in Obstetrics and Gynecology, Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
| | - Giuseppe Galletti
- Pharmacology in Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Paraskevi Giannakakou
- Pharmacology in Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ana Maria Cuervo
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, Bronx, NY, USA
| | - John Blenis
- Department of Pharmacology, Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Robert Schwartz
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mary Sue Brady
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Héctor Peinado
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.,Microenvironment and Metastasis Laboratory, Department of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Jacqueline Bromberg
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hiroshi Matsui
- Department of Chemistry and Biochemistry, City University of New York, Hunter College, New York, NY, USA
| | - Celso A Reis
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Medical Faculty, University of Porto, Al. Prof. Hernâni Monteiro, Porto, Portugal
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA. .,Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
104
|
Ekkelenkamp AE, Elzes MR, Engbersen JFJ, Paulusse JMJ. Responsive crosslinked polymer nanogels for imaging and therapeutics delivery. J Mater Chem B 2018; 6:210-235. [PMID: 32254164 DOI: 10.1039/c7tb02239e] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Water-soluble, nano-sized crosslinked polymer networks, or nanogels, are delivery vehicles, which have highly interesting properties for therapeutic delivery and imaging. Nanogels may also possess responsive properties, depending on the employed polymers, allowing controlled release of therapeutics or image contrast generation upon exposure to physical or (bio)chemical cues. In this review, polymer nanogels are explored for application in imaging as well as for controlled drug and gene delivery. Moreover, nanogels are explored as responsive biomaterials and future applications are highlighted.
Collapse
Affiliation(s)
- Antonie E Ekkelenkamp
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P. O. Box 217, 7500 AE, Enschede, The Netherlands.
| | | | | | | |
Collapse
|
105
|
Sun L, Riedel R, Stanciu SG, Yang F, Hampp N, Xu L, Wu A. Investigations on the elasticity of functional gold nanoparticles using single-molecule force spectroscopy. J Mater Chem B 2018; 6:2960-2971. [DOI: 10.1039/c7tb03309e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this focused review we turn our attention towards several approaches for detecting the elasticity of NPs, systematically summarizing the divergent elasticity values of distinct gold nanoparticles (AuNPs) with different surfaces.
Collapse
Affiliation(s)
- Li Sun
- College of Science
- Nanjing Forestry University
- Nanjing
- P. R. China
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province & Division of Functional Materials and Nanodevices
| | - René Riedel
- Fachbereich Chemie
- Philipps Universität Marburg
- Marburg
- Germany
| | - Stefan G. Stanciu
- Center for Microscopy-Microanalysis and Information Processing
- University Politehnica of Bucharest
- Bucharest
- Romania
| | - Fang Yang
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- P. R. China
| | - Norbert Hampp
- Fachbereich Chemie
- Philipps Universität Marburg
- Marburg
- Germany
| | - Li Xu
- College of Science
- Nanjing Forestry University
- Nanjing
- P. R. China
| | - Aiguo Wu
- CAS Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
- P. R. China
| |
Collapse
|
106
|
Boraschi D, Italiani P, Palomba R, Decuzzi P, Duschl A, Fadeel B, Moghimi SM. Nanoparticles and innate immunity: new perspectives on host defence. Semin Immunol 2017; 34:33-51. [DOI: 10.1016/j.smim.2017.08.013] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023]
|
107
|
|
108
|
Richards DM, Endres RG. How cells engulf: a review of theoretical approaches to phagocytosis. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:126601. [PMID: 28824015 DOI: 10.1088/1361-6633/aa8730] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phagocytosis is a fascinating process whereby a cell surrounds and engulfs particles such as bacteria and dead cells. This is crucial both for single-cell organisms (as a way of acquiring nutrients) and as part of the immune system (to destroy foreign invaders). This whole process is hugely complex and involves multiple coordinated events such as membrane remodelling, receptor motion, cytoskeleton reorganisation and intracellular signalling. Because of this, phagocytosis is an excellent system for theoretical study, benefiting from biophysical approaches combined with mathematical modelling. Here, we review these theoretical approaches and discuss the recent mathematical and computational models, including models based on receptors, models focusing on the forces involved, and models employing energetic considerations. Along the way, we highlight a beautiful connection to the physics of phase transitions, consider the role of stochasticity, and examine links between phagocytosis and other types of endocytosis. We cover the recently discovered multistage nature of phagocytosis, showing that the size of the phagocytic cup grows in distinct stages, with an initial slow stage followed by a much quicker second stage starting around half engulfment. We also address the issue of target shape dependence, which is relevant to both pathogen infection and drug delivery, covering both one-dimensional and two-dimensional results. Throughout, we pay particular attention to recent experimental techniques that continue to inform the theoretical studies and provide a means to test model predictions. Finally, we discuss population models, connections to other biological processes, and how physics and modelling will continue to play a key role in future work in this area.
Collapse
Affiliation(s)
- David M Richards
- Centre for Biomedical Modelling and Analysis, Living Systems Institute, University of Exeter, Exeter, EX4 4QD, United Kingdom. Department of Life Sciences, Imperial College, London, SW7 2AZ, United Kingdom
| | | |
Collapse
|
109
|
Beaune G, Lam AYW, Dufour S, Winnik FM, Brochard-Wyart F. How gluttonous cell aggregates clear substrates coated with microparticles. Sci Rep 2017; 7:15729. [PMID: 29146990 PMCID: PMC5691206 DOI: 10.1038/s41598-017-15665-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/27/2017] [Indexed: 11/09/2022] Open
Abstract
We study the spreading of cell aggregates deposited on adhesive substrates decorated with microparticles (MPs). A cell monolayer expands around the aggregate. The cells on the periphery of the monolayer take up the MPs, clearing the substrate as they progress and forming an aureole of cells filled with MPs. We study the dynamics of spreading and determine the width of the aureole and the level of MP internalization in cells as a function of MP size, composition, and density. From the radius and width of the aureole, we quantify the volume fraction of MPs within the cell, which leads to an easy, fast, and inexpensive measurement of the cell - particle internalization.
Collapse
Affiliation(s)
- Grégory Beaune
- WPI International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Andy Y W Lam
- WPI International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Sylvie Dufour
- Inserm, U955, Equipe 6, Créteil, 94000, France.,Université Paris Est, Faculté de Médecine, Créteil, 94000, France
| | - Françoise M Winnik
- WPI International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan. .,Department of Chemistry, University of Montreal, CP 6128 Succursale Centre Ville, Montreal, QC, H3C3J7, Canada. .,Department of Chemistry and Faculty of Pharmacy, University of Helsinki, FI, 00014, Helsinki, Finland.
| | - Françoise Brochard-Wyart
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France. .,Sorbonne Université, UPMC Univ Paris 06, 75005, Paris, France.
| |
Collapse
|
110
|
Alvey C, Discher DE. Engineering macrophages to eat cancer: from "marker of self" CD47 and phagocytosis to differentiation. J Leukoc Biol 2017; 102:31-40. [PMID: 28522599 PMCID: PMC6608056 DOI: 10.1189/jlb.4ri1216-516r] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 12/20/2022] Open
Abstract
The ability of a macrophage to engulf and break down invading cells and other targets provides a first line of immune defense in nearly all tissues. This defining ability to "phagos" or devour can subsequently activate the entire immune system against foreign and diseased cells, and progress is now being made on a decades-old idea of directing macrophages to phagocytose specific targets, such as cancer cells. Engineered T cells provide precedence with recent clinical successes against liquid tumors, but solid tumors remain a challenge, and a handful of clinical trials seek to exploit the abundance of tumor-associated macrophages instead. Although macrophage differentiation into such phenotypes with deficiencies in phagocytic ability can raise challenges, newly recognized features of cancer cells that might be manipulated to increase the phagocytosis of those cells include ≥1 membrane protein, CD47, which broadly inhibits phagocytosis and is abundantly expressed on all healthy cells. Physical properties of the target also influence phagocytosis and again relate-via cytoskeleton forces-to differentiation pathways in solid tumors. Such pathways extend to mechanosensing by the nuclear lamina, which is known to influence signaling by soluble retinoids that can regulate the macrophage SIRPα, the receptor for CD47. Here, we highlight some of those past, present, and rapidly emerging efforts to understand and control macrophages for cancer therapy.
Collapse
Affiliation(s)
- Cory Alvey
- Systems Pharmacology and Translational Therapeutics Graduate Group, Physical Sciences Oncology Center at Penn, Molecular and Cell Biophysics Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dennis E Discher
- Systems Pharmacology and Translational Therapeutics Graduate Group, Physical Sciences Oncology Center at Penn, Molecular and Cell Biophysics Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
111
|
Frustrated Phagocytic Spreading of J774A-1 Macrophages Ends in Myosin II-Dependent Contraction. Biophys J 2017; 111:2698-2710. [PMID: 28002746 DOI: 10.1016/j.bpj.2016.11.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 10/12/2016] [Accepted: 11/11/2016] [Indexed: 01/13/2023] Open
Abstract
Conventional studies of dynamic phagocytic behavior have been limited in terms of spatial and temporal resolution due to the inherent three-dimensionality and small features of phagocytosis. To overcome these issues, we use a series of frustrated phagocytosis assays to quantitatively characterize phagocytic spreading dynamics. Our investigation reveals that frustrated phagocytic spreading occurs in phases and is punctuated by a distinct period of contraction. The spreading duration and peak contact areas are independent of the surface opsonin density, although the opsonin density does affect the likelihood that a cell will spread. This reinforces the idea that phagocytosis dynamics are primarily dictated by cytoskeletal activity. Structured illumination microscopy reveals that F-actin is reorganized during the course of frustrated phagocytosis. F-actin in early stages is consistent with that observed in lamellipodial protrusions. During the contraction phase, it is bundled into fibers that surround the cell and is reminiscent of a contractile belt. Using traction force microscopy, we show that cells exert significant strain on the underlying substrate during the contraction phase but little strain during the spreading phase, demonstrating that phagocytes actively constrict during late-stage phagocytosis. We also find that late-stage contraction initiates after the cell surface area increases by 225%, which is consistent with the point at which cortical tension begins to rise. Moreover, reducing tension by exposing cells to hypertonic buffer shifts the onset of contraction to occur in larger contact areas. Together, these findings provide further evidence that tension plays a significant role in signaling late-stage phagocytic activity.
Collapse
|
112
|
Abstract
Phagocytes recognize and eliminate pathogens, alert other tissues of impending threats, and provide a link between innate and adaptive immunity. They also maintain tissue homeostasis, consuming dead cells without causing alarm. The receptor engagement, signal transduction, and cytoskeletal rearrangements underlying phagocytosis are paradigmatic of other immune responses and bear similarities to macropinocytosis and cell migration. We discuss how the glycocalyx restricts access to phagocytic receptors, the processes that enable receptor engagement and clustering, and the remodeling of the actin cytoskeleton that controls the mobility of membrane proteins and lipids and provides the mechanical force propelling the phagocyte membrane toward and around the phagocytic prey.
Collapse
Affiliation(s)
- Philip P Ostrowski
- Program in Cell Biology, Peter Gilgan Centre for Research & Learning, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research & Learning, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 290 Victoria Street, Toronto, ON M5C 1N8, Canada.
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research & Learning, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
113
|
Fish MB, Fromen CA, Lopez-Cazares G, Golinski AW, Scott TF, Adili R, Holinstat M, Eniola-Adefeso O. Exploring deformable particles in vascular-targeted drug delivery: Softer is only sometimes better. Biomaterials 2017; 124:169-179. [PMID: 28209527 PMCID: PMC5341378 DOI: 10.1016/j.biomaterials.2017.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 10/20/2022]
Abstract
The ability of vascular-targeted drug carriers (VTCs) to localize and bind to a targeted, diseased endothelium determines their overall clinical utility. Here, we investigate how particle modulus and size determine adhesion of VTCs to the vascular wall under physiological blood flow conditions. In general, deformable microparticles (MPs) outperformed nanoparticles (NPs) in all experimental conditions tested. Our results indicate that MP modulus enhances particle adhesion in a shear-dependent manner. In low shear human blood flow profiles in vitro, low modulus particles showed favorable adhesion, while at high shear, rigid particles showed superior adhesion. This was confirmed in vivo by studying particle adhesion under venous shear profiles in a mouse model of mesenteric inflammation, where MP adhesion was 127% greater (p < 0.0001) for low modulus particles compared to more rigid ones. Mechanistically, we establish that particle collisions with leukocytes drive these trends, rather than differences in particle deformation, localization, or detachment. Overall, this work demonstrates the importance of VTC modulus as a design parameter for enhanced VTC interaction with vascular walls, and thus, contributes important knowledge for development of successful clinical theranostics with applications for many diseases.
Collapse
Affiliation(s)
- Margaret B Fish
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Catherine A Fromen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Genesis Lopez-Cazares
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Alexander W Golinski
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Timothy F Scott
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI 48109, United States
| | - Reheman Adili
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States; Department of Cardiovascular Medicine, Samuel and Jean Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, United States
| | - Omolola Eniola-Adefeso
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
114
|
Chang TZ, Diambou I, Kim JR, Wang B, Champion JA. Host- and pathogen-derived adjuvant coatings on protein nanoparticle vaccines. Bioeng Transl Med 2017; 2:120-130. [PMID: 28516165 PMCID: PMC5412930 DOI: 10.1002/btm2.10052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/02/2016] [Accepted: 12/03/2016] [Indexed: 02/01/2023] Open
Abstract
Nanoparticulate and molecular adjuvants have shown great efficacy in enhancing immune responses, and the immunogenic vaccines of the future will most likely contain both. To investigate the immunostimulatory effects of molecular adjuvants on nanoparticle vaccines, we have designed ovalbumin (OVA) protein nanoparticles coated with two different adjuvants-flagellin (FliC) and immunoglobulin M (IgM). These proteins, derived from Salmonella and mice, respectively, are representatives of pathogen- and host-derived molecules that can enhance immune responses. FliC-coated OVA nanoparticles, soluble FliC (sFliC) admixed with OVA nanoparticles, IgM-coated nanoparticles, and OVA-coated nanoparticles were assessed for immunogenicity in an in vivo mouse immunization study. IgM coatings on nanoparticles significantly enhanced both antibody and T cell responses, and promoted IgG2a class switching but not affinity maturation. FliC-coated nanoparticles and FliC-admixed with nanoparticles both triggered IgG2a class switching, but only FliC-coated nanoparticles enhanced antibody affinity maturation. Our findings that affinity maturation and class switching can be directed independently of one another suggest that adjuvant coatings on nanoparticles can be tailored to generate specific vaccine effector responses against different classes of pathogens.
Collapse
Affiliation(s)
- Timothy Z. Chang
- School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA 30332
| | - Ishatou Diambou
- School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA 30332
| | - Jong Rok Kim
- Institute for Biomedical SciencesGeorgia State UniversityAtlantaGA 30332
| | - Baozhong Wang
- Institute for Biomedical SciencesGeorgia State UniversityAtlantaGA 30332
| | - Julie A. Champion
- School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA 30332
| |
Collapse
|
115
|
Garapaty A, Champion JA. Tunable particles alter macrophage uptake based on combinatorial effects of physical properties. Bioeng Transl Med 2017; 2:92-101. [PMID: 29313025 PMCID: PMC5689517 DOI: 10.1002/btm2.10047] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/31/2022] Open
Abstract
The ability to tune phagocytosis of particle-based therapeutics by macrophages can enhance their delivery to macrophages or reduce their phagocytic susceptibility for delivery to non-phagocytic cells. Since phagocytosis is affected by the physical and chemical properties of particles, it is crucial to identify any interplay between physical properties of particles in altering phagocytic interactions. The combinatorial effect of physical properties size, shape and stiffness was investigated on Fc receptor mediated macrophage interactions by fabrication of layer-by-layer tunable particles of constant surface chemistry. Our results highlight how changing particle stiffness affects phagocytic interaction intricately when combined with varying size or shape. Increase in size plays a dominant role over reduction in stiffness in reducing internalization by macrophages for spherical particles. Internalization of rod-shaped, but not spherical particles, was highly dependent on stiffness. These particles demonstrate the interplay between size, shape and stiffness in interactions of Fc-functionalized particles with macrophages during phagocytosis.
Collapse
Affiliation(s)
- Anusha Garapaty
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA30332
| | - Julie A. Champion
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA30332
| |
Collapse
|
116
|
Yi Y, Sanchez L, Gao Y, Lee K, Yu Y. Interrogating Cellular Functions with Designer Janus Particles. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2017; 29:1448-1460. [PMID: 31530969 PMCID: PMC6748339 DOI: 10.1021/acs.chemmater.6b05322] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Janus particles have two distinct surfaces or compartments. This enables novel applications that are impossible with homogeneous particles, ranging from the engineering of active colloidal metastructures to creating multimodal therapeutic materials. Recent years have witnessed a rapid development of novel Janus structures and exploration of their applications, particularly in the biomedical arena. It, therefore, becomes crucial to understand how Janus particles with surface or structural anisotropy might interact with biological systems and how such interactions may be exploited to manipulate biological responses. This perspective highlights recent studies that have employed Janus particles as novel toolsets to manipulate, measure, and understand cellular functions. Janus particles have been shown to have biological interactions different from uniform particles. Their surface anisotropy has been used to control the cell entry of synthetic particles, to spatially organize stimuli for the activation of immune cells, and to enable direct visualization and measurement of rotational dynamics of particles in living systems. The work included in this perspective showcases the significance of understanding the biological interactions of Janus particles and the tremendous potential of harnessing such interactions to advance the development of Janus structure-based biomaterials.
Collapse
Affiliation(s)
| | | | | | | | - Yan Yu
- Corresponding Author (Y.Yu)
| |
Collapse
|
117
|
Caviglia S, Flores-Benitez D, Lattner J, Luschnig S, Brankatschk M. Rabs on the fly: Functions of Rab GTPases during development. Small GTPases 2017; 10:89-98. [PMID: 28118081 PMCID: PMC6380344 DOI: 10.1080/21541248.2017.1279725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The organization of intracellular transport processes is adapted specifically to different cell types, developmental stages, and physiologic requirements. Some protein traffic routes are universal to all cells and constitutively active, while other routes are cell-type specific, transient, and induced under particular conditions only. Small GTPases of the Rab (Ras related in brain) subfamily are conserved across eukaryotes and regulate most intracellular transit pathways. The complete sets of Rab proteins have been identified in model organisms, and molecular principles underlying Rab functions have been uncovered. Rabs provide intracellular landmarks that define intracellular transport sequences. Nevertheless, it remains a challenge to systematically map the subcellular distribution of all Rabs and their functional interrelations. This task requires novel tools to precisely describe and manipulate the Rab machinery in vivo. Here we discuss recent findings about Rab roles during development and we consider novel approaches to investigate Rab functions in vivo.
Collapse
Affiliation(s)
- Sara Caviglia
- a Danish Stem Cell Center (DanStem), University of Copenhagen , Copenhagen , Denmark.,c Institute of Molecular Life Sciences and Ph.D. Program in Molecular Life Sciences, University of Zurich , Zurich , Switzerland
| | - David Flores-Benitez
- b Max Planck Institute for Cell Biology and Genetics (MPI-CBG) , Dresden , Germany
| | - Johanna Lattner
- b Max Planck Institute for Cell Biology and Genetics (MPI-CBG) , Dresden , Germany
| | - Stefan Luschnig
- c Institute of Molecular Life Sciences and Ph.D. Program in Molecular Life Sciences, University of Zurich , Zurich , Switzerland.,d Institute of Neurobiology and Cluster of Excellence Cells-in-Motion (EXC 1003 - CiM), University of Münster , Münster , Germany
| | - Marko Brankatschk
- e The Biotechnological Center of the TU Dresden (BIOTEC) , Dresden , Germany
| |
Collapse
|
118
|
Yi X, Gao H. Kinetics of receptor-mediated endocytosis of elastic nanoparticles. NANOSCALE 2017; 9:454-463. [PMID: 27934990 DOI: 10.1039/c6nr07179a] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
It is now widely recognized that mechanical properties play critical roles in the cell uptake of nanomaterials. Here we conduct a theoretical study on the kinetics of receptor-mediated endocytosis of elastic nanoparticles that is limited by receptor diffusion, specifically focusing on how the uptake rate depends on the nanoparticle stiffness and size, membrane tension and binding strength between membrane receptors and ligands grafted on the nanoparticle surface. It is shown that, while soft nanoparticles are energetically less prone to full wrapping than stiff ones, the wrapping of the former is kinetically faster than that of the latter. Spherical and cylindrical elastic nanoparticles show dramatic differences in the effect of stiffness on the uptake rate. Additional theoretical analysis is performed to investigate the role of the stochastic receptor-ligand binding in the endocytosis of elastic nanoparticles. The relation between the uptake efficiency and uptake proneness is discussed. This study provides new insight into the elasticity effects on cell uptake and may serve as a design guideline for the controlled endocytosis and diagnostics delivery.
Collapse
Affiliation(s)
- Xin Yi
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA.
| | | |
Collapse
|
119
|
Vaccine Adjuvant Nanotechnologies. MICRO AND NANOTECHNOLOGY IN VACCINE DEVELOPMENT 2017. [PMCID: PMC7151801 DOI: 10.1016/b978-0-323-39981-4.00007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The increasing sophistication of vaccine adjuvant design has been driven by improved understanding of the importance of nanoscale features of adjuvants to their immunological function. Newly available advanced nanomanufacturing techniques now allow very precise control of adjuvant particle size, shape, texture, and surface chemistry. Novel adjuvant concepts include self-assembling particles and targeted immune delivery. These individual concepts can be combined to create a single integrated vaccine nanoparticle-combining antigen, adjuvants, and DC-targeting elements. In the process, the concept of an adjuvant has broadened to include not only immune-stimulatory substances but also any design features that enhance the immune response against the relevant vaccine antigen. The modern definition of an adjuvant includes not only classical immune stimulators but also any aspects of particle size, shape, and surface chemistry that enhance vaccine immunogenicity. It even includes purely physical processes such as texturing of particle surfaces to maximize immunogenicity. Looking forward, adjuvants will increasingly be seen not as separate add-on items but as wholly integrated elements of a complete vaccine delivery package. Hence, vaccine systems will increasingly approach the complexity and sophistication of pathogens themselves, incorporating highly specific particle properties, contents, and behaviors, all designed to maximize immune system recognition and drive the immune response in the specific direction that affords maximal protection.
Collapse
|
120
|
Impact of particle elasticity on particle-based drug delivery systems. Adv Drug Deliv Rev 2017; 108:51-67. [PMID: 26806856 DOI: 10.1016/j.addr.2016.01.007] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 12/21/2022]
Abstract
Modification of nano/micro-particle physical parameters (e.g. size, shape, surface charge) has proven to be an effective method to enhance their delivery abilities. Recently, advances in particle synthesis have facilitated investigations into the role that particle elasticity plays in modulating drug delivery processes. This review will highlight: (i) methods to tune particle elasticity, (ii) the role particle elasticity plays in cellular internalization, (iii) the role of particle elasticity in modulating circulation times, (iv) the effect of particle elasticity on altering biodistribution and tissue targeting, and (v) the application of computational methods to explain the differences in cellular internalization of particles of different elasticities. Overall, literature reports suggest a complex relationship between particle elasticity and drug delivery processes. Despite this complex relationship, it is clear from numerous in vitro and in vivo studies that particle elasticity is an important parameter that can be leveraged to improve blood circulation, tissue targeting, and specific interactions with cells.
Collapse
|
121
|
Mennens SFB, van den Dries K, Cambi A. Role for Mechanotransduction in Macrophage and Dendritic Cell Immunobiology. Results Probl Cell Differ 2017; 62:209-242. [PMID: 28455711 DOI: 10.1007/978-3-319-54090-0_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tissue homeostasis is not only controlled by biochemical signals but also through mechanical forces that act on cells. Yet, while it has long been known that biochemical signals have profound effects on cell biology, the importance of mechanical forces has only been recognized much more recently. The types of mechanical stress that cells experience include stretch, compression, and shear stress, which are mainly induced by the extracellular matrix, cell-cell contacts, and fluid flow. Importantly, macroscale tissue deformation through stretch or compression also affects cellular function.Immune cells such as macrophages and dendritic cells are present in almost all peripheral tissues, and monocytes populate the vasculature throughout the body. These cells are unique in the sense that they are subject to a large variety of different mechanical environments, and it is therefore not surprising that key immune effector functions are altered by mechanical stimuli. In this chapter, we describe the different types of mechanical signals that cells encounter within the body and review the current knowledge on the role of mechanical signals in regulating macrophage, monocyte, and dendritic cell function.
Collapse
Affiliation(s)
- Svenja F B Mennens
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
122
|
Baldwin JG, Wagner F, Martine LC, Holzapfel BM, Theodoropoulos C, Bas O, Savi FM, Werner C, De-Juan-Pardo EM, Hutmacher DW. Periosteum tissue engineering in an orthotopic in vivo platform. Biomaterials 2016; 121:193-204. [PMID: 28092776 DOI: 10.1016/j.biomaterials.2016.11.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/22/2016] [Accepted: 11/14/2016] [Indexed: 01/07/2023]
Abstract
The periosteum plays a critical role in bone homeostasis and regeneration. It contains a vascular component that provides vital blood supply to the cortical bone and an osteogenic niche that acts as a source of bone-forming cells. Periosteal grafts have shown promise in the regeneration of critical size defects, however their limited availability restricts their widespread clinical application. Only a small number of tissue-engineered periosteum constructs (TEPCs) have been reported in the literature. A current challenge in the development of appropriate TEPCs is a lack of pre-clinical models in which they can reliably be evaluated. In this study, we present a novel periosteum tissue engineering concept utilizing a multiphasic scaffold design in combination with different human cell types for periosteal regeneration in an orthotopic in vivo platform. Human endothelial and bone marrow mesenchymal stem cells (BM-MSCs) were used to mirror both the vascular and osteogenic niche respectively. Immunohistochemistry showed that the BM-MSCs maintained their undifferentiated phenotype. The human endothelial cells developed into mature vessels and connected to host vasculature. The addition of an in vitro engineered endothelial network increased vascularization in comparison to cell-free constructs. Altogether, the results showed that the human TEPC (hTEPC) successfully recapitulated the osteogenic and vascular niche of native periosteum, and that the presented orthotopic xenograft model provides a suitable in vivo environment for evaluating scaffold-based tissue engineering concepts exploiting human cells.
Collapse
Affiliation(s)
- J G Baldwin
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - F Wagner
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; Department of Orthopaedic Surgery for the University of Regensburg, Asklepios Klinikum Bad Abbach, Bad Abbach, Germany; Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - L C Martine
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - B M Holzapfel
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; Department of Orthopaedic Surgery, Koenig-Ludwig Haus, Julius-Maximilians-University Wuerzburg, Brettreichstr. 11, 97074 Wuerzburg, Germany
| | - C Theodoropoulos
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - O Bas
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - F M Savi
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - C Werner
- Leibniz Institute of Polymer Research Dresden (IPF), Hohe Str. 6, 01069 Dresden, Germany
| | - E M De-Juan-Pardo
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - D W Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; Institute for Advanced Study, Technical University of Munich (TUM), Munich, Germany.
| |
Collapse
|
123
|
Pratt EC, Shaffer TM, Grimm J. Nanoparticles and radiotracers: advances toward radionanomedicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:872-890. [PMID: 27006133 PMCID: PMC5035177 DOI: 10.1002/wnan.1402] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 12/27/2022]
Abstract
In this study, we cover the convergence of radiochemistry for imaging and therapy with advances in nanoparticle (NP) design for biomedical applications. We first explore NP properties relevant for therapy and theranostics and emphasize the need for biocompatibility. We then explore radionuclide-imaging modalities such as positron emission tomography (PET), single-photon emission computed tomography (SPECT), and Cerenkov luminescence (CL) with examples utilizing radiolabeled NP for imaging. PET and SPECT have served as diagnostic workhorses in the clinic, while preclinical NP design examples of multimodal imaging with radiotracers show promise in imaging and therapy. CL expands the types of radionuclides beyond PET and SPECT tracers to include high-energy electrons (β- ) for imaging purposes. These advances in radionanomedicine will be discussed, showing the potential for radiolabeled NPs as theranostic agents. WIREs Nanomed Nanobiotechnol 2016, 8:872-890. doi: 10.1002/wnan.1402 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Edwin C Pratt
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - Travis M Shaffer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Chemistry, Hunter College and Graduate Center of the City University of New York, New York, NY, USA
| | - Jan Grimm
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
124
|
Antibody-Mediated Internalization of Infectious HIV-1 Virions Differs among Antibody Isotypes and Subclasses. PLoS Pathog 2016; 12:e1005817. [PMID: 27579713 PMCID: PMC5007037 DOI: 10.1371/journal.ppat.1005817] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/19/2016] [Indexed: 12/28/2022] Open
Abstract
Emerging data support a role for antibody Fc-mediated antiviral activity in vaccine efficacy and in the control of HIV-1 replication by broadly neutralizing antibodies. Antibody-mediated virus internalization is an Fc-mediated function that may act at the portal of entry whereby effector cells may be triggered by pre-existing antibodies to prevent HIV-1 acquisition. Understanding the capacity of HIV-1 antibodies in mediating internalization of HIV-1 virions by primary monocytes is critical to understanding their full antiviral potency. Antibody isotypes/subclasses differ in functional profile, with consequences for their antiviral activity. For instance, in the RV144 vaccine trial that achieved partial efficacy, Env IgA correlated with increased risk of HIV-1 infection (i.e. decreased vaccine efficacy), whereas V1-V2 IgG3 correlated with decreased risk of HIV-1 infection (i.e. increased vaccine efficacy). Thus, understanding the different functional attributes of HIV-1 specific IgG1, IgG3 and IgA antibodies will help define the mechanisms of immune protection. Here, we utilized an in vitro flow cytometric method utilizing primary monocytes as phagocytes and infectious HIV-1 virions as targets to determine the capacity of Env IgA (IgA1, IgA2), IgG1 and IgG3 antibodies to mediate HIV-1 infectious virion internalization. Importantly, both broadly neutralizing antibodies (i.e. PG9, 2G12, CH31, VRC01 IgG) and non-broadly neutralizing antibodies (i.e. 7B2 mAb, mucosal HIV-1+ IgG) mediated internalization of HIV-1 virions. Furthermore, we found that Env IgG3 of multiple specificities (i.e. CD4bs, V1-V2 and gp41) mediated increased infectious virion internalization over Env IgG1 of the same specificity, while Env IgA mediated decreased infectious virion internalization compared to IgG1. These data demonstrate that antibody-mediated internalization of HIV-1 virions depends on antibody specificity and isotype. Evaluation of the phagocytic potency of vaccine-induced antibodies and therapeutic antibodies will enable a better understanding of their capacity to prevent and/or control HIV-1 infection in vivo.
Collapse
|
125
|
Lima AC, Alvarez‐Lorenzo C, Mano JF. Design Advances in Particulate Systems for Biomedical Applications. Adv Healthc Mater 2016; 5:1687-723. [PMID: 27332041 DOI: 10.1002/adhm.201600219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/09/2016] [Indexed: 12/13/2022]
Abstract
The search for more efficient therapeutic strategies and diagnosis tools is a continuous challenge. Advances in understanding the biological mechanisms behind diseases and tissues regeneration have widened the field of applications of particulate systems. Particles are no more just protective systems for the encapsulated drugs, but they play an active role in the success of the therapy. Moreover, particles have been explored for innovative purposes as templates for cells growth and as diagnostic tools. Until few years ago the most relevant parameters in particles formulation were the chemistry and the size. Currently, it is known that other physical characteristics can remarkably affect the performance of particulate systems. Particles with non-conventional shapes exhibit advantages due to the increasing circulation time in blood stream, less clearance by the immune system and more efficient cell internalization and trafficking. Creation of compartments has been found useful to control drug release, to tune the transport of substances across biological barriers, to supply the target with more than one bioactive agent or even to act as theranostic systems. It is expected that such complex shaped and compartmentalized systems improve the therapeutic outcomes and also the patient's compliance, acting as advanced devices that serve for simultaneous diagnosis and treatment of the disease, combining agents of very different features, at the same time. In this review, we overview and analyse the most recent advances in particle shape and compartmentalization and applications of newly designed particulate systems in the biomedical field.
Collapse
Affiliation(s)
- Ana Catarina Lima
- 3B's Research Group University of Minho AvePark 4806–909, Taipas Guimarães, Portugal ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Carmen Alvarez‐Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica Facultad de Farmacia Universidad de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - João F. Mano
- 3B's Research Group University of Minho AvePark 4806–909, Taipas Guimarães, Portugal ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães Portugal
| |
Collapse
|
126
|
Benne N, van Duijn J, Kuiper J, Jiskoot W, Slütter B. Orchestrating immune responses: How size, shape and rigidity affect the immunogenicity of particulate vaccines. J Control Release 2016; 234:124-34. [PMID: 27221070 DOI: 10.1016/j.jconrel.2016.05.033] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/13/2016] [Accepted: 05/13/2016] [Indexed: 02/05/2023]
Abstract
Particulate carrier systems are promising drug delivery vehicles for subunit vaccination as they can enhance and direct the type of T cell response. In order to develop vaccines with optimal immunogenicity, a thorough understanding of parameters that could affect the strength and quality of immune responses is required. Pathogens have different dimensions and stimulate the immune system in a specific way. It is therefore not surprising that physicochemical characteristics of particulate vaccines, such as particle size, shape, and rigidity, affect multiple processes that impact their immunogenicity. Among these processes are the uptake of the particles from the site of administration, passage through lymphoid tissue and the uptake, antigen processing and activation of antigen-presenting cells. Herein, we systematically review the role of the size, shape and rigidity of particulate vaccines in enhancing and skewing T cell response and attempted to provide a "roadmap" for rational vaccine design.
Collapse
Affiliation(s)
- Naomi Benne
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Janine van Duijn
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Johan Kuiper
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Wim Jiskoot
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Bram Slütter
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
127
|
Affiliation(s)
- Bernardo S. Franklin
- Institute of Innate Immunity, University Hospitals, University of Bonn, Bonn 53127, Germany; , ,
| | - Matthew S. Mangan
- Institute of Innate Immunity, University Hospitals, University of Bonn, Bonn 53127, Germany; , ,
- German Center for Neurodegenerative Diseases, Bonn 53175, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospitals, University of Bonn, Bonn 53127, Germany; , ,
- German Center for Neurodegenerative Diseases, Bonn 53175, Germany
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| |
Collapse
|
128
|
Ma J, Zhang Y, Tang K, Zhang H, Yin X, Li Y, Xu P, Sun Y, Ma R, Ji T, Chen J, Zhang S, Zhang T, Luo S, Jin Y, Luo X, Li C, Gong H, Long Z, Lu J, Hu Z, Cao X, Wang N, Yang X, Huang B. Reversing drug resistance of soft tumor-repopulating cells by tumor cell-derived chemotherapeutic microparticles. Cell Res 2016; 26:713-27. [PMID: 27167569 DOI: 10.1038/cr.2016.53] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/18/2016] [Accepted: 02/17/2016] [Indexed: 12/16/2022] Open
Abstract
Developing novel approaches to reverse the drug resistance of tumor-repopulating cells (TRCs) or stem cell-like cancer cells is an urgent clinical need to improve outcomes of cancer patients. Here we show an innovative approach that reverses drug resistance of TRCs using tumor cell-derived microparticles (T-MPs) containing anti-tumor drugs. TRCs, by virtue of being more deformable than differentiated cancer cells, preferentially take up T-MPs that release anti-tumor drugs after entering cells, which in turn lead to death of TRCs. The underlying mechanisms include interfering with drug efflux and promoting nuclear entry of the drugs. Our findings demonstrate the importance of tumor cell softness in uptake of T-MPs and effectiveness of a novel approach in reversing drug resistance of TRCs with promising clinical applications.
Collapse
Affiliation(s)
- Jingwei Ma
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China.,Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China
| | - Yi Zhang
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Ke Tang
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China.,Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China
| | - Huafeng Zhang
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xiaonan Yin
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yong Li
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China
| | - Pingwei Xu
- Laboratory for Cell Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yanling Sun
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China
| | - Ruihua Ma
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China
| | - Tiantian Ji
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China
| | - Junwei Chen
- Laboratory for Cell Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shuang Zhang
- Laboratory for Cell Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tianzhen Zhang
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Shunqun Luo
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xiuli Luo
- Department of Oncology, Hubei Provincial Hospital of TCM, Wuhan, Hubei 430061, China
| | - Chengyin Li
- Department of Oncology, Hubei Provincial Hospital of TCM, Wuhan, Hubei 430061, China
| | - Hongwei Gong
- Department of Oncology, Hubei Provincial Hospital of TCM, Wuhan, Hubei 430061, China
| | - Zhixiong Long
- Department of Oncology, the Fifth Hospital of Wuhan, Wuhan, Hubei 430050, China
| | - Jinzhi Lu
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Zhuowei Hu
- Molecular Immunology and Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuetao Cao
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Ning Wang
- Laboratory for Cell Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Bo Huang
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China.,Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
129
|
Myerson JW, Anselmo AC, Liu Y, Mitragotri S, Eckmann DM, Muzykantov VR. Non-affinity factors modulating vascular targeting of nano- and microcarriers. Adv Drug Deliv Rev 2016; 99:97-112. [PMID: 26596696 PMCID: PMC4798918 DOI: 10.1016/j.addr.2015.10.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/29/2015] [Accepted: 10/09/2015] [Indexed: 12/22/2022]
Abstract
Particles capable of homing and adhering to specific vascular biomarkers have potential as fundamental tools in drug delivery for mediation of a wide variety of pathologies, including inflammation, thrombosis, and pulmonary disorders. The presentation of affinity ligands on the surface of a particle provides a means of targeting the particle to sites of therapeutic interest, but a host of other factors come into play in determining the targeting capacity of the particle. This review presents a summary of several key considerations in nano- and microparticle design that modulate targeted delivery without directly altering epitope-specific affinity. Namely, we describe the effect of factors in definition of the base carrier (including shape, size, and flexibility) on the capacity of carriers to access, adhere to, and integrate in target biological milieus. Furthermore, we present a summary of fundamental dynamics of carrier behavior in circulation, taking into account interactions with cells in circulation and the role of hemodynamics in mediating the direction of carriers to target sites. Finally, we note non-affinity aspects to uptake and intracellular trafficking of carriers in target cells. In total, recent findings presented here may offer an opportunity to capitalize on mitigating factors in the behavior of ligand-targeted carriers in order to optimize targeting.
Collapse
|
130
|
Ribeiro AJS, Denisin AK, Wilson RE, Pruitt BL. For whom the cells pull: Hydrogel and micropost devices for measuring traction forces. Methods 2016; 94:51-64. [PMID: 26265073 PMCID: PMC4746112 DOI: 10.1016/j.ymeth.2015.08.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 07/10/2015] [Accepted: 08/06/2015] [Indexed: 01/16/2023] Open
Abstract
While performing several functions, adherent cells deform their surrounding substrate via stable adhesions that connect the intracellular cytoskeleton to the extracellular matrix. The traction forces that deform the substrate are studied in mechanotrasduction because they are affected by the mechanics of the extracellular milieu. We review the development and application of two methods widely used to measure traction forces generated by cells on 2D substrates: (i) traction force microscopy with polyacrylamide hydrogels and (ii) calculation of traction forces with arrays of deformable microposts. Measuring forces with these methods relies on measuring substrate displacements and converting them into forces. We describe approaches to determine force from displacements and elaborate on the necessary experimental conditions for this type of analysis. We emphasize device fabrication, mechanical calibration of substrates and covalent attachment of extracellular matrix proteins to substrates as key features in the design of experiments to measure cell traction forces with polyacrylamide hydrogels or microposts. We also report the challenges and achievements in integrating these methods with platforms for the mechanical stimulation of adherent cells. The approaches described here will enable new studies to understand cell mechanical outputs as a function of mechanical inputs and advance the understanding of mechanotransduction mechanisms.
Collapse
Affiliation(s)
- Alexandre J S Ribeiro
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, United States; Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, United States
| | - Aleksandra K Denisin
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, United States; Stanford Bioengineering, Stanford University, Stanford, CA 94305, United States
| | - Robin E Wilson
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, United States
| | - Beth L Pruitt
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, United States; Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, United States; Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|
131
|
Wouters OY, Ploeger DTA, van Putten SM, Bank RA. 3,4-Dihydroxy-L-Phenylalanine as a Novel Covalent Linker of Extracellular Matrix Proteins to Polyacrylamide Hydrogels with a Tunable Stiffness. Tissue Eng Part C Methods 2016; 22:91-101. [PMID: 26779898 DOI: 10.1089/ten.tec.2015.0312] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cells acquire mechanical information from their surrounding and convert this into biochemical activity. The concept and mechanism behind this cellular mechanosensing and mechanotransduction are often studied by means of two-dimensional hydrogels. Polyacrylamide hydrogels (PAAMs) offer chemical, mechanical, and optical advantages but due to their inert surface do not allow protein and cell adherence. Several cross-linkers have been used to functionalize the surface of PAAMs with extracellular matrix (ECM) proteins to enable cell culture. However, the most commonly used cross-linkers are either unstable, expensive, or laborious and often show heterogeneous coating or require PAAM modification. Here, we introduce 3,4-dihydroxy-l-phenylalanine (L-DOPA) as a novel cross-linker that can functionalize PAAMs with ECM without the above-mentioned disadvantages. A homogenous collagen type I and fibronectin coating was observed after L-DOPA functionalization. Fibroblasts responded to differences in PAAMs' stiffness; morphology, cell area, and protein localization were all affected as expected, in accordance with literature where other cross-linkers were used. In conclusion, L-DOPA can be used as a cross-linker between PAAMs and ECM and represents a novel, straightforward, nonlaborious, and robust method to functionalize PAAMs for cell culture to study cell mechanosensing.
Collapse
Affiliation(s)
- Olaf Y Wouters
- 1 Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen , Groningen, The Netherlands
| | - Diana T A Ploeger
- 1 Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen , Groningen, The Netherlands
| | - Sander M van Putten
- 1 Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen , Groningen, The Netherlands .,2 Synvolux Therapeutics , Groningen, The Netherlands
| | - Ruud A Bank
- 1 Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen , Groningen, The Netherlands
| |
Collapse
|
132
|
Evensen L, Johansen PL, Koster G, Zhu K, Herfindal L, Speth M, Fenaroli F, Hildahl J, Bagherifam S, Tulotta C, Prasmickaite L, Mælandsmo GM, Snaar-Jagalska E, Griffiths G. Zebrafish as a model system for characterization of nanoparticles against cancer. NANOSCALE 2016; 8:862-77. [PMID: 26648525 DOI: 10.1039/c5nr07289a] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Therapeutic nanoparticles (NPs) have great potential to deliver drugs against human diseases. Encapsulation of drugs in NPs protects them from being metabolized, while they are delivered specifically to a target site, thereby reducing toxicity and other side-effects. However, non-specific tissue accumulation of NPs, for example in macrophages, especially in the spleen and liver is a general problem with many NPs being developed for cancer therapy. To address the problem of non-specific tissue accumulation of NPs we describe the development of the zebrafish embryo as a transparent vertebrate system for characterization of NPs against cancer. We show that injection of human cancer cells results in tumor-like structures, and that subsequently injected fluorescent NPs, either made of polystyrene or liposomes can be imaged in real-time. NP biodistribution and general in vivo properties can be easily monitored in embryos having selective fluorescent labeling of specific tissues. We demonstrate in vitro, by using optical tweezer micromanipulation, microscopy and flow cytometry that polyethylene glycol (PEG) coating of NPs decreases the level of adhesion of NPs to macrophages, and also to cancer cells. In vivo in zebrafish embryos, PEG coating resulted in longer NP circulation times, decreased macrophage uptake, and reduced adhesion to the endothelium. Importantly, liposomes were observed to accumulate passively and selectively in tumor-like structures comprised of human cancer cells. These results show that zebrafish embryo is a powerful system for microscopy-based screening of NPs on the route to preclinical testing.
Collapse
Affiliation(s)
- Lasse Evensen
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| | - Patrick L Johansen
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| | - Gerbrand Koster
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| | - Kaizheng Zhu
- Department of Chemistry, University of Oslo, Sem Sælands vei 26, 0371, Oslo, Norway
| | - Lars Herfindal
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| | - Martin Speth
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| | - Federico Fenaroli
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| | - Jon Hildahl
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| | - Shahla Bagherifam
- Department of Chemistry, University of Oslo, Sem Sælands vei 26, 0371, Oslo, Norway
| | - Claudia Tulotta
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Lina Prasmickaite
- Department of Tumour Biology, Oslo University Hospital Radiumhospital, Oslo, Norway
| | - Gunhild M Mælandsmo
- Department of Tumour Biology, Oslo University Hospital Radiumhospital, Oslo, Norway
| | - Ewa Snaar-Jagalska
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gareth Griffiths
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| |
Collapse
|
133
|
The Importance of Particle Geometry in Design of Therapeutic and Imaging Nanovectors. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2016. [DOI: 10.1007/978-1-4939-3634-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
134
|
Key J, Palange AL, Gentile F, Aryal S, Stigliano C, Di Mascolo D, De Rosa E, Cho M, Lee Y, Singh J, Decuzzi P. Soft Discoidal Polymeric Nanoconstructs Resist Macrophage Uptake and Enhance Vascular Targeting in Tumors. ACS NANO 2015; 9:11628-41. [PMID: 26488177 DOI: 10.1021/acsnano.5b04866] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Most nanoparticles for biomedical applications originate from the self-assembling of individual constituents through molecular interactions and possess limited geometry control and stability. Here, 1000 × 400 nm discoidal polymeric nanoconstructs (DPNs) are demonstrated by mixing hydrophobic and hydrophilic polymers with lipid chains and curing the resulting paste directly within silicon templates. By changing the paste composition, soft- and rigid-DPNs (s- and r-DPNs) are synthesized exhibiting the same geometry, a moderately negative surface electrostatic charge (-14 mV), and different mechanical stiffness (∼1.3 and 15 kPa, respectively). Upon injection in mice bearing nonorthotopic brain or skin cancers, s-DPNs exhibit ∼24 h circulation half-life and accumulate up to ∼20% of the injected dose per gram tumor, detecting malignant masses as small as ∼0.1% the animal weight via PET imaging. This unprecedented behavior is ascribed to the unique combination of geometry, surface properties, and mechanical stiffness which minimizes s-DPN sequestration by the mononuclear phagocyte system. Our results could boost the interest in using less conventional delivery systems for cancer theranosis.
Collapse
Affiliation(s)
- Jaehong Key
- Department of Translational Imaging and Department of Nanomedicine, Houston Methodist Research Institute , Houston, Texas 77030, United States
- Department of Biomedical Engineering, Yonsei University , 1 Yonseidae-gil, Wonju, Gangwon-do 220-710, South Korea
| | - Anna Lisa Palange
- Department of Translational Imaging and Department of Nanomedicine, Houston Methodist Research Institute , Houston, Texas 77030, United States
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia (IIT) , via Morego 30, Genova I16163, Italy
| | - Francesco Gentile
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia (IIT) , via Morego 30, Genova I16163, Italy
| | - Santosh Aryal
- Department of Translational Imaging and Department of Nanomedicine, Houston Methodist Research Institute , Houston, Texas 77030, United States
- Department of Chemistry, Nanotechnology Innovation Center of Kansas State, Kansas State University , Manhattan, Kansas 66506, United States
| | - Cinzia Stigliano
- Department of Translational Imaging and Department of Nanomedicine, Houston Methodist Research Institute , Houston, Texas 77030, United States
| | - Daniele Di Mascolo
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia (IIT) , via Morego 30, Genova I16163, Italy
| | - Enrica De Rosa
- Department of Translational Imaging and Department of Nanomedicine, Houston Methodist Research Institute , Houston, Texas 77030, United States
| | - Minjung Cho
- Department of Translational Imaging and Department of Nanomedicine, Houston Methodist Research Institute , Houston, Texas 77030, United States
| | - Yeonju Lee
- Department of Translational Imaging and Department of Nanomedicine, Houston Methodist Research Institute , Houston, Texas 77030, United States
| | - Jaykrishna Singh
- Department of Translational Imaging and Department of Nanomedicine, Houston Methodist Research Institute , Houston, Texas 77030, United States
| | - Paolo Decuzzi
- Department of Translational Imaging and Department of Nanomedicine, Houston Methodist Research Institute , Houston, Texas 77030, United States
- Department of Experimental and Clinical Medicine, University of Magna Graecia , Catanzaro 88100, Italy
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia (IIT) , via Morego 30, Genova I16163, Italy
| |
Collapse
|
135
|
Gamazo C, Bussmann H, Giemsa S, Camacho A, Unsihuay D, Martín-Arbella N, Irache J. Interactions of poly (anhydride) nanoparticles with macrophages in light of their vaccine adjuvant properties. Int J Pharm 2015; 496:922-30. [DOI: 10.1016/j.ijpharm.2015.10.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 01/12/2023]
|
136
|
Sivashanmugam A, Arun Kumar R, Vishnu Priya M, Nair SV, Jayakumar R. An overview of injectable polymeric hydrogels for tissue engineering. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.05.014] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
137
|
Li Y, Maciel D, Rodrigues J, Shi X, Tomás H. Biodegradable Polymer Nanogels for Drug/Nucleic Acid Delivery. Chem Rev 2015; 115:8564-8608. [PMID: 26259712 DOI: 10.1021/cr500131f] [Citation(s) in RCA: 393] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yulin Li
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus da Penteada 9000-390, Funchal, Portugal
- The State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Dina Maciel
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus da Penteada 9000-390, Funchal, Portugal
| | - João Rodrigues
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus da Penteada 9000-390, Funchal, Portugal
| | - Xiangyang Shi
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus da Penteada 9000-390, Funchal, Portugal
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | - Helena Tomás
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus da Penteada 9000-390, Funchal, Portugal
| |
Collapse
|
138
|
Jallah Z, Liang R, Feola A, Barone W, Palcsey S, Abramowitch SD, Yoshimura N, Moalli P. The impact of prolapse mesh on vaginal smooth muscle structure and function. BJOG 2015; 123:1076-85. [PMID: 26301457 DOI: 10.1111/1471-0528.13514] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2015] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To evaluate the impact of prolapse meshes on vaginal smooth muscle structure (VaSM) and function, and to evaluate these outcomes in the context of the mechanical and textile properties of the mesh. DESIGN Three months following the implantation of three polypropylene prolapse meshes with distinct textile and mechanical properties, mesh tissue explants were evaluated for smooth muscle contraction, innervation, receptor function, and innervation density. SETTING Magee-Womens Research Institute at the University of Pittsburgh. POPULATION Thirty-four parous rhesus macaques of similar age, parity, and pelvic organ prolapse quantification (POP-Q) scores. METHODS Macaques were implanted with mesh via sacrocolpopexy. The impact of Gynemesh(™) PS (Ethicon; n = 7), Restorelle(®) (Coloplast; n = 7), UltraPro(™) parallel and UltraPro(™) perpendicular (Ethicon; n = 6 and 7, respectively) were compared with sham-operated controls (n = 7). Outcomes were analysed by Kruskal-Wallis ANOVA, Mann-Whitney U-tests and multiple regression analysis (P < 0.05). MEAN OUTCOME MEASURES Vaginal tissue explants were evaluated for the maximum contractile force generated following muscle, nerve, and receptor stimulation, and for peripheral nerve density. RESULTS Muscle myofibre, nerve, and receptor-mediated contractions were negatively affected by mesh only in the grafted region (P < 0.001, P = 0.002, and P = 0.008, respectively), whereas cholinergic and adrenergic nerve densities were affected in the grafted (P = 0.090 and P = 0.008, respectively) and non-grafted (P = 0.009 and P = 0.005, respectively) regions. The impact varied by mesh property, as mesh stiffness was a significant predictor of the negative affect on muscle function and nerve density (P < 0.001 and P = 0.013, respectively), whereas mesh and weight was a predictor of receptor function (P < 0.001). CONCLUSIONS Mesh has an overall negative impact on VaSM, and the effects are a function of mesh properties, most notably, mesh stiffness. TWEETABLE ABSTRACT Prolapse mesh affects vaginal smooth muscle.
Collapse
Affiliation(s)
- Z Jallah
- Musculoskeletal Research Center, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - R Liang
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - A Feola
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - W Barone
- Musculoskeletal Research Center, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - S Palcsey
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - S D Abramowitch
- Musculoskeletal Research Center, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.,Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - N Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - P Moalli
- Musculoskeletal Research Center, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.,Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Science, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
139
|
Abstract
Immunotherapy is a promising treatment modality for cancer as it can promote specific and durable anti-cancer responses. However, limitations to current approaches remain. Therapeutics administered as soluble injections often require high doses and frequent re-dosing, which can result in systemic toxicities. Soluble bolus-based vaccine formulations typically elicit weak cellular immune responses, limiting their use for cancer. Current methods for ex vivo T cell expansion for adoptive T cell therapies are suboptimal, and achieving high T cell persistence and sustained functionality with limited systemic toxicity following transfer remains challenging. Biomaterials can play important roles in addressing some of these limitations. For example, nanomaterials can be employed as vehicles to deliver immune modulating payloads to specific tissues, cells, and cellular compartments with minimal off-target toxicity, or to co-deliver antigen and danger signal in therapeutic vaccine formulations. Alternatively, micro-to macroscale materials can be employed as devices for controlled molecular and cellular delivery, or as engineered microenvironments for recruiting and programming immune cells in situ. Recent work has demonstrated the potential for combining cancer immunotherapy and biomaterials, and the application of biomaterials to cancer immunotherapy is likely to enable the development of effective next-generation platforms. This review discusses the application of engineered materials for the delivery of immune modulating agents to the tumor microenvironment, therapeutic cancer vaccination, and adoptive T cell therapy.
Collapse
Affiliation(s)
- Alexander S. Cheung
- School of Engineering and Applied Sciences, and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| | - David J. Mooney
- School of Engineering and Applied Sciences, and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| |
Collapse
|
140
|
Xu K, Harrison RE. Down-regulation of Stathmin Is Required for the Phenotypic Changes and Classical Activation of Macrophages. J Biol Chem 2015; 290:19245-60. [PMID: 26082487 PMCID: PMC4521045 DOI: 10.1074/jbc.m115.639625] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 06/01/2015] [Indexed: 12/19/2022] Open
Abstract
Macrophages are important cells of innate immunity with specialized capacity for recognition and elimination of pathogens and presentation of antigens to lymphocytes for adaptive immunity. Macrophages become activated upon exposure to pro-inflammatory cytokines and pathogenic stimuli. Classical activation of macrophages with interferon-γ (IFNγ) and lipopolysaccharide (LPS) triggers a wide range of signaling events and morphological changes to induce the immune response. Our previous microtubule (MT) proteomic work revealed that the stathmin association with MTs is considerably reduced in activated macrophages, which contain significantly more stabilized MTs. Here, we show that there is a global decrease in stathmin levels, an MT catastrophe protein, in activated macrophages using both immunoblotting and immunofluorescent microscopy. This is an LPS-specific response that induces proteasome-mediated degradation of stathmin. We explored the functions of stathmin down-regulation in activated macrophages by generating a stable cell line overexpressing stathmin-GFP. We show that stathmin-GFP overexpression impacts MT stability, impairs cell spreading, and reduces activation-associated phenotypes. Furthermore, overexpressing stathmin reduces complement receptor 3-mediated phagocytosis and cellular activation, implicating a pivotal inhibitory role for stathmin in classically activated macrophages.
Collapse
Affiliation(s)
- Kewei Xu
- From the Departments of Cell and Systems Biology and Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Rene E Harrison
- From the Departments of Cell and Systems Biology and Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
141
|
Sosale NG, Spinler KR, Alvey C, Discher DE. Macrophage engulfment of a cell or nanoparticle is regulated by unavoidable opsonization, a species-specific 'Marker of Self' CD47, and target physical properties. Curr Opin Immunol 2015; 35:107-12. [PMID: 26172292 DOI: 10.1016/j.coi.2015.06.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/24/2015] [Indexed: 02/04/2023]
Abstract
Professional phagocytes of the mononuclear phagocyte system (MPS), especially ubiquitous macrophages, are commonly thought to engulf or not a target based strictly on 'eat me' molecules such as Antibodies. The target might be a viable 'self' cell or a drug-delivering nanoparticle, or it might be a cancer cell or a microbe. 'Marker of Self' CD47 signals into a macrophage to inhibit the acto-myosin cytoskeleton that makes engulfment efficient. In adhesion of any cell, the same machinery is generally activated by rigidity of target surfaces, and recent results confirm phagocytosis is likewise driven by the rigidity typical of microbes and many synthetics. Basic insights are already being applied in order to make macrophages eat cancer or to delay nanoparticle clearance for better drug delivery and imaging.
Collapse
Affiliation(s)
- Nisha G Sosale
- Molecular & Cell Biophysics and NanoBioPolymers Labs, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Kyle R Spinler
- Molecular & Cell Biophysics and NanoBioPolymers Labs, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Cory Alvey
- Molecular & Cell Biophysics and NanoBioPolymers Labs, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Dennis E Discher
- Molecular & Cell Biophysics and NanoBioPolymers Labs, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
142
|
Freeman SA, Grinstein S. Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunol Rev 2015; 262:193-215. [PMID: 25319336 DOI: 10.1111/imr.12212] [Citation(s) in RCA: 388] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phagocytosis is a remarkably complex and versatile process: it contributes to innate immunity through the ingestion and elimination of pathogens, while also being central to tissue homeostasis and remodeling by clearing effete cells. The ability of phagocytes to perform such diverse functions rests, in large part, on their vast repertoire of receptors. In this review, we address the various receptor types, their mobility in the plane of the membrane, and two modes of receptor crosstalk: priming and synergy. A major section is devoted to the actin cytoskeleton, which not only governs receptor mobility and clustering but also is instrumental in particle engulfment. Four stages of the actin remodeling process are identified and discussed: (i) the 'resting' stage that precedes receptor engagement, (ii) the disruption of the cortical actin prior to formation of the phagocytic cup, (iii) the actin polymerization that propels pseudopod extension, and (iv) the termination of polymerization and removal of preassembled actin that are required for focal delivery of endomembranes and phagosomal sealing. These topics are viewed in the larger context of the differentiation and polarization of the phagocytic cells.
Collapse
Affiliation(s)
- Spencer A Freeman
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
143
|
Secret E, Crannell KE, Kelly SJ, Villancio-Wolter M, Andrew JS. Matrix metalloproteinase-sensitive hydrogel microparticles for pulmonary drug delivery of small molecule drugs or proteins. J Mater Chem B 2015; 3:5629-5634. [PMID: 32262533 DOI: 10.1039/c5tb00443h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hydrogel microparticles are particularly attractive for pulmonary drug delivery. Their size can be engineered for efficient delivery into the bronchi, where they subsequently swell, avoiding macrophage uptake. In this study, enzyme-responsive peptide functionalized poly(ethylene glycol) (PEG) based hydrogel microparticles were synthesized by an emulsion polymerization. Here, we demonstrate that these microparticles are nontoxic and demonstrated their viability as a drug carrier by studying the encapsulation and release of three types of drugs: a hydrophobic (dexamethasone), a hydrophilic (methylene blue) and a protein (horseradish peroxidase)-based drug. The release of each of these three drugs was studied in the presence of varying concentrations of matrix metalloproteinase (MMP). Each of the three types of drugs were able to be encapsulated in the microparticles, and we further showed that the protein is still functional after release.
Collapse
Affiliation(s)
- Emilie Secret
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, USA.
| | | | | | | | | |
Collapse
|
144
|
Sun H, Wong EHH, Yan Y, Cui J, Dai Q, Guo J, Qiao GG, Caruso F. The role of capsule stiffness on cellular processing. Chem Sci 2015; 6:3505-3514. [PMID: 28706710 PMCID: PMC5492901 DOI: 10.1039/c5sc00416k] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/08/2015] [Indexed: 12/18/2022] Open
Abstract
Particle stiffness is emerging as an important parameter in determining the cell uptake dynamics of particles. Understanding the effects of capsule stiffness on their biological behavior is essential for the development of polymer capsules as therapeutic carriers. Herein, we report the preparation of polysaccharide capsules via atom transfer radical polymerization-mediated continuous assembly of polymers (CAPATRP) on silica templates using methacrylated hyaluronic acid (HA) as the macrocrosslinker. This approach affords HA capsules with controllable wall thickness and tunable stiffness. The influence of capsule stiffness on cellular interaction and intracellular distribution is systematically investigated using flow cytometry, imaging flow cytometry, and deconvolution microscopy. The softest HA capsules with a stiffness (γ) of 7.5 mN m-1 possess higher cell surface binding and cellular association when compared to stiffer capsules with γ of 17.6-28.9 mN m-1. Furthermore, the uptake of HA capsules is a stiffness-dependent process, with slower and less cellular internalization observed with increasing capsule stiffness. Nevertheless, regardless of the stiffness, all internalized capsules are deformed and located in the lysosomes. These findings offer insights into the influence of capsule stiffness on cellular interaction as well as intracellular fate, providing information for the design of rational polymer capsules for biomedical applications.
Collapse
Affiliation(s)
- Huanli Sun
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , and the Department of Chemical and Biomolecular Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia .
| | - Edgar H H Wong
- Department of Chemical and Biomolecular Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia .
| | - Yan Yan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , and the Department of Chemical and Biomolecular Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia .
| | - Jiwei Cui
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , and the Department of Chemical and Biomolecular Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia .
| | - Qiong Dai
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , and the Department of Chemical and Biomolecular Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia .
| | - Junling Guo
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , and the Department of Chemical and Biomolecular Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia .
| | - Greg G Qiao
- Department of Chemical and Biomolecular Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia .
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , and the Department of Chemical and Biomolecular Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia .
| |
Collapse
|
145
|
|
146
|
Zhan Y, Gonçalves M, Yi P, Capelo D, Zhang Y, Rodrigues J, Liu C, Tomás H, Li Y, He P. Thermo/redox/pH-triple sensitive poly(N-isopropylacrylamide-co-acrylic acid) nanogels for anticancer drug delivery. J Mater Chem B 2015; 3:4221-4230. [PMID: 32262299 DOI: 10.1039/c5tb00468c] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The clinical application of doxorubicin (DOX), like other anticancer drugs, is limited by insufficient cellular uptake and the numerous drug resistance mechanisms existing in cells. The development of smart nanomaterials capable of carrying the drugs into the cells and of releasing them under the control of the microenvironment is an interesting approach that may increase the success of the anticancer drugs currently in use. Herein, we report an easy process to prepare biocompatible nanogels (NGs) with thermo/redox/pH-triple sensitivity, which are highly effective in the intracellular delivery of DOX. Redox-sensitive/degradable NGs (PNA-BAC) and nondegradable NGs (PNA-MBA) were prepared through in situ polymerization of N-isopropylacrylamide (NIPAM) and acrylic acid (AA) in the presence of sodium dodecyl sulfate (SDS) as a surfactant, using N,N'-bis(acryloyl)cystamine (BAC) as a biodegradable crosslinker or N,N'-methylene bisacrylamide (MBA) as a nondegradable crosslinker, respectively. After that, the cationic DOX drug was loaded into the NGs through electrostatic interactions, by simply mixing them in aqueous solution. Compared to nondegradable PNA-MBA NGs, PNA-BAC NGs not only presented a higher DOX drug loading capacity, but also allowed a more sustainable drug release behavior under physiological conditions. More importantly, PNA-BAC NGs displayed thermo-induced drug release properties and an in vitro accelerated release of DOX under conditions that mimic intracellular reductive conditions and acidic tumor microenvironments. The thermo/redox/pH multi-sensitive NGs can quickly be taken up by CAL-72 cells (an osteosarcoma cell line), resulting in a high DOX intracellular accumulation and an improved cytotoxicity when compared with free DOX and DOX-loaded nondegradable PNA-MBA NGs. The developed NGs can be possibly used as an effective platform for the delivery of cationic therapeutic agents for biomedical applications.
Collapse
Affiliation(s)
- Yuan Zhan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Biodistribution and trafficking of hydrogel nanoparticles in adult mosquitoes. PLoS Negl Trop Dis 2015; 9:e0003745. [PMID: 25996505 PMCID: PMC4440717 DOI: 10.1371/journal.pntd.0003745] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/07/2015] [Indexed: 12/21/2022] Open
Abstract
Background Nanotechnology offers great potential for molecular genetic investigations and potential control of medically important arthropods. Major advances have been made in mammalian systems to define nanoparticle (NP) characteristics that condition trafficking and biodistribution of NPs in the host. Such information is critical for effective delivery of therapeutics and molecules to cells and organs, but little is known about biodistribution of NPs in mosquitoes. Methodology/Principal Findings PRINT technology was used to construct a library of fluorescently labeled hydrogel NPs of defined size, shape, and surface charge. The biodistribution (organ, tissue, and cell tropisms and trafficking kinetics) of positively and negatively charged 200 nm x 200 nm, 80 nm x 320 nm, and 80 nm x 5000 nm NPs was determined in adult Anopheles gambiae mosquitoes as a function of the route of challenge (ingestion, injection or contact) using whole body imaging and fluorescence microscopy. Mosquitoes readily ingested NPs in sugar solution. Whole body fluorescence imaging revealed substantial NP accumulation (load) in the alimentary tracts of the adult mosquitoes, with the greatest loads in the diverticula, cardia and foregut. Positively and negatively charged NPs differed in their biodistribution and trafficking. Following oral challenge, negatively charged NPs transited the alimentary tract more rapidly than positively charged NPs. Following contact challenge, negatively charged NPs trafficked more efficiently in alimentary tract tissues. Following parenteral challenge, positively and negatively charged NPs differed in tissue tropisms and trafficking in the hemocoel. Injected NPs were also detected in cardia/foregut, suggesting trafficking of NPs from the hemocoel into the alimentary tract. Conclusions/Significance Herein we have developed a tool box of NPs with the biodistribution and tissue tropism characteristics for gene structure/function studies and for delivery of vector lethal cargoes for mosquito control. Emerging insecticide resistance in disease vectors is of great public health concern. Discovery of new targets and novel strategies for insecticidal interventions to control vector borne diseases is a public health imperative. Nanotechnology offers great potential for molecular genetic investigations and for delivery of effector molecules for control of disease vectors. We have developed a tool box of hydrogel nanoparticles (NPs) with the biodistribution and tissue tropism characteristics for gene structure/function studies and for delivery of vector lethal cargoes to adult mosquitoes. Nanotechnology will likely be useful for molecular investigations and potential control of the arthropod vectors of other neglected tropical diseases.
Collapse
|
148
|
Bygd HC, Forsmark KD, Bratlie KM. Altering in vivo macrophage responses with modified polymer properties. Biomaterials 2015; 56:187-97. [PMID: 25934291 DOI: 10.1016/j.biomaterials.2015.03.042] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/16/2015] [Accepted: 03/20/2015] [Indexed: 12/13/2022]
Abstract
Macrophage reprogramming has long been the focus of research in disease therapeutics and biomaterial implantation. With different chemical and physical properties of materials playing a role in macrophage polarization, it is important to investigate and categorize the activation effects of material parameters both in vitro and in vivo. In this study, we have investigated the effects of material surface chemistry on in vivo polarization of macrophages. The library of materials used here include poly(N-isopropylacrylamide-co-acrylic acid) (p(NIPAm-co-AAc)) nanoparticles (∼600 nm) modified with various functional groups. This study also focuses on the development of a quantitative structure-activity relationship method (QSAR) as a predictive tool for determining the macrophage polarization in response to particular biomaterial surface chemistries. Here, we successfully use in vivo imaging and histological analysis to identify the macrophage response and activation. We demonstrate the ability to induce a spectrum of macrophage phenotypes with a change in material functionality as well as identify certain material parameters that seem to correlate with each phenotype. This suggests the potential to develop materials for a variety of applications and predict the outcome of macrophage activation in response to new surface chemistries.
Collapse
Affiliation(s)
- Hannah C Bygd
- Department of Materials Science & Engineering, Iowa State University, Ames, IA 50011, USA
| | - Kiva D Forsmark
- Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Kaitlin M Bratlie
- Department of Materials Science & Engineering, Iowa State University, Ames, IA 50011, USA; Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA; Ames National Laboratory, Ames, IA 50011, USA.
| |
Collapse
|
149
|
Beck-Broichsitter M, Nicolas J, Couvreur P. Design attributes of long-circulating polymeric drug delivery vehicles. Eur J Pharm Biopharm 2015; 97:304-17. [PMID: 25857838 DOI: 10.1016/j.ejpb.2015.03.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/11/2015] [Accepted: 03/23/2015] [Indexed: 02/03/2023]
Abstract
Following systemic administration polymeric drug delivery vehicles allow for a controlled and targeted release of the encapsulated medication at the desired site of action. For an elevated and organ specific accumulation of their cargo, nanocarriers need to avoid opsonization, activation of the complement system and uptake by macrophages of the mononuclear phagocyte system. In this respect, camouflaged vehicles revealed a delayed elimination from systemic circulation and an improved target organ deposition. For instance, a steric shielding of the carrier surface by poly(ethylene glycol) substantially decreased interactions with the biological environment. However, recent studies disclosed possible deficits of this approach, where most notably, poly(ethylene glycol)-modified drug delivery vehicles caused significant immune responses. At present, identification of novel potential carrier coating strategies facilitating negligible immune reactions is an emerging field of interest in drug delivery research. Moreover, physical carrier properties including geometry and elasticity seem to be very promising design attributes to surpass numerous biological barriers, in order to improve the efficacy of the delivered medication.
Collapse
Affiliation(s)
- Moritz Beck-Broichsitter
- Institut Galien UMR CNRS 8612, Faculté de Pharmacie, Université Paris-Sud XI, Châtenay-Malabry, France
| | - Julien Nicolas
- Institut Galien UMR CNRS 8612, Faculté de Pharmacie, Université Paris-Sud XI, Châtenay-Malabry, France
| | - Patrick Couvreur
- Institut Galien UMR CNRS 8612, Faculté de Pharmacie, Université Paris-Sud XI, Châtenay-Malabry, France.
| |
Collapse
|
150
|
Shin JW, Discher DE. Blood and immune cell engineering: Cytoskeletal contractility and nuclear rheology impact cell lineage and localization: Biophysical regulation of hematopoietic differentiation and trafficking. Bioessays 2015; 37:633-42. [PMID: 25810145 DOI: 10.1002/bies.201400166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Clinical success with human hematopoietic stem cell (HSC) transplantation establishes a paradigm for regenerative therapies with other types of stem cells. However, it remains generally challenging to therapeutically treat tissues after engineering of stem cells in vitro. Recent studies suggest that stem and progenitor cells sense physical features of their niches. Here, we review biophysical contributions to lineage decisions, maturation, and trafficking of blood and immune cells. Polarized cellular contractility and nuclear rheology are separately shown to be functional markers of a hematopoietic hierarchy that predict the ability of a lineage to traffic in and out of the bone marrow niche. These biophysical determinants are regulated by a set of structural molecules, including cytoplasmic myosin-II and nuclear lamins, which themselves are modulated by a diverse range of transcriptional and post-translational mechanisms. Small molecules that target these mechanobiological circuits, along with novel bioengineering methods, could prove broadly useful in programming blood and immune cells for therapies ranging from blood transfusions to immune attack of tumors.
Collapse
Affiliation(s)
- Jae-Won Shin
- Biophysical Engineering Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Dennis E Discher
- Biophysical Engineering Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|