101
|
Wabnitz GH, Honus S, Habicht J, Orlik C, Kirchgessner H, Samstag Y. LFA-1 cluster formation in T-cells depends on L-plastin phosphorylation regulated by P90 RSK and PP2A. Cell Mol Life Sci 2021; 78:3543-3564. [PMID: 33449151 PMCID: PMC11072591 DOI: 10.1007/s00018-020-03744-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 11/21/2020] [Accepted: 12/15/2020] [Indexed: 10/25/2022]
Abstract
The integrin LFA-1 is crucial for T-cell/ APC interactions and sensitive recognition of antigens. Precise nanoscale organization and valency regulation of LFA-1 are mandatory for an appropriate function of the immune system. While the inside-out signals regulating the LFA-1 affinity are well described, the molecular mechanisms controlling LFA-1 avidity are still not fully understood. Here, we show that activation of the actin-bundling protein L-plastin (LPL) through phosphorylation at serine-5 enables the formation of clusters containing LFA-1 in high-affinity conformation. Phosphorylation of LPL is induced by an nPKC-MEK-p90RSK pathway and counter-regulated by the serine-threonine phosphatase PP2A. Interestingly, recruitment of LFA-1 into the T-cell/APC contact zone is not affected by LPL phosphorylation. Instead, for this process, activation of the actin-remodeling protein cofilin through dephosphorylation is essential. Together, this study reveals a dichotomic spatial regulation of LFA-1 clustering and microscale movement in T-cells by two different actin-binding proteins, LPL and cofilin.
Collapse
Affiliation(s)
- Guido H Wabnitz
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany.
| | - Sibylle Honus
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Jüri Habicht
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Christian Orlik
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Henning Kirchgessner
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Yvonne Samstag
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| |
Collapse
|
102
|
Heddleston JM, Aaron JS, Khuon S, Chew TL. A guide to accurate reporting in digital image acquisition - can anyone replicate your microscopy data? J Cell Sci 2021; 134:134/6/jcs254144. [PMID: 33785608 DOI: 10.1242/jcs.254144] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent technological advances have made microscopy indispensable in life science research. Its ubiquitous use, in turn, underscores the importance of ensuring that microscopy-based experiments are replicable and that the resulting data comparable. While there has been a wealth of review articles, practical guides and conferences devoted to the topic of maintaining standard instrument operating conditions, the paucity of attention dedicated to properly documenting microscopy experiments is undeniable. This lack of emphasis on accurate reporting extends beyond life science researchers themselves, to the review panels and editorial boards of many journals. Such oversight at the final step of communicating a scientific discovery can unfortunately negate the many valiant efforts made to ensure experimental quality control in the name of scientific reproducibility. This Review aims to enumerate the various parameters that should be reported in an imaging experiment by illustrating how their inconsistent application can lead to irreconcilable results.
Collapse
Affiliation(s)
- John M Heddleston
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Jesse S Aaron
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Satya Khuon
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| |
Collapse
|
103
|
Adler J, Parmryd I. Quantifying colocalization: The case for discarding the Manders overlap coefficient. Cytometry A 2021; 99:910-920. [PMID: 33720475 DOI: 10.1002/cyto.a.24336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/03/2021] [Accepted: 03/09/2021] [Indexed: 01/26/2023]
Abstract
Colocalization measurements aim to characterize the relative distribution of two molecules within a biologically relevant area. It is efficient to measure two distinct features, co-occurrence, the extent to which the molecules appear together, and correlation, how well variations in concentration of the two molecules match. The Manders overlap coefficient (MOC) appears in most colocalization software but the literature contains three interpretations of its measurements: (a) co-occurrence, (b) correlation, or (c) a combination of both. This is surprising given the simplicity of the underlying equation. Testing shows that the MOC responds both to changes in co-occurrence and to changes in correlation. Further testing reveals that different distributions of intensity (Gaussian, gamma, uniform, exponential) dramatically alter the balance between the contribution from co-occurrence and correlation. It follows that the MOC's ability to differentiate between different patterns of colocalization is very limited, since any value is compatible with widely differing combinations of co-occurrence, correlation, and intensity distribution. To characterize colocalization, we recommend reporting both co-occurrence and correlation, using coefficients specific for each attribute. Since the MOC has no clear role in the measurement of colocalization and causes considerable confusion, we conclude that it should be discarded.
Collapse
Affiliation(s)
- Jeremy Adler
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ingela Parmryd
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
104
|
Tan ZT, Ward M, Phillips RJ, Zhang X, Jaffey DM, Chesney L, Rajwa B, Baronowsky EA, McAdams J, Powley TL. Stomach region stimulated determines effects on duodenal motility in rats. Am J Physiol Regul Integr Comp Physiol 2021; 320:R331-R341. [PMID: 33470183 PMCID: PMC7988774 DOI: 10.1152/ajpregu.00111.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/11/2020] [Accepted: 01/12/2021] [Indexed: 01/14/2023]
Abstract
Gastric electrical stimulation (GES) is used clinically to promote proximal GI emptying and motility. In acute experiments, we measured duodenal motor responses elicited by GES applied at 141 randomly chosen electrode sites on the stomach serosal surface. Overnight-fasted (H2O available) anesthetized male rats (n = 81) received intermittent biphasic GES for 5 min (20-s-on/40-s-off cycles; I = 0.3 mA; pw = 0.2 ms; 10 Hz). A strain gauge on the serosal surface of the proximal duodenum of each animal was used to evaluate baseline motor activity and the effect of GES. Using ratios of time blocks compared with a 15-min prestimulation baseline, we evaluated the effects of the 5-min stimulation on concurrent activity, on the 10 min immediately after the stimulation, and on the 15-min period beginning with the onset of stimulation. We mapped the magnitude of the duodenal response (three different motility indices) elicited from the 141 stomach sites. Post hoc electrode site maps associated with duodenal responses suggested three zones similar to the classic regions of forestomach, corpus, and antrum. Maximal excitatory duodenal motor responses were elicited from forestomach sites, whereas inhibitory responses occurred with stimulation of the corpus. Moderate excitatory duodenal responses occurred with stimulation of the antrum. Complex, weak inhibitory/excitatory responses were produced by stimulation at boundaries between stomach regions. Patterns of GES efficacies coincided with distributions of previously mapped vagal afferents, suggesting that excitation of the duodenum is strongest when GES electrodes are situated over stomach concentrations of vagal intramuscular arrays, putative stretch receptors in the muscle wall.
Collapse
Affiliation(s)
- Zhenjun T Tan
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana
| | - Matthew Ward
- Department of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Robert J Phillips
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana
| | - Xueguo Zhang
- Clunbury Scientific LLC, Bloomfield Hills, Michigan
| | - Deborah M Jaffey
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana
| | - Logan Chesney
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana
| | - Bartek Rajwa
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana
| | | | - Jennifer McAdams
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana
| | - Terry L Powley
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
105
|
Holzner G, Mateescu B, van Leeuwen D, Cereghetti G, Dechant R, Stavrakis S, deMello A. High-throughput multiparametric imaging flow cytometry: toward diffraction-limited sub-cellular detection and monitoring of sub-cellular processes. Cell Rep 2021; 34:108824. [PMID: 33691119 DOI: 10.1016/j.celrep.2021.108824] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/07/2020] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
We present a sheathless, microfluidic imaging flow cytometer that incorporates stroboscopic illumination for blur-free fluorescence detection at ultra-high analytical throughput. The imaging platform is capable of multiparametric fluorescence quantification and sub-cellular localization of these structures down to 500 nm with microscopy image quality. We demonstrate the efficacy of the approach through the analysis and localization of P-bodies and stress granules in yeast and human cells using fluorescence and bright-field detection at analytical throughputs in excess of 60,000 and 400,000 cells/s, respectively. Results highlight the utility of our imaging flow cytometer in directly investigating phase-separated compartments within cellular environments and screening rare events at the sub-cellular level for a range of diagnostic applications.
Collapse
Affiliation(s)
- Gregor Holzner
- Institute for Chemical & Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| | - Bogdan Mateescu
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Daniel van Leeuwen
- Department of Biology, ETH Zürich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Gea Cereghetti
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Reinhard Dechant
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Stavros Stavrakis
- Institute for Chemical & Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland.
| | - Andrew deMello
- Institute for Chemical & Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland.
| |
Collapse
|
106
|
Dou Y, Tsai YH, Liu CC, Hobson BA, Lein PJ. Co-localization of fluorescent signals using deep learning with Manders overlapping coefficient. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2021; 11596:115963C. [PMID: 34305257 PMCID: PMC8301216 DOI: 10.1117/12.2580650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Object-based co-localization of fluorescent signals allows the assessment of interactions between two (or more) biological entities using spatial information. It relies on object identification with high accuracy to separate fluorescent signals from the background. Object detectors using convolutional neural networks (CNN) with annotated training samples could facilitate the process by detecting and counting fluorescent-labeled cells from fluorescence photomicrographs. However, datasets containing segmented annotations of colocalized cells are generally not available, and creating a new dataset with delineated masks is label-intensive. Also, the co-localization coefficient is often not used as a component during training with the CNN model. Yet, it may aid with localizing and detecting objects during training and testing. In this work, we propose to address these issues by using a quantification coefficient for co-localization called Manders overlapping coefficient (MOC)1 as a single-layer branch in a CNN. Fully convolutional one-state (FCOS)2 with a Resnet101 backbone served as the network to evaluate the effectiveness of the novel branch to assist with bounding box prediction. Training data were sourced from lab curated fluorescence images of neurons from the rat hippocampus, piriform cortex, somatosensory cortex, and amygdala. Results suggest that using modified FCOS with MOC outperformed the original FCOS model for accuracy in detecting fluorescence signals by 1.1% in mean average precision (mAP). The model could be downloaded from https://github.com/Alphafrey946/Colocalization-MOC.
Collapse
Affiliation(s)
- Yimeng Dou
- UW-Madison, Department of Biostatistics and Medical Informatics, Madison, Wisconsin, United States
- UC Davis School of Veterinary Medicine, Department of Molecular Biosciences, Davis, California, United States
| | - Yi-Hua Tsai
- UC Davis School of Veterinary Medicine, Department of Molecular Biosciences, Davis, California, United States
| | - Chih-Chieh Liu
- UC Davis, Department of Biomedical Engineering, Davis, California, United States
| | - Brad A. Hobson
- UC Davis, Center for Molecular and Genomic Imaging, Davis, California, United States
| | - Pamela J. Lein
- UC Davis School of Veterinary Medicine, Department of Molecular Biosciences, Davis, California, United States
| |
Collapse
|
107
|
Hoboth P, Sztacho M, Šebesta O, Schätz M, Castano E, Hozák P. Nanoscale mapping of nuclear phosphatidylinositol phosphate landscape by dual-color dSTORM. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158890. [PMID: 33513445 DOI: 10.1016/j.bbalip.2021.158890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/10/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
Current models of gene expression, which are based on single-molecule localization microscopy, acknowledge protein clustering and the formation of transcriptional condensates as a driving force of gene expression. However, these models largely omit the role of nuclear lipids and amongst them nuclear phosphatidylinositol phosphates (PIPs) in particular. Moreover, the precise distribution of nuclear PIPs in the functional sub-nuclear domains remains elusive. The direct stochastic optical reconstruction microscopy (dSTORM) provides an unprecedented resolution in biological imaging. Therefore, its use for imaging in the densely crowded cell nucleus is desired but also challenging. Here we present a dual-color dSTORM imaging and image analysis of nuclear PI(4,5)P2, PI(3,4)P2 and PI(4)P distribution while preserving the context of nuclear architecture. In the nucleoplasm, PI(4,5)P2 and PI(3,4)P2 co-pattern in close proximity with the subset of RNA polymerase II foci. PI(4,5)P2 is surrounded by fibrillarin in the nucleoli and all three PIPs are dispersed within the matrix formed by the nuclear speckle protein SON. PI(4,5)P2 is the most abundant nuclear PIP, while PI(4)P is a precursor for the biosynthesis of PI(4,5)P2 and PI(3,4)P2. Therefore, our data are relevant for the understanding the roles of nuclear PIPs and provide further evidence for the model in which nuclear PIPs represent a localization signal for the formation of lipo-ribonucleoprotein hubs in the nucleus. The discussed experimental pipeline is applicable for further functional studies on the role of other nuclear PIPs in the regulation of gene expression and beyond.
Collapse
Affiliation(s)
- Peter Hoboth
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Martin Sztacho
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Ondřej Šebesta
- Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Martin Schätz
- Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Enrique Castano
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; Biochemistry and Molecular Plant Biology Department, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida C.P. 97200, Yucatán, Mexico
| | - Pavel Hozák
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; Department of Epigenetics of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, division BIOCEV, Průmyslová 595, 252 20 Vestec, Czech Republic; Microscopy Centre, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
108
|
Noseda ACD, Rodrigues LS, Targa ADS, Ilkiw JL, Fagotti J, Dos Santos PD, Cecon E, Markus RP, Solimena M, Jockers R, Lima MMS. MT 2 melatonin receptors expressed in the olfactory bulb modulate depressive-like behavior and olfaction in the 6-OHDA model of Parkinson's disease. Eur J Pharmacol 2021; 891:173722. [PMID: 33159932 DOI: 10.1016/j.ejphar.2020.173722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 12/26/2022]
Abstract
Melatonin MT1 and MT2 receptors are expressed in the glomerular layer of the olfactory bulb (OB); however, the role of these receptors has not been evaluated until now. Considering the association of the OB with olfactory and depressive disorders in Parkinson's disease (PD), we sought to investigate the involvement of melatonin receptors in these non-motor disturbances in an intranigral 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD. We demonstrate the presence of functional melatonin receptors in dopaminergic neurons of the glomerular layer. Local administration of melatonin (MLT, 1 μg/μl), luzindole (LUZ, 5 μg/μl) or the MT2-selective receptor drug 4-P-PDOT (5 μg/μl) reversed the depressive-like behavior elicited by 6-OHDA. Sequential administration of 4-P-PDOT and MLT (5 μg/μl, 1 μg/μl) promoted additive antidepressant-like effects. In the evaluation of olfactory discrimination, LUZ induced an olfactory impairment when associated with the nigral lesion-induced impairment. Thus, our results suggest that melatonin MT2 receptors expressed in the glomerular layer are involved in depressive-like behaviors and in olfactory function associated with PD.
Collapse
Affiliation(s)
- Ana Carolina D Noseda
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil; Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Lais S Rodrigues
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil; Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Adriano D S Targa
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil; Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil; Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Jessica L Ilkiw
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Juliane Fagotti
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Erika Cecon
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Regina P Markus
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Michele Solimena
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Ralf Jockers
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Marcelo M S Lima
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil; Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
109
|
Zorkau M, Proctor-Kent Y, Berlinguer-Palmini R, Hamilton A, Chrzanowska-Lightowlers ZM, Lightowlers RN. Visualizing Mitochondrial Ribosomal RNA and Mitochondrial Protein Synthesis in Human Cell Lines. Methods Mol Biol 2021; 2192:159-181. [PMID: 33230773 DOI: 10.1007/978-1-0716-0834-0_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Human mitochondria contain their own DNA (mtDNA) that encodes 13 proteins all of which are core subunits of oxidative phosphorylation (OXPHOS) complexes. To form functional complexes, these 13 components need to be correctly assembled with approximately 70 nuclear-encoded subunits that are imported following synthesis in the cytosol. How this complicated coordinated translation and assembly is choreographed is still not clear. Methods are being developed to determine whether all members of a particular complex are translated in close proximity, whether protein synthesis is clustered in submitochondrial factories, whether these align with incoming polypeptides, and if there is evidence for co-translational translation that is regulated and limited by the interaction of the incoming proteins with synthesis of their mtDNA-encoded partners. Two methods are described in this chapter to visualize the distribution of mitochondrial ribosomal RNAs in conjunction with newly synthesized mitochondrial proteins. The first combines RNA Fluorescent In Situ Hybridization (FISH) and super-resolution immunocytochemistry to pinpoint mitochondrial ribosomal RNA. The second localizes nascent translation within the mitochondrial network through non-canonical amino acid labeling, click chemistry and fluorescent microscopy.
Collapse
Affiliation(s)
- Matthew Zorkau
- Wellcome Centre for Mitochondrial Research, Newcastle University Biosciences Institute, Newcastle University, Medical School, Newcastle Upon Tyne, UK
| | - Yasmin Proctor-Kent
- Wellcome Centre for Mitochondrial Research, Newcastle University Biosciences Institute, Newcastle University, Medical School, Newcastle Upon Tyne, UK
| | | | - Andrew Hamilton
- School of Medicine, Dentistry and Nursing, Glasgow University, Glasgow, UK
| | - Zofia M Chrzanowska-Lightowlers
- Wellcome Centre for Mitochondrial Research, Newcastle University Biosciences Institute, Newcastle University, Medical School, Newcastle Upon Tyne, UK.
| | - Robert N Lightowlers
- Wellcome Centre for Mitochondrial Research, Newcastle University Biosciences Institute, Newcastle University, Medical School, Newcastle Upon Tyne, UK.
| |
Collapse
|
110
|
Abstract
Over the last 30 years, confocal microscopy has emerged as a primary tool for biological investigation across many disciplines. The simplicity of use and widespread accessibility of confocal microscopy ensure that it will have a prominent place in biological imaging for many years to come, even with the recent advances in light sheet and field synthesis microscopy. Since these more advanced technologies still require significant expertise to effectively implement and carry through to analysis, confocal microscopy-based approaches still remain the easiest way for biologists with minimal imaging experience to address fundamental questions about how their systems are arranged through space and time. In this review, we discuss a number of advanced applications of confocal microscopy for probing the spatiotemporal dynamics of biological systems.
Collapse
Affiliation(s)
- W Matt Reilly
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.,Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, USA
| | | |
Collapse
|
111
|
Fleury G, Roeffaers MBJ. Correlating Acid Site Distribution and Catalytic Activity in Dealuminated Mordenite at the Single-Particle Level. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guillaume Fleury
- Department of Microbial and Molecular Systems, Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Maarten B. J. Roeffaers
- Department of Microbial and Molecular Systems, Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
112
|
Wait EC, Reiche MA, Chew TL. Hypothesis-driven quantitative fluorescence microscopy - the importance of reverse-thinking in experimental design. J Cell Sci 2020; 133:133/21/jcs250027. [PMID: 33154172 DOI: 10.1242/jcs.250027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One of the challenges in modern fluorescence microscopy is to reconcile the conventional utilization of microscopes as exploratory instruments with their emerging and rapidly expanding role as a quantitative tools. The contribution of microscopy to observational biology will remain enormous owing to the improvements in acquisition speed, imaging depth, resolution and biocompatibility of modern imaging instruments. However, the use of fluorescence microscopy to facilitate the quantitative measurements necessary to challenge hypotheses is a relatively recent concept, made possible by advanced optics, functional imaging probes and rapidly increasing computational power. We argue here that to fully leverage the rapidly evolving application of microscopes in hypothesis-driven biology, we not only need to ensure that images are acquired quantitatively but must also re-evaluate how microscopy-based experiments are designed. In this Opinion, we present a reverse logic that guides the design of quantitative fluorescence microscopy experiments. This unique approach starts from identifying the results that would quantitatively inform the hypothesis and map the process backward to microscope selection. This ensures that the quantitative aspects of testing the hypothesis remain the central focus of the entire experimental design.
Collapse
Affiliation(s)
- Eric C Wait
- Advanced Imaging Center, Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Michael A Reiche
- Advanced Imaging Center, Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| |
Collapse
|
113
|
Lunde A, Glover JC. A versatile toolbox for semi-automatic cell-by-cell object-based colocalization analysis. Sci Rep 2020; 10:19027. [PMID: 33149236 PMCID: PMC7643144 DOI: 10.1038/s41598-020-75835-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/14/2020] [Indexed: 11/09/2022] Open
Abstract
Differential fluorescence labeling and multi-fluorescence imaging followed by colocalization analysis is commonly used to investigate cellular heterogeneity in situ. This is particularly important when investigating the biology of tissues with diverse cell types. Object-based colocalization analysis (OBCA) tools can employ automatic approaches, which are sensitive to errors in cell segmentation, or manual approaches, which can be impractical and tedious. Here, we present a novel set of tools for OBCA using a semi-automatic approach, consisting of two ImageJ plugins, a Microsoft Excel macro, and a MATLAB script. One ImageJ plugin enables customizable processing of multichannel 3D images for enhanced visualization of features relevant to OBCA, and another enables semi-automatic colocalization quantification. The Excel macro and the MATLAB script enable data organization and 3D visualization of object data across image series. The tools are well suited for experiments involving complex and large image data sets, and can be used in combination or as individual components, allowing flexible, efficient and accurate OBCA. Here we demonstrate their utility in immunohistochemical analyses of the developing central nervous system, which is characterized by complexity in the number and distribution of cell types, and by high cell packing densities, which can both create challenging situations for OBCA.
Collapse
Affiliation(s)
- Anders Lunde
- Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, University of Oslo, Blindern, 1105, Oslo, Norway
| | - Joel C Glover
- Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, University of Oslo, Blindern, 1105, Oslo, Norway.
| |
Collapse
|
114
|
Ovchinnikova K, Stuart L, Rakhlin A, Nikolenko S, Alexandrov T. ColocML: machine learning quantifies co-localization between mass spectrometry images. Bioinformatics 2020; 36:3215-3224. [PMID: 32049317 PMCID: PMC7214035 DOI: 10.1093/bioinformatics/btaa085] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 12/24/2022] Open
Abstract
Motivation Imaging mass spectrometry (imaging MS) is a prominent technique for capturing distributions of molecules in tissue sections. Various computational methods for imaging MS rely on quantifying spatial correlations between ion images, referred to as co-localization. However, no comprehensive evaluation of co-localization measures has ever been performed; this leads to arbitrary choices and hinders method development. Results We present ColocML, a machine learning approach addressing this gap. With the help of 42 imaging MS experts from nine laboratories, we created a gold standard of 2210 pairs of ion images ranked by their co-localization. We evaluated existing co-localization measures and developed novel measures using term frequency–inverse document frequency and deep neural networks. The semi-supervised deep learning Pi model and the cosine score applied after median thresholding performed the best (Spearman 0.797 and 0.794 with expert rankings, respectively). We illustrate these measures by inferring co-localization properties of 10 273 molecules from 3685 public METASPACE datasets. Availability and implementation https://github.com/metaspace2020/coloc. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Katja Ovchinnikova
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Lachlan Stuart
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Sergey Nikolenko
- National Research Institute Higher School of Economics.,Steklov Institute of Mathematics at St. Petersburg, St. Petersburg, Russia
| | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Metabolomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
115
|
Ryder PV, Lerit DA. Quantitative analysis of subcellular distributions with an open-source, object-based tool. Biol Open 2020; 9:bio055228. [PMID: 32973081 PMCID: PMC7595693 DOI: 10.1242/bio.055228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/17/2020] [Indexed: 01/02/2023] Open
Abstract
The subcellular localization of objects, such as organelles, proteins, or other molecules, instructs cellular form and function. Understanding the underlying spatial relationships between objects through colocalization analysis of microscopy images is a fundamental approach used to inform biological mechanisms. We generated an automated and customizable computational tool, the SubcellularDistribution pipeline, to facilitate object-based image analysis from three-dimensional (3D) fluorescence microcopy images. To test the utility of the SubcellularDistribution pipeline, we examined the subcellular distribution of mRNA relative to centrosomes within syncytial Drosophila embryos. Centrosomes are microtubule-organizing centers, and RNA enrichments at centrosomes are of emerging importance. Our open-source and freely available software detected RNA distributions comparably to commercially available image analysis software. The SubcellularDistribution pipeline is designed to guide the user through the complete process of preparing image analysis data for publication, from image segmentation and data processing to visualization.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Pearl V Ryder
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dorothy A Lerit
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
116
|
Susnik E, Taladriz-Blanco P, Drasler B, Balog S, Petri-Fink A, Rothen-Rutishauser B. Increased Uptake of Silica Nanoparticles in Inflamed Macrophages but Not upon Co-Exposure to Micron-Sized Particles. Cells 2020; 9:cells9092099. [PMID: 32942641 PMCID: PMC7564500 DOI: 10.3390/cells9092099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/04/2020] [Accepted: 09/12/2020] [Indexed: 11/16/2022] Open
Abstract
Silica nanoparticles (NPs) are widely used in various industrial and biomedical applications. Little is known about the cellular uptake of co-exposed silica particles, as can be expected in our daily life. In addition, an inflamed microenvironment might affect a NP’s uptake and a cell’s physiological response. Herein, prestimulated mouse J774A.1 macrophages with bacterial lipopolysaccharide were post-exposed to micron- and nanosized silica particles, either alone or together, i.e., simultaneously or sequentially, for different time points. The results indicated a morphological change and increased expression of tumor necrosis factor alpha in lipopolysaccharide prestimulated cells, suggesting a M1-polarization phenotype. Confocal laser scanning microscopy revealed the intracellular accumulation and uptake of both particle types for all exposure conditions. A flow cytometry analysis showed an increased particle uptake in lipopolysaccharide prestimulated macrophages. However, no differences were observed in particle uptakes between single- and co-exposure conditions. We did not observe any colocalization between the two silica (SiO2) particles. However, there was a positive colocalization between lysosomes and nanosized silica but only a few colocalized events with micro-sized silica particles. This suggests differential intracellular localizations of silica particles in macrophages and a possible activation of distinct endocytic pathways. The results demonstrate that the cellular uptake of NPs is modulated in inflamed macrophages but not in the presence of micron-sized particles.
Collapse
Affiliation(s)
- Eva Susnik
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland; (E.S.); (P.T.-B.); (B.D.); (S.B.); (A.P.-F.)
| | - Patricia Taladriz-Blanco
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland; (E.S.); (P.T.-B.); (B.D.); (S.B.); (A.P.-F.)
| | - Barbara Drasler
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland; (E.S.); (P.T.-B.); (B.D.); (S.B.); (A.P.-F.)
| | - Sandor Balog
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland; (E.S.); (P.T.-B.); (B.D.); (S.B.); (A.P.-F.)
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland; (E.S.); (P.T.-B.); (B.D.); (S.B.); (A.P.-F.)
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Barbara Rothen-Rutishauser
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland; (E.S.); (P.T.-B.); (B.D.); (S.B.); (A.P.-F.)
- Correspondence: ; Tel.: +41-26-300-95-02
| |
Collapse
|
117
|
Wei MT, Chang YC, Shimobayashi SF, Shin Y, Strom AR, Brangwynne CP. Nucleated transcriptional condensates amplify gene expression. Nat Cell Biol 2020; 22:1187-1196. [DOI: 10.1038/s41556-020-00578-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
|
118
|
Geri S, Krunclova T, Janouskova O, Panek J, Hruby M, Hernández‐Valdés D, Probst B, Alberto RA, Mamat C, Kubeil M, Stephan H. Light-Activated Carbon Monoxide Prodrugs Based on Bipyridyl Dicarbonyl Ruthenium(II) Complexes. Chemistry 2020; 26:10992-11006. [PMID: 32700815 PMCID: PMC7496190 DOI: 10.1002/chem.202002139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 12/13/2022]
Abstract
Two photoactivatable dicarbonyl ruthenium(II) complexes based on an amide-functionalised bipyridine scaffold (4-position) equipped with an alkyne functionality or a green-fluorescent BODIPY (boron-dipyrromethene) dye have been prepared and used to investigate their light-induced decarbonylation. UV/Vis, FTIR and 13 C NMR spectroscopies as well as gas chromatography and multivariate curve resolution alternating least-squares analysis (MCR-ALS) were used to elucidate the mechanism of the decarbonylation process. Release of the first CO molecule occurs very quickly, while release of the second CO molecule proceeds more slowly. In vitro studies using two cell lines A431 (human squamous carcinoma) and HEK293 (human embryonic kidney cells) have been carried out in order to characterise the anti-proliferative and anti-apoptotic activities. The BODIPY-labelled compound allows for monitoring the cellular uptake, showing fast internalisation kinetics and accumulation at the endoplasmic reticulum and mitochondria.
Collapse
Affiliation(s)
- Stepan Geri
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-RossendorfBautzner Landstrasse 40001328DresdenGermany
| | - Tereza Krunclova
- Department of Biological ModelsInstitute of Macromolecular ChemistryHeyrovsky Square 216206PragueCzech Republic
| | - Olga Janouskova
- Department of Biological ModelsInstitute of Macromolecular ChemistryHeyrovsky Square 216206PragueCzech Republic
| | - Jiri Panek
- Supramolecular Polymer SystemsInstitute of Macromolecular ChemistryHeyrovsky Square 216206PragueCzech Republic
| | - Martin Hruby
- Supramolecular Polymer SystemsInstitute of Macromolecular ChemistryHeyrovsky Square 216206PragueCzech Republic
| | | | - Benjamin Probst
- Department of ChemistryUniversity of ZurichWinterthurerstr. 1908057ZurichSwitzerland
| | - Roger A. Alberto
- Department of ChemistryUniversity of ZurichWinterthurerstr. 1908057ZurichSwitzerland
| | - Constantin Mamat
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-RossendorfBautzner Landstrasse 40001328DresdenGermany
| | - Manja Kubeil
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-RossendorfBautzner Landstrasse 40001328DresdenGermany
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-RossendorfBautzner Landstrasse 40001328DresdenGermany
| |
Collapse
|
119
|
Abstract
Computational analysis of digital images provides a robust and unbiased way to compare and investigate the amount (pixel intensity) and spatial distribution of DNA modifications. The DNA modifications in the cells are visualized by fluorescence labeling and the images are captured by confocal microscopy. The key advantage of the confocal over conventional microscope is that it images only a thin optical section around the focal plane of the microscope therefore it can precisely record signals only from the focal plane inside the nucleus. In this chapter, we will describe in detail several analysis methods to visualize and quantify the DNA modification signals including how to investigate codistribution of such signals when using dual labeling.
Collapse
|
120
|
Arta A, Larsen JB, Eriksen AZ, Kempen PJ, Larsen M, Andresen TL, Urquhart AJ. Cell targeting strategy affects the intracellular trafficking of liposomes altering loaded doxorubicin release kinetics and efficacy in endothelial cells. Int J Pharm 2020; 588:119715. [PMID: 32750439 DOI: 10.1016/j.ijpharm.2020.119715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 11/30/2022]
Abstract
Targeting nanocarrier drug delivery systems, that deliver drug payloads to the site of disease action, are frequently viewed as the future of nanocarrier based therapies but have struggled to breakthrough to the clinic in comparison to non-targeting counterparts. Using unilamellar liposomes as model nanocarriers, we show that cell targeting strategy (electrostatic, ligand and antigen) influences both the intracellular fate of the liposomes and the corresponding efficacy of the loaded drug, doxorubicin, in endothelial cells. We show that increased liposome uptake by cells does not translate to improved efficacy in this scenario but that liposome intracellular trafficking, particularly distribution between recycling endosomes and lysosomes, influences in vitro efficacy. Choosing targeting strategies that promote desired nanocarrier intracellular trafficking may be a viable strategy to enhance the in vivo efficacy of drug delivery systems.
Collapse
Affiliation(s)
- Anthoula Arta
- Department of Health Technology, Technical University of Denmark, Building 345C, 2800 Kgs. Lyngby, Denmark
| | - Jannik B Larsen
- Department of Health Technology, Technical University of Denmark, Building 345C, 2800 Kgs. Lyngby, Denmark
| | - Anne Z Eriksen
- Department of Health Technology, Technical University of Denmark, Building 345C, 2800 Kgs. Lyngby, Denmark
| | - Paul J Kempen
- Department of Health Technology, Technical University of Denmark, Building 345C, 2800 Kgs. Lyngby, Denmark
| | - Michael Larsen
- Department of Opthalmology, Rigshospitalet, Glostrup, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas L Andresen
- Department of Health Technology, Technical University of Denmark, Building 345C, 2800 Kgs. Lyngby, Denmark
| | - Andrew J Urquhart
- Department of Health Technology, Technical University of Denmark, Building 345C, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
121
|
Relating polymeric microparticle formulation to prevalence or distribution of fibronectin and poly-d-lysine to support mesenchymal stem cell growth. Biointerphases 2020; 15:041008. [DOI: 10.1116/6.0000226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
122
|
Shah SI, Ong HL, Demuro A, Ullah G. PunctaSpecks: A tool for automated detection, tracking, and analysis of multiple types of fluorescently labeled biomolecules. Cell Calcium 2020; 89:102224. [PMID: 32502904 PMCID: PMC7343294 DOI: 10.1016/j.ceca.2020.102224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/12/2020] [Accepted: 05/21/2020] [Indexed: 01/21/2023]
Abstract
Recent advances in imaging technology and fluorescent probes have made it possible to gain information about the dynamics of subcellular processes at unprecedented spatiotemporal scales. Unfortunately, a lack of automated tools to efficiently process the resulting imaging data encoding fine details of the biological processes remains a major bottleneck in utilizing the full potential of these powerful experimental techniques. Here we present a computational tool, called PunctaSpecks, that can characterize fluorescence signals arising from a wide range of biological molecules under normal and pathological conditions. Among other things, the program can calculate the number, areas, life-times, and amplitudes of fluorescence signals arising from multiple sources, track diffusing fluorescence sources like moving mitochondria, and determine the overlap probability of two processes or organelles imaged using indicator dyes of different colors. We have tested PunctaSpecks on synthetic time-lapse movies containing mobile fluorescence objects of various sizes, mimicking the activity of biomolecules. The robustness of the software is tested by varying the level of noise along with random but known pattern of appearing, disappearing, and movement of these objects. Next, we use PunctaSpecks to characterize protein-protein interaction involved in store-operated Ca2+ entry through the formation and activation of plasma membrane-bound ORAI1 channel and endoplasmic reticulum membrane-bound stromal interaction molecule (STIM), the evolution of inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ signals from sub-micrometer size local events into global waves in human cortical neurons, and the activity of Alzheimer's disease-associated β amyloid pores in the plasma membrane. The tool can also be used to study other dynamical processes imaged through fluorescence molecules. The open source algorithm allows for extending the program to analyze more than two types of biomolecules visualized using markers of different colors.
Collapse
Affiliation(s)
| | - Hwei Ling Ong
- Secretory Physiology Section, NIDCR, NIH, Bethesda, MD, 20892,USA
| | - Angelo Demuro
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, FL 33647, USA.
| |
Collapse
|
123
|
Eriksson I, Wäster P, Öllinger K. Restoration of lysosomal function after damage is accompanied by recycling of lysosomal membrane proteins. Cell Death Dis 2020; 11:370. [PMID: 32409651 PMCID: PMC7224388 DOI: 10.1038/s41419-020-2527-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
Abstract
Lysosomes are central organelles for cellular degradation and energy homeostasis. In addition, lysosomal membrane permeabilization (LMP) and subsequent release of lysosomal content to the cytosol can initiate programmed cell death. The extent of LMP and available repair mechanisms determine the cell fate after lysosomal damage. In this study, we aimed to investigate the premises for lysosomal membrane repair after LMP and found that lysosomal membrane damage initiated by L-leucyl-L-leucine methyl ester (LLOMe) caused caspase-dependent apoptosis in almost 50% of the cells, while the rest recovered. Immediately after LLOMe addition, lysosomal proteases were detected in the cytosol and the ESCRT-components ALIX and CHMP4B were recruited to the lysosomal membrane. Next, lysophagic clearance of damaged lysosomes was evident and a concentration-dependent translocation of several lysosomal membrane proteins, including LAMP2, to the cytosol was found. LAMP2 was present in small vesicles with the N-terminal protein chain facing the lumen of the vesicle. We conclude that lysophagic clearance of damaged lysosomes results in generation of lysosomal membrane protein complexes, which constitute small membrane enclosed units, possibly for recycling of lysosomal membrane proteins. These lysosomal membrane complexes enable an efficient regeneration of lysosomes to regain cell functionality.
Collapse
Affiliation(s)
- Ida Eriksson
- Experimental Pathology, Department of Biomedical and Clinical Sciences, Linköping University, 58185, Linköping, Sweden
| | - Petra Wäster
- Experimental Pathology, Department of Biomedical and Clinical Sciences, Linköping University, 58185, Linköping, Sweden
| | - Karin Öllinger
- Experimental Pathology, Department of Biomedical and Clinical Sciences, Linköping University, 58185, Linköping, Sweden.
| |
Collapse
|
124
|
Buchberger AR, Vu NQ, Johnson J, DeLaney K, Li L. A Simple and Effective Sample Preparation Strategy for MALDI-MS Imaging of Neuropeptide Changes in the Crustacean Brain Due to Hypoxia and Hypercapnia Stress. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1058-1065. [PMID: 32150406 PMCID: PMC7467133 DOI: 10.1021/jasms.9b00107] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Matrix-assisted laser desorption/ionization (MALDI)-MS imaging has been utilized to image a variety of biomolecules, including neuropeptides. Washing a tissue section is an effective way to eliminate interfering background and improve detection of low concentration target analyte molecules; however, many previous methods have not been tested for neuropeptide analysis via MALDI-MS imaging. Using crustaceans as a neurological model organism, we developed a new, simple washing procedure and applied this method to characterize neuropeptide changes due to hypoxia stress. With a 10 s 50:50 EtOH:H2O wash, neuropeptide coverage was improved by 1.15-fold, while normalized signal intensities were increased by 5.28-fold. Specifically, hypoxia and hypercapnia stress conditions were investigated due to their environmental relevance to marine invertebrates. Many neuropeptides, including RFamides, pyrokinin, and cardioactive peptides, showed distinct up- and down-regulation for specific neuropeptide isoforms. Since crustacean neuropeptides are homologous to those found in humans, results from these studies can be applied to understand potential roles of neuropeptides involved in medical hypoxia and hypercapnia.
Collapse
Affiliation(s)
- Amanda R. Buchberger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| | - Nhu Q. Vu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| | - Jillian Johnson
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705
| | - Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705
- Address reprint requests to: Lingjun Li. Mailing Address: 5125 Rennebohm Hall, 777 Highland Avenue, Madison, WI 53706; Phone: (608)265-8491; Fax: (608)262-5345;
| |
Collapse
|
125
|
Maiser A, Dillinger S, Längst G, Schermelleh L, Leonhardt H, Németh A. Super-resolution in situ analysis of active ribosomal DNA chromatin organization in the nucleolus. Sci Rep 2020; 10:7462. [PMID: 32366902 PMCID: PMC7198602 DOI: 10.1038/s41598-020-64589-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 04/01/2020] [Indexed: 12/21/2022] Open
Abstract
Ribosomal RNA (rRNA) transcription by RNA polymerase I (Pol I) is the first key step of ribosome biogenesis. While the molecular mechanisms of rRNA transcription regulation have been elucidated in great detail, the functional organization of the multicopy rRNA gene clusters (rDNA) in the nucleolus is less well understood. Here we apply super-resolution 3D structured illumination microscopy (3D-SIM) to investigate the spatial organization of transcriptionally competent active rDNA chromatin at size scales well below the diffraction limit by optical microscopy. We identify active rDNA chromatin units exhibiting uniformly ring-shaped conformations with diameters of ~240 nm in mouse and ~170 nm in human fibroblasts, consistent with rDNA looping. The active rDNA chromatin units are clearly separated from each other and from the surrounding areas of rRNA processing. Simultaneous imaging of all active genes bound by Pol I and the architectural chromatin protein Upstream Binding Transcription Factor (UBF) reveals a random spatial orientation of regular repeats of rDNA coding sequences within the nucleoli. These observations imply rDNA looping and exclude potential formation of systematic spatial assemblies of the well-ordered repetitive arrays of transcription units. Collectively, this study uncovers key features of the 3D organization of active rDNA chromatin units and their nucleolar clusters providing a spatial framework of nucleolar chromatin organization at unprecedented detail.
Collapse
Affiliation(s)
- Andreas Maiser
- Department of Biology II, Ludwig-Maximilians-Universität München, München, Germany
| | - Stefan Dillinger
- Department of Biochemistry III, University of Regensburg, Regensburg, Germany
| | - Gernot Längst
- Department of Biochemistry III, University of Regensburg, Regensburg, Germany
| | - Lothar Schermelleh
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Heinrich Leonhardt
- Department of Biology II, Ludwig-Maximilians-Universität München, München, Germany
| | - Attila Németh
- Department of Biochemistry III, University of Regensburg, Regensburg, Germany.
- Institute of Neuropathology, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
126
|
Tubbesing K, Ward J, Abini-Agbomson R, Malhotra A, Rudkouskaya A, Warren J, Lamar J, Martino N, Adam AP, Barroso M. Complex Rab4-Mediated Regulation of Endosomal Size and EGFR Activation. Mol Cancer Res 2020; 18:757-773. [PMID: 32019812 PMCID: PMC7526990 DOI: 10.1158/1541-7786.mcr-19-0052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 09/24/2019] [Accepted: 01/30/2020] [Indexed: 11/16/2022]
Abstract
Early sorting endosomes are responsible for the trafficking and function of transferrin receptor (TfR) and EGFR. These receptors play important roles in iron uptake and signaling and are critical for breast cancer development. However, the role of morphology, receptor composition, and signaling of early endosomes in breast cancer remains poorly understood. A novel population of enlarged early endosomes was identified in breast cancer cells and tumor xenografts but not in noncancerous MCF10A cells. Quantitative analysis of endosomal morphology, cargo sorting, EGFR activation, and Rab GTPase regulation was performed using super-resolution and confocal microscopy followed by 3D rendering. MDA-MB-231 breast cancer cells have fewer, but larger EEA1-positive early endosomes compared with MCF10A cells. Live-cell imaging indicated dysregulated cargo sorting, because EGF and Tf traffic together via enlarged endosomes in MDA-MB-231, but not in MCF10A. Large EEA1-positive MDA-MB-231 endosomes exhibited prolonged and increased EGF-induced activation of EGFR upon phosphorylation at tyrosine-1068 (EGFR-p1068). Rab4A overexpression in MCF10A cells produced EEA1-positive enlarged endosomes that displayed prolonged and amplified EGF-induced EGFR-p1068 activation. Knockdown of Rab4A lead to increased endosomal size in MCF10A, but not in MDA-MB-231 cells. Nevertheless, Rab4A knockdown resulted in enhanced EGF-induced activation of EGFR-p1068 in MDA-MB-231 as well as downstream signaling in MCF10A cells. Altogether, this extensive characterization of early endosomes in breast cancer cells has identified a Rab4-modulated enlarged early endosomal compartment as the site of prolonged and increased EGFR activation. IMPLICATIONS: Enlarged early endosomes play a Rab4-modulated role in regulation of EGFR activation in breast cancer cells.
Collapse
Affiliation(s)
- Kate Tubbesing
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Jamie Ward
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Raymond Abini-Agbomson
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Aditi Malhotra
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Alena Rudkouskaya
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Janine Warren
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - John Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Nina Martino
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Alejandro P Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
- Department of Ophthalmology, Albany Medical College, Albany, New York
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York.
| |
Collapse
|
127
|
Alexandrov T. Spatial Metabolomics and Imaging Mass Spectrometry in the Age of Artificial Intelligence. Annu Rev Biomed Data Sci 2020; 3:61-87. [PMID: 34056560 DOI: 10.1146/annurev-biodatasci-011420-031537] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Spatial metabolomics is an emerging field of omics research that has enabled localizing metabolites, lipids, and drugs in tissue sections, a feat considered impossible just two decades ago. Spatial metabolomics and its enabling technology-imaging mass spectrometry-generate big hyper-spectral imaging data that have motivated the development of tailored computational methods at the intersection of computational metabolomics and image analysis. Experimental and computational developments have recently opened doors to applications of spatial metabolomics in life sciences and biomedicine. At the same time, these advances have coincided with a rapid evolution in machine learning, deep learning, and artificial intelligence, which are transforming our everyday life and promise to revolutionize biology and healthcare. Here, we introduce spatial metabolomics through the eyes of a computational scientist, review the outstanding challenges, provide a look into the future, and discuss opportunities granted by the ongoing convergence of human and artificial intelligence.
Collapse
Affiliation(s)
- Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
128
|
Peters DK, Garcea RL. Murine polyomavirus DNA transitions through spatially distinct nuclear replication subdomains during infection. PLoS Pathog 2020; 16:e1008403. [PMID: 32203554 PMCID: PMC7117779 DOI: 10.1371/journal.ppat.1008403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/02/2020] [Accepted: 02/13/2020] [Indexed: 12/16/2022] Open
Abstract
The replication of small DNA viruses requires both host DNA replication and repair factors that are often recruited to subnuclear domains termed viral replication centers (VRCs). Aside from serving as a spatial focus for viral replication, little is known about these dynamic areas in the nucleus. We investigated the organization and function of VRCs during murine polyomavirus (MuPyV) infection using 3D structured illumination microscopy (3D-SIM). We localized MuPyV replication center components, such as the viral large T-antigen (LT) and the cellular replication protein A (RPA), to spatially distinct subdomains within VRCs. We found that viral DNA (vDNA) trafficked sequentially through these subdomains post-synthesis, suggesting their distinct functional roles in vDNA processing. Additionally, we observed disruption of VRC organization and vDNA trafficking during mutant MuPyV infections or inhibition of DNA synthesis. These results reveal a dynamic organization of VRC components that coordinates virus replication.
Collapse
Affiliation(s)
- Douglas K. Peters
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Robert L. Garcea
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
129
|
Tetraspanins TSP-12 and TSP-14 function redundantly to regulate the trafficking of the type II BMP receptor in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2020; 117:2968-2977. [PMID: 31988138 DOI: 10.1073/pnas.1918807117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Tetraspanins are a unique family of 4-pass transmembrane proteins that play important roles in a variety of cell biological processes. We have previously shown that 2 paralogous tetraspanins in Caenorhabditis elegans, TSP-12 and TSP-14, function redundantly to promote bone morphogenetic protein (BMP) signaling. The underlying molecular mechanisms, however, are not fully understood. In this study, we examined the expression and subcellular localization patterns of endogenously tagged TSP-12 and TSP-14 proteins. We found that TSP-12 and TSP-14 share overlapping expression patterns in multiple cell types, and that both proteins are localized on the cell surface and in various types of endosomes, including early, late, and recycling endosomes. Animals lacking both TSP-12 and TSP-14 exhibit reduced cell-surface levels of the BMP type II receptor DAF-4/BMPRII, along with impaired endosome morphology and mislocalization of DAF-4/BMPRII to late endosomes and lysosomes. These findings indicate that TSP-12 and TSP-14 are required for the recycling of DAF-4/BMPRII. Together with previous findings that the type I receptor SMA-6 is recycled via the retromer complex, our work demonstrates the involvement of distinct recycling pathways for the type I and type II BMP receptors and highlights the importance of tetraspanin-mediated intracellular trafficking in the regulation of BMP signaling in vivo. As TSP-12 and TSP-14 are conserved in mammals, our findings suggest that the mammalian TSP-12 and TSP-14 homologs may also function in regulating transmembrane protein recycling and BMP signaling.
Collapse
|
130
|
Differential Subcellular Distribution and Translocation of Seven 14-3-3 Isoforms in Response to EGF and During the Cell Cycle. Int J Mol Sci 2020; 21:ijms21010318. [PMID: 31906564 PMCID: PMC6981507 DOI: 10.3390/ijms21010318] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/05/2019] [Accepted: 12/28/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple isoforms of 14-3-3 proteins exist in different organisms. In mammalian cells, 14-3-3 protein has seven isoforms (α/β, ε, η, γ, σ, θ/τ, and δ/ζ), with α and δ representing the phosphorylated versions of β and ζ, respectively. While the existence of multiple isoforms may represent one more level of regulation in 14-3-3 signaling, our knowledge regarding the isoform-specific functions of 14-3-3 proteins is very limited. Determination of the subcellular localization of the different 14-3-3 isoforms could give us important clues of their specific functions. In this study, by using indirect immunofluorescence, subcellular fractionation, and immunoblotting, we studied the subcellular localization of the total 14-3-3 protein and each of the seven 14-3-3 isoforms; their redistribution throughout the cell cycle; and their translocation in response to EGF in Cos-7 cells. We showed that 14-3-3 proteins are broadly distributed throughout the cell and associated with many subcellular structures/organelles, including the plasma membrane (PM), mitochondria, ER, nucleus, microtubules, and actin fibers. This broad distribution underlines the multiple functions identified for 14-3-3 proteins. The different isoforms of 14-3-3 proteins have distinctive subcellular localizations, which suggest their distinctive cellular functions. Most notably, 14-3-3ƞ is almost exclusively localized to the mitochondria, 14-3-3γ is only localized to the nucleus, and 14-3-3σ strongly and specifically associated with the centrosome during mitosis. We also examined the subcellular localization of the seven 14-3-3 isoforms in other cells, including HEK-293, MDA-MB-231, and MCF-7 cells, which largely confirmed our findings with Cos-7 cells.
Collapse
|
131
|
Visualizing the inner life of microbes: practices of multi-color single-molecule localization microscopy in microbiology. Biochem Soc Trans 2019; 47:1041-1065. [PMID: 31296734 DOI: 10.1042/bst20180399] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/22/2019] [Accepted: 04/26/2019] [Indexed: 12/28/2022]
Abstract
In this review, we discuss multi-color single-molecule imaging and tracking strategies for studying microbial cell biology. We first summarize and compare the methods in a detailed literature review of published studies conducted in bacteria and fungi. We then introduce a guideline on which factors and parameters should be evaluated when designing a new experiment, from fluorophore and labeling choices to imaging routines and data analysis. Finally, we give some insight into some of the recent and promising applications and developments of these techniques and discuss the outlook for this field.
Collapse
|
132
|
Tabbasum VG, Cooper DMF. Structural and Functional Determinants of AC8 Trafficking, Targeting and Responsiveness in Lipid Raft Microdomains. J Membr Biol 2019; 252:159-172. [PMID: 30746562 PMCID: PMC6556161 DOI: 10.1007/s00232-019-00060-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/21/2019] [Indexed: 01/01/2023]
Abstract
The fidelity of cAMP in controlling numerous cellular functions rests crucially on the precise organization of cAMP microdomains that are sustained by the scaffolding properties of adenylyl cyclase. Earlier studies suggested that AC8 enriches in lipid rafts where it interacts with cytoskeletal elements. However, these are not stable structures and little is known about the dynamics of AC8 secretion and its interactions. The present study addresses the role of the cytoskeleton in maintaining the AC8 microenvironment, particularly in the context of the trafficking route of AC8 and its interaction with caveolin1. Here, biochemical and live-cell imaging approaches expose a complex, dynamic interaction between AC8 and caveolin1 that affects AC8 processing, targeting and responsiveness in plasma membrane lipid rafts. Site-directed mutagenesis and pharmacological approaches reveal that AC8 is processed with complex N-glycans and associates with lipid rafts en route to the plasma membrane. A dynamic picture emerges of the trafficking and interactions of AC8 while travelling to the plasma membrane, which are key to the organization of the AC8 microdomain.
Collapse
Affiliation(s)
- Valentina G Tabbasum
- Department of Pharmacology, University of Cambridge, Tennis Court Rd., Cambridge, CB2 1PD, UK
| | - Dermot M F Cooper
- Department of Pharmacology, University of Cambridge, Tennis Court Rd., Cambridge, CB2 1PD, UK.
| |
Collapse
|
133
|
Adler J, Parmryd I. Quantifying colocalization: the MOC is a hybrid coefficient - an uninformative mix of co-occurrence and correlation. J Cell Sci 2019; 132:132/1/jcs222455. [PMID: 30626689 DOI: 10.1242/jcs.222455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Jeremy Adler
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Ingela Parmryd
- Ingela Parmryd, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| |
Collapse
|
134
|
Aaron JS, Taylor AB, Chew TL. The Pearson's correlation coefficient is not a universally superior colocalization metric. Response to ‘Quantifying colocalization: the MOC is a hybrid coefficient – an uninformative mix of co-occurrence and correlation’. J Cell Sci 2019; 132:132/1/jcs227074. [DOI: 10.1242/jcs.227074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Jesse S. Aaron
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr., Ashburn, VA 20147, USA
| | - Aaron B. Taylor
- Biomedical Research Core Facilities, University of Michigan Medical School, 1150 W. Medical Center Dr., Ann Arbor, MI 48109-0674, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr., Ashburn, VA 20147, USA
| |
Collapse
|
135
|
Méndez-Ardoy A, Lostalé-Seijo I, Montenegro J. Where in the Cell Is our Cargo? Methods Currently Used To Study Intracellular Cytosolic Localisation. Chembiochem 2018; 20:488-498. [PMID: 30178574 DOI: 10.1002/cbic.201800390] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Indexed: 12/14/2022]
Abstract
The internalisation and delivery of active substances into cells is a field of growing interest for chemical biology and therapeutics. As we move from small-molecule-based drugs towards bigger cargos, such as antibodies, enzymes, nucleases or nucleic acids, the development of efficient delivery systems becomes critical for their practical application. Different strategies and synthetic carriers have been developed; these include cationic lipids, gold nanoparticles, polymers, cell-penetrating peptides (CPPs), protein surface modification etc. However, all of these methodologies still present limitations relating to the precise targeting of the different intracellular compartments and, in particular, difficulties in access to the cellular cytosol. Additionally, the precise quantification of the cellular uptake of a compound is not enough to demonstrate delivery and/or functional activity. Therefore, methods to determine cellular distributions of cargos and carriers are of critical importance for identifying the barriers that are blocking the activity. Herein we survey the different techniques that can currently be used to track and to monitor the subcellular localisation of the synthetic compounds that we deliver inside cells.
Collapse
Affiliation(s)
- Alejandro Méndez-Ardoy
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Irene Lostalé-Seijo
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
136
|
Mohapatra S, Weisshaar JC. Modified Pearson correlation coefficient for two-color imaging in spherocylindrical cells. BMC Bioinformatics 2018; 19:428. [PMID: 30445904 PMCID: PMC6240329 DOI: 10.1186/s12859-018-2444-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/22/2018] [Indexed: 11/10/2022] Open
Abstract
The revolution in fluorescence microscopy enables sub-diffraction-limit ("superresolution") localization of hundreds or thousands of copies of two differently labeled proteins in the same live cell. In typical experiments, fluorescence from the entire three-dimensional (3D) cell body is projected along the z-axis of the microscope to form a 2D image at the camera plane. For imaging of two different species, here denoted "red" and "green", a significant biological question is the extent to which the red and green spatial distributions are positively correlated, anti-correlated, or uncorrelated. A commonly used statistic for assessing the degree of linear correlation between two image matrices R and G is the Pearson Correlation Coefficient (PCC). PCC should vary from - 1 (perfect anti-correlation) to 0 (no linear correlation) to + 1 (perfect positive correlation). However, in the special case of spherocylindrical bacterial cells such as E. coli or B. subtilis, we show that the PCC fails both qualitatively and quantitatively. PCC returns the same + 1 value for 2D projections of distributions that are either perfectly correlated in 3D or completely uncorrelated in 3D. The PCC also systematically underestimates the degree of anti-correlation between the projections of two perfectly anti-correlated 3D distributions. The problem is that the projection of a random spatial distribution within the 3D spherocylinder is non-random in 2D, whereas PCC compares every matrix element of R or G with the constant mean value [Formula: see text] or [Formula: see text]. We propose a modified Pearson Correlation Coefficient (MPCC) that corrects this problem for spherocylindrical cell geometry by using the proper reference matrix for comparison with R and G. Correct behavior of MPCC is confirmed for a variety of numerical simulations and on experimental distributions of HU and RNA polymerase in live E. coli cells. The MPCC concept should be generalizable to other cell shapes.
Collapse
Affiliation(s)
- Sonisilpa Mohapatra
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA. .,Present Address: Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, 21205, USA.
| | - James C Weisshaar
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
137
|
Nizsalóczki E, Nagy P, Mocsár G, Szabó Á, Csomós I, Waldmann TA, Vámosi G, Mátyus L, Bodnár A. Minimum degree of overlap between IL-9R and IL-2R on human T lymphoma cells: A quantitative CLSM and FRET analysis. Cytometry A 2018; 93:1106-1117. [PMID: 30378727 PMCID: PMC8108070 DOI: 10.1002/cyto.a.23634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/30/2018] [Accepted: 09/18/2018] [Indexed: 01/15/2023]
Abstract
The heterodimeric receptor complex of IL-9 consists of the cytokine-specific α-subunit and the common γc -chain shared with other cytokines, including IL-2, a central regulator of T cell function. We have shown previously the bipartite spatial relationship of IL-9 and IL-2 receptors at the surface of human T lymphoma cells: in addition to common clusters, expression of the two receptor kinds could also be observed in segregated membrane areas. Here we analyzed further the mutual cell surface organization of IL-9 and IL-2 receptors. Complementing Pearson correlation data with co-occurrence analysis of confocal microscopic images revealed that a minimum degree of IL-9R/IL-2R co-localization exists at the cell surface regardless of the overall spatial correlation of the two receptor kinds. Moreover, our FRET experiments demonstrated molecular scale assemblies of the elements of the IL-9/IL-2R system. Binding of IL-9 altered the structure and/or composition of these clusters. It is hypothesized, that by sequestering receptor subunits in common membrane areas, the overlapping domains of IL-9R and IL-2R provide a platform enabling both the formation of the appropriate receptor complex as well as subunit sharing between related cytokines. © 2018 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Enikő Nizsalóczki
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Mocsár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ágnes Szabó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Csomós
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Thomas A. Waldmann
- Lymphoid Malignancies Branch, National Institutes of Health, Bethesda, Maryland
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Mátyus
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Bodnár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
138
|
Mohapatra S, Weisshaar JC. Functional mapping of the
E. coli
translational machinery using single‐molecule tracking. Mol Microbiol 2018; 110:262-282. [DOI: 10.1111/mmi.14103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2018] [Indexed: 12/22/2022]
Affiliation(s)
| | - James C. Weisshaar
- Department of Chemistry University of Wisconsin‐Madison Madison WI 53706USA
| |
Collapse
|