101
|
Vasan R, Maleckar MM, Williams CD, Rangamani P. DLITE Uses Cell-Cell Interface Movement to Better Infer Cell-Cell Tensions. Biophys J 2019; 117:1714-1727. [PMID: 31648791 PMCID: PMC6838938 DOI: 10.1016/j.bpj.2019.09.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 11/30/2022] Open
Abstract
Cell shapes and connectivities evolve over time as the colony changes shape or embryos develop. Shapes of intercellular interfaces are closely coupled with the forces resulting from actomyosin interactions, membrane tension, or cell-cell adhesions. Although it is possible to computationally infer cell-cell forces from a mechanical model of collective cell behavior, doing so for temporally evolving forces in a manner robust to digitization difficulties is challenging. Here, we introduce a method for dynamic local intercellular tension estimation (DLITE) that infers such evolution in temporal force with less sensitivity to digitization ambiguities or errors. This method builds upon previous work on single time points (cellular force-inference toolkit). We validate our method using synthetic geometries. DLITE's inferred cell colony tension evolutions correlate better with ground truth for these synthetic geometries as compared to tension values inferred from methods that consider each time point in isolation. We introduce cell connectivity errors, angle estimate errors, connection mislocalization, and connection topological changes to synthetic data and show that DLITE has reduced sensitivity to these conditions. Finally, we apply DLITE to time series of human-induced pluripotent stem cell colonies with endogenously expressed GFP-tagged zonulae occludentes-1. We show that DLITE offers improved stability in the inference of cell-cell tensions and supports a correlation between the dynamics of cell-cell forces and colony rearrangement.
Collapse
Affiliation(s)
- Ritvik Vasan
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, San Diego, California
| | | | | | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, San Diego, California.
| |
Collapse
|
102
|
Membrane tension regulates syndecan-1 expression through actin remodelling. Biochim Biophys Acta Gen Subj 2019; 1863:129413. [DOI: 10.1016/j.bbagen.2019.129413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/22/2019] [Accepted: 08/07/2019] [Indexed: 01/21/2023]
|
103
|
Graziano BR, Town JP, Sitarska E, Nagy TL, Fošnarič M, Penič S, Iglič A, Kralj-Iglič V, Gov NS, Diz-Muñoz A, Weiner OD. Cell confinement reveals a branched-actin independent circuit for neutrophil polarity. PLoS Biol 2019; 17:e3000457. [PMID: 31600188 PMCID: PMC6805013 DOI: 10.1371/journal.pbio.3000457] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 10/22/2019] [Accepted: 09/16/2019] [Indexed: 12/30/2022] Open
Abstract
Migratory cells use distinct motility modes to navigate different microenvironments, but it is unclear whether these modes rely on the same core set of polarity components. To investigate this, we disrupted actin-related protein 2/3 (Arp2/3) and the WASP-family verprolin homologous protein (WAVE) complex, which assemble branched actin networks that are essential for neutrophil polarity and motility in standard adherent conditions. Surprisingly, confinement rescues polarity and movement of neutrophils lacking these components, revealing a processive bleb-based protrusion program that is mechanistically distinct from the branched actin-based protrusion program but shares some of the same core components and underlying molecular logic. We further find that the restriction of protrusion growth to one site does not always respond to membrane tension directly, as previously thought, but may rely on closely linked properties such as local membrane curvature. Our work reveals a hidden circuit for neutrophil polarity and indicates that cells have distinct molecular mechanisms for polarization that dominate in different microenvironments. Cells display a high degree of plasticity in migration, but how polarity is organized in different microenvironments has remained unclear. This study uses mechanical perturbations to reveal that migration using actin-rich or bleb-based protrusions are both organized around Rac GTPase.
Collapse
Affiliation(s)
- Brian R. Graziano
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - Jason P. Town
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - Ewa Sitarska
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Tamas L. Nagy
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - Miha Fošnarič
- Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Samo Penič
- Department of Theoretical Electrotechnics, Mathematics and Physics, Faculty of Electrical Engineering, University of Ljubljana, Slovenia
| | - Aleš Iglič
- Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, Slovenia
- Department of Theoretical Electrotechnics, Mathematics and Physics, Faculty of Electrical Engineering, University of Ljubljana, Slovenia
| | | | - Nir S. Gov
- Department of Chemical and Biological Physics, Weizmann Institute, Rehovot, Israel
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Orion D. Weiner
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
104
|
Abstract
For many years, major differences in morphology, motility, and mechanical characteristics have been observed between transformed cancer and normal cells. In this review, we consider these differences as linked to different states of normal and transformed cells that involve distinct mechanosensing and motility pathways. There is a strong correlation between repeated tissue healing and/or inflammation and the probability of cancer, both of which involve growth in adult tissues. Many factors are likely needed to enable growth, including the loss of rigidity sensing, but recent evidence indicates that microRNAs have important roles in causing the depletion of growth-suppressing proteins. One microRNA, miR-21, is overexpressed in many different tissues during both healing and cancer. Normal cells can become transformed by the depletion of cytoskeletal proteins that results in the loss of mechanosensing, particularly rigidity sensing. Conversely, the transformed state can be reversed by the expression of cytoskeletal proteins-without direct alteration of hormone receptor levels. In this review, we consider the different stereotypical forms of motility and mechanosensory systems. A major difference between normal and transformed cells involves a sensitivity of transformed cells to mechanical perturbations. Thus, understanding the different mechanical characteristics of transformed cells may enable new approaches to treating wound healing and cancer.
Collapse
Affiliation(s)
- Michael Sheetz
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore 117411
- Molecular MechanoMedicine Program and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA;
| |
Collapse
|
105
|
Loh J, Chuang MC, Lin SS, Joseph J, Su YA, Hsieh TL, Chang YC, Liu AP, Liu YW. An acute decrease in plasma membrane tension induces macropinocytosis via PLD2 activation. J Cell Sci 2019; 132:jcs.232579. [PMID: 31391241 DOI: 10.1242/jcs.232579] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022] Open
Abstract
Internalization of macromolecules and membrane into cells through endocytosis is critical for cellular growth, signaling and plasma membrane (PM) tension homeostasis. Although endocytosis is responsive to both biochemical and physical stimuli, how physical cues modulate endocytic pathways is less understood. Contrary to the accumulating discoveries on the effects of increased PM tension on endocytosis, less is known about how a decrease of PM tension impacts on membrane trafficking. Here, we reveal that an acute decrease of PM tension results in phosphatidic acid (PA) production, F-actin and phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2]-enriched dorsal membrane ruffling and subsequent macropinocytosis in myoblasts. The PA production induced by decreased PM tension depends on phospholipase D2 (PLD2) activation via PLD2 nanodomain disintegration. Furthermore, the 'decreased PM tension-PLD2-macropinocytosis' pathway is prominent in myotubes, reflecting a potential mechanism of PM tension homeostasis upon intensive muscle stretching and relaxation. Together, we identify a new mechanotransduction pathway that converts an acute decrease in PM tension into PA production and then initiates macropinocytosis via actin and PI(4,5)P2-mediated processes.
Collapse
Affiliation(s)
- Julie Loh
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Mei-Chun Chuang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Shan-Shan Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Jophin Joseph
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - You-An Su
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Tsung-Lin Hsieh
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Yu-Chen Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ya-Wen Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan .,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| |
Collapse
|
106
|
Le Roux AL, Quiroga X, Walani N, Arroyo M, Roca-Cusachs P. The plasma membrane as a mechanochemical transducer. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180221. [PMID: 31431176 PMCID: PMC6627014 DOI: 10.1098/rstb.2018.0221] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
Cells are constantly submitted to external mechanical stresses, which they must withstand and respond to. By forming a physical boundary between cells and their environment that is also a biochemical platform, the plasma membrane (PM) is a key interface mediating both cellular response to mechanical stimuli, and subsequent biochemical responses. Here, we review the role of the PM as a mechanosensing structure. We first analyse how the PM responds to mechanical stresses, and then discuss how this mechanical response triggers downstream biochemical responses. The molecular players involved in PM mechanochemical transduction include sensors of membrane unfolding, membrane tension, membrane curvature or membrane domain rearrangement. These sensors trigger signalling cascades fundamental both in healthy scenarios and in diseases such as cancer, which cells harness to maintain integrity, keep or restore homeostasis and adapt to their external environment. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.
Collapse
Affiliation(s)
- Anabel-Lise Le Roux
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Xarxa Quiroga
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Nikhil Walani
- LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, Spain
| | - Marino Arroyo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
- LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
- Department of Biomedical Sciences, Universitat de Barcelona, Barcelona 08036, Spain
| |
Collapse
|
107
|
Rafiq NBM, Grenci G, Lim CK, Kozlov MM, Jones GE, Viasnoff V, Bershadsky AD. Forces and constraints controlling podosome assembly and disassembly. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180228. [PMID: 31431172 DOI: 10.1098/rstb.2018.0228] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Podosomes are a singular category of integrin-mediated adhesions important in the processes of cell migration, matrix degradation and cancer cell invasion. Despite a wealth of biochemical studies, the effects of mechanical forces on podosome integrity and dynamics are poorly understood. Here, we show that podosomes are highly sensitive to two groups of physical factors. First, we describe the process of podosome disassembly induced by activation of myosin-IIA filament assembly. Next, we find that podosome integrity and dynamics depends upon membrane tension and can be experimentally perturbed by osmotic swelling and deoxycholate treatment. We have also found that podosomes can be disrupted in a reversible manner by single or cyclic radial stretching of the substratum. We show that disruption of podosomes induced by osmotic swelling is independent of myosin-II filaments. The inhibition of the membrane sculpting protein, dynamin-II, but not clathrin, resulted in activation of myosin-IIA filament formation and disruption of podosomes. The effect of dynamin-II inhibition on podosomes was, however, independent of myosin-II filaments. Moreover, formation of organized arrays of podosomes in response to microtopographic cues (the ridges with triangular profile) was not accompanied by reorganization of myosin-II filaments. Thus, mechanical elements such as myosin-II filaments and factors affecting membrane tension/sculpting independently modulate podosome formation and dynamics, underlying a versatile response of these adhesion structures to intracellular and extracellular cues. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.
Collapse
Affiliation(s)
- Nisha Bte Mohd Rafiq
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.,Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Gianluca Grenci
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.,Biomedical Engineering Department, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Republic of Singapore
| | - Cheng Kai Lim
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Gareth E Jones
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.,CNRS UMI 3639, 5A Engineering Drive 1, Singapore 117411, Republic of Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Republic of Singapore
| | - Alexander D Bershadsky
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
108
|
Dai H, Thomson AW. The "other" mTOR complex: New insights into mTORC2 immunobiology and their implications. Am J Transplant 2019; 19:1614-1621. [PMID: 30801921 PMCID: PMC6538441 DOI: 10.1111/ajt.15320] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/10/2019] [Accepted: 02/15/2019] [Indexed: 01/25/2023]
Abstract
A central role of the mechanistic target of rapamycin (mTOR) in regulation of fundamental cell processes is well recognized. mTOR functions in two distinct complexes: rapamycin-sensitive mTOR complex (C) 1 and rapamycin-insensitive mTORC2. While the role of mTORC1 in shaping immune responses, including transplant rejection, and the influence of its antagonism in promoting allograft tolerance have been studied extensively using rapamycin, lack of selective small molecule inhibitors has limited understanding of mTORC2 biology. Within the past few years, however, intracellular localization of mTORC2, its contribution to mitochondrial fitness, cell metabolism, cytoskeletal modeling and cell migration, and its role in differentiation and function of immune cells have been described. Studies in mTORC2 knockdown/knockout mouse models and a new class of dual mTORC1/2 inhibitors, have shed light on the immune regulatory functions of mTORC2. These include regulation of antigen-presenting cell, NK cell, T cell subset, and B cell differentiation and function. mTORC2 has been implicated in regulation of ischemia/reperfusion injury and graft rejection. Potential therapeutic benefits of antagonizing mTORC2 to inhibit chronic rejection have also been described, while selective in vivo targeting strategies using nanotechnology have been developed. We briefly review and discuss these developments and their implications.
Collapse
Affiliation(s)
- Helong Dai
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA,Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Angus W. Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
109
|
Riggi M, Bourgoint C, Macchione M, Matile S, Loewith R, Roux A. TORC2 controls endocytosis through plasma membrane tension. J Cell Biol 2019; 218:2265-2276. [PMID: 31123183 PMCID: PMC6605812 DOI: 10.1083/jcb.201901096] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/11/2019] [Accepted: 05/06/2019] [Indexed: 12/27/2022] Open
Abstract
Target of rapamycin complex 2 (TORC2) is a conserved protein kinase that regulates multiple plasma membrane (PM)-related processes, including endocytosis. Direct, chemical inhibition of TORC2 arrests endocytosis but with kinetics that is relatively slow and therefore inconsistent with signaling being mediated solely through simple phosphorylation cascades. Here, we show that in addition to and independently from regulation of the phosphorylation of endocytic proteins, TORC2 also controls endocytosis by modulating PM tension. Elevated PM tension, upon TORC2 inhibition, impinges on endocytosis at two different levels by (1) severing the bonds between the PM adaptor proteins Sla2 and Ent1 and the actin cytoskeleton and (2) hindering recruitment of Rvs167, an N-BAR-containing protein important for vesicle fission to endocytosis sites. These results underline the importance of biophysical cues in the regulation of cellular and molecular processes.
Collapse
Affiliation(s)
- Margot Riggi
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland.,Department of Biochemistry, University of Geneva, Geneva, Switzerland.,iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland.,Swiss National Centre for Competence in Research Program Chemical Biology, Geneva, Switzerland
| | - Clélia Bourgoint
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Mariano Macchione
- Swiss National Centre for Competence in Research Program Chemical Biology, Geneva, Switzerland.,Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Swiss National Centre for Competence in Research Program Chemical Biology, Geneva, Switzerland.,Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Robbie Loewith
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland .,iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland.,Swiss National Centre for Competence in Research Program Chemical Biology, Geneva, Switzerland
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Geneva, Switzerland .,Swiss National Centre for Competence in Research Program Chemical Biology, Geneva, Switzerland
| |
Collapse
|
110
|
Park H, Doh J. T cell migration in microchannels densely packed with T cells. Sci Rep 2019; 9:7198. [PMID: 31076592 PMCID: PMC6510777 DOI: 10.1038/s41598-019-43569-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/23/2019] [Indexed: 01/22/2023] Open
Abstract
T cells migrate diverse microenvironments of the body to mount antigen-specific immune responses. T cell activation, a key initial process for antigen-specific immune responses, occur in secondary lymphoid organs such as spleens and lymph nodes where high density of T cells migrates rapidly through the reticular networks formed by stromal cells. In vitro model system recapitulating key characteristics of secondary lymphoid organs, confined spaces densely packed with rapidly migrating cells, would be useful to investigate mechanisms of T cell migration. In this study, we devised a method to fabricate microchannels densely packed with T cells. Microchannel arrays with fixed height (4 μm) and length (1.5 mm) and various widths (15~80 μm) were fabricated in between trapezoid-shaped reservoirs that facilitated T cell sedimentation near microchannel entries. Microchannel surface chemistry and filling time were optimized to achieve high packing density (0.89) of T cell filling within microchannels. Particle image velocimetry (PIV) analysis method was employed to extract velocity field of microchannels densely packed with T cells. Using velocity field information, various motility parameters were further evaluated to quantitatively assess the effects of microchannel width and media tonicity on T cell motility within cell dense microenvironments.
Collapse
Affiliation(s)
- HyoungJun Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) San 31, Hyoja-dong, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Junsang Doh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) San 31, Hyoja-dong, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea. .,School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH) San 31, Hyoja-dong, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea. .,Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
111
|
Barger SR, Reilly NS, Shutova MS, Li Q, Maiuri P, Heddleston JM, Mooseker MS, Flavell RA, Svitkina T, Oakes PW, Krendel M, Gauthier NC. Membrane-cytoskeletal crosstalk mediated by myosin-I regulates adhesion turnover during phagocytosis. Nat Commun 2019; 10:1249. [PMID: 30890704 PMCID: PMC6425032 DOI: 10.1038/s41467-019-09104-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/21/2019] [Indexed: 11/09/2022] Open
Abstract
Phagocytosis of invading pathogens or cellular debris requires a dramatic change in cell shape driven by actin polymerization. For antibody-covered targets, phagocytosis is thought to proceed through the sequential engagement of Fc-receptors on the phagocyte with antibodies on the target surface, leading to the extension and closure of the phagocytic cup around the target. We find that two actin-dependent molecular motors, class 1 myosins myosin 1e and myosin 1f, are specifically localized to Fc-receptor adhesions and required for efficient phagocytosis of antibody-opsonized targets. Using primary macrophages lacking both myosin 1e and myosin 1f, we find that without the actin-membrane linkage mediated by these myosins, the organization of individual adhesions is compromised, leading to excessive actin polymerization, slower adhesion turnover, and deficient phagocytic internalization. This work identifies a role for class 1 myosins in coordinated adhesion turnover during phagocytosis and supports a mechanism involving membrane-cytoskeletal crosstalk for phagocytic cup closure.
Collapse
Affiliation(s)
- Sarah R Barger
- Cell and Developmental Biology Department, State University of New York Upstate Medical University, Syracuse, 13210, NY, USA
| | - Nicholas S Reilly
- Department of Physics, University of Rochester, Rochester, 14627, NY, USA
| | - Maria S Shutova
- Department of Biology, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Qingsen Li
- IFOM, FIRC Institute of Molecular Oncology, Milan, 20139, Italy
| | - Paolo Maiuri
- IFOM, FIRC Institute of Molecular Oncology, Milan, 20139, Italy
| | - John M Heddleston
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, 20147, VA, USA
| | - Mark S Mooseker
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, 06520, CT, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, 06519, CT, USA
- Howard Hughes Medical Institute, Yale University, New Haven, 06519, CT, USA
| | - Tatyana Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Patrick W Oakes
- Department of Physics, University of Rochester, Rochester, 14627, NY, USA
- Department of Biology, University of Rochester, Rochester, 14627, NY, USA
| | - Mira Krendel
- Cell and Developmental Biology Department, State University of New York Upstate Medical University, Syracuse, 13210, NY, USA.
| | - Nils C Gauthier
- IFOM, FIRC Institute of Molecular Oncology, Milan, 20139, Italy.
| |
Collapse
|
112
|
Loewith R, Riezman H, Winssinger N. Sphingolipids and membrane targets for therapeutics. Curr Opin Chem Biol 2019; 50:19-28. [PMID: 30897494 DOI: 10.1016/j.cbpa.2019.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Abstract
Lipids and membranes are often strongly altered in various diseases and pathologies, but are not often targeted for therapeutic advantage. In particular, the sphingolipids are particularly sensitive to altered physiology and have been implicated as important players in not only several rare hereditary diseases, but also other major pathologies, including cancer. This review discusses some potential targets in the sphingolipid pathway and describes how the initial drug compounds have been evolved to create potentially improved therapeutics. This reveals how lipids and their interactions with proteins can be used for therapeutic advantage. We also discuss the possibility that modification of the physical properties of membranes could also affect intracellular signaling and be of therapeutic interest.
Collapse
Affiliation(s)
- Robbie Loewith
- Department of Molecular Biology, NCCR Chemical Biology, University of Geneva, 30 quai Ernest Ansermet, CH-1205 Geneva, Switzerland.
| | - Howard Riezman
- Department of Biochemistry, NCCR Chemical Biology, University of Geneva, 30 quai Ernest Ansermet, CH-1205 Geneva, Switzerland.
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, 30 quai Ernest Ansermet, CH-1205 Geneva, Switzerland.
| |
Collapse
|
113
|
Saha S, Nagy TL, Weiner OD. Joining forces: crosstalk between biochemical signalling and physical forces orchestrates cellular polarity and dynamics. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0145. [PMID: 29632270 DOI: 10.1098/rstb.2017.0145] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2017] [Indexed: 12/11/2022] Open
Abstract
Dynamic processes like cell migration and morphogenesis emerge from the self-organized interaction between signalling and cytoskeletal rearrangements. How are these molecular to sub-cellular scale processes integrated to enable cell-wide responses? A growing body of recent studies suggest that forces generated by cytoskeletal dynamics and motor activity at the cellular or tissue scale can organize processes ranging from cell movement, polarity and division to the coordination of responses across fields of cells. To do so, forces not only act mechanically but also engage with biochemical signalling. Here, we review recent advances in our understanding of this dynamic crosstalk between biochemical signalling, self-organized cortical actomyosin dynamics and physical forces with a special focus on the role of membrane tension in integrating cellular motility.This article is part of the theme issue 'Self-organization in cell biology'.
Collapse
Affiliation(s)
- Suvrajit Saha
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Tamas L Nagy
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.,Biological and Medical Informatics Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Orion D Weiner
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA .,Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
114
|
Tanna CE, Goss LB, Ludwig CG, Chen PW. Arf GAPs as Regulators of the Actin Cytoskeleton-An Update. Int J Mol Sci 2019; 20:ijms20020442. [PMID: 30669557 PMCID: PMC6358971 DOI: 10.3390/ijms20020442] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/25/2022] Open
Abstract
Arf GTPase-activating proteins (Arf GAPs) control the activity of ADP-ribosylation factors (Arfs) by inducing GTP hydrolysis and participate in a diverse array of cellular functions both through mechanisms that are dependent on and independent of their Arf GAP activity. A number of these functions hinge on the remodeling of actin filaments. Accordingly, some of the effects exerted by Arf GAPs involve proteins known to engage in regulation of the actin dynamics and architecture, such as Rho family proteins and nonmuscle myosin 2. Circular dorsal ruffles (CDRs), podosomes, invadopodia, lamellipodia, stress fibers and focal adhesions are among the actin-based structures regulated by Arf GAPs. Arf GAPs are thus important actors in broad functions like adhesion and motility, as well as the specialized functions of bone resorption, neurite outgrowth, and pathogen internalization by immune cells. Arf GAPs, with their multiple protein-protein interactions, membrane-binding domains and sites for post-translational modification, are good candidates for linking the changes in actin to the membrane. The findings discussed depict a family of proteins with a critical role in regulating actin dynamics to enable proper cell function.
Collapse
Affiliation(s)
- Christine E Tanna
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| | - Louisa B Goss
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| | - Calvin G Ludwig
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| | - Pei-Wen Chen
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| |
Collapse
|
115
|
Merchant B, Edelstein-Keshet L, Feng JJ. A Rho-GTPase based model explains spontaneous collective migration of neural crest cell clusters. Dev Biol 2018; 444 Suppl 1:S262-S273. [DOI: 10.1016/j.ydbio.2018.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 02/06/2023]
|
116
|
Rossy J, Laufer JM, Legler DF. Role of Mechanotransduction and Tension in T Cell Function. Front Immunol 2018; 9:2638. [PMID: 30519239 PMCID: PMC6251326 DOI: 10.3389/fimmu.2018.02638] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/26/2018] [Indexed: 12/23/2022] Open
Abstract
T cell migration from blood to, and within lymphoid organs and tissue, as well as, T cell activation rely on complex biochemical signaling events. But T cell migration and activation also take place in distinct mechanical environments and lead to drastic morphological changes and reorganization of the acto-myosin cytoskeleton. In this review we discuss how adhesion proteins and the T cell receptor act as mechanosensors to translate these mechanical contexts into signaling events. We further discuss how cell tension could bring a significant contribution to the regulation of T cell signaling and function.
Collapse
Affiliation(s)
- Jérémie Rossy
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Julia M Laufer
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
117
|
Abstract
It is increasingly clear that mechanotransduction pathways play important roles in regulating fundamental cellular functions. Of the basic mechanical functions, the determination of cellular morphology is critical. Cells typically use many mechanosensitive steps and different cell states to achieve a polarized shape through repeated testing of the microenvironment. Indeed, morphology is determined by the microenvironment through periodic activation of motility, mechanotesting, and mechanoresponse functions by hormones, internal clocks, and receptor tyrosine kinases. Patterned substrates and controlled environments with defined rigidities limit the range of cell behavior and influence cell state decisions and are thus very useful for studying these steps. The recently defined rigidity sensing process provides a good example of how cells repeatedly test their microenvironment and is also linked to cancer. In general, aberrant extracellular matrix mechanosensing is associated with numerous conditions, including cardiovascular disease, aging, and fibrosis, that correlate with changes in tissue morphology and matrix composition. Hence, detailed descriptions of the steps involved in sensing and responding to the microenvironment are needed to better understand both the mechanisms of tissue homeostasis and the pathomechanisms of human disease.
Collapse
Affiliation(s)
- Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel 31096;
| | - Bo Yang
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore;
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; .,Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
118
|
Wu H, de León MAP, Othmer HG. Getting in shape and swimming: the role of cortical forces and membrane heterogeneity in eukaryotic cells. J Math Biol 2018; 77:595-626. [PMID: 29480329 PMCID: PMC6109630 DOI: 10.1007/s00285-018-1223-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/12/2018] [Indexed: 12/14/2022]
Abstract
Recent research has shown that motile cells can adapt their mode of propulsion to the mechanical properties of the environment in which they find themselves-crawling in some environments while swimming in others. The latter can involve movement by blebbing or other cyclic shape changes, and both highly-simplified and more realistic models of these modes have been studied previously. Herein we study swimming that is driven by membrane tension gradients that arise from flows in the actin cortex underlying the membrane, and does not involve imposed cyclic shape changes. Such gradients can lead to a number of different characteristic cell shapes, and our first objective is to understand how different distributions of membrane tension influence the shape of cells in an inviscid quiescent fluid. We then analyze the effects of spatial variation in other membrane properties, and how they interact with tension gradients to determine the shape. We also study the effect of fluid-cell interactions and show how tension leads to cell movement, how the balance between tension gradients and a variable bending modulus determine the shape and direction of movement, and how the efficiency of movement depends on the properties of the fluid and the distribution of tension and bending modulus in the membrane.
Collapse
Affiliation(s)
- Hao Wu
- School of Mathematics, University of Minnesota, 270A Vincent Hall, Minneapolis, MN, USA
| | | | - Hans G Othmer
- School of Mathematics, University of Minnesota, 270A Vincent Hall, Minneapolis, MN, USA.
| |
Collapse
|
119
|
Decrease in plasma membrane tension triggers PtdIns(4,5)P 2 phase separation to inactivate TORC2. Nat Cell Biol 2018; 20:1043-1051. [PMID: 30154550 PMCID: PMC6237274 DOI: 10.1038/s41556-018-0150-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 06/21/2018] [Indexed: 02/06/2023]
Abstract
The target of rapamycin complex 2 (TORC2) plays a key role in maintaining the homeostasis of plasma membrane (PM) tension. TORC2 activation following increased PM tension involves redistribution of the Slm1 and 2 paralogues from PM invaginations known as eisosomes into membrane compartments containing TORC2. How Slm1/2 relocalization is triggered, and if/how this plays a role in TORC2 inactivation with decreased PM tension, is unknown. Using osmotic shocks and palmitoylcarnitine as orthogonal tools to manipulate PM tension, we demonstrate that decreased PM tension triggers spontaneous, energy-independent reorganization of pre-existing phosphatidylinositol-4,5-bisphosphate into discrete invaginated membrane domains, which cluster and inactivate TORC2. These results demonstrate that increased and decreased membrane tension are sensed through different mechanisms, highlighting a role for membrane lipid phase separation in mechanotransduction.
Collapse
|
120
|
Othmer HG. Eukaryotic Cell Dynamics from Crawlers to Swimmers. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018; 9. [PMID: 30854030 DOI: 10.1002/wcms.1376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Movement requires force transmission to the environment, and motile cells are robustly, though not elegantly, designed nanomachines that often can cope with a variety of environmental conditions by altering the mode of force transmission used. As with humans, the available modes range from momentary attachment to a substrate when crawling, to shape deformations when swimming, and at the cellular level this involves sensing the mechanical properties of the environment and altering the mode appropriately. While many types of cells can adapt their mode of movement to their microenvironment (ME), our understanding of how they detect, transduce and process information from the ME to determine the optimal mode is still rudimentary. The shape and integrity of a cell is determined by its cytoskeleton (CSK), and thus the shape changes that may be required to move involve controlled remodeling of the CSK. Motion in vivo is often in response to extracellular signals, which requires the ability to detect such signals and transduce them into the shape changes and force generation needed for movement. Thus the nanomachine is complex, and while much is known about individual components involved in movement, an integrated understanding of motility in even simple cells such as bacteria is not at hand. In this review we discuss recent advances in our understanding of cell motility and some of the problems remaining to be solved.
Collapse
Affiliation(s)
- H G Othmer
- School of Mathematics, University of Minnesota
| |
Collapse
|
121
|
Diz-Muñoz A, Weiner OD, Fletcher DA. In pursuit of the mechanics that shape cell surfaces. NATURE PHYSICS 2018; 14:648-652. [PMID: 31007706 PMCID: PMC6469718 DOI: 10.1038/s41567-018-0187-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/09/2018] [Accepted: 05/25/2018] [Indexed: 05/25/2023]
Abstract
Robust and responsive, the surface of a cell is as important as its interior when it comes to mechanically regulating form and function. New techniques are shedding light on this role, and a common language to describe its properties is now needed.
Collapse
Affiliation(s)
- Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Orion D. Weiner
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Daniel A. Fletcher
- Bioengineering Department and Biophysics Program, University of California Berkeley, Berkeley, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, California, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
122
|
Harris AR, Jreij P, Fletcher DA. Mechanotransduction by the Actin Cytoskeleton: Converting Mechanical Stimuli into Biochemical Signals. Annu Rev Biophys 2018. [DOI: 10.1146/annurev-biophys-070816-033547] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Force transmission through the actin cytoskeleton plays a central role in cell movements, shape change, and internal organization. Dynamic reorganization of actin filaments by an array of specialized binding proteins creates biochemically and architecturally distinct structures, many of which are finely tuned to exert or resist mechanical loads. The molecular complexity of the actin cytoskeleton continues to be revealed by detailed biochemical assays, and the architectural diversity and dynamics of actin structures are being uncovered by advances in super-resolution fluorescence microscopy and electron microscopy. However, our understanding of how mechanical forces feed back on cytoskeletal architecture and actin-binding protein organization is comparatively limited. In this review, we discuss recent work investigating how mechanical forces applied to cytoskeletal proteins are transduced into biochemical signals. We explore multiple mechanisms for mechanical signal transduction, including the mechanosensitive behavior of actin-binding proteins, the effect of mechanical force on actin filament dynamics, and the influence of mechanical forces on the structure of single actin filaments. The emerging picture is one in which the actin cytoskeleton is defined not only by the set of proteins that constitute a network but also by the constant interplay of mechanical forces and biochemistry.
Collapse
Affiliation(s)
- Andrew R. Harris
- Department of Bioengineering, and Biophysics Program, University of California, Berkeley, California 94720, USA
| | - Pamela Jreij
- Department of Bioengineering, and Biophysics Program, University of California, Berkeley, California 94720, USA
| | - Daniel A. Fletcher
- Department of Bioengineering, and Biophysics Program, University of California, Berkeley, California 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| |
Collapse
|
123
|
Zmurchok C, Bhaskar D, Edelstein-Keshet L. Coupling mechanical tension and GTPase signaling to generate cell and tissue dynamics. Phys Biol 2018; 15:046004. [DOI: 10.1088/1478-3975/aab1c0] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
124
|
A RAB35-p85/PI3K axis controls oscillatory apical protrusions required for efficient chemotactic migration. Nat Commun 2018; 9:1475. [PMID: 29662076 PMCID: PMC5902610 DOI: 10.1038/s41467-018-03571-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 02/15/2018] [Indexed: 11/17/2022] Open
Abstract
How cells move chemotactically remains a major unmet challenge in cell biology. Emerging evidence indicates that for interpreting noisy, shallow gradients of soluble cues a system must behave as an excitable process. Here, through an RNAi-based, high-content screening approach, we identify RAB35 as necessary for the formation of growth factors (GFs)-induced waves of circular dorsal ruffles (CDRs), apically restricted actin-rich migratory protrusions. RAB35 is sufficient to induce recurrent and polarized CDRs that travel as propagating waves, thus behaving as an excitable system that can be biased to control cell steering. Consistently, RAB35 is essential for promoting directed chemotactic migration and chemoinvasion of various cells in response to gradients of motogenic GFs. Molecularly, RAB35 does so by directly regulating the activity of p85/PI3K polarity axis. We propose that RAB35 is a molecular determinant for the control of an excitable, oscillatory system that acts as a steering wheel for GF-mediated chemotaxis and chemoinvasion. Circular dorsal ruffles (CDRs) are apical actin enriched structures involved in the interpretation of growth factor gradients during cell migration. Here, the authors find that a RAB35/PI3K axis is necessary and sufficient for the formation and stabilization of polarized CDRs and persistent directional migration.
Collapse
|
125
|
Dix CL, Matthews HK, Uroz M, McLaren S, Wolf L, Heatley N, Win Z, Almada P, Henriques R, Boutros M, Trepat X, Baum B. The Role of Mitotic Cell-Substrate Adhesion Re-modeling in Animal Cell Division. Dev Cell 2018; 45:132-145.e3. [PMID: 29634933 DOI: 10.1016/j.devcel.2018.03.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 01/17/2018] [Accepted: 03/13/2018] [Indexed: 12/24/2022]
Abstract
Animal cells undergo a dramatic series of shape changes as they divide, which depend on re-modeling of cell-substrate adhesions. Here, we show that while focal adhesion complexes are disassembled during mitotic rounding, integrins remain in place. These integrin-rich contacts connect mitotic cells to the underlying substrate throughout mitosis, guide polarized cell migration following mitotic exit, and are functionally important, since adherent cells undergo division failure when removed from the substrate. Further, the ability of cells to re-spread along pre-existing adhesive contacts is essential for division in cells compromised in their ability to construct a RhoGEF-dependent (Ect2) actomyosin ring. As a result, following Ect2 depletion, cells fail to divide on small adhesive islands but successfully divide on larger patterns, as the connection between daughter cells narrows and severs as they migrate away from one another. In this way, regulated re-modeling of cell-substrate adhesions during mitotic rounding aids division in animal cells.
Collapse
Affiliation(s)
- Christina L Dix
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Helen K Matthews
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Marina Uroz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Susannah McLaren
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Lucie Wolf
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), and Department for Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany
| | - Nicholas Heatley
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Zaw Win
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Pedro Almada
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Ricardo Henriques
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), and Department for Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; Unitat de Biofisica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona 08036, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona 08028, Spain
| | - Buzz Baum
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK.
| |
Collapse
|
126
|
Rajagopal V, Holmes WR, Lee PVS. Computational modeling of single-cell mechanics and cytoskeletal mechanobiology. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1407. [PMID: 29195023 PMCID: PMC5836888 DOI: 10.1002/wsbm.1407] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/19/2017] [Accepted: 09/07/2017] [Indexed: 01/10/2023]
Abstract
Cellular cytoskeletal mechanics plays a major role in many aspects of human health from organ development to wound healing, tissue homeostasis and cancer metastasis. We summarize the state-of-the-art techniques for mathematically modeling cellular stiffness and mechanics and the cytoskeletal components and factors that regulate them. We highlight key experiments that have assisted model parameterization and compare the advantages of different models that have been used to recapitulate these experiments. An overview of feed-forward mechanisms from signaling to cytoskeleton remodeling is provided, followed by a discussion of the rapidly growing niche of encapsulating feedback mechanisms from cytoskeletal and cell mechanics to signaling. We discuss broad areas of advancement that could accelerate research and understanding of cellular mechanobiology. A precise understanding of the molecular mechanisms that affect cell and tissue mechanics and function will underpin innovations in medical device technologies of the future. WIREs Syst Biol Med 2018, 10:e1407. doi: 10.1002/wsbm.1407 This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Physiology > Mammalian Physiology in Health and Disease Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Vijay Rajagopal
- Cell Structure and Mechanobiology Group, Department of Biomedical EngineeringUniversity of MelbourneMelbourneAustralia
| | - William R. Holmes
- Department of Physics and AstronomyVanderbilt UniversityNashvilleTNUSA
| | - Peter Vee Sin Lee
- Cell and Tissue Biomechanics Laboratory, Department of Biomedical EngineeringUniversity of MelbourneMelbourneAustralia
| |
Collapse
|
127
|
Gauthier NC, Roca-Cusachs P. Mechanosensing at integrin-mediated cell–matrix adhesions: from molecular to integrated mechanisms. Curr Opin Cell Biol 2018; 50:20-26. [DOI: 10.1016/j.ceb.2017.12.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022]
|
128
|
Abstract
Cell migration is an adaptive process that depends on and responds to physical and molecular triggers. Moving cells sense and respond to tissue mechanics and induce transient or permanent tissue modifications, including extracellular matrix stiffening, compression and deformation, protein unfolding, proteolytic remodelling and jamming transitions. Here we discuss how the bi-directional relationship of cell-tissue interactions (mechanoreciprocity) allows cells to change position and contributes to single-cell and collective movement, structural and molecular tissue organization, and cell fate decisions.
Collapse
|
129
|
Karuppasamy M, Kusmider B, Oliveira TM, Gaubitz C, Prouteau M, Loewith R, Schaffitzel C. Cryo-EM structure of Saccharomyces cerevisiae target of rapamycin complex 2. Nat Commun 2017; 8:1729. [PMID: 29170376 PMCID: PMC5700991 DOI: 10.1038/s41467-017-01862-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022] Open
Abstract
The target of rapamycin (TOR) kinase assembles into two distinct multiprotein complexes, conserved across eukaryote evolution. In contrast to TOR complex 1 (TORC1), TORC2 kinase activity is not inhibited by the macrolide rapamycin. Here, we present the structure of Saccharomyces cerevisiae TORC2 determined by electron cryo-microscopy. TORC2 contains six subunits assembling into a 1.4 MDa rhombohedron. Tor2 and Lst8 form the common core of both TOR complexes. Avo3/Rictor is unique to TORC2, but interacts with the same HEAT repeats of Tor2 that are engaged by Kog1/Raptor in mammalian TORC1, explaining the mutual exclusivity of these two proteins. Density, which we conclude is Avo3, occludes the FKBP12-rapamycin-binding site of Tor2’s FRB domain rendering TORC2 rapamycin insensitive and recessing the kinase active site. Although mobile, Avo1/hSin1 further restricts access to the active site as its conserved-region-in-the-middle (CRIM) domain is positioned along an edge of the TORC2 active-site-cleft, consistent with a role for CRIM in substrate recruitment. Target of rapamycin (TOR) kinase operates within two distinct multiprotein complexes named TORC1 and TORC2. Here the authors report a cryo-EM structure of TORC2, establish its subunit organization, providing a rationale for TORC2’s rapamycin insensitivity and the mutually exclusive inclusion of Avo3/Rictor or Raptor within their respective TOR complex.
Collapse
Affiliation(s)
- Manikandan Karuppasamy
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Beata Kusmider
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211, Geneva, Switzerland
| | - Taiana M Oliveira
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Christl Gaubitz
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211, Geneva, Switzerland
| | - Manoel Prouteau
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211, Geneva, Switzerland
| | - Robbie Loewith
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211, Geneva, Switzerland. .,Swiss National Centre for Competence in Research (NCCR) in Chemical Biology, University of Geneva, 30 Quai Ernest-Ansermet, Bristol, CH1211 Geneva, Switzerland.
| | - Christiane Schaffitzel
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042, Grenoble, France. .,School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
130
|
Ferguson JP, Huber SD, Willy NM, Aygün E, Goker S, Atabey T, Kural C. Mechanoregulation of clathrin-mediated endocytosis. J Cell Sci 2017; 130:3631-3636. [PMID: 28923837 DOI: 10.1242/jcs.205930] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/13/2017] [Indexed: 01/23/2023] Open
Abstract
We characterized the tension response of clathrin-mediated endocytosis by using various cell manipulation methodologies. Elevated tension in a cell hinders clathrin-mediated endocytosis through inhibition of de novo coat initiation, elongation of clathrin coat lifetimes and reduction of high-magnitude growth rates. Actin machinery supplies an inward pulling force necessary for internalization of clathrin coats under high tension. These findings suggest that the physical cues cells receive from their microenvironment are major determinants of clathrin-mediated endocytic activity.
Collapse
Affiliation(s)
- Joshua P Ferguson
- Department of Physics, Ohio State University, Columbus, OH 43210, USA
| | - Scott D Huber
- Department of Physics, Ohio State University, Columbus, OH 43210, USA
| | - Nathan M Willy
- Department of Physics, Ohio State University, Columbus, OH 43210, USA
| | - Esra Aygün
- Department of Biology, Capital University, Columbus, OH 43209, USA
| | - Sevde Goker
- Department of Biology, Fatih University, 34500 Istanbul, Turkey
| | - Tugba Atabey
- Molecular Biology and Genetics, Yildiz Technical University, 34349 Istanbul, Turkey
| | - Comert Kural
- Department of Physics, Ohio State University, Columbus, OH 43210, USA .,Biophysics Graduate Program, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
131
|
Willy NM, Ferguson JP, Huber SD, Heidotting SP, Aygün E, Wurm SA, Johnston-Halperin E, Poirier MG, Kural C. Membrane mechanics govern spatiotemporal heterogeneity of endocytic clathrin coat dynamics. Mol Biol Cell 2017; 28:3480-3488. [PMID: 28904210 PMCID: PMC5683759 DOI: 10.1091/mbc.e17-05-0282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 01/25/2023] Open
Abstract
Cellular processes associated with spatiotemporal changes in membrane mechanics induce significant alterations in clathrin-mediated endocytosis dynamics. This phenomenon is also observed during morphological changes shaping embryo development. Dynamics of endocytic clathrin-coated structures can be remarkably divergent across different cell types, cells within the same culture, or even distinct surfaces of the same cell. The origin of this astounding heterogeneity remains to be elucidated. Here we show that cellular processes associated with changes in effective plasma membrane tension induce significant spatiotemporal alterations in endocytic clathrin coat dynamics. Spatiotemporal heterogeneity of clathrin coat dynamics is also observed during morphological changes taking place within developing multicellular organisms. These findings suggest that tension gradients can lead to patterning and differentiation of tissues through mechanoregulation of clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- N M Willy
- Department of Physics, Ohio State University, Columbus, OH 43210
| | - J P Ferguson
- Department of Physics, Ohio State University, Columbus, OH 43210
| | - S D Huber
- Department of Physics, Ohio State University, Columbus, OH 43210
| | - S P Heidotting
- Department of Physics, Ohio State University, Columbus, OH 43210
| | - E Aygün
- Department of Biology, Capital University, Columbus, OH 43209
| | - S A Wurm
- Biophysics Graduate Program, Ohio State University, Columbus, OH 43210
| | | | - M G Poirier
- Department of Physics, Ohio State University, Columbus, OH 43210.,Biophysics Graduate Program, Ohio State University, Columbus, OH 43210
| | - C Kural
- Department of Physics, Ohio State University, Columbus, OH 43210 .,Biophysics Graduate Program, Ohio State University, Columbus, OH 43210
| |
Collapse
|
132
|
Pontes B, Monzo P, Gauthier NC. Membrane tension: A challenging but universal physical parameter in cell biology. Semin Cell Dev Biol 2017; 71:30-41. [PMID: 28851599 DOI: 10.1016/j.semcdb.2017.08.030] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/08/2017] [Accepted: 08/13/2017] [Indexed: 01/03/2023]
Abstract
The plasma membrane separates the interior of cells from the outside environment. The membrane tension, defined as the force per unit length acting on a cross-section of membrane, regulates many vital biological processes. In this review, we summarize the first historical findings and the latest advances, showing membrane tension as an important physical parameter in cell biology. We also discuss how this parameter must be better integrated and we propose experimental approaches for key unanswered questions.
Collapse
Affiliation(s)
- Bruno Pontes
- LPO-COPEA, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Pascale Monzo
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Nils C Gauthier
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy.
| |
Collapse
|
133
|
Devreotes PN, Bhattacharya S, Edwards M, Iglesias PA, Lampert T, Miao Y. Excitable Signal Transduction Networks in Directed Cell Migration. Annu Rev Cell Dev Biol 2017; 33:103-125. [PMID: 28793794 DOI: 10.1146/annurev-cellbio-100616-060739] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although directed migration of eukaryotic cells may have evolved to escape nutrient depletion, it has been adopted for an extensive range of physiological events during development and in the adult organism. The subversion of these movements results in disease, such as cancer. Mechanisms of propulsion and sensing are extremely diverse, but most eukaryotic cells move by extending actin-filled protrusions termed macropinosomes, pseudopodia, or lamellipodia or by extension of blebs. In addition to motility, directed migration involves polarity and directional sensing. The hundreds of gene products involved in these processes are organized into networks of parallel and interconnected pathways. Many of these components are activated or inhibited coordinately with stimulation and on each spontaneously extended protrusion. Moreover, these networks display hallmarks of excitability, including all-or-nothing responsiveness and wave propagation. Cellular protrusions result from signal transduction waves that propagate outwardly from an origin and drive cytoskeletal activity. The range of the propagating waves and hence the size of the protrusions can be altered by lowering or raising the threshold for network activation, with larger and wider protrusions favoring gliding or oscillatory behavior over amoeboid migration. Here, we evaluate the variety of models of excitable networks controlling directed migration and outline critical tests. We also discuss the utility of this emerging view in producing cell migration and in integrating the various extrinsic cues that direct migration.
Collapse
Affiliation(s)
- Peter N Devreotes
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| | - Sayak Bhattacharya
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218
| | - Marc Edwards
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| | - Pablo A Iglesias
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205; .,Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218
| | - Thomas Lampert
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| | - Yuchuan Miao
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| |
Collapse
|
134
|
Keren K, Shemesh T. Buckle up: Membrane tension drives lamellipodial network compression and adhesion deposition. J Cell Biol 2017; 216:2619-2621. [PMID: 28765363 PMCID: PMC5584188 DOI: 10.1083/jcb.201706111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Keren and Shemesh preview work from Pontes et al. that elucidates how the mechanical signals of membrane tension interact with the cytoskeleton to determine adhesion positions. Whether to spread on a surface or to crawl, cells must apply traction forces to the underlying substrate via adhesion complexes. In this issue, Pontes et al. (2017. J. Cell Biol.https://doi.org/10.1083/jcb.201611117) shed new light on how the interplay among membrane tension, the lamellipodial actin network, and adhesions coordinate the dynamics of spreading fibroblasts.
Collapse
Affiliation(s)
- Kinneret Keren
- Department of Physics, Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, Israel .,Network Biology Research Laboratories, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tom Shemesh
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
135
|
Abstract
Leukocytes can completely reorganize their cytoskeletal architecture within minutes. This structural plasticity, which facilitates their migration and communicative function, also enables them to exert a substantial amount of mechanical force against the extracellular matrix and the surfaces of interacting cells. In recent years, it has become increasingly clear that these forces have crucial roles in immune cell activation and subsequent effector responses. Here, I review our current understanding of how mechanical force regulates cell-surface receptor activation, cell migration, intracellular signalling and intercellular communication, highlighting the biological ramifications of these effects in various immune cell types.
Collapse
Affiliation(s)
- Morgan Huse
- Immunology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| |
Collapse
|
136
|
Pontes B, Monzo P, Gole L, Le Roux AL, Kosmalska AJ, Tam ZY, Luo W, Kan S, Viasnoff V, Roca-Cusachs P, Tucker-Kellogg L, Gauthier NC. Membrane tension controls adhesion positioning at the leading edge of cells. J Cell Biol 2017; 216:2959-2977. [PMID: 28687667 PMCID: PMC5584154 DOI: 10.1083/jcb.201611117] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 04/04/2017] [Accepted: 06/01/2017] [Indexed: 11/22/2022] Open
Abstract
Pontes et al. show that plasma membrane mechanics exerts an upstream control during cell motility. Variations in plasma membrane tension orchestrate the behavior of the cell leading edge, with increase–decrease cycles in tension promoting adhesion row positioning. Cell migration is dependent on adhesion dynamics and actin cytoskeleton remodeling at the leading edge. These events may be physically constrained by the plasma membrane. Here, we show that the mechanical signal produced by an increase in plasma membrane tension triggers the positioning of new rows of adhesions at the leading edge. During protrusion, as membrane tension increases, velocity slows, and the lamellipodium buckles upward in a myosin II–independent manner. The buckling occurs between the front of the lamellipodium, where nascent adhesions are positioned in rows, and the base of the lamellipodium, where a vinculin-dependent clutch couples actin to previously positioned adhesions. As membrane tension decreases, protrusion resumes and buckling disappears, until the next cycle. We propose that the mechanical signal of membrane tension exerts upstream control in mechanotransduction by periodically compressing and relaxing the lamellipodium, leading to the positioning of adhesions at the leading edge of cells.
Collapse
Affiliation(s)
- Bruno Pontes
- Mechanobiology Institute, National University of Singapore, Singapore.,Laboratório de Pinças Óticas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pascale Monzo
- Mechanobiology Institute, National University of Singapore, Singapore.,Institute FIRC (Italian Foundation for Cancer Research) of Molecular Oncology (IFOM-FIRC), Milan, Italy
| | - Laurent Gole
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Anabel-Lise Le Roux
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anita Joanna Kosmalska
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Zhi Yang Tam
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Weiwei Luo
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Sophie Kan
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, Singapore.,Centre National de la Recherche Scientifique, École Supérieure de Physique et de Chimie Industrielles Paristech, Paris, France
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.,University of Barcelona, Barcelona, Spain
| | - Lisa Tucker-Kellogg
- Mechanobiology Institute, National University of Singapore, Singapore.,Centre for Computational Biology, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Nils C Gauthier
- Mechanobiology Institute, National University of Singapore, Singapore .,Institute FIRC (Italian Foundation for Cancer Research) of Molecular Oncology (IFOM-FIRC), Milan, Italy
| |
Collapse
|
137
|
Graziano BR, Gong D, Anderson KE, Pipathsouk A, Goldberg AR, Weiner OD. A module for Rac temporal signal integration revealed with optogenetics. J Cell Biol 2017; 216:2515-2531. [PMID: 28687663 PMCID: PMC5551696 DOI: 10.1083/jcb.201604113] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 11/23/2016] [Accepted: 05/18/2017] [Indexed: 01/07/2023] Open
Abstract
Dissecting the logic of individual signaling modules in complex networks can be challenging for cascades that exhibit feedback and redundancy. In this study, Graziano et al. take an optogenetics-based approach to identify and dissect a module that converts sustained PIP3 production to transient Rac activation in the neutrophil chemotaxis signaling network. Sensory systems use adaptation to measure changes in signaling inputs rather than absolute levels of signaling inputs. Adaptation enables eukaryotic cells to directionally migrate over a large dynamic range of chemoattractant. Because of complex feedback interactions and redundancy, it has been difficult to define the portion or portions of eukaryotic chemotactic signaling networks that generate adaptation and identify the regulators of this process. In this study, we use a combination of optogenetic intracellular inputs, CRISPR-based knockouts, and pharmacological perturbations to probe the basis of neutrophil adaptation. We find that persistent, optogenetically driven phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production results in only transient activation of Rac, a hallmark feature of adaptive circuits. We further identify the guanine nucleotide exchange factor P-Rex1 as the primary PIP3-stimulated Rac activator, whereas actin polymerization and the GTPase-activating protein ArhGAP15 are essential for proper Rac turnoff. This circuit is masked by feedback and redundancy when chemoattractant is used as the input, highlighting the value of probing signaling networks at intermediate nodes to deconvolve complex signaling cascades.
Collapse
Affiliation(s)
- Brian R Graziano
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Delquin Gong
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | | | - Anne Pipathsouk
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Anna R Goldberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Orion D Weiner
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA .,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
138
|
Abstract
Cell motility is required for diverse biological processes including development, homing of immune cells, wound healing, and cancer cell invasion. Motile neutrophils exhibit a polarized morphology characterized by the formation of leading-edge pseudopods and a highly contractile cell rear known as the uropod. Although it is known that perturbing uropod formation impairs neutrophil migration, the role of the uropod in cell polarization and motility remains incompletely understood. Here we discuss cell intrinsic mechanisms that regulate neutrophil polarization and motility, with a focus on the uropod, and examine how relationships among regulatory mechanisms change when cells change their direction of migration.
Collapse
|
139
|
Kim LW. Dual TORCs driven and B56 orchestrated signaling network guides eukaryotic cell migration. BMB Rep 2017; 50:437-444. [PMID: 28571594 PMCID: PMC5625690 DOI: 10.5483/bmbrep.2017.50.9.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Indexed: 11/20/2022] Open
Abstract
Different types of eukaryotic cells may adopt seemingly distinct modes of directional cell migration. However, several core aspects are regarded common whether the movement is either ameoboidal or mesenchymal. The region of cells facing the attractive signal is often termed leading edge where lamellipodial structures dominates and the other end of the cell called rear end is often mediating cytoskeletal F-actin contraction involving Myosin-II. Dynamic remodeling of cell-to-matrix adhesion involving integrin is also evident in many types of migrating cells. All these three aspects of cell migration are significantly affected by signaling networks of TorC2, TorC1, and PP2A/B56. Here we review the current views of the mechanistic understanding of these regulatory signaling networks and how these networks affect eukaryotic cell migration.
Collapse
Affiliation(s)
- Lou W Kim
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
140
|
Holmes WR, Park J, Levchenko A, Edelstein-Keshet L. A mathematical model coupling polarity signaling to cell adhesion explains diverse cell migration patterns. PLoS Comput Biol 2017; 13:e1005524. [PMID: 28472054 PMCID: PMC5436877 DOI: 10.1371/journal.pcbi.1005524] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/18/2017] [Accepted: 04/18/2017] [Indexed: 11/19/2022] Open
Abstract
Protrusion and retraction of lamellipodia are common features of eukaryotic cell motility. As a cell migrates through its extracellular matrix (ECM), lamellipod growth increases cell-ECM contact area and enhances engagement of integrin receptors, locally amplifying ECM input to internal signaling cascades. In contrast, contraction of lamellipodia results in reduced integrin engagement that dampens the level of ECM-induced signaling. These changes in cell shape are both influenced by, and feed back onto ECM signaling. Motivated by experimental observations on melanoma cells lines (1205Lu and SBcl2) migrating on fibronectin (FN) coated topographic substrates (anisotropic post-density arrays), we probe this interplay between intracellular and ECM signaling. Experimentally, cells exhibited one of three lamellipodial dynamics: persistently polarized, random, or oscillatory, with competing lamellipodia oscillating out of phase (Park et al., 2017). Pharmacological treatments, changes in FN density, and substrate topography all affected the fraction of cells exhibiting these behaviours. We use these observations as constraints to test a sequence of hypotheses for how intracellular (GTPase) and ECM signaling jointly regulate lamellipodial dynamics. The models encoding these hypotheses are predicated on mutually antagonistic Rac-Rho signaling, Rac-mediated protrusion (via activation of Arp2/3 actin nucleation) and Rho-mediated contraction (via ROCK phosphorylation of myosin light chain), which are coupled to ECM signaling that is modulated by protrusion/contraction. By testing each model against experimental observations, we identify how the signaling layers interact to generate the diverse range of cell behaviors, and how various molecular perturbations and changes in ECM signaling modulate the fraction of cells exhibiting each. We identify several factors that play distinct but critical roles in generating the observed dynamic: (1) competition between lamellipodia for shared pools of Rac and Rho, (2) activation of RhoA by ECM signaling, and (3) feedback from lamellipodial growth or contraction to cell-ECM contact area and therefore to the ECM signaling level.
Collapse
Affiliation(s)
- William R. Holmes
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| | - JinSeok Park
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America
| | | |
Collapse
|
141
|
Fritz-Laylin LK, Lord SJ, Mullins RD. WASP and SCAR are evolutionarily conserved in actin-filled pseudopod-based motility. J Cell Biol 2017; 216:1673-1688. [PMID: 28473602 PMCID: PMC5461030 DOI: 10.1083/jcb.201701074] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/12/2017] [Accepted: 03/31/2017] [Indexed: 01/08/2023] Open
Abstract
Eukaryotic cells use diverse cellular mechanisms to crawl through complex environments. Fritz-Laylin et al. define α-motility as a mode of migration associated with dynamic, actin-filled pseudopods and show that WASP and SCAR constitute an evolutionarily conserved genetic signature of α-motility. Diverse eukaryotic cells crawl through complex environments using distinct modes of migration. To understand the underlying mechanisms and their evolutionary relationships, we must define each mode and identify its phenotypic and molecular markers. In this study, we focus on a widely dispersed migration mode characterized by dynamic actin-filled pseudopods that we call “α-motility.” Mining genomic data reveals a clear trend: only organisms with both WASP and SCAR/WAVE—activators of branched actin assembly—make actin-filled pseudopods. Although SCAR has been shown to drive pseudopod formation, WASP’s role in this process is controversial. We hypothesize that these genes collectively represent a genetic signature of α-motility because both are used for pseudopod formation. WASP depletion from human neutrophils confirms that both proteins are involved in explosive actin polymerization, pseudopod formation, and cell migration. WASP and WAVE also colocalize to dynamic signaling structures. Moreover, retention of WASP together with SCAR correctly predicts α-motility in disease-causing chytrid fungi, which we show crawl at >30 µm/min with actin-filled pseudopods. By focusing on one migration mode in many eukaryotes, we identify a genetic marker of pseudopod formation, the morphological feature of α-motility, providing evidence for a widely distributed mode of cell crawling with a single evolutionary origin.
Collapse
Affiliation(s)
- Lillian K Fritz-Laylin
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Samuel J Lord
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143
| | - R Dyche Mullins
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
142
|
Merhi A, Delrée P, Marini AM. The metabolic waste ammonium regulates mTORC2 and mTORC1 signaling. Sci Rep 2017; 7:44602. [PMID: 28303961 PMCID: PMC5355986 DOI: 10.1038/srep44602] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/09/2017] [Indexed: 12/21/2022] Open
Abstract
Two structurally and functionally distinct mammalian TOR complexes control cell growth and metabolism in physiological and pathological contexts including cancer. Upregulated glutaminolysis is part of the metabolic reprogramming occurring in cancer, providing fuels for growth but also liberating ammonium, a potent neurotoxic waste product. Here, we identify ammonium as a novel dose-dependent signal mediating rapid mTORC2 activation and further regulating mTORC1. We show that ammonium induces rapid RICTOR-dependent phosphorylation of AKT-S473, a process requiring the PI3K pathway and further involving the Src-family kinase YES1, the FAK kinase and the ITGβ1 integrin. Release of calcium from the endoplasmic reticulum store triggers rapid mTORC2 activation, similar to ammonium-induced activation, the latter being conversely prevented by calcium chelation.Moreover, in analogy to growth factors, ammonium triggers the AKT-dependent phosphoinhibition of the TSC complex and of PRAS40, two negative regulators of mTORC1. Consistent with mTORC1 stimulation, ammonium induces the inhibitory phosphorylation of 4EBP1, a negative regulator of protein biogenesis. Ammonium however dually impacts on the phosphorylation of p70S6K1 triggering a transient AKT-independent decrease in the phosphorylation of this second mTORC1 readout. Finally, we reveal ammonium as a dose-dependent stimulator of proliferation. This study underscores an mTORC2 and mTORC1 response to the so-called ammonium waste.
Collapse
Affiliation(s)
- Ahmad Merhi
- Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium.,Institute of Pathology and Genetics, Avenue Georges Lemaître 25, 6041 Gosselies, Belgium.,Tumour Bank, Institute of Pathology and Genetics, Avenue Georges Lemaître 25, 6041 Gosselies, Belgium
| | - Paul Delrée
- Institute of Pathology and Genetics, Avenue Georges Lemaître 25, 6041 Gosselies, Belgium.,Tumour Bank, Institute of Pathology and Genetics, Avenue Georges Lemaître 25, 6041 Gosselies, Belgium
| | - Anna Maria Marini
- Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| |
Collapse
|
143
|
Optogenetic control of the Dab1 signaling pathway. Sci Rep 2017; 7:43760. [PMID: 28272509 PMCID: PMC5363252 DOI: 10.1038/srep43760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/26/2017] [Indexed: 12/31/2022] Open
Abstract
The Reelin-Dab1 signaling pathway regulates development of the mammalian brain, including neuron migrations in various brain regions, as well as learning and memory in adults. Extracellular Reelin binds to cell surface receptors and activates phosphorylation of the intracellular Dab1 protein. Dab1 is required for most effects of Reelin, but Dab1-independent pathways may contribute. Here we developed a single-component, photoactivatable Dab1 (opto-Dab1) by using the blue light-sensitive dimerization/oligomerization property of A. thaliana Cryptochrome 2 (Cry2). Opto-Dab1 can activate downstream signals rapidly, locally, and reversibly upon blue light illumination. The high spatiotemporal resolution of the opto-Dab1 probe also allows us to control membrane protrusion, retraction and ruffling by local illumination in both COS7 cells and in primary neurons. This shows that Dab1 activation is sufficient to orient cell movement in the absence of other signals. Opto-Dab1 may be useful to study the biological functions of the Reelin-Dab1 signaling pathway both in vitro and in vivo.
Collapse
|