101
|
Castiglione GM, Zhou L, Xu Z, Neiman Z, Hung CF, Duh EJ. Evolutionary pathways to SARS-CoV-2 resistance are opened and closed by epistasis acting on ACE2. PLoS Biol 2021; 19:e3001510. [PMID: 34932561 PMCID: PMC8730403 DOI: 10.1371/journal.pbio.3001510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 01/05/2022] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infects a broader range of mammalian species than previously predicted, binding a diversity of angiotensin converting enzyme 2 (ACE2) orthologs despite extensive sequence divergence. Within this sequence degeneracy, we identify a rare sequence combination capable of conferring SARS-CoV-2 resistance. We demonstrate that this sequence was likely unattainable during human evolution due to deleterious effects on ACE2 carboxypeptidase activity, which has vasodilatory and cardioprotective functions in vivo. Across the 25 ACE2 sites implicated in viral binding, we identify 6 amino acid substitutions unique to mouse-one of the only known mammalian species resistant to SARS-CoV-2. Substituting human variants at these positions is sufficient to confer binding of the SARS-CoV-2 S protein to mouse ACE2, facilitating cellular infection. Conversely, substituting mouse variants into either human or dog ACE2 abolishes viral binding, diminishing cellular infection. However, these same substitutions decrease human ACE2 activity by 50% and are predicted as pathogenic, consistent with the extreme rarity of human polymorphisms at these sites. This trade-off can be avoided, however, depending on genetic background; if substituted simultaneously, these same mutations have no deleterious effect on dog ACE2 nor that of the rodent ancestor estimated to exist 70 million years ago. This genetic contingency (epistasis) may have therefore opened the road to resistance for some species, while making humans susceptible to viruses that use these ACE2 surfaces for binding, as does SARS-CoV-2.
Collapse
Affiliation(s)
- Gianni M. Castiglione
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Lingli Zhou
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Zhenhua Xu
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Zachary Neiman
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Elia J. Duh
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
102
|
Terrier O, Si-Tahar M, Ducatez M, Chevalier C, Pizzorno A, Le Goffic R, Crépin T, Simon G, Naffakh N. Influenza viruses and coronaviruses: Knowns, unknowns, and common research challenges. PLoS Pathog 2021; 17:e1010106. [PMID: 34969061 PMCID: PMC8718010 DOI: 10.1371/journal.ppat.1010106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The development of safe and effective vaccines in a record time after the emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a remarkable achievement, partly based on the experience gained from multiple viral outbreaks in the past decades. However, the Coronavirus Disease 2019 (COVID-19) crisis also revealed weaknesses in the global pandemic response and large gaps that remain in our knowledge of the biology of coronaviruses (CoVs) and influenza viruses, the 2 major respiratory viruses with pandemic potential. Here, we review current knowns and unknowns of influenza viruses and CoVs, and we highlight common research challenges they pose in 3 areas: the mechanisms of viral emergence and adaptation to humans, the physiological and molecular determinants of disease severity, and the development of control strategies. We outline multidisciplinary approaches and technological innovations that need to be harnessed in order to improve preparedeness to the next pandemic.
Collapse
Affiliation(s)
- Olivier Terrier
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Mustapha Si-Tahar
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- Inserm U1100, Research Center for Respiratory Diseases (CEPR), Université de Tours, Tours, France
| | - Mariette Ducatez
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- IHAP, UMR1225, Université de Toulouse, ENVT, INRAE, Toulouse, France
| | - Christophe Chevalier
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- Université Paris-Saclay, UVSQ, INRAE, VIM, Equipe Virus Influenza, Jouy-en-Josas, France
| | - Andrés Pizzorno
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Ronan Le Goffic
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- Université Paris-Saclay, UVSQ, INRAE, VIM, Equipe Virus Influenza, Jouy-en-Josas, France
| | - Thibaut Crépin
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Gaëlle Simon
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, France
| | - Nadia Naffakh
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- RNA Biology and Influenza Virus Unit, Institut Pasteur, CNRS UMR3569, Université de Paris, Paris, France
| |
Collapse
|
103
|
Díaz AV, Walker M, Webster JP. Surveillance and control of SARS-CoV-2 in mustelids: An evolutionary perspective. Evol Appl 2021; 14:2715-2725. [PMID: 34899977 PMCID: PMC8652926 DOI: 10.1111/eva.13310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 01/18/2023] Open
Abstract
The relevance of mustelids in SARS-CoV-2 transmission has become increasingly evident. Alongside experimental demonstration of airborne transmission among ferrets, the major animal model for human respiratory diseases, transmission of SARS-CoV-2 within- and/or between-commercial mink farms has occurred and continues to occur. The number of mink reared for the luxury fur trade is approximately 60.5 million, across 36 mustelid-farming countries. By July 2021, SARS-CoV-2 outbreaks have been reported in 12 of these countries, at 412 European and 20 North American mink farms. Reverse zoonotic transmission events (from humans to mink) have introduced the virus to farms with subsequent extensive mink-to-mink transmission as well as further zoonotic (mink-to-human) transmission events generating cases among both farm workers and the broader community. Overcrowded housing conditions inherent within intensive mink farms, often combined with poor sanitation and welfare, both guarantee spread of SARS-CoV-2 and facilitate opportunities for viral variants, thereby effectively representing biotic hubs for viral transmission and evolution of virulence. Adequate preventative, surveillance and control measures within the mink industry are imperative both for the control of the current global pandemic and to mitigate against future outbreaks.
Collapse
Affiliation(s)
- Adriana V Díaz
- Department of Pathobiology and Population Sciences Royal Veterinary College University of London Herts UK
| | - Martin Walker
- Department of Pathobiology and Population Sciences Royal Veterinary College University of London Herts UK
| | - Joanne P Webster
- Department of Pathobiology and Population Sciences Royal Veterinary College University of London Herts UK
| |
Collapse
|
104
|
Garushyants SK, Rogozin IB, Koonin EV. Template switching and duplications in SARS-CoV-2 genomes give rise to insertion variants that merit monitoring. Commun Biol 2021; 4:1343. [PMID: 34848826 PMCID: PMC8632935 DOI: 10.1038/s42003-021-02858-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/01/2021] [Indexed: 12/29/2022] Open
Abstract
The appearance of multiple new SARS-CoV-2 variants during the COVID-19 pandemic is a matter of grave concern. Some of these variants, such as B.1.617.2, B.1.1.7, and B.1.351, manifest higher infectivity and virulence than the earlier SARS-CoV-2 variants, with potential dramatic effects on the course of the pandemic. So far, analysis of new SARS-CoV-2 variants focused primarily on nucleotide substitutions and short deletions that are readily identifiable by comparison to consensus genome sequences. In contrast, insertions have largely escaped the attention of researchers although the furin site insert in the Spike (S) protein is thought to be a determinant of SARS-CoV-2 virulence. Here, we identify 346 unique inserts of different lengths in SARS-CoV-2 genomes and present evidence that these inserts reflect actual virus variance rather than sequencing artifacts. Two principal mechanisms appear to account for the inserts in the SARS-CoV-2 genomes, polymerase slippage and template switch that might be associated with the synthesis of subgenomic RNAs. At least three inserts in the N-terminal domain of the S protein are predicted to lead to escape from neutralizing antibodies, whereas other inserts might result in escape from T-cell immunity. Thus, inserts in the S protein can affect its antigenic properties and merit monitoring.
Collapse
Affiliation(s)
- Sofya K Garushyants
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
105
|
Si F, Jiang L, Yu R, Wei W, Li Z. Study on the Characteristic Codon Usage Pattern in Porcine Epidemic Diarrhea Virus Genomes and Its Host Adaptation Phenotype. Front Microbiol 2021; 12:738082. [PMID: 34733253 PMCID: PMC8558211 DOI: 10.3389/fmicb.2021.738082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), which classified in the genus Alphacoronavirus, family Coronaviridae, is one of the most important pathogens that cause heavy economic losses in pig industry. Although intensive mutation and recombination analysis of PEDV strains were provided, systematic genome analysis were needed to elucidate the evolution mechanism and codon usage adaptation profiles of the pathogen. Here, a comprehensive investigation was carried out to reveal the systematic evolutionary processes of synonymous codon usage and host-adapted evolution phenotype of PEDV genome. We found a low codon usage bias (CUB) in PEDV genome and that nucleotide compositions, natural selection, mutation pressure and geographical diversity shapes the codon usage patterns of PEDV, with natural selection dominated the overall codon usage bias in PEDV than the others. By using the relative codon deoptimization index (RCDI) and similarity index (SiD) analysis, we observed that genotype II PEDV strains showed the highest level of adaptation phenotype to Sus scrofa than another divergent clade. To the best of our knowledge, this is the first comprehensive report elaborating the codon usage and host adaptation of PEDV. The findings offer an insight into our understanding of factors involved in PEDV evolution, adaptation and fitness toward their hosts.
Collapse
Affiliation(s)
- Fusheng Si
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Li Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ruisong Yu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wenqiang Wei
- Department of Microbiology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zhen Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
106
|
Wickenhagen A, Sugrue E, Lytras S, Kuchi S, Noerenberg M, Turnbull ML, Loney C, Herder V, Allan J, Jarmson I, Cameron-Ruiz N, Varjak M, Pinto RM, Lee JY, Iselin L, Palmalux N, Stewart DG, Swingler S, Greenwood EJD, Crozier TWM, Gu Q, Davies EL, Clohisey S, Wang B, Trindade Maranhão Costa F, Freire Santana M, de Lima Ferreira LC, Murphy L, Fawkes A, Meynert A, Grimes G, ISARIC4C Investigators, Da Silva Filho JL, Marti M, Hughes J, Stanton RJ, Wang ECY, Ho A, Davis I, Jarrett RF, Castello A, Robertson DL, Semple MG, Openshaw PJM, Palmarini M, Lehner PJ, Baillie JK, Rihn SJ, Wilson SJ. A prenylated dsRNA sensor protects against severe COVID-19. Science 2021; 374:eabj3624. [PMID: 34581622 PMCID: PMC7612834 DOI: 10.1126/science.abj3624] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Inherited genetic factors can influence the severity of COVID-19, but the molecular explanation underpinning a genetic association is often unclear. Intracellular antiviral defenses can inhibit the replication of viruses and reduce disease severity. To better understand the antiviral defenses relevant to COVID-19, we used interferon-stimulated gene (ISG) expression screening to reveal that 2′-5′-oligoadenylate synthetase 1 (OAS1), through ribonuclease L, potently inhibits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We show that a common splice-acceptor single-nucleotide polymorphism (Rs10774671) governs whether patients express prenylated OAS1 isoforms that are membrane-associated and sense-specific regions of SARS-CoV-2 RNAs or if they only express cytosolic, nonprenylated OAS1 that does not efficiently detect SARS-CoV-2. In hospitalized patients, expression of prenylated OAS1 was associated with protection from severe COVID-19, suggesting that this antiviral defense is a major component of a protective antiviral response.
Collapse
Affiliation(s)
- Arthur Wickenhagen
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Elena Sugrue
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Spyros Lytras
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Srikeerthana Kuchi
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Marko Noerenberg
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Matthew L. Turnbull
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Colin Loney
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Vanessa Herder
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Jay Allan
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Innes Jarmson
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Natalia Cameron-Ruiz
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Margus Varjak
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Rute M. Pinto
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Jeffrey Y. Lee
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Louisa Iselin
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Natasha Palmalux
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Douglas G. Stewart
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Simon Swingler
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Edward J. D. Greenwood
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - Thomas W. M. Crozier
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - Quan Gu
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Emma L. Davies
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Sara Clohisey
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Bo Wang
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Sao Paolo, Brazil
| | - Monique Freire Santana
- Department of Education and Research, Oncology Control Centre of Amazonas State (FCECON), Manaus, Amazonas, Brazil
| | - Luiz Carlos de Lima Ferreira
- Postgraduate Program in Tropical Medicine, Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Angie Fawkes
- Edinburgh Clinical Research Facility, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Alison Meynert
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Graeme Grimes
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - ISARIC4C Investigators
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- Roslin Institute, University of Edinburgh, Edinburgh, UK
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Sao Paolo, Brazil
- Department of Education and Research, Oncology Control Centre of Amazonas State (FCECON), Manaus, Amazonas, Brazil
- Postgraduate Program in Tropical Medicine, Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Edinburgh Clinical Research Facility, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Division of Infection & Immunity, Cardiff University, Cardiff, UK
- NIHR Health Protection Research Unit for Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Respiratory Medicine, Alder Hey Children’s Hospital, Liverpool, UK
- National Heart and Lung Institute, Imperial College London, London, UK
- Imperial College Healthcare, National Health Service Trust London, London, UK
- Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Joao Luiz Da Silva Filho
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Matthias Marti
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Joseph Hughes
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | | | - Eddie C. Y. Wang
- Division of Infection & Immunity, Cardiff University, Cardiff, UK
| | - Antonia Ho
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Ruth F. Jarrett
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Alfredo Castello
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - David L. Robertson
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Malcolm G. Semple
- NIHR Health Protection Research Unit for Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Respiratory Medicine, Alder Hey Children’s Hospital, Liverpool, UK
| | - Peter J. M. Openshaw
- National Heart and Lung Institute, Imperial College London, London, UK
- Imperial College Healthcare, National Health Service Trust London, London, UK
| | - Massimo Palmarini
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Paul J. Lehner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - J. Kenneth Baillie
- Roslin Institute, University of Edinburgh, Edinburgh, UK
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Suzannah J. Rihn
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Sam J. Wilson
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| |
Collapse
|
107
|
Keusch GT, Lam SK, Mackenzie JS, Saif L, Turner M. An appeal for an objective, open, and transparent scientific debate about the origin of SARS-CoV-2 - Authors' reply. Lancet 2021; 398:1404-1405. [PMID: 34543607 PMCID: PMC8448489 DOI: 10.1016/s0140-6736(21)02013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 11/21/2022]
Affiliation(s)
- Gerald T Keusch
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA.
| | - Sai Kit Lam
- University of Malaya, Kuala Lumpur, Malaysia
| | - John S Mackenzie
- Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Linda Saif
- The Ohio State University, Columbus, OH, USA
| | - Michael Turner
- Institute of Infection Immunity & Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
108
|
Buitrago SP, Garzón-Ospina D. Genetic diversity of SARS-CoV-2 in South America: demographic history and structuration signals. Arch Virol 2021; 166:3357-3371. [PMID: 34604926 PMCID: PMC8487618 DOI: 10.1007/s00705-021-05258-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/19/2021] [Indexed: 11/24/2022]
Abstract
In 2020, the emergence of SARS-CoV-2 caused a global public health crisis with significant mortality rates and a large socioeconomic burden. The rapid spread of this new virus has led to the appearance of new variants, making the characterization and monitoring of genetic diversity necessary to understand the population dynamics and evolution of the virus. Here, a population-genetics-based study was performed starting with South American genome sequences available in the GISAID database to investigate the genetic diversity of SARS-CoV-2 on this continent and the evolutionary mechanisms that modulate it.
Collapse
Affiliation(s)
- Sindy P Buitrago
- PGAME-Population Genetics and Molecular Evolution, Fundación Scient, Tunja, Boyacá, Colombia. .,GEBIMOL, School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia-UPTC, Tunja, Boyacá, Colombia. .,GEO, School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia-UPTC, Tunja, Boyacá, Colombia.
| | - Diego Garzón-Ospina
- PGAME-Population Genetics and Molecular Evolution, Fundación Scient, Tunja, Boyacá, Colombia.,GEBIMOL, School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia-UPTC, Tunja, Boyacá, Colombia.,GEO, School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia-UPTC, Tunja, Boyacá, Colombia
| |
Collapse
|
109
|
Stout AE, Guo Q, Millet JK, Whittaker1 GR. Viral and Host Attributes Underlying the Origins of Zoonotic Coronaviruses in Bats. Comp Med 2021; 71:442-450. [PMID: 34635199 PMCID: PMC8594259 DOI: 10.30802/aalas-cm-21-000027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/10/2021] [Accepted: 09/15/2021] [Indexed: 01/01/2023]
Abstract
With a presumed origin in bats, the COVID-19 pandemic has been a major source of morbidity and mortality in the hu- man population, and the causative agent, SARS-CoV-2, aligns most closely at the genome level with the bat coronaviruses RaBtCoV4991/RaTG13 and RmYN02. The ability of bats to provide reservoirs of numerous viruses in addition to coronaviruses remains an active area of research. Unique aspects of the physiology of the chiropteran immune system may contribute to the ability of bats to serve as viral reservoirs. The coronavirus spike protein plays important roles in viral pathogenesis and the immune response. Although much attention has focused on the spike receptor-binding domain, a unique aspect of SARS-CoV-2 as compared with its closest relatives is the presence of a furin cleavage site in the S1-S2 region of the spike protein. Proteolytic activation is likely an important feature that allows SARS-CoV-2-and other coronaviruses-to overcome the species barriers and thus cause human disease. The diversity of bat species limits the ability to draw broad conclusions about viral pathogenesis, but comparisons across species and with reference to humans and other susceptible mammals may guide future research in this regard.
Collapse
Affiliation(s)
| | - Qinghua Guo
- Master of Public Health Program, Cornell University, Ithaca, New York; and
| | - Jean K Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Gary R Whittaker1
- Master of Public Health Program, Cornell University, Ithaca, New York; and
| |
Collapse
|
110
|
Martin DP, Weaver S, Tegally H, San JE, Shank SD, Wilkinson E, Lucaci AG, Giandhari J, Naidoo S, Pillay Y, Singh L, Lessells RJ, Gupta RK, Wertheim JO, Nekturenko A, Murrell B, Harkins GW, Lemey P, MacLean OA, Robertson DL, de Oliveira T, Kosakovsky Pond SL. The emergence and ongoing convergent evolution of the SARS-CoV-2 N501Y lineages. Cell 2021; 184:5189-5200.e7. [PMID: 34537136 PMCID: PMC8421097 DOI: 10.1016/j.cell.2021.09.003] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/05/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022]
Abstract
The independent emergence late in 2020 of the B.1.1.7, B.1.351, and P.1 lineages of SARS-CoV-2 prompted renewed concerns about the evolutionary capacity of this virus to overcome public health interventions and rising population immunity. Here, by examining patterns of synonymous and non-synonymous mutations that have accumulated in SARS-CoV-2 genomes since the pandemic began, we find that the emergence of these three "501Y lineages" coincided with a major global shift in the selective forces acting on various SARS-CoV-2 genes. Following their emergence, the adaptive evolution of 501Y lineage viruses has involved repeated selectively favored convergent mutations at 35 genome sites, mutations we refer to as the 501Y meta-signature. The ongoing convergence of viruses in many other lineages on this meta-signature suggests that it includes multiple mutation combinations capable of promoting the persistence of diverse SARS-CoV-2 lineages in the face of mounting host immune recognition.
Collapse
Affiliation(s)
- Darren P Martin
- Institute of Infectious Diseases and Molecular Medicine, Division Of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7701, South Africa.
| | - Steven Weaver
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform, School of Laboratory Medicine & Medical Sciences, University of KwaZulu- Natal, Durban 4001, South Africa
| | - James Emmanuel San
- KwaZulu-Natal Research Innovation and Sequencing Platform, School of Laboratory Medicine & Medical Sciences, University of KwaZulu- Natal, Durban 4001, South Africa
| | - Stephen D Shank
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Eduan Wilkinson
- KwaZulu-Natal Research Innovation and Sequencing Platform, School of Laboratory Medicine & Medical Sciences, University of KwaZulu- Natal, Durban 4001, South Africa
| | - Alexander G Lucaci
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Jennifer Giandhari
- KwaZulu-Natal Research Innovation and Sequencing Platform, School of Laboratory Medicine & Medical Sciences, University of KwaZulu- Natal, Durban 4001, South Africa
| | - Sureshnee Naidoo
- KwaZulu-Natal Research Innovation and Sequencing Platform, School of Laboratory Medicine & Medical Sciences, University of KwaZulu- Natal, Durban 4001, South Africa
| | - Yeshnee Pillay
- KwaZulu-Natal Research Innovation and Sequencing Platform, School of Laboratory Medicine & Medical Sciences, University of KwaZulu- Natal, Durban 4001, South Africa
| | - Lavanya Singh
- KwaZulu-Natal Research Innovation and Sequencing Platform, School of Laboratory Medicine & Medical Sciences, University of KwaZulu- Natal, Durban 4001, South Africa
| | - Richard J Lessells
- KwaZulu-Natal Research Innovation and Sequencing Platform, School of Laboratory Medicine & Medical Sciences, University of KwaZulu- Natal, Durban 4001, South Africa
| | - Ravindra K Gupta
- Clinical Microbiology, University of Cambridge, Cambridge CB2 1TN, UK; Africa Health Research Institute, KwaZulu-Natal 4013, South Africa
| | - Joel O Wertheim
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Anton Nekturenko
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, PA 16802, USA
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 141 83, Sweden
| | - Gordon W Harkins
- South African Medical Research Council Capacity Development Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville 7635, South Africa
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven 3000, Belgium
| | - Oscar A MacLean
- MRC-University of Glasgow Centre for Virus Research, Glasgow 12 8QQ, Scotland, UK
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, Glasgow 12 8QQ, Scotland, UK
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform, School of Laboratory Medicine & Medical Sciences, University of KwaZulu- Natal, Durban 4001, South Africa; Department of Global Health, University of Washington, Seattle, WA 98195-4550, USA.
| | - Sergei L Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
111
|
Hierarchical correction of p-values via an ultrametric tree running Ornstein-Uhlenbeck process. Comput Stat 2021. [DOI: 10.1007/s00180-021-01148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractStatistical testing is classically used as an exploratory tool to search for association between a phenotype and many possible explanatory variables. This approach often leads to multiple testing under dependence. We assume a hierarchical structure between tests via an Ornstein-Uhlenbeck process on a tree. The process correlation structure is used for smoothing the p-values. We design a penalized estimation of the mean of the Ornstein-Uhlenbeck process for p-value computation. The performances of the algorithm are assessed via simulations. Its ability to discover new associations is demonstrated on a metagenomic dataset. The corresponding R package is available from https://github.com/abichat/zazou.
Collapse
|
112
|
Xia X. Dating the Common Ancestor from an NCBI Tree of 83688 High-Quality and Full-Length SARS-CoV-2 Genomes. Viruses 2021; 13:1790. [PMID: 34578371 PMCID: PMC8472983 DOI: 10.3390/v13091790] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 02/04/2023] Open
Abstract
All dating studies involving SARS-CoV-2 are problematic. Previous studies have dated the most recent common ancestor (MRCA) between SARS-CoV-2 and its close relatives from bats and pangolins. However, the evolutionary rate thus derived is expected to differ from the rate estimated from sequence divergence of SARS-CoV-2 lineages. Here, I present dating results for the first time from a large phylogenetic tree with 86,582 high-quality full-length SARS-CoV-2 genomes. The tree contains 83,688 genomes with full specification of collection time. Such a large tree spanning a period of about 1.5 years offers an excellent opportunity for dating the MRCA of the sampled SARS-CoV-2 genomes. The MRCA is dated 16 August 2019, with the evolutionary rate estimated to be 0.05526 mutations/genome/day. The Pearson correlation coefficient (r) between the root-to-tip distance (D) and the collection time (T) is 0.86295. The NCBI tree also includes 10 SARS-CoV-2 genomes isolated from cats, collected over roughly the same time span as human COVID-19 infection. The MRCA from these cat-derived SARS-CoV-2 is dated 30 July 2019, with r = 0.98464. While the dating method is well known, I have included detailed illustrations so that anyone can repeat the analysis and obtain the same dating results. With 16 August 2019 as the date of the MRCA of sampled SARS-CoV-2 genomes, archived samples from respiratory or digestive tracts collected around or before 16 August 2019, or those that are not descendants of the existing SARS-CoV-2 lineages, should be particularly valuable for tracing the origin of SARS-CoV-2.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, Marie-Curie Private, Ottawa, ON K1N 9A7, Canada; ; Tel.: +1-613-562-5718
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
113
|
Kepler L, Hamins-Puertolas M, Rasmussen DA. Decomposing the sources of SARS-CoV-2 fitness variation in the United States. Virus Evol 2021; 7:veab073. [PMID: 34642604 PMCID: PMC8499931 DOI: 10.1093/ve/veab073] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
The fitness of a pathogen is a composite phenotype determined by many different factors influencing growth rates both within and between hosts. Determining what factors shape fitness at the host population-level is especially challenging because both intrinsic factors like pathogen genetics and extrinsic factors such as host behavior influence between-host transmission potential. This challenge has been highlighted by controversy surrounding the population-level fitness effects of mutations in the SARS-CoV-2 genome and their relative importance when compared against non-genetic factors shaping transmission dynamics. Building upon phylodynamic birth-death models, we develop a new framework to learn how hundreds of genetic and non-genetic factors have shaped the fitness of SARS-CoV-2. We estimate the fitness effects of all amino acid variants and several structural variants that have circulated in the United States between February 2020 and March 2021 from viral phylogenies. We also estimate how much fitness variation among pathogen lineages is attributable to genetic versus non-genetic factors such as spatial heterogeneity in transmission rates. Before September 2020, most fitness variation between lineages can be explained by background spatial heterogeneity in transmission rates across geographic regions. Starting in late 2020, genetic variation in fitness increased dramatically with the emergence of several new lineages including B.1.1.7, B.1.427, B.1.429 and B.1.526. Our analysis also indicates that genetic variants in less well-explored genomic regions outside of Spike may be contributing significantly to overall fitness variation in the viral population.
Collapse
Affiliation(s)
- Lenora Kepler
- Bioinformatics Research Center, North Carolina State University, 1 Lampe Drive, Raleigh, NC 27607, USA
| | - Marco Hamins-Puertolas
- Biomathematics Graduate Program, North Carolina State University, Campus Box 8213, Raleigh, NC 27695, USA
| | - David A Rasmussen
- Bioinformatics Research Center, North Carolina State University, 1 Lampe Drive, Raleigh, NC 27607, USA
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7613, Raleigh, NC 27695, USA
| |
Collapse
|
114
|
|
115
|
Frutos R, Gavotte L, Devaux C. Unravelling the origin of SARS-CoV-2: is the model good? New Microbes New Infect 2021; 43:100918. [PMID: 34306709 PMCID: PMC8282939 DOI: 10.1016/j.nmni.2021.100918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/12/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
MacLean and colleagues recently published a very elegant analysis demonstrating that SARS-CoV-2 carries signs of positive selection and that it was already adapted to humans prior to the emergence of COVID-19. Using the Spillover theory as a reference model for zoonotic emergence, they conclude that SARS-CoV-2 must have acquired this human adaptation in bats. We reinterpreted the data from MacLean et al. using a different model of zoonotic emergence as reference, the Circulation model. The use of the Circulation model provides a more parsimonious interpretation showing that this adaptation to humans occurs in the human population after primo infection.
Collapse
Affiliation(s)
- R. Frutos
- Cirad, UMR 17, Intertryp, Montpellier, France
| | - L. Gavotte
- Espace-Dev, Université de Montpellier, Montpellier, France
| | - C.A. Devaux
- IHU-Méditerranée Infection and CNRS, Marseille, France
| |
Collapse
|
116
|
Garushyants SK, Rogozin IB, Koonin EV. Insertions in SARS-CoV-2 genome caused by template switch and duplications give rise to new variants that merit monitoring. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.23.441209. [PMID: 33907754 PMCID: PMC8077628 DOI: 10.1101/2021.04.23.441209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The appearance of multiple new SARS-CoV-2 variants during the winter of 2020-2021 is a matter of grave concern. Some of these new variants, such as B.1.617.2, B.1.1.7, and B.1.351, manifest higher infectivity and virulence than the earlier SARS-CoV-2 variants, with potential dramatic effects on the course of the COVID-19 pandemic. So far, analysis of new SARS-CoV-2 variants focused primarily on point nucleotide substitutions and short deletions that are readily identifiable by comparison to consensus genome sequences. In contrast, insertions have largely escaped the attention of researchers although the furin site insert in the spike protein is thought to be a determinant of SARS-CoV-2 virulence and other inserts might have contributed to coronavirus pathogenicity as well. Here, we investigate insertions in SARS-CoV-2 genomes and identify 347 unique inserts of different lengths. We present evidence that these inserts reflect actual virus variance rather than sequencing errors. Two principal mechanisms appear to account for the inserts in the SARS-CoV-2 genomes, polymerase slippage and template switch that might be associated with the synthesis of subgenomic RNAs. We show that inserts in the Spike glycoprotein can affect its antigenic properties and thus merit monitoring. At least, three inserts in the N-terminal domain of the Spike (ins245IME, ins246DSWG, and ins248SSLT) that were first detected in 2021 are predicted to lead to escape from neutralizing antibodies, whereas other inserts might result in escape from T-cell immunity.
Collapse
Affiliation(s)
- Sofya K. Garushyants
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Igor B. Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
117
|
Amin J, Sharif M, Gul N, Kadry S, Chakraborty C. Quantum Machine Learning Architecture for COVID-19 Classification Based on Synthetic Data Generation Using Conditional Adversarial Neural Network. Cognit Comput 2021; 14:1677-1688. [PMID: 34394762 PMCID: PMC8353617 DOI: 10.1007/s12559-021-09926-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
Background COVID-19 is a novel virus that affects the upper respiratory tract, as well as the lungs. The scale of the global COVID-19 pandemic, its spreading rate, and deaths are increasing regularly. Computed tomography (CT) scans can be used carefully to detect and analyze COVID-19 cases. In CT images/scans, ground-glass opacity (GGO) is found in the early stages of infection. While in later stages, there is a superimposed pulmonary consolidation. Methods This research investigates the quantum machine learning (QML) and classical machine learning (CML) approaches for the analysis of COVID-19 images. The recent developments in quantum computing have led researchers to explore new ideas and approaches using QML. The proposed approach consists of two phases: in phase I, synthetic CT images are generated through the conditional adversarial network (CGAN) to increase the size of the dataset for accurate training and testing. In phase II, the classification of COVID-19/healthy images is performed, in which two models are proposed: CML and QML. Result The proposed model achieved 0.94 precision (Pn), 0.94 accuracy (Ac), 0.94 recall (Rl), and 0.94 F1-score (Fe) on POF Hospital dataset while 0.96 Pn, 0.96 Ac, 0.95 Rl, and 0.96 Fe on UCSD-AI4H dataset. Conclusion The proposed method achieved better results when compared to the latest published work in this domain.
Collapse
Affiliation(s)
- Javaria Amin
- Department of Computer Science, University of Wah, 47040, Wah Cantt, Pakistan
| | - Muhammad Sharif
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, 47040, Wah Cantt, Pakistan
| | - Nadia Gul
- MBBS, FCPS Diagnostic Radiology, Consultant Radiologist POF Hospital and Associate Professor Radiology Wah Medical College, Wah Cantt, Pakistan
| | - Seifedine Kadry
- Faculty of Applied Computing and Technology, Noroff University College, Kristiansand, Norway
| | | |
Collapse
|
118
|
Patiño-Galindo JÁ, Filip I, Chowdhury R, Maranas CD, Sorger PK, AlQuraishi M, Rabadan R. Recombination and lineage-specific mutations linked to the emergence of SARS-CoV-2. Genome Med 2021; 13:124. [PMID: 34362430 PMCID: PMC8343217 DOI: 10.1186/s13073-021-00943-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/24/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The emergence of SARS-CoV-2 underscores the need to better understand the evolutionary processes that drive the emergence and adaptation of zoonotic viruses in humans. In the betacoronavirus genus, which also includes SARS-CoV and MERS-CoV, recombination frequently encompasses the receptor binding domain (RBD) of the Spike protein, which is responsible for viral binding to host cell receptors. In this work, we reconstruct the evolutionary events that have accompanied the emergence of SARS-CoV-2, with a special emphasis on the RBD and its adaptation for binding to its receptor, human ACE2. METHODS By means of phylogenetic and recombination analyses, we found evidence of a recombination event in the RBD involving ancestral linages to both SARS-CoV and SARS-CoV-2. We then assessed the effect of this recombination at protein level by reconstructing the RBD of the closest ancestors to SARS-CoV-2, SARS-CoV, and other Sarbecoviruses, including the most recent common ancestor of the recombining clade. The resulting information was used to measure and compare, in silico, their ACE2-binding affinities using the physics-based trRosetta algorithm. RESULTS We show that, through an ancestral recombination event, SARS-CoV and SARS-CoV-2 share an RBD sequence that includes two insertions (positions 432-436 and 460-472), as well as the variants 427N and 436Y. Both 427N and 436Y belong to a helix that interacts directly with the human ACE2 (hACE2) receptor. Reconstruction of ancestral states, combined with protein-binding affinity analyses, suggests that the recombination event involving ancestral strains of SARS-CoV and SARS-CoV-2 led to an increased affinity for hACE2 binding and that alleles 427N and 436Y significantly enhanced affinity as well. CONCLUSIONS We report an ancestral recombination event affecting the RBD of both SARS-CoV and SARS-CoV-2 that was associated with an increased binding affinity to hACE2. Structural modeling indicates that ancestors of SARS-CoV-2 may have acquired the ability to infect humans decades ago. The binding affinity with the human receptor would have been subsequently boosted in SARS-CoV and SARS-CoV-2 through further mutations in RBD.
Collapse
Affiliation(s)
- Juan Ángel Patiño-Galindo
- Program for Mathematical Genomics, Columbia University, New York, NY, USA
- Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY, USA
| | - Ioan Filip
- Program for Mathematical Genomics, Columbia University, New York, NY, USA
- Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY, USA
| | - Ratul Chowdhury
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Peter K Sorger
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Mohammed AlQuraishi
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Raul Rabadan
- Program for Mathematical Genomics, Columbia University, New York, NY, USA.
- Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY, USA.
| |
Collapse
|
119
|
González-Candelas F, Shaw MA, Phan T, Kulkarni-Kale U, Paraskevis D, Luciani F, Kimura H, Sironi M. One year into the pandemic: Short-term evolution of SARS-CoV-2 and emergence of new lineages. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 92:104869. [PMID: 33915216 PMCID: PMC8074502 DOI: 10.1016/j.meegid.2021.104869] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 12/19/2022]
Abstract
The COVID-19 pandemic was officially declared on March 11th, 2020. Since the very beginning, the spread of the virus has been tracked nearly in real-time by worldwide genome sequencing efforts. As of March 2021, more than 830,000 SARS-CoV-2 genomes have been uploaded in GISAID and this wealth of data allowed researchers to study the evolution of SARS-CoV-2 during this first pandemic year. In parallel, nomenclatures systems, often with poor consistency among each other, have been developed to designate emerging viral lineages. Despite general fears that the virus might mutate to become more virulent or transmissible, SARS-CoV-2 genetic diversity has remained relatively low during the first ~ 8 months of sustained human-to-human transmission. At the end of 2020/beginning of 2021, though, some alarming events started to raise concerns of possible changes in the evolutionary trajectory of the virus. Specifically, three new viral variants associated with extensive transmission have been described as variants of concern (VOC). These variants were first reported in the UK (B.1.1.7), South Africa (B.1.351) and Brazil (P.1). Their designation as VOCs was determined by an increase of local cases and by the high number of amino acid substitutions harboured by these lineages. This latter feature is reminiscent of viral sequences isolated from immunocompromised patients with long-term infection, suggesting a possible causal link. Here we review the events that led to the identification of these lineages, as well as emerging data concerning their possible implications for viral phenotypes, reinfection risk, vaccine efficiency and epidemic potential. Most of the available evidence is, to date, provisional, but still represents a starting point to uncover the potential threat posed by the VOCs. We also stress that genomic surveillance must be strengthened, especially in the wake of the vaccination campaigns.
Collapse
Affiliation(s)
- Fernando González-Candelas
- Joint Research Unit Infection and Public Health FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio) and CIBER in Epidemiology and Public Health, Valencia, Spain
| | - Marie-Anne Shaw
- Leeds Institute of Medical Research at St James's, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Tung Phan
- Division of Clinical Microbiology, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Urmila Kulkarni-Kale
- Bioinformatics Centre, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, Maharashtra, India
| | - Dimitrios Paraskevis
- Department of Hygiene Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Fabio Luciani
- University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Hirokazu Kimura
- Department of Health Science, Gunma Paz University Graduate School, Takasaki, Gunma 370-0006, Japan
| | - Manuela Sironi
- Bioinformatics Unit, Scientific Institute IRCCS E. MEDEA, Bosisio Parini (LC), Italy.
| |
Collapse
|
120
|
Telenti A, Arvin A, Corey L, Corti D, Diamond MS, García-Sastre A, Garry RF, Holmes EC, Pang PS, Virgin HW. After the pandemic: perspectives on the future trajectory of COVID-19. Nature 2021; 596:495-504. [PMID: 34237771 DOI: 10.1038/s41586-021-03792-w] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
There is a realistic expectation that the global effort in vaccination will bring the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) under control. Nonetheless, uncertainties remain about the type of long-term association that the virus will establish with the human population and, in particular, whether coronavirus disease 2019 (COVID-19) will become an endemic disease. Although the trajectory is difficult to predict, the conditions, concepts and variables that influence this transition can be anticipated. Persistence of SARS-CoV-2 as an endemic virus, perhaps with seasonal epidemic peaks, may be fuelled by pockets of susceptible individuals and waning immunity after infection or vaccination, changes in the virus through antigenic drift that diminish protection and re-entries from zoonotic reservoirs. Here we review relevant observations from previous epidemics and discuss the potential evolution of SARS-CoV-2 as it adapts during persistent transmission in the presence of a level of population immunity. Lack of effective surveillance or adequate response could enable the emergence of new epidemic or pandemic patterns from an endemic infection of SARS-CoV-2. There are key pieces of data that are urgently needed in order to make good decisions; we outline these and propose a way forward.
Collapse
Affiliation(s)
- Amalio Telenti
- Vir Biotechnology, San Francisco, CA, USA. .,Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA.
| | - Ann Arvin
- Vir Biotechnology, San Francisco, CA, USA.
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland.
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA. .,Department of Medicine, Washington University School of Medicine, St Louis, MO, USA. .,Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Robert F Garry
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, USA.
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia.
| | | | - Herbert W Virgin
- Vir Biotechnology, San Francisco, CA, USA. .,Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA. .,Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
121
|
Kumar S, Tao Q, Weaver S, Sanderford M, Caraballo-Ortiz MA, Sharma S, Pond SLK, Miura S. An Evolutionary Portrait of the Progenitor SARS-CoV-2 and Its Dominant Offshoots in COVID-19 Pandemic. Mol Biol Evol 2021; 38:3046-3059. [PMID: 33942847 PMCID: PMC8135569 DOI: 10.1093/molbev/msab118] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Global sequencing of genomes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to reveal new genetic variants that are the key to unraveling its early evolutionary history and tracking its global spread over time. Here we present the heretofore cryptic mutational history and spatiotemporal dynamics of SARS-CoV-2 from an analysis of thousands of high-quality genomes. We report the likely most recent common ancestor of SARS-CoV-2, reconstructed through a novel application and advancement of computational methods initially developed to infer the mutational history of tumor cells in a patient. This progenitor genome differs from genomes of the first coronaviruses sampled in China by three variants, implying that none of the earliest patients represent the index case or gave rise to all the human infections. However, multiple coronavirus infections in China and the United States harbored the progenitor genetic fingerprint in January 2020 and later, suggesting that the progenitor was spreading worldwide months before and after the first reported cases of COVID-19 in China. Mutations of the progenitor and its offshoots have produced many dominant coronavirus strains that have spread episodically over time. Fingerprinting based on common mutations reveals that the same coronavirus lineage has dominated North America for most of the pandemic in 2020. There have been multiple replacements of predominant coronavirus strains in Europe and Asia as well as continued presence of multiple high-frequency strains in Asia and North America. We have developed a continually updating dashboard of global evolution and spatiotemporal trends of SARS-CoV-2 spread (http://sars2evo.datamonkey.org/).
Collapse
Affiliation(s)
- Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
- Center for Excellence in Genome Medicine and Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Qiqing Tao
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Steven Weaver
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Maxwell Sanderford
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Marcos A Caraballo-Ortiz
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Sudip Sharma
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Sergei L K Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Sayaka Miura
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
122
|
Banerjee A, Mossman K, Grandvaux N. Molecular Determinants of SARS-CoV-2 Variants. Trends Microbiol 2021; 29:871-873. [PMID: 34373192 PMCID: PMC8313503 DOI: 10.1016/j.tim.2021.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution is expected, given the nature of virus replication. Selection and establishment of variants in the human population depend on viral fitness and on molecular and immunological selection pressures. Here we discuss how mechanisms of replication and recombination may contribute to the emergence of current and future variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada; Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Karen Mossman
- Department of Medicine, McMaster University, Hamilton, ON, L8S 4K1, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Nathalie Grandvaux
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC, H2X 0A9, Canada; Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université dé Montréal, Montreal, QC, H3C 3J7, Canada.
| |
Collapse
|
123
|
Martin DP, Weaver S, Tegally H, San EJ, Shank SD, Wilkinson E, Lucaci AG, Giandhari J, Naidoo S, Pillay Y, Singh L, Lessells RJ, Gupta RK, Wertheim JO, Nekturenko A, Murrell B, Harkins GW, Lemey P, MacLean OA, Robertson DL, de Oliveira T, Kosakovsky Pond SL. The emergence and ongoing convergent evolution of the N501Y lineages coincides with a major global shift in the SARS-CoV-2 selective landscape. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.02.23.21252268. [PMID: 33688681 PMCID: PMC7941658 DOI: 10.1101/2021.02.23.21252268] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The emergence and rapid rise in prevalence of three independent SARS-CoV-2 "501Y lineages", B.1.1.7, B.1.351 and P.1, in the last three months of 2020 prompted renewed concerns about the evolutionary capacity of SARS-CoV-2 to adapt to both rising population immunity, and public health interventions such as vaccines and social distancing. Viruses giving rise to the different 501Y lineages have, presumably under intense natural selection following a shift in host environment, independently acquired multiple unique and convergent mutations. As a consequence, all have gained epidemiological and immunological properties that will likely complicate the control of COVID-19. Here, by examining patterns of mutations that arose in SARSCoV-2 genomes during the pandemic we find evidence of a major change in the selective forces acting on various SARS-CoV-2 genes and gene segments (such as S, nsp2 and nsp6), that likely coincided with the emergence of the 501Y lineages. In addition to involving continuing sequence diversification, we find evidence that a significant portion of the ongoing adaptive evolution of the 501Y lineages also involves further convergence between the lineages. Our findings highlight the importance of monitoring how members of these known 501Y lineages, and others still undiscovered, are convergently evolving similar strategies to ensure their persistence in the face of mounting infection and vaccine induced host immune recognition.
Collapse
Affiliation(s)
- Darren P Martin
- Institute of Infectious Diseases and Molecular Medicine, Division Of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Steven Weaver
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Pennsylvania, USA
| | - Houryiah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu- Natal, Durban, South Africa
| | - Emmanuel James San
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu- Natal, Durban, South Africa
| | - Stephen D Shank
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Pennsylvania, USA
| | - Eduan Wilkinson
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu- Natal, Durban, South Africa
| | - Alexander G Lucaci
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Pennsylvania, USA
| | - Jennifer Giandhari
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu- Natal, Durban, South Africa
| | - Sureshnee Naidoo
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu- Natal, Durban, South Africa
| | - Yeshnee Pillay
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu- Natal, Durban, South Africa
| | - Lavanya Singh
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu- Natal, Durban, South Africa
| | - Richard J Lessells
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu- Natal, Durban, South Africa
| | - Ravindra K Gupta
- Clinical Microbiology, University of Cambridge, Cambridge, UK
- Africa Health Research Institute, KwaZulu-Natal, South Africa
| | - Joel O Wertheim
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Anton Nekturenko
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Pennsylvania, USA
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gordon W Harkins
- South African Medical Research Council Capacity Development Unit, South African National Bioinformatics Institute, University of the Western cape, Bellville, South Africa
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Oscar A MacLean
- MRC-University of Glasgow Centre for Virus Research, Scotland, UK
| | | | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu- Natal, Durban, South Africa
- Department of Global Health, University of Washington, Seattle, US
| | - Sergei L Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Pennsylvania, USA
| |
Collapse
|
124
|
Cotten M, Robertson DL, Phan MVT. Unique protein features of SARS-CoV-2 relative to other Sarbecoviruses. Virus Evol 2021; 7:veab067. [PMID: 34527286 PMCID: PMC8385934 DOI: 10.1093/ve/veab067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/30/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023] Open
Abstract
Defining the unique properties of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protein sequences has potential to explain the range of Coronavirus Disease 2019 severity. To achieve this we compared proteins encoded by all Sarbecoviruses using profile Hidden Markov Model similarities to identify protein features unique to SARS-CoV-2. Consistent with previous reports, a small set of bat- and pangolin-derived Sarbecoviruses show the greatest similarity to SARS-CoV-2 but are unlikely to be the direct source of SARS-CoV-2. Three proteins (nsp3, spike, and orf9) showed regions differing between the bat Sarbecoviruses and SARS-CoV-2 and indicate virus protein features that might have evolved to support human infection and/or transmission. Spike analysis identified all regions of the protein that have tolerated change and revealed that the current SARS-CoV-2 variants of concern have sampled only a fraction (∼31 per cent) of the possible spike domain changes which have occurred historically in Sarbecovirus evolution. This result emphasises the evolvability of these coronaviruses and the potential for further change in virus replication and transmission properties over the coming years.
Collapse
Affiliation(s)
- Matthew Cotten
- MRC/UVRI & LSHTM Uganda Research Unit, Plot 51-59 Nakiwogo Road, P.O Box 49, Entebbe, Uganda
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - My V T Phan
- MRC/UVRI & LSHTM Uganda Research Unit, Plot 51-59 Nakiwogo Road, P.O Box 49, Entebbe, Uganda
| |
Collapse
|
125
|
Shapiro JT, Víquez-R L, Leopardi S, Vicente-Santos A, Mendenhall IH, Frick WF, Kading RC, Medellín RA, Racey P, Kingston T. Setting the Terms for Zoonotic Diseases: Effective Communication for Research, Conservation, and Public Policy. Viruses 2021; 13:1356. [PMID: 34372562 PMCID: PMC8310020 DOI: 10.3390/v13071356] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022] Open
Abstract
Many of the world's most pressing issues, such as the emergence of zoonotic diseases, can only be addressed through interdisciplinary research. However, the findings of interdisciplinary research are susceptible to miscommunication among both professional and non-professional audiences due to differences in training, language, experience, and understanding. Such miscommunication contributes to the misunderstanding of key concepts or processes and hinders the development of effective research agendas and public policy. These misunderstandings can also provoke unnecessary fear in the public and have devastating effects for wildlife conservation. For example, inaccurate communication and subsequent misunderstanding of the potential associations between certain bats and zoonoses has led to persecution of diverse bats worldwide and even government calls to cull them. Here, we identify four types of miscommunication driven by the use of terminology regarding bats and the emergence of zoonotic diseases that we have categorized based on their root causes: (1) incorrect or overly broad use of terms; (2) terms that have unstable usage within a discipline, or different usages among disciplines; (3) terms that are used correctly but spark incorrect inferences about biological processes or significance in the audience; (4) incorrect inference drawn from the evidence presented. We illustrate each type of miscommunication with commonly misused or misinterpreted terms, providing a definition, caveats and common misconceptions, and suggest alternatives as appropriate. While we focus on terms specific to bats and disease ecology, we present a more general framework for addressing miscommunication that can be applied to other topics and disciplines to facilitate more effective research, problem-solving, and public policy.
Collapse
Affiliation(s)
- Julie Teresa Shapiro
- Department of Life Sciences, Ben-Gurion University of the Negev, Be’er Sheva 8410501, Israel
| | - Luis Víquez-R
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, 89069 Ulm, Germany;
| | - Stefania Leopardi
- Laboratory of Emerging Viral Zoonoses, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy;
| | - Amanda Vicente-Santos
- Graduate Program in Population Biology, Ecology and Evolution, Emory University, Atlanta, GA 30322, USA;
| | - Ian H. Mendenhall
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Winifred F. Frick
- Bat Conservation International, Austin, TX 78746, USA;
- Department of Ecology and Evolution, University of California, Santa Cruz, CA 95060, USA
| | - Rebekah C. Kading
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Rodrigo A. Medellín
- Institute of Ecology, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico;
| | - Paul Racey
- The Centre for Ecology and Conservation, University of Exeter, Exeter TR10 9FE, UK;
| | - Tigga Kingston
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
126
|
Ekstrand K, Flanagan AJ, Lin IE, Vejseli B, Cole A, Lally AP, Morris RL, Morgan KN. Animal Transmission of SARS-CoV-2 and the Welfare of Animals during the COVID-19 Pandemic. Animals (Basel) 2021; 11:2044. [PMID: 34359172 PMCID: PMC8300090 DOI: 10.3390/ani11072044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/20/2022] Open
Abstract
The accelerated pace of research into Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) necessitates periodic summaries of current research. The present paper reviews virus susceptibilities in species with frequent human contact, and factors that are best predictors of virus susceptibility. Species reviewed were those in contact with humans through entertainment, pet, or agricultural trades, and for whom reports (either anecdotal or published) exist regarding the SARS-CoV-2 virus and/or the resulting disease state COVID-19. Available literature was searched using an artificial intelligence (AI)-assisted engine, as well as via common databases, such as Web of Science and Medline. The present review focuses on susceptibility and transmissibility of SARS-CoV-2, and polymorphisms in transmembrane protease serine 2 (TMPRSS2) and angiotensin-converting enzyme 2 (ACE2) that contribute to species differences. Dogs and pigs appear to have low susceptibility, while ferrets, mink, some hamster species, cats, and nonhuman primates (particularly Old World species) have high susceptibility. Precautions may therefore be warranted in interactions with such species, and more selectivity practiced when choosing appropriate species to serve as models for research.
Collapse
Affiliation(s)
| | - Amanda J. Flanagan
- College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA;
| | - Ilyan E. Lin
- Department of Biology, Wheaton College, Norton, MA 02766, USA; (I.E.L.); (B.V.); (R.L.M.)
| | - Brendon Vejseli
- Department of Biology, Wheaton College, Norton, MA 02766, USA; (I.E.L.); (B.V.); (R.L.M.)
| | - Allicyn Cole
- Program in Neuroscience, Wheaton College, Norton, MA 02766, USA; (A.C.); (A.P.L.)
| | - Anna P. Lally
- Program in Neuroscience, Wheaton College, Norton, MA 02766, USA; (A.C.); (A.P.L.)
| | - Robert L. Morris
- Department of Biology, Wheaton College, Norton, MA 02766, USA; (I.E.L.); (B.V.); (R.L.M.)
| | - Kathleen N. Morgan
- Program in Neuroscience, Wheaton College, Norton, MA 02766, USA; (A.C.); (A.P.L.)
| |
Collapse
|
127
|
Snedden CE, Makanani SK, Schwartz ST, Gamble A, Blakey RV, Borremans B, Helman SK, Espericueta L, Valencia A, Endo A, Alfaro ME, Lloyd-Smith JO. SARS-CoV-2: Cross-scale Insights from Ecology and Evolution. Trends Microbiol 2021; 29:593-605. [PMID: 33893024 PMCID: PMC7997387 DOI: 10.1016/j.tim.2021.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/19/2022]
Abstract
Ecological and evolutionary processes govern the fitness, propagation, and interactions of organisms through space and time, and viruses are no exception. While coronavirus disease 2019 (COVID-19) research has primarily emphasized virological, clinical, and epidemiological perspectives, crucial aspects of the pandemic are fundamentally ecological or evolutionary. Here, we highlight five conceptual domains of ecology and evolution - invasion, consumer-resource interactions, spatial ecology, diversity, and adaptation - that illuminate (sometimes unexpectedly) the emergence and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We describe the applications of these concepts across levels of biological organization and spatial scales, including within individual hosts, host populations, and multispecies communities. Together, these perspectives illustrate the integrative power of ecological and evolutionary ideas and highlight the benefits of interdisciplinary thinking for understanding emerging viruses.
Collapse
Affiliation(s)
- Celine E Snedden
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Sara K Makanani
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Shawn T Schwartz
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Amandine Gamble
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Rachel V Blakey
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA; La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, La Kretz Hall, Los Angeles, CA, USA
| | - Benny Borremans
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA; I-BioStat, Data Science Institute, Hasselt University, Hasselt, Belgium; Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | - Sarah K Helman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Luisa Espericueta
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Alondra Valencia
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Andrew Endo
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Michael E Alfaro
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA.
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
128
|
Comparison of SARS-CoV-2 Detection by Rapid Antigen and by Three Commercial RT-qPCR Tests: A Study from Martin University Hospital in Slovakia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18137037. [PMID: 34280974 PMCID: PMC8295881 DOI: 10.3390/ijerph18137037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022]
Abstract
The global pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is having a tremendous impact on the global economy, health care systems and the lives of almost all people in the world. The Central European country of Slovakia reached one of the highest daily mortality rates per 100,000 inhabitants in the first 3 months of 2021, despite implementing strong prophylactic measures, lockdowns and repeated nationwide antigen testing. The present study reports a comparison of the performance of the Standard Q COVID-19 antigen test (SD Biosensor) with three commercial RT-qPCR kits (vDetect COVID-19-MultiplexDX, gb SARS-CoV-2 Multiplex-GENERI BIOTECH Ltd. and Genvinset COVID-19 [E]-BDR Diagnostics) in the detection of infected individuals among employees of the Martin University Hospital in Slovakia. Health care providers, such as doctors and nurses, are classified as “critical infrastructure”, and there is no doubt about the huge impact that incorrect results could have on patients. Out of 1231 samples, 14 were evaluated as positive for SARS-CoV-2 antigen presence, and all of them were confirmed by RT-qPCR kit 1 and kit 2. As another 26 samples had a signal in the E gene, these 40 samples were re-isolated and subsequently re-analysed using the three kits, which detected the virus in 22, 23 and 12 cases, respectively. The results point to a divergence not only between antigen and RT-qPCR tests, but also within the “gold standard” RT-qPCR testing. Performance analysis of the diagnostic antigen test showed the positive predictive value (PPV) to be 100% and negative predictive value (NPV) to be 98.10%, indicating that 1.90% of individuals with a negative result were, in fact, positive. If these data are extrapolated to the national level, where the mean daily number of antigen tests was 250,000 in April 2021, it points to over 4700 people per day being misinterpreted and posing a risk of virus shedding. While mean Ct values of the samples that were both antigen and RT-qPCR positive were about 20 (kit 1: 20.47 and 20.16 for Sarbeco E and RdRP, kit 2: 19.37 and 19.99 for Sarbeco E and RdRP and kit 3: 17.47 for ORF1b/RdRP), mean Ct values of the samples that were antigen-negative but RT-qPCR-positive were about 30 (kit 1: 30.67 and 30.00 for Sarbeco E and RdRP, kit 2: 29.86 and 31.01 for Sarbeco E and RdRP and kit 3: 27.47 for ORF1b/RdRP). It confirms the advantage of antigen test in detecting the most infectious individuals with a higher viral load. However, the reporting of Ct values is still a matter of ongoing debates and should not be conducted without normalisation to standardised controls of known concentration.
Collapse
|
129
|
Tordoff DM, Greninger AL, Roychoudhury P, Shrestha L, Xie H, Jerome KR, Breit N, Huang ML, Famulare M, Herbeck JT. Phylogenetic estimates of SARS-CoV-2 introductions into Washington State. LANCET REGIONAL HEALTH. AMERICAS 2021; 1:100018. [PMID: 35013735 PMCID: PMC8733893 DOI: 10.1016/j.lana.2021.100018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND The first confirmed case of SARS-CoV-2 in North America was identified in Washington state on January 21, 2020. We aimed to quantify the number and temporal trends of out-of-state introductions of SARS-CoV-2 into Washington. METHODS We conducted a molecular epidemiologic analysis of 11,422 publicly available whole genome SARS-CoV-2 sequences from GISAID sampled between December 2019 and September 2020. We used maximum parsimony ancestral state reconstruction methods on time-calibrated phylogenies to enumerate introductions/exports, their likely geographic source (US, non-US, and between eastern and western Washington), and estimated date of introduction. To incorporate phylogenetic uncertainty into our estimates, we conducted 5,000 replicate analyses by generating 25 random time-stratified samples of non-Washington reference sequences, 20 random polytomy resolutions, and 10 random resolutions of the reconstructed ancestral state. FINDINGS We estimated a minimum 287 introductions (range 244-320) into Washington and 204 exported lineages (range 188-227) of SARS-CoV-2 out of Washington. Introductions began in mid-January and peaked on March 29, 2020. Lineages with the Spike D614G variant accounted for the majority (88%) of introductions. Overall, 61% (range 55-65%) of introductions into Washington likely originated from a source elsewhere within the US, while the remaining 39% (range 35-45%) likely originated from outside of the US. Intra-state transmission accounted for 65% and 28% of introductions into eastern and western Washington, respectively. INTERPRETATION The SARS-CoV-2 epidemic in Washington was continually seeded by a large number of introductions. Our findings highlight the importance of genomic surveillance to monitor for emerging variants due to high levels of inter- and intra-state transmission of SARS-CoV-2. FUNDING SOURCE None.
Collapse
Affiliation(s)
- Diana M. Tordoff
- University of Washington, Department of Epidemiology, Seattle, WA, USA,Institute for Disease Modeling, Seattle, WA, USA,Corresponding Author. Diana M. Tordoff, MPH. University of Washington, Department of Epidemiology, UW Box # 351619, Seattle, WA 98195
| | - Alexander L. Greninger
- University of Washington, Department of Laboratory Medicine & Pathology, Seattle, WA, USA
| | - Pavitra Roychoudhury
- University of Washington, Department of Laboratory Medicine & Pathology, Seattle, WA, USA
| | - Lasata Shrestha
- University of Washington, Department of Laboratory Medicine & Pathology, Seattle, WA, USA
| | - Hong Xie
- University of Washington, Department of Laboratory Medicine & Pathology, Seattle, WA, USA
| | - Keith R. Jerome
- University of Washington, Department of Laboratory Medicine & Pathology, Seattle, WA, USA,Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Nathan Breit
- University of Washington, Department of Laboratory Medicine & Pathology, Seattle, WA, USA
| | - Meei-Li Huang
- University of Washington, Department of Laboratory Medicine & Pathology, Seattle, WA, USA
| | | | - Joshua T. Herbeck
- Institute for Disease Modeling, Seattle, WA, USA,International Clinical Research Center, University of Washington, Department of Global Health, Seattle, WA, USA
| |
Collapse
|
130
|
Goraichuk IV, Arefiev V, Stegniy BT, Gerilovych AP. Zoonotic and Reverse Zoonotic Transmissibility of SARS-CoV-2. Virus Res 2021; 302:198473. [PMID: 34118360 PMCID: PMC8188804 DOI: 10.1016/j.virusres.2021.198473] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022]
Abstract
The Coronavirus Disease 2019 (COVID-19) is the first known pandemic caused by a coronavirus. Its causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), appears to be capable of infecting different mammalian species. Recent detections of this virus in pet, zoo, wild, and farm animals have compelled inquiry regarding the zoonotic (animal-to-human) and reverse zoonotic (human-to-animal) transmissibility of SARS-CoV-2 with the potential of COVID-19 pandemic evolving into a panzootic. It is important to monitor the global spread of disease and to assess the significance of genomic changes to support prevention and control efforts during a pandemic. An understanding of the SARS-CoV-2 epidemiology provides opportunities to prevent the risk of repeated re-infection of humans and requires a robust One Health-based investigation. This review paper describes the known properties and the existing gaps in scientific knowledge about the zoonotic and reverse zoonotic transmissibility of the novel virus SARS-CoV-2 and the COVID-19 disease it causes.
Collapse
Affiliation(s)
- Iryna V Goraichuk
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", 83 Pushkinska street, Kharkiv, 61023, Ukraine.
| | - Vasiliy Arefiev
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", 83 Pushkinska street, Kharkiv, 61023, Ukraine.
| | - Borys T Stegniy
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", 83 Pushkinska street, Kharkiv, 61023, Ukraine.
| | - Anton P Gerilovych
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", 83 Pushkinska street, Kharkiv, 61023, Ukraine.
| |
Collapse
|
131
|
Weber S, Ramirez CM, Weiser B, Burger H, Doerfler W. SARS-CoV-2 worldwide replication drives rapid rise and selection of mutations across the viral genome: a time-course study - potential challenge for vaccines and therapies. EMBO Mol Med 2021; 13:e14062. [PMID: 33931941 PMCID: PMC8185546 DOI: 10.15252/emmm.202114062] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 11/09/2022] Open
Abstract
Scientists and the public were alarmed at the first large viral variant of SARS-CoV-2 reported in December 2020. We have followed the time course of emerging viral mutants and variants during the SARS-CoV-2 pandemic in ten countries on four continents. We examined > 383,500 complete SARS-CoV-2 nucleotide sequences in GISAID (Global Initiative of Sharing All Influenza Data) with sampling dates extending until April 05, 2021. These sequences originated from ten different countries: United Kingdom, South Africa, Brazil, United States, India, Russia, France, Spain, Germany, and China. Among the 77 to 100 novel mutations, some previously reported mutations waned and some of them increased in prevalence over time. VUI2012/01 (B.1.1.7) and 501Y.V2 (B.1.351), the so-called UK and South Africa variants, respectively, and two variants from Brazil, 484K.V2, now called P.1 and P.2, increased in prevalence. Despite lockdowns, worldwide active replication in genetically and socio-economically diverse populations facilitated selection of new mutations. The data on mutant and variant SARS-CoV-2 strains provided here comprise a global resource for easy access to the myriad mutations and variants detected to date globally. Rapidly evolving new variant and mutant strains might give rise to escape variants, capable of limiting the efficacy of vaccines, therapies, and diagnostic tests.
Collapse
Affiliation(s)
- Stefanie Weber
- Institute for Clinical and Molecular VirologyFriedrich‐Alexander University (FAU)ErlangenGermany
| | | | - Barbara Weiser
- Department of MedicineUniversity of CaliforniaDavis, SacramentoCAUSA
| | - Harold Burger
- Department of MedicineUniversity of CaliforniaDavis, SacramentoCAUSA
| | - Walter Doerfler
- Institute for Clinical and Molecular VirologyFriedrich‐Alexander University (FAU)ErlangenGermany
- Institute of GeneticsUniversity of CologneCologneGermany
| |
Collapse
|
132
|
Di Gioacchino A, Šulc P, Komarova AV, Greenbaum BD, Monasson R, Cocco S. The Heterogeneous Landscape and Early Evolution of Pathogen-Associated CpG Dinucleotides in SARS-CoV-2. Mol Biol Evol 2021; 38:2428-2445. [PMID: 33555346 PMCID: PMC7928797 DOI: 10.1093/molbev/msab036] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
COVID-19 can lead to acute respiratory syndrome, which can be due to dysregulated immune signaling. We analyze the distribution of CpG dinucleotides, a pathogen-associated molecular pattern, in the SARS-CoV-2 genome. We characterize CpG content by a CpG force that accounts for statistical constraints acting on the genome at the nucleotidic and amino acid levels. The CpG force, as the CpG content, is overall low compared with other pathogenic betacoronaviruses; however, it widely fluctuates along the genome, with a particularly low value, comparable with the circulating seasonal HKU1, in the spike coding region and a greater value, comparable with SARS and MERS, in the highly expressed nucleocapside coding region (N ORF), whose transcripts are relatively abundant in the cytoplasm of infected cells and present in the 3'UTRs of all subgenomic RNA. This dual nature of CpG content could confer to SARS-CoV-2 the ability to avoid triggering pattern recognition receptors upon entry, while eliciting a stronger response during replication. We then investigate the evolution of synonymous mutations since the outbreak of the COVID-19 pandemic, finding a signature of CpG loss in regions with a greater CpG force. Sequence motifs preceding the CpG-loss-associated loci in the N ORF match recently identified binding patterns of the zinc finger antiviral protein. Using a model of the viral gene evolution under human host pressure, we find that synonymous mutations seem driven in the SARS-CoV-2 genome, and particularly in the N ORF, by the viral codon bias, the transition-transversion bias, and the pressure to lower CpG content.
Collapse
Affiliation(s)
- Andrea Di Gioacchino
- Laboratoire de Physique de l’Ecole Normale Supérieure, PSL & CNRS UMR8063, Sorbonne Université, Université de Paris, Paris, France
| | - Petr Šulc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Anastassia V Komarova
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Benjamin D Greenbaum
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rémi Monasson
- Laboratoire de Physique de l’Ecole Normale Supérieure, PSL & CNRS UMR8063, Sorbonne Université, Université de Paris, Paris, France
| | - Simona Cocco
- Laboratoire de Physique de l’Ecole Normale Supérieure, PSL & CNRS UMR8063, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
133
|
Keatts LO, Robards M, Olson SH, Hueffer K, Insley SJ, Joly DO, Kutz S, Lee DS, Chetkiewicz CLB, Lair S, Preston ND, Pruvot M, Ray JC, Reid D, Sleeman JM, Stimmelmayr R, Stephen C, Walzer C. Implications of Zoonoses From Hunting and Use of Wildlife in North American Arctic and Boreal Biomes: Pandemic Potential, Monitoring, and Mitigation. Front Public Health 2021; 9:627654. [PMID: 34026707 PMCID: PMC8131663 DOI: 10.3389/fpubh.2021.627654] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
The COVID-19 pandemic has re-focused attention on mechanisms that lead to zoonotic disease spillover and spread. Commercial wildlife trade, and associated markets, are recognized mechanisms for zoonotic disease emergence, resulting in a growing global conversation around reducing human disease risks from spillover associated with hunting, trade, and consumption of wild animals. These discussions are especially relevant to people who rely on harvesting wildlife to meet nutritional, and cultural needs, including those in Arctic and boreal regions. Global policies around wildlife use and trade can impact food sovereignty and security, especially of Indigenous Peoples. We reviewed known zoonotic pathogens and current risks of transmission from wildlife (including fish) to humans in North American Arctic and boreal biomes, and evaluated the epidemic and pandemic potential of these zoonoses. We discuss future concerns, and consider monitoring and mitigation measures in these changing socio-ecological systems. While multiple zoonotic pathogens circulate in these systems, risks to humans are mostly limited to individual illness or local community outbreaks. These regions are relatively remote, subject to very cold temperatures, have relatively low wildlife, domestic animal, and pathogen diversity, and in many cases low density, including of humans. Hence, favorable conditions for emergence of novel diseases or major amplification of a spillover event are currently not present. The greatest risk to northern communities from pathogens of pandemic potential is via introduction with humans visiting from other areas. However, Arctic and boreal ecosystems are undergoing rapid changes through climate warming, habitat encroachment, and development; all of which can change host and pathogen relationships, thereby affecting the probability of the emergence of new (and re-emergence of old) zoonoses. Indigenous leadership and engagement in disease monitoring, prevention and response, is vital from the outset, and would increase the success of such efforts, as well as ensure the protection of Indigenous rights as outlined in the United Nations Declaration on the Rights of Indigenous Peoples. Partnering with northern communities and including Indigenous Knowledge Systems would improve the timeliness, and likelihood, of detecting emerging zoonotic risks, and contextualize risk assessments to the unique human-wildlife relationships present in northern biomes.
Collapse
Affiliation(s)
- Lucy O. Keatts
- Wildlife Conservation Society Health Program, Bronx, NY, United States
| | - Martin Robards
- Wildlife Conservation Society, Arctic Beringia Program, Fairbanks, AK, United States
| | - Sarah H. Olson
- Wildlife Conservation Society Health Program, Bronx, NY, United States
| | - Karsten Hueffer
- Department of Veterinary Medicine & Arctic and Northern Studies Program, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Stephen J. Insley
- Wildlife Conservation Society Canada, Toronto, ON, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | - Susan Kutz
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - David S. Lee
- Department of Wildlife and Environment, Nunavut Tunngavik Inc., Ottawa, ON, Canada
| | | | - Stéphane Lair
- Canadian Wildlife Health Cooperative, Université de Montréal, Montreal, QC, Canada
| | | | - Mathieu Pruvot
- Wildlife Conservation Society Health Program, Bronx, NY, United States
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Justina C. Ray
- Wildlife Conservation Society Canada, Toronto, ON, Canada
| | - Donald Reid
- Wildlife Conservation Society Canada, Toronto, ON, Canada
| | - Jonathan M. Sleeman
- United States Geological Survey National Wildlife Health Center, Madison, WI, United States
| | - Raphaela Stimmelmayr
- North Slope Department of Wildlife Management, Utqiagvik, AK, United States
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Craig Stephen
- University of British Columbia, Vancouver, BC, Canada
- Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Chris Walzer
- Wildlife Conservation Society Health Program, Bronx, NY, United States
- Conservation Medicine Unit, Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
134
|
Yang Y, Yan W, Hall AB, Jiang X. Characterizing Transcriptional Regulatory Sequences in Coronaviruses and Their Role in Recombination. Mol Biol Evol 2021; 38:1241-1248. [PMID: 33146390 PMCID: PMC7665640 DOI: 10.1093/molbev/msaa281] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Novel coronaviruses, including SARS-CoV-2, SARS, and MERS, often originate from recombination events. The mechanism of recombination in RNA viruses is template switching. Coronavirus transcription also involves template switching at specific regions, called transcriptional regulatory sequences (TRS). It is hypothesized but not yet verified that TRS sites are prone to recombination events. Here, we developed a tool called SuPER to systematically identify TRS in coronavirus genomes and then investigated whether recombination is more common at TRS. We ran SuPER on 506 coronavirus genomes and identified 465 TRS-L and 3,509 TRS-B. We found that the TRS-L core sequence (CS) and the secondary structure of the leader sequence are generally conserved within coronavirus genera but different between genera. By examining the location of recombination breakpoints with respect to TRS-B CS, we observed that recombination hotspots are more frequently colocated with TRS-B sites than expected.
Collapse
Affiliation(s)
- Yiyan Yang
- National Library of Medicine, National Institutes of Health, Bethesda, MD
| | - Wei Yan
- National Library of Medicine, National Institutes of Health, Bethesda, MD
| | - A Brantley Hall
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD
| | - Xiaofang Jiang
- National Library of Medicine, National Institutes of Health, Bethesda, MD
| |
Collapse
|
135
|
Patiño-Galindo JÁ, Filip I, Chowdhury R, Maranas CD, Sorger PK, AlQuraishi M, Rabadan R. Recombination and lineage-specific mutations linked to the emergence of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.02.10.942748. [PMID: 32511304 PMCID: PMC7217262 DOI: 10.1101/2020.02.10.942748] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The emergence of SARS-CoV-2 underscores the need to better understand the evolutionary processes that drive the emergence and adaptation of zoonotic viruses in humans. In the betacoronavirus genus, which also includes SARS-CoV and MERS-CoV, recombination frequently encompasses the Receptor Binding Domain (RBD) of the Spike protein, which, in turn, is responsible for viral binding to host cell receptors. Here, we find evidence of a recombination event in the RBD involving ancestral linages to both SARS-CoV and SARS-CoV-2. Although we cannot specify the recombinant nor the parental strains, likely due to the ancestry of the event and potential undersampling, our statistical analyses in the space of phylogenetic trees support such an ancestral recombination. Consequently, SARS-CoV and SARS-CoV-2 share an RBD sequence that includes two insertions (positions 432-436 and 460-472), as well as the variants 427N and 436Y. Both 427N and 436Y belong to a helix that interacts directly with the human ACE2 (hACE2) receptor. Reconstruction of ancestral states, combined with protein-binding affinity analyses using the physics-based trRosetta algorithm, reveal that the recombination event involving ancestral strains of SARS-CoV and SARS-CoV-2 led to an increased affinity for hACE2 binding, and that alleles 427N and 436Y significantly enhanced affinity as well. Structural modeling indicates that ancestors of SARS-CoV-2 may have acquired the ability to infect humans decades ago. The binding affinity with the human receptor was subsequently boosted in SARS-CoV and SARS-CoV-2 through further mutations in RBD. In sum, we report an ancestral recombination event affecting the RBD of both SARS-CoV and SARS-CoV-2 that was associated with an increased binding affinity to hACE2.
Collapse
Affiliation(s)
- Juan Ángel Patiño-Galindo
- Program for Mathemaical Genomics, Columbia University, New York, NY, USA
- Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY, USA
| | - Ioan Filip
- Program for Mathemaical Genomics, Columbia University, New York, NY, USA
- Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY, USA
| | - Ratul Chowdhury
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Costas D. Maranas
- Department of Chemical Engineering, The Pennsylvania State University University Park, PA, USA
| | - Peter K. Sorger
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Mohammed AlQuraishi
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Raul Rabadan
- Program for Mathemaical Genomics, Columbia University, New York, NY, USA
- Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY, USA
| |
Collapse
|
136
|
Brierley L, Fowler A. Predicting the animal hosts of coronaviruses from compositional biases of spike protein and whole genome sequences through machine learning. PLoS Pathog 2021; 17:e1009149. [PMID: 33878118 PMCID: PMC8087038 DOI: 10.1371/journal.ppat.1009149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/30/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
The COVID-19 pandemic has demonstrated the serious potential for novel zoonotic coronaviruses to emerge and cause major outbreaks. The immediate animal origin of the causative virus, SARS-CoV-2, remains unknown, a notoriously challenging task for emerging disease investigations. Coevolution with hosts leads to specific evolutionary signatures within viral genomes that can inform likely animal origins. We obtained a set of 650 spike protein and 511 whole genome nucleotide sequences from 222 and 185 viruses belonging to the family Coronaviridae, respectively. We then trained random forest models independently on genome composition biases of spike protein and whole genome sequences, including dinucleotide and codon usage biases in order to predict animal host (of nine possible categories, including human). In hold-one-out cross-validation, predictive accuracy on unseen coronaviruses consistently reached ~73%, indicating evolutionary signal in spike proteins to be just as informative as whole genome sequences. However, different composition biases were informative in each case. Applying optimised random forest models to classify human sequences of MERS-CoV and SARS-CoV revealed evolutionary signatures consistent with their recognised intermediate hosts (camelids, carnivores), while human sequences of SARS-CoV-2 were predicted as having bat hosts (suborder Yinpterochiroptera), supporting bats as the suspected origins of the current pandemic. In addition to phylogeny, variation in genome composition can act as an informative approach to predict emerging virus traits as soon as sequences are available. More widely, this work demonstrates the potential in combining genetic resources with machine learning algorithms to address long-standing challenges in emerging infectious diseases.
Collapse
Affiliation(s)
- Liam Brierley
- Department of Health Data Science, University of Liverpool, Brownlow Street, Liverpool, United Kingdom
| | - Anna Fowler
- Department of Health Data Science, University of Liverpool, Brownlow Street, Liverpool, United Kingdom
| |
Collapse
|
137
|
Dicken SJ, Murray MJ, Thorne LG, Reuschl AK, Forrest C, Ganeshalingham M, Muir L, Kalemera MD, Palor M, McCoy LE, Jolly C, Towers GJ, Reeves MB, Grove J. Characterisation of B.1.1.7 and Pangolin coronavirus spike provides insights on the evolutionary trajectory of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.22.436468. [PMID: 33791702 PMCID: PMC8010729 DOI: 10.1101/2021.03.22.436468] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recent emergence of SARS-CoV-2 variants with increased transmission, pathogenesis and immune resistance has jeopardised the global response to the COVID-19 pandemic. Determining the fundamental biology of viral variants and understanding their evolutionary trajectories will guide current mitigation measures, future genetic surveillance and vaccination strategies. Here we examine virus entry by the B.1.1.7 lineage, commonly referred to as the UK/Kent variant. Pseudovirus infection of model cell lines demonstrate that B.1.1.7 entry is enhanced relative to the Wuhan-Hu-1 reference strain, particularly under low expression of receptor ACE2. Moreover, the entry characteristics of B.1.1.7 were distinct from that of its predecessor strain containing the D614G mutation. These data suggest evolutionary tuning of spike protein function. Additionally, we found that amino acid deletions within the N-terminal domain (NTD) of spike were important for efficient entry by B.1.1.7. The NTD is a hotspot of diversity across sarbecoviruses, therefore, we further investigated this region by examining the entry of closely related CoVs. Surprisingly, Pangolin CoV spike entry was 50-100 fold enhanced relative to SARS-CoV-2; suggesting there may be evolutionary pathways by which SARSCoV-2 may further optimise entry. Swapping the NTD between Pangolin CoV and SARS-CoV-2 demonstrates that changes in this region alone have the capacity to enhance virus entry. Thus, the NTD plays a hitherto unrecognised role in modulating spike activity, warranting further investigation and surveillance of NTD mutations.
Collapse
Affiliation(s)
- Samuel J Dicken
- Division of Infection and Immunity, University College London, UK
| | - Matthew J Murray
- Division of Infection and Immunity, University College London, UK
| | - Lucy G Thorne
- Division of Infection and Immunity, University College London, UK
| | | | - Calum Forrest
- Division of Infection and Immunity, University College London, UK
| | | | - Luke Muir
- Division of Infection and Immunity, University College London, UK
| | | | - Machaela Palor
- Division of Infection and Immunity, University College London, UK
| | - Laura E McCoy
- Division of Infection and Immunity, University College London, UK
| | - Clare Jolly
- Division of Infection and Immunity, University College London, UK
| | - Greg J Towers
- Division of Infection and Immunity, University College London, UK
| | - Matthew B Reeves
- Division of Infection and Immunity, University College London, UK
| | - Joe Grove
- Division of Infection and Immunity, University College London, UK
| |
Collapse
|
138
|
Montoya V, McLaughlin A, Mordecai GJ, Miller RL, Joy JB. Variable routes to genomic and host adaptation among coronaviruses. J Evol Biol 2021; 34:924-936. [PMID: 33751699 PMCID: PMC8242483 DOI: 10.1111/jeb.13771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
Natural selection operating on the genomes of viral pathogens in different host species strongly contributes to adaptation facilitating host colonization. Here, we analyse, quantify and compare viral adaptation in genomic sequence data derived from seven zoonotic events in the Coronaviridae family among primary, intermediate and human hosts. Rates of nonsynonymous (dN) and synonymous (dS) changes on specific amino acid positions were quantified for each open reading frame (ORF). Purifying selection accounted for 77% of all sites under selection. Diversifying selection was most frequently observed in viruses infecting the primary hosts of each virus and predominantly occurred in the orf1ab genomic region. Within all four intermediate hosts, diversifying selection on the spike gene was observed either solitarily or in combination with orf1ab and other genes. Consistent with previous evidence, pervasive diversifying selection on coronavirus spike genes corroborates the role this protein plays in host cellular entry, adaptation to new hosts and evasion of host cellular immune responses. Structural modelling of spike proteins identified a significantly higher proportion of sites for SARS‐CoV‐2 under positive selection in close proximity to sites of glycosylation relative to the other coronaviruses. Among human coronaviruses, there was a significant inverse correlation between the number of sites under positive selection and the estimated years since the virus was introduced into the human population. Abundant diversifying selection observed in SARS‐CoV‐2 suggests the virus remains in the adaptive phase of the host switch, typical of recent host switches. A mechanistic understanding of where, when and how genomic adaptation occurs in coronaviruses following a host shift is crucial for vaccine design, public health responses and predicting future pandemics.
Collapse
Affiliation(s)
- Vincent Montoya
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Angela McLaughlin
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.,Bioinformatics Programme, University of British Columbia, Vancouver, BC, Canada
| | - Gideon J Mordecai
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rachel L Miller
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.,Bioinformatics Programme, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey B Joy
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.,Bioinformatics Programme, University of British Columbia, Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|