101
|
Sampling from single-cell observations to predict tumor cell growth in-vitro and in-vivo. Oncotarget 2017; 8:111176-111189. [PMID: 29340046 PMCID: PMC5762314 DOI: 10.18632/oncotarget.22693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/16/2017] [Indexed: 01/06/2023] Open
Abstract
Cancer stem-like cells (CSCs) are a topic of increasing importance in cancer research, but are difficult to study due to their rarity and ability to rapidly divide to produce non-self-cells. We developed a simple model to describe transitions between aldehyde dehydrogenase (ALDH) positive CSCs and ALDH(-) bulk ovarian cancer cells. Microfluidics device-isolated single cell experiments demonstrated that ALDH+ cells were more proliferative than ALDH(-) cells. Based on our model we used ALDH+ and ALDH(-) cell division and proliferation properties to develop an empiric sampling algorithm and predict growth rate and CSC proportion for both ovarian cancer cell line and primary ovarian cancer cells, in-vitro and in-vivo. In both cell line and primary ovarian cancer cells, the algorithm predictions demonstrated a high correlation with observed ovarian cancer cell proliferation and CSC proportion. High correlation was maintained even in the presence of the EGF-like domain multiple 6 (EGFL6), a growth factor which changes ALDH+ cell asymmetric division rates and thereby tumor growth rates. Thus, based on sampling from the heterogeneity of in-vitro cell growth and division characteristics of a few hundred single cells, the simple algorithm described here provides rapid and inexpensive means to generate predictions that correlate with in-vivo tumor growth.
Collapse
|
102
|
Park JW, Jung KH, Lee JH, Moon SH, Cho YS, Lee KH. Inhibition of aldehyde dehydrogenase 1 enhances the cytotoxic effect of retinaldehyde on A549 cancer cells. Oncotarget 2017; 8:99382-99393. [PMID: 29245909 PMCID: PMC5725100 DOI: 10.18632/oncotarget.19544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 06/26/2017] [Indexed: 01/05/2023] Open
Abstract
We hypothesized that aldehyde dehydrogenase1 (ALDH1) protects cancer cells from retinaldehyde-induced cytotoxicity, and that targeting this enzyme would enhance the therapeutic effect of retinaldehyde. ALDEFLUOR™ assays showed high ALDH activity in A549 and H522 cancer cells and low activity in H1666 and T47D cancer cells. Immunoblots showed that expression of ALDH1A1 and ALDH1A3 was high in A549 and H522 cells, but low in H1666 cells. HPLC confirmed that N, N-diethylaminobenzaldehyde (DEAB) inhibits ALDH-mediated disposal of retinaldehyde in A549 cells and lysates. Treatment of A549 cells with retinaldehyde in the presence of DEAB augmented reactive oxygen species production and decreased glucose uptake and oxygen consumption. Importantly, DEAB substantially potentiated the ability of retinaldehyde to dose-dependently suppress the survival of A549 and H522 cells, whereas the added effect of DEAB was minor in H1666 and T47D cells. Gene silencing with specific siRNA revealed that ALDH1A1 contributed to protection of A549 cells against retinaldehyde toxicity. These results demonstrate that ALDH1 confers protection against retinaldehyde toxicity in cancer cells.
Collapse
Affiliation(s)
- Jin Won Park
- Department of Nuclear Medicine, Samsung Medical Center, Seoul, Korea
- Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung-Ho Jung
- Department of Nuclear Medicine, Samsung Medical Center, Seoul, Korea
- Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Hee Lee
- Department of Nuclear Medicine, Samsung Medical Center, Seoul, Korea
- Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Hwan Moon
- Department of Nuclear Medicine, Samsung Medical Center, Seoul, Korea
| | - Young Seok Cho
- Department of Nuclear Medicine, Samsung Medical Center, Seoul, Korea
| | - Kyung-Han Lee
- Department of Nuclear Medicine, Samsung Medical Center, Seoul, Korea
- Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
103
|
High ALDH1A1 expression indicates a poor prognosis in gastric neuroendocrine carcinoma. Pathol Res Pract 2017; 214:268-272. [PMID: 29103772 DOI: 10.1016/j.prp.2017.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/12/2017] [Accepted: 10/14/2017] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To evaluate the expression and prognostic significance of ALDH1A1 in gastric neuroendocrine carcinoma. MATERIALS AND METHODS Immunohistochemical stains of ALDH1A1 were evaluated in 67 cases of gastric neuroendocrine carcinoma. The findings were correlated with clinicopathologic variables and overall survival. RESULTS Immunohistochemistry revealed positive cytoplasmic immunoreactivity in 35 of 67 (52.2%) tumors and strongly positive immunoreactivity in 14 of 67 (20.9%). Strongly positive ALDH1A1 expression, but not positive staining, was significantly associated with lymph node status, lymphovascular invasion, and ki-67 index (P=0.039, 0.045, and 0.045, respectively). Kaplan-Meier survival curves and log-rank tests showed significantly poorer prognoses in cases of high ALDH1A1 expression compared to cases of low ALDH1A1 expression or the negative control group (MST, 17 vs. 52 months; P=0.026). Multivariate analysis showed that high ALDH1A1 expression, lymph node metastasis, and lymphovascular invasion had significant associations with decreased overall survival (P=0.029, 0.008, and 0.005, respectively). CONCLUSIONS High ALDH1A1 expression may be a prognostic indicator of survival in patients with gastric neuroendocrine carcinoma.
Collapse
|
104
|
Gallardo-Pérez JC, Adán-Ladrón de Guevara A, Marín-Hernández A, Moreno-Sánchez R, Rodríguez-Enríquez S. HPI/AMF inhibition halts the development of the aggressive phenotype of breast cancer stem cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [DOI: 10.1016/j.bbamcr.2017.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
105
|
Munro MJ, Wickremesekera SK, Peng L, Tan ST, Itinteang T. Cancer stem cells in colorectal cancer: a review. J Clin Pathol 2017; 71:110-116. [PMID: 28942428 DOI: 10.1136/jclinpath-2017-204739] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/01/2017] [Indexed: 12/26/2022]
Abstract
Colorectal cancer (CRC) is the second most common cancer in women and the third most common in men. Adenocarcinoma accounts for 90% of CRC cases. There has been accumulating evidence in support of the cancer stem cell (CSC) concept of cancer which proposes that CSCs are central in the initiation of cancer. CSCs have been the focus of study in a range of cancers, including CRC. This has led to the identification and understanding of genes involved in the induction and maintenance of pluripotency of stem cells, and markers for CSCs, including those investigated specifically in CRC. Knowledge of the expression pattern of CSCs in CRC has been increasing in recent years, revealing a heterogeneous population of cells within CRC ranging from pluripotent to differentiated cells, with overlapping and sometimes unique combinations of markers. This review summarises current literature on the understanding of CSCs in CRC, including evidence of the presence of CSC subpopulations, and the stem cell markers currently used to identify and localise these CSC subpopulations. Future research into this field may lead to improved methods for early detection of CRC, novel therapy and monitoring of treatment for CRC and other cancer types.
Collapse
Affiliation(s)
- Matthew J Munro
- Gillies McIndoe Research Institute, Wellington, New Zealand
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Susrutha K Wickremesekera
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Department of General Surgery, Upper Gastrointestinal, Hepatobiliary & Pancreatic Section, Wellington Regional Hospital, Wellington, New Zealand
| | - Lifeng Peng
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Wellington, New Zealand
| | | |
Collapse
|
106
|
Downregulation of DNA repair proteins and increased DNA damage in hypoxic colon cancer cells is a therapeutically exploitable vulnerability. Oncotarget 2017; 8:86296-86311. [PMID: 29156796 PMCID: PMC5689686 DOI: 10.18632/oncotarget.21145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/04/2017] [Indexed: 01/08/2023] Open
Abstract
Surgical removal of colorectal cancer (CRC) liver metastases generates areas of tissue hypoxia. Hypoxia imposes a stem-like phenotype on residual tumor cells and promotes tumor recurrence. Moreover, in primary CRC, gene expression signatures reflecting hypoxia and a stem-like phenotype are highly expressed in the aggressive Consensus Molecular Subtype 4 (CMS4). Therapeutic strategies eliminating hypoxic stem-like cells may limit recurrence following resection of primary tumors or metastases. Here we show that expression of DNA repair genes is strongly suppressed in CMS4 and inversely correlated with hypoxia-inducible factor-1 alpha (HIF1α) and HIF-2α co-expression signatures. Tumors with high expression of HIF signatures and low expression of repair proteins showed the worst survival. In human tumors, expression of the repair proteins RAD51, KU70 and RIF1 was strongly suppressed in hypoxic peri-necrotic tumor areas. Experimentally induced hypoxia in patient derived colonospheres in vitro or in vivo (through vascular clamping) was sufficient to downregulate repair protein expression and caused DNA damage. Hypoxia-induced DNA damage was prevented by expressing the hydroperoxide-scavenging enzyme glutathione peroxidase-2 (GPx2), indicating that reactive oxygen species mediate hypoxia-induced DNA damage. Finally, the hypoxia-activated prodrug Tirapazamine greatly augmented DNA damage and reduced the fraction of stem-like (Aldefluorbright) tumor cells in vitro, and in vivo following vascular clamping. We conclude that decreased expression of DNA repair proteins and increased DNA damage in hypoxic tumor areas may be therapeutically exploited with hypoxia-activated prodrugs, and that such drugs reduce the fraction of Aldefluorbright (stem-like) tumor cells.
Collapse
|
107
|
Kim MJ, Kim AR, Jeong JY, Kim KI, Kim TH, Lee C, Chung K, Ko YH, An HJ. Correlation of ALDH1 and Notch3 Expression: Clinical implication in Ovarian Carcinomas. J Cancer 2017; 8:3331-3342. [PMID: 29158806 PMCID: PMC5665050 DOI: 10.7150/jca.18955] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 08/25/2017] [Indexed: 01/06/2023] Open
Abstract
Purpose: ALDH1 is a putative cancer stem cell marker, while the Notch signaling pathway is involved in regulation of cancer stem cell (CSC)s. This study aims to determine the expression of Notch signaling genes in ovarian CSCs, and to assess the clinical impact of expression of ALDH1 and Notch signaling genes in ovarian cancers. Methods: We examined expression of Notch signaling genes in FACS-sorted ALDH1(+) putative ovarian CSCs and expression of ALDH1 and Notch signaling genes in 86 ovarian epithelial tumors and various ovarian cancer cell lines by real-time RT-PCR, including Notch receptors (Notch1-4), Notch ligands (Jagged1 and Jagged2), and the downstream molecule, Hes1. Furthermore, we correlated their expression with clinicopathological parameters and patient's survival in ovarian serous carcinoma (OSC)s, the most prevalent type of ovarian cancer. Results: The higher expression levels of ALDH1 and Notch related genes, especially Notch3 were associated with CSCs and with chemoresistant OSCs and paclitaxel-resistant SKpac ovarian cancer cells. Among the Notch signaling genes, high Notch3 expression was significantly associated with all the parameters of poor prognosis, i.e., advanced stage, lymph node and distant metastases, and chemoresistance, whereas other genes were less correlated with these parameters. A combined upregulation of ALDH1 and Notch3 was an independent poor prognostic factor in OSCs. Conclusions: ALDH1 correlates with Notch3 expression in ovarian carcinomas. ALDH1 and Notch3 overexpression is an independent poor prognostic indicator for worse patient's survival in this subset of OSCs.
Collapse
Affiliation(s)
- Mi Joung Kim
- Institute for Clinical Research, College of Medicine, CHA University, Yatap-dong, Seongnam Si Bundang-gu, Gyeonggi-Do 463-712, Republic of Korea
| | - A-Ram Kim
- Department of Biomedical Science, College of Life Science, College of Medicine, CHA University, Yatap-dong, Seongnam Si Bundang-gu, Gyeonggi-Do 463-712, Republic of Korea
| | - Ju-Yeon Jeong
- Institute for Clinical Research, College of Medicine, CHA University, Yatap-dong, Seongnam Si Bundang-gu, Gyeonggi-Do 463-712, Republic of Korea
| | - Kwang-Il Kim
- Institute for Clinical Research, College of Medicine, CHA University, Yatap-dong, Seongnam Si Bundang-gu, Gyeonggi-Do 463-712, Republic of Korea.,Department of Pathology, College of Medicine, CHA University, Yatap-dong, Seongnam Si Bundang-gu, Gyeonggi-Do 463-712, Republic of Korea
| | - Tae-Heon Kim
- Institute for Clinical Research, College of Medicine, CHA University, Yatap-dong, Seongnam Si Bundang-gu, Gyeonggi-Do 463-712, Republic of Korea.,Department of Pathology, College of Medicine, CHA University, Yatap-dong, Seongnam Si Bundang-gu, Gyeonggi-Do 463-712, Republic of Korea
| | - Chan Lee
- Department of Gynecologic Oncology, College of Medicine, CHA University, Yatap-dong, Seongnam Si Bundang-gu, Gyeonggi-Do 463-712, Republic of Korea
| | - Kwanghoe Chung
- Department of Biotechnology, College of Medicine, CHA University, Yatap-dong, Seongnam Si Bundang-gu, Gyeonggi-Do 463-712, Republic of Korea
| | - Young-Hyeh Ko
- Department of Pathology, Samsung Medical Center, Seoul, Republic of Korea
| | - Hee-Jung An
- Institute for Clinical Research, College of Medicine, CHA University, Yatap-dong, Seongnam Si Bundang-gu, Gyeonggi-Do 463-712, Republic of Korea.,Department of Pathology, College of Medicine, CHA University, Yatap-dong, Seongnam Si Bundang-gu, Gyeonggi-Do 463-712, Republic of Korea
| |
Collapse
|
108
|
Roy M, Connor J, Al-Niaimi A, Rose SL, Mahajan A. Aldehyde dehydrogenase 1A1 (ALDH1A1) expression by immunohistochemistry is associated with chemo-refractoriness in patients with high-grade ovarian serous carcinoma. Hum Pathol 2017; 73:1-6. [PMID: 28851663 DOI: 10.1016/j.humpath.2017.06.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/09/2017] [Accepted: 06/29/2017] [Indexed: 01/09/2023]
Abstract
Aldehyde dehydrogenase-1A1 (ALDH1A1), CD133, CD44, and CD24 have been reported as cancer stem cell markers in ovarian cancers. The goal of our study was to assess the prognostic significance of these markers in patients with advanced serous ovarian cancer. Formalin-fixed, paraffin-embedded tissues from 347 ovarian cancers were used to construct a microarray. Immunohistochemical studies for ALDH1A1, CD133, CD44, and CD24 were performed and scored semiquantitatively by 2 pathologists based on intensity and percent of positive immunoreactive cells. Immunohistochemistry was compared to clinical parameters and survival. Of the 347 cases, early stage disease, nonserous tumors, cases with incomplete therapy, and cores with no tumor were excluded. Immunohistochemistry was interpretable in 124 of the 136 stage III and IV ovarian serous carcinoma. ALDH1A1, CD24, and CD44 were variably detected in both tumor and stromal cells, and immunoreactivity in tumor was stronger than in stromal cells. CD133 immunoreactivity was not quantified due to nonspecific staining in tumor and stroma. Statistical analyses using χ2 and Student t test revealed that ALDH1A1-positive (n=53) carcinoma were 3 times more likely to demonstrate platinum refractoriness than ALDH1A1-negative (n=71) tumors (17% vs. 6%, respectively; p=.04); however, neither progression free nor overall survival was influenced by ALDH1A1 status in this cohort. The expression of CD44 and CD24 had no clinicopathological associations in the present study. Our study supports that ALDH1A1 expression is associated with poor response to platinum-based therapy in patients with high-grade ovarian serous carcinoma. Further study of this relationship is needed to understand how this could impact clinical care.
Collapse
Affiliation(s)
- Madhuchhanda Roy
- Department of Pathology, University of Wisconsin Hospital and Clinics, Madison, WI 53792
| | - Joseph Connor
- Department of Pathology, University of Wisconsin Hospital and Clinics, Madison, WI 53792
| | - Ahmed Al-Niaimi
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Wisconsin Hospital and Clinics, Madison, WI 53792
| | - Stephen L Rose
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Wisconsin Hospital and Clinics, Madison, WI 53792
| | - Aparna Mahajan
- Department of Pathology, University of Wisconsin Hospital and Clinics, Madison, WI 53792.
| |
Collapse
|
109
|
Bai S, Ingram P, Chen YC, Deng N, Pearson A, Niknafs YS, O'Hayer P, Wang Y, Zhang ZY, Boscolo E, Bischoff J, Yoon E, Buckanovich RJ. EGFL6 Regulates the Asymmetric Division, Maintenance, and Metastasis of ALDH+ Ovarian Cancer Cells. Cancer Res 2017; 76:6396-6409. [PMID: 27803106 DOI: 10.1158/0008-5472.can-16-0225] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/25/2016] [Indexed: 01/12/2023]
Abstract
Little is known about the factors that regulate the asymmetric division of cancer stem-like cells (CSC). Here, we demonstrate that EGFL6, a stem cell regulatory factor expressed in ovarian tumor cells and vasculature, regulates ALDH+ ovarian CSC. EGFL6 signaled at least in part via the oncoprotein SHP2 with concomitant activation of ERK. EGFL6 signaling promoted the migration and asymmetric division of ALDH+ ovarian CSC. As such, EGFL6 increased not only tumor growth but also metastasis. Silencing of EGFL6 or SHP2 limited numbers of ALDH+ cells and reduced tumor growth, supporting a critical role for EGFL6/SHP2 in ALDH+ cell maintenance. Notably, systemic administration of an EGFL6-neutralizing antibody we generated restricted tumor growth and metastasis, specifically blocking ovarian cancer cell recruitment to the ovary. Together, our results offer a preclinical proof of concept for EGFL6 as a novel therapeutic target for the treatment of ovarian cancer. Cancer Res; 76(21); 6396-409. ©2016 AACR.
Collapse
Affiliation(s)
- Shoumei Bai
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Patrick Ingram
- Department of Electrical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Yu-Chih Chen
- Department of Electrical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Ning Deng
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Alex Pearson
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Yashar S Niknafs
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Patrick O'Hayer
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Yun Wang
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Elisa Boscolo
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Joyce Bischoff
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Euisik Yoon
- Department of Electrical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Ronald J Buckanovich
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan. .,Division of Gynecologic-Oncology, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
110
|
Kakar SS, Parte S, Carter K, Joshua IG, Worth C, Rameshwar P, Ratajczak MZ. Withaferin A (WFA) inhibits tumor growth and metastasis by targeting ovarian cancer stem cells. Oncotarget 2017; 8:74494-74505. [PMID: 29088802 PMCID: PMC5650357 DOI: 10.18632/oncotarget.20170] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/26/2017] [Indexed: 12/19/2022] Open
Abstract
Ovarian cancer is the fifth leading cause of deaths due to cancer among women in the United States. In 2017, 22,440 women are expected to be diagnosed with ovarian cancer and 14,080 women will die with it. Currently used chemotherapies (Cisplatin or platinum/taxane combination) targets cancer cells, but spares cancer stem cells (CSCs), which are responsible for tumor relapse leading to recurrence of cancer. Aldehyde dehydrogenase I (ALDH1) positive cancer stem cells are one of the major populations in ovarian tumor and have been related to tumor progression and metastasis. In our studies, we observed expression of ALDH1 in both ovarian surface epithelium (OSE) and cortex with high levels of expression in OSE in normal ovary and benign (BN) tumor, compared to borderline (BL) and high grade (HG) ovarian tumors. In contrast, high levels of expression of ALDH1 were observed in cortex in BL and HG tumors compared to normal ovary and BN tumor. Withaferin A (WFA) alone or in combination with cisplatin (CIS) significantly inhibited the spheroid formation (tumorigenic potential) of isolated ALDH1 CSCs in vitro and significantly reduced its expression in tumors collected from mice bearing orthotopic ovarian tumor compared to control. Treatment of animals with CIS alone significantly increased the ALDH1 CSC population in tumors, suggesting that CIS targets cancer cells but spares cancer stem cells, which undergo amplification. WFA and CIS combination suppresses the expression of securin an “oncogene”, suggesting that securin may serve as a downstream signaling gene to mediate the antitumor effects of WFA.
Collapse
Affiliation(s)
- Sham S Kakar
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Seema Parte
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Kelsey Carter
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA
| | - Irving G Joshua
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA
| | - Christopher Worth
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Pranela Rameshwar
- Department of Medicine, Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | | |
Collapse
|
111
|
Taylor LA, Abraham RM, Tahirovic E, van Belle P, Li B, Huang L, Elder DE, Gimotty P, Xu X. High ALDH1 expression correlates with better prognosis in tumorigenic malignant melanoma. Mod Pathol 2017; 30:634-639. [PMID: 28106104 PMCID: PMC5584688 DOI: 10.1038/modpathol.2016.226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 01/16/2023]
Abstract
Aldehyde dehydrogenase 1 (ALDH1) has been proposed as biomarker of stem cells for certain human cancers. ALDH1 expression has been correlated with poor patient outcomes in a variety of malignancies but better patient outcomes in others, and its prognostic significance in malignant melanoma is unclear. Thus, 68 melanoma patients with comprehensive clinical and pathologic follow-up data were used to construct a tissue microarray. A modified histological score (H-score) with a maximum score of 300 was used to quantify immunohistochemical staining for ALDH1. Survival time was defined as the time between diagnosis and melanoma-specific death. Using univariate logistic regression, a low (<80 H-score) ALDH1 score showed 3.7-fold increase in risk for melanoma-specific death within 10 years when compared with high (>80) ALDH1 levels (P=0.017). Odds of MSD were lower by a factor of ~0.9 for each 10-point increase in H-Score. Median survival time was 44.1 months and 180.9 months for patients with low and high ALDH1 expression, respectively. Using multivariate analysis, ALDH1 H-score was found to be an independent prognostic factor. These findings suggest that ALDH1 expression in malignant melanoma has a favorable effect on patient survival. Further study is needed elucidate the function of this enzymatic protein in melanoma progression.
Collapse
Affiliation(s)
- Laura A. Taylor
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ronnie M. Abraham
- Departments of Pathology and Dermatology, University of Illinois College of Medicine at Peoria, Peoria, IL
| | - Emin Tahirovic
- Department of Biostatistics and Epidemiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Patricia van Belle
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Bin Li
- Department of Dermatology, Yueyang Hospital, Shanghai, China
| | - Linfang Huang
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - David E. Elder
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Phyllis Gimotty
- Department of Biostatistics and Epidemiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, 3400 Spruce St., 6 Founders Building, Philadelphia, PA 19104, USA
| |
Collapse
|
112
|
Fukuda T, Nomura M, Kato Y, Tojo H, Fujii K, Nagao T, Bando Y, Fehniger TE, Marko-Varga G, Nakamura H, Kato H, Nishimura T. A selected reaction monitoring mass spectrometric assessment of biomarker candidates diagnosing large-cell neuroendocrine lung carcinoma by the scaling method using endogenous references. PLoS One 2017; 12:e0176219. [PMID: 28448532 PMCID: PMC5407814 DOI: 10.1371/journal.pone.0176219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/22/2017] [Indexed: 01/09/2023] Open
Abstract
Selected reaction monitoring mass spectrometry (SRM-MS) -based semi-quantitation was performed to assess the validity of 46 selected candidate proteins for specifically diagnosing large-cell neuroendocrine lung carcinoma (LCNEC) and differentiating it from other lung cancer subtypes. The scaling method was applied in this study using specific SRM peak areas (AUCs) derived from the endogenous reference protein that normalizes all SRM AUCs obtained for the candidate proteins. In a screening verification study, we found that seven out of the 46 candidate proteins were statistically significant for the LCNEC phenotype, including 4F2hc cell surface antigen heavy chain (4F2hc/CD98) (p-ANOVA ≤ 0.0012), retinal dehydrogenase 1 (p-ANOVA ≤ 0.0029), apolipoprotein A-I (p-ANOVA ≤ 0.0004), β-enolase (p-ANOVA ≤ 0.0043), creatine kinase B-type (p-ANOVA ≤ 0.0070), and galectin-3-binding protein (p-ANOVA = 0.0080), and phosphatidylethanolamine-binding protein 1 (p-ANOVA ≤ 0.0012). In addition, we also identified candidate proteins specific to the small-cell lung carcinoma (SCLC) subtype. These candidates include brain acid soluble protein 1 (p-ANOVA < 0.0001) and γ-enolase (p-ANOVA ≤ 0.0013). This new relative quantitation-based approach utilizing the scaling method can be applied to assess hundreds of protein candidates obtained from discovery proteomic studies as a first step of the verification phase in biomarker development processes.
Collapse
Affiliation(s)
| | - Masaharu Nomura
- Department of Thoracic and Thyroid Surgery, Tokyo Medical University, Tokyo, Japan
| | - Yasufumi Kato
- Department of Thoracic Surgery, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Hiromasa Tojo
- Department of Biophysics and Biochemistry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kiyonaga Fujii
- Department of Translational Medicine Informatics, St. Mariana University School of Medicine, Kawasaki, Japan
| | - Toshitaka Nagao
- Department of Clinical Pathology, Tokyo Medical University, Tokyo, Japan
| | | | - Thomas E. Fehniger
- Center of Excellence in Biological and Medical Mass Spectrometry, Lund University, Lund, Sweden
- Clinical Protein Science & Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - György Marko-Varga
- Center of Excellence in Biological and Medical Mass Spectrometry, Lund University, Lund, Sweden
- Clinical Protein Science & Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Haruhiko Nakamura
- Department of Translational Medicine Informatics, St. Mariana University School of Medicine, Kawasaki, Japan
- Department of Chest Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Harubumi Kato
- Department of Thoracic and Thyroid Surgery, Tokyo Medical University, Tokyo, Japan
- Chest Surgery, Niizashiki Central General Hospital, Saitama, Japan
| | - Toshihide Nishimura
- Department of Translational Medicine Informatics, St. Mariana University School of Medicine, Kawasaki, Japan
- Center of Excellence in Biological and Medical Mass Spectrometry, Lund University, Lund, Sweden
| |
Collapse
|
113
|
Shang Z, Xu Y, Liang W, Liang K, Hu X, Wang L, Zou Z, Ma Y. Isolation of cancer progenitor cells from cancer stem cells in gastric cancer. Mol Med Rep 2017; 15:3637-3643. [PMID: 28393208 PMCID: PMC5436238 DOI: 10.3892/mmr.2017.6423] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 11/29/2016] [Indexed: 12/14/2022] Open
Abstract
The success of cancer treatment may depend on the complete elimination of cancer stem cells (CSCs). However, data regarding the current characterization of CSCs in different types of tumor are inconsistent, possibly due to the mixture of CSCs with cancer progenitor cells (CPCs). Therefore, it is important to exclude CPCs for the characterization of CSCs. The present study aimed to characterize gastric cancer stem cells (GCSC) by separating GCPC from gastric progenitor cells (GCSC) with flow cytometry. In total, 615 murine gastric cancer (GC) cells were divided into aldehyde dehydrogenase (ALDH)high, ALDHlow and ALDHneg groups by flow cytometry according to their ALDH activity. With decreased ALDH activity, the expression levels of stemness-associated markers, CD133+, octamer-binding transcription factory-4 and sex determining region Y-box 2 decreased. The ALDHhigh and ALDHlow cells proliferated and formed tumor spheres in ultra-low adhesion medium without serum, however, the latter formed larger tumor spheres. In mice transplanted with 5,000 cells, the rate of tumor formation in the ALDHlow group was significantly higher, compared with that in the ALDHhigh group. Of note, an increased number of mice developed tumors in the ALDHhigh group 16 weeks following the injection of 500 cells, whereas tumors appeared at 8 weeks in the ALDHlow group. The mice in the ALDHneg group exhibited less tumor formation under these conditions. These results demonstrated that ALDHhigh cells had characteristics of GCSCs with a high level of self-renewal ability, but were in a relative resting stage. The ALDHlow cells had characteristics of GCPCs with limited self-renewal ability, but were in a rapid proliferation stage. These findings suggested that the separation of GCPCs from GCSCs is important for elucidating the biology of GCSCs and identifying strategies to eliminate GCSCs in GC.
Collapse
Affiliation(s)
- Zhiyang Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yingxin Xu
- Institute of General Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Wentao Liang
- Institute of General Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Kai Liang
- Institute of General Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiang Hu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Lei Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhenyu Zou
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yue Ma
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
114
|
La Porta CAM, Zapperi S. Complexity in cancer stem cells and tumor evolution: Toward precision medicine. Semin Cancer Biol 2017; 44:3-9. [PMID: 28254567 DOI: 10.1016/j.semcancer.2017.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 02/06/2023]
Abstract
In this review, we discuss recent advances on the plasticity of cancer stem cells and highlight their relevance to understand the metastatic process and to guide therapeutic interventions. Recent results suggest that the strict hierarchical structure of cancer cell populations advocated by the cancer stem cell model must be reconsidered since the depletion of cancer stem cells leads the other tumor cells to switch back into the cancer stem cell phenotype. This plasticity has important implications for metastasis since migrating cells do not need to be cancer stem cells in order to seed a metastasis. We also discuss the important role of the immune system and the microenvironment in modulating phenotypic switching and suggest possible avenues to exploit our understanding of this process to develop an effective strategy for precision medicine.
Collapse
Affiliation(s)
- Caterina A M La Porta
- Center for Complexity and Biosystems, University of Milan, via Celoria 26, 20133 Milano, Italy; Department of Biosciences, University of Milan, via Celoria 26, 20133 Milano, Italy.
| | - Stefano Zapperi
- Center for Complexity and Biosystems, University of Milan, via Celoria 26, 20133 Milano, Italy; Department of Physics, University of Milan, via Celoria 16, 20133 Milano, Italy; Institute for Scientific Interchange Foundation, Via Alassio 11/C, 10126 Torino, Italy; Department of Applied Physics, Aalto University, P.O. Box 11100, FIN-00076 Aalto, Espoo, Finland; CNR - Consiglio Nazionale delle Ricerche, ICMATE, Via R. Cozzi 53, 20125 Milano, Italy
| |
Collapse
|
115
|
Kim WG, Lee J. Axillary Skip Metastases and the False-Negative Rate of Sentinel Lymph Node Biopsy in Patients With Breast Cancer Are Related to Negative ALDH-1 Expression and Ki-67 Expression. Int J Surg Pathol 2017; 25:397-405. [DOI: 10.1177/1066896917690024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Breast cancer stem cells (CSCs) have been hypothesized to be the driving force behind tumorigenesis and metastasis. In this study, we evaluated the relationships between CSC expressions in primary breast cancers and corresponding metastatic sentinel and nonsentinel lymph nodes (SLNs and NSLNs). The clinical implications of these relationships were also investigated. CSC expressions were evaluated in 167 breast cancer specimens and associated lymph node biopsies (when present). We used double immunohistochemistry of CD44/CD24 and single immunohistochemistry of ALDH-1 on paraffin-embedded breast tissue, SLN, and NSLN specimens. Seven cases had metastatic NSLNs without SLN involvement—so-called “skip metastasis.” Fifty cases of SLNs (29.9%) and 33 cases of NSLNs (25.7%) had metastases. In the breast cancers, metastatic SLNs, and NSLNs, the expression rates of CD44+/CD24− were 47.9%, 26.1%, and 34.6 %, respectively, while the expression rates of ALDH-1+ were 42.5%, 36.4%, and 33.3%, respectively. Significant relationships were not observed between CSC expressions in breast cancer and metastatic SLNs or NSLNs. The presence of skip metastasis correlated with negative ALDH-1 in breast cancer ( P = .04), as well as several clinicopathologic factors: age >50 years ( P = .004), negative lymphovascular tumor emboli ( P = .02), and high Ki-67 expression ( P = .04). Axillary lymph node metastasis showed no significant relationship with any CSC marker. However, CD44+/CD24− and ALDH-1 expressions of metastatic SLNs correlated with CSCs of primary breast cancers. In summary, skip metastasis correlated with negative expression of ALDH-1 in primary breast cancers, which could be promising as a means of assessing the risk of skip metastasis.
Collapse
Affiliation(s)
- Woo Gyeong Kim
- Department of Pathology, Inje University Haeundae Paik Hospital, Busan, Republic of Korea
| | - JungSun Lee
- Department of Surgery, Inje University Haeundae Paik Hospital, Busan, Republic of Korea
| |
Collapse
|
116
|
Konrad CV, Murali R, Varghese BA, Nair R. The role of cancer stem cells in tumor heterogeneity and resistance to therapy. Can J Physiol Pharmacol 2017; 95:1-15. [DOI: 10.1139/cjpp-2016-0079] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer is a heterogenous disease displaying marked inter- and intra-tumoral diversity. The existence of cancer stem cells (CSCs) has been experimentally demonstrated in a number of cancer types as a subpopulation of tumor cells that drives the tumorigenic and metastatic properties of the entire cancer. Thus, eradication of the CSC population is critical for the complete ablation of a tumor. This is, however, confounded by the inherent resistance of CSCs to standard anticancer therapies, eventually leading to the outgrowth of resistant tumor cells and relapse in patients. The cellular mechanisms of therapy resistance in CSCs are ascribed to several factors including a state of quiescence, an enhanced DNA damage response and active repair mechanisms, up-regulated expression of drug efflux transporters, as well as the activation of pro-survival signaling pathways and inactivation of apoptotic signaling. Understanding the mechanisms underlying the acquisition of resistance to therapy may hold the key to targeting the CSC population.
Collapse
Affiliation(s)
- Christina Valbirk Konrad
- Cancer Research Division & Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Reshma Murali
- Cancer Research Program, Rajiv Gandhi Center for Biotechnology, Kerala, India
| | | | - Radhika Nair
- Cancer Research Program, Rajiv Gandhi Center for Biotechnology, Kerala, India
| |
Collapse
|
117
|
Kang JH, Lee SH, Hong D, Lee JS, Ahn HS, Ahn JH, Seong TW, Lee CH, Jang H, Hong KM, Lee C, Lee JH, Kim SY. Aldehyde dehydrogenase is used by cancer cells for energy metabolism. Exp Mol Med 2016; 48:e272. [PMID: 27885254 PMCID: PMC5133370 DOI: 10.1038/emm.2016.103] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/16/2016] [Accepted: 06/29/2016] [Indexed: 12/21/2022] Open
Abstract
We found that non-small-cell lung cancer (NSCLC) cells express high levels of multiple aldehyde dehydrogenase (ALDH) isoforms via an informatics analysis of metabolic enzymes in NSCLC and immunohistochemical staining of NSCLC clinical tumor samples. Using a multiple reaction-monitoring mass spectrometry analysis, we found that multiple ALDH isozymes were generally abundant in NSCLC cells compared with their levels in normal IMR-90 human lung cells. As a result of the catalytic reaction mediated by ALDH, NADH is produced as a by-product from the conversion of aldehyde to carboxylic acid. We hypothesized that the NADH produced by ALDH may be a reliable energy source for ATP production in NSCLC. This study revealed that NADH production by ALDH contributes significantly to ATP production in NSCLC. Furthermore, gossypol, a pan-ALDH inhibitor, markedly reduced the level of ATP. Gossypol combined with phenformin synergistically reduced the ATP levels, which efficiently induced cell death following cell cycle arrest.
Collapse
Affiliation(s)
- Joon Hee Kang
- Cancer Cell and Molecular Biology Branch, National Cancer Center, Research Institute, Goyang, Gyeonggi-do, Republic of Korea
| | - Seon-Hyeong Lee
- Cancer Cell and Molecular Biology Branch, National Cancer Center, Research Institute, Goyang, Gyeonggi-do, Republic of Korea
| | - Dongwan Hong
- Cancer Immunology Branch, National Cancer Center, Research Institute, Goyang, Gyeonggi-do, Republic of Korea
| | - Jae-Seon Lee
- Cancer Cell and Molecular Biology Branch, National Cancer Center, Research Institute, Goyang, Gyeonggi-do, Republic of Korea
| | - Hee-Sung Ahn
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea.,Department of Biological Chemistry, University of Science and Technology, Daejeon, Republic of Korea
| | - Ju-Hyun Ahn
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Genomic Instability Research Center, Suwon, Korea.,Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon, Korea
| | - Tae Wha Seong
- Cancer Cell and Molecular Biology Branch, National Cancer Center, Research Institute, Goyang, Gyeonggi-do, Republic of Korea
| | - Chang-Hun Lee
- Cancer Cell and Molecular Biology Branch, National Cancer Center, Research Institute, Goyang, Gyeonggi-do, Republic of Korea
| | - Hyonchol Jang
- Cancer Cell and Molecular Biology Branch, National Cancer Center, Research Institute, Goyang, Gyeonggi-do, Republic of Korea
| | - Kyeong Man Hong
- Omics Core Laboratory, National Cancer Center, Research Institute, Goyang, Republic of Korea
| | - Cheolju Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea.,Department of Biological Chemistry, University of Science and Technology, Daejeon, Republic of Korea
| | - Jae-Ho Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Genomic Instability Research Center, Suwon, Korea.,Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon, Korea
| | - Soo-Youl Kim
- Cancer Cell and Molecular Biology Branch, National Cancer Center, Research Institute, Goyang, Gyeonggi-do, Republic of Korea
| |
Collapse
|
118
|
Gao J, Li W, Guo Y, Feng SS. Nanomedicine strategies for sustained, controlled and targeted treatment of cancer stem cells. Nanomedicine (Lond) 2016; 11:3261-3282. [PMID: 27854161 DOI: 10.2217/nnm-2016-0261] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cancer stem cells (CSCs) are original cancer cells that are of characteristics associated with normal stem cells. CSCs are toughest against various treatments and thus responsible for cancer metastasis and recurrence. Therefore, development of specific and effective treatment of CSCs plays a key role in improving survival and life quality of cancer patients, especially those in the metastatic stage. Nanomedicine strategies, which include prodrugs, micelles, liposomes and nanoparticles of biodegradable polymers, could substantially improve the therapeutic index of conventional therapeutics due to its manner of sustained, controlled and targeted delivery of high transportation efficiency across the cell membrane and low elimination by intracellular autophagy, and thus provide a practical solution to solve the problem encountered in CSCs treatment. This review gives briefly the latest information to summarize the concept, strategies, mechanisms and current status as well as future promises of nanomedicine strategies for treatment of CSCs.
Collapse
Affiliation(s)
- Jie Gao
- Department of Pharmaceutical Sciences, School of Pharmacy, the Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wei Li
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433, China
| | - Yajun Guo
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433, China
| | - Si-Shen Feng
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433, China.,Department of Chemical & Biomolecular Engineering, National University of Singapore, Block E5, 02-11, 4 Engineering Drive 4, Singapore 117576, Singapore.,Suzhou NanoStar Biopharm Inc. Ltd, BioBay, Bld B2, Unit 604, 218 Xing-Hu Street, Suzhou Industrial Park, Suzhou 215123, China
| |
Collapse
|
119
|
Habiba U, Hida K, Kitamura T, Matsuda AY, Higashino F, Ito YM, Ohiro Y, Totsuka Y, Shindoh M. ALDH1 and podoplanin expression patterns predict the risk of malignant transformation in oral leukoplakia. Oncol Lett 2016; 13:321-328. [PMID: 28123562 PMCID: PMC5245102 DOI: 10.3892/ol.2016.5379] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/24/2016] [Indexed: 11/28/2022] Open
Abstract
Oral leukoplakia (OL) is a clinically diagnosed preneoplastic lesion of the oral cavity with an increased oral cancer risk. However, the risk of malignant transformation is still difficult to assess. The objective of the present study was to examine the expression patterns of aldehyde dehydrogenase 1 (ALDH1) and podoplanin in OL, and to determine their roles in predicting oral cancer development. In the present study, the expression patterns of ALDH1 and podoplanin were determined in samples from 79 patients with OL. The association between protein expression and clinicopathological parameters, including oral cancer-free survival, was analyzed during a mean follow-up period of 3.4 years. Expression of ALDH1 and podoplanin was observed in 61 and 67% patients, respectively. Kaplan-Meier analysis demonstrated that the expression of the proteins was correlated with the risk of progression to oral cancer. Multivariate analysis revealed that expression of ALDH1 and podoplanin was associated with 3.02- and 2.62-fold increased risk of malignant transformation, respectively. The malignant transformation risk of OL was considerably higher in cases with expression of both proteins. Point-prevalence analysis revealed that 66% of patients with co-expression of ALDH1 and podoplanin developed oral cancer. Taken together, our data indicate that ALDH1 and podoplanin expression patterns in OL are associated with oral cancer development, suggesting that ALDH1 and podoplanin may be useful biomarkers to identify OL patients with a substantially high oral cancer risk.
Collapse
Affiliation(s)
- Umma Habiba
- Department of Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-0815, Japan
| | - Kyoko Hida
- Department of Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Tetsuya Kitamura
- Department of Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-0815, Japan
| | - Aya Yanagawa Matsuda
- Department of Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-0815, Japan
| | - Fumihiro Higashino
- Department of Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-0815, Japan
| | - Yoichi M Ito
- Department of Biostatistics, Hokkaido University Graduate School of Medicine, Sapporo 060-0815, Japan
| | - Yoichi Ohiro
- Department of Oral and Maxillofacial Surgery, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-0815, Japan
| | - Yasunori Totsuka
- Department of Oral and Maxillofacial Surgery, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-0815, Japan
| | - Masanobu Shindoh
- Department of Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-0815, Japan
| |
Collapse
|
120
|
Bogen A, Buske C, Hiddemann W, Bohlander SK, Christ O. Variable aldehyde dehydrogenase activity and effects on chemosensitivity of primitive human leukemic cells. Exp Hematol 2016; 47:54-63. [PMID: 27826122 DOI: 10.1016/j.exphem.2016.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/23/2016] [Accepted: 10/27/2016] [Indexed: 01/10/2023]
Abstract
Aldehyde dehydrogenase (ALDH) activity is an established feature of primitive normal human hematopoietic cells, in which it has been associated with a high expression of the 1A1 isoform of ALDH. High ALDH 1A1 activity has been reported to also characterize cells that propagate malignant populations arising in other tissues, but the regulation and basis of ALDH activity in primary human leukemic cells has not been well studied. We obtained samples from patients with newly diagnosed acute myeloid leukemia (AML; n = 21) and chronic myeloid leukemia (CML; n = 8) and analyzed different phenotypically and functionally defined subsets for their ALDH activity using the ALDEFLUOR® kit and expression of the ALDH1A1 gene. We detected cells with high ALDH activity (ALDHpos) in all samples from AML and CML patients. These were consistently enriched in the CD34+ population of these samples, but typically not in the CD34+CD38- subset. Leukemic cells with direct clonogenic activity in vitro or those able to repopulate the bone marrow of sublethally irradiated non-obese diabetic (NOD)/severe combined immunodeficiency (SCID) mice were both ALDHpos and ALDHneg. Interestingly, ALDH1A1 transcripts were highest in the ALDHneg leukemic cells and, in studies with leukemic cell lines, exposure to an inhibitor of ALDH activity variably affected sensitivity to daunorubicin. Cells with high ALDH activity are commonly found within the CD34+ population of primary human leukemic cells but, unlike in normal hematopoietic tissues, do not selectively or consistently comprise those with proliferative potential or other distinct functional properties.
Collapse
Affiliation(s)
- Anja Bogen
- Department of Medicine III, University of Munich, Munich, Germany
| | - Christian Buske
- CCC Ulm, Institute of Experimental Cancer Research, University Hospital Ulm, Ulm, Germany
| | | | - Stefan K Bohlander
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Oliver Christ
- Department of Medicine III, University of Munich, Munich, Germany.
| |
Collapse
|
121
|
De Rosa M, Rega D, Costabile V, Duraturo F, Niglio A, Izzo P, Pace U, Delrio P. The biological complexity of colorectal cancer: insights into biomarkers for early detection and personalized care. Therap Adv Gastroenterol 2016; 9:861-886. [PMID: 27803741 PMCID: PMC5076770 DOI: 10.1177/1756283x16659790] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer has been ranked the third and second most prevalent of all cancers in men and women, respectively, and it represents the fourth most common cause of cancer deaths. In 2012, there were 1.4 million estimated cases of colorectal cancer worldwide, and 700,000 estimated deaths, which implies significant impact on public health, especially in economically-developed countries. In recent years, there has been an increase in the number of tumors, although this has been accompanied by decreased mortality, due to more appropriate and available information, earlier diagnosis, and improvements in treatment. Colorectal cancers are characterized by great genotypic and phenotypic heterogeneity, including tumor microenvironment and interactions between healthy and cancer cells. All of these traits confer a unique peculiarity to each tumor, which can thus be considered as an individual disease. Well conducted molecular and clinical characterization of each colorectal cancer is essential with a view to the implementation of precision oncology, and thus personalized care. This last aims at standardization of therapeutic plans chosen according to the genetic background of each specific neoplasm, to increase overall survival and reduce treatment side effects. Thus, prognostic and predictive molecular biomarkers assume a critical role in the characterization of colorectal cancer and in the determination of the most appropriate therapy.
Collapse
Affiliation(s)
- Marina De Rosa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples ‘Federico II ’, I-80131 Naples, Italy
| | - Daniela Rega
- Colorectal Surgical Oncology-Abdominal Oncology Department, Istituto Nazionale per lo Studio e la Cura dei Tumori, ‘Fondazione Giovanni Pascale’ IRCCS, I-80131 Naples, Italy
| | - Valeria Costabile
- Department of Molecular Medicine and Medical Biotechnology, University of Naples ‘Federico II ’, I-80131 Naples, Italy
| | - Francesca Duraturo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples ‘Federico II ’, I-80131 Naples, Italy
| | - Antonello Niglio
- Colorectal Surgical Oncology-Abdominal Oncology Department, Istituto Nazionale per lo Studio e la Cura dei Tumori, ‘Fondazione Giovanni Pascale’ IRCCS, I-80131 Naples, Italy
| | - Paola Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples ‘Federico II ’, I-80131 Naples, Italy
| | - Ugo Pace
- Colorectal Surgical Oncology-Abdominal Oncology Department, Istituto Nazionale per lo Studio e la Cura dei Tumori, ‘Fondazione Giovanni Pascale’ IRCCS, I-80131 Naples, Italy
| | - Paolo Delrio
- Colorectal Surgical Oncology-Abdominal Oncology Department, Istituto Nazionale per lo Studio e la Cura dei Tumori, ‘Fondazione Giovanni Pascale’ IRCCS, I-80131 Naples, Italy
| |
Collapse
|
122
|
Shao J, Fan W, Ma B, Wu Y. Breast cancer stem cells expressing different stem cell markers exhibit distinct biological characteristics. Mol Med Rep 2016; 14:4991-4998. [PMID: 27840965 PMCID: PMC5355694 DOI: 10.3892/mmr.2016.5899] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 09/12/2016] [Indexed: 01/11/2023] Open
Abstract
Identification and isolation of breast cancer stem cells (CSCs) based on CD44/CD24 expression and/or enzymatic activity of aldehyde dehydrogenase 1 (ALDH1). However, the differences among the CD44+/CD24‑/low cells, ALDH1+ cells and the overlap between the sub‑populations have not been frequently investigated. Thus, it is imperative to improve the understanding of breast CSC with different stem markers. CD44+/CD24‑/low, ALDH1+ and ALDH1+CD44+/CD24‑/low cell populations were isolated from fresh breast cancer tissues and analyzed by flow cytometry and immunofluorescence. Mammosphere formation, cell proliferation assay and Transwell experiments, were used to analyze self‑renewal, proliferation and invasion, respectively, for each sub‑population. Finally, in vivo experimentation in mice was performed to evaluate the tumorigenic abilities of the sub‑populations. The sub‑populations of CD44+/CD24‑/low, ALDH1+ and ALDH1+CD44+/CD24‑/low in human breast cancer cells, represented the 7.2, 4.6 and 1.5% of the total tumor cell population, respectively. ALDH1+CD44+/CD24‑/low cells had the strongest ability of self‑renewal, invasion, proliferation and tumorigenicity compared with the other sub‑populations (P<0.05). In conclusion, different phenotypes of CD44+/CD24‑/low, ALDH1+ and ALDH1+CD44+/CD24‑/low were isolated and demonstrated that breast CSCs are heterogeneous, and they exhibit distinct biological characteristics. As ALDH1+CD44+/CD24‑/low cells demonstrated the strongest stem‑like properties, it may be a useful specific stem cell marker. The utilization of more reliable biomarkers to distinguish the breast CSC pool will be important for the development of specific target therapies for breast cancer.
Collapse
Affiliation(s)
- Jun Shao
- Department of Plastic Surgery, Wuhan Tongji Hospital, Wuhan, Hubei 430030, P.R. China
| | - Wei Fan
- Department of Breast Cancer, Hubei Cancer Hospital, Wuhan, Hubei 430079, P.R. China
| | - Biao Ma
- Department of Breast Cancer, Hubei Cancer Hospital, Wuhan, Hubei 430079, P.R. China
| | - Yiping Wu
- Department of Plastic Surgery, Wuhan Tongji Hospital, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
123
|
Franqui-Machin R, Wendlandt EB, Janz S, Zhan F, Tricot G. Cancer stem cells are the cause of drug resistance in multiple myeloma: fact or fiction? Oncotarget 2016; 6:40496-506. [PMID: 26415231 PMCID: PMC4747348 DOI: 10.18632/oncotarget.5800] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/12/2015] [Indexed: 12/16/2022] Open
Abstract
Multiple myeloma (MM) remains a largely incurable, genetically heterogeneous plasma-cell malignancy that contains – just like many other cancers – a small fraction of clonogenic stem cell-like cells that exhibit pronounced self-renewal and differentiation capacities, but also pronounced drug resistance. These MM stem cells (MMSCs) are a controversial but highly significant issue in myeloma research because, in our opinion, they are at the root of the failure of anti-neoplastic chemotherapies to transform myeloma to a manageable chronic disease. Several markers including CD138−, ALDH1+ and SP have been used to identify MMSCs; however, no single marker is reliable for the isolation of MMSC. Nonetheless, it is now known that MMSCs depend on self-renewal and pro-survival pathways, such as AKT, Wnt/β-catenin, Notch and Hedgehog, which can be targeted with novel drugs that have shown promise in pre-clinical and clinical trials. Here, we review the pathways of myeloma “stemness”, the interactions with the bone marrow microenvironment that promote drug resistance, and the obstacles that must be overcome to eradicate MMSCs and make myeloma a curable disease.
Collapse
Affiliation(s)
- Reinaldo Franqui-Machin
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Erik B Wendlandt
- Department of Internal Medicine, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Siegfried Janz
- Department of Pathology, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Fenghuang Zhan
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Department of Internal Medicine, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Guido Tricot
- Department of Internal Medicine, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
124
|
Mansour SF, Atwa MM. Clinicopathological Significance of CD133 and ALDH1 Cancer Stem Cell Marker Expression in Invasive Ductal Breast Carcinoma. Asian Pac J Cancer Prev 2016; 16:7491-6. [PMID: 26625750 DOI: 10.7314/apjcp.2015.16.17.7491] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Biomarkers in breast neoplasms provide invaluable information regarding prognosis and help determining the optimal treatment. We investigated the possible correlation between cancer stem cell (CSC) markers (CD133, and ALDH1) in invasive ductal breast carcinomas with some clinicopathological parameters. AIM To assess the correlation between expression of cancer stem cell (CSC) markers (CD133, and ALDH1) and clinicopathological parameters of invasive ductal breast carcinomas. MATERIALS AND METHODS Immunohistochemical analysis of CD133 and ALDH1 was performed on a series of 120 modified radical mastectomy (MRM) specimens diagnosed as invasive ductal breast carcinoma. RESULTS Expression of both CD133 and ALDH1 was significantly changed and related to tumor size, tumor stage (TNM), and lymph node metastasis. A negative correlation between CD133 and ALDH1 was found. CONCLUSIONS Detecting the expression of CD133 and ALDH1 in invasive ductal breast carcinomas may be of help in more accurately predicting the aggressive properties and determining the optimal treatment.
Collapse
Affiliation(s)
- Sahar F Mansour
- Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt E-mail :
| | | |
Collapse
|
125
|
El Atat O, Antonios D, Hilal G, Hokayem N, Abou-Ghoch J, Hashim H, Serhal R, Hebbo C, Moussa M, Alaaeddine N. An Evaluation of the Stemness, Paracrine, and Tumorigenic Characteristics of Highly Expanded, Minimally Passaged Adipose-Derived Stem Cells. PLoS One 2016; 11:e0162332. [PMID: 27632538 PMCID: PMC5024991 DOI: 10.1371/journal.pone.0162332] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/22/2016] [Indexed: 12/13/2022] Open
Abstract
The use of adipose-derived stem cells (ADSC) in regenerative medicine is rising due to their plasticity, capacity of differentiation and paracrine and trophic effects. Despite the large number of cells obtained from adipose tissue, it is usually not enough for therapeutic purposes for many diseases or cosmetic procedures. Thus, there is the need for culturing and expanding cells in-vitro for several weeks remain. Our aim is to investigate if long- term proliferation with minimal passaging will affect the stemness, paracrine secretions and carcinogenesis markers of ADSC. The immunophenotypic properties and aldehyde dehydrogenase (ALDH) activity of the initial stromal vascular fraction (SVF) and serially passaged ADSC were observed by flow cytometry. In parallel, the telomerase activity and the relative expression of oncogenes and tumor suppressor genes were assessed by q-PCR. We also assessed the cytokine secretion profile of passaged ADSC by an ELISA. The expanded ADSC retain their morphological and phenotypical characteristics. These cells maintained in culture for up to 12 weeks until P4, possessed stable telomerase and ALDH activity, without having a TP53 mutation. Furthermore, the relative expression levels of TP53, RB, and MDM2 were not affected while the relative expression of c-Myc decreased significantly. Finally, the levels of the secretions of PGE2, STC1, and TIMP2 were not affected but the levels of IL-6, VEGF, and TIMP 1 significantly decreased at P2. Our results suggest that the expansion of passaged ADSC does not affect the differentiation capacity of stem cells and does not confer a cancerous state or capacity in vitro to the cells.
Collapse
Affiliation(s)
- Oula El Atat
- Regenerative Medicine and Inflammation Laboratory, Faculty of Medicine, St. Joseph University, Beirut, Lebanon
| | - Diane Antonios
- Toxicology Laboratory, Faculty of Pharmacy, St. Joseph University, Beirut, Lebanon
| | - George Hilal
- Cancer and Metabolism Laboratory, Faculty of Medicine, St. Joseph University, Beirut, Lebanon
| | - Nabil Hokayem
- Department of Plastic& Reconstructive Surgery, Hotel Dieu de France, and Faculty of Medicine St Joseph University, Beirut, Lebanon
| | - Joelle Abou-Ghoch
- Medical Genetics Unit, Faculty of Medicine, St. Joseph University, Beirut, Lebanon
| | - Hussein Hashim
- Department of Plastic& Reconstructive Surgery, Fuad Khoury Hospital, Beirut, Lebanon
| | - Rim Serhal
- Regenerative Medicine and Inflammation Laboratory, Faculty of Medicine, St. Joseph University, Beirut, Lebanon
| | - Clara Hebbo
- Regenerative Medicine and Inflammation Laboratory, Faculty of Medicine, St. Joseph University, Beirut, Lebanon
| | - Mayssam Moussa
- Regenerative Medicine and Inflammation Laboratory, Faculty of Medicine, St. Joseph University, Beirut, Lebanon
| | - Nada Alaaeddine
- Regenerative Medicine and Inflammation Laboratory, Faculty of Medicine, St. Joseph University, Beirut, Lebanon
- * E-mail:
| |
Collapse
|
126
|
Abe S, Yamamoto K, Kurata M, Abe-Suzuki S, Horii R, Akiyama F, Kitagawa M. Targeting MCM2 function as a novel strategy for the treatment of highly malignant breast tumors. Oncotarget 2016; 6:34892-909. [PMID: 26430873 PMCID: PMC4741497 DOI: 10.18632/oncotarget.5408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/18/2015] [Indexed: 12/23/2022] Open
Abstract
Highly malignant tumors express high levels of the minichromosome maintenance 2 (MCM2) protein, which is associated with advanced tumor grade, advanced stage, and poor prognosis. In a previous study, we showed that Friend leukemia virus (FLV) envelope protein gp70 bound MCM2, impaired its nuclear translocation, and enhanced DNA-damage-induced apoptosis in FLV-infected hematopoietic cells when the cells expressed high levels of MCM2. Here, we show that MCM2 is highly expressed in clinical samples of invasive carcinoma of the breast, especially triple-negative breast cancer (TNBC), and in cancer stem cell (CSC) marker-positive breast cancer cells. To generate a cancer therapy model using gp70, we introduced the gp70 protein into the cytoplasm of murine breast cancer cells that express high levels of MCM2 by conjugating the protein transduction domain (PTD) of Hph-1 to gp70 (Hph- 1-gp70). Hph-1-gp70 was successfully transduced into the cytoplasm of breast cancer cells. The transduced protein enhanced the DNA damage-induced apoptosis of cancer cells in vitro and in vivo. Therefore, an MCM2-targeted strategy using Hph-1-gp70 treatment to induce DNA damage might be a successful therapy for highly malignant breast cancers such as TNBC and for the eradication of CSC-like cells from breast cancer tissue.
Collapse
Affiliation(s)
- Shinya Abe
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shiho Abe-Suzuki
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rie Horii
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Futoshi Akiyama
- Department of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
127
|
Prognostic Significance of CD44v6, CD133, CD166, and ALDH1 Expression in Small Intestinal Adenocarcinoma. Appl Immunohistochem Mol Morphol 2016; 23:682-8. [PMID: 25710579 DOI: 10.1097/pai.0000000000000140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Small intestinal adenocarcinoma (SIAC) is a rare human malignant tumor. According to the cancer stem cell (CSC) hypothesis, only a small subpopulation of tumor cells has the ability to initiate and increase tumor growth. CD44v6, CD133, CD166, and ALDH1 have been proposed to be putative CSC markers in gastrointestinal malignancies. However, their implications in SIAC still remain unclear. We aimed to investigate the expressions of CD44v6, CD133, CD166, and ALDH1 and evaluate their relationships with clinicopathologic parameters including the survival data in SIACs. MATERIALS AND METHODS Immunohistochemical analysis for CD44, CD133, CD166, and ALDH1 was performed using tissue microarrays for 191 surgically resected SIACs. RESULTS CD44v6, CD133, CD166, and ALDH1 expression was found in 25 (13.5%), 58 (30.7%), 82 (44.1%), and 63 (33.3%) cases, respectively. CD44v6(+) was correlated with vascular tumor invasion (P=0.023). CD133(+) was marginally correlated with the histologic subtype of the tumors (P=0.085). Combined CD44v6(+)/CD133(+) was observed in 11 (5.9%) and was associated with a significantly worse survival rate by univariate (P=0.016) and multivariate (P=0.048; Cox hazard ratio, 2.403) analyses. . CONCLUSIONS Evaluation of the combined CD133 and CD44v6 expression could be a useful tool for predicting a poor outcome in patients with SIAC.
Collapse
|
128
|
López-Gómez M, Casado E, Muñoz M, Alcalá S, Moreno-Rubio J, D'Errico G, Jiménez-Gordo AM, Salinas S, Sainz B. Current evidence for cancer stem cells in gastrointestinal tumors and future research perspectives. Crit Rev Oncol Hematol 2016; 107:54-71. [PMID: 27823652 DOI: 10.1016/j.critrevonc.2016.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/22/2016] [Accepted: 08/17/2016] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) are a very heterogeneous subpopulation of "stem-like" cancer cells that have been identified in many cancers, including leukemias and solid tumors. It is believed that CSCs drive tumor growth, malignant behavior and are responsible for the initiation of metastatic spread. In addition, CSCs have been implicated in chemotherapy and radiotherapy resistance. Current evidence supports the theory that CSCs share at least two main features of normal stem cells: self-renewal and differentiation, properties that contribute to tumor survival even in the presence of aggressive chemotherapy; however, the mechanism(s) governing the unique biology of CSCs remain unclear. In the field of gastrointestinal cancer, where we face very low survival rates across different tumor types, unraveling the role of CSCs in gastrointestinal tumors should improve our knowledge of cancer biology and chemoresistance, ultimately benefiting patient survival. Towards this end, much effort is being invested in the characterization of CSCs as a means of overcoming drug resistance and controlling metastatic spread. In this review we will cover the concept of CSCs, the current evidence for CSCs in gastrointestinal tumors and future research directions.
Collapse
Affiliation(s)
- Miriam López-Gómez
- Medical Oncology Department, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain; Precision Oncology Laboratory, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain.
| | - Enrique Casado
- Medical Oncology Department, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain; Precision Oncology Laboratory, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain
| | - Marta Muñoz
- Pathological Anatomy Department, Infanta Sofía University Hospital, S.S Reyes, Madrid, Spain
| | - Sonia Alcalá
- Department of Biochemistry, Autónoma University of Madrid, Madrid, Spain; Cancer Biology Department, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain; Enfermedades Crónicas y Cáncer Area, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Juan Moreno-Rubio
- Precision Oncology Laboratory, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain
| | - Gabriele D'Errico
- Department of Biochemistry, Autónoma University of Madrid, Madrid, Spain
| | - Ana María Jiménez-Gordo
- Medical Oncology Department, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain; Precision Oncology Laboratory, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain
| | - Silvia Salinas
- Pathological Anatomy Department, Infanta Sofía University Hospital, S.S Reyes, Madrid, Spain
| | - Bruno Sainz
- Department of Biochemistry, Autónoma University of Madrid, Madrid, Spain; Cancer Biology Department, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain; Enfermedades Crónicas y Cáncer Area, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
129
|
Stromal expression of ALDH1 in human breast carcinomas indicates reduced tumor progression. Oncotarget 2016; 6:26789-803. [PMID: 26305673 PMCID: PMC4694953 DOI: 10.18632/oncotarget.4628] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 07/06/2015] [Indexed: 12/25/2022] Open
Abstract
Interactions between cancer cells and microenvironment are emerging issue in tumor progression. Aldehyde dehydrogenase 1 (ALDH1) is a recognized cancer stem cell marker but little is known about its role in intratumoral stroma. Therefore, we focused on ALDH1 expression in tumor-associated stroma of breast carcinomas (BrCa). Stromal and tumoral ALDH1 expression was evaluated immunohistochemically in BrCa and their lymph node metastases (LNMs), and related to clinico-pathological characteristics, patients’ outcome, presence of CD68, HLADR, retinoic acid (RA) in stroma, and selected proteins in tumor cells. ALDH1(+) stromal cells were detected in 53% of 374 BrCa and 61% of 102 LNMs. ALDH1(+) stroma in primary tumor correlated to longer disease-free (p = 0.030), metastasis-free (p = 0.024), and overall survival (p = 0.043) having an independent prognostic impact on DFS (multivariate analysis, p = 0.047). It was associated with concomitant presence of HLA-DR(+) stromal cells and RA in tumor cells (both p < 0.001), and inversely associated with vimentin expression in tumor cells (p = 0.036). ALDH1(+) stroma in LNMs correlated inversely to presence of disseminated tumor cells in patients’ bone marrow (p = 0.014) and was independent prognosticator of shorter DFS and MFS (multivariate analysis, p = 0.004 and p = 0.002, respectively). In conclusion, ALDH1 expression in tumor-associated stromal cells indicates reduced BrCa progression, possibly via RA secretion.
Collapse
|
130
|
Zage PE, Whittle SB, Shohet JM. CD114: A New Member of the Neural Crest-Derived Cancer Stem Cell Marker Family. J Cell Biochem 2016; 118:221-231. [PMID: 27428599 DOI: 10.1002/jcb.25656] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 12/13/2022]
Abstract
The neural crest is a population of cells in the vertebrate embryo that gives rise to a wide range of tissues and cell types, including components of the peripheral nervous system and the craniofacial skeleton as well as melanocytes and the adrenal medulla. Aberrations in neural crest development can lead to numerous diseases, including cancers such as melanoma and neuroblastoma. Cancer stem cells (CSCs) have been identified in these neural crest-derived tumors, and these CSCs demonstrate resistance to treatment and are likely key contributors to disease relapse. Patients with neural crest-derived tumors often have poor outcomes due to frequent relapses, likely due to the continued presence of residual treatment-resistant CSCs, and therapies directed against these CSCs are likely to improve patient outcomes. CSCs share many of the same genetic and biologic features of primordial neural crest cells, and therefore a better understanding of neural crest development will likely lead to the development of effective therapies directed against these CSCs. Signaling through STAT3 has been shown to be required for neural crest development, and granulocyte colony stimulating factor (GCSF)-mediated activation of STAT3 has been shown to play a role in the pathogenesis of neural crest-derived tumors. Expression of the cell surface marker CD114 (the receptor for GCSF) has been identified as a potential marker for CSCs in neural crest-derived tumors, suggesting that CD114 expression and function may contribute to disease relapse and poor patient outcomes. Here we review the processes of neural crest development and tumorigenesis and we discuss the previously identified markers for CSC subpopulations identified in neural crest tumors and their role in neural crest tumor biology. We also discuss the potential for CD114 and downstream intracellular signaling pathways as potential targets for CSC-directed therapy. J. Cell. Biochem. 118: 221-231, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peter E Zage
- Division of Hematology-Oncology, Department of Pediatrics, University of California San Diego, La Jolla, California.,Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital, San Diego, California
| | - Sarah B Whittle
- Department of Pediatrics, Section of Hematology-Oncology, Children's Cancer Center, Houston, Texas
| | - Jason M Shohet
- Department of Pediatrics, Section of Hematology-Oncology, Children's Cancer Center, Houston, Texas.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
131
|
Yang XJ. Liver cancer stem cells and new strategies for targeted therapy of hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2016; 24:3337-3346. [DOI: 10.11569/wcjd.v24.i22.3337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the past ten years, increasing studies show that liver cancer stem cells (LCSCs) are responsible not only for hepatocellular carcinoma (HCC) initiation and development but also for the generation of distant metastasis and relapse after therapy. Therefore, further research for LCSCs is considered a new avenue to explore the cause of HCC invasion and metastasis in order to formulate prevention and control strategies. Current traditional cancer therapies including chemotherapy and radiotherapy which primarily target rapidly dividing and most likely well differentiated tumor cells, would fail to eliminate LCSCs. After surgical removal of HCC mass, the remaining LCSCs still have the ability to differentiate, proliferate and even migrate to other places to form metastatic tumors. Therefore, to explore various kinds of targeted therapies for LCSCs is the only way to break through the "bottleneck" of HCC treatment. Strategies for targeted therapy of HCC include inhibiting LCSCs proliferation, inducing apoptosis and differentiation, increasing chemotherapy sensitivity and disrupting the tumor niche essential for CSC homeostasis.
Collapse
|
132
|
Mirzaei H, Salehi H, Sahebkar A, Avan A, Jaafari MR, Namdar A, Rezaei A, Mirzaei HR. Deciphering biological characteristics of tumorigenic subpopulations in human colorectal cancer reveals cellular plasticity. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2016; 21:64. [PMID: 27904609 PMCID: PMC5122187 DOI: 10.4103/1735-1995.187355] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/08/2016] [Accepted: 05/02/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND It is supposed that human colorectal cancer consists of a phenotypically distinct population of tumorigenic cancer cells known as cancer stem cells (CSCs) which play a pivotal role in cancer progression, maintenance, metastasis, and the relapse. The aim of this effort was to investigate and compare biological characterizations of CD133+ with CD133- cell subsets isolated from both primary and metastatic human colorectal tumors. MATERIALS AND METHODS Using our optimized protocols, unfixed colorectal tumors were enzymatically and mechanically dissociated into single cells followed by evaluation of postdigestion viability. The obtained single cell suspensions were then subjected to cell sorting using magnetic beads according to CD133 marker. The resultant CD133+ and CD133- cell subsets were cultured in specific cell culture medium followed by aldehyde dehydrogenases (ALDH) activity assessment and flow cytometric analyses. RESULTS The results demonstrate that CD133+ cells have smaller size and lower complexity of intracellular structure, sphere formation ability, and ALDH enzyme activity while CD133- cells isolated from primary colon cancer samples were not able to form a sphere and did not show ALDH enzyme activity. Intriguingly, CD133- cells isolated from metastatic colorectal cancer specimen were able to form a sphere and shown ALDH enzyme activity. The present study indicates that our results are in agreement with SC theory and possibility of the existence of cellular plasticity among cancer subpopulations should be portrayed. CONCLUSION We also conclude that this cellular plasticity is greatly affected by tumor microenvironment cues and the role of CSCs niche in cancer therapeutic strategies should be precisely considered.
Collapse
Affiliation(s)
- Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afshin Namdar
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Reza Mirzaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
133
|
Wang L, Lin D, Fu Y, Lai M. Nuclear aldehyde dehydrogenase 1A1 (ALDH1A1) expression is a favorable prognostic indicator in colorectal carcinoma. Pathol Res Pract 2016; 212:791-9. [PMID: 27461829 DOI: 10.1016/j.prp.2016.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/22/2016] [Indexed: 12/25/2022]
Abstract
AIM To assess the expression pattern of aldehyde dehydrogenase 1A1 (ALDH1A1) in the normal-adenoma-primary carcinoma-liver metastasis sequence, and investigate its association with clinicopathological features and outcomes. METHODS Immunohistochemistry for ALDH1A1 was performed on two cohorts. One used tissue microarrays (TMAs) of 395 primary colorectal carcinomas, and the other used whole-tissue sections from 217 adenomas, 265 primary carcinomas, and 72 liver metastatic carcinomas. Both the epithelial and stromal expression of ALDH1A1 were evaluated. Both cytoplasmic and nuclear expression were assessed in epithelial cells. RESULTS In the TMA and whole-tissue cohorts, univariate analysis indicated that the cytoplasmic expression of ALDH1A1 cannot be considered as a prognosis marker of CRCs. In the whole-tissue cohort, nuclear expression was found in a small subgroup of CRC patients. Here, both univariate and multivariate analysis showed that nuclear expression was significantly associated with longer disease-specific survival. In addition, we found that nuclear expression in low-grade adenoma was predominant over high-grade adenoma, primary CRC and the correpsonding liver metastasis. CONCLUSIONS Whole-tissue is better than TMA for the detection of ALDH1A1 nuclear staining in CRC patients, and nuclear expression is associated with a better outcome. Cytoplasmic expression is not a suitable prognostic marker of CRC.
Collapse
Affiliation(s)
- Lili Wang
- Department of Pathology, School of Medicine, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, China; Key Laboratory of Disease Proteomics of Zhejiang Province, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, China
| | - Dongliang Lin
- Department of Pathology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao University, 266000 Qingdao, Shandong, China
| | - Ying Fu
- Judicial Evidence and Evaluation Center, Zhejiang University, Kaixuan Road 268, Hangzhou 310028, Zhejiang, China
| | - Maode Lai
- Department of Pathology, School of Medicine, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, China; Key Laboratory of Disease Proteomics of Zhejiang Province, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
134
|
Szajnik M, Czystowska-Kuźmicz M, Elishaev E, Whiteside TL. Biological markers of prognosis, response to therapy and outcome in ovarian carcinoma. Expert Rev Mol Diagn 2016; 16:811-26. [PMID: 27268121 DOI: 10.1080/14737159.2016.1194758] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Ovarian cancer (OvCa) is among the most common types of cancer and is the leading cause of death from gynecological malignancies in western countries. Cancer biomarkers have a potential for improving the management of OvCa patients at every point from screening and detection, diagnosis, prognosis, follow up, response to therapy and outcome. AREAS COVERED The literature search has indicated a number of candidate biomarkers have recently emerged that could facilitate the molecular definition of OvCa, providing information about prognosis and predicting response to therapy. These potentially promising biomarkers include immune cells and their products, tumor-derived exosomes, nucleic acids and epigenetic biomarkers. Expert commentary: Although most of the biomarkers available today require prospective validation, the development of noninvasive liquid biopsy-based monitoring promises to improve their utility for evaluations of prognosis, response to therapy and outcome in OvCa.
Collapse
Affiliation(s)
- Marta Szajnik
- a Department of Gynecology and Gynecologic Oncology , Military Institute of Medicine , Warsaw , Poland.,b Department of Immunology, Centre of Biostructure Research , Medical University of Warsaw , Warsaw , Poland
| | | | - Esther Elishaev
- c Department of Pathology , University of Pittsburgh, School of Medicine , Pittsburgh , PA , USA
| | - Theresa L Whiteside
- c Department of Pathology , University of Pittsburgh, School of Medicine , Pittsburgh , PA , USA.,d University of Pittsburgh Cancer Institute , Pittsburgh , PA , USA
| |
Collapse
|
135
|
Liu CC, Lin SP, Hsu HS, Yang SH, Lin CH, Yang MH, Hung MC, Hung SC. Suspension survival mediated by PP2A-STAT3-Col XVII determines tumour initiation and metastasis in cancer stem cells. Nat Commun 2016; 7:11798. [PMID: 27306323 PMCID: PMC4912642 DOI: 10.1038/ncomms11798] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/28/2016] [Indexed: 12/27/2022] Open
Abstract
Targeting tumour-initiating cells (TICs) would lead to new therapies to cure cancer. We previously demonstrated that TICs have the capacity to survive under suspension conditions, while other cells undergo anoikis. Here we show that TICs exhibit increased phosphorylation levels of S727STAT3 because of PP2A inactivation. Collagen 17 gene expression is upregulated in a STAT3-dependent manner, which also stabilizes laminin 5 and engages cells to form hemidesmosome-like junctions in response. Blocking the PP2A-S727STAT3-collagen 17 pathway inhibits the suspension survival of TICs and their ability to form tumours in mice, while activation of the same pathway increases the suspension survival and tumour-initiation capacities of bulk cancer cells. The S727STAT3 phosphorylation levels correlate with collagen 17 expression in colon tumour samples, and correlate inversely with survival. Finally, this signalling axis enhances the ability of TIC to form tumours in mouse models of malignant lung cancer pleural effusion and spontaneous colon cancer metastasis.
Collapse
Affiliation(s)
- Chen-Chi Liu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Shih-Pei Lin
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Han-Shui Hsu
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Shung-Haur Yang
- Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Surgery, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Chiu-Hua Lin
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Department of Oncology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Cancer Biology, College of Medicine, Center for Molecular Medicine, China Medical University and Hospital, Taichung 404, Taiwan
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shih-Chieh Hung
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Department of Medical Research and Education, Stem Cell Laboratory, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Department of Orthopedics, Integrative Stem Cell Center, China Medical University Hospital, Taichung 404, Taiwan
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
136
|
Aldehyde dehydrogenase 3A1 promotes multi-modality resistance and alters gene expression profile in human breast adenocarcinoma MCF-7 cells. Int J Biochem Cell Biol 2016; 77:120-128. [PMID: 27276244 DOI: 10.1016/j.biocel.2016.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 03/21/2016] [Accepted: 06/03/2016] [Indexed: 12/20/2022]
Abstract
Aldehyde dehydrogenases participate in a variety of cellular homeostatic mechanisms like metabolism, proliferation, differentiation, apoptosis, whereas recently, they have been implicated in normal and cancer cell stemness. We explored roles for ALDH3A1 in conferring resistance to chemotherapeutics/radiation/oxidative stress and whether ectopic overexpression of ALDH3A1 could lead to alterations of gene expression profile associated with cancer stem cell-like phenotype. MCF-7 cells were stably transfected either with an empty vector (mock) or human aldehyde dehydrogenase 3A1 cDNA. The expression of aldehyde dehydrogenase 3A1 in MCF-7 cells was associated with altered cell proliferation rate and enhanced cell resistance against various chemotherapeutic drugs (4-hydroxyperoxycyclophosphamide, doxorubicin, etoposide, and 5-fluorouracil). Aldehyde dehydrogenase 3A1 expression also led to increased tolerance of MCF-7 cells to gamma radiation and hydrogen peroxide-induced stress. Furthermore, aldehyde dehydrogenase 3A1-expressing MCF-7 cells exhibited gene up-regulation of cyclins A, B1, B2, and down-regulation of cyclin D1 as well as transcription factors p21, CXR4, Notch1, SOX2, SOX4, OCT4, and JAG1. When compared to mock cells, no changes were observed in mRNA levels of ABCA2 and ABCB1 protein pumps with only a minor decrease of the ABCG2 pump in the aldehyde dehydrogenase 3A1-expressing cells. Also, the adhesion molecules EpCAM and CD49F were also found to be up-regulated in aldehyde dehydrogenase 3A1expressing cells. Taken together, ALDH3A1 confers a multi-modality resistance phenotype in MCF-7 cells associated with slower growth rate, increased clonogenic capacity, and altered gene expression profile, underlining its significance in cell homeostasis.
Collapse
|
137
|
Wu D, Mou YP, Chen K, Cai JQ, Zhou YC, Pan Y, Xu XW, Zhou W, Gao JQ, Chen DW, Zhang RC. Aldehyde dehydrogenase 3A1 is robustly upregulated in gastric cancer stem-like cells and associated with tumorigenesis. Int J Oncol 2016; 49:611-22. [DOI: 10.3892/ijo.2016.3551] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/16/2016] [Indexed: 11/05/2022] Open
|
138
|
Giraud J, Failla LM, Pascussi JM, Lagerqvist EL, Ollier J, Finetti P, Bertucci F, Ya C, Gasmi I, Bourgaux JF, Prudhomme M, Mazard T, Ait-Arsa I, Houhou L, Birnbaum D, Pélegrin A, Vincent C, Ryall JG, Joubert D, Pannequin J, Hollande F. Autocrine Secretion of Progastrin Promotes the Survival and Self-Renewal of Colon Cancer Stem–like Cells. Cancer Res 2016; 76:3618-28. [DOI: 10.1158/0008-5472.can-15-1497] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 04/05/2016] [Indexed: 11/16/2022]
|
139
|
Ayub TH, Keyver-Paik MD, Debald M, Rostamzadeh B, Thiesler T, Schröder L, Barchet W, Abramian A, Kaiser C, Kristiansen G, Kuhn W, Kübler K. Accumulation of ALDH1-positive cells after neoadjuvant chemotherapy predicts treatment resistance and prognosticates poor outcome in ovarian cancer. Oncotarget 2016; 6:16437-48. [PMID: 25999351 PMCID: PMC4599280 DOI: 10.18632/oncotarget.4103] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 04/08/2015] [Indexed: 01/02/2023] Open
Abstract
Although ovarian cancer is a highly chemosensitive disease, it is only infrequently cured. One of the major reasons lies in the presence of drug-resistant cancer stem-like cells, sufficient to fuel recurrence. We phenotyped cancer stem-like cells by flow cytometry and immunohistochemistry in 55 matched samples before and after taxane/platinum-based neoadjuvant chemotherapy. All used markers of stemness (ALDH1, CD24, CD117, CD133) isolated low frequencies of malignant cells. ALDH1 was the most valuable marker for tracking stemness in vivo. The enrichment of ALDH1 expression after treatment was associated with a poor response to chemotherapy, with platinum resistance and independently prognosticated unfavorable outcome. Our results suggest that increased ALDH1 expression after treatment identifies patients with aggressive tumor phenotypes.
Collapse
Affiliation(s)
- Tiyasha H Ayub
- Department of Obstetrics and Gynecology, Center for Integrated Oncology, University of Bonn, Sigmund-Freud-Strasse, Bonn, Germany
| | - Mignon-Denise Keyver-Paik
- Department of Obstetrics and Gynecology, Center for Integrated Oncology, University of Bonn, Sigmund-Freud-Strasse, Bonn, Germany
| | - Manuel Debald
- Department of Obstetrics and Gynecology, Center for Integrated Oncology, University of Bonn, Sigmund-Freud-Strasse, Bonn, Germany
| | - Babak Rostamzadeh
- Institute of Pathology, Center for Integrated Oncology, Sigmund-Freud-Strasse, Bonn, Germany
| | - Thore Thiesler
- Institute of Pathology, Center for Integrated Oncology, Sigmund-Freud-Strasse, Bonn, Germany
| | - Lars Schröder
- Department of Obstetrics and Gynecology, Center for Integrated Oncology, University of Bonn, Sigmund-Freud-Strasse, Bonn, Germany
| | - Winfried Barchet
- Institute of Clinical Chemistry and Clinical Pharmacology, Center for Integrated Oncology, Sigmund-Freud-Strasse, Bonn, Germany
| | - Alina Abramian
- Department of Obstetrics and Gynecology, Center for Integrated Oncology, University of Bonn, Sigmund-Freud-Strasse, Bonn, Germany
| | - Christina Kaiser
- Department of Obstetrics and Gynecology, Center for Integrated Oncology, University of Bonn, Sigmund-Freud-Strasse, Bonn, Germany
| | - Glen Kristiansen
- Institute of Pathology, Center for Integrated Oncology, Sigmund-Freud-Strasse, Bonn, Germany
| | - Walther Kuhn
- Department of Obstetrics and Gynecology, Center for Integrated Oncology, University of Bonn, Sigmund-Freud-Strasse, Bonn, Germany
| | - Kirsten Kübler
- Department of Obstetrics and Gynecology, Center for Integrated Oncology, University of Bonn, Sigmund-Freud-Strasse, Bonn, Germany
| |
Collapse
|
140
|
Abstract
Aldehyde dehydrogenase 1 (ALDH1) activity has been used as a functional stem cell marker to isolate cancer stem cells in different cancer types, including ovarian cancer. However, which ALDH1’s isoenzymes are contributing to ALDH1 activity in ovarian cancer remains elusive. In addition, the prognostic value of an individual ALDH1 isoenzyme in ovarian cancer is not clear. Thus, we accessed the prognostic value of ALDH1 isoenzymes in ovarian cancer patients through the “Kaplan–Meier plotter” online database, which can be used to determine the effect of the genes on ovarian cancer prognosis. We found that high mRNA expression of five ALDH1 isoenzymes, such as ALDH1A1, ALDH1A2, ALDH1A3, ALDH1B1, and ALDH1L1, was not correlated with overall survival (OS) for all 1,306 ovarian cancer patients. In addition, all five of the ALDH1 isoenzymes’ high mRNA expression was found to be uncorrelated with OS in serous cancer or endometrioid cancer patients. However, ALDH1A3’s high mRNA expression is associated with worse OS in grade II ovarian cancer patients, hazard ratio (HR) 1.53 (1.14–2.07), P=0.005. ALDH1A2’s high mRNA expression is significantly associated with worse OS in TP53 wild-type ovarian cancer patients, HR 2.86 (1.56–5.08), P=0.00036. In addition, ALDH1A3’s high mRNA expression is significantly associated with better OS in TP53 wild-type ovarian cancer patients, HR 0.56 (0.32–1.00), P=0.04. Our results indicate that although ALDH1 isoenzyme mRNA might not be a prognostic marker for overall ovarian cancer patients, some isoenzymes, such as ALDH1A2 and ALDH1A3, might be a good prognostic marker for some types of ovarian cancer patients.
Collapse
Affiliation(s)
- Yu-Mei Ma
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang City, People's Republic of China
| | - Shan Zhao
- Department of Cancer Second Division, The Second Hospital of Hebei Medical University, Shijiazhuang City, People's Republic of China
| |
Collapse
|
141
|
Duan JJ, Cai J, Guo YF, Bian XW, Yu SC. ALDH1A3, a metabolic target for cancer diagnosis and therapy. Int J Cancer 2016; 139:965-75. [PMID: 26991532 DOI: 10.1002/ijc.30091] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 02/13/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023]
Abstract
Metabolism reprogramming has been linked with the initiation, metastasis, and recurrence of cancer. The aldehyde dehydrogenase (ALDH) family is the most important enzyme system for aldehyde metabolism. The human ALDH family is composed of 19 members. ALDH1A3 participates in various physiological processes in human cells by oxidizing all-trans-retinal to retinoic acid. ALDH1A3 expression is regulated by many factors, and it is associated with the development, progression, and prognosis of cancers. In addition, ALDH1A3 influences a diverse range of biological characteristics within cancer stem cells and can act as a marker for these cells. Thus, growing evidence indicates that ALDH1A3 has the potential to be used as a target for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Jiang-Jie Duan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Jiao Cai
- Battalion 7 of Cadet Brigade, Third Military Medical University, Chongqing, 400038, China
| | - Yu-Feng Guo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Shi-Cang Yu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
142
|
Ohashi R, Kawahara K, Fujii T, Takei H, Naito Z. Higher expression of EpCAM is associated with poor clinical and pathological responses in breast cancer patients undergoing neoadjuvant chemotherapy. Pathol Int 2016; 66:210-7. [DOI: 10.1111/pin.12404] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/31/2016] [Accepted: 02/25/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Ryuji Ohashi
- Department of Diagnostic Pathology; Nippon Medical School Hospital; Tokyo Japan
| | - Kiyoko Kawahara
- Department of Integrated Diagnostic Pathology; Nippon Medical School; Tokyo Japan
| | - Takenori Fujii
- Department of Integrated Diagnostic Pathology; Nippon Medical School; Tokyo Japan
| | - Hiroyuki Takei
- Division of Breast Surgery; Nippon Medical School Hospital; Tokyo Japan
| | - Zenya Naito
- Department of Diagnostic Pathology; Nippon Medical School Hospital; Tokyo Japan
- Department of Integrated Diagnostic Pathology; Nippon Medical School; Tokyo Japan
| |
Collapse
|
143
|
Canter RJ, Grossenbacher SK, Ames E, Murphy WJ. Immune targeting of cancer stem cells in gastrointestinal oncology. J Gastrointest Oncol 2016; 7:S1-S10. [PMID: 27034806 DOI: 10.3978/j.issn.2078-6891.2015.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cancer stem cell (CSC) hypothesis postulates that a sub-population of quiescent cells exist within tumors which are resistant to conventional cytotoxic/anti-proliferative therapies. It is these CSCs which then seed tumor relapse, even in cases of apparent complete response to systemic therapy. Therefore, therapies, such as immunotherapy, which add a specific anti-CSC strategy to standard cytoreductive treatments may provide a promising new direction for future cancer therapies. CSCs are an attractive target for immune therapies since, unlike chemotherapy or radiotherapy, immune effector cells do not specifically require target cells to be proliferating in order to effectively kill them. Although recent advances have been made in the development of novel systemic and targeted therapies for advanced gastro-intestinal (GI) malignancies, there remains an unmet need for durable new therapies for these refractory malignancies. Novel immunotherapeutic strategies targeting CSCs are in pre-clinical and clinical development across the spectrum of the immune system, including strategies utilizing adaptive immune cell-based effectors, innate immune effectors, as well as vaccine approaches. Lastly, since important CSC functions are affected by the tumor microenvironment, targeting of both cellular (myeloid derived suppressor cells and tumor-associated macrophages) and sub-cellular (cytokines, chemokines, and PD1/PDL1) components of the tumor microenvironment is under investigation in the immune targeting of CSCs. These efforts are adding to the significant optimism about the potential utility of immunotherapy to overcome cancer resistance mechanisms and cure greater numbers of patients with advanced malignancy.
Collapse
Affiliation(s)
- Robert J Canter
- 1 Division of Surgical Oncology, Department of Surgery, 2 Laboratory of Cancer Immunology, Department of Dermatology, 3 Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Steven K Grossenbacher
- 1 Division of Surgical Oncology, Department of Surgery, 2 Laboratory of Cancer Immunology, Department of Dermatology, 3 Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Erik Ames
- 1 Division of Surgical Oncology, Department of Surgery, 2 Laboratory of Cancer Immunology, Department of Dermatology, 3 Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - William J Murphy
- 1 Division of Surgical Oncology, Department of Surgery, 2 Laboratory of Cancer Immunology, Department of Dermatology, 3 Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
144
|
Treatment of colon cancer with oncolytic herpes simplex virus in preclinical models. Gene Ther 2016; 23:450-9. [PMID: 26871935 DOI: 10.1038/gt.2016.15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 01/19/2016] [Accepted: 01/25/2016] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs), which are a rare population in any type of cancer, including colon cancer, are tumorigenic and responsible for cancer recurrence and metastasis. CSCs have been isolated from a number of different solid tumors recently, although the isolation of CSCs in colon cancer is still challenging. We cultured colon cancer cells in stem cell medium to obtain colonosphere cells. These cells possessed the characteristics of CSCs, with a high capacity of tumorigenicity, migration and invasion in vitro and in vivo. The isolation and identification of CSCs have provided new targets for the therapeutics. Oncolytic herpes simplex viruses (oHSV) are an effective strategy for killing colon cancer cells in preclinical models. Here, we examined the efficacy of an oncolytic herpes simplex virus type 2 (oHSV2) in killing colon cancer cells and colon cancer stem-like cells (CSLCs). oHSV2 was found to be highly cytotoxic to the adherent and sphere cells in vitro, and oHSV2 treatment in vivo significantly inhibited tumor growth. This study demonstrates that oHSV2 is effective against colon cancer cells and colon CSLCs and could be a promising strategy for treating colon cancer patients.
Collapse
|
145
|
Seo EJ, Kwon YW, Jang IH, Kim DK, Lee SI, Choi EJ, Kim KH, Suh DS, Lee JH, Choi KU, Lee JW, Mok HJ, Kim KP, Matsumoto H, Aoki J, Kim JH. Autotaxin Regulates Maintenance of Ovarian Cancer Stem Cells through Lysophosphatidic Acid-Mediated Autocrine Mechanism. Stem Cells 2016; 34:551-64. [PMID: 26800320 DOI: 10.1002/stem.2279] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022]
Abstract
Ovarian cancer shows high mortality due to development of resistance to chemotherapy and relapse. Cancer stem cells (CSCs) have been suggested to be a major contributor in developing drug resistance and relapse in ovarian cancer. In this study, we isolated CSCs through sphere culture of A2780, SKOV3, OVCAR3 epithelial ovarian cancer cells and primary ovarian cancer cells from patients. We identified heat-stable factors secreted from ovarian CSCs stimulated migration and proliferation of CSCs. Mass spectrometry and ELISA analysis revealed that lysophosphatidic acid (LPA) was significantly elevated in CSC culture media compared with non-CSC culture media. Treatment of CSCs with LPA resulted in augmented CSC characteristics such as sphere-forming ability, resistance to anticancer drugs, tumorigenic potential in xenograft transplantation, and high expression of CSC-associated genes, including OCT4, SOX2, and aldehyde dehydrogenase 1. Treatment of CSCs with LPA receptor 1-specific inhibitors or silencing of LPA receptor 1 expression abrogated the LPA-stimulated CSC properties. Autotaxin, an LPA-producing enzyme, is highly secreted from ovarian CSCs, and pharmacological inhibition or knockdown of autotaxin markedly attenuated the LPA-producing, tumorigenic, and drug resistance potentials of CSCs. Clinicopathological analysis showed a significant survival disadvantage of patients with positive staining of autotaxin. In addition, we further identified that AKT1 activity was upregulated in ovarian CSCs through an LPA-dependent mechanism and silencing of AKT1 expression led to suppression of CSC characteristics. These results suggest that autotaxin-LPA-LPA receptor 1-AKT1 signaling axis is critical for maintaining CSC characteristics through an autocrine loop and provide a novel therapeutic target for ovarian CSCs.
Collapse
Affiliation(s)
- Eun Jin Seo
- Department of Physiology, Pusan National University, Yangsan, Republic of Korea
| | - Yang Woo Kwon
- Department of Physiology, Pusan National University, Yangsan, Republic of Korea
| | - Il Ho Jang
- Department of Physiology, Pusan National University, Yangsan, Republic of Korea
| | - Dae Kyoung Kim
- Department of Physiology, Pusan National University, Yangsan, Republic of Korea
| | - Soo In Lee
- Department of Physiology, Pusan National University, Yangsan, Republic of Korea
| | - Eun Jung Choi
- Department of Physiology, Pusan National University, Yangsan, Republic of Korea
| | - Ki-Hyung Kim
- Department of Obstetrics and Gynecology, Pusan National University, Yangsan, Republic of Korea
| | - Dong-Soo Suh
- Department of Obstetrics and Gynecology, Pusan National University, Yangsan, Republic of Korea
| | - Jeong Hee Lee
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Kyung Un Choi
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Jae Won Lee
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, Republic of Korea
| | - Hyuck Jun Mok
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, Republic of Korea
| | - Hirotaka Matsumoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Jae Ho Kim
- Department of Physiology, Pusan National University, Yangsan, Republic of Korea.,Research Institute of Convergence Biomedical Science and Technology, Pusan National University, Yangsan Hospital, Yangsan, Republic of Korea
| |
Collapse
|
146
|
Singh S, Arcaroli JJ, Orlicky DJ, Chen Y, Messersmith WA, Bagby S, Purkey A, Quackenbush KS, Thompson DC, Vasiliou V. Aldehyde Dehydrogenase 1B1 as a Modulator of Pancreatic Adenocarcinoma. Pancreas 2016; 45:117-22. [PMID: 26566217 PMCID: PMC5175203 DOI: 10.1097/mpa.0000000000000542] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The aim of the current study was to examine expression and the role, if any, of aldehyde dehydrogenase (ALDH)1B1 in pancreatic adenocarcinoma. METHODS A tissue microarray of 61 pancreatic cancer patients were evaluated for protein expression of ALDH1B1 by immunohistochemistry. The ALDH1B1 small interfering (RNA) was used to assess the contribution of ALDH1B1 on proliferation of pancreatic cancer cells. RESULTS In normal human pancreas, ALDH1B1 is abundantly expressed in glandular cells, but sparsely in the ducts (ALDH1B1 immunopositivity = 16.7 ± 1.7). In pancreatic ductal carcinoma, we found high ALDH1B1 expression in ductal cancerous tissues (ALDH1B1 immunopositivity = 197.2 ± 29.4). Analysis of ALDH1B1 expression in a human pancreatic adenocarcinoma tissue microarray showed the greatest expression in tumors that were more invasive. A variation in ALDH1B1 expression was also observed in 16 human pancreatic cancer cell lines. Knockdown of ALDH1B1 caused a 35% reduction in cell growth in the high ALDH1B1-expressing cell lines. CONCLUSIONS Our data show for the first time that ALDH1B1 is expressed at very high levels in human pancreatic cancer, and it contributes to proliferation in these tumor cells. These data suggest a potential modulatory role for ALDH1B1 in pancreatic cancer.
Collapse
MESH Headings
- Aldehyde Dehydrogenase/genetics
- Aldehyde Dehydrogenase/metabolism
- Aldehyde Dehydrogenase 1 Family
- Aldehyde Dehydrogenase, Mitochondrial
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Pancreatic Ductal/enzymology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cell Proliferation
- Female
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- Mice, Nude
- Neoplasm Invasiveness
- Pancreatic Neoplasms/enzymology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- RNA Interference
- Signal Transduction
- Tissue Array Analysis
- Transfection
- Tumor Burden
- Up-Regulation
Collapse
Affiliation(s)
- Surendra Singh
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus
| | - John J. Arcaroli
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver Anschutz Medical Campus
| | - David J. Orlicky
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus
| | - Ying Chen
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus
- Department of Environmental Health Sciences, Yale School of Public Health
| | - Wells A. Messersmith
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver Anschutz Medical Campus
| | - Stacey Bagby
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver Anschutz Medical Campus
| | - Alicia Purkey
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver Anschutz Medical Campus
| | - Kevin S. Quackenbush
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver Anschutz Medical Campus
| | - David C. Thompson
- Department of Clinical Pharmacy, University of Colorado Denver Anschutz Medical Campus
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health
| |
Collapse
|
147
|
Nagayama Y, Shimamura M, Mitsutake N. Cancer Stem Cells in the Thyroid. Front Endocrinol (Lausanne) 2016; 7:20. [PMID: 26973599 PMCID: PMC4770029 DOI: 10.3389/fendo.2016.00020] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/15/2016] [Indexed: 11/16/2022] Open
Abstract
The cancer stem cell (CSC) model posits that CSCs are a small, biologically distinct subpopulation of cancer cells in each tumor that have self-renewal and multi-lineage potential, and are critical for cancer initiation, metastasis, recurrence, and therapy-resistance. Numerous studies have linked CSCs to thyroid biology, but the candidate markers and signal transduction pathways that drive thyroid CSC growth are controversial, the origin(s) of thyroid CSCs remain elusive, and it is unclear whether thyroid CSC biology is consistent with the original hierarchical CSC model or the more recent dynamic CSC model. Here, we critically review the thyroid CSC literature with an emphasis on research that confirmed the presence of thyroid CSCs by in vitro sphere formation or in vivo tumor formation assays with dispersed cells from thyroid cancer tissues or bona fide thyroid cancer cell lines. Future perspectives of thyroid CSC research are also discussed.
Collapse
Affiliation(s)
- Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- *Correspondence: Yuji Nagayama,
| | - Mika Shimamura
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Norisato Mitsutake
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
148
|
van der Post RS, Gullo I, Oliveira C, Tang LH, Grabsch HI, O'Donovan M, Fitzgerald RC, van Krieken H, Carneiro F. Histopathological, Molecular, and Genetic Profile of Hereditary Diffuse Gastric Cancer: Current Knowledge and Challenges for the Future. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 908:371-91. [PMID: 27573781 DOI: 10.1007/978-3-319-41388-4_18] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Familial clustering is seen in 10 % of gastric cancer cases and approximately 1-3 % of gastric cancer arises in the setting of hereditary diffuse gastric cancer (HDGC). In families with HDGC, gastric cancer presents at young age. HDGC is predominantly caused by germline mutations in CDH1 and in a minority by mutations in other genes, including CTNNA1. Early stage HDGC is characterized by a few, up to dozens of intramucosal foci of signet ring cell carcinoma and its precursor lesions. These include in situ signet ring cell carcinoma and pagetoid spread of signet ring cells. Advanced HDGC presents as poorly cohesive/diffuse type carcinoma, normally with very few typical signet ring cells, and has a poor prognosis. Currently, it is unknown which factors drive the progression towards aggressive disease, but it is clear that most intramucosal lesions will not have such progression.Immunohistochemical profile of early and advanced HDGC is often characterized by abnormal E-cadherin immunoexpression, including absent or reduced membranous expression, as well as "dotted" or cytoplasmic expression. However, membranous expression of E-cadherin does not exclude HDGC. Intramucosal HDGC (pT1a) presents with an "indolent" phenotype, characterized by typical signet ring cells without immunoexpression of Ki-67 and p53, while advanced carcinomas (pT > 1) display an "aggressive" phenotype with pleomorphic cells, that are immunoreactive for Ki-67 and p53. These features show that the IHC profile is different between intramucosal and more advanced HDGC, providing evidence of phenotypic heterogeneity, and may help to define predictive biomarkers of progression from indolent to aggressive, widely invasive carcinomas.
Collapse
Affiliation(s)
- Rachel S van der Post
- Department of Pathology, Radboud University Medical Centre, 9101, Nijmegen, 6500 HB, The Netherlands
| | - Irene Gullo
- Department of Pathology, Centro Hospitalar de São João, Al. Prof. Hernâni Monteiro, Porto, 4200-319, Portugal.,Department of Pathology and Oncology, Faculdade de Medicina da Universidade do Porto (FMUP), Al. Prof. Hernâni Monteiro, Porto, 4200-319, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Porto, Portugal and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Dr. Roberto Frias S/N, Porto, 4200-465, Portugal
| | - Carla Oliveira
- Department of Pathology, Centro Hospitalar de São João, Al. Prof. Hernâni Monteiro, Porto, 4200-319, Portugal.,Department of Pathology and Oncology, Faculdade de Medicina da Universidade do Porto (FMUP), Al. Prof. Hernâni Monteiro, Porto, 4200-319, Portugal
| | - Laura H Tang
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Heike I Grabsch
- GROW School of Oncology and Developmental Biology and Department of Pathology, Maastricht University Medical Centre, Peter Debyelaan 25, Maastricht, 6229 HX, The Netherlands
| | - Maria O'Donovan
- Department of Histopathology, Cambridge University Hospitals NHS Trust, Cambridge, CB2 0QQ, UK
| | - Rebecca C Fitzgerald
- MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, 197, Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Han van Krieken
- Department of Pathology, Radboud University Medical Centre, 9101, Nijmegen, 6500 HB, The Netherlands
| | - Fátima Carneiro
- Department of Pathology, Centro Hospitalar de São João, Al. Prof. Hernâni Monteiro, Porto, 4200-319, Portugal. .,Department of Pathology and Oncology, Faculdade de Medicina da Universidade do Porto (FMUP), Al. Prof. Hernâni Monteiro, Porto, 4200-319, Portugal. .,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Porto, Portugal and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Dr. Roberto Frias S/N, Porto, 4200-465, Portugal.
| |
Collapse
|
149
|
Inhibitory effects of metformin at low concentration on epithelial-mesenchymal transition of CD44(+)CD117(+) ovarian cancer stem cells. Stem Cell Res Ther 2015; 6:262. [PMID: 26718286 PMCID: PMC4697317 DOI: 10.1186/s13287-015-0249-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/21/2015] [Accepted: 11/30/2015] [Indexed: 02/06/2023] Open
Abstract
Background Although metformin, a first-line drug for treating diabetes, may play an important role in inhibition of epithelial ovarian cancer cell growth and cancer stem cells (CSCs), metformin at low dose showed less effect on the proliferation of ovarian cancer cells. In this study, we evaluated the effect of metformin at low dose on ovarian CSCs in order to understand the molecular mechanisms underlying. Methods The inhibitory effects of metformin at los dose on proliferation and population of ovarian cancer cells including SKOV3 and A2780 were assessed by cell proliferation assay and flow cytometry. Quantitative real-time PCR assay on expression of Bcl-2, Survivin and Bax was performed to determine the effect of metformin at low dose on epithelial-mesenchymal transition (EMT) of cancer cells and CSCs. Tumor sphere formation assay was also performed to evaluate the effect of metformin on spheres forming ability of CSCs. The therapeutic efficacy and the anti-CSC effects of metformin at low dose were investigated by using both SKOV3 cells and primary tumor xenografts. In addition, the CSC frequency and EMT in tumor xenograft models were also assessed by flow cytometry and quantitative real-time PCR. Results Metformin at low dose did not affect the proliferation of ovarian cancer cells. However, it inhibited population of CD44+CD117+ selectively, neither CD133+ nor ALDH+ cells. It suppressed expression of snail2, twist and vimentin significantly in cancer cells and CD44+CD117+ CSCs in vitro. Low dose of metformin reduced survivin expression in CSCs. Low concentrations of metformin inhibited the secondary and the tertiary tumor sphere formation, decreased SKOV3 and primary ovarian tumor xenograft growth, enhanced the anticancer effect of cisplatin, and lowered the proportion of CD44+CD117+ CSCs in the xenograft tissue. Metformin was also associated with a reduction of snail2, twist, and vimentin in CD44+CD117+ ovarian CSCs in vivo. Conclusions Our results implicate that metformin at low dose inhibits selectively CD44+CD117+ ovarian CSCs through inhibition of EMT and potentiates the effect of cisplatin.
Collapse
|
150
|
Retinal Targets ALDH Positive Cancer Stem Cell and Alters the Phenotype of Highly Metastatic Osteosarcoma Cells. Sarcoma 2015; 2015:784954. [PMID: 26819566 PMCID: PMC4706975 DOI: 10.1155/2015/784954] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/17/2015] [Indexed: 12/28/2022] Open
Abstract
Aldehyde dehydrogenase (ALDH) is a cancer stem cell marker. Retinoic acid has antitumor properties, including the induction of apoptosis and inhibition of proliferation. Retinal, the precursor of retinoic acid, can be oxidized to retinoic acid by dehydrogenases, including ALDH. We hypothesized that retinal could potentially be transformed to retinoic acid with higher efficiency by cancer stem cells, due to the higher ALDH activity. We previously observed that ALDH activity is greater in highly metastatic K7M2 osteosarcoma (OS) cells than in nonmetastatic K12 OS cells. We also demonstrated that ALDH activity correlates with clinical metastases in bone sarcoma patients, suggesting that ALDH may be a therapeutic target specific to cells with high metastatic potential. Our current results demonstrated that retinal preferentially affected the phenotypes of ALDH-high K7M2 cells in contrast to ALDH-low K12 cells, which could be mediated by the more efficient transformation of retinal to retinoic acid by ALDH in K7M2 cells. Retinal treatment of highly metastatic K7M2 cells decreased their proliferation, invasion capacity, and resistance to oxidative stress. Retinal altered the expression of metastasis-related genes. These observations indicate that retinal may be used to specifically target metastatic cancer stem cells in OS.
Collapse
|