101
|
Ubeyratne KH, Madalagama RP, Liu X, Pathirage S, Ariyawansa S, Wong MKL, Tun HM. Phenotypic and genotypic characterization of antibiotic-resistant Salmonella isolated from humans, aquaculture, and poultry in Sri Lanka: A retrospective study. J Infect Public Health 2023; 16 Suppl 1:203-209. [PMID: 37935606 DOI: 10.1016/j.jiph.2023.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND In Sri Lanka, foodborne diseases caused by nontyphoidal Salmonella are of increasing concern. We therefore aimed to characterize the dominant Salmonella serovars in humans, poultry, and aquaculture through a One Health approach. METHODS We collected isolates from different sectors, confirmed their identities using PCR, screened their antibiotic resistance profiles, and determined their antibiotic resistance genes based on whole-genome sequencing. RESULTS Of the 75 Salmonella isolates identified, the majority of serotypes were unidentified. Both Salmonella enterica serovar Enteritidis (S. Enteritidis) and Salmonella enterica serovar Typhimurium (S. Typhimurium) could be isolated from human sources and were also found prevalent in the poultry sector. ST36, ST11 and ST1541 were the dominant serotypes of S. Typhimurium and S. Enteritidis, respectively. Alarmingly, 4% (1/25) of poultry Salmonella isolates were resistant to ciprofloxacin, suggesting an emergence of this phenotype. Moreover, virulence genes were very diverse among S. Enteritidis and S. Typhimurium isolates. CONCLUSIONS With the diversity of unidentified serotypes found and the detection of emerging resistances, our study highlights the importance of a One Health approach to monitoring antibiotic resistance. For public health initiatives in Sri Lanka to be successful in mitigating salmonellosis, all three sectors - humans, aquaculture, and poultry - must be tackled concomitantly in a coordinated manner under the One Health approach because antibiotic resistance genes, and even specific sequence types, may be able to spread across the aforementioned sectors. We anticipate that our results will inform public health policies in Sri Lanka to tackle foodborne illnesses.
Collapse
Affiliation(s)
- Kamalika H Ubeyratne
- Central Veterinary Investigation Center, Veterinary Research Institute, Gannoruwa, Peradeniya 20400, Sri Lanka
| | - Roshan P Madalagama
- Bacteriology Division, Veterinary Research Institute, Gannoruwa, Peradeniya 20400, Sri Lanka
| | - Xin Liu
- Microbiota I-Center (MagIC), The Chinese University of Hong Kong, Hong Kong SAR, China; System Microbiology and Antimicrobial Resistance (SMART) Lab, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sujatha Pathirage
- Enteric Laboratory, Medical Research Institute, Colombo 08, Sri Lanka
| | - Sujeewa Ariyawansa
- National Aquatic Resources Research & Development Agency, Crow Island, Colombo 15, Sri Lanka
| | - Matthew K L Wong
- Microbiota I-Center (MagIC), The Chinese University of Hong Kong, Hong Kong SAR, China; System Microbiology and Antimicrobial Resistance (SMART) Lab, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hein M Tun
- Microbiota I-Center (MagIC), The Chinese University of Hong Kong, Hong Kong SAR, China; System Microbiology and Antimicrobial Resistance (SMART) Lab, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
102
|
Lamas A, Garrido-Maestu A, Prieto A, Cepeda A, Franco CM. Whole genome sequencing in the palm of your hand: how to implement a MinION Galaxy-based workflow in a food safety laboratory for rapid Salmonella spp. serotyping, virulence, and antimicrobial resistance gene identification. Front Microbiol 2023; 14:1254692. [PMID: 38107857 PMCID: PMC10722185 DOI: 10.3389/fmicb.2023.1254692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/02/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Whole Genome Sequencing (WGS) implementation in food safety laboratories is a significant advancement in food pathogen control and outbreak tracking. However, the initial investment for acquiring next-generation sequencing platforms and the need for bioinformatic skills represented an obstacle for the widespread use of WGS. Long-reading technologies, such as the one developed by Oxford Nanopore Technologies, can be easily implemented with a minor initial investment and with simple protocols that can be performed with basic laboratory equipment. Methods Herein, we report a simple MinION Galaxy-based workflow with analysis parameters that allow its implementation in food safety laboratories with limited computer resources and without previous knowledge in bioinformatics for rapid Salmonella serotyping, virulence, and identification of antimicrobial resistance genes. For that purpose, the single use Flongle flow cells, along with the MinION Mk1B for WGS, and the community-driven web-based analysis platform Galaxy for bioinformatic analysis was used. Three strains belonging to three different serotypes, monophasic S. Typhimurium, S. Grancanaria, and S. Senftenberg, were sequenced. Results After 24 h of sequencing, enough coverage was achieved in order to perform de novo assembly in all three strains. After evaluating different tools, Flye de novo assemblies with medaka polishing were shown to be optimal for in silico Salmonella spp. serotyping with SISRT tool followed by antimicrobial and virulence gene identification with ABRicate. Discussion The implementation of the present workflow in food safety laboratories with limited computer resources allows a rapid characterization of Salmonella spp. isolates.
Collapse
Affiliation(s)
- Alexandre Lamas
- Food Hygiene, Inspection and Control Laboratory (Lhica), Department of Analytical Chemistry, Nutrition and Bromatology, Veterinary School, Universidade da Santiago de Compostela, Lugo, Spain
| | - Alejandro Garrido-Maestu
- Food Quality and Safety Research Group, International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Alberto Prieto
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | - Alberto Cepeda
- Food Hygiene, Inspection and Control Laboratory (Lhica), Department of Analytical Chemistry, Nutrition and Bromatology, Veterinary School, Universidade da Santiago de Compostela, Lugo, Spain
| | - Carlos Manuel Franco
- Food Hygiene, Inspection and Control Laboratory (Lhica), Department of Analytical Chemistry, Nutrition and Bromatology, Veterinary School, Universidade da Santiago de Compostela, Lugo, Spain
| |
Collapse
|
103
|
Solís D, Cordero N, Quezada-Reyes M, Escobar-Astete C, Toro M, Navarrete P, Reyes-Jara A. Prevalence of Salmonella in Eggs from Conventional and Cage-Free Egg Production Systems and the Role of Consumers in Reducing Household Contamination. Foods 2023; 12:4300. [PMID: 38231772 DOI: 10.3390/foods12234300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
Salmonella is one of the leading causes of foodborne disease worldwide, usually related to contaminated poultry or poultry products, such as eggs. Since egg contamination with Salmonella depends on multiple factors that make it challenging to control, consumers' knowledge about food safety and the proper handling of eggs is crucial. The aims of the study were (1) to determine the prevalence of Salmonella in eggs from conventional and alternative production systems, (2) to characterize the Salmonella isolates according to phenotypic-genotypic and antimicrobial-resistant traits, and (3) to understand how consumers manage the hazards related to egg contamination in the household. A total of 426 egg samples were analyzed (conventional systems = 240; alternative systems = 186). Culture-based and molecular microbiological methods were used to identify Salmonella and bioinformatics analysis of whole genome sequences was used to determine the serotype and antimicrobial-resistant genes. Salmonella enterica serotype Enteritidis was detected only in eggs from alternative systems (1.1%, 2/186). Isolates showed resistance to nalidixic acid (100%, 2/2), and the aac(6')-Iaa gene and a mutation in the gyrA gene were identified in both isolates. Overall, consumers demonstrated knowledge regarding food safety; however, many still engage in practices that pose a risk of acquiring foodborne illnesses.
Collapse
Affiliation(s)
- Doina Solís
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 8330015, Chile
| | - Ninoska Cordero
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 8330015, Chile
| | - Maritza Quezada-Reyes
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 8330015, Chile
| | - Carla Escobar-Astete
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 8330015, Chile
| | - Magaly Toro
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 8330015, Chile
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, MD 20740, USA
| | - Paola Navarrete
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 8330015, Chile
| | - Angélica Reyes-Jara
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 8330015, Chile
| |
Collapse
|
104
|
Ju Z, Cui L, Lei C, Song M, Chen X, Liao Z, Zhang T, Wang H. Whole-Genome Sequencing Analysis of Non-Typhoidal Salmonella Isolated from Breeder Poultry Farm Sources in China, 2020-2021. Antibiotics (Basel) 2023; 12:1642. [PMID: 37998844 PMCID: PMC10669045 DOI: 10.3390/antibiotics12111642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Non-typhoidal salmonellosis is a dangerous foodborne disease that causes enormous economic loss and threatens public health worldwide. The consumption of food, especially poultry or poultry products, contaminated with non-typhoidal Salmonella (NTS) is the main cause of human salmonellosis. To date, no research has identified the molecular epidemiological characteristics of NTS strains isolated from breeder chicken farms in different provinces of China. In our study, we investigated the antimicrobial resistance, phylogenetic relationships, presence of antimicrobial resistance and virulence genes, and plasmids of NTS isolates recovered from breeder chicken farms in five provinces of China between 2020 and 2021 by using a whole-genome sequencing (WGS) approach and phenotypic methods. All sequenced isolates belonged to six serovars with seven sequence types. Nearly half of the isolates (44.87%) showed phenotypic resistance to at least three classes of antimicrobials. Salmonella enterica serotype Kentucky harbored more antimicrobial resistance genes than the others, which was highly consistent with phenotypic resistance. Furthermore, the carried rate of 104 out of 135 detected virulence genes was 100%. Overall, our WGS results highlight the need for the continuous monitoring of, and additional studies on, the antimicrobial resistance of NTS.
Collapse
Affiliation(s)
- Zijing Ju
- Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610017, China; (Z.J.); (C.L.); (X.C.); (Z.L.); (T.Z.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Lulu Cui
- Shandong Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (L.C.); (M.S.)
| | - Changwei Lei
- Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610017, China; (Z.J.); (C.L.); (X.C.); (Z.L.); (T.Z.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Mengze Song
- Shandong Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (L.C.); (M.S.)
| | - Xuan Chen
- Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610017, China; (Z.J.); (C.L.); (X.C.); (Z.L.); (T.Z.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Ziwei Liao
- Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610017, China; (Z.J.); (C.L.); (X.C.); (Z.L.); (T.Z.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Tiejun Zhang
- Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610017, China; (Z.J.); (C.L.); (X.C.); (Z.L.); (T.Z.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Hongning Wang
- Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610017, China; (Z.J.); (C.L.); (X.C.); (Z.L.); (T.Z.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| |
Collapse
|
105
|
Bartsch LJ, Borowiak M, Deneke C, Gruetzke J, Hammerl JA, Malorny B, Szabo I, Alter T, Nguyen KK, Fischer J. Genetic characterization of a multidrug-resistant Salmonella enterica serovar Agona isolated from a dietary supplement in Germany. Front Microbiol 2023; 14:1284929. [PMID: 38033583 PMCID: PMC10686068 DOI: 10.3389/fmicb.2023.1284929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Salmonella enterica subsp. enterica serovar Agona has a history of causing food-borne outbreaks and any emergence of multidrug-resistant (MDR) isolates in novel food products is of concern. Particularly, in food products frequently consumed without sufficient heating prior to consumption. Here, we report about the MDR isolate, 18-SA00377, which had been isolated from a dietary supplement in Germany in 2018 and submitted to the German National Reference Laboratory for Salmonella. WGS-based comparative genetic analyses were conducted to find a potential reservoir of the isolate itself or mobile genetic elements associated with MDR. As a phylogenetic analysis did not yield any closely related S. Agona isolates, either globally or from Germany, a detailed analysis of the largest plasmid (295,499 bp) was performed as it is the main carrier of resistances. A combined approach of long-read and short-read sequencing enabled the assembly of the isolate's chromosome and its four plasmids. Their characterization revealed the presence of 23 different antibiotic resistance genes (ARGs), conferring resistance to 12 different antibiotic drug classes, as well as genes conferring resistance to six different heavy metals. The largest plasmid, pSE18-SA00377-1, belongs to the IncHI2 plasmid family and carries 16 ARGs, that are organized as two distinct clusters, with each ARG associated with putative composite transposons. Through a two-pronged approach, highly similar plasmids to pSE18-SA00377-1 were identified in the NCBI database and a search for Salmonella isolates with a highly similar ARG resistance profile was conducted. Mapping and structural comparisons between pSE18-SA00377-1 and these plasmids and Salmonella isolates showed that both the plasmid backbone and identical or similar ARG clusters can be found not only in Salmonella isolates, originating mostly from a wide variety of livestock, but also in a diverse range of bacterial genera of varying geographical origins and isolation sources. Thus, it can be speculated that the host range of pSE18-SA00377-1 is not restricted to Salmonella and its spread already occurred in different bacterial populations. Overall, this hints at a complex history for pSE18-SA00377-1 and highlights the importance of surveilling multidrug-resistant S. enterica isolates, especially in novel food items that are not yet heavily regulated.
Collapse
Affiliation(s)
- Lee Julia Bartsch
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Maria Borowiak
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Carlus Deneke
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Josephine Gruetzke
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jens-Andre Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Burkhard Malorny
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Istvan Szabo
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Thomas Alter
- Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | | - Jennie Fischer
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
106
|
Feng Y, Pan H, Zheng B, Li F, Teng L, Jiang Z, Feng M, Zhou X, Peng X, Xu X, Wang H, Wu B, Xiao Y, Baker S, Zhao G, Yue M. An integrated nationwide genomics study reveals transmission modes of typhoid fever in China. mBio 2023; 14:e0133323. [PMID: 37800953 PMCID: PMC10653838 DOI: 10.1128/mbio.01333-23] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/16/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Typhoid fever is a life-threatening disease caused by Salmonella enterica serovar Typhi, resulting in a significant disease burden across developing countries. Historically, China was very much close to the global epicenter of typhoid, but the role of typhoid transmission within China and among epicenter remains overlooked in previous investigations. By using newly produced genomics on a national scale, we clarify the complex local and global transmission history of such a notorious disease agent in China spanning the most recent five decades, which largely undermines the global public health network.
Collapse
Affiliation(s)
- Ye Feng
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hang Pan
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Li
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Lin Teng
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Zhijie Jiang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Mengyao Feng
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Xiao Zhou
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Xianqi Peng
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Xuebin Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Haoqiu Wang
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Beibei Wu
- Zhejiang Province Center for Disease Control and Prevention, Hangzhou, China
- School of Public Health and Managemet, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Stephen Baker
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Guoping Zhao
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Min Yue
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| |
Collapse
|
107
|
Wang Z, Gu D, Hong Y, Hu Y, Gu J, Tang Y, Zhou X, Zhang Y, Jiao X, Li Q. Microevolution of Salmonella 4,[5],12:i:- derived from Salmonella enterica serovar Typhimurium through complicated transpositions. Cell Rep 2023; 42:113227. [PMID: 37837619 DOI: 10.1016/j.celrep.2023.113227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/28/2023] [Accepted: 09/21/2023] [Indexed: 10/16/2023] Open
Abstract
Salmonella enterica subsp. enterica serovar 4,[5],12:i:- (Salmonella 4,[5],12:i:-), derived from S. Typhimurium, has become the dominant serotype causing human salmonellosis. In this study, we define the genetic mechanism of the generation of Salmonella 4,[5],12:i:- from S. Typhimurium through complicated transpositions and demonstrate that Salmonella 4,[5],12:i:- displays more efficient colonization and survival abilities in mice than its parent S. Typhimurium strain. We identified intermediate strains carrying both resistance regions (RRs) and the fljAB operon for the generation of Salmonella 4,[5],12:i:-. The insertion of RR3 into the chromosomal hin-iroB site of S. Typhimurium produced RR3-S. Typhimurium as a primary intermediate. Salmonella 4,[5],12:i:- was then produced by replacing the fljAB operon and/or its flanking sequences through intramolecular transpositions mediated by IS26 and/or IS1R elements in RR3-S. Typhimurium, which was further confirmed both in vitro and in vivo. Overall, we demonstrate the molecular mechanism underlying the origin, generation, and advantage of RRs-Salmonella 4,[5],12:i:- from S. Typhimurium.
Collapse
Affiliation(s)
- Zhenyu Wang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China
| | - Dan Gu
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China
| | - Yaming Hong
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China
| | - Yachen Hu
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China
| | - Jiaojie Gu
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China
| | - Yuanyue Tang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China
| | - Xiaohui Zhou
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269, USA; School of Public Health and Emergency Management, Southern University of Science and Technology, 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Yunzeng Zhang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China.
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China.
| | - Qiuchun Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, 48 Wenhui East Road, Yangzhou 225000, Jiangsu, China.
| |
Collapse
|
108
|
Gong B, Feng Y, Zhuo Z, Song J, Chen X, Li X. Epidemiological, Genetic, and Phenotypic Characteristics of Non-Typhoidal Salmonella in Young Children, as Obtained from a Tertiary Hospital in Guangzhou, China. Microorganisms 2023; 11:2433. [PMID: 37894091 PMCID: PMC10609151 DOI: 10.3390/microorganisms11102433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Gastroenteritis caused by non-typhoidal Salmonella (NTS) is a significant disease in childhood, ranking as the seventh-leading cause of diarrhea mortality in children aged < 5 years. To understand the epidemiological, genetic, and phenotypic characteristics of NTS, 465 anal swabs from children aged < 5 years in a tertiary hospital in Conghua District, Guangzhou, China, were collected from June to October 2021. An average prevalence of 35.27% (164/465) was observed, with whole genome sequencing identifying 11 serotypes, among which Salmonella 1,4,[5],12:i:- was the most prevalent (65.24%, 107/164). Meanwhile, ST34 was found to be the predominant subtype. Children who are breastfed, eat fresh food, and have good hygiene habits show a relatively low prevalence of NTS. Fever is a common symptom that may be caused by NTS infection. Antimicrobial resistance testing revealed that the majority of strains were resistant to tetracycline (83.5%) and ampicillin (82.3%), with multi-drug resistance (MDR) observed in 50.61% (83/164) of all strains tested. The predominant resistance spectrum presents as tetracycline-ampicillin-chloramphenicol-trimethoprim-sulfamethoxazole (30.49%, 50/164). The antimicrobial resistance rates (2.4%, 9.8%, 9.8%, 10.4%, 9.1%, and 3.7%, respectively) of cephalosporins (cefepime, cefuroxime, cefuroxime axetil, ceftriaxone, ceftazidime, and cefoxitin) were low. Therefore, continued surveillance of the prevalence and MDR profiles of NTS, along with the rational use antibiotics, is required. This protocol is significant for preventing further dissemination of NTS and formulating effective prevention and control strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoyan Li
- Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510000, China; (B.G.)
| |
Collapse
|
109
|
Konyali D, Guzel M, Soyer Y. Genomic Characterization of Salmonella enterica Resistant to Cephalosporin, Quinolones, And Macrolides. Curr Microbiol 2023; 80:344. [PMID: 37725171 DOI: 10.1007/s00284-023-03458-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 08/26/2023] [Indexed: 09/21/2023]
Abstract
Salmonella enterica subsp. enterica (Salmonella), one of the most common causes of bacterial foodborne infections, causes salmonellosis, which is usually self-limiting. However, immunocompromised individuals and children often require antimicrobial therapy. The first line of treatment includes fluoroquinolones, to which Salmonella has emerging resistance worldwide. In fact, the WHO classified fluoroquinolone-resistant Salmonella as a high-priority pathogen. Salmonella carrying genes such as blaCTX and blaCMY can show resistance to cephalosporins which are also regularly used for treatment. This study focused on determining the antimicrobial resistance of 373 Salmonella isolates, collected from various foods, humans, and animals, as well as the environmental sludge between 2005 and 2020 in Türkiye. Phenotypic analysis of the resistance was determined by disk diffusion method. Isolates resistant to any of the following: ciprofloxacin, pefloxacin, azithromycin, and ceftriaxone were tested for the presence of quinolone, beta-lactamase, and/or macrolide resistance genes by PCR and gel electrophoresis. Five multi-drug-resistant isolates were then further whole genome sequenced and analyzed. More than 32% (n = 120) of the isolates showed resistance to fluoroquinolones by disc diffusion. A significant number of quinolone-resistant isolates are presented with mutated parC and gyrA. Furthermore, 42% (n = 106) of the isolates were resistant to azithromycin and 10% of them harbored mphA gene. On the bright side, only eight isolates showed resistance to ceftriaxone. Overall, we observed an increase in the number of isolates showing resistance to fluoroquinolones and azithromycin over the years and low resistance to ceftriaxone.
Collapse
Affiliation(s)
- Diala Konyali
- Department of Biotechnology, Middle East Technical University, Ankara, Türkiye
| | - Mustafa Guzel
- Department of Biotechnology, Middle East Technical University, Ankara, Türkiye
- Department of Food Engineering, Hitit University, Corum, Türkiye
| | - Yeşim Soyer
- Department of Biotechnology, Middle East Technical University, Ankara, Türkiye.
- Faculty of Engineering, Department of Food Engineering, Middle East Technical University, Ankara, Türkiye.
| |
Collapse
|
110
|
Peng K, Deng J, Zou N, Sun X, Huang W, Li R, Yang X. Emergence of the fourth mobile sulfonamide resistance gene sul4 in clinical Salmonella enterica. Front Microbiol 2023; 14:1242369. [PMID: 37744910 PMCID: PMC10512727 DOI: 10.3389/fmicb.2023.1242369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
The fourth mobile sulfonamide resistance gene sul4 has been discovered in many metagenomic datasets. However, there is no reports of it in cultured bacteria. In this study, a sul4 positive clinical Salmonella enterica SC2020597 was obtained by conventional Salmonella isolation methods and characterized by species identification and antimicrobial susceptibility testing. Meanwhile, the genomic DNA was sequenced using both long-read and short-read methods. Following that, the complete genome was analyzed by bioinformatic methods. The sul4 gene in S. enterica SC2020597 differed from the sul4 identified in metagenomic data by one amino acid and could confer full resistance to sulfamethoxazole. Genetic location analysis showed that the sul4 in SC2020597 was carried by a complex chromosomally integrated hybrid plasmid. ISCR20-like was strongly associated with the mobilization of sul4 by core genetic context analysis. To the best of our knowledge, this is the first report of the emergence of sul4 in clinically cultured S. enterica. More important, the sul4 has the potential to spread to other bacteria with the help of mobile elements.
Collapse
Affiliation(s)
- Kai Peng
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianping Deng
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, China
| | - Nianli Zou
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, China
| | - Xinran Sun
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Weifeng Huang
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, Sichuan, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaorong Yang
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, Sichuan, China
| |
Collapse
|
111
|
Richards AK, Kue S, Norris CG, Shariat NW. Genomic and phenotypic characterization of Salmonella enterica serovar Kentucky. Microb Genom 2023; 9:001089. [PMID: 37750759 PMCID: PMC10569734 DOI: 10.1099/mgen.0.001089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/27/2023] [Indexed: 09/27/2023] Open
Abstract
Non-typhoidal Salmonella are extremely diverse and different serovars can exhibit varied phenotypes, including host adaptation and the ability to cause clinical illness in animals and humans. In the USA, Salmonella enterica serovar Kentucky is infrequently found to cause human illness, despite being the top serovar isolated from broiler chickens. Conversely, in Europe, this serovar falls in the top 10 serovars linked to human salmonellosis. Serovar Kentucky is polyphyletic and has two lineages, Kentucky-I and Kentucky-II; isolates belonging to Kentucky-I are frequently isolated from poultry in the USA, while Kentucky-II isolates tend to be associated with human illness. In this study, we analysed whole-genome sequences and associated metadata deposited in public databases between 2017 and 2021 by federal agencies to determine serovar Kentucky incidence across different animal and human sources. Of 5151 genomes, 90.3 % were from isolates that came from broilers, while 5.9 % were from humans and 3.0 % were from cattle. Kentucky-I isolates were associated with broilers, while isolates belonging to Kentucky-II and a new lineage, Kentucky-III, were more commonly associated with cattle and humans. Very few serovar Kentucky isolates were associated with turkey and swine sources. Phylogenetic analyses showed that Kentucky-III genomes were more closely related to Kentucky-I, and this was confirmed by CRISPR-typing and multilocus sequence typing (MLST). In a macrophage assay, serovar Kentucky-II isolates were able to replicate over eight times better than Kentucky-I isolates. Analysis of virulence factors showed unique patterns across these three groups, and these differences may be linked to their association with different hosts.
Collapse
Affiliation(s)
- Amber K. Richards
- Department of Population Health, University of Georgia, Athens, GA, USA
| | - Song Kue
- Department of Population Health, University of Georgia, Athens, GA, USA
| | - Connor G. Norris
- Department of Population Health, University of Georgia, Athens, GA, USA
| | - Nikki W. Shariat
- Department of Population Health, University of Georgia, Athens, GA, USA
- Center for Food Safety, University of Georgia, Griffin, GA, USA
| |
Collapse
|
112
|
She Y, Jiang Y, Luo M, Duan X, Xie L, Yang C, Xu L, Fu Y, Lv Z, Cai R, Li Y, Qiu Y, Hu L, Shi X, Wang L, Wu S, Chen Q, Jiang M, Hu Q. Emergence of chromosomally located bla CTX-M-14b and qnrS1 in Salmonella enterica serotype Kentucky ST198 in China. Int J Antimicrob Agents 2023; 62:106896. [PMID: 37343807 DOI: 10.1016/j.ijantimicag.2023.106896] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/23/2023]
Abstract
Highly fluoroquinolone-resistant Salmonella enterica serotype Kentucky has become widespread in recent years, largely associated with the spread of sequence type 198 (ST198), which often leads to multidrug resistance. Research on the genomic epidemiology of Salmonella Kentucky in China is currently uncommon. In this study, we analysed the genomic epidemiology and antimicrobial resistance characteristics of Salmonella Kentucky ST198 collected from foodborne disease surveillance in Shenzhen, China, during 2010-2021, using whole-genome sequencing and antibiotic susceptibility testing. In addition, 158 global Salmonella Kentucky ST198 genomes were included for comparison. Among 8559 Salmonella isolates, 43 Salmonella Kentucky ST198 isolates were detected during 2010-2021. The global Salmonella Kentucky ST198 evolutionary tree was divided into five clades, with Shenzhen isolates distributed in clades 198.1, 198.2-1 and 198.2-2, mainly clustered with Chinese strains. Strains in clade 198.2 dominated in Shenzhen and all of them showed multidrug resistance. Nine strains showed high resistance to ceftriaxone, which was associated with blaCTX-M-14b in clade 198.2-1, which was demonstrated to be located on the chromosome. Fifteen strains showed high resistance to ciprofloxacin, which was associated with carriage of qnrS1 in clade 198.2-2. qnrS1 was first located on an IncHI2 plasmid and then transferred into the chromosome. Here we report the genomic and antimicrobial resistance characterisation of Salmonella Kentucky ST198 in Shenzhen. Of particular concern, we identified for the first time a clade 198.2-1 isolate carrying blaCTX-M-14b as well as chromosomally located qnrS1 in clade 198.2-2 of Salmonella Kentucky ST198 in China, highlighting the necessity of surveillance of clade 198.2.
Collapse
Affiliation(s)
- Yiying She
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yixiang Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Miaomiao Luo
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiangke Duan
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Li Xie
- University of South China, Hengyang, China
| | - Chao Yang
- Institute Pasteur of Shanghai Chinese Academy of Sciences, Shanghai, China
| | - Liangcai Xu
- Shenzhen Futian District Center for Disease Control and Prevention, Shenzhen, China
| | - Yulin Fu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Ziquan Lv
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Rui Cai
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yinghui Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yaqun Qiu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Lulu Hu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiaolu Shi
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Lei Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shuang Wu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qiongcheng Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Min Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| | - Qinghua Hu
- School of Public Health, Shanxi Medical University, Taiyuan, China; Shenzhen Center for Disease Control and Prevention, Shenzhen, China; Shenzhen Research Center for Communicable Disease Control and Prevention, Chinese Academy of Medical Sciences, Shenzhen, China.
| |
Collapse
|
113
|
Nuanmuang N, Leekitcharoenphon P, Njage PMK, Gmeiner A, Aarestrup FM. An Overview of Antimicrobial Resistance Profiles of Publicly Available Salmonella Genomes with Sufficient Quality and Metadata. Foodborne Pathog Dis 2023; 20:405-413. [PMID: 37540138 PMCID: PMC10510693 DOI: 10.1089/fpd.2022.0080] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Salmonella enterica (S. enterica) is a commensal organism or pathogen causing diseases in animals and humans, as well as widespread in the environment. Antimicrobial resistance (AMR) has increasingly affected both animal and human health and continues to raise public health concerns. A decade ago, it was estimated that the increased use of whole genome sequencing (WGS) combined with sharing of public data would drastically change and improve the surveillance and understanding of Salmonella epidemiology and AMR. This study aimed to evaluate the current usefulness of public WGS data for Salmonella surveillance and to investigate the associations between serovars, antibiotic resistance genes (ARGs), and metadata. Out of 191,306 Salmonella genomes deposited in European Nucleotide Archive and NCBI databases, 47,452 WGS with sufficient minimum metadata (country, year, and source) of S. enterica were retrieved from 116 countries and isolated between 1905 and 2020. For in silico analysis of the WGS data, KmerFinder, SISTR, and ResFinder were used for species, serovars, and AMR identification, respectively. The results showed that the five common isolation sources of S. enterica are human (29.10%), avian (22.50%), environment (11.89%), water (9.33%), and swine (6.62%). The most common ARG profiles for each class of antimicrobials are β-lactam (blaTEM-1B; 6.78%), fluoroquinolone [(parC[T57S], qnrB19); 0.87%], folate pathway antagonist (sul2; 8.35%), macrolide [mph(A); 0.39%], phenicol (floR; 5.94%), polymyxin B (mcr-1.1; 0.09%), and tetracycline [tet(A); 12.95%]. Our study reports the first overview of ARG profiles in publicly available Salmonella genomes from online databases. All data sets from this study can be searched at Microreact.
Collapse
Affiliation(s)
- Narong Nuanmuang
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Pimlapas Leekitcharoenphon
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Patrick Murigu Kamau Njage
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Alexander Gmeiner
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Frank M. Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
114
|
da Silva KE, Date K, Hirani N, LeBoa C, Jayaprasad N, Borhade P, Warren J, Shimpi R, Hoffman SA, Mikoleit M, Bhatnagar P, Cao Y, Haldar P, Harvey P, Zhang C, Daruwalla S, Dharmapalan D, Gavhane J, Joshi S, Rai R, Rathod V, Shetty K, Warrier DS, Yadav S, Chakraborty D, Bahl S, Katkar A, Kunwar A, Yewale V, Dutta S, Luby SP, Andrews JR. Population structure and antimicrobial resistance patterns of Salmonella Typhi and Paratyphi A amid a phased municipal vaccination campaign in Navi Mumbai, India. mBio 2023; 14:e0117923. [PMID: 37504577 PMCID: PMC10470601 DOI: 10.1128/mbio.01179-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023] Open
Abstract
We performed whole-genome sequencing of 174 Salmonella Typhi and 54 Salmonella Paratyphi A isolates collected through prospective surveillance in the context of a phased typhoid conjugate vaccine introduction in Navi Mumbai, India. We investigate the temporal and geographical patterns of emergence and spread of antimicrobial resistance. We evaluated the relationship between the spatial distance between households and genetic clustering of isolates. Most isolates were non-susceptible to fluoroquinolones, with nearly 20% containing ≥3 quinolone resistance-determining region mutations. Two H58 isolates carried an IncX3 plasmid containing blaSHV-12, associated with ceftriaxone resistance, suggesting that the ceftriaxone-resistant isolates from India independently evolved on multiple occasions. Among S. Typhi, we identified two main clades circulating (2.2 and 4.3.1 [H58]); 2.2 isolates were closely related following a single introduction around 2007, whereas H58 isolates had been introduced multiple times to the city. Increasing geographic distance between isolates was strongly associated with genetic clustering (odds ratio [OR] = 0.72 per km; 95% credible interval [CrI]: 0.66-0.79). This effect was seen for distances up to 5 km (OR = 0.65 per km; 95% CrI: 0.59-0.73) but not seen for distances beyond 5 km (OR = 1.02 per km; 95% CrI: 0.83-1.26). There was a non-significant reduction in odds of clustering for pairs of isolates in vaccination communities compared with non-vaccination communities or mixed pairs compared with non-vaccination communities. Our findings indicate that S. Typhi was repeatedly introduced into Navi Mumbai and then spread locally, with strong evidence of spatial genetic clustering. In addition to vaccination, local interventions to improve water and sanitation will be critical to interrupt transmission. IMPORTANCE Enteric fever remains a major public health concern in many low- and middle-income countries, as antimicrobial resistance (AMR) continues to emerge. Geographical patterns of typhoidal Salmonella spread, critical to monitoring AMR and planning interventions, are poorly understood. We performed whole-genome sequencing of S. Typhi and S. Paratyphi A isolates collected in Navi Mumbai, India before and after a typhoid conjugate vaccine introduction. From timed phylogenies, we found two dominant circulating lineages of S. Typhi in Navi Mumbai-lineage 2.2, which expanded following a single introduction a decade prior, and 4.3.1 (H58), which had been introduced repeatedly from other parts of India, frequently containing "triple mutations" conferring high-level ciprofloxacin resistance. Using Bayesian hierarchical statistical models, we found that spatial distance between cases was strongly associated with genetic clustering at a fine scale (<5 km). Together, these findings suggest that antimicrobial-resistant S. Typhi frequently flows between cities and then spreads highly locally, which may inform surveillance and prevention strategies.
Collapse
Affiliation(s)
- Kesia Esther da Silva
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Kashmira Date
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nilma Hirani
- Grant Government Medical College & Sir J J Hospital, Mumbai, Maharashtra, India
| | - Christopher LeBoa
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California, USA
| | - Niniya Jayaprasad
- World Health Organization-Country Office for India, National Public Health Surveillance Project, New Delhi, India
| | - Priyanka Borhade
- World Health Organization-Country Office for India, National Public Health Surveillance Project, New Delhi, India
| | - Joshua Warren
- Yale School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Rahul Shimpi
- World Health Organization-Country Office for India, National Public Health Surveillance Project, New Delhi, India
| | - Seth A. Hoffman
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Matthew Mikoleit
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Pankaj Bhatnagar
- World Health Organization-Country Office for India, National Public Health Surveillance Project, New Delhi, India
| | - Yanjia Cao
- Department of Geography, The University of Hong Kong, Hong Kong
| | - Pradeep Haldar
- Ministry of Health & Family Welfare, Government of India, New Delhi, India
| | - Pauline Harvey
- World Health Organization-Country Office for India, National Public Health Surveillance Project, New Delhi, India
| | - Chenhua Zhang
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Savita Daruwalla
- Department of Pediatrics, NMMC General Hospital, Navi Mumbai, India
| | | | - Jeetendra Gavhane
- Department of Pediatrics, MGM New Bombay Hospital, MGM Medical College, Navi Mumbai, India
| | - Shrikrishna Joshi
- Dr. Joshi’s Central Clinical Microbiology Laboratory, Navi Mumbai, India
| | - Rajesh Rai
- Department of Pediatrics & Neonatology, Dr. D.Y. Patil Medical College and Hospital, Navi Mumbai, India
| | - Varsha Rathod
- Rajmata Jijau Hospital, Airoli (NMMC), Navi Mumbai, India
| | - Keertana Shetty
- Department of Microbiology, Dr. D.Y. Patil Medical College and Hospital, Navi Mumbai, India
| | | | - Shalini Yadav
- Department of Microbiology, MGM New Bombay Hospital, Navi Mumbai, India
| | - Debjit Chakraborty
- National Institute of Cholera and Enteric Diseases, Indian Council of Medical Research, Kolkata, India
| | - Sunil Bahl
- World Health Organization South-East Asia Regional Office, New Delhi, India
| | - Arun Katkar
- World Health Organization-Country Office for India, National Public Health Surveillance Project, New Delhi, India
| | - Abhishek Kunwar
- World Health Organization-Country Office for India, National Public Health Surveillance Project, New Delhi, India
| | - Vijay Yewale
- Dr. Yewale Multispecialty Hospital for Children, Navi Mumbai, India
| | - Shanta Dutta
- National Institute of Cholera and Enteric Diseases, Indian Council of Medical Research, Kolkata, India
| | - Stephen P. Luby
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Jason R. Andrews
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
115
|
Sun X, Zhang L, Meng J, Peng K, Huang W, Lei G, Wang Z, Li R, Yang X. The characteristics of mcr-bearing plasmids in clinical Salmonella enterica in Sichuan, China, 2014 to 2017. Front Cell Infect Microbiol 2023; 13:1240580. [PMID: 37705933 PMCID: PMC10495832 DOI: 10.3389/fcimb.2023.1240580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023] Open
Abstract
Salmonella is one of the most important zoonotic pathogens and a major cause of foodborne illnesses, posing a serious global public health hazard. The emergence of plasmid-mediated mcr genes in Salmonella has greatly reduced the clinical choice of salmonellosis treatment. The aim of this study was to investigate the plasmid characteristics of mcr-positive Salmonella identified from patients in Sichuan, China during 2014 to 2017 by whole genomes sequencing. In this study, a total of 12 mcr-positive isolates (1.15%, ; mcr-1, n=10; mcr-3, n=2) were identified from 1046 Salmonella isolates using PCR. Further characterization of these isolates was performed through antimicrobial susceptibility testing, conjugation assays, whole genome sequencing, and bioinformatics analysis. The mcr-1 gene in these isolates were carried by three types of typical mcr-1-bearing plasmids widely distributed in Enterobacteriaceae (IncX4, IncI2 and IncHI2). Of note, two mcr-1-harboring IncHI2 plasmids were integrated into chromosomes by insertion sequences. Two mcr-3-bearing plasmids were IncC and IncFIB broad-host-range plasmids respectively. Genetic context analysis found that mcr-1 was mainly located in Tn6330 or truncated Tn6300, and mcr-3 shared a common genetic structure tnpA-mcr-3-dgkA-ISKpn40. Overall, we found that mcr gene in clinical Salmonella were commonly carried by broad-host plasmids and have potential to transfer into other bacteria by these plasmids. Continuous surveillance of MDR Salmonella in humans and investigation the underlying transmission mechanisms of ARGs are vital to curb the current severe AMR concern.
Collapse
Affiliation(s)
- Xinran Sun
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Lin Zhang
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, Sichuan, China
| | - Jiantong Meng
- Center for Disease Control and Prevention of Chengdu City, Chengdu, China
| | - Kai Peng
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Weifeng Huang
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, Sichuan, China
| | - Gaopeng Lei
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, Sichuan, China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Xiaorong Yang
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, Sichuan, China
| |
Collapse
|
116
|
Syed Abu Thahir S, Rajendiran S, Shaharudin R, Veloo Y. Multidrug-Resistant Salmonella Species and Their Mobile Genetic Elements from Poultry Farm Environments in Malaysia. Antibiotics (Basel) 2023; 12:1330. [PMID: 37627750 PMCID: PMC10451245 DOI: 10.3390/antibiotics12081330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
The prevalence and persistent outbreaks of multidrug-resistant (MDR) Salmonella in low-income countries have received growing attention among the public and scientific community. Notably, the excessive use of antibiotics in chicken feed for the purpose of treatment or as prophylaxis in the poultry industry have led to a rising rate of antimicrobial resistance. Therefore, this study aimed to determine the presence of antimicrobial-resistant Salmonella species and its mobile genetic elements from soil and effluent samples of 33 randomly selected poultry farms in Selangor, Malaysia. Salmonella species were isolated on selective media (CHROMagar™ Salmonella). VITEK® 2 system was used to identify the isolates and their antimicrobial susceptibility. Subsequently, eight isolates were subjected to the whole genome sequencing (WGS). Based on the results, Salmonella spp. was detected in 38.1% (24/63) of samples, with the highest resistance to ampicillin (62.5%), followed by ampicillin/sulbactam (50.0%) and ciprofloxacin (45.8%). Meanwhile, the identified serovars were Salmonella enterica subspecies enterica serovar Weltevreden (S. Weltevreden), S. Jedburgh, and S. Brancaster. The most prevalent resistance genes detected include qnrS1, blaTEM-176, dfrA14, and tet(A). The IncX1 plasmid, with encoded resistance genes, was also detected in four isolates. Furthermore, mutations in the quinolone resistant-determining regions (QRDR) were discovered, specifically in the gyrA, gyrB, and parC genes. In short, surveillance such as continuous monitoring of antimicrobial resistance and emerging trends in resistance patterns through farm environmental samples could provide information to formulate public health interventions for effective infection prevention and disease control.
Collapse
Affiliation(s)
- Syahidiah Syed Abu Thahir
- Environmental Health Research Centre, Institute for Medical Research, National Institute of Health, Ministry of Health, Setia Alam, Shah Alam 40107, Malaysia
| | - Sakshaleni Rajendiran
- Environmental Health Research Centre, Institute for Medical Research, National Institute of Health, Ministry of Health, Setia Alam, Shah Alam 40107, Malaysia
| | - Rafiza Shaharudin
- Environmental Health Research Centre, Institute for Medical Research, National Institute of Health, Ministry of Health, Setia Alam, Shah Alam 40107, Malaysia
| | - Yuvaneswary Veloo
- Environmental Health Research Centre, Institute for Medical Research, National Institute of Health, Ministry of Health, Setia Alam, Shah Alam 40107, Malaysia
| |
Collapse
|
117
|
dos Santos AMP, Panzenhagen P, Ferrari RG, de Jesus ACS, Portes AB, Ochioni AC, Rodrigues DDP, Conte-Junior CA. Genomic Characterization of Salmonella Isangi: A Global Perspective of a Rare Serovar. Antibiotics (Basel) 2023; 12:1309. [PMID: 37627729 PMCID: PMC10451742 DOI: 10.3390/antibiotics12081309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Salmonella Isangi is an infrequent serovar that has recently been reported in several countries due to nosocomial infections. A considerable number of reports indicate Salmonella Isangi multidrug resistance, especially to cephalosporins, which could potentially pose a risk to public health worldwide. Genomic analysis is an excellent tool for monitoring the emergence of microorganisms and related factors. In this context, the aim of this study was to carry out a genomic analysis of Salmonella Isangi isolated from poultry in Brazil, and to compare it with the available genomes from the Pathogen Detection database and Sequence Read Archive. A total of 142 genomes isolated from 11 different countries were investigated. A broad distribution of extended-spectrum beta-lactamase (ESBL) genes was identified in the Salmonella Isangi genomes examined (blaCTX-M-15, blaCTX-M-2, blaDHA-1, blaNDM-1, blaOXA-10, blaOXA-1, blaOXA-48, blaSCO-1, blaSHV-5, blaTEM-131, blaTEM-1B), primarily in South Africa. Resistome analysis revealed predicted resistance to aminoglycoside, sulfonamide, macrolide, tetracycline, trimethoprim, phenicol, chloramphenicol, and quaternary ammonium. Additionally, PMQR (plasmid-mediated quinolone resistance) genes qnr19, qnrB1, and qnrS1 were identified, along with point mutations in the genes gyrAD87N, gyrAS83F, and gyrBS464F, which confer resistance to ciprofloxacin and nalidixic acid. With regard to plasmids, we identified 17 different incompatibility groups, including IncC, Col(pHAD28), IncHI2, IncHI2A, IncM2, ColpVC, Col(Ye4449), Col156, IncR, IncI1(Alpha), IncFIB (pTU3), Col(B5512), IncQ1, IncL, IncN, IncFIB(pHCM2), and IncFIB (pN55391). Phylogenetic analysis revealed five clusters grouped by sequence type and antimicrobial gene distribution. The study highlights the need for monitoring rare serovars that may become emergent due to multidrug resistance.
Collapse
Affiliation(s)
- Anamaria Mota Pereira dos Santos
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil; (A.M.P.d.S.); (R.G.F.); (A.C.S.d.J.); (A.B.P.); (A.C.O.); (C.A.C.-J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói 24230-340, RJ, Brazil
| | - Pedro Panzenhagen
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil; (A.M.P.d.S.); (R.G.F.); (A.C.S.d.J.); (A.B.P.); (A.C.O.); (C.A.C.-J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil
| | - Rafaela G. Ferrari
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil; (A.M.P.d.S.); (R.G.F.); (A.C.S.d.J.); (A.B.P.); (A.C.O.); (C.A.C.-J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil
| | - Ana Carolina S. de Jesus
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil; (A.M.P.d.S.); (R.G.F.); (A.C.S.d.J.); (A.B.P.); (A.C.O.); (C.A.C.-J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil
| | - Ana Beatriz Portes
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil; (A.M.P.d.S.); (R.G.F.); (A.C.S.d.J.); (A.B.P.); (A.C.O.); (C.A.C.-J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói 24230-340, RJ, Brazil
| | - Alan Clavelland Ochioni
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil; (A.M.P.d.S.); (R.G.F.); (A.C.S.d.J.); (A.B.P.); (A.C.O.); (C.A.C.-J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil
| | | | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil; (A.M.P.d.S.); (R.G.F.); (A.C.S.d.J.); (A.B.P.); (A.C.O.); (C.A.C.-J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói 24230-340, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
118
|
McMillan EA, Hiott LM, Carrico JA, Machado MP, Pouseele H, Jackson CR, Frye JG. Polymerase chain reaction for the in vitro detection of the pESI plasmid associated with the globally circulating Salmonella Infantis outbreak strain. Lett Appl Microbiol 2023; 76:ovad088. [PMID: 37505450 DOI: 10.1093/lambio/ovad088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
A globally circulating strain of Salmonella enterica serotype Infantis containing the pESI plasmid has increased in prevalence in poultry meat samples and cases of human infections. In this study, a polymerase chain reaction (PCR) protocol was designed to detect the pESI plasmid and confirm the Infantis serotype of Salmonella isolates. Primers were tested bioinformatically to predict specificity, sensitivity, and precision. A total of 54 isolates of Salmonella serotypes Infantis, Senftenberg, and Alachua were tested, with and without the pESI plasmid carriage. Isolates of 31 additional serotypes were also screened to confirm specificity to Infantis. Specificity, sensitivity, and precision of each primer were >0.95. All isolates tested produced the expected band sizes. This PCR protocol provides a rapid and clear result for the detection of the pESI plasmid and serotype Infantis and will allow for the in vitro detection for epidemiological studies where whole-genome sequencing is not available.
Collapse
Affiliation(s)
- Elizabeth A McMillan
- United States Department of Agriculture, Agricultural Research Service, U. S. National Poultry Research Center, Poultry Microbiological Safety and Processing Research Unit, Athens, GA, 30605, United States
| | - Lari M Hiott
- United States Department of Agriculture, Agricultural Research Service, U. S. National Poultry Research Center, Poultry Microbiological Safety and Processing Research Unit, Athens, GA, 30605, United States
| | | | | | - Hannes Pouseele
- bioMérieux, Applied Maths NV, Sint-Martens-Latem, 9830, Belgium
| | - Charlene R Jackson
- United States Department of Agriculture, Agricultural Research Service, U. S. National Poultry Research Center, Poultry Microbiological Safety and Processing Research Unit, Athens, GA, 30605, United States
| | - Jonathan G Frye
- United States Department of Agriculture, Agricultural Research Service, U. S. National Poultry Research Center, Poultry Microbiological Safety and Processing Research Unit, Athens, GA, 30605, United States
| |
Collapse
|
119
|
Sundaresan S, Rathinavelan T. SSP: An In Silico Tool for Salmonella Species Serotyping Using the Sequences of O-Antigen Biosynthesis Proteins and H-Antigen Filament Proteins. J Mol Biol 2023; 435:168046. [PMID: 37356912 DOI: 10.1016/j.jmb.2023.168046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 06/27/2023]
Abstract
Over 2500 Salmonella species (alternatively, serovars) encompassing different combinations of O-, H1- and H2-antigens are present in nature and cause millions of deaths worldwide every year. Since conventional serotyping is time-consuming, a user-friendly Salmonellaspecies serotyping (SSP) web tool (https://project.iith.ac.in/SSP/) is developed here to predict the serotypes using Salmonella protein(s) or whole proteome sequences. Prior to SSP implementation, a detailed analysis of protein sequences involved in O-antigen biosynthesis and H-antigen formation is carried out to assess their serotype specificity. Intriguingly, the results indicate that the initializing transferases WbaP, WecA and GNE can efficiently distinguish the O-antigens, which have Gal, GlcNAc and GalNAc as initial sugars respectively. Rigorous analysis shows that Wzx and Wzy are sufficient to distinguish the O-types. Exceptionally, some situations warrant additional proteins. Thus, 150 additional transferases, RfbE for O2, O9 and O9,46 types, Orf17.4 for O3,10 and O1,3,19 types, WecB, WbbE and WbbF for O54 and, Wzm and Wzt for O67 are utilized in serotyping. An in-depth analysis of 302 reference datasets representing 56 H1- and 20 H2-types leads to the identification and utilization of 61 unique sequence patterns of FliC and FljB in H-typing. A test dataset of 2136 whole proteome sequences covering 740 Salmonella serovars, including 13 new species are successfully predicted with 99.72% accuracy. Prior to this, all the O-, H1- and H2-antigens are predicted accurately when tested independently. Indeed, SSP also identifies wrongly annotated Salmonella species; hence, it can easily identify new species that emerge with any combination of O-, H1- and H2-antigens. Thus, SSP can act as a valuable tool in the surveillance of Salmonella species.
Collapse
Affiliation(s)
- Sruthi Sundaresan
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State 502284, India. https://twitter.com/Sruthi__Sundar
| | | |
Collapse
|
120
|
Carroll LM, Piacenza N, Cheng RA, Wiedmann M, Guldimann C. A multidrug-resistant Salmonella enterica Typhimurium DT104 complex lineage circulating among humans and cattle in the USA lost the ability to produce pertussis-like toxin ArtAB. Microb Genom 2023; 9:mgen001050. [PMID: 37402177 PMCID: PMC10438809 DOI: 10.1099/mgen.0.001050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 05/23/2023] [Indexed: 07/06/2023] Open
Abstract
Salmonella enterica subsp. enterica serotype Typhimurium definitive type 104 (DT104) can infect both humans and animals and is often multidrug-resistant (MDR). Previous studies have indicated that, unlike most S . Typhimurium, the overwhelming majority of DT104 strains produce pertussis-like toxin ArtAB via prophage-encoded genes artAB . However, DT104 that lack artAB have been described on occasion. Here, we identify an MDR DT104 complex lineage circulating among humans and cattle in the USA, which lacks artAB (i.e. the ‘U.S. artAB -negative major clade’; n =42 genomes). Unlike most other bovine- and human-associated DT104 complex strains from the USA (n =230 total genomes), which harbour artAB on prophage Gifsy-1 (n =177), members of the U.S. artAB -negative major clade lack Gifsy-1, as well as anti-inflammatory effector gogB . The U.S. artAB -negative major clade encompasses human- and cattle-associated strains isolated from ≥11 USA states over a 20-year period. The clade was predicted to have lost artAB , Gifsy-1 and gogB circa 1985–1987 (95 % highest posterior density interval 1979.0–1992.1). When compared to DT104 genomes from other regions of the world (n =752 total genomes), several additional, sporadic artAB , Gifsy-1 and/or gogB loss events among clades encompassing five or fewer genomes were observed. Using phenotypic assays that simulate conditions encountered during human and/or bovine digestion, members of the U.S. artAB -negative major clade did not differ from closely related Gifsy-1/artAB /gogB -harbouring U.S. DT104 complex strains (ANOVA raw P >0.05); thus, future research is needed to elucidate the roles that artAB , gogB and Gifsy-1 play in DT104 virulence in humans and animals.
Collapse
Affiliation(s)
- Laura M. Carroll
- Department of Clinical Microbiology, SciLifeLab, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Integrated Science Lab, Umeå University, Umeå, Sweden
| | - Nicolo Piacenza
- Chair for Food Safety and Analytics, Ludwig-Maximillians-University Munich, Munich, Germany
| | - Rachel A. Cheng
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Claudia Guldimann
- Chair for Food Safety and Analytics, Ludwig-Maximillians-University Munich, Munich, Germany
| |
Collapse
|
121
|
Priya T T, Jacob JJ, M Y, Karthik R, Iyadurai R, G K, Devi B Y, Walia K, Veeraraghavan B. Is it time to move on to gene-based Salmonella typing: Evidence and implications. Indian J Med Microbiol 2023; 44:100359. [PMID: 37356840 DOI: 10.1016/j.ijmmb.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 06/27/2023]
Abstract
Non-typhoidal Salmonella (NTS) is the major cause of foodborne infections globally, with considerable morbidity and mortality. The accurate identification of Salmonella serovars is important in disease management and public health surveillance. However, traditional serotyping methods are laborious, time-consuming and may produce ambiguous results. In this study, we evaluated traditional serotyping and seven gene-based multilocus sequence typing (MLST) methods to determine the serogroups of Salmonella strains. This study analysis suggests that MLST based serotyping is accurate in serogroup identification and discrimination of Salmonella serovars compared to the traditional serotyping method and can be implemented in routine clinical practice.
Collapse
Affiliation(s)
- Tharani Priya T
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Jobin John Jacob
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Yesudoss M
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Rajiv Karthik
- Department of Infectious Disease & Hospital Infection Control Committee, Christian Medical College, Vellore, India
| | - Ramya Iyadurai
- Department of Medicine, Unit V, Christian Medical College, Vellore, India
| | - Karthik G
- Department of Medicine, Unit V, Christian Medical College, Vellore, India
| | - Yamuna Devi B
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Kamini Walia
- Division of Epidemiology & Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | | |
Collapse
|
122
|
Libuit KG, Doughty EL, Otieno JR, Ambrosio F, Kapsak CJ, Smith EA, Wright SM, Scribner MR, Petit III RA, Mendes CI, Huergo M, Legacki G, Loreth C, Park DJ, Sevinsky JR. Accelerating bioinformatics implementation in public health. Microb Genom 2023; 9:mgen001051. [PMID: 37428142 PMCID: PMC10438813 DOI: 10.1099/mgen.0.001051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Abstract
We have adopted an open bioinformatics ecosystem to address the challenges of bioinformatics implementation in public health laboratories (PHLs). Bioinformatics implementation for public health requires practitioners to undertake standardized bioinformatic analyses and generate reproducible, validated and auditable results. It is essential that data storage and analysis are scalable, portable and secure, and that implementation of bioinformatics fits within the operational constraints of the laboratory. We address these requirements using Terra, a web-based data analysis platform with a graphical user interface connecting users to bioinformatics analyses without the use of code. We have developed bioinformatics workflows for use with Terra that specifically meet the needs of public health practitioners. These Theiagen workflows perform genome assembly, quality control, and characterization, as well as construction of phylogeny for insights into genomic epidemiology. Additonally, these workflows use open-source containerized software and the WDL workflow language to ensure standardization and interoperability with other bioinformatics solutions, whilst being adaptable by the user. They are all open source and publicly available in Dockstore with the version-controlled code available in public GitHub repositories. They have been written to generate outputs in standardized file formats to allow for further downstream analysis and visualization with separate genomic epidemiology software. Testament to this solution meeting the requirements for bioinformatic implementation in public health, Theiagen workflows have collectively been used for over 5 million sample analyses in the last 2 years by over 90 public health laboratories in at least 40 different countries. Continued adoption of technological innovations and development of further workflows will ensure that this ecosystem continues to benefit PHLs.
Collapse
Affiliation(s)
- Kevin G. Libuit
- Theiagen Genomics, Suite 400, 1745 Shea Center Drive, Highlands Ranch, CO, 80129, USA
| | - Emma L. Doughty
- Theiagen Genomics, Suite 400, 1745 Shea Center Drive, Highlands Ranch, CO, 80129, USA
| | - James R. Otieno
- Theiagen Genomics, Suite 400, 1745 Shea Center Drive, Highlands Ranch, CO, 80129, USA
| | - Frank Ambrosio
- Theiagen Genomics, Suite 400, 1745 Shea Center Drive, Highlands Ranch, CO, 80129, USA
| | - Curtis J. Kapsak
- Theiagen Genomics, Suite 400, 1745 Shea Center Drive, Highlands Ranch, CO, 80129, USA
| | - Emily A. Smith
- Theiagen Genomics, Suite 400, 1745 Shea Center Drive, Highlands Ranch, CO, 80129, USA
| | - Sage M. Wright
- Theiagen Genomics, Suite 400, 1745 Shea Center Drive, Highlands Ranch, CO, 80129, USA
| | - Michelle R. Scribner
- Theiagen Genomics, Suite 400, 1745 Shea Center Drive, Highlands Ranch, CO, 80129, USA
| | - Robert A. Petit III
- Theiagen Genomics, Suite 400, 1745 Shea Center Drive, Highlands Ranch, CO, 80129, USA
- Wyoming Public Health Laboratory, 208 S College Dr, Cheyenne, WY 82007, USA
| | - Catarina Inês Mendes
- Theiagen Genomics, Suite 400, 1745 Shea Center Drive, Highlands Ranch, CO, 80129, USA
| | - Marcela Huergo
- Theiagen Genomics, Suite 400, 1745 Shea Center Drive, Highlands Ranch, CO, 80129, USA
| | - Gregory Legacki
- Theiagen Genomics, Suite 400, 1745 Shea Center Drive, Highlands Ranch, CO, 80129, USA
| | - Christine Loreth
- Broad Institute of Harvard and MIT, 415 Main St, Cambridge, MA 02142, USA
| | - Daniel J. Park
- Broad Institute of Harvard and MIT, 415 Main St, Cambridge, MA 02142, USA
| | - Joel R. Sevinsky
- Theiagen Genomics, Suite 400, 1745 Shea Center Drive, Highlands Ranch, CO, 80129, USA
| |
Collapse
|
123
|
Bloomfield SJ, Janecko N, Palau R, Alikhan NF, Mather AE. Genomic diversity and epidemiological significance of non-typhoidal Salmonella found in retail food collected in Norfolk, UK. Microb Genom 2023; 9:mgen001075. [PMID: 37523225 PMCID: PMC10438825 DOI: 10.1099/mgen.0.001075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Non-typhoidal Salmonella (NTS) is a major cause of bacterial gastroenteritis. Although many countries have implemented whole genome sequencing (WGS) of NTS, there is limited knowledge on NTS diversity on food and its contribution to human disease. In this study, the aim was to characterise the NTS genomes from retail foods in a particular region of the UK and assess the contribution to human NTS infections. Raw food samples were collected at retail in a repeated cross-sectional design in Norfolk, UK, including chicken (n=311), leafy green (n=311), pork (n=311), prawn (n=279) and salmon (n=157) samples. Up to eight presumptive NTS isolates per positive sample underwent WGS and were compared to publicly available NTS genomes from UK human cases. NTS was isolated from chicken (9.6 %), prawn (2.9 %) and pork (1.3 %) samples and included 14 serovars, of which Salmonella Infantis and Salmonella Enteritidis were the most common. The S. Enteritidis isolates were only isolated from imported chicken. No antimicrobial resistance determinants were found in prawn isolates, whilst 5.1 % of chicken and 0.64 % of pork samples contained multi-drug resistant NTS. The maximum number of pairwise core non-recombinant single nucleotide polymorphisms (SNPs) amongst isolates from the same sample was used to measure diversity and most samples had a median of two SNPs (range: 0-251). NTS isolates that were within five SNPs to clinical UK isolates belonged to specific serovars: S. Enteritidis and S. Infantis (chicken), and S. I 4,[5],12:i- (pork and chicken). Most NTS isolates that were closely related to human-derived isolates were obtained from imported chicken, but further epidemiological data are required to assess definitively the probable source of the human cases. Continued WGS surveillance of Salmonella on retail food involving multiple isolates from each sample is necessary to capture the diversity of Salmonella and determine the relative importance of different sources of human disease.
Collapse
Affiliation(s)
| | - Nicol Janecko
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Raphaёlle Palau
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | | - Alison E. Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich, UK
| |
Collapse
|
124
|
Grinevich D, Harden L, Thakur S, Callahan BJ. Serovar-level Identification of Bacterial Foodborne Pathogens From Full-length 16S rRNA Gene Sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546915. [PMID: 37425822 PMCID: PMC10327058 DOI: 10.1101/2023.06.28.546915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The resolution of variation within species is critical for interpreting and acting on many microbial measurements. In the key foodborne pathogens Escherichia coli and Salmonella, the primary sub-species classification scheme used is serotyping: differentiating variants within these species by surface antigen profiles. Serotype prediction from whole-genome sequencing (WGS) of isolates is now seen as comparable or preferable to traditional laboratory methods where WGS is available. However, laboratory and WGS methods depend on an isolation step that is time-consuming and incompletely represents the sample when multiple strains are present. Community sequencing approaches that skip the isolation step are therefore of interest for pathogen surveillance. Here we evaluated the viability of amplicon sequencing of the full-length 16S rRNA gene for serotyping S. enterica and E. coli. We developed a novel algorithm for serotype prediction, implemented as an R package (Seroplacer), which takes as input full-length 16S rRNA gene sequences and outputs serovar predictions after phylogenetic placement into a reference phylogeny. We achieved over 89% accuracy in predicting Salmonella serotypes on in silico test data, and identified key pathogenic serovars of Salmonella and E. coli in isolate and environmental test samples. Although serotype prediction from 16S sequences is not as accurate as serotype prediction from WGS of isolates, the potential to identify dangerous serovars directly from amplicon sequencing of environmental samples is intriguing for pathogen surveillance. The capabilities developed here are also broadly relevant to other applications where intra-species variation and direct sequencing from environmental samples could be valuable.
Collapse
Affiliation(s)
- Dmitry Grinevich
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Lyndy Harden
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Benjamin J Callahan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
125
|
Wang Z, Jiang Z, Xu H, Jiao X, Li Q. Prevalence and molecular characterization of mcr-1-positive foodborne ST34-Salmonella isolates in China. Microbiol Res 2023; 274:127441. [PMID: 37356255 DOI: 10.1016/j.micres.2023.127441] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) and S. 4,[5],12:i:- have become the most common serovars associated with human salmonellosis worldwide. Moreover, the emergence of mcr-carrying S. Typhimurium and S. 4,[5],12:i:- with multidrug resistance (MDR) patterns has posed a threat to public health. In this study, we retrospectively screened 2009-2022 laboratory-preserved strains for the presence of mcr genes. We obtained 16 mcr-1-positive S. Typhimurium and S. 4,[5],12:i:- strains with MDR that belonged to sequence type 34 (ST34). Whole-genome sequencing analysis revealed that the mcr-1 was located on the IncI2 or IncHI2 plasmids. The ISApl1 element downstream of mcr-1 was present in all pig-derived strains. Conjugation experiments confirmed that nine mcr-1-carrying IncHI2 plasmids could not be transferred to Escherichia coli due to loss of the conjugation region. Finally, core genome single nucleotide polymorphism (cgSNP) analyses of the 16 mcr-1-carrying strains and 77 mcr-carrying ST34-Salmonella genome sequences from the NCBI and ENA databases showed that five out of eight clusters contained strains from pig and pig products, revealing pigs and pig products as key reservoirs of mcr-1-positive ST34-Salmonella strains. The transmission of mcr-carrying ST34 Salmonella strains to humans via the pig food chain is a potential cause for public health concern in controlling human salmonellosis.
Collapse
Affiliation(s)
- Zhenyu Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China
| | - Zhongyi Jiang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China
| | - Haiyan Xu
- Nantong Center for Disease Control and Prevention, Nantong 226007, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China.
| | - Qiuchun Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China.
| |
Collapse
|
126
|
Rutanga JP, de Block T, Cuypers WL, Cafmeyer J, Peeters M, Umumararungu E, Ngabonziza JCS, Rucogoza A, Vandenberg O, Martiny D, Dusabe A, Nkubana T, Dougan G, Muvunyi CM, Mwikarago IE, Jacobs J, Deborggraeve S, Van Puyvelde S. Salmonella Typhi whole genome sequencing in Rwanda shows a diverse historical population with recent introduction of haplotype H58. PLoS Negl Trop Dis 2023; 17:e0011285. [PMID: 37327220 DOI: 10.1371/journal.pntd.0011285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/04/2023] [Indexed: 06/18/2023] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi) is the cause of typhoid fever, presenting high rates of morbidity and mortality in low- and middle-income countries. The H58 haplotype shows high levels of antimicrobial resistance (AMR) and is the dominant S. Typhi haplotype in endemic areas of Asia and East sub-Saharan Africa. The situation in Rwanda is currently unknown and therefore to reveal the genetic diversity and AMR of S. Typhi in Rwanda, 25 historical (1984-1985) and 26 recent (2010-2018) isolates from Rwanda were analysed using whole genome sequencing (WGS). WGS was locally implemented using Illumina MiniSeq and web-based analysis tools, thereafter complemented with bioinformatic approaches for more in-depth analyses. Whereas historical S. Typhi isolates were found to be fully susceptible to antimicrobials and show a diversity of genotypes, i.e 2.2.2, 2.5, 3.3.1 and 4.1; the recent isolates showed high AMR rates and were predominantly associated with genotype 4.3.1.2 (H58, 22/26; 84,6%), possibly resulting from a single introduction in Rwanda from South Asia before 2010. We identified practical challenges for the use of WGS in endemic regions, including a high cost for shipment of molecular reagents and lack of high-end computational infrastructure for the analyses, but also identified WGS to be feasible in the studied setting and giving opportunity for synergy with other programs.
Collapse
Affiliation(s)
- Jean Pierre Rutanga
- College of Science and Technology, University of Rwanda, Kigali, Rwanda
- Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | | | - Wim L Cuypers
- Institute of Tropical Medicine, Antwerp, Belgium
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | | | | | | | - Jean Claude S Ngabonziza
- Rwanda Biomedical Centre, Kigali, Rwanda
- Department of Clinical Biology, University of Rwanda, Kigali, Rwanda
| | | | - Olivier Vandenberg
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Hôpital Erasme-Cliniques universitaires de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Delphine Martiny
- Department of Microbiology, Laboratoire des Hôpitaux Universitaires de Bruxelles - Universitaire Laboratorium Brussel (LHUB-ULB), Brussels, Belgium
- National Reference Centre for Campylobacter, CHU Saint-Pierre, Brussels, Belgium
- Faculté de Médecine et Pharmacie, Université de Mons (UMONS), Mons, Belgium
| | - Angélique Dusabe
- Centre Hospitalier Universtaire de Kigali (CHUK), Kigali, Rwanda
| | | | - Gordon Dougan
- Department of Medicine, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Jan Jacobs
- Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | | | - Sandra Van Puyvelde
- Institute of Tropical Medicine, Antwerp, Belgium
- Department of Medicine, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
127
|
Akinyemi KO, Fakorede CO, Linde J, Methner U, Wareth G, Tomaso H, Neubauer H. Whole genome sequencing of Salmonella enterica serovars isolated from humans, animals, and the environment in Lagos, Nigeria. BMC Microbiol 2023; 23:164. [PMID: 37312043 DOI: 10.1186/s12866-023-02901-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/17/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Salmonella infections remain an important public health issue worldwide. Some serovars of non-typhoidal Salmonella (NTS) have been associated with bloodstream infections and gastroenteritis, especially in children in Sub-Saharan Africa with circulating S. enterica serovars with drug resistance and virulence genes. This study identified and verified the clonal relationship of Nigerian NTS strains isolated from humans, animals, and the environment. METHODS In total, 2,522 samples were collected from patients, animals (cattle and poultry), and environmental sources between December 2017 and May 2019. The samples were subjected to a standard microbiological investigation. All the isolates were identified using Microbact 24E, and MALDI-TOF MS. The isolates were serotyped using the Kauffmann-White scheme. Antibiotic susceptibility testing was conducted using the disc diffusion method and the Vitek 2 compact system. Virulence and antimicrobial resistance genes, sequence type, and cluster analysis were investigated using WGS data. RESULTS Forty-eight (48) NTS isolates (1.9%) were obtained. The prevalence of NTS from clinical sources was 0.9%, while 4% was recorded for animal sources. The serovars identified were S. Cotham (n = 17), S. Give (n = 16), S. Mokola (n = 6), S. Abony (n = 4), S. Typhimurium (n = 4), and S. Senftenberg (n = 1). All 48 Salmonella isolates carried intrinsic and acquired resistant genes such as aac.6…Iaa, mdf(A), qnrB, qnrB19 genes and golT, golS, pcoA, and silP, mediated by plasmid Col440I_1, incFIB.B and incFII. Between 100 and 118 virulence gene markers distributed across several Salmonella pathogenicity islands (SPIs), clusters, prophages, and plasmid operons were found in each isolate. WGS revealed that strains of each Salmonella serovar could be assigned to a single 7-gene MLST cluster, and strains within the clusters were identical strains and closely related as defined by the 0 and 10 cgSNPs and likely shared a common ancestor. The dominant sequence types were S. Give ST516 and S. Cotham ST617. CONCLUSION We found identical Salmonella sequence types in human, animal, and environmental samples in the same locality, which demonstrates the great potential of the applied tools to trace back outbreak strains. Strategies to control and prevent the spread of NTS in the context of one's health are essential to prevent possible outbreaks.
Collapse
Affiliation(s)
| | | | - Jörg Linde
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Ulrich Methner
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Gamal Wareth
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, PO Box 13736, Toukh, Moshtohor, Egypt
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| |
Collapse
|
128
|
Smith AM, Erasmus LK, Tau NP, Smouse SL, Ngomane HM, Disenyeng B, Whitelaw A, Lawrence CA, Sekwadi P, Thomas J. Enteric fever cluster identification in South Africa using genomic surveillance of Salmonella enterica serovar Typhi. Microb Genom 2023; 9. [PMID: 37339282 DOI: 10.1099/mgen.0.001044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023] Open
Abstract
The National Institute for Communicable Diseases in South Africa participates in national laboratory-based surveillance for human isolates of Salmonella species. Laboratory analysis includes whole-genome sequencing (WGS) of isolates. We report on WGS-based surveillance of Salmonella enterica serovar Typhi (Salmonella Typhi) in South Africa from 2020 through 2021. We describe how WGS analysis identified clusters of enteric fever in the Western Cape Province of South Africa and describe the epidemiological investigations associated with these clusters. A total of 206 Salmonella Typhi isolates were received for analysis. Genomic DNA was isolated from bacteria and WGS was performed using Illumina NextSeq technology. WGS data were investigated using multiple bioinformatics tools, including those available at the Centre for Genomic Epidemiology, EnteroBase and Pathogenwatch. Core-genome multilocus sequence typing was used to investigate the phylogeny of isolates and identify clusters. Three major clusters of enteric fever were identified in the Western Cape Province; cluster one (n=11 isolates), cluster two (n=13 isolates), and cluster three (n=14 isolates). To date, no likely source has been identified for any of the clusters. All isolates associated with the clusters, showed the same genotype (4.3.1.1.EA1) and resistome (antimicrobial resistance genes: bla TEM-1B, catA1, sul1, sul2, dfrA7). The implementation of genomic surveillance of Salmonella Typhi in South Africa has enabled rapid detection of clusters indicative of possible outbreaks. Cluster identification allows for targeted epidemiological investigations and a timely, coordinated public health response.
Collapse
Affiliation(s)
- Anthony Marius Smith
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Linda Kathleen Erasmus
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Nomsa Pauline Tau
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Shannon Lucrecia Smouse
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Hlengiwe Mimmy Ngomane
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Bolele Disenyeng
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Andrew Whitelaw
- Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Charlene Ann Lawrence
- Communicable Disease Control, Service Priorities Coordination, Department of Health, Cape Town, South Africa
| | - Phuti Sekwadi
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Juno Thomas
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
129
|
Thomas C, Methner U, Marz M, Linde J. Oxford nanopore technologies-a valuable tool to generate whole-genome sequencing data for in silico serotyping and the detection of genetic markers in Salmonella. Front Vet Sci 2023; 10:1178922. [PMID: 37323838 PMCID: PMC10267320 DOI: 10.3389/fvets.2023.1178922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023] Open
Abstract
Bacteria of the genus Salmonella pose a major risk to livestock, the food economy, and public health. Salmonella infections are one of the leading causes of food poisoning. The identification of serovars of Salmonella achieved by their diverse surface antigens is essential to gain information on their epidemiological context. Traditionally, slide agglutination has been used for serotyping. In recent years, whole-genome sequencing (WGS) followed by in silico serotyping has been established as an alternative method for serotyping and the detection of genetic markers for Salmonella. Until now, WGS data generated with Illumina sequencing are used to validate in silico serotyping methods. Oxford Nanopore Technologies (ONT) opens the possibility to sequence ultra-long reads and has frequently been used for bacterial sequencing. In this study, ONT sequencing data of 28 Salmonella strains of different serovars with epidemiological relevance in humans, food, and animals were taken to investigate the performance of the in silico serotyping tools SISTR and SeqSero2 compared to traditional slide agglutination tests. Moreover, the detection of genetic markers for resistance against antimicrobial agents, virulence, and plasmids was studied by comparing WGS data based on ONT with WGS data based on Illumina. Based on the ONT data from flow cell version R9.4.1, in silico serotyping achieved an accuracy of 96.4 and 92% for the tools SISTR and SeqSero2, respectively. Highly similar sets of genetic markers comparing both sequencing technologies were identified. Taking the ongoing improvement of basecalling and flow cells into account, ONT data can be used for Salmonella in silico serotyping and genetic marker detection.
Collapse
Affiliation(s)
- Christine Thomas
- Institute of Bacterial Infections and Zoonoses, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Jena, Germany
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany
| | - Ulrich Methner
- Institute of Bacterial Infections and Zoonoses, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Jena, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany
| | - Jörg Linde
- Institute of Bacterial Infections and Zoonoses, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Jena, Germany
| |
Collapse
|
130
|
Linde J, Szabo I, Tausch SH, Deneke C, Methner U. Clonal relation between Salmonella enterica subspecies enterica serovar Dublin strains of bovine and food origin in Germany. Front Vet Sci 2023; 10:1081611. [PMID: 37303731 PMCID: PMC10248260 DOI: 10.3389/fvets.2023.1081611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/03/2023] [Indexed: 06/13/2023] Open
Abstract
Salmonella enterica subspecies enterica serovar Dublin (S. Dublin) is a host-adapted serovar causing enteritis and/or systemic diseases in cattle. As the serovar is not host-restricted, it may cause infections in other animals, including humans with severe illness and higher mortality rates than other non-typhoidal serovars. As human infections are mainly caused by contaminated milk, milk products and beef, information on the genetic relationship of S. Dublin strains from cattle and food should be evaluated. Whole-genome sequencing (WGS) of 144 S. Dublin strains from cattle and 30 strains from food origin was performed. Multilocus sequence typing (MLST) revealed mostly sequence type ST-10 from both, cattle and food isolates. In total, 14 of 30 strains from food origin were clonally related to at least one strain from cattle, as detected by core-genome single nucleotide polymorphisms typing as well as core-genome MLST. The remaining 16 foodborne strains fit into the genome structure of S. Dublin in Germany without outliers. WGS proved to be a powerful tool not only to gain information on the epidemiology of Salmonella strains but also to detect clonal relations between organisms isolated from different stages of production. This study has shown a high genetic correlation between S. Dublin strains from cattle and food and, therefore, the potential to cause human infections. S. Dublin strains of both origins share an almost identical set of virulence factors, emphasizing their potential to cause severe clinical manifestations in animals, but also in humans and thus the need for effective control of S. Dublin in a farm-to-fork strategy.
Collapse
Affiliation(s)
- Jörg Linde
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Istvan Szabo
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Simon H. Tausch
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Carlus Deneke
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Ulrich Methner
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| |
Collapse
|
131
|
Sánchez-Serrano A, Mejía L, Camaró ML, Ortolá-Malvar S, Llácer-Luna M, García-González N, González-Candelas F. Genomic Surveillance of Salmonella from the Comunitat Valenciana (Spain). Antibiotics (Basel) 2023; 12:antibiotics12050883. [PMID: 37237786 DOI: 10.3390/antibiotics12050883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Salmonella enterica subspecies enterica is one of the most important foodborne pathogens and the causative agent of salmonellosis, which affects both humans and animals producing numerous infections every year. The study and understanding of its epidemiology are key to monitoring and controlling these bacteria. With the development of whole-genome sequencing (WGS) technologies, surveillance based on traditional serotyping and phenotypic tests of resistance is being replaced by genomic surveillance. To introduce WGS as a routine methodology for the surveillance of food-borne Salmonella in the region, we applied this technology to analyze a set of 141 S. enterica isolates obtained from various food sources between 2010 and 2017 in the Comunitat Valenciana (Spain). For this, we performed an evaluation of the most relevant Salmonella typing methods, serotyping and sequence typing, using both traditional and in silico approaches. We extended the use of WGS to detect antimicrobial resistance determinants and predicted minimum inhibitory concentrations (MICs). Finally, to understand possible contaminant sources in this region and their relationship to antimicrobial resistance (AMR), we performed cluster detection combining single-nucleotide polymorphism (SNP) pairwise distances and phylogenetic and epidemiological data. The results of in silico serotyping with WGS data were highly congruent with those of serological analyses (98.5% concordance). Multi-locus sequence typing (MLST) profiles obtained with WGS information were also highly congruent with the sequence type (ST) assignment based on Sanger sequencing (91.9% coincidence). In silico identification of antimicrobial resistance determinants and minimum inhibitory concentrations revealed a high number of resistance genes and possible resistant isolates. A combined phylogenetic and epidemiological analysis with complete genome sequences revealed relationships among isolates indicative of possible common sources for isolates with separate sampling in time and space that had not been detected from epidemiological information. As a result, we demonstrate the usefulness of WGS and in silico methods to obtain an improved characterization of S. enterica enterica isolates, allowing better surveillance of the pathogen in food products and in potential environmental and clinical samples of related interest.
Collapse
Affiliation(s)
- Andrea Sánchez-Serrano
- Joint Research Unit "Infection and Public Health", FISABIO-University of Valencia, 46020 Valencia, Spain
| | - Lorena Mejía
- Joint Research Unit "Infection and Public Health", FISABIO-University of Valencia, 46020 Valencia, Spain
- Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, 46980 Valencia, Spain
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | | | | | | | - Neris García-González
- Joint Research Unit "Infection and Public Health", FISABIO-University of Valencia, 46020 Valencia, Spain
- Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, 46980 Valencia, Spain
| | - Fernando González-Candelas
- Joint Research Unit "Infection and Public Health", FISABIO-University of Valencia, 46020 Valencia, Spain
- Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, 46980 Valencia, Spain
- CIBER in Epidemiology and Public Health, 28029 Madrid, Spain
| |
Collapse
|
132
|
Brenner T, Wang S. Heightened variability observed in resistance and virulence genes across salmonella Kentucky isolates from poultry environments in British Columbia, Canada. Food Microbiol 2023; 111:104192. [PMID: 36681391 DOI: 10.1016/j.fm.2022.104192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 11/02/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Many niche-dependent barriers along the poultry production continuum favour the survival of certain Salmonella serovars over others. Historically, the presence of particular serovars has been determined by niche-specific genes which encode resistance to selective pressures such as host defenses and industrial antimicrobial practices. Over the past decade, Canada has witnessed unexplained shifts in the Salmonella landscape in the poultry sector. Several formerly minor Salmonella serovars, including S. Kentucky and S. Reading, have recently increased in prevalence in live chickens and turkeys, respectively, in British Columbia (BC). The purpose of this research was to investigate the genomic features of the top poultry-associated Salmonella spp. in BC, to probe for serovar-specific characteristics that could address the recently shifting balance of serovars along the poultry continuum. By examining the quantity and diversity of antimicrobial resistance (AMR) genes, virulence factors (VFs), Salmonella Pathogenicity Islands (SPIs), and plasmids across 50 poultry-associated S. enterica isolates using whole genome sequencing and antimicrobial resistance profiling, we have identified serovar-specific differences that likely influence niche survival. Specifically, isolates in our collection from predominantly human pathogenic serovars (S. I 4, [5], 12:i: , S. Typhimurium, and S. Enteritidis) were found to share the IncFIB(S) and IncFII(S) plasmids which carry important VFs known to aid in human host infection. Additionally, these strains held the lowest number of AMR genes, and the highest number of unique SPIs which also facilitate virulence. However, other serovars containing a greater diversity and abundance of resistance genes have been increasing across the poultry sector. S. Kentucky was found to carry unique AMR genes, VFs, SPIs, and plasmids that could bolster persistence in farm and processing environments. Overall, S. Kentucky also had comparatively high levels of intra-serovar genetic variability when compared to other prominent serovars from our collection. In addition, one of our two S. Reading isolates had high carriage of both AMR genes and VFs relative to other isolates in our collection. As the poultry-associated Salmonella landscape continues to evolve in Canada, future studies should monitor the genetic composition of prominent serovars across poultry production to maintain up-to-date risk assessments of these foodborne pathogens to consumers.
Collapse
Affiliation(s)
- Thomas Brenner
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Siyun Wang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
133
|
Yan S, Jiang Z, Zhang W, Liu Z, Dong X, Li D, Liu Z, Li C, Liu X, Zhu L. Genomes-based MLST, cgMLST, wgMLST and SNP analysis of Salmonella Typhimurium from animals and humans. Comp Immunol Microbiol Infect Dis 2023; 96:101973. [PMID: 36989679 DOI: 10.1016/j.cimid.2023.101973] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Salmonella Typhimurium (S. Typhimurium) is an important food-borne and zoonotic pathogen that causes salmonellosis. With the development of whole genome sequencing (WGS), genome-based typing has been widely applied to bacteriology. In this study, we investigated genotyping and phylogenetic clusters of S. Typhimurium isolates from humans and animals in different provinces (including Beijing, Shandong, Guangxi, Shaanxi, Henan, and Shanghai) of China during 2009-2018 using multi locus sequence typing (MLST), core genome MLST (cgMLST), whole genome MLST (wgMLST) and single nucleotide polymorphism (SNP) based on WGS. 29 S. Typhimurium isolates from chicken (n = 22), sick pigeon (n = 2), patients (n = 4) and sick swine (n = 1) were tested. MLST analysis showed S. Typhimurium strains were divided into four STs, namely ST19 (n = 14), ST34 (n = 12), ST128 (n = 2) and ST1544 (n = 1). cgMLST and wgMLST divided 29 strains into 27 cgSTs and 29 wgST, respectively. Phylogenetic clustering showed that all isolates were divided into 4 clusters and 4 singletons. SNP analysis was used to examine MLST, cgMLST, wgMLST analysis. Finally, comparisons of MLST, cgMLST, wgMLST, and SNP were analyzed and the results showed their precision increased in order. In summary, genomic typing and phylogenetic relationships of 29 S. Typhimurium strains from different sources in China were analyzed. These findings were beneficial to investigate molecular pathogenesis, bacterial diversity, and traceability analysis of Salmonella.
Collapse
Affiliation(s)
- Shigan Yan
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Zhaoxu Jiang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Wencheng Zhang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Zhenhai Liu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Xiaorui Dong
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Donghui Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Zijun Liu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Chengyu Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Xu Liu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Liping Zhu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
134
|
Hernández-Ledesma A, Cabrera-Díaz E, Arvizu-Medrano SM, Gómez-Baltazar A, Hernández-Iturriaga M, Godínez-Oviedo A. Virulence and antimicrobial resistance profiles of Salmonella enterica isolated from foods, humans, and the environment in Mexico. Int J Food Microbiol 2023; 391-393:110135. [PMID: 36827747 DOI: 10.1016/j.ijfoodmicro.2023.110135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/11/2023] [Accepted: 02/09/2023] [Indexed: 02/21/2023]
Abstract
Salmonella enterica genotypic and phenotypic characteristics play an important role in its pathogenesis, which could be influenced by its origin. This study evaluated the association among the antimicrobial resistance, virulence, and origin of circulating S. enterica strains in Mexico, isolated from foods, humans, and the environment. The antimicrobial susceptibility to fourteen antibiotics by the Kirby-Bauer method (n = 117), and the presence of thirteen virulence genes by multiplex PCR (n = 153) and by sequence alignments (n = 2963) were evaluated. In addition, a set of S. enterica isolates from Mexico (n = 344) previously characterized according to their genotypic and phenotypic print was included to increase the coverage of the association analysis. Strains with the presence of sopE and strains with the absence of sspH1 were significantly associated with multidrug-resistant (MDR) phenotypes (p < 0.05). The origin of the strains had significant associations with the antimicrobial profiles and some virulence genes (hilA, orgA, sifA, ssaQ, sseL, sspH1, pefA, and spvC) (p < 0.05). Animal-origin food isolates showed the highest frequency of MDR (57.2 %), followed by human isolates (30.0 %). Also, sspH1, pefA, and spvC were found in major frequency in human (32.4 %, 31.0 %, 31.7 %) and animal-origin foods (41.6 %, 10.6 %, 10.6 %) isolates. The findings highlighted that antimicrobial profiles and specific virulence genes of S. enterica strains are related to their origin. Similar genotypic and phenotypic characteristics between human and animal-origin foods isolates were found, suggesting that animal-origin foods isolates are the most responsible for human cases. The revealed associations can be used to improve risk estimation assessments in national food safety surveillance programs.
Collapse
Affiliation(s)
- A Hernández-Ledesma
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Col. Las Campanas, 76010 Querétaro, Qro., Mexico
| | - E Cabrera-Díaz
- Departamento de Salud Pública, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ramón Padilla Sánchez 2100, Zapopan, Jalisco 45200, Mexico
| | - S M Arvizu-Medrano
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Col. Las Campanas, 76010 Querétaro, Qro., Mexico
| | - A Gómez-Baltazar
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Col. Las Campanas, 76010 Querétaro, Qro., Mexico
| | - M Hernández-Iturriaga
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Col. Las Campanas, 76010 Querétaro, Qro., Mexico
| | - A Godínez-Oviedo
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Col. Las Campanas, 76010 Querétaro, Qro., Mexico.
| |
Collapse
|
135
|
Chacón RD, Ramírez M, Rodríguez-Cueva CL, Sánchez C, Quispe-Rojas WU, Astolfi-Ferreira CS, Piantino Ferreira AJ. Genomic Characterization and Genetic Profiles of Salmonella Gallinarum Strains Isolated from Layers with Fowl Typhoid in Colombia. Genes (Basel) 2023; 14:genes14040823. [PMID: 37107581 PMCID: PMC10138188 DOI: 10.3390/genes14040823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Salmonella Gallinarum (SG) is the causative agent of fowl typhoid (FT), a disease that is harmful to the poultry industry. Despite sanitation and prophylactic measures, this pathogen is associated with frequent disease outbreaks in developing countries, causing high morbidity and mortality. We characterized the complete genome sequence of Colombian SG strains and then performed a comparative genome analysis with other SG strains found in different regions worldwide. Eight field strains of SG plus a 9R-derived vaccine were subjected to whole-genome sequencing (WGS) and bioinformatics analysis, and the results were used for subsequent molecular typing; virulome, resistome, and mobilome characterization; and a comparative genome study. We identified 26 chromosome-located resistance genes that mostly encode efflux pumps, and point mutations were found in gyrase genes (gyrA and gyrB), with the gyrB mutation S464T frequently found in the Colombian strains. Moreover, we detected 135 virulence genes, mainly in 15 different Salmonella pathogenicity islands (SPIs). We generated an SPI profile for SG, including C63PI, CS54, ssaD, SPI-1, SPI-2, SPI-3, SPI-4, SPI-5, SPI-6, SPI-9, SPI-10, SPI-11, SPI-12, SPI-13, and SPI-14. Regarding mobile genetic elements, we found the plasmids Col(pHAD28) and IncFII(S) in most of the strains and 13 different prophage sequences, indicating a frequently obtained profile that included the complete phage Gifsy_2 and incomplete phage sequences resembling Escher_500465_2, Shigel_SfIV, Entero_mEp237, and Salmon_SJ46. This study presents, for the first time, the genomic content of Colombian SG strains and a profile of the genetic elements frequently found in SG, which can be further studied to clarify the pathogenicity and evolutionary characteristics of this serotype.
Collapse
Affiliation(s)
- Ruy D Chacón
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, Brazil
- Inter-Units Program in Biotechnology, University of São Paulo, São Paulo 05508-900, Brazil
| | - Manuel Ramírez
- Unidad de Bioinformática, Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Bellavista 07006, Peru
| | - Carmen L Rodríguez-Cueva
- Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Christian Sánchez
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Wilma Ursula Quispe-Rojas
- Laboratory of Molecular Microbiology and Biotechnology, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| | - Claudete S Astolfi-Ferreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, Brazil
| | - Antonio J Piantino Ferreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, Brazil
| |
Collapse
|
136
|
Casaux ML, D'Alessandro B, Vignoli R, Fraga M. Phenotypic and genotypic survey of antibiotic resistance in Salmonella enterica isolates from dairy farms in Uruguay. Front Vet Sci 2023; 10:1055432. [PMID: 36968467 PMCID: PMC10033963 DOI: 10.3389/fvets.2023.1055432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/15/2023] [Indexed: 03/11/2023] Open
Abstract
Salmonella enterica is an important zoonotic pathogen that is frequently identified in dairy farming systems. An increase in antibiotic resistance has led to inadequate results of treatments, with impacts on animal and human health. Here, the phenotypic and genotypic susceptibility patterns of Salmonella isolates from dairy cattle and dairy farm environments were evaluated and compared. A collection of 75 S. enterica isolates were evaluated, and their phenotypic susceptibility was determined. For genotypic characterization, the whole genomes of the isolates were sequenced, and geno-serotypes, sequence types (STs) and core-genome-sequence types were determined using the EnteroBase pipeline. To characterize antibiotic resistance genes and gene mutations, tools from the Center for Genomic Epidemiology were used. Salmonella Dublin (SDu), S. Typhimurium (STy), S. Anatum (SAn), S. Newport (SNe), S. Agona (Sag), S. Montevideo (SMo) and IIIb 61:i:z53 were included in the collection. A single sequence type was detected per serovar. Phenotypic non-susceptibility to streptomycin and tetracycline was very frequent in the collection, and high non-susceptibility to ciprofloxacin was also observed. Multidrug resistance (MDR) was observed in 42 isolates (56.0%), with SAn and STy presenting higher MDR than the other serovars, showing non-susceptibility to up to 6 groups of antibiotics. Genomic analysis revealed the presence of 21 genes associated with antimicrobial resistance (AMR) in Salmonella isolates. More than 60% of the isolates carried some gene associated with resistance to aminoglycosides and tetracyclines. Only one gene associated with beta-lactam resistance was found, in seven isolates. Two different mutations were identified, parC_T57S and acrB_R717Q, which confer resistance to quinolones and azithromycin, respectively. The accuracy of predicting antimicrobial resistance phenotypes based on AMR genotypes was 83.7%. The genomic approach does not replace the phenotypic assay but offers valuable information for the survey of circulating antimicrobial resistance. This work represents one of the first studies evaluating phenotypic and genotypic AMR in Salmonella from dairy cattle in South America.
Collapse
Affiliation(s)
- María Laura Casaux
- Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental INIA La Estanzuela, Colonia, Uruguay
| | - Bruno D'Alessandro
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Vignoli
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Martín Fraga
- Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental INIA La Estanzuela, Colonia, Uruguay
| |
Collapse
|
137
|
Whole-Genome Analysis of Antimicrobial-Resistant Salmonella enterica Isolated from Duck Carcasses in Hanoi, Vietnam. Curr Issues Mol Biol 2023; 45:2213-2229. [PMID: 36975513 PMCID: PMC10047438 DOI: 10.3390/cimb45030143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Salmonella enterica is one of the most dangerous foodborne pathogens listed by the World Health Organization. In this study, whole-duck samples were collected at wet markets in five districts in Hanoi, Vietnam, in October 2019 to assess their Salmonella infection rates and evaluate the susceptibility of the isolated strains to antibiotics currently used in the prophylaxis and treatment of Salmonella infection. Based on the antibiotic resistance profiles, eight multidrug resistance strains were whole-genome-sequenced, and their antibiotic resistance genes, genotypes, multi-locus sequence-based typing (MLST), virulence factors, and plasmids were analyzed. The results of the antibiotic susceptibility test indicate that phenotypic resistance to tetracycline and cefazolin was the most common (82.4%, 28/34 samples). However, all isolates were susceptible to cefoxitin and meropenem. Among the eight sequenced strains, we identified 43 genes associated with resistance to multiple classes of antibiotics such as aminoglycoside, beta-lactam, chloramphenicol, lincosamide, quinolone, and tetracycline. Notably, all strains carried the blaCTX-M-55 gene, which confers resistance to third-generation antibiotics including cefotaxime, cefoperazone, ceftizoxime, and ceftazidime, as well as resistance genes of other broad-spectrum antibiotics used in clinical treatment such as gentamicin, tetracycline, chloramphenicol, and ampicillin. Forty-three different antibiotic resistance genes were predicted to be present in the isolated Salmonella strains’ genomes. In addition, three plasmids were predicted in two strains, 43_S11 and 60_S17. The sequenced genomes also indicated that all strains carried SPI-1, SPI-2, and SPI-3. These SPIs are composed of antimicrobial resistance gene clusters and thus represent a potential threat to public health management. Taken together, this study highlights the extent of multidrug-resistant Salmonella contamination in duck meat in Vietnam.
Collapse
|
138
|
Wang Y, Liu Y, Lyu N, Li Z, Ma S, Cao D, Pan Y, Hu Y, Huang H, Gao GF, Xu X, Zhu B. The temporal dynamics of antimicrobial-resistant Salmonella enterica and predominant serovars in China. Natl Sci Rev 2023; 10:nwac269. [PMID: 37035020 PMCID: PMC10076184 DOI: 10.1093/nsr/nwac269] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/13/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
Salmonella enterica is one of the most common bacterial pathogens in humans and animals. Systematic studies on the trends and geographical distribution of antimicrobial-resistant Salmonella and dominant serovars have been well studied in European and American countries while not in China. Here, taking the One-Health strategy, we used >35 000 Salmonella enterica isolates to explore the temporal and spatial dynamics of dominant serovars in China. We found that Salmonella Typhimurium was the dominant serovar causing human infection in China, which was consistent with Australia but inconsistent with North American and European countries. The proportion of Salmonella serovars Typhimurium, London, Rissen, Corvallis, Meleagridis, Kentucky, and Goldcoast showed an increasing trend during 2006-2019. We randomly selected 1962 isolates for comparative genomics and antimicrobial resistance studies and found that the number of antibiotic resistance genes (ARGs) per isolate increased 1.84 and 2.69 times of human and non-human origins, respectively, spanning 14 years. The proportion of antimicrobial-resistant Salmonella isolates had an increasing trend during 2006-2019, especially beta-lactam, quinolone, tetracycline, and rifampicin resistance. Moreover, we found that higher diversity of sequence types (STs) in S. Typhimurium than in other serovars, ST34 from pig and ST19 from chicken origin, were mainly associated with isolates causing child and adult gastro-infection, respectively. Our results fill in the data gap on the trends of dominant serovars and antimicrobial resistance of Salmonella enterica in China. These data provide useful information for public health decision-makers prioritizing interventions for foodborne diseases and food safety.
Collapse
Affiliation(s)
- Yanan Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yue Liu
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Na Lyu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhiyuan Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sufang Ma
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Demin Cao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanlong Pan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hua Huang
- Beijing Products Quality Supervision and Inspection Institute, Beijing 101300, China
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Xuebin Xu
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Antimicrobial Resistance and Pathogen Genomics, Beijing 100101, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
139
|
Jibril AH, Okeke IN, Dalsgaard A, Olsen JE. Prevalence and whole genome phylogenetic analysis reveal genetic relatedness between antibiotic resistance Salmonella in hatchlings and older chickens from farms in Nigeria. Poult Sci 2023; 102:102427. [PMID: 36584420 PMCID: PMC9827064 DOI: 10.1016/j.psj.2022.102427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/07/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The presence of Salmonella in hatchlings is the single most important risk factor for the introduction of Salmonella into poultry farms, and resistant strains are particularly worrisome, as they could affect treatment outcomes in humans infected through consumption of contaminated poultry products. This study estimated Salmonella prevalence, determined resistance profiles of strains recovered from hatchlings in Nigeria, and determined genetic relatedness between hatchling strains and strains from poultry farms. In this study, 300 fecal samples were collected. Salmonella was isolated by culture and confirmed by PCR, and isolates were tested for susceptibility to antimicrobials by the disk diffusion method. Strains were pair-end sequenced, and genomes were used to obtain serotypes and antibiotic resistance genes. Whole-genome based phylogenetic analysis was used to determine genetic relatedness between these isolates and strains from previously characterized older chicken within the same geographical area. A prevalence of 10.7% was obtained belonging to 13 Salmonella serovars. Resistance to kanamycin (30/32), ciprofloxacin (22/32), nalidixic acid (22/32), and sulfonamides (22/32) were the most commonly observed phenotypic resistances. Twenty-two (68.8%) isolates showed multidrug resistance. In silico predictions identified 36 antimicrobial resistance genes. Four (12.5%) and 22 (68.8%) strains showed point mutations in gyrA and parC. Commonly observed acquired resistance genes included sul1, sul2, sul3, and tet(A) as well as a variety of aminoglycoside-modifying genes. Eleven (34.4%) isolates were predicted to have genes that confer resistance to fosfomycin (fosA7, fosB). A strain of S. Stanleyville was predicted to have optrA, which confers resistance to furazolidone. Strains of S. Kentucky, S. Muenster, and S. Menston obtained from hatchlings showed close genetic relatedness by having less than 30 SNPs difference to strains recovered from chickens at farms previously receiving hatchlings from the same sources.
Collapse
Affiliation(s)
- Abdurrahman Hassan Jibril
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Iruka N Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Anders Dalsgaard
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
| | - John Elmerdahl Olsen
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
| |
Collapse
|
140
|
Jiang Y, Wang ZY, Li QC, Lu MJ, Wu H, Mei CY, Shen PC, Jiao X, Wang J. Characterization of Extensively Drug-Resistant Salmonella enterica Serovar Kentucky Sequence Type 198 Isolates from Chicken Meat Products in Xuancheng, China. Microbiol Spectr 2023; 11:e0321922. [PMID: 36847509 PMCID: PMC10100706 DOI: 10.1128/spectrum.03219-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/02/2023] [Indexed: 03/01/2023] Open
Abstract
The purpose of this study was to characterize extensively drug-resistant Salmonella enterica serovar Kentucky sequence type 198 (ST198) isolates from chicken meat products. Ten S. Kentucky strains obtained from chicken meat products in Xuancheng, China, carried 12 to 17 resistance genes, such as blaCTX-M-55, rmtB, tet(A), floR, and fosA3, combined with mutations within gyrA (S83F and D87N) and parC (S80I), resulting in resistance to numerous antimicrobial agents, including the clinically important antibiotics cephalosporin, ciprofloxacin, tigecycline, and fosfomycin. These S. Kentucky isolates shared a close phylogenetic relationship (21 to 36 single-nucleotide polymorphisms [SNPs]) and showed close genetic relatedness to two human clinical isolates from China. Three S. Kentucky strains were subjected to whole-genome sequencing using Pacific Biosciences (PacBio) single-molecule real-time (SMRT) technology. All antimicrobial resistance genes were located on their chromosomes and clustered in one multiresistance region (MRR) and Salmonella genomic island (SGI) SGI1-K. The MRRs in three S. Kentucky strains were bounded by IS26 at both ends and were inserted downstream of the bcfABCDEFG cluster with 8-bp direct repeats. The MRRs were related to those of IncHI2 plasmids but differed by insertions, deletions, and rearrangements of multiple segments involving resistance genes and plasmid backbones. This finding suggests that the MRR fragment possibly originates from IncHI2 plasmids. Four SGI1-K variants with slight differences were identified in 10 S. Kentucky strains. Mobile elements, particularly IS26, play an essential role in forming distinct MRRs and SGI1-K structures. In conclusion, the emergence of extensively drug-resistant S. Kentucky ST198 strains containing numerous chromosomally located resistance genes is alarming and needs continued surveillance. IMPORTANCE Salmonella spp. are important foodborne pathogens, and multidrug-resistant (MDR) Salmonella strains have become a serious threat to clinical therapy. MDR S. Kentucky ST198 strains have been increasingly reported from various sources and have become a global risk. In this study, we described extensively drug-resistant S. Kentucky ST198 strains from chicken meat products from a city in China. Numerous resistance genes are clustered in the chromosomes of S. Kentucky ST198 strains, possibly acquired with the help of mobile elements. This would facilitate the spread of numerous resistance genes as intrinsic chromosomal genes within this global epidemic clone, with the potential to capture more resistance genes. The emergence and dissemination of extensively drug-resistant S. Kentucky ST198 pose a severe clinical and public health threat; therefore, continuous surveillance is warranted.
Collapse
Affiliation(s)
- Yue Jiang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Zhen-Yu Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Qiu-Chun Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Meng-Jun Lu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Han Wu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Cai-Yue Mei
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Peng-Cheng Shen
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Jing Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
141
|
Distribution and Transmission of Colistin Resistance Genes mcr-1 and mcr-3 among Nontyphoidal Salmonella Isolates in China from 2011 to 2020. Microbiol Spectr 2023; 11:e0383322. [PMID: 36519849 PMCID: PMC9927481 DOI: 10.1128/spectrum.03833-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mobile colistin resistance (mcr) genes are present mainly in plasmids and can disseminate clonally or horizontally via either plasmids or insertion sequences in different genomic locations among the Enterobacteriaceae. A nationwide large-scale study on mcr prevalence and transmission in nontyphoidal Salmonella isolates is still lacking. Here, we identified 140 mcr-positive Salmonella isolates out of 7,106 isolates from 29 provinces in China from 2011 to 2020. We aligned short reads to putative plasmids from long-read hybrid assemblies and predicted the plasmid backbones of non-long-read sequencing isolates to elucidate mcr transmission patterns. The mcr-1 and mcr-3 genes are transmitted on similar high-risk clones (sequence type 34 [ST34]) but through plasmids of various replicon types. Furthermore, the ban on colistin use in food animals can lead to a decrease in the mcr-positive Salmonella prevalence among diarrheal patients, related mainly to IncHI2A_IncHI2 plasmids. We provide a framework for plasmid data incorporation into genomic surveillance systems, contributing to a better understanding of mcr spread and transmission. IMPORTANCE Nontyphoidal Salmonella is one of four major causative agents of diarrheal diseases globally, with most cases of salmonellosis being mild. Antimicrobial treatments are required for cases of life-threatening infections, and colistin is one of the last-line antibiotics for the treatment of multidrug-resistant Salmonella infections. However, the efficacy of colistin has been compromised by the emergence of various mcr genes. To elucidate the transmission of mcr genes in Salmonella isolates, our study analyzed 7,106 Salmonella strains from 29 provinces in China from 2011 to 2020. The results showed that mcr genes are transmitted on similar high-risk clones (ST34) but through plasmids of various replicon types. In addition, our data illustrated that the ban on the use of colistin in food animals led to a significant decrease in mcr-positive isolates. Our findings offer an essential step toward a more comprehensive understanding of the spread and transmission of mcr genes.
Collapse
|
142
|
Hudson LK, Andershock WE, Qian X, Gibbs PL, Orejuela K, Garman KN, Dunn JR, Denes TG. Phylogeny and Genomic Characterization of Clinical Salmonella enterica Serovar Newport Collected in Tennessee. Microbiol Spectr 2023; 11:e0387622. [PMID: 36602313 PMCID: PMC9927352 DOI: 10.1128/spectrum.03876-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/21/2022] [Indexed: 01/06/2023] Open
Abstract
Salmonella enterica subsp. enterica serovar Newport (S. Newport) is a clinically and epidemiologically significant serovar in the United States. It is the second most prevalent clinically isolated Salmonella serovar in the United States, and it can contaminate a wide variety of food products. In this study, we evaluated the population structure of S. Newport clinical isolates obtained by the Tennessee Department of Health during routine surveillance (n = 346), along with a diverse set of other global clinical isolates obtained from EnteroBase (n = 271). Most of these clinical isolates belonged to established lineages II and III. Additionally, we performed lineage-specific phylogenetic analyses and were able to identify 18 potential epidemiological clusters among the isolates from Tennessee, which represented a greater proportion of Tennessee isolates belonging to putative epidemiological clusters than the proportion of isolates of this serovar that are outbreak related. IMPORTANCE This study provides insight on the genomic diversity of one of the Salmonella serovars that most frequently cause human illness. Specifically, we explored the diversity of human clinical isolates from a localized region (Tennessee) and compared this level of diversity with the global context. Additionally, we showed that a greater proportion of isolates were associated with potential epidemiological clusters (based on genomic relatedness) than historical estimates. We also identified that one potential cluster was predicted to be multidrug resistant. Taken together, these findings provide insight on Salmonella enterica serovar Newport that can impact public health surveillance and responses and serve as a foundational context for the Salmonella research community.
Collapse
Affiliation(s)
- Lauren K. Hudson
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
| | | | - Xiaorong Qian
- Division of Laboratory Services, Tennessee Department of Health, Nashville, Tennessee, USA
| | - Paula L. Gibbs
- Division of Laboratory Services, Tennessee Department of Health, Nashville, Tennessee, USA
| | - Kelly Orejuela
- Tennessee Department of Health, Nashville, Tennessee, USA
| | | | - John R. Dunn
- Tennessee Department of Health, Nashville, Tennessee, USA
| | - Thomas G. Denes
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
143
|
Carriage and Transmission of mcr-1 in Salmonella Typhimurium and Its Monophasic 1,4,[5],12:i:- Variants from Diarrheal Outpatients: a 10-Year Genomic Epidemiology in Guangdong, Southern China. Microbiol Spectr 2023; 11:e0311922. [PMID: 36629419 PMCID: PMC9927551 DOI: 10.1128/spectrum.03119-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The banning of colistin as a feed additive for food-producing animals in mainland China in 2017 caused the decline in the prevalence of Escherichia coli-mobilized colistin resistance (mcr-1) in China. Salmonella Typhimurium and its monophasic 1,4,[5],12:i:- variants are also the main species associated with the spread of mcr-1; however, the evidence of the prevalence and transmission of mcr-1 among Salmonella is lacking. Herein, the 5,354 Salmonella isolates recovered from fecal samples of diarrheal patients in Guangdong, Southern China, from 2009 to 2019 were screened for colistin resistance and mcr-1, and mcr-1-positive isolates were characterized based on whole-genome sequencing (WGS) data. Relatively high prevalence rates of colistin resistance and mcr-1 (4.05%/4.50%) were identified, and more importantly, the prevalence trends of colistin-resistant and mcr-1-positive Salmonella isolates had a similar dynamic profile, i.e., both were first detected in 2012 and rapidly increased during 2013 to 2016, followed by a sharp decrease since 2017. WGS and phylogenetic analysis indicate that, whether before or after the ban, the persistence and cross-hospital transmission of mcr-1 are primarily determined by IncHI2 plasmids with similar backbones and sequence type 34 (ST34) Salmonella in specific clades that are associated with a high prevalence of IncHI2 plasmids and clinically important antimicrobial resistance genes, including blaCTX-M-14-fosA3-oqxAB-floR genotypes. Our work reveals the difference in the prevalence rate of mcr-1 in clinical Salmonella before and after the Chinese colistin ban, whereas mcr-1 transmission was closely linked to multidrug-resistant IncHI2 plasmid and ST34 Salmonella across diverse hospitals over 10 years. Continued surveillance is required to explore the factors related to a sharp decrease in mcr-1 after the recent ban and determine whether the ban has affected the carriage of mcr-1 in Salmonella circulating in the health care system. IMPORTANCE Colistin is one of the last-line antibiotics for the clinical treatment of Enterobacteriaceae. However, the emergence of the mobilized colistin resistance (mcr-1) gene has spread throughout the entire human health system and largely threatens the usage of colistin in the clinical setting. In this study, we investigated the existence of mcr-1 in clinical Salmonella from a 10-year continuous surveillance and genomic study. Overall, the colistin resistance rate and mcr-1 carriage of Salmonella in tertiary hospitals in Guangdong (2009 to 2019) were relatively high and, importantly, rapidly increased from 2013 to 2016 and significantly decreased after the Chinese colistin withdrawal. However, before or after the ban, the MDR IncHI2 plasmid with a similar backbone and ST34 Salmonella were the main vectors involved in the spread of mcr-1. Interestingly, these Chinese mcr-1-carrying Salmonella obtain phylogenetically and phylogeographically distinct patterns compared with those from other continents and are frequently associated with clinically important ARGs including the extended-spectrum β-lactamases. Our data confirmed that the national stewardship intervention seems to be successful in blocking antibiotic resistance determinants and that continued surveillance of colistin resistance in clinical settings, farm animals, and related products is necessary.
Collapse
|
144
|
Development and application of a multiplex PCR method to differentiate Salmonella enterica serovar Typhimurium from its monophasic variants in pig farms. Food Microbiol 2023; 109:104135. [DOI: 10.1016/j.fm.2022.104135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022]
|
145
|
Wu X, Luo H, Ge C, Xu F, Deng X, Wiedmann M, Baker RC, Stevenson AE, Zhang G, Tang S. Evaluation of multiplex nanopore sequencing for Salmonella serotype prediction and antimicrobial resistance gene and virulence gene detection. Front Microbiol 2023; 13:1073057. [PMID: 36817104 PMCID: PMC9930645 DOI: 10.3389/fmicb.2022.1073057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/22/2022] [Indexed: 02/04/2023] Open
Abstract
In a previous study, Multiplex-nanopore-sequencing based whole genome sequencing (WGS) allowed for accurate in silico serotype prediction of Salmonella within one day for five multiplexed isolates, using both SISTR and SeqSero2. Since only ten serotypes were tested in our previous study, the conclusions above were yet to be evaluated in a larger scale test. In the current study we evaluated this workflow with 69 Salmonella serotypes and also explored the feasibility of using multiplex-nanopore-sequencing based WGS for antimicrobial resistance gene (AMR) and virulence gene detection. We found that accurate in silico serotype prediction with nanopore-WGS data was achieved within about five hours of sequencing at a minimum of 30× Salmonella genome coverage, with SeqSero2 as the serotype prediction tool. For each tested isolate, small variations were observed between the AMR/virulence gene profiles from the Illumina and Nanopore sequencing platforms. Taking results generated using Illumina data as the benchmark, the average precision value per isolate was 0.99 for both AMR and virulence gene detection. We found that the resistance gene identifier - RGI identified AMR genes with nanopore data at a much lower accuracy compared to Abricate, possibly due to RGI's less stringent minimum similarity and coverage by default for database matching. This study is an evaluation of multiplex-nanopore-sequencing based WGS as a cost-efficient and rapid Salmonella classification method, and a starting point for future validation and verification of using it as a AMR/virulence gene profiling tool for the food industry. This study paves the way for the application of nanopore sequencing in surveillance, tracking, and risk assessment of Salmonella across the food supply chain.
Collapse
Affiliation(s)
- Xingwen Wu
- Mars Global Food Safety Center, Beijing, China
| | - Hao Luo
- Mars Global Food Safety Center, Beijing, China
| | - Chongtao Ge
- Mars Global Food Safety Center, Beijing, China
| | - Feng Xu
- Mars Global Food Safety Center, Beijing, China
| | - Xiangyu Deng
- Center for Food Safety, University of Georgia, Griffin, GA, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | | | | | | | - Silin Tang
- Mars Global Food Safety Center, Beijing, China
| |
Collapse
|
146
|
Nguyen TT, Le HV, Xuan DP, Vu TN, Nguyen MH, Tran HTT. Whole-genome sequencing of antimicrobial-resistant Salmonella enterica isolates from a Cairina moschata carcass. Data Brief 2023; 47:108932. [PMID: 36819900 PMCID: PMC9929197 DOI: 10.1016/j.dib.2023.108932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Salmonella enterica is one of the most common agents of foodborne bacterial illness with poultry being an important reservoir. The indiscriminate use of antimicrobial compounds in poultry farming increasingly leads to antimicrobial-resistant (AMR) which threatens the health of both animals and humans. Antimicrobial-resistant Salmonella enterica from the poultry can spread to human through the direct contact with infected poultry or fecal contaminated environments. Antimicrobial-resistant S. enterica, especially fluoroquinolone-resistant nontyphoidal Salmonella is in the list of global health concern stated by the World Health Organization (WHO). Here we report the whole-genome sequencing data and de novo genome assemble of antimicrobial-resistant S. enterica strains S8 and S9 from the C. moschata carcass collected in Vietnam. Genomic DNA of S. enterica were extracted and subjected to whole-genome sequencing using Illumina MiSeq platform. The genome size of antimicrobial-resistant S. enterica strain S8 is 4,707,459 bp with a GC-content of 52.38%, containing 10 antimicrobial resistant genes. The genome size of antimicrobial-resistant Samonella enterica strain S9 is 4,923,944 bp with a GC-content of 52,39%, containing 10 antimicrobial resistance genes. Our data provided the insights on antimicrobial resistant genes of S. enterica isolates from the C. moschata carcass, which help to understand the infection mechanism of antimicrobial-resistant S. enterica in human.
Collapse
Affiliation(s)
- Trung Thanh Nguyen
- Department of Food Microbiology and Genetically Modified Food, Vietnam National Institute for Food Control, Cau Giay, Hanoi, Vietnam
| | - Hoa Vinh Le
- Department of Food Microbiology and Genetically Modified Food, Vietnam National Institute for Food Control, Cau Giay, Hanoi, Vietnam
| | - Da Pham Xuan
- Center for Genetic and Reproductive Health, Faculty of Medicine - Vietnam National University, Ho Chi Minh City, Vietnam
| | - Trung Nghia Vu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Minh Hong Nguyen
- Bioresource Research Center, Phenikaa University, Hanoi 12116, Vietnam
| | - Huyen Thi Thanh Tran
- Vinmec Research Institute of Stemcell and Gene Technology, Hai Ba Trung, Hanoi, Vietnam
- Corresponding author at: Vinmec Research Institute of Stemcell and Gene Technology, Hai Ba Trung, Hanoi, Vietnam.
| |
Collapse
|
147
|
García-Soto S, Linde J, Methner U. Epidemiological Analysis on the Occurrence of Salmonella enterica Subspecies enterica Serovar Dublin in the German Federal State Schleswig-Holstein Using Whole-Genome Sequencing. Microorganisms 2023; 11:microorganisms11010122. [PMID: 36677417 PMCID: PMC9863307 DOI: 10.3390/microorganisms11010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
The cattle-adapted serovar Salmonella Dublin (S. Dublin) causes enteritis and systemic diseases in animals. In the German federal state Schleswig-Holstein, S. Dublin is the most important serovar in cattle indicating an endemic character of the infection. To gain information on dissemination and routes of infection, whole-genome sequencing (WGS) was used to explore the genetic traits of 78 S. Dublin strains collected over a period of six years. The phylogeny was analysed using core-genome single nucleotide polymorphisms (cgSNPs). Genomic clusters at 100, 15 and 1 cgSNPs were selected for molecular analysis. Important specific virulence determinants were detected in all strains but multidrug resistance in S. Dublin organisms was not found. Using 15 cgSNPs epidemiological links between herds were identified, clusters at 1 cgSNPs provided clear evidence on both persistence of S. Dublin at single farms in consecutive years and transmission of the organisms between herds in different distances. A possible risk factor for the repeated occurrence of S. Dublin in certain districts of Schleswig-Holstein might be the spreading of manure on pastures and grassland. Effective control of S. Dublin requires farm-specific analysis of the management supplemented by WGS of outbreak causing S. Dublin strains to clearly identify routes of infection.
Collapse
|
148
|
González-Torres B, González-Gómez JP, Ramírez K, Castro-del Campo N, González-López I, Garrido-Palazuelos LI, Chaidez C, Medrano-Félix JA. Population structure of the Salmonella enterica serotype Oranienburg reveals similar virulence, regardless of isolation years and sources. Gene 2023; 851:146966. [DOI: 10.1016/j.gene.2022.146966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
149
|
Gao R, Duceppe MO, Chattaway MA, Goodridge L, Ogunremi D. Application of prophage sequence analysis to investigate a disease outbreak involving Salmonella Adjame, a rare serovar and implications for the population structure. Front Microbiol 2023; 14:1086198. [PMID: 36937281 PMCID: PMC10020630 DOI: 10.3389/fmicb.2023.1086198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/19/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Outbreak investigation of foodborne salmonellosis is hindered when the food source is contaminated by multiple strains of Salmonella, creating difficulties matching an incriminated organism recovered from patients with the specific strain in the suspect food. An outbreak of the rare Salmonella Adjame was caused by multiple strains of the organism as revealed by single-nucleotide polymorphism (SNP) variation. The use of highly discriminatory prophage analysis to characterize strains of Salmonella should enable a more precise strain characterization and aid the investigation of foodborne salmonellosis. Methods We have carried out genomic analysis of S. Adjame strains recovered during the course of a recent outbreak and compared them with other strains of the organism (n = 38 strains), using SNPs to evaluate strain differences present in the core genome, and prophage sequence typing (PST) to evaluate the accessory genome. Phylogenetic analyses were performed using both total prophage content and conserved prophages. Results The PST analysis of the S. Adjame isolates showed a high degree of strain heterogeneity. We observed small clusters made up of 2-6 isolates (n = 27) and singletons (n = 11) in stark contrast with the three clusters observed by SNP analysis. In total, we detected 24 prophages of which only four were highly prevalent, namely: Entero_p88 (36/38 strains), Salmon_SEN34 (35/38 strains), Burkho_phiE255 (33/38 strains) and Edward_GF (28/38 strains). Despite the marked strain diversity seen with prophage analysis, the distribution of the four most common prophages matched the clustering observed using core genome. Discussion Mutations in the core and accessory genomes of S. Adjame have shed light on the evolutionary relationships among the Adjame strains and demonstrated a convergence of the variations observed in both fractions of the genome. We conclude that core and accessory genomes analyses should be adopted in foodborne bacteria outbreak investigations to provide a more accurate strain description and facilitate reliable matching of isolates from patients and incriminated food sources. The outcomes should translate to a better understanding of the microbial population structure and an 46 improved source attribution in foodborne illnesses.
Collapse
Affiliation(s)
- Ruimin Gao
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, QC, Canada
| | - Marc-Olivier Duceppe
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Marie Anne Chattaway
- Gastrointestinal Bacteria Reference Unit, United Kingdom Health Security Agency, London, United Kingdom
| | - Lawrence Goodridge
- Department of Food Science, Canadian Research Institute for Food Safety, University of Guelph, Guelph, ON, Canada
| | - Dele Ogunremi
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
- *Correspondence: Dele Ogunremi,
| |
Collapse
|
150
|
Chromosomally and Plasmid-Located mcr in Salmonella from Animals and Food Products in China. Microbiol Spectr 2022; 10:e0277322. [PMID: 36409077 PMCID: PMC9769515 DOI: 10.1128/spectrum.02773-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study aimed to investigate the prevalence and genomic characteristics of the colistin resistance gene mcr in Salmonella enterica in China. In total, 445 S. enterica isolates from animals and food products were screened through PCR and sequencing for the presence of mcr. The mcr genes were detected in nine Salmonella strains (2.02%), with complete mcr-1 in S. enterica serovar Indiana (n = 1) and an S. Typhimurium monophasic variant (S. 4,[5],12:i:-; n = 1), mcr-4.3 in S. enterica serovar London (n = 1), and an incomplete mcr-1 in S. Indiana (n = 6). They exhibited MIC values of 0.25 to 8 mg/L to colistin and showed resistance to multiple antimicrobial agents. Whole-genome sequencing was performed on mcr-positive Salmonella strains using Illumina HiSeq or PacBio single-molecule real-time sequencing. The complete mcr-1 gene was located on conjugative IncN1-IncHI2 plasmid and IncX4 plasmid, respectively, with high similarity to other mcr-1-bearing plasmids belonging to the same incompatibility type. Together with an additional 13 antimicrobial resistance genes, the incomplete mcr-1 was embedded in an 81,442-bp multiresistance region on the chromosome in S. Indiana YZ20MCS6. The Δmcr-1-pap2 segment and a set of tellurite resistance determinants (terYXWZABCDEF) in six S. Indiana strains were similar to other IncHI2 plasmid backbones. The mcr-4.3 gene was located on an untyped plasmid pYULZMPS10. Although low prevalence of mcr was observed in Salmonella, continuous surveillance of this gene in Salmonella is required. Plasmids play an important role in mcr transmission, and mcr-1, although incomplete, can be captured by chromosomes with the help of mobile elements. IMPORTANCE Colistin is a last-resort antibiotic for severe infections caused by multidrug-resistant (MDR) Gram-negative pathogens. Colistin resistance genes mcr, particularly mcr-1, have been found in Enterobacteriaceae around the world, mainly in Escherichia coli and Salmonella. Salmonella enterica is a major foodborne pathogen, with MDR Salmonella being considered a "Serious Threat Level pathogen" by the Centers for Disease Control and Prevention. Therefore, the prevalence of mcr in Salmonella strains must be monitored. In this study, a low mcr prevalence (2.02%) was observed in Salmonella strains from animals and food products, with plasmid-borne mcr-1 in S. enterica serovar Indiana and an S. Typhimurium monophasic variant (S. 4,[5],12:i:-) and chromosomally located mcr-1 in S. Indiana. The mcr-4.3 gene was first identified in S. enterica serovar London associated with an untyped plasmid. Although this study reports a low mcr prevalence in Salmonella, the transmission ability of mcr-positive Salmonella strains to humans via the food chain is a public health concern.
Collapse
|