101
|
Abstract
Epstein-Barr virus (EBV) was the first human cancer-causing virus to be discovered over fifty years ago. Given its relatively large genome size for a virus and hence the capacity to store more than mere protein-coding information, EBV also harbours genetic material for producing an array of distinct noncoding (nc)RNAs. The double-stranded nature of its DNA genome allows the utilization of the whole gamut of ncRNA types, including both RNA polymerase II and III transcripts, in devising a sophisticated strategy to ensure its replication upon infection in host cells and evasion of host immune responses. Owing to the development of sensitive technologies in recent years, mostly entailing next-generation sequencing, the list of ncRNA types generated by EBV has expanded now to include two RNAs (EBER1 and EBER2) best categorized as long ncRNAs, dozens of microRNAs, one small nucleolar RNA, stable intronic sequence RNAs, and the most recently discovered circular RNAs. With the application of cutting-edge technology, the molecular mechanisms of some of these noncoding transcripts are beginning to emerge, while others remain yet to be elucidated. As viruses often take advantage of existing molecular pathways established by the host, it is likely that further novel concepts of the greatly unexplored noncoding world can be learned from studying the many EBV ncRNAs.
Collapse
Affiliation(s)
- Nara Lee
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
102
|
Yang L, Wu S, Ma C, Song S, Jin F, Niu Y, Tong WM. RNA m 6A Methylation Regulators Subclassify Luminal Subtype in Breast Cancer. Front Oncol 2021; 10:611191. [PMID: 33585234 PMCID: PMC7878528 DOI: 10.3389/fonc.2020.611191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
RNA N6-methyladenosine (m6A) methylation is the most prevalent epitranscriptomic modification in mammals, with a complex and fine-tuning regulatory system. Recent studies have illuminated the potential of m6A regulators in clinical applications including diagnosis, therapeutics, and prognosis. Based on six datasets of breast cancer in The Cancer Genome Atlas (TCGA) database and two additional proteomic datasets, we provide a comprehensive view of all the known m6A regulators in their gene expression, copy number variations (CNVs), DNA methylation status, and protein levels in breast tumors and their association with prognosis. Among four breast cancer subtypes, basal-like subtype exhibits distinct expression and genomic alteration in m6A regulators from other subtypes. Accordingly, four representative regulators (IGF2BP2, IGF2BP3, YTHDC2, and RBM15) are identified as basal-like subtype-featured genes. Notably, luminal A/B samples are subclassified into two clusters based on the methylation status of those four genes. In line with its similarity to basal-like subtype, cluster1 shows upregulation in immune-related genes and cell adhesion molecules, as well as an increased number of tumor-infiltrating lymphocytes. Besides, cluster1 has worse disease-free and progression-free survival, especially among patients diagnosed with stage II and luminal B subtype. Together, this study highlights the potential functions of m6A regulators in the occurrence and malignancy progression of breast cancer. Given the heterogeneity within luminal subtype and high risk of recurrence and metastasis in a portion of patients, the prognostic stratification of luminal A/B subtypes utilizing basal-featured m6A regulators may help to improve the accuracy of diagnosis and therapeutics of breast cancer.
Collapse
Affiliation(s)
- Lin Yang
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.,School of Basic Medicine, Peking Union Medical College, Beijing, China.,Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuangling Wu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chunhui Ma
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.,School of Basic Medicine, Peking Union Medical College, Beijing, China.,Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuhui Song
- China National Center for Bioinformation, Beijing, China.,National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yamei Niu
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.,School of Basic Medicine, Peking Union Medical College, Beijing, China.,Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei-Min Tong
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.,School of Basic Medicine, Peking Union Medical College, Beijing, China.,Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
103
|
Zheng X, Wang J, Zhang X, Fu Y, Peng Q, Lu J, Wei L, Li Z, Liu C, Wu Y, Yan Q, Ma J. RNA m 6 A methylation regulates virus-host interaction and EBNA2 expression during Epstein-Barr virus infection. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:351-362. [PMID: 33434416 PMCID: PMC8127537 DOI: 10.1002/iid3.396] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/24/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Introduction N6‐methyladenosine (m6A) is the most prevalent modification that occurs in messenger RNA (mRNA), affecting mRNA splicing, translation, and stability. This modification is reversible, and its related biological functions are mediated by “writers,” “erasers,” and “readers.” The field of viral epitranscriptomics and the role of m6A modification in virus–host interaction have attracted much attention recently. When Epstein–Barr virus (EBV) infects a human B lymphocyte, it goes through three phases: the pre‐latent phase, latent phase, and lytic phase. Little is known about the viral and cellular m6A epitranscriptomes in EBV infection, especially in the pre‐latent phase during de novo infection. Methods Methylated RNA immunoprecipitation sequencing (MeRIP‐seq) and MeRIP‐RT‐qPCR were used to determine the m6A‐modified transcripts during de novo EBV infection. RIP assay was used to confirm the binding of EBNA2 and m6A readers. Quantitative reverse‐transcription polymerase chain reaction (RT‐qPCR) and Western blot analysis were performed to test the effect of m6A on the host and viral gene expression. Results Here, we provided mechanistic insights by examining the viral and cellular m6A epitranscriptomes during de novo EBV infection, which is in the pre‐latent phase. EBV EBNA2 and BHRF1 were highly m6A‐modified upon EBV infection. Knockdown of METTL3 (a “writer”) decreased EBNA2 expression levels. The emergent m6A modifications induced by EBV infection preferentially distributed in 3ʹ untranslated regions of cellular transcripts, while the lost m6A modifications induced by EBV infection preferentially distributed in coding sequence regions of mRNAs. EBV infection could influence the host cellular m6A epitranscriptome. Conclusions These results reveal the critical role of m6A modification in the process of de novo EBV infection.
Collapse
Affiliation(s)
- Xiang Zheng
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Department of Microbiology, Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Jia Wang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Department of Microbiology, Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China.,Department of Immunology, Changzhi Medical College, Changzhi, Shanxi, China
| | - Xiaoyue Zhang
- Cancer Research Institute, Department of Microbiology, Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Yuxin Fu
- Cancer Research Institute, Department of Microbiology, Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Qiu Peng
- Cancer Research Institute, Department of Microbiology, Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Jianhong Lu
- Cancer Research Institute, Department of Microbiology, Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Lingyu Wei
- Cancer Research Institute, Department of Microbiology, Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Zhengshuo Li
- Cancer Research Institute, Department of Microbiology, Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Can Liu
- Cancer Research Institute, Department of Microbiology, Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Yangge Wu
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Ma
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Department of Microbiology, Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, Hunan, China
| |
Collapse
|
104
|
Bayoumi M, Munir M. Structural Insights Into m6A-Erasers: A Step Toward Understanding Molecule Specificity and Potential Antiviral Targeting. Front Cell Dev Biol 2021; 8:587108. [PMID: 33511112 PMCID: PMC7835257 DOI: 10.3389/fcell.2020.587108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
The cellular RNA can acquire a variety of chemical modifications during the cell cycle, and compelling pieces of evidence highlight the importance of these modifications in determining the metabolism of RNA and, subsequently, cell physiology. Among myriads of modifications, methylation at the N6-position of adenosine (m6A) is the most important and abundant internal modification in the messenger RNA. The m6A marks are installed by methyltransferase complex proteins (writers) in the majority of eukaryotes and dynamically reversed by demethylases such as FTO and ALKBH5 (erasers). The incorporated m6A marks on the RNA transcripts are recognized by m6A-binding proteins collectively called readers. Recent epigenetic studies have unequivocally highlighted the association of m6A demethylases with a range of biomedical aspects, including human diseases, cancers, and metabolic disorders. Moreover, the mechanisms of demethylation by m6A erasers represent a new frontier in the future basic research on RNA biology. In this review, we focused on recent advances describing various physiological, pathological, and viral regulatory roles of m6A erasers. Additionally, we aim to analyze structural insights into well-known m6A-demethylases in assessing their substrate binding-specificity, efficiency, and selectivity. Knowledge on cellular and viral RNA metabolism will shed light on m6A-specific recognition by demethylases and will provide foundations for the future development of efficacious therapeutic agents to various cancerous conditions and open new avenues for the development of antivirals.
Collapse
Affiliation(s)
- Mahmoud Bayoumi
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom.,Virology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
105
|
Gu J, Zhan Y, Zhuo L, Zhang Q, Li G, Li Q, Qi S, Zhu J, Lv Q, Shen Y, Guo Y, Liu S, Xie T, Sui X. Biological functions of m 6A methyltransferases. Cell Biosci 2021; 11:15. [PMID: 33431045 PMCID: PMC7798219 DOI: 10.1186/s13578-020-00513-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
M6A methyltransferases, acting as a writer in N6-methyladenosine, have attracted wide attention due to their dynamic regulation of life processes. In this review, we first briefly introduce the individual components of m6A methyltransferases and explain their close connections to each other. Then, we concentrate on the extensive biological functions of m6A methyltransferases, which include cell growth, nerve development, osteogenic differentiation, metabolism, cardiovascular system homeostasis, infection and immunity, and tumour progression. We summarize the currently unresolved problems in this research field and propose expectations for m6A methyltransferases as novel targets for preventive and curative strategies for disease treatment in the future.
Collapse
Affiliation(s)
- Jianzhong Gu
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, Zhejiang, China
| | - Yu Zhan
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, Zhejiang, China
| | - Lvjia Zhuo
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qin Zhang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Guohua Li
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qiujie Li
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Shasha Qi
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Jinyu Zhu
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qun Lv
- Department of Respiratory medicine, the Affiliated Hospital of Hangzhou Normal University, School of Medicine, Hangzhou Normal University, Hangzhou, 310015, Zhejiang, China
| | - Yingying Shen
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, Zhejiang, China
| | - Yong Guo
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, Zhejiang, China
| | - Shuiping Liu
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Tian Xie
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Xinbing Sui
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
106
|
Hakata Y, Miyazawa M. Deaminase-Independent Mode of Antiretroviral Action in Human and Mouse APOBEC3 Proteins. Microorganisms 2020; 8:microorganisms8121976. [PMID: 33322756 PMCID: PMC7764128 DOI: 10.3390/microorganisms8121976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (APOBEC3) proteins (APOBEC3s) are deaminases that convert cytosines to uracils predominantly on a single-stranded DNA, and function as intrinsic restriction factors in the innate immune system to suppress replication of viruses (including retroviruses) and movement of retrotransposons. Enzymatic activity is supposed to be essential for the APOBEC3 antiviral function. However, it is not the only way that APOBEC3s exert their biological function. Since the discovery of human APOBEC3G as a restriction factor for HIV-1, the deaminase-independent mode of action has been observed. At present, it is apparent that both the deaminase-dependent and -independent pathways are tightly involved not only in combating viruses but also in human tumorigenesis. Although the deaminase-dependent pathway has been extensively characterized so far, understanding of the deaminase-independent pathway remains immature. Here, we review existing knowledge regarding the deaminase-independent antiretroviral functions of APOBEC3s and their molecular mechanisms. We also discuss the possible unidentified molecular mechanism for the deaminase-independent antiretroviral function mediated by mouse APOBEC3.
Collapse
Affiliation(s)
- Yoshiyuki Hakata
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan;
- Correspondence: ; Tel.: +81-72-367-7660
| | - Masaaki Miyazawa
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan;
- Kindai University Anti-Aging Center, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| |
Collapse
|
107
|
Feng C, Huang X, Li X, Mao J. The Roles of Base Modifications in Kidney Cancer. Front Oncol 2020; 10:580018. [PMID: 33282735 PMCID: PMC7691527 DOI: 10.3389/fonc.2020.580018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/19/2020] [Indexed: 11/26/2022] Open
Abstract
Epigenetic modifications including histone modifications and DNA and RNA modifications are involved in multiple biological processes and human diseases. One disease, kidney cancer, includes a common type of tumor, accounts for about 2% of all cancers, and usually has poor prognosis. The molecular mechanisms and therapeutic strategy of kidney cancer are still under intensive study. Understanding the roles of epigenetic modifications and underlying mechanisms in kidney cancer is critical to its diagnosis and clinical therapy. Recently, the function of DNA and RNA modifications has been uncovered in kidney tumor. In the present review, we summarize recent findings about the roles of epigenetic modifications (particularly DNA and RNA modifications) in the incidence, progression, and metastasis of kidney cancer, especially the renal cell carcinomas.
Collapse
Affiliation(s)
- Chunyue Feng
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaoli Huang
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Xuekun Li
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China.,Institute of Translational Medicine of Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Mao
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
108
|
Xu J, Liu Y, Liu J, Xu T, Cheng G, Shou Y, Tong J, Liu L, Zhou L, Xiao W, Xiong Z, Yuan C, Chen Z, Liu D, Yang H, Liang H, Chen K, Zhang X. The Identification of Critical m 6A RNA Methylation Regulators as Malignant Prognosis Factors in Prostate Adenocarcinoma. Front Genet 2020; 11:602485. [PMID: 33343639 PMCID: PMC7746824 DOI: 10.3389/fgene.2020.602485] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
RNA methylation accounts for over 60% of all RNA modifications, and N6-methyladenosine (m6A) is the most common modification on mRNA and lncRNA of human beings. It has been found that m6A modification occurs in microRNA, circRNA, rRNA, and tRNA, etc. The m6A modification plays an important role in regulating gene expression, and the abnormality of its regulatory mechanism refers to many human diseases, including cancers. Pitifully, as it stands there is a serious lack of knowledge of the extent to which the expression and function of m6A RNA methylation can influence prostate cancer (PC). Herein, we systematically analyzed the expression levels of 35 m6A RNA methylation regulators mentioned in literatures among prostate adenocarcinoma patients in the Cancer Genome Atlas (TCGA), finding that most of them expressed differently between cancer tissues and normal tissues with the significance of p < 0.05. Utilizing consensus clustering, we divided PC patients into two subgroups based on the differentially expressed m6A RNA methylation regulators with significantly different clinical outcomes. To appraise the discrepancy in total transcriptome between subgroups, the functional enrichment analysis was conducted for differential signaling pathways and cellular processes. Next, we selected five critical genes by the criteria that the regulators had a significant impact on prognosis of PC patients from TCGA through the last absolute shrinkage and selection operator (LASSO) Cox regression and obtained a risk score by weighted summation for prognosis prediction. The survival analysis curve and receiver operating characteristic (ROC) curve showed that this signature could excellently predict the prognosis of PC patients. The univariate and multivariate Cox regression analyses proved the independent prognostic value of the signature. In summary, our effort revealed the significance of m6A RNA methylation regulators in prostate cancer and determined a m6A gene expression classifier that well predicted the prognosis of prostate cancer.
Collapse
Affiliation(s)
- Jiaju Xu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuenan Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingchong Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianbo Xu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gong Cheng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Shou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junwei Tong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lilong Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijie Zhou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changfei Yuan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhixian Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
109
|
Price AM, Hayer KE, McIntyre ABR, Gokhale NS, Abebe JS, Della Fera AN, Mason CE, Horner SM, Wilson AC, Depledge DP, Weitzman MD. Direct RNA sequencing reveals m 6A modifications on adenovirus RNA are necessary for efficient splicing. Nat Commun 2020; 11:6016. [PMID: 33243990 PMCID: PMC7691994 DOI: 10.1038/s41467-020-19787-6] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/09/2020] [Indexed: 12/20/2022] Open
Abstract
Adenovirus is a nuclear replicating DNA virus reliant on host RNA processing machinery. Processing and metabolism of cellular RNAs can be regulated by METTL3, which catalyzes the addition of N6-methyladenosine (m6A) to mRNAs. While m6A-modified adenoviral RNAs have been previously detected, the location and function of this mark within the infectious cycle is unknown. Since the complex adenovirus transcriptome includes overlapping spliced units that would impede accurate m6A mapping using short-read sequencing, here we profile m6A within the adenovirus transcriptome using a combination of meRIP-seq and direct RNA long-read sequencing to yield both nucleotide and transcript-resolved m6A detection. Although both early and late viral transcripts contain m6A, depletion of m6A writer METTL3 specifically impacts viral late transcripts by reducing their splicing efficiency. These data showcase a new technique for m6A discovery within individual transcripts at nucleotide resolution, and highlight the role of m6A in regulating splicing of a viral pathogen.
Collapse
Affiliation(s)
- Alexander M Price
- Division of Protective Immunity and Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Katharina E Hayer
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Alexa B R McIntyre
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- Tri-Institutional Program in Computational Biology and Medicine, New York, NY, 10065, USA
- Department of Molecular Life Sciences, University of Zurich, 8006, Zurich, Switzerland
| | - Nandan S Gokhale
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Immunology, University of Washington, Seattle, WA, 98115, USA
| | - Jonathan S Abebe
- Department of Medicine, New York University School of Medicine, New York, NY, 10017, USA
| | - Ashley N Della Fera
- Division of Protective Immunity and Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Biological Sciences Graduate Group, University of Maryland, College Park, MD, 20742, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065, USA
- The World Quant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10065, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Angus C Wilson
- Department of Microbiology, New York University School of Medicine, New York, NY, 10017, USA
| | - Daniel P Depledge
- Department of Medicine, New York University School of Medicine, New York, NY, 10017, USA.
| | - Matthew D Weitzman
- Division of Protective Immunity and Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
110
|
Imam H, Kim GW, Siddiqui A. Epitranscriptomic(N6-methyladenosine) Modification of Viral RNA and Virus-Host Interactions. Front Cell Infect Microbiol 2020; 10:584283. [PMID: 33330128 PMCID: PMC7732492 DOI: 10.3389/fcimb.2020.584283] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent and internal modification of eukaryotic mRNA. Multiple m6A methylation sites have been identified in the viral RNA genome and transcripts of DNA viruses in recent years. m6A modification is involved in all the phases of RNA metabolism, including RNA stability, splicing, nuclear exporting, RNA folding, translational modulation, and RNA degradation. Three protein groups, methyltransferases (m6A-writers), demethylases (m6A-erasers), and m6A-binding proteins (m6A-readers) regulate this dynamic reversible process. Here, we have reviewed the role of m6A modification dictating viral replication, morphogenesis, life cycle, and its contribution to disease progression. A better understanding of the m6A methylation process during viral pathogenesis is required to reveal novel approaches to combat the virus-associated diseases.
Collapse
Affiliation(s)
- Hasan Imam
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Geon-Woo Kim
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Aleem Siddiqui
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
111
|
Cui Z, Huang N, Liu L, Li X, Li G, Chen Y, Wu Q, Zhang J, Long S, Wang M, Sun F, Shi Y, Pan Q. Dynamic analysis of m6A methylation spectroscopy during progression and reversal of hepatic fibrosis. Epigenomics 2020; 12:1707-1723. [PMID: 33174480 DOI: 10.2217/epi-2019-0365] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: To dynamically analyze the differential m6A methylation during the progression and reversal of hepatic fibrosis. Materials & methods: We induced hepatic fibrosis in C57/BL6 mice by intraperitoneal injection of CCl4. The reversal model of hepatic fibrosis was established by stopping drug after continuous injection of CCl4. Dynamic m6A methylation was evaluated using MeRIP-Seq in the progression and reversal of hepatic fibrosis at different stages. Result: During the hepatic fibrosis, differential m6A methylation was mainly enriched in processes associated with oxidative stress and cytochrome metabolism, while differential m6A methylation was mainly enriched in processes associated with immune response and apoptosis in the hepatic fibrosis reversal. Conclusion: m6A methylation plays an important role in the progression and reversal of hepatic fibrosis.
Collapse
Affiliation(s)
- Zhongqi Cui
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Nan Huang
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Li Liu
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200081, China
| | - Xue Li
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Guohui Li
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Yan Chen
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Qi Wu
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Jie Zhang
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Shuping Long
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Minyi Wang
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Fenyong Sun
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Yi Shi
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200081, China
| | - Qiuhui Pan
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
112
|
The role of m 6A modification in physiology and disease. Cell Death Dis 2020; 11:960. [PMID: 33162550 PMCID: PMC7649148 DOI: 10.1038/s41419-020-03143-z] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022]
Abstract
Similar to DNA epigenetic modifications, multiple reversible chemical modifications on RNAs have been uncovered in a new layer of epigenetic modification. N6-methyladenosine (m6A), a modification that occurs in ~30% transcripts, is dynamically regulated by writer complex (methylase) and eraser (RNA demethylase) proteins, and is recognized by reader (m6A-binding) proteins. The effects of m6A modification are reflected in the functional modulation of mRNA splicing, export, localization, translation, and stability by regulating RNA structure and interactions between RNA and RNA-binding proteins. This modulation is involved in a variety of physiological behaviors, including neurodevelopment, immunoregulation, and cellular differentiation. The disruption of m6A modulations impairs gene expression and cellular function and ultimately leads to diseases such as cancer, psychiatric disorders, and metabolic disease. This review focuses on the mechanisms and functions of m6A modification in a variety of physiological behaviors and diseases.
Collapse
|
113
|
Ma Z, Gao X, Shuai Y, Xing X, Ji J. The m6A epitranscriptome opens a new charter in immune system logic. Epigenetics 2020; 16:819-837. [PMID: 33070685 DOI: 10.1080/15592294.2020.1827722] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
N6-methyladenosine (m6A), the most prevalent RNA internal modification, is present in most eukaryotic species and prokaryotes. Studies have highlighted an intricate network architecture by which m6A epitranscriptome impacts on immune response and function. However, it was only until recently that the mechanisms underlying the involvement of m6A modification in immune system were uncovered. Here, we systematically review the m6A involvement in the regulation of innate and adaptive immune cells. Further, the interplay between m6A modification and anti-inflammatory, anti-viral and anti-tumour immunity is also comprehensively summarized. Finally, we focus on the future prospects of m6A modification in immune modulation. A better understanding of the crosstalk between m6A modification and immune system is of great significance to reveal new pathogenic pathways and to develop promising therapeutic targets of diseases.
Collapse
Affiliation(s)
- Zhonghua Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiangyu Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - You Shuai
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaofang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
114
|
Lin X, Wang Z, Yang G, Wen G, Zhang H. YTHDF2 correlates with tumor immune infiltrates in lower-grade glioma. Aging (Albany NY) 2020; 12:18476-18500. [PMID: 32986017 PMCID: PMC7585119 DOI: 10.18632/aging.103812] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/20/2020] [Indexed: 01/24/2023]
Abstract
Immunotherapy is an effective treatment for many cancer types. However, YTHDF2 effects on the prognosis of different tumors and correlation with tumor immune infiltration are unclear. Here, we analyzed The Cancer Genome Atlas and Gene Expression Omnibus data obtained through various web-based platforms. The analyses showed that YTHDF2 expression and associated prognoses may depend on cancer type. High YTHDF2 expression was associated with poor overall survival in lower-grade glioma (LGG). In addition, YTHDF2 expression positively correlated with expression of several immune cell markers, including PD-1, TIM-3, and CTLA-4, as well as tumor-associated macrophage gene markers, and isocitrate dehydrogenase 1 in LGG. These findings suggest that YTHDF2 is a potential prognostic biomarker that correlates with LGG tumor-infiltrating immune cells.
Collapse
Affiliation(s)
- Xiangan Lin
- Department of Cancer Chemotherapy, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510000, China
| | - Zhichao Wang
- Department of Cancer Chemotherapy, Zengcheng District People’s Hospital of Guangzhou, Guangzhou 511300, China
| | - Guangda Yang
- Department of Cancer Chemotherapy, Zengcheng District People’s Hospital of Guangzhou, Guangzhou 511300, China
| | - Guohua Wen
- Department of Cancer Chemotherapy, Zengcheng District People’s Hospital of Guangzhou, Guangzhou 511300, China
| | - Hailiang Zhang
- Department of Cancer Chemotherapy, Zengcheng District People’s Hospital of Guangzhou, Guangzhou 511300, China
| |
Collapse
|
115
|
Macveigh-Fierro D, Rodriguez W, Miles J, Muller M. Stealing the Show: KSHV Hijacks Host RNA Regulatory Pathways to Promote Infection. Viruses 2020; 12:E1024. [PMID: 32937781 PMCID: PMC7551087 DOI: 10.3390/v12091024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) induces life-long infections and has evolved many ways to exert extensive control over its host's transcriptional and post-transcriptional machinery to gain better access to resources and dampened immune sensing. The hallmark of this takeover is how KSHV reshapes RNA fate both to control expression of its own gene but also that of its host. From the nucleus to the cytoplasm, control of RNA expression, localization, and decay is a process that is carefully tuned by a multitude of factors and that can adapt or react to rapid changes in the environment. Intriguingly, it appears that KSHV has found ways to co-opt each of these pathways for its own benefit. Here we provide a comprehensive review of recent work in this area and in particular recent advances on the post-transcriptional modifications front. Overall, this review highlights the myriad of ways KSHV uses to control RNA fate and gathers novel insights gained from the past decade of research at the interface of RNA biology and the field of KSHV research.
Collapse
Affiliation(s)
| | | | | | - Mandy Muller
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; (D.M.-F.); (W.R.); (J.M.)
| |
Collapse
|
116
|
Kim GW, Imam H, Khan M, Siddiqui A. N6-Methyladenosine modification of hepatitis B and C viral RNAs attenuates host innate immunity via RIG-I signaling. J Biol Chem 2020; 295:13123-13133. [PMID: 32719095 PMCID: PMC7489896 DOI: 10.1074/jbc.ra120.014260] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/20/2020] [Indexed: 12/25/2022] Open
Abstract
N6-Methyladenosine (m6A), the methylation of the adenosine base at the nitrogen 6 position, is the most common epitranscriptomic modification of mRNA that affects a wide variety of biological functions. We have previously reported that hepatitis B viral RNAs are m6A-modified, displaying a dual functional role in the viral life cycle. Here, we show that cellular m6A machinery regulates host innate immunity against hepatitis B and C viral infections by inducing m6A modification of viral transcripts. The depletion of the m6A writer enzymes (METTL3 and METTL14) leads to an increase in viral RNA recognition by retinoic acid-inducible gene I (RIG-I), thereby stimulating type I interferon production. This is reversed in cells in which m6A METTL3 and METTL14 are overexpressed. The m6A modification of viral RNAs renders RIG-I signaling less effective, whereas single nucleotide mutation of m6A consensus motif of viral RNAs enhances RIG-I sensing activity. Importantly, m6A reader proteins (YTHDF2 and YTHDF3) inhibit RIG-I-transduced signaling activated by viral RNAs by occupying m6A-modified RNAs and inhibiting RIG-I recognition. Collectively, our results provide new insights into the mechanism of immune evasion via m6A modification of viral RNAs.
Collapse
Affiliation(s)
- Geon-Woo Kim
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Hasan Imam
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Mohsin Khan
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Aleem Siddiqui
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
117
|
Zhou Y, Kong Y, Fan W, Tao T, Xiao Q, Li N, Zhu X. Principles of RNA methylation and their implications for biology and medicine. Biomed Pharmacother 2020; 131:110731. [PMID: 32920520 DOI: 10.1016/j.biopha.2020.110731] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
RNA methylation is a post-transcriptional level of regulation. At present, more than 150 kinds of RNA modifications have been identified. They are widely distributed in messenger RNA (mRNA), transfer RNA (tRNA), ribosomal RNA (rRNA), noncoding small RNA (sncRNA) and long-chain non-coding RNA (lncRNA). In recent years, with the discovery of RNA methylation related proteins and the development of high-throughput sequencing technology, the mystery of RNA methylation has been gradually revealed, and its biological function and application value have gradually emerged. In this review, a large number of research results of RNA methylation in recent years are collected. Through systematic summary and refinement, this review introduced RNA methylation modification-related proteins and RNA methylation sequencing technologies, as well as the biological functions of RNA methylation, expressions and applications of RNA methylation-related genes in physiological or pathological states such as cancer, immunity and virus infection, and discussed the potential therapeutic strategies.
Collapse
Affiliation(s)
- Yujia Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Ying Kong
- Department of Clinical Laboratory, Hubei No.3 People's Hospital of Jianghan University, Wuhan, China
| | - Wenguo Fan
- Department of Anesthesiology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China.
| | - Qin Xiao
- Department of Blood Transfusion, Peking University Shenzhen Hospital, Shenzhen, China
| | - Na Li
- College of Basic Medicine, Chongqing Medical University, Chongqing, China.
| | - Xiao Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China.
| |
Collapse
|
118
|
Karthiya R, Khandelia P. m6A RNA Methylation: Ramifications for Gene Expression and Human Health. Mol Biotechnol 2020; 62:467-484. [PMID: 32840728 DOI: 10.1007/s12033-020-00269-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Cellular transcriptomes are frequently adorned by a variety of chemical modification marks, which in turn have a profound influence on its functioning. Of these modifications, the one which has invited a lot of attention in the recent years is m6A RNA methylation, leading to the development of RNA epigenetics or epitranscriptomics as a frontier research area. m6A RNA methylation is one of the most abundant reversible internal modification seen in cellular RNAs. Studies in the last few years have not only shed light on the molecular machinery involved in m6A RNA methylation but also on the impact of this modification in regulating gene expression and hence biological processes. In this review, we will emphasize the biological impact of this modification in normal organismal development and diseases.
Collapse
Affiliation(s)
- R Karthiya
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana, 500078, India
| | - Piyush Khandelia
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
119
|
Hoang HD, Neault S, Pelin A, Alain T. Emerging translation strategies during virus-host interaction. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1619. [PMID: 32757266 PMCID: PMC7435527 DOI: 10.1002/wrna.1619] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/02/2023]
Abstract
Translation control is crucial during virus-host interaction. On one hand, viruses completely rely on the protein synthesis machinery of host cells to propagate and have evolved various mechanisms to redirect the host's ribosomes toward their viral mRNAs. On the other hand, the host rewires its translation program in an attempt to contain and suppress the virus early on during infection; the antiviral program includes specific control on protein synthesis to translate several antiviral mRNAs involved in quenching the infection. As the infection progresses, host translation is in turn inhibited in order to limit viral propagation. We have learnt of very diverse strategies that both parties utilize to gain or retain control over the protein synthesis machinery. Yet novel strategies continue to be discovered, attesting for the importance of mRNA translation in virus-host interaction. This review focuses on recently described translation strategies employed by both hosts and viruses. These discoveries provide additional pieces in the understanding of the complex virus-host translation landscape. This article is categorized under: Translation > Translation Mechanisms Translation > Translation Regulation.
Collapse
Affiliation(s)
- Huy-Dung Hoang
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Centre, Ottawa, Ontario, K1H8L1, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Serge Neault
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Adrian Pelin
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Centre, Ottawa, Ontario, K1H8L1, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
120
|
Zaccara S, Jaffrey SR. A Unified Model for the Function of YTHDF Proteins in Regulating m 6A-Modified mRNA. Cell 2020; 181:1582-1595.e18. [PMID: 32492408 PMCID: PMC7508256 DOI: 10.1016/j.cell.2020.05.012] [Citation(s) in RCA: 498] [Impact Index Per Article: 99.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 01/14/2020] [Accepted: 05/04/2020] [Indexed: 02/05/2023]
Abstract
N6-methyladenosine (m6A) is the most abundant mRNA nucleotide modification and regulates critical aspects of cellular physiology and differentiation. m6A is thought to mediate its effects through a complex network of interactions between different m6A sites and three functionally distinct cytoplasmic YTHDF m6A-binding proteins (DF1, DF2, and DF3). In contrast to the prevailing model, we show that DF proteins bind the same m6A-modified mRNAs rather than different mRNAs. Furthermore, we find that DF proteins do not induce translation in HeLa cells. Instead, the DF paralogs act redundantly to mediate mRNA degradation and cellular differentiation. The ability of DF proteins to regulate stability and differentiation becomes evident only when all three DF paralogs are depleted simultaneously. Our study reveals a unified model of m6A function in which all m6A-modified mRNAs are subjected to the combined action of YTHDF proteins in proportion to the number of m6A sites.
Collapse
Affiliation(s)
- Sara Zaccara
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
121
|
Abstract
Eukaryotic gene expression is regulated not only by genomic enhancers and promoters, but also by covalent modifications added to both chromatin and RNAs. Whereas cellular gene expression may be either enhanced or inhibited by specific epigenetic modifications deposited on histones (in particular, histone H3), these epigenetic modifications can also repress viral gene expression, potentially functioning as a potent antiviral innate immune response in DNA virus-infected cells. However, viruses have evolved countermeasures that prevent the epigenetic silencing of their genes during lytic replication, and they can also take advantage of epigenetic silencing to establish latent infections. By contrast, the various covalent modifications added to RNAs, termed epitranscriptomic modifications, can positively regulate mRNA translation and/or stability, and both DNA and RNA viruses have evolved to utilize epitranscriptomic modifications as a means to maximize viral gene expression. As a consequence, both chromatin and RNA modifications could serve as novel targets for the development of antivirals. In this Review, we discuss how host epigenetic and epitranscriptomic processes regulate viral gene expression at the levels of chromatin and RNA function, respectively, and explore how viruses modify, avoid or utilize these processes in order to regulate viral gene expression.
Collapse
|
122
|
Acetylation of Cytidine Residues Boosts HIV-1 Gene Expression by Increasing Viral RNA Stability. Cell Host Microbe 2020; 28:306-312.e6. [PMID: 32533923 DOI: 10.1016/j.chom.2020.05.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/21/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023]
Abstract
Epitranscriptomic RNA modifications, including methylation of adenine and cytidine residues, are now recognized as key regulators of both cellular and viral mRNA function. Moreover, acetylation of the N4 position of cytidine (ac4C) was recently reported to increase the translation and stability of cellular mRNAs. Here, we show that ac4C and N-acetyltransferase 10 (NAT10), the enzyme that adds ac4C to RNAs, have been subverted by human immunodeficiency virus 1 (HIV-1) to increase viral gene expression. HIV-1 transcripts are modified with ac4C at multiple discrete sites, and silent mutagenesis of these ac4C sites led to decreased HIV-1 gene expression. Similarly, loss of ac4C from viral transcripts due to depletion of NAT10 inhibited HIV-1 replication by reducing viral RNA stability. Interestingly, the NAT10 inhibitor remodelin could inhibit HIV-1 replication at concentrations that have no effect on cell viability, thus identifying ac4C addition as a potential target for antiviral drug development.
Collapse
|
123
|
Yao M, Dong Y, Wang Y, Liu H, Ma H, Zhang H, Zhang L, Cheng L, Lv X, Xu Z, Zhang F, Lei Y, Ye W. N 6-methyladenosine modifications enhance enterovirus 71 ORF translation through METTL3 cytoplasmic distribution. Biochem Biophys Res Commun 2020; 527:297-304. [PMID: 32446384 DOI: 10.1016/j.bbrc.2020.04.088] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/16/2020] [Indexed: 01/10/2023]
Abstract
During replication, numerous viral RNAs are modified by N6-methyladenosine (m6A), the most abundant internal RNA modification. m6A is believed to regulate elements of RNA metabolism, such as splicing, stability, translation, secondary structure formation, and viral replication. In this study, we assessed the occurrence of m6A modification of the EV71 genome in human cells and revealed a preferred, conserved modification site across diverse viral strains. A single m6A modification at the 5' UTR-VP4 junction was shown to perform a protranslational function. Depletion of the METTL3 methyltransferase or treatment with 3-deazaadenosine significantly reduced EV71 replication. Specifically, METTL3 colocalized with the viral dsRNA replication intermediate in the cytoplasm during EV71 infection. As a nuclear resident protein, METTL3 relies on the binding of the nuclear import protein karyopherin to its nuclear localization signal (NLS) for nuclear translocation. We observed that EV71 2A and METTL3 share nuclear import proteins. The results of this study revealed an inner mechanism by which EV71 2A regulates the subcellular location of METTL3 to amplify its own gene expression, providing an increased understanding of RNA epitranscriptomics during the EV71 replication cycle.
Collapse
Affiliation(s)
- Min Yao
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yangchao Dong
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuan Wang
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - He Liu
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hongwei Ma
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Zhang
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Zhang
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Linfeng Cheng
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Xin Lv
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhikai Xu
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Fanglin Zhang
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Yingfeng Lei
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Wei Ye
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
124
|
McIntyre ABR, Gokhale NS, Cerchietti L, Jaffrey SR, Horner SM, Mason CE. Limits in the detection of m 6A changes using MeRIP/m 6A-seq. Sci Rep 2020; 10:6590. [PMID: 32313079 PMCID: PMC7170965 DOI: 10.1038/s41598-020-63355-3] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
Many cellular mRNAs contain the modified base m6A, and recent studies have suggested that various stimuli can lead to changes in m6A. The most common method to map m6A and to predict changes in m6A between conditions is methylated RNA immunoprecipitation sequencing (MeRIP-seq), through which methylated regions are detected as peaks in transcript coverage from immunoprecipitated RNA relative to input RNA. Here, we generated replicate controls and reanalyzed published MeRIP-seq data to estimate reproducibility across experiments. We found that m6A peak overlap in mRNAs varies from ~30 to 60% between studies, even in the same cell type. We then assessed statistical methods to detect changes in m6A peaks as distinct from changes in gene expression. However, from these published data sets, we detected few changes under most conditions and were unable to detect consistent changes across studies of similar stimuli. Overall, our work identifies limits to MeRIP-seq reproducibility in the detection both of peaks and of peak changes and proposes improved approaches for analysis of peak changes.
Collapse
Affiliation(s)
- Alexa B R McIntyre
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York City, NY, 10065, USA.
- Tri-Institutional Program in Computational Biology and Medicine, New York City, NY, 10065, USA.
| | - Nandan S Gokhale
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Leandro Cerchietti
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York City, NY, 10065, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, New York City, NY, 10065, USA
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York City, NY, 10065, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA.
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
125
|
Zhao Y, Shi Y, Shen H, Xie W. m 6A-binding proteins: the emerging crucial performers in epigenetics. J Hematol Oncol 2020; 13:35. [PMID: 32276589 PMCID: PMC7146974 DOI: 10.1186/s13045-020-00872-8] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
N6-methyladenosine (m6A) is a well-known post-transcriptional modification that is the most common type of methylation in eukaryotic mRNAs. The regulation of m6A is dynamic and reversible, which is erected by m6A methyltransferases ("writers") and removed by m6A demethylases ("erasers"). Notably, the effects on targeted mRNAs resulted by m6A predominantly depend on the functions of different m6A-binding proteins ("readers") including YT521-B homology (YTH) domain family, heterogeneous nuclear ribonucleoproteins (HNRNPs), and insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs). Indeed, m6A readers not only participate in multiple procedures of RNA metabolism, but also are involved in a variety of biological processes. In this review, we summarized the specific functions and underlying mechanisms of m6A-binding proteins in tumorigenesis, hematopoiesis, virus replication, immune response, and adipogenesis.
Collapse
Affiliation(s)
- Yanchun Zhao
- Department of Hematology, the First Affiliated Hospital of Medical School of Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Yuanfei Shi
- Department of Hematology, the First Affiliated Hospital of Medical School of Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Huafei Shen
- Department of Hematology, the First Affiliated Hospital of Medical School of Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Wanzhuo Xie
- Department of Hematology, the First Affiliated Hospital of Medical School of Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
126
|
Wang Y, Gao M, Zhu F, Li X, Yang Y, Yan Q, Jia L, Xie L, Chen Z. METTL3 is essential for postnatal development of brown adipose tissue and energy expenditure in mice. Nat Commun 2020; 11:1648. [PMID: 32245957 PMCID: PMC7125133 DOI: 10.1038/s41467-020-15488-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 03/10/2020] [Indexed: 12/18/2022] Open
Abstract
Brown adipose tissue (BAT) undergoes rapid postnatal development and then protects against cold and obesity into adulthood. However, the molecular mechanism that determines postnatal development and maturation of BAT is largely unknown. Here we show that METTL3 (a key RNA methyltransferase) expression increases significantly in interscapular brown adipose tissue (iBAT) after birth and plays an essential role in the postnatal development and maturation of iBAT. BAT-specific deletion of Mettl3 severely impairs maturation of BAT in vivo by decreasing m6A modification and expression of Prdm16, Pparg, and Ucp1 transcripts, which leads to a marked reduction in BAT-mediated adaptive thermogenesis and promotes high-fat diet (HFD)-induced obesity and systemic insulin resistance. These data demonstrate that METTL3 is an essential regulator that controls iBAT postnatal development and energy homeostasis.
Collapse
Affiliation(s)
- Yuqin Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Ming Gao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Fuxing Zhu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xinzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Ying Yang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Qiuxin Yan
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Linna Jia
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
127
|
Liu S, Li G, Li Q, Zhang Q, Zhuo L, Chen X, Zhai B, Sui X, Chen K, Xie T. The roles and mechanisms of YTH domain-containing proteins in cancer development and progression. Am J Cancer Res 2020; 10:1068-1084. [PMID: 32368386 PMCID: PMC7191095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023] Open
Abstract
Evolutionarily conserved YT521-B homology (YTH) domain-containing proteins, including YTHDF1-3 and YTHDC1-2, are known to confer m6A-dependent RNA-binding activity. The YTH domain-containing proteins participate in numerous RNA processes, such as mRNA splicing, nuclear export, translation and decay in post-transcriptional regulation. Most recently, it has been found that YTH domain-containing proteins play important roles in post-transcriptional modification process hence modulate the expression of genes involved in cancer and other processes including cell cycle progression, cell proliferation, migration and invasion, inflammatory, immunity and autophagy. In this review, we summarize the roles and molecular mechanisms of YTH domain-containing proteins in cancer development and progression. In addition, we discuss the prospect of using YTH domain-containing proteins as a new diagnostic biomarkers and therapeutic targets for cancers.
Collapse
Affiliation(s)
- Shuiping Liu
- Holistic Integrative Pharmacy Institutes, School of Medicine, Hangzhou Normal UniversityHangzhou, Zhejiang, China
- Zhejiang Chinese Medical UniversityHangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang ProvinceHangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang ProvinceHangzhou, Zhejiang, China
| | - Guohua Li
- Holistic Integrative Pharmacy Institutes, School of Medicine, Hangzhou Normal UniversityHangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang ProvinceHangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang ProvinceHangzhou, Zhejiang, China
| | - Qiujie Li
- Holistic Integrative Pharmacy Institutes, School of Medicine, Hangzhou Normal UniversityHangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang ProvinceHangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang ProvinceHangzhou, Zhejiang, China
| | - Qin Zhang
- Holistic Integrative Pharmacy Institutes, School of Medicine, Hangzhou Normal UniversityHangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang ProvinceHangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang ProvinceHangzhou, Zhejiang, China
| | - Lvjia Zhuo
- Holistic Integrative Pharmacy Institutes, School of Medicine, Hangzhou Normal UniversityHangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang ProvinceHangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang ProvinceHangzhou, Zhejiang, China
| | - Xiaying Chen
- Holistic Integrative Pharmacy Institutes, School of Medicine, Hangzhou Normal UniversityHangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang ProvinceHangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang ProvinceHangzhou, Zhejiang, China
| | - Bingtao Zhai
- Holistic Integrative Pharmacy Institutes, School of Medicine, Hangzhou Normal UniversityHangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang ProvinceHangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang ProvinceHangzhou, Zhejiang, China
| | - Xinbing Sui
- Holistic Integrative Pharmacy Institutes, School of Medicine, Hangzhou Normal UniversityHangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang ProvinceHangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang ProvinceHangzhou, Zhejiang, China
| | - Ke Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Tian Xie
- Holistic Integrative Pharmacy Institutes, School of Medicine, Hangzhou Normal UniversityHangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang ProvinceHangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang ProvinceHangzhou, Zhejiang, China
| |
Collapse
|
128
|
Lu M, Zhang Z, Xue M, Zhao BS, Harder O, Li A, Liang X, Gao TZ, Xu Y, Zhou J, Feng Z, Niewiesk S, Peeples ME, He C, Li J. N 6-methyladenosine modification enables viral RNA to escape recognition by RNA sensor RIG-I. Nat Microbiol 2020; 5:584-598. [PMID: 32015498 PMCID: PMC7137398 DOI: 10.1038/s41564-019-0653-9] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022]
Abstract
Internal N6-methyladenosine (m6A) modification is one of the most common and abundant modifications of RNA. However, the biological roles of viral RNA m6A remain elusive. Here, using human metapneumovirus (HMPV) as a model, we demonstrate that m6A serves as a molecular marker for innate immune discrimination of self from non-self RNAs. We show that HMPV RNAs are m6A methylated and that viral m6A methylation promotes HMPV replication and gene expression. Inactivating m6A addition sites with synonymous mutations or demethylase resulted in m6A-deficient recombinant HMPVs and virion RNAs that induced increased expression of type I interferon, which was dependent on the cytoplasmic RNA sensor RIG-I, and not on melanoma differentiation-associated protein 5 (MDA5). Mechanistically, m6A-deficient virion RNA induces higher expression of RIG-I, binds more efficiently to RIG-I and facilitates the conformational change of RIG-I, leading to enhanced interferon expression. Furthermore, m6A-deficient recombinant HMPVs triggered increased interferon in vivo and were attenuated in cotton rats but retained high immunogenicity. Collectively, our results highlight that (1) viruses acquire m6A in their RNA as a means of mimicking cellular RNA to avoid detection by innate immunity and (2) viral RNA m6A can serve as a target to attenuate HMPV for vaccine purposes.
Collapse
Affiliation(s)
- Mijia Lu
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Zijie Zhang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Miaoge Xue
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Boxuan Simen Zhao
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Olivia Harder
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Anzhong Li
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Xueya Liang
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Thomas Z Gao
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Yunsheng Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiyong Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zongdi Feng
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Mark E Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
129
|
Gokhale NS, McIntyre ABR, Mattocks MD, Holley CL, Lazear HM, Mason CE, Horner SM. Altered m 6A Modification of Specific Cellular Transcripts Affects Flaviviridae Infection. Mol Cell 2020; 77:542-555.e8. [PMID: 31810760 PMCID: PMC7007864 DOI: 10.1016/j.molcel.2019.11.007] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/11/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023]
Abstract
The RNA modification N6-methyladenosine (m6A) modulates mRNA fate and thus affects many biological processes. We analyzed m6A across the transcriptome following infection by dengue virus (DENV), Zika virus (ZIKV), West Nile virus (WNV), and hepatitis C virus (HCV). We found that infection by these viruses in the Flaviviridae family alters m6A modification of specific cellular transcripts, including RIOK3 and CIRBP. During viral infection, the addition of m6A to RIOK3 promotes its translation, while loss of m6A in CIRBP promotes alternative splicing. Importantly, viral activation of innate immune sensing or the endoplasmic reticulum (ER) stress response contributes to the changes in m6A in RIOK3 or CIRBP, respectively. Further, several transcripts with infection-altered m6A profiles, including RIOK3 and CIRBP, encode proteins that influence DENV, ZIKV, and HCV infection. Overall, this work reveals that cellular signaling pathways activated during viral infection lead to alterations in m6A modification of host mRNAs to regulate infection.
Collapse
Affiliation(s)
- Nandan S Gokhale
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27705, USA
| | - Alexa B R McIntyre
- Department of Physiology and Biophysics and the Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Tri-Institutional Program in Computational Biology and Medicine, New York, NY 10065, USA
| | - Melissa D Mattocks
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christopher L Holley
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27705, USA; Department of Medicine, Duke University Medical Center, Durham, NC 27705, USA
| | - Helen M Lazear
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics and the Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; The HRH Prince Alwaleed Bin Talal Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA; The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27705, USA; Department of Medicine, Duke University Medical Center, Durham, NC 27705, USA.
| |
Collapse
|
130
|
Hu Y, Wang S, Liu J, Huang Y, Gong C, Liu J, Xiao Y, Yang S. New sights in cancer: Component and function of N6-methyladenosine modification. Biomed Pharmacother 2019; 122:109694. [PMID: 31918269 DOI: 10.1016/j.biopha.2019.109694] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 12/30/2022] Open
Abstract
M6A is the most prevalent modification among epigenetics. M6A occurs on different sites of RNA and exerts important functions in specific circumstances, such as mRNA splicing, stability, nuclear export, translation or damage response. Different aspects of the concrete machinery of m6A modification have been studied, including its writing, erasing and reading capabilities. The molecular and biological functions of the m6A modification and enzymes, as well as their functions in different cancers have been substantially published. The present review summarizes these findings and provides clear description of the problems involved. The probable roles of m6A modification may acts on other cancers, suggesting that it may be a treatment target for these cancers.
Collapse
Affiliation(s)
- Yiyang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Sumin Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Jiao Liu
- Department of Endoscope, The General Hospital of Shenyang Military Region, China
| | - Yu Huang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Chunli Gong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Jingjing Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yufeng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
131
|
Chu CC, Liu B, Plangger R, Kreutz C, Al-Hashimi HM. m6A minimally impacts the structure, dynamics, and Rev ARM binding properties of HIV-1 RRE stem IIB. PLoS One 2019; 14:e0224850. [PMID: 31825959 PMCID: PMC6905585 DOI: 10.1371/journal.pone.0224850] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 11/26/2019] [Indexed: 02/02/2023] Open
Abstract
N6-methyladenosine (m6A) is a ubiquitous RNA post-transcriptional modification found in coding as well as non-coding RNAs. m6A has also been found in viral RNAs where it is proposed to modulate host-pathogen interactions. Two m6A sites have been reported in the HIV-1 Rev response element (RRE) stem IIB, one of which was shown to enhance binding to the viral protein Rev and viral RNA export. However, because these m6A sites have not been observed in other studies mapping m6A in HIV-1 RNA, their significance remains to be firmly established. Here, using optical melting experiments, NMR spectroscopy, and in vitro binding assays, we show that m6A minimally impacts the stability, structure, and dynamics of RRE stem IIB as well as its binding affinity to the Rev arginine-rich-motif (ARM) in vitro. Our results indicate that if present in stem IIB, m6A is unlikely to substantially alter the conformational properties of the RNA. Our results add to a growing view that the impact of m6A on RNA depends on sequence context and Mg2+.
Collapse
Affiliation(s)
- Chia-Chieh Chu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States of America
| | - Bei Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States of America
| | - Raphael Plangger
- Institute of Organic Chemistry and Center for Molecular Biosciences CMBI, Universität Innsbruck, Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences CMBI, Universität Innsbruck, Innsbruck, Austria
| | - Hashim M. Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States of America
- Department of Chemistry, Duke University, Durham, NC, United States of America
| |
Collapse
|
132
|
Wu F, Cheng W, Zhao F, Tang M, Diao Y, Xu R. Association of N6-methyladenosine with viruses and related diseases. Virol J 2019; 16:133. [PMID: 31711514 PMCID: PMC6849232 DOI: 10.1186/s12985-019-1236-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023] Open
Abstract
Background N6-methyladenosine (m6A) modification is the most prevalent internal modification of eukaryotic mRNA modulating gene expression. m6A modification is a dynamic reversible process regulated by three protein groups: methyltransferases (writers), demethylases (erasers), and m6A-binding proteins (readers). m6A modification is involved in all phases of RNA metabolism, including RNA folding, stability, splicing, nuclear exporting, translational modulation and degradation. Main body In recent years, numerous studies have reported that abnormal m6A modification causes aberrant expression of important viral genes. Herein, we review the role of m6A in viral lifecycle and its contribution to the pathogenesis of human diseases. Particularly, we focus on the viruses associated with human diseases such as HIV-1, IAV, HBV, HCV, EBV and many others. Conclusions A better understanding of m6A-virus relationship would provide new insights into the viral replication process and pathogenesis of human diseases caused by viruses. In addition, exploration of the role of m6A in disease-causing viruses will reveal novel approaches for the treatment of such diseases.
Collapse
Affiliation(s)
- Fang Wu
- Engineering Research Center of Molecular Medicine, Ministry of Education, Huaqiao University, Xiamen, China.,School of Medicine, Huaqiao University, Xiamen, China
| | - Wenzhao Cheng
- Engineering Research Center of Molecular Medicine, Ministry of Education, Huaqiao University, Xiamen, China. .,Stem Cell Laboratory, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.
| | - Feiyuan Zhao
- Engineering Research Center of Molecular Medicine, Ministry of Education, Huaqiao University, Xiamen, China.,School of Medicine, Huaqiao University, Xiamen, China
| | - Mingqing Tang
- Engineering Research Center of Molecular Medicine, Ministry of Education, Huaqiao University, Xiamen, China.,School of Medicine, Huaqiao University, Xiamen, China.,Fujian Provincial Key Laboratory of Molecular Medicine & Fujian Provincial Key Laboratory of Precision Medicine and Molecular Detection in Universities, Xiamen, China
| | - Yong Diao
- School of Medicine, Huaqiao University, Xiamen, China
| | - Ruian Xu
- Engineering Research Center of Molecular Medicine, Ministry of Education, Huaqiao University, Xiamen, China. .,School of Medicine, Huaqiao University, Xiamen, China. .,Fujian Provincial Key Laboratory of Molecular Medicine & Fujian Provincial Key Laboratory of Precision Medicine and Molecular Detection in Universities, Xiamen, China.
| |
Collapse
|
133
|
Netzband R, Pager CT. Epitranscriptomic marks: Emerging modulators of RNA virus gene expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1576. [PMID: 31694072 PMCID: PMC7169815 DOI: 10.1002/wrna.1576] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/27/2022]
Abstract
Epitranscriptomics, the study of posttranscriptional chemical moieties placed on RNA, has blossomed in recent years. This is due in part to the emergence of high‐throughput detection methods as well as the burst of discoveries showing biological function of select chemical marks. RNA modifications have been shown to affect RNA structure, localization, and functions such as alternative splicing, stabilizing transcripts, nuclear export, cap‐dependent and cap‐independent translation, microRNA biogenesis and binding, RNA degradation, and immune regulation. As such, the deposition of chemical marks on RNA has the unique capability to spatially and temporally regulate gene expression. The goal of this article is to present the exciting convergence of the epitranscriptomic and virology fields, specifically the deposition and biological impact of N7‐methylguanosine, ribose 2′‐O‐methylation, pseudouridine, inosine, N6‐methyladenosine, and 5‐methylcytosine epitranscriptomic marks on gene expression of RNA viruses. This article is categorized under:RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein–RNA Interactions: Functional Implications
Collapse
Affiliation(s)
- Rachel Netzband
- Department of Biological Sciences, The RNA Institute, University at Albany-SUNY, Albany, New York
| | - Cara T Pager
- Department of Biological Sciences, The RNA Institute, University at Albany-SUNY, Albany, New York
| |
Collapse
|
134
|
Baquero-Perez B, Antanaviciute A, Yonchev ID, Carr IM, Wilson SA, Whitehouse A. The Tudor SND1 protein is an m 6A RNA reader essential for replication of Kaposi's sarcoma-associated herpesvirus. eLife 2019; 8:e47261. [PMID: 31647415 PMCID: PMC6812964 DOI: 10.7554/elife.47261] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal RNA modification of cellular mRNAs. m6A is recognised by YTH domain-containing proteins, which selectively bind to m6A-decorated RNAs regulating their turnover and translation. Using an m6A-modified hairpin present in the Kaposi's sarcoma associated herpesvirus (KSHV) ORF50 RNA, we identified seven members from the 'Royal family' as putative m6A readers, including SND1. RIP-seq and eCLIP analysis characterised the SND1 binding profile transcriptome-wide, revealing SND1 as an m6A reader. We further demonstrate that the m6A modification of the ORF50 RNA is critical for SND1 binding, which in turn stabilises the ORF50 transcript. Importantly, SND1 depletion leads to inhibition of KSHV early gene expression showing that SND1 is essential for KSHV lytic replication. This work demonstrates that members of the 'Royal family' have m6A-reading ability, greatly increasing their epigenetic functions beyond protein methylation.
Collapse
Affiliation(s)
- Belinda Baquero-Perez
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, Astbury Centre of Structural Molecular BiologyUniversity of LeedsLeedsUnited Kingdom
- Astbury Centre of Structural Molecular BiologyUniversity of LeedsLeedsUnited Kingdom
| | - Agne Antanaviciute
- Leeds Institute of Medical Research, School of MedicineUniversity of Leeds, St James's University HospitalLeedsUnited Kingdom
| | - Ivaylo D Yonchev
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldUnited Kingdom
- Sheffield Institute For Nucleic AcidsUniversity of SheffieldSheffieldUnited Kingdom
| | - Ian M Carr
- Leeds Institute of Medical Research, School of MedicineUniversity of Leeds, St James's University HospitalLeedsUnited Kingdom
| | - Stuart A Wilson
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldUnited Kingdom
- Sheffield Institute For Nucleic AcidsUniversity of SheffieldSheffieldUnited Kingdom
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, Astbury Centre of Structural Molecular BiologyUniversity of LeedsLeedsUnited Kingdom
- Astbury Centre of Structural Molecular BiologyUniversity of LeedsLeedsUnited Kingdom
- Department of Biochemistry and MicrobiologyRhodes UniversityGrahamstownSouth Africa
| |
Collapse
|
135
|
Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication Interferes with mTORC1 Regulation of Autophagy and Viral Protein Synthesis. J Virol 2019; 93:JVI.00854-19. [PMID: 31375594 PMCID: PMC6803247 DOI: 10.1128/jvi.00854-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
All viruses require host cell machinery to synthesize viral proteins. A host cell protein complex known as mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of protein synthesis. Under nutrient-rich conditions, mTORC1 is active and promotes protein synthesis to meet cellular anabolic demands. Under nutrient-poor conditions or under stress, mTORC1 is rapidly inhibited, global protein synthesis is arrested, and a cellular catabolic process known as autophagy is activated. Kaposi’s sarcoma-associated herpesvirus (KSHV) stimulates mTORC1 activity and utilizes host machinery to synthesize viral proteins. However, we discovered that mTORC1 activity was largely dispensable for viral protein synthesis, genome replication, and the release of infectious progeny. Likewise, during lytic replication, mTORC1 was no longer able to control autophagy. These findings suggest that KSHV undermines mTORC1-dependent cellular processes during the lytic cycle to ensure efficient viral replication. Mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cellular metabolism. In nutrient-rich environments, mTORC1 kinase activity stimulates protein synthesis to meet cellular anabolic demands. Under nutrient-poor conditions or under stress, mTORC1 is rapidly inhibited, global protein synthesis is arrested, and a cellular catabolic process known as autophagy is activated. Kaposi’s sarcoma-associated herpesvirus (KSHV) encodes multiple proteins that stimulate mTORC1 activity or subvert autophagy, but precise roles for mTORC1 in different stages of KSHV infection remain incompletely understood. Here, we report that during latent and lytic stages of KSHV infection, chemical inhibition of mTORC1 caused eukaryotic initiation factor 4F (eIF4F) disassembly and diminished global protein synthesis, which indicated that mTORC1-mediated control of translation initiation was largely intact. We observed that mTORC1 was required for synthesis of the replication and transcription activator (RTA) lytic switch protein and reactivation from latency, but once early lytic gene expression had begun, mTORC1 was not required for genome replication, late gene expression, or the release of infectious progeny. Moreover, mTORC1 control of autophagy was dysregulated during lytic replication, whereby chemical inhibition of mTORC1 prevented ULK1 phosphorylation but did not affect autophagosome formation or rates of autophagic flux. Together, these findings suggest that mTORC1 is dispensable for viral protein synthesis and viral control of autophagy during lytic infection and that KSHV undermines mTORC1-dependent cellular processes during the lytic cycle to ensure efficient viral replication. IMPORTANCE All viruses require host cell machinery to synthesize viral proteins. A host cell protein complex known as mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of protein synthesis. Under nutrient-rich conditions, mTORC1 is active and promotes protein synthesis to meet cellular anabolic demands. Under nutrient-poor conditions or under stress, mTORC1 is rapidly inhibited, global protein synthesis is arrested, and a cellular catabolic process known as autophagy is activated. Kaposi’s sarcoma-associated herpesvirus (KSHV) stimulates mTORC1 activity and utilizes host machinery to synthesize viral proteins. However, we discovered that mTORC1 activity was largely dispensable for viral protein synthesis, genome replication, and the release of infectious progeny. Likewise, during lytic replication, mTORC1 was no longer able to control autophagy. These findings suggest that KSHV undermines mTORC1-dependent cellular processes during the lytic cycle to ensure efficient viral replication.
Collapse
|
136
|
Xue M, Zhao BS, Zhang Z, Lu M, Harder O, Chen P, Lu Z, Li A, Ma Y, Xu Y, Liang X, Zhou J, Niewiesk S, Peeples ME, He C, Li J. Viral N 6-methyladenosine upregulates replication and pathogenesis of human respiratory syncytial virus. Nat Commun 2019; 10:4595. [PMID: 31597913 PMCID: PMC6785563 DOI: 10.1038/s41467-019-12504-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/11/2019] [Indexed: 12/02/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification of mRNAs in most eukaryotes. Here we show that RNAs of human respiratory syncytial virus (RSV) are modified by m6A within discreet regions and that these modifications enhance viral replication and pathogenesis. Knockdown of m6A methyltransferases decreases RSV replication and gene expression whereas knockdown of m6A demethylases has the opposite effect. The G gene transcript contains the most m6A modifications. Recombinant RSV variants expressing G transcripts that lack particular clusters of m6A display reduced replication in A549 cells, primary well differentiated human airway epithelial cultures, and respiratory tracts of cotton rats. One of the m6A-deficient variants is highly attenuated yet retains high immunogenicity in cotton rats. Collectively, our results demonstrate that viral m6A methylation upregulates RSV replication and pathogenesis and identify viral m6A methylation as a target for rational design of live attenuated vaccine candidates for RSV and perhaps other pneumoviruses.
Collapse
Affiliation(s)
- Miaoge Xue
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Boxuan Simen Zhao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Zijie Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Mijia Lu
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Olivia Harder
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Phylip Chen
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Zhike Lu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Anzhong Li
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Yuanmei Ma
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Yunsheng Xu
- Institute of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, P.R. China
| | - Xueya Liang
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Jiyong Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, P. R. China
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Mark E Peeples
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
137
|
Konno M, Taniguchi M, Ishii H. Significant epitranscriptomes in heterogeneous cancer. Cancer Sci 2019; 110:2318-2327. [PMID: 31187550 PMCID: PMC6676114 DOI: 10.1111/cas.14095] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
Precision medicine places significant emphasis on techniques for the identification of DNA mutations and gene expression by deep sequencing of gene panels to obtain medical data. However, other diverse information that is not easily readable using bioinformatics, including RNA modifications, has emerged as a novel diagnostic and innovative therapy owing to its multifunctional aspects. It is suggested that this breakthrough innovation might open new avenues for the elucidation of uncharacterized cancer cellular functions to develop more precise medical applications. The functional characteristics and regulatory mechanisms of RNA modifications, ie, the epitranscriptome (ETR), which reflects RNA metabolism, remains unclear, mainly due to detection methods being limited. Recent studies have revealed that N6‐methyl adenosine, the most common modification in mRNA in eukaryotes, is affected in various types of cancer and, in some cases, cancer stem cells, but also affects cellular responses to viral infections. The ETR can control cancer cell fate through mRNA splicing, stability, nuclear export, and translation. Here we report on the recent progress of ETR detection methods, and biological findings regarding the significance of ETR in cancer precision medicine.
Collapse
Affiliation(s)
- Masamitsu Konno
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masateru Taniguchi
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
138
|
Williams GD, Gokhale NS, Horner SM. Regulation of Viral Infection by the RNA Modification N6-Methyladenosine. Annu Rev Virol 2019; 6:235-253. [PMID: 31283446 DOI: 10.1146/annurev-virology-092818-015559] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, the RNA modification N6-methyladenosine (m6A) has been found to play a role in the life cycles of numerous viruses and also in the cellular response to viral infection. m6A has emerged as a regulator of many fundamental aspects of RNA biology. Here, we highlight recent advances in techniques for the study of m6A, as well as advances in our understanding of the cellular machinery that controls the addition, removal, recognition, and functions of m6A. We then summarize the many newly discovered roles of m6A during viral infection, including how it regulates innate and adaptive immune responses to infection. Overall, the goals of this review are to summarize the roles of m6A on both cellular and viral RNAs and to describe future directions for uncovering new functions of m6A during infection.
Collapse
Affiliation(s)
- Graham D Williams
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA; , ,
| | - Nandan S Gokhale
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA; , ,
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA; , , .,Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
139
|
He M, Cheng F, da Silva SR, Tan B, Sorel O, Gruffaz M, Li T, Gao SJ. Molecular Biology of KSHV in Relation to HIV/AIDS-Associated Oncogenesis. Cancer Treat Res 2019; 177:23-62. [PMID: 30523620 DOI: 10.1007/978-3-030-03502-0_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Discovered in 1994, Kaposi's sarcoma-associated herpesvirus (KSHV) has been associated with four human malignancies including Kaposi's sarcoma, primary effusion lymphoma, a subset of multicentric Castleman's disease, and KSHV inflammatory cytokine syndrome. These malignancies mostly occur in immunocompromised patients including patients with acquired immunodeficiency syndrome and often cause significant mortality because of the lack of effective therapies. Significant progresses have been made to understand the molecular basis of KSHV infection and KSHV-induced oncogenesis in the last two decades. This chapter provides an update on the recent advancements focusing on the molecular events of KSHV primary infection, the mechanisms regulating KSHV life cycle, innate and adaptive immunity, mechanism of KSHV-induced tumorigenesis and inflammation, and metabolic reprogramming in KSHV infection and KSHV-transformed cells.
Collapse
Affiliation(s)
- Meilan He
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Fan Cheng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Suzane Ramos da Silva
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Brandon Tan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Océane Sorel
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Marion Gruffaz
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Tingting Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|
140
|
Courtney DG, Chalem A, Bogerd HP, Law BA, Kennedy EM, Holley CL, Cullen BR. Extensive Epitranscriptomic Methylation of A and C Residues on Murine Leukemia Virus Transcripts Enhances Viral Gene Expression. mBio 2019; 10:e01209-19. [PMID: 31186331 PMCID: PMC6561033 DOI: 10.1128/mbio.01209-19] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 01/01/2023] Open
Abstract
While it has been known for several years that viral RNAs are subject to the addition of several distinct covalent modifications to individual nucleotides, collectively referred to as epitranscriptomic modifications, the effect of these editing events on viral gene expression has been controversial. Here, we report the purification of murine leukemia virus (MLV) genomic RNA to homogeneity and show that this viral RNA contains levels of N6-methyladenosine (m6A), 5-methylcytosine (m5C), and 2'O-methylated (Nm) ribonucleotides that are an order of magnitude higher than detected on bulk cellular mRNAs. Mapping of m6A and m5C residues on MLV transcripts identified multiple discrete editing sites and allowed the construction of MLV variants bearing silent mutations that removed a subset of these sites. Analysis of the replication potential of these mutants revealed a modest but significant attenuation in viral replication in 3T3 cells in culture. Consistent with a positive role for m6A and m5C in viral replication, we also demonstrate that overexpression of the key m6A reader protein YTHDF2 enhances MLV replication, while downregulation of the m5C writer NSUN2 inhibits MLV replication.IMPORTANCE The data presented in the present study demonstrate that MLV RNAs bear an exceptionally high level of the epitranscriptomic modifications m6A, m5C, and Nm, suggesting that these each facilitate some aspect of the viral replication cycle. Consistent with this hypothesis, we demonstrate that mutational removal of a subset of these m6A or m5C modifications from MLV transcripts inhibits MLV replication in cis, and a similar result was also observed upon manipulation of the level of expression of key cellular epitranscriptomic cofactors in trans Together, these results argue that the addition of several different epitranscriptomic modifications to viral transcripts stimulates viral gene expression and suggest that MLV has therefore evolved to maximize the level of these modifications that are added to viral RNAs.
Collapse
Affiliation(s)
- David G Courtney
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Andrea Chalem
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Hal P Bogerd
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Brittany A Law
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Edward M Kennedy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Christopher L Holley
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Bryan R Cullen
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
141
|
Lang F, Singh RK, Pei Y, Zhang S, Sun K, Robertson ES. EBV epitranscriptome reprogramming by METTL14 is critical for viral-associated tumorigenesis. PLoS Pathog 2019; 15:e1007796. [PMID: 31226160 PMCID: PMC6588254 DOI: 10.1371/journal.ppat.1007796] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/28/2019] [Indexed: 01/07/2023] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous oncogenic virus that induces many cancers. N6-Methyladenosine (m6A) modification regulates many cellular processes. We explored the role of m6A in EBV gene regulation and associated cancers. We have comprehensively defined m6A modification of EBV latent and lytic transcripts. Furthermore, m6A modification demonstrated a functional role in regulation of the stability of viral transcripts. The methyltransferase METTL14 was induced at the transcript and protein levels, and knock-down of METTL14 led to decreased expression of latent EBV transcripts. METTL14 was also significantly induced in EBV-positive tumors, promoted growth of EBV-transformed cells and tumors in Xenograft animal models. Mechanistically, the viral-encoded latent oncoprotein EBNA3C activated transcription of METTL14, and directly interacted with METTL14 to promote its stability. This demonstrated that EBV hijacks METTL14 to drive EBV-mediated tumorigenesis. METTL14 is now a new target for development of therapeutics for treatment of EBV-associated cancers.
Collapse
Affiliation(s)
- Fengchao Lang
- Departments of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rajnish Kumar Singh
- Departments of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yonggang Pei
- Departments of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shengwei Zhang
- Departments of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kunfeng Sun
- Departments of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Erle S. Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
142
|
Zhang C, Fu J, Zhou Y. A Review in Research Progress Concerning m6A Methylation and Immunoregulation. Front Immunol 2019; 10:922. [PMID: 31080453 PMCID: PMC6497756 DOI: 10.3389/fimmu.2019.00922] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/10/2019] [Indexed: 12/30/2022] Open
Abstract
Over 100 types of cellular RNA modifications have been identified in both coding and a variety of non-coding RNAs. N6-methyladenosine (m6A) is the most prevalent and abundant post-transcriptional RNA modification on eukaryote mRNA, and its biological functions are mediated by special binding proteins (i.e., methyltransferases, demethylases, and effectors) that recognize this modification. The presence of m6A on transcripts contributes to diverse fundamental cellular functions, such as pre-mRNA splicing, nuclear transport, stability, translation, and microRNA biogenesis, implying an association with numerous human diseases. This review principally summarizes recent progress in the study of m6A methylation mechanisms and relevant roles they play in immunoregulation.
Collapse
Affiliation(s)
- Caiyan Zhang
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jinrong Fu
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yufeng Zhou
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,NHC Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| |
Collapse
|
143
|
Chen J, Wang C, Fei W, Fang X, Hu X. Epitranscriptomic m6A modification in the stem cell field and its effects on cell death and survival. Am J Cancer Res 2019; 9:752-764. [PMID: 31106001 PMCID: PMC6511641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023] Open
Abstract
The reversible N6-methyl-adenosine (m6A) modification of messenger RNAs (mRNAs) has generated much interest in the field of stem cell modulation in recent years. Meanwhile, mounting evidence has shown that many physiopathological processes concerning cell death and survival harbor this chemical mark. Our review provides an overview of the m6A epitranscriptomic field and the updated mechanisms of m6A decoration in stem cell regulation. Furthermore, we focus on the role of m6A in DNA damage and the immune response, cell apoptosis, autophagy, and senescence, followed by recent advancements in m6A-induced viral replication. The function of abundant RNA-binding proteins (RBPs) identified in m6A regulatory systems will also be discussed in this review, highlighting their far-reaching implications in cellular m6A machinery and disease treatment.
Collapse
Affiliation(s)
- Jiaxin Chen
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University Hangzhou 310016, Zhejiang, China
| | - Chan Wang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University Hangzhou 310016, Zhejiang, China
| | - Weiqiang Fei
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University Hangzhou 310016, Zhejiang, China
| | - Xiao Fang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University Hangzhou 310016, Zhejiang, China
| | - Xiaotong Hu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University Hangzhou 310016, Zhejiang, China
| |
Collapse
|
144
|
Yu R, Li Q, Feng Z, Cai L, Xu Q. m6A Reader YTHDF2 Regulates LPS-Induced Inflammatory Response. Int J Mol Sci 2019; 20:ijms20061323. [PMID: 30875984 PMCID: PMC6470741 DOI: 10.3390/ijms20061323] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 12/27/2022] Open
Abstract
N6-methyladenosine (m6A) is an abundant mRNA modification that affects multiple biological processes, including those involved in the cell stress response and viral infection. YTH domain family 2 (YTHDF2) is an m6A-binding protein that affects the localization and stability of targeted mRNA. RNA-binding proteins (RBPs) can regulate the stability of inflammatory gene mRNA transcripts, thus participating in the regulation of inflammatory processes. As an RBP, the role of YTHDF2 in the LPS-induced inflammatory reaction has not been reported. To elucidate the function of YTHDF2 in the inflammatory response of macrophages, we first detected the expression level of YTHDF2 in RAW 264.7 cells, and found that it was upregulated after LPS stimulation. YTHDF2 knockdown significantly increased the LPS-induced IL-6, TNF-α, IL-1β, and IL-12 expression and the phosphorylation of p65, p38, and ERK1/2 in NF-κB and MAPK signaling. Moreover, the upregulated expression of TNF-α and IL-6 in cells with silenced YTHDF2 expression was downregulated by the NF-κB, p38, and ERK inhibitors. YTHDF2 depletion increased the expression and stability of MAP2K4 and MAP4K4 mRNAs. All of these results suggest that YTHDF2 knockdown increases mRNA expression levels of MAP2K4 and MAP4K4 via stabilizing the mRNA transcripts, which activate MAPK and NF-κB signaling pathways, which promote the expression of proinflammatory cytokines and aggravate the inflammatory response in LPS-stimulated RAW 264.7 cells.
Collapse
Affiliation(s)
- Ruiqing Yu
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Qimeng Li
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Zhihui Feng
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Luhui Cai
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Qiong Xu
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| |
Collapse
|
145
|
Butnaru M, Gaglia MM. Transcriptional and post-transcriptional regulation of viral gene expression in the gamma-herpesvirus Kaposi's sarcoma-associated herpesvirus. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019; 5:219-228. [PMID: 30854283 DOI: 10.1007/s40588-018-0102-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Purpose of review Kaposi's sarcoma-associated herpesvirus (KSHV), the etiological agent of the AIDS-associated tumor Kaposi's sarcoma, is a complex virus that expresses ~90 proteins in a regulated temporal cascade during its replication cycle. Although KSHV relies on cellular machinery for gene expression, it also uses specialized regulators to control nearly every step of the process. In this review we discuss the current understanding of KSHV gene regulation. Recent findings High-throughput sequencing and a new robust system to mutate KSHV have paved the way for comprehensive studies of KSHV gene expression, leading to the characterization of new viral factors that control late gene expression and post-transcriptional steps of gene regulation. They have also revealed key aspects of chromatin-based control of gene expression in the latent and lytic cycle. Summary The combination of mutant analysis and high-throughput sequencing will continue to expand our model of KSHV gene regulation and point to potential new targets for anti-KSHV drugs.
Collapse
Affiliation(s)
- Matthew Butnaru
- Graduate Program in Biochemistry, Sackler School of Biomedical Sciences, Tufts University, Boston, MA, USA
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA, USA
| | - Marta M Gaglia
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA, USA
| |
Collapse
|
146
|
Dang W, Xie Y, Cao P, Xin S, Wang J, Li S, Li Y, Lu J. N 6-Methyladenosine and Viral Infection. Front Microbiol 2019; 10:417. [PMID: 30891023 PMCID: PMC6413633 DOI: 10.3389/fmicb.2019.00417] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
N6-methyladenosine (m6A), as a dynamic posttranscriptional RNA modification, recently gave rise to the field of viral epitranscriptomics. The interaction between virus and host is affected by m6A. Multiple m6A-modified viral RNAs have been observed. The epitranscriptome of m6A in host cells are altered after viral infection. The expression of viral genes, the replication of virus and the generation of progeny virions are influenced by m6A modifications in viral RNAs during virus infection. Meanwhile, the decorations of m6A in host mRNAs can make viral infections more likely to happen or can enhance the resistance of host to virus infection. However, the mechanism of m6A regulation in viral infection and host immune response has not been thoroughly elucidated to date. With the development of sequencing-based biotechnologies, transcriptome-wide mapping of m6A in viruses has been achieved, laying the foundation for expanding its functions and corresponding mechanisms. In this report, we summarize the positive and negative effects of m6A in distinct viral infection. Given the increasingly important roles of m6A in diverse viruses, m6A represents a novel potential target for antiviral therapy.
Collapse
Affiliation(s)
- Wei Dang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Yan Xie
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Pengfei Cao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuyu Xin
- Department of Microbiology, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Jia Wang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Shen Li
- Department of Microbiology, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Yanling Li
- Department of Microbiology, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Jianhong Lu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
147
|
Manners O, Baquero-Perez B, Whitehouse A. m 6A: Widespread regulatory control in virus replication. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2019; 1862:370-381. [PMID: 30412798 PMCID: PMC6414752 DOI: 10.1016/j.bbagrm.2018.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/25/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022]
Abstract
N6-methyladenosine (m6A) is a highly pervasive and dynamic modification found on eukaryotic RNA. Despite the failure to comprehend the true regulatory potential of this epitranscriptomic mark for decades, our knowledge of m6A has rapidly expanded in recent years. The modification has now been functionally linked to all stages of mRNA metabolism and demonstrated to regulate a variety of biological processes. Furthermore, m6A has been identified on transcripts encoded by a wide range of viruses. Studies to investigate m6A function in viral-host interactions have highlighted distinct roles indicating widespread regulatory control over viral life cycles. As a result, unveiling the true influence of m6A modification could revolutionise our comprehension of the regulatory mechanisms controlling viral replication. This article is part of a Special Issue entitled: mRNA modifications in gene expression control edited by Dr. Soller Matthias and Dr. Fray Rupert.
Collapse
Affiliation(s)
- Oliver Manners
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Belinda Baquero-Perez
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom; Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
148
|
Fleming AM, Nguyen NLB, Burrows CJ. Colocalization of m 6A and G-Quadruplex-Forming Sequences in Viral RNA (HIV, Zika, Hepatitis B, and SV40) Suggests Topological Control of Adenosine N 6-Methylation. ACS CENTRAL SCIENCE 2019; 5:218-228. [PMID: 30834310 PMCID: PMC6396389 DOI: 10.1021/acscentsci.8b00963] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Indexed: 05/09/2023]
Abstract
This Outlook calls attention to two seemingly disparate and emerging fields regarding viral genomics that may be correlated in a way previously overlooked. First, we describe identification of conserved potential G-quadruplex-forming sequences (PQSs) in viral genomes relevant to human health. Studies have demonstrated that PQSs are highly conserved and can fold to G-quadruplexes (G4s) to regulate viral processes. Key examples include G4s as a countermeasure to the host's immune system or G4-guided regulation of replication or transcription. Second, emerging data are discussed concerning the epitranscriptomic modification N 6-methyladenosine (m6A) in viral RNA installed by host proteins in a consensus sequence favoring 5'-GG(m6A)C-3'. The proposed pathways by which m6A is written, read, and erased in viral RNA genomes and the impact this has on viral replication are described. The structural reason why certain sites are selected for modification while others are not is still mysterious. Finally, we discuss our new observations regarding these previous sequencing data that identify m6A installation within the loops of two-tetrad PQSs in the RNA genomes of the Zika, HIV, hepatitis B, and SV40 viruses. We hypothesize that conserved viral PQSs can provide a framework (sequence and/or structural) for m6A installation. We also discuss literature sources suggesting that PQSs as sites of RNA modification could be a general phenomenon. We anticipate our observations will provide ample opportunities for exciting discoveries regarding the interplay between G4 structures and epitranscriptomic modifications of RNA.
Collapse
Affiliation(s)
- Aaron M. Fleming
- Department of Chemistry, University
of Utah, Salt Lake
City, Utah 84112-0850, United States
| | - Ngoc L. B. Nguyen
- Department of Chemistry, University
of Utah, Salt Lake
City, Utah 84112-0850, United States
| | - Cynthia J. Burrows
- Department of Chemistry, University
of Utah, Salt Lake
City, Utah 84112-0850, United States
| |
Collapse
|
149
|
Zou Q, Xing P, Wei L, Liu B. Gene2vec: gene subsequence embedding for prediction of mammalian N6-methyladenosine sites from mRNA. RNA (NEW YORK, N.Y.) 2019; 25:205-218. [PMID: 30425123 PMCID: PMC6348985 DOI: 10.1261/rna.069112.118] [Citation(s) in RCA: 332] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/01/2018] [Indexed: 05/20/2023]
Abstract
N6-Methyladenosine (m6A) refers to methylation modification of the adenosine nucleotide acid at the nitrogen-6 position. Many conventional computational methods for identifying N6-methyladenosine sites are limited by the small amount of data available. Taking advantage of the thousands of m6A sites detected by high-throughput sequencing, it is now possible to discover the characteristics of m6A sequences using deep learning techniques. To the best of our knowledge, our work is the first attempt to use word embedding and deep neural networks for m6A prediction from mRNA sequences. Using four deep neural networks, we developed a model inferred from a larger sequence shifting window that can predict m6A accurately and robustly. Four prediction schemes were built with various RNA sequence representations and optimized convolutional neural networks. The soft voting results from the four deep networks were shown to outperform all of the state-of-the-art methods. We evaluated these predictors mentioned above on a rigorous independent test data set and proved that our proposed method outperforms the state-of-the-art predictors. The training, independent, and cross-species testing data sets are much larger than in previous studies, which could help to avoid the problem of overfitting. Furthermore, an online prediction web server implementing the four proposed predictors has been built and is available at http://server.malab.cn/Gene2vec/.
Collapse
Affiliation(s)
- Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610051 Chengdu, China
- School of Computer Science and Technology, Tianjin University, 300350 Tianjin, China
| | - Pengwei Xing
- School of Computer Science and Technology, Tianjin University, 300350 Tianjin, China
| | - Leyi Wei
- School of Computer Science and Technology, Tianjin University, 300350 Tianjin, China
| | - Bin Liu
- School of Computer Science and Technology, Harbin Institute of Technology, 150001 Shenzhen, China
| |
Collapse
|
150
|
Yang J, Wang H, Zhang W. Regulation of Virus Replication and T Cell Homeostasis by N 6-Methyladenosine. Virol Sin 2019; 34:22-29. [PMID: 30671921 PMCID: PMC6420589 DOI: 10.1007/s12250-018-0075-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/26/2018] [Indexed: 01/04/2023] Open
Abstract
RNA modifications are abundant in eukaryotes, bacteria, and archaea. N6-methyladenosine (m6A), a type of RNA modification mainly found in messenger RNA (mRNA), has significant effects on the metabolism and function of mRNAs. This modification is governed by three types of proteins, namely methyltransferases as "writers", demethylases as "erasers", and specific m6A-binding proteins (YTHDF1-3) as "readers". Further, it is important for the regulation of cell fate and has a critical function in many biological processes including virus replication, stem cell differentiation, and cancer development, and exerts its effect by controlling gene expression. Herein, we summarize recent advances in research on m6A in virus replication and T cell regulation, which is a rapidly emerging field that will facilitate the development of antiviral therapies and the study of innate immunity.
Collapse
Affiliation(s)
- Jing Yang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hong Wang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|