101
|
Corsetti G, Stacchiotti A, D' Antona G, Nisoli E, Dioguardi FS, Rezzani R. Supplementation with essential amino acids in middle age maintains the health of rat kidney. Int J Immunopathol Pharmacol 2010; 23:523-33. [PMID: 20646347 DOI: 10.1177/039463201002300214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chronic kidney diseases are a social and economic problem, and diet has long been recognized as a fundamental modulator of kidney health in human and experimental models. Age-dependent alterations in mitochondrial function play a crucial role in the development of diseases of aging, and mitochondrial disorders have been observed in experimental models of kidney failure. Recently, the beneficial dietary effect of a specific mixture of essential amino acids (EAA) has been studied in elderly subjects, but no data were collected from the kidney. The aim of this study was to assess whether daily supplementation of the diet with EAA at the beginning of senescence could preserve renal health. We used middle-aged (18-month-old) male Wistar rats fed a standard diet and water ad libitum (M-aged group) or a diet with added EAA (1.5 g/kg per day) dissolved in drinking water for 3 months (M-aged+EAA group). Young (2-month-old) rats fed a standard diet for 3 months were used as controls. Mitochondrial morphology and markers for collagen, cyt-c-oxidase, HSP60, GRP75, eNOS, iNOS, Bax, Bcl2 and VEGF were analyzed in glomeruli and tubules. EAA supplementation limited fibrosis and increased the capillary tuft area in the glomeruli of M-aged rats. VEGF and eNOS were enhanced in glomeruli and the peritubular space with the EAA-supplemented diet. Mitochondrial cyt-c oxidase, Bcl2, and chaperones increased in the distal tubules of the EAA group to levels similar to those observed in the young group. Mitochondrial area and density after EAA intake did not differ from young groups. The results suggest that prolonged EAA intake could represent a strategy for maintaining the healthy status of the kidney in M-aged animals.
Collapse
Affiliation(s)
- G Corsetti
- Division of Human Anatomy, Department of Biomedical Sciences and Biotechnology, University of Brescia, Brescia, Italy.
| | | | | | | | | | | |
Collapse
|
102
|
Castilla C, Congregado B, Conde JM, Medina R, Torrubia FJ, Japón MA, Sáez C. Immunohistochemical expression of Hsp60 correlates with tumor progression and hormone resistance in prostate cancer. Urology 2010; 76:1017.e1-6. [PMID: 20708221 DOI: 10.1016/j.urology.2010.05.045] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 05/07/2010] [Accepted: 05/23/2010] [Indexed: 01/08/2023]
Abstract
OBJECTIVES To investigate the expression of Hsp60 protein in prostate cancer biopsy samples, and its association with prognostic clinical parameters and hormone resistance and survival. Molecular chaperones are involved in protein folding, protein degradation, and protein trafficking among subcellular compartments. METHODS We selected 107 patients with localized and locally advanced prostate cancer at our hospital from 1999 through 2004. We performed an analysis by western blot and immunohistochemistry on paraffin-embedded tissue sections. Clinical data were used to determine associations between immunohistochemical expression of Hsp60 and tumor behavior. RESULTS The expression level of Hsp60 was significantly increased in tumors with high Gleason score (P < .001). Hsp60 expression was also significantly associated with initial serum PSA levels (P < .01) and with the presence of lymph node metastasis (P < .003). In 50 locally advanced cancers treated by androgen ablation we found an association between high Hsp60-expressing tumors and an early onset of hormone refractory disease (P < .02) and reduced cancer-specific survival (P < .05). CONCLUSIONS Hsp60 protein is overexpressed in poorly differentiated prostate cancers. Hsp60 expression is strongly associated with prognostic clinical parameters, such as Gleason score, initial serum PSA levels, and lymph node metastasis and with the onset of hormone-refractory disease and reduced cancer-specific survival. Identification of such markers could be of relevance in the clinical management of prostate cancer.
Collapse
Affiliation(s)
- Carolina Castilla
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | | | | | | | | | | | | |
Collapse
|
103
|
Uhrigshardt H, Singh A, Kovtunovych G, Ghosh M, Rouault TA. Characterization of the human HSC20, an unusual DnaJ type III protein, involved in iron-sulfur cluster biogenesis. Hum Mol Genet 2010; 19:3816-34. [PMID: 20668094 DOI: 10.1093/hmg/ddq301] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The importance of mitochondrial iron-sulfur cluster (ISC) biogenesis for human health has been well established, but the roles of some components of this critical pathway still remain uncharacterized in mammals. Among them is human heat shock cognate protein 20 (hHSC20), the putative human homolog of the specialized DnaJ type co-chaperones, which are crucial for bacterial and fungal ISC assembly. Here, we show that the human HSC20 protein can complement for its counterpart in yeast, Jac1p, and interacts with its proposed human partners, hISCU and hHSPA9. hHSC20 is expressed in various human tissues and localizes mainly to the mitochondria in HeLa cells. However, small amounts were also detected extra-mitochondrially. RNA interference-mediated depletion of hHSC20 specifically reduced the activities of both mitochondrial and cytosolic ISC-containing enzymes. The recovery of inactivated ISC enzymes was markedly delayed after an oxidative insult of hHSC20-deficient cells. Conversely, overexpression of hHSC20 substantially protected cells from oxidative insults. These results imply that hHSC20 is an integral component of the human ISC biosynthetic machinery that is particularly important in the assembly of ISCs under conditions of oxidative stress. A cysteine-rich N-terminal domain, which clearly distinguishes hHSC20 from the specialized DnaJ type III proteins of fungi and most bacteria, was found to be important for the integrity and function of the human co-chaperone.
Collapse
Affiliation(s)
- Helge Uhrigshardt
- Molecular Medicine Program, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
104
|
Kayani AC, Close GL, Dillmann WH, Mestril R, Jackson MJ, McArdle A. Overexpression of HSP10 in skeletal muscle of transgenic mice prevents the age-related fall in maximum tetanic force generation and muscle Cross-Sectional Area. Am J Physiol Regul Integr Comp Physiol 2010; 299:R268-76. [PMID: 20410481 DOI: 10.1152/ajpregu.00334.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Skeletal muscle atrophy and weakness are major contributors to frailty and impact significantly on quality of life of older people. Muscle aging is characterized by a loss of maximum tetanic force (P(o)) generation, primarily due to muscle atrophy, to which mitochondrial dysfunction is hypothesized to contribute. We hypothesized that lifelong overexpression of the mitochondrial heat shock protein (HSP) HSP10 in muscle of mice would protect against development of these deficits. P(o) generation by extensor digitorum longus muscles of adult and old wild-type and HSP10-overexpressing mice was determined in situ. Muscles were subjected to damaging lengthening contractions, and force generation was remeasured at 3 h or 28 days to examine susceptibility to, and recovery from, damage, respectively. Muscles of old wild-type mice had a 23% deficit in P(o) generation and a 10% deficit in muscle cross-sectional area compared with muscles of adult wild-type mice. Overexpression of HSP10 prevented this age-related fall in P(o) generation and reduction in cross-sectional area observed in muscles of old wild-type mice. Additionally, overexpression of HSP10 protected against contraction-induced damage independent of age but did not improve recovery if damage occurred. Preservation of muscle force generation and CSA by HSP10 overexpression was associated with protection against the age-related accumulation of protein carbonyls. Data demonstrate that development of age-related muscle weakness may not be inevitable and show, for the first time, that lifelong overexpression of an HSP prevents the age-related loss of P(o) generation. These findings support the hypothesis that mitochondrial dysfunction is involved in the development of age-related muscle deficits.
Collapse
Affiliation(s)
- Anna C Kayani
- Pathophysiology Research Unit, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | | | | |
Collapse
|
105
|
Suliman HB, Babiker A, Withers CM, Sweeney TE, Carraway MS, Tatro LG, Bartz RR, Welty-Wolf KE, Piantadosi CA. Nitric oxide synthase-2 regulates mitochondrial Hsp60 chaperone function during bacterial peritonitis in mice. Free Radic Biol Med 2010; 48:736-46. [PMID: 20043987 PMCID: PMC2842938 DOI: 10.1016/j.freeradbiomed.2009.12.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 12/17/2009] [Accepted: 12/22/2009] [Indexed: 01/06/2023]
Abstract
Nitric oxide synthase-2 (NOS2) plays a critical role in reactive nitrogen species generation and cysteine modifications that influence mitochondrial function and signaling during inflammation. Here, we investigated the role of NOS2 in hepatic mitochondrial biogenesis during Escherichia coli peritonitis in mice. NOS2(-/-) mice displayed smaller mitochondrial biogenesis responses than Wt mice during E. coli infection according to differences in mRNA levels for the PGC-1 alpha coactivator, nuclear respiratory factor-1, mitochondrial transcription factor-A (Tfam), and mtDNA polymerase (Pol gamma). NOS2(-/-) mice did not significantly increase mitochondrial Tfam and Pol gamma protein levels during infection in conjunction with impaired mitochondrial DNA (mtDNA) transcription, loss of mtDNA copy number, and lower State 3 respiration rates. NOS2 blockade in mitochondrial-GFP reporter mice disrupted Hsp60 localization to mitochondria after E. coli exposure. Mechanistically, biotin-switch and immunoprecipitation studies demonstrated NOS2 binding to and S-nitros(yl)ation of Hsp60 and Hsp70. Specifically, NOS2 promoted Tfam accumulation in mitochondria by regulation of Hsp60-Tfam binding via S-nitros(yl)ation. In hepatocytes, site-directed mutagenesis identified (237)Cys as a critical residue for Hsp60 S-nitros(yl)ation. Thus, the role of NOS2 in inflammation-induced mitochondrial biogenesis involves both optimal gene expression for nuclear-encoded mtDNA-binding proteins and functional regulation of the Hsp60 chaperone that enables their importation for mtDNA transcription and replication.
Collapse
Affiliation(s)
- Hagir B Suliman
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Squina FM, Leal J, Cipriano VTF, Martinez-Rossi NM, Rossi A. Transcription of the Neurospora crassa 70-kDa class heat shock protein genes is modulated in response to extracellular pH changes. Cell Stress Chaperones 2010; 15:225-31. [PMID: 19618296 PMCID: PMC2866986 DOI: 10.1007/s12192-009-0131-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Revised: 06/25/2009] [Accepted: 06/30/2009] [Indexed: 10/20/2022] Open
Abstract
Heat shock proteins belong to a conserved superfamily of molecular chaperones found in prokaryotes and eukaryotes. These proteins are linked to a myriad of physiological functions. In this study, we show that the N. crassa hsp70-1 (NCU09602.3) and hsp70-2 (NCU08693.3) genes are preferentially expressed in an acidic milieu after 15 h of cell growth in sufficient phosphate at 30 degrees C. No significant accumulation of these transcripts was detected at alkaline pH values. Both genes accumulated to a high level in mycelia that were incubated for 1 h at 45 degrees C, regardless of the phosphate concentration and extracellular pH changes. Transcription of the hsp70-1 and hsp70-2 genes was dependent on the pacC (+) background in mycelia cultured under optimal growth conditions or at 45 degrees C. The pacC gene encodes a Zn-finger transcription factor that is involved in the regulation of gene expression by pH. Heat shock induction of these two hsp genes in mycelia incubated in low-phosphate medium was almost not altered in the nuc-1 (-) background under both acidic and alkaline pH conditions. The NUC-1 transcriptional regulator is involved in the derepression of nucleases, phosphatases, and transporters that are necessary for fulfilling the cell's phosphate requirements. Transcription of the hsp70-3 (NCU01499.3) gene followed a different pattern of induction-the gene was depressed under insufficient phosphate conditions but was apparently unaffected by alkalinization of the culture medium. Moreover, this gene was not induced by heat shock. These results reveal novel aspects of the heat-sensing network of N. crassa.
Collapse
Affiliation(s)
- Fabio M. Squina
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP Brazil
- Centro de Ciência e Tecnologia do Bioetanol-CTBE, Associação Brasileira de Tecnologia de Luz Síncrotron, Campinas, SP Brazil
| | - Juliana Leal
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP Brazil
| | - Vivian T. F. Cipriano
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP Brazil
| | - Nilce M. Martinez-Rossi
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP Brazil
| | - Antonio Rossi
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP Brazil
| |
Collapse
|
107
|
Li Y, Reuter NP, Li X, Liu Q, Zhang J, Martin RCG. Colocalization of MnSOD expression in response to oxidative stress. Mol Carcinog 2010; 49:44-53. [PMID: 19623544 DOI: 10.1002/mc.20575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The loss of manganese superoxide dismutase function has been associated with increased incidence of Barrett's esophagus and esophageal adenocarcinoma. In previous studies, we have demonstrated that loss of MnSOD resulted in severe esophageal damage by both endogenous and exogenous bile. However, the alterative manner of MnSOD in esophageal epithelium is largely unknown. In this study, we investigated the expression and localization of MnSOD in response to the exposure to bile salts in an esophageal epithelial cell line. Het-1A cells were seeded at 5 x 10(5) and 10(7) and incubated with taurocholate, cholate, glycocholate, deoxycholate, and the mixture of these bile salts. Mitochondria and cytoplasma were separated, and the expression and localization of MnSOD was determined by Western blot and immunocytochemical assay. Proliferation rates were strongly inhibited in the groups with taurocholate and bile salts mixture at 4 h, with 0.367 +/- 0.042 and 0.396 +/- 0.046, respectively, compared to 0.684 +/- 0.054 in untreated groups (P < 0.05). An increased apoptotic rate compared to untreated group (3.65 +/- 0.59) were significantly increased in taurocholate group and in bile salts mixture group were 33.62 +/- 10.25 and 31.52 +/- 8.97 at 4 h, respectively (P < 0.05). The protein level of MnSOD in mitochondria was increased at 4 h, but with a decreased enzymatic activity after bile salts treatment. Cytoplasmic MnSOD was detected in the cells with bile salts treatment. Immunocytochemical staining demonstrated that esophageal epithelial cell underwent morphological alteration and MnSOD relocalization after bile salts treatment. This is the first study to demonstrate cellular cytosolic MnSOD expression and that this relocalization to the cytosol is a cause for decreased MnSOD enzymatic activity. This suggests that bile salts may contribute to the dysfunction of mitochondria, by enzymatically inhibiting of MnSOD localization and thus activation in the mitochondria.
Collapse
Affiliation(s)
- Yan Li
- University of Louisville School of Medicine, Kentucky 40202, USA
| | | | | | | | | | | |
Collapse
|
108
|
Wadhwa R, Ryu J, Gao R, Choi IK, Morrow G, Kaur K, Kim I, Kaul SC, Yun CO, Tanguay RM. Proproliferative functions of Drosophila small mitochondrial heat shock protein 22 in human cells. J Biol Chem 2009; 285:3833-3839. [PMID: 19948727 DOI: 10.1074/jbc.m109.080424] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aging is a complex process accompanied by a decreased capacity of cells to cope with random damages induced by reactive oxygen species, the natural by-products of energy metabolism, leading to protein aggregation in various components of the cell. Chaperones are important players in the aging process as they prevent protein misfolding and aggregation. Small chaperones, such as small heat shock proteins, are involved in the refolding and/or disposal of protein aggregates, a feature of many age-associated diseases. In Drosophila melanogaster, mitochondrial Hsp22 (DmHsp22), is localized in the mitochondrial matrix and is preferentially up-regulated during aging. Its overexpression results in an extension of life span (>30%) (Morrow, G., Samson, M., Michaud, S., and Tanguay, R. M. (2004) FASEB J. 18, 598-599 and Morrow, G., Battistini, S., Zhang, P., and Tanguay, R. M. (2004) J. Biol. Chem. 279, 43382-43385). Long lived flies expressing Hsp22 also have an increased resistance to oxidative stress and maintain locomotor activity longer. In the present study, the cross-species effects of Hsp22 expression were tested. DmHsp22 was found to be functionally active in human cells. It extended the life span of normal fibroblasts, slowing the aging process as evidenced by a lower level of the senescence associated beta-galactosidase. DmHsp22 expression in human cancer cells increased their malignant properties including anchorage-independent growth, tumor formation in nude mice, and resistance to a variety of anticancer drugs. We report that the DmHsp22 interacts and inactivates wild type tumor suppressor protein p53, which may be one possible way of its functioning in human cells.
Collapse
Affiliation(s)
- Renu Wadhwa
- From the National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305 8562, Japan
| | - Jihoon Ryu
- From the National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305 8562, Japan; the Brain Korea 21 Project for Medical Science, Institute for Cancer Research, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul, Korea
| | - Ran Gao
- From the National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305 8562, Japan
| | - Il-Kyu Choi
- From the National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305 8562, Japan; the Graduate Program for Nanomedical Science, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul, Korea, and
| | - Geneviève Morrow
- the Laboratoire de Génétique Cellulaire et Développementale, Département de Médecine, PROTÉO, Pav. C.E.-Marchand, Université Laval, Quebec G1V 0A6, Canada
| | - Kamaljit Kaur
- From the National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305 8562, Japan
| | - Inwook Kim
- From the National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305 8562, Japan; the Graduate Program for Nanomedical Science, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul, Korea, and
| | - Sunil C Kaul
- From the National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305 8562, Japan.
| | - Chae-Ok Yun
- the Brain Korea 21 Project for Medical Science, Institute for Cancer Research, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul, Korea; the Graduate Program for Nanomedical Science, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul, Korea, and.
| | - Robert M Tanguay
- the Laboratoire de Génétique Cellulaire et Développementale, Département de Médecine, PROTÉO, Pav. C.E.-Marchand, Université Laval, Quebec G1V 0A6, Canada.
| |
Collapse
|
109
|
Parnas A, Nadler M, Nisemblat S, Horovitz A, Mandel H, Azem A. The MitCHAP-60 disease is due to entropic destabilization of the human mitochondrial Hsp60 oligomer. J Biol Chem 2009; 284:28198-28203. [PMID: 19706612 DOI: 10.1074/jbc.m109.031997] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 60-kDa heat shock protein (mHsp60) is a vital cellular complex that mediates the folding of many of the mitochondrial proteins. Its function is executed in cooperation with the co-chaperonin, mHsp10, and requires ATP. Recently, the discovery of a new mHsp60-associated neurodegenerative disorder, MitCHAP-60 disease, has been reported. The disease is caused by a point mutation at position 3 (D3G) of the mature mitochondrial Hsp60 protein, which renders it unable to complement the deletion of the homologous bacterial protein in Escherichia coli (Magen, D., Georgopoulos, C., Bross, P., Ang, D., Segev, Y., Goldsher, D., Nemirovski, A., Shahar, E., Ravid, S., Luder, A., Heno, B., Gershoni-Baruch, R., Skorecki, K., and Mandel, H. (2008) Am. J. Hum. Genet. 83, 30-42). The molecular basis of the MitCHAP-60 disease is still unknown. In this study, we present an in vitro structural and functional analysis of the purified wild-type human mHsp60 and the MitCHAP-60 mutant. We show that the D3G mutation leads to destabilization of the mHsp60 oligomer and causes its disassembly at low protein concentrations. We also show that the mutant protein has impaired protein folding and ATPase activities. An additional mutant that lacks the first three amino acids (N-del), including Asp-3, is similarly impaired in refolding activity. Surprisingly, however, this mutant exhibits profound stabilization of its oligomeric structure. These results suggest that the D3G mutation leads to entropic destabilization of the mHsp60 oligomer, which severely impairs its chaperone function, thereby causing the disease.
Collapse
Affiliation(s)
- Avital Parnas
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69778 Tel Aviv
| | - Michal Nadler
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100
| | - Shahar Nisemblat
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69778 Tel Aviv
| | - Amnon Horovitz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100.
| | - Hanna Mandel
- Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology and Metabolic Disease Unit, Rambam Health Care Campus, Haifa 31096, Israel
| | - Abdussalam Azem
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69778 Tel Aviv.
| |
Collapse
|
110
|
Mutational screening of the mortalin gene (HSPA9) in Parkinson’s disease. J Neural Transm (Vienna) 2009; 116:1289-93. [DOI: 10.1007/s00702-009-0273-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 07/17/2009] [Indexed: 10/20/2022]
|
111
|
Genetic evidence for shared mechanisms of epimorphic regeneration in zebrafish. Proc Natl Acad Sci U S A 2009; 106:9310-5. [PMID: 19474300 DOI: 10.1073/pnas.0811186106] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In a microarray-based gene profiling analysis of Müller glia-derived retinal stem cells in light-damaged retinas from adult zebrafish, we found that 2 genes required for regeneration of fin and heart tissues in zebrafish, hspd1 (heat shock 60-kDa protein 1) and mps1 (monopolar spindle 1), were up-regulated. Expression of both genes in the neurogenic Müller glia and progenitors was independently verified by quantitative reverse transcriptase PCR and in situ hybridization. Functional analysis of temperature-sensitive mutants of hspd1 and mps1 revealed that both are necessary for Müller glia-based cone photoreceptor regeneration in adult zebrafish retina. In the amputated fin, hspd1 is required for the induction of mesenchymal stem cells and blastema formation, whereas mps1 is required at a later step for rapid cell proliferation and outgrowth. This temporal sequence of hspd1 and mps1 function is conserved in the regenerating retina. Comparison of gene expression profiles from regenerating zebrafish retina, caudal fin, and heart muscle revealed additional candidate genes potentially implicated in injury-induced epimorphic regeneration in diverse zebrafish tissues.
Collapse
|
112
|
Koeck T, Corbett JA, Crabb JW, Stuehr DJ, Aulak KS. Glucose-modulated tyrosine nitration in beta cells: targets and consequences. Arch Biochem Biophys 2009; 484:221-31. [PMID: 19402213 PMCID: PMC2759311 DOI: 10.1016/j.abb.2009.01.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hyperglycemia, key factor of the pre-diabetic and diabetic pathology, is associated with cellular oxidative stress that promotes oxidative protein modifications. We report that protein nitration is responsive to changes in glucose concentrations in islets of Langerhans and insulinoma beta cells. Alterations in the extent of tyrosine nitration as well as the cellular nitroproteome profile correlated tightly with changing glucose concentrations. The target proteins we identified function in protein folding, energy metabolism, antioxidant capacity, and membrane permeability. Nitration of heat shock protein 60 in vitro was found to decrease its ATP hydrolysis and interaction with proinsulin, suggesting a mechanism by which protein nitration could diminish insulin secretion. This was supported by our finding of a decrease in stimulated insulin secretion following glycolytic stress in cultured cells. Our results reveal that protein tyrosine nitration may be a previously unrecognized factor in beta-cell dysfunction and the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Thomas Koeck
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - John A. Corbett
- The Comprehensive Diabetes Center, Department of Medicine, University of Alabama in Birmingham. Shel 12 floor, 1530 3rd Ave. So., Birmingham, AL 35249-2182
| | - John W. Crabb
- Departments of Cell Biology and Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Dennis J. Stuehr
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Kulwant S. Aulak
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| |
Collapse
|
113
|
Koeck T, Willard B, Crabb JW, Kinter M, Stuehr DJ, Aulak KS. Glucose-mediated tyrosine nitration in adipocytes: targets and consequences. Free Radic Biol Med 2009; 46:884-92. [PMID: 19135148 PMCID: PMC2888280 DOI: 10.1016/j.freeradbiomed.2008.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 12/03/2008] [Accepted: 12/11/2008] [Indexed: 12/20/2022]
Abstract
Hyperglycemia, a key factor in insulin resistance and diabetic pathology, is associated with cellular oxidative stress that promotes oxidative protein modifications. We report that protein nitration is responsive to changes in glucose concentrations in 3T3-L1 adipocytes. Alterations in the extent of tyrosine nitration as well as the cellular nitroproteome profile correlated tightly with changing glucose concentrations. The target proteins we identified are involved in fatty acid binding, cell signaling, protein folding, energy metabolism, antioxidant capacity, and membrane permeability. The nitration of adipocyte fatty acid binding protein (FABP4) at Tyr19 decreases, similar to phosphorylation, the binding of palmitic acid to the fatty acid-free protein. This potentially alters intracellular fatty acid transport, nuclear translocation of FABP4, and agonism of PPAR gamma. Our results suggest that protein tyrosine nitration may be a factor in obesity, insulin resistance, and the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Thomas Koeck
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44118, USA
- Corresponding authors. Fax: +1 216 444 8372. (T. Koeck), (K.S. Aulak)
| | - Belinda Willard
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - John W. Crabb
- Departments of Ophthalmic Research and Cell Biology, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Mike Kinter
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Dennis J. Stuehr
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44118, USA
| | - Kulwant S. Aulak
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44118, USA
- Corresponding authors. Fax: +1 216 444 8372. (T. Koeck), (K.S. Aulak)
| |
Collapse
|
114
|
Kang SM, Kim SJ, Kim JH, Lee W, Kim GW, Lee KH, Choi KY, Oh JW. Interaction of hepatitis C virus core protein with Hsp60 triggers the production of reactive oxygen species and enhances TNF-alpha-mediated apoptosis. Cancer Lett 2009; 279:230-7. [PMID: 19264393 DOI: 10.1016/j.canlet.2009.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 02/01/2009] [Accepted: 02/02/2009] [Indexed: 12/20/2022]
Abstract
The hepatitis C virus (HCV) core protein is the primary protein component of the nucleocapsid that encapsidates the viral RNA genome. Besides its role as a viral structural protein, the core protein is implicated in HCV chronic infection-associated liver diseases by induction of reactive oxygen species (ROS) production and modulation of apoptosis. Here, we show that interaction of the core protein, through its N-terminal domain (amino acids 1-75), with heat shock protein (Hsp60) is critical for the induction of ROS production, leading to sensitization of core protein-expressing cells to apoptosis induced by tumor necrosis factor-alpha (TNF-alpha). Moreover, overexpression of Hsp60 rescued the core protein-expressing cells from cell death by reducing ROS production. Collectively, our results suggest that impairment of Hsp60 function through binding of HCV core protein contributes to HCV viral pathogenesis by ROS generation and amplification of the apoptotic effect of TNF-alpha.
Collapse
Affiliation(s)
- Su-Min Kang
- Department of Biotechnology, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Li XL, Li K, Li YY, Feng Y, Gong Q, Li YN, Li XJ, Chen CJ. Alteration of Cpn60 expression in pancreatic tissue of rats with acute pancreatitis. Cell Stress Chaperones 2009; 14:199-206. [PMID: 18766470 PMCID: PMC2727985 DOI: 10.1007/s12192-008-0074-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Revised: 08/04/2008] [Accepted: 08/06/2008] [Indexed: 01/30/2023] Open
Abstract
The expression of heat-shock protein 60 (also known as chaperonin 60, Cpn60) in experimental acute pancreatitis (AP) is considered to play an active role in the prevention of abnormal enzyme accumulation and activation in pancreatic acinar cells. However, there are controversial results in the literature regarding the relationship between the abnormality of Cpn60 expression and AP onset and development. The purpose of this study was to investigate the alternations of Cpn60 expression and the relationship between the abnormal expression of Cpn60 and AP progression in rat severe acute pancreatitis (SAP) models. In this report, we induced SAP in Sprague-Dawley (SD) rats by reverse injection of sodium deoxycholate into the pancreatic duct, and examined the dynamic changes of Cpn60 expression in pancreatic tissues from different time points and at different levels with techniques of real-time PCR, western blotting, and immunohistochemistry. At 1 h after SAP induction, the expression of Cpn60 mRNA in the AP pancreatic tissues was higher than those in the sham-operation group and normal control group, but decreased sharply as the time period was extended, and there was a significant difference between 1 h and 10 h after SAP induction (p < 0.05). In the AP process, Cpn60 protein expression showed transient elevation as well, and the increased protein expression occurred predominantly in affected, but not totally destroyed, pancreatic acinar cells. As AP progressed, the pancreatic tissues were seriously damaged, leading to a decreased overall Cpn60 protein expression. Our results show a complex pattern of Cpn60 expression in pancreatic tissues of SAP rats, and the causality between the damage of pancreatic tissues and the decrease of Cpn60 level needs to be investigated further.
Collapse
Affiliation(s)
- Xue-Li Li
- Institute of Digestive Disease, Medical School of Tongji University, 1239 Si Ping Road, Shanghai, 200092 People’s Republic of China
| | - Kun Li
- Institute of Digestive Disease, Medical School of Tongji University, 1239 Si Ping Road, Shanghai, 200092 People’s Republic of China
| | - Yong-Yu Li
- Institute of Digestive Disease, Medical School of Tongji University, 1239 Si Ping Road, Shanghai, 200092 People’s Republic of China
| | - Yan Feng
- Institute of Digestive Disease, Medical School of Tongji University, 1239 Si Ping Road, Shanghai, 200092 People’s Republic of China
| | - Qian Gong
- Institute of Digestive Disease, Medical School of Tongji University, 1239 Si Ping Road, Shanghai, 200092 People’s Republic of China
| | - Yan-Na Li
- Institute of Digestive Disease, Medical School of Tongji University, 1239 Si Ping Road, Shanghai, 200092 People’s Republic of China
| | - Xue-Jin Li
- Institute of Digestive Disease, Medical School of Tongji University, 1239 Si Ping Road, Shanghai, 200092 People’s Republic of China
| | - Chang-Jie Chen
- Institute of Digestive Disease, Medical School of Tongji University, 1239 Si Ping Road, Shanghai, 200092 People’s Republic of China
| |
Collapse
|
116
|
Haak JL, Buettner GR, Spitz DR, Kregel KC. Aging augments mitochondrial susceptibility to heat stress. Am J Physiol Regul Integr Comp Physiol 2009; 296:R812-20. [PMID: 19144753 DOI: 10.1152/ajpregu.90708.2008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pathophysiology of aging is accompanied by a decline in tolerance to environmental stress. While mitochondria are primary suspects in the etiology of aging, little is known about their ability to tolerate perturbations to homeostasis in older organisms. To investigate the role of mitochondria in the increased susceptibility to heat stress that accompanies aging, young and old Fischer 344 rats underwent a heat stress protocol known to elicit exaggerated cellular damage with aging. At either 2 or 24 h after heat stress, livers were removed from animals, and hepatic mitochondria were isolated. Electron microscopy revealed extensive morphological damage to mitochondria from young and, to a greater extent, old rats after heat stress. There was also a significant loss of cytochrome c from old, but not young, mitochondria and a persistent increase in 4-hydroxynonenal-modified proteins in old vs. young mitochondria exposed to heat stress. Electron paramagnetic resonance measurements of superoxide indicate greater superoxide production from mitochondria of old compared with young animals and suggest that mitochondrial integrity was altered during heat stress. The mitochondrial stress response, which functions to correct stress-induced damage to mitochondrial proteins, was also blunted in old rats. Delayed and reduced levels of heat shock protein 60 (Hsp60), the main inducible mitochondrial stress protein, were observed in old compared with young mitochondria after heat stress. Additionally, the amount of Hsp10 protein increased in young, but not old, rat liver mitochondria after hyperthermic challenge. Taken together, these data suggest that mitochondria in old animals are more vulnerable to incurring and less able to repair oxidative damage that occurs in response to a physiologically relevant heat stress.
Collapse
Affiliation(s)
- Jodie L Haak
- Dept. of Integrative Physiology, The Univ. of Iowa, Iowa City, 52242, USA
| | | | | | | |
Collapse
|
117
|
Feng J, Xie H, Meany DL, Thompson LV, Arriaga EA, Griffin TJ. Quantitative proteomic profiling of muscle type-dependent and age-dependent protein carbonylation in rat skeletal muscle mitochondria. J Gerontol A Biol Sci Med Sci 2008; 63:1137-52. [PMID: 19038828 DOI: 10.1093/gerona/63.11.1137] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Carbonylation is a highly prevalent protein modification in skeletal muscle mitochondria, possibly contributing to its functional decline with age. Using quantitative proteomics, we identified mitochondrial proteins susceptible to carbonylation in a muscle type (slow- vs fast-twitch)-dependent and age-dependent manner from Fischer 344 rat skeletal muscle. Fast-twitch muscle contained twice as many carbonylated mitochondrial proteins than did slow-twitch muscle, with 22 proteins showing significant changes in carbonylation state with age, the majority of these increasing in their amount of carbonylation. Ingenuity pathway analysis revealed that these proteins belong to functional classes and pathways known to be impaired in muscle aging, including cellular function and maintenance, fatty acid metabolism, and citrate cycle. Although our studies do not conclusively link protein carbonylation to these functional changes in aging muscle, they provide a unique catalogue of promising protein targets deserving further investigation because of their potential role in aging muscle decline.
Collapse
Affiliation(s)
- Juan Feng
- University of Minnesota, 321 Church St. SE, 6-155 Jackson Hall, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
118
|
Bettaieb A, Averill-Bates DA. Thermotolerance induced at a fever temperature of 40 °C protects cells against hyperthermia-induced apoptosis mediated by death receptor signalling. Biochem Cell Biol 2008; 86:521-38. [DOI: 10.1139/o08-136] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mild temperatures such as 40 °C are physiological and occur during fevers. This study determines whether mild thermotolerance induced at 40 °C can protect HeLa cells against activation of the death receptor pathway of apoptosis by lethal hyperthermia (42–45 °C). Protein expression of heat shock proteins (Hsps) 27, 32, 60, 72, 90, and 110 was increased in thermotolerant cells (3 h, 40°C). Lethal hyperthermia (42–43 °C) caused cell death by apoptosis, but at 45 °C there was a switch to necrosis. Mild thermotolerance protected cells against heat-induced apoptosis (Annexin V labelling). Hyperthermia induced apoptosis through generation of reactive oxygen species (ROS) and death receptor signalling. The antioxidant polyethylene glycol-catalase abrogated increased expression of Fas death ligand and caspase-8 activation in response to lethal hyperthermia (42–43 °C). Mild thermotolerance attenuated the heat induction of ROS and FasL, which were initiating events in death receptor activation and signalling. Mild thermotolerance inhibited early events in hyperthermia-induced death receptor apoptosis such as Fas-associated death domain (FADD) translocation to membranes, caspase-8 activation, and tBid translocation to mitochondria. Downstream events in apoptosis such as caspase-3 activation, cleavage of PARP and ICAD, and chromatin condensation were also diminished in thermotolerant cells. It is important to improve knowledge about adaptive responses induced by exposure to mild stresses, such as fever temperatures, which can protect cells against subsequent exposure to lethal stress.
Collapse
Affiliation(s)
- Ahmed Bettaieb
- Département des sciences biologiques, Université du Québec à Montréal, CP 8888, Succursale Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Diana A. Averill-Bates
- Département des sciences biologiques, Université du Québec à Montréal, CP 8888, Succursale Centre-Ville, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
119
|
López-Sánchez LM, Corrales FJ, González R, Ferrín G, Muñoz-Castañeda JR, Ranchal I, Hidalgo AB, Briceño J, López-Cillero P, Gómez MA, De La Mata M, Muntané J, Rodríguez-Ariza A. Alteration of S-nitrosothiol homeostasis and targets for protein S-nitrosation in human hepatocytes. Proteomics 2008; 8:4709-4720. [PMID: 18850629 DOI: 10.1002/pmic.200700313] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Indexed: 11/07/2022]
Abstract
The liver is one organ clearly influenced by nitric oxide (NO), and acute and chronic exposure to this substance has been associated with distinct patterns of liver disease. Disruption or deregulation of S-nitrosothiol (SNO) signalling leads to impairment of cellular function and disease, and this study was aimed to identify potential targets for protein S-nitrosation during alteration of SNO homeostasis in human hepatocytes. Cells were treated with S-nitroso-L-cysteine (CSNO), an effective physiological nitrosothiol for delivering NO bioactivity to cells. Treatment with CSNO augmented the levels of S-nitrosoproteins detected both by chemiluminescence and the biotin switch method. CSNO treatment also increased S-nitrosoglutathione reductase (GSNOR) activity that returned SNO content to basal levels. This increased enzymatic activity was related to augmented levels of ADH-5 mRNA, the gene encoding for GSNOR in humans. In addition, the treatment with the SNO also increased cell death. Twenty S-nitrosoproteins were identified in CSNO-treated hepatocytes, including mitochondrial aldehyde dehydrogenase, protein disulphide isomerase, Hsp60, GRP75 and Raf kinase inhibitor protein. The identification in the S-nitrosatable proteome of proteins involved in metabolism, maintenance of cellular homeostasis and signalling points to the relevance of protein S-nitrosation to the physiology and pathophysiology of human hepatocytes.
Collapse
|
120
|
Jiang P, Siggers JLA, Ngai HHY, Sit WH, Sangild PT, Wan JMF. The small intestine proteome is changed in preterm pigs developing necrotizing enterocolitis in response to formula feeding. J Nutr 2008; 138:1895-901. [PMID: 18806098 DOI: 10.1093/jn/138.10.1895] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency in newborn premature infants. Clinical studies show increased incidence of NEC in premature infants with enteral formula feeding; however, pathogenesis remains unclear. To identify the NEC-related proteins for molecular mechanisms, we applied proteomics analysis to characterize changes in the protein expression profile of newborn premature piglet intestines with NEC developed after enteral formula feeding for 24 h. Changes in protein expression were identified using 2-dimensional gel electrophoresis and peptide mass fingerprinting with MS as well as western blotting analysis. Nineteen differentially expressed proteins were identified and these have roles in oxidative stress, chaperone, signal transduction, protein folding and degradation, oxygen transport, signal transduction, and energy metabolism. Proteins with increased levels include manganese-containing superoxide dismutase and hemoglobin subunit and proteins with decreased expression include sorbitol dehydrogenase, mitochondrial aldehyde dehydrogenase 2, glucose-regulated protein 75, CRY protein, snail homolog 3, thyroid hormone-binding protein precursor, and DJ1 (Parkinson's disease 7) etc. The data provided novel mechanistic insights into the pathogenesis of NEC and the insults of a formulated diet to the premature gut.
Collapse
Affiliation(s)
- Pingping Jiang
- Division of Agricultural, Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Hong Kong S.A.R., P.R. China
| | | | | | | | | | | |
Collapse
|
121
|
Deocaris CC, Kaul SC, Wadhwa R. From proliferative to neurological role of an hsp70 stress chaperone, mortalin. Biogerontology 2008; 9:391-403. [PMID: 18770009 DOI: 10.1007/s10522-008-9174-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Accepted: 08/18/2008] [Indexed: 12/21/2022]
Abstract
Although the brain makes up approximately 2% of a person's body weight, it consumes more than 15% of total cardiac output and has a per capita caloric requirement of 10 times more than the rest of the body. Such continuous metabolic demand that supports the generation of action potentials in neuronal cells relies on the mitochondria, the main organelle for power generation. The phenomenon of mitochondrial biogenesis, although has long been a neglected theme in neurobiology, can be regarded as critical to brain physiology. The present review emphasizes the role of a key molecular player of mitochondrial biogenesis, the mortalin/mthsp70. Brain mortalin is discussed in relation to its aptitude to impact on mitochondrial function and homeostasis, to its interfacing energy metabolic functions with synaptic plasticity, and to its modulation of brain aging via the cellular senescence pathways. Recently, this chaperone has been implicated in Alzheimer's (AD) and Parkinson's (PD) diseases, with proteomic studies consistently identifying oxidatively-damaged mortalin as potential biomarker. Hence, it is possible that mitochondrial dysfunction coincides with the collapse in the mitochondrial chaperone network that aim not only to import, sort and maintain integrity of protein components within the mitochondria, but also to act as buffer to the molecular heterogeneity of damaged and aging mitochondrial proteins within a ROS-rich microenvironment. Inversely, it may also seem that vulnerability to mitochondrial dysfunction could be precipitated by malevolent (anti-chaperone) gain-of-function of a 'sick mortalin'.
Collapse
Affiliation(s)
- Custer C Deocaris
- Institute of Health and Sports Science, University of Tsukuba, Ibaraki, 305-8574, Japan
| | | | | |
Collapse
|
122
|
Calabrese V, Cornelius C, Mancuso C, Pennisi G, Calafato S, Bellia F, Bates TE, Giuffrida Stella AM, Schapira T, Dinkova Kostova AT, Rizzarelli E. Cellular stress response: a novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochem Res 2008; 33:2444-71. [PMID: 18629638 DOI: 10.1007/s11064-008-9775-9] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 06/09/2008] [Indexed: 12/30/2022]
Abstract
The predominant molecular symptom of aging is the accumulation of altered gene products. Moreover, several conditions including protein, lipid or glucose oxidation disrupt redox homeostasis and lead to accumulation of unfolded or misfolded proteins in the aging brain. Alzheimer's and Parkinson's diseases or Friedreich ataxia are neurological diseases sharing, as a common denominator, production of abnormal proteins, mitochondrial dysfunction and oxidative stress, which contribute to the pathogenesis of these so called "protein conformational diseases". The central nervous system has evolved the conserved mechanism of unfolded protein response to cope with the accumulation of misfolded proteins. As one of the main intracellular redox systems involved in neuroprotection, the vitagene system is emerging as a neurohormetic potential target for novel cytoprotective interventions. Vitagenes encode for cytoprotective heat shock proteins (Hsp) Hsp70 and heme oxygenase-1, as well as thioredoxin reductase and sirtuins. Nutritional studies show that ageing in animals can be significantly influenced by dietary restriction. Thus, the impact of dietary factors on health and longevity is an increasingly appreciated area of research. Reducing energy intake by controlled caloric restriction or intermittent fasting increases lifespan and protects various tissues against disease. Genetics has revealed that ageing may be controlled by changes in intracellular NAD/NADH ratio regulating sirtuin, a group of proteins linked to aging, metabolism and stress tolerance in several organisms. Recent findings suggest that several phytochemicals exhibit biphasic dose responses on cells with low doses activating signaling pathways that result in increased expression of vitagenes encoding survival proteins, as in the case of the Keap1/Nrf2/ARE pathway activated by curcumin and NAD/NADH-sirtuin-1 activated by resveratrol. Consistently, the neuroprotective roles of dietary antioxidants including curcumin, acetyl-L-carnitine and carnosine have been demonstrated through the activation of these redox-sensitive intracellular pathways. Although the notion that stress proteins are neuroprotective is broadly accepted, still much work needs to be done in order to associate neuroprotection with specific pattern of stress responses. In this review the importance of vitagenes in the cellular stress response and the potential use of dietary antioxidants in the prevention and treatment of neurodegenerative disorders is discussed.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Section of Biochemistry and Molecular Biology, Department of Chemistry, Faculty of Medicine, University of Catania, Viale Andrea Doria 6, 95100, Catania, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Martín B, Sanz R, Aragüés R, Oliva B, Sierra A. Functional Clustering of Metastasis Proteins Describes Plastic Adaptation Resources of Breast-Cancer Cells to New Microenvironments. J Proteome Res 2008; 7:3242-53. [DOI: 10.1021/pr800137w] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Berta Martín
- Centre d’Oncologia Molecular, IDIBELL, Hospital Duran i Reynals, CSUB, Gran Via s/n, Km 2.7, L’Hospitalet Ll, 08907, Spain, and Grup de Bioinformàtica Estructural (GRIB-IMIM), Universitat Pompeu Fabra, C/ Doctor Aiguader, 80 Barcelona 08003, Catalonia, Spain
| | - Rebeca Sanz
- Centre d’Oncologia Molecular, IDIBELL, Hospital Duran i Reynals, CSUB, Gran Via s/n, Km 2.7, L’Hospitalet Ll, 08907, Spain, and Grup de Bioinformàtica Estructural (GRIB-IMIM), Universitat Pompeu Fabra, C/ Doctor Aiguader, 80 Barcelona 08003, Catalonia, Spain
| | - Ramón Aragüés
- Centre d’Oncologia Molecular, IDIBELL, Hospital Duran i Reynals, CSUB, Gran Via s/n, Km 2.7, L’Hospitalet Ll, 08907, Spain, and Grup de Bioinformàtica Estructural (GRIB-IMIM), Universitat Pompeu Fabra, C/ Doctor Aiguader, 80 Barcelona 08003, Catalonia, Spain
| | - Baldo Oliva
- Centre d’Oncologia Molecular, IDIBELL, Hospital Duran i Reynals, CSUB, Gran Via s/n, Km 2.7, L’Hospitalet Ll, 08907, Spain, and Grup de Bioinformàtica Estructural (GRIB-IMIM), Universitat Pompeu Fabra, C/ Doctor Aiguader, 80 Barcelona 08003, Catalonia, Spain
| | - Angels Sierra
- Centre d’Oncologia Molecular, IDIBELL, Hospital Duran i Reynals, CSUB, Gran Via s/n, Km 2.7, L’Hospitalet Ll, 08907, Spain, and Grup de Bioinformàtica Estructural (GRIB-IMIM), Universitat Pompeu Fabra, C/ Doctor Aiguader, 80 Barcelona 08003, Catalonia, Spain
| |
Collapse
|
124
|
Fujita Y, Nakanishi T, Miyamoto Y, Hiramatsu M, Mabuchi H, Miyamoto A, Shimizu A, Takubo T, Tanigawa N. Proteomics-based identification of autoantibody against heat shock protein 70 as a diagnostic marker in esophageal squamous cell carcinoma. Cancer Lett 2008; 263:280-90. [PMID: 18334280 DOI: 10.1016/j.canlet.2008.01.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 12/25/2007] [Accepted: 01/03/2008] [Indexed: 02/06/2023]
Abstract
Detection of novel tumor-related antigens and autoantibodies in cancer patients is expected to facilitate the diagnosis of early-stage malignant tumor and establish effective new immunotherapies. The purpose of this study was to identify novel tumor antigens in an esophageal squamous cell carcinoma (ESCC) cell line (TE-2) and related autoantibodies in sera from patients with ESCC using a proteomics-based approach. TE-2 proteins were separated by two-dimensional polyacrylamide gel electrophoresis, followed by Western blot analysis in which sera from patients with ESCC, healthy controls and patients with other cancers were tested for primary antibodies. Positive spots were excised from silver-stained gels and analyzed by matrix-assisted laser disorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS). Sera from patients with ESCC yielded multiple spots, one of which was identified as heat shock protein 70 (Hsp70) by MALDI-TOF/TOF-MS. Concentrations of serum Hsp70 autoantibody were significantly higher for patients with ESCC (mean, 0.412+/-0.096 mg/ml) than for patients with gastric (0.236+/-0.112 mg/ml, P<0.001) or colon cancer (0.231+/-0.120 mg/ml, P<0.001) or healthy individuals (0.207+/-0.055 mg/ml, P<0.001) by enzyme-linked immunosorbent assay. We have identified an autoantibody against Hsp70 in ESCC patients. The proteomic approach implemented herein offers a powerful tool for identifying novel serum markers that may display clinical utility against cancer.
Collapse
Affiliation(s)
- Yoshihisa Fujita
- Department of General and Gastroenterological Surgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-city, Osaka 569-8686, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Ghosh JC, Dohi T, Kang BH, Altieri DC. Hsp60 Regulation of Tumor Cell Apoptosis. J Biol Chem 2008; 283:5188-94. [DOI: 10.1074/jbc.m705904200] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
126
|
Sanz R, Aragüés R, Stresing V, Martín B, Landemaine T, Oliva B, Driouch K, Lidereau R, Sierra A. Functional pathways shared by liver and lung metastases: a mitochondrial chaperone machine is up-regulated in soft-tissue breast cancer metastasis. Clin Exp Metastasis 2007; 24:673-83. [DOI: 10.1007/s10585-007-9124-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 10/12/2007] [Indexed: 12/19/2022]
|
127
|
Groebe K, Krause F, Kunstmann B, Unterluggauer H, Reifschneider NH, Scheckhuber CQ, Sastri C, Stegmann W, Wozny W, Schwall GP, Poznanović S, Dencher NA, Jansen-Dürr P, Osiewacz HD, Schrattenholz A. Differential proteomic profiling of mitochondria from Podospora anserina, rat and human reveals distinct patterns of age-related oxidative changes. Exp Gerontol 2007; 42:887-98. [PMID: 17689904 DOI: 10.1016/j.exger.2007.07.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 06/18/2007] [Accepted: 07/06/2007] [Indexed: 01/07/2023]
Abstract
According to the 'free radical theory of ageing', the generation and accumulation of reactive oxygen species are key events during ageing of biological systems. Mitochondria are a major source of ROS and prominent targets for ROS-induced damage. Whereas mitochondrial DNA and membranes were shown to be oxidatively modified with ageing, mitochondrial protein oxidation is not well understood. The purpose of this study was an unbiased investigation of age-related changes in mitochondrial proteins and the molecular pathways by which ROS-induced protein oxidation may disturb cellular homeostasis. In a differential comparison of mitochondrial proteins from young and senescent strains of the fungal ageing model Podospora anserina, from brains of young (5 months) vs. older rats (17 and 31 months), and human cells, with normal and chemically accelerated in vitro ageing, we found certain redundant posttranslationally modified isoforms of subunits of ATP synthase affected across all three species. These appear to represent general susceptible hot spot targets for oxidative chemical changes of proteins accumulating during ageing, and potentially initiating various age-related pathologies and processes. This type of modification is discussed using the example of SAM-dependent O-methyltransferase from P. anserina (PaMTH1), which surprisingly was found to be enriched in mitochondrial preparations of senescent cultures.
Collapse
|
128
|
Yaguchi T, Aida S, Kaul SC, Wadhwa R. Involvement of mortalin in cellular senescence from the perspective of its mitochondrial import, chaperone, and oxidative stress management functions. Ann N Y Acad Sci 2007; 1100:306-11. [PMID: 17460192 DOI: 10.1196/annals.1395.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mortalin (mtHSP70/GRP75) is a heat uninducible member of hsp70 family of proteins. Some of the established features of mortalin include its various subcellular sites, multiple binding partners, and differential subcellular distribution in normal and immortal cells. Overexpression of mortalin leads to extended life span in nematode and normal human cells. On the other hand, it serves as a major target for oxidation and was shown to be involved in old age pathologies including Parkinson's and Alzheimer's disease. Since mortalin interacts with many proteins, its modifications in response to stress and damage caused by intracellular oxidation are likely to generate pleiotropic effects. For example, (a) inefficient import of mitochondrial proteins by mortalin-Tim complexes may result into inefficient mitochondrial genesis, energy generation, and functional decline and (b) inefficient chaperoning of proteins can result into a garbage catastrophe.
Collapse
Affiliation(s)
- Tomoko Yaguchi
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305 8562, Japan.
| | | | | | | |
Collapse
|
129
|
Daugaard M, Rohde M, Jäättelä M. The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Lett 2007; 581:3702-10. [PMID: 17544402 DOI: 10.1016/j.febslet.2007.05.039] [Citation(s) in RCA: 820] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Revised: 05/14/2007] [Accepted: 05/14/2007] [Indexed: 12/12/2022]
Abstract
The human heat shock protein 70 (Hsp70) family contains at least eight homologous chaperone proteins. Endoplasmatic reticulum and mitochondria have their specific Hsp70 proteins, whereas the remaining six family members reside mainly in the cytosol and nucleus. The requirement for multiple highly homologous although different Hsp70 proteins is still far from clear, but their individual and tissue-specific expression suggests that they are assigned distinct biological tasks. This concept is supported by the fact that mice knockout for different Hsp70 genes display remarkably discrete phenotypes. Moreover, emerging data suggest that individual Hsp70 proteins can bring about non-overlapping and chaperone-independent functions essential for growth and survival of cancer cells. This review summarizes our present knowledge of the individual members of human Hsp70 family and elaborate on the functional differences between the cytosolic/nuclear representatives.
Collapse
Affiliation(s)
- Mads Daugaard
- Apoptosis Department and Centre for Genotoxic Stress Response, Institute of Cancer Biology, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | | | | |
Collapse
|
130
|
Kaul SC, Deocaris CC, Wadhwa R. Three faces of mortalin: a housekeeper, guardian and killer. Exp Gerontol 2006; 42:263-74. [PMID: 17188442 DOI: 10.1016/j.exger.2006.10.020] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 10/05/2006] [Accepted: 10/24/2006] [Indexed: 11/23/2022]
Abstract
Mortalin was first cloned as a mortality factor that existed in the cytoplasmic fractions of normal, but not in immortal, mouse fibroblasts. A decade of efforts have expanded its persona from a house keeper protein involved in mitochondrial import, energy generation and chaperoning of misfolded proteins, to a guardian of stress that has multiple binding partners and to a killer protein that contributes to carcinogenesis on one hand and to old age disorders on the other. Being proved to be an attractive target for cancer therapy, it also warrants attention from the perspectives of management of old age diseases and healthy aging.
Collapse
Affiliation(s)
- Sunil C Kaul
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305 8562, Japan
| | | | | |
Collapse
|
131
|
Bowes T, Singh B, Gupta RS. Subcellular localization of fumarase in mammalian cells and tissues. Histochem Cell Biol 2006; 127:335-46. [PMID: 17111171 DOI: 10.1007/s00418-006-0249-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2006] [Indexed: 11/29/2022]
Abstract
Fumarase, a mitochondrial matrix protein, is previously indicated to be present in substantial amounts in the cytosol as well. However, recent studies show that newly synthesized human fumarase is efficiently imported into mitochondria with no detectable amount in the cytosol. To clarify its subcellular localization, the subcellular distribution of fumarase in mammalian cells/tissues was examined by a number of different methods. Cell fractionation using either a mitochondria fraction kit or extraction with low concentrations of digitonin, detected no fumarase in a 100,000 g supernatant fraction. Immunofluorescence labeling with an affinity-purified antibody to fumarase and an antibody to the mitochondrial Hsp60 protein showed identical labeling pattern with labeling seen mainly in mitochondria. Detailed studies were performed using high-resolution immunogold electron microscopy to determine the subcellular localization of fumarase in rat tissues, embedded in LR White resin. In thin sections from kidney, liver, heart, adrenal gland and anterior pituitary, strong and specific labeling due to fumarase antibody was only detected in mitochondria. However, in the pancreatic acinar cells, in addition to mitochondria, highly significant labeling was also observed in the zymogen granules and endoplasmic reticulum. The observed labeling in all cases was completely abolished upon omission of the primary antibody indicating that it was specific. In a western blot of purified zymogen granules, a fumarase-antibody cross-reactive protein of the same molecular mass as seen in the mitochondria was present. These results provide evidence that fumarase in mammalian cells/tissues is mainly localized in mitochondria and significant amounts of this protein are not present in the cytosol. However, these studies also reveal that in certain tissues, in addition to mitochondria, this protein is also present at specific extramitochondrial sites. Although the cellular function of fumarase at these extramitochondrial locations is not known, the appearance/localization of fumarase outside mitochondria may help explain how mutations in this mitochondrial protein can give rise to a number of different types of cancers.
Collapse
Affiliation(s)
- Timothy Bowes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada, L8N 3Z5
| | | | | |
Collapse
|