101
|
Vantaggiato C, Castelli M, Giovarelli M, Orso G, Bassi MT, Clementi E, De Palma C. The Fine Tuning of Drp1-Dependent Mitochondrial Remodeling and Autophagy Controls Neuronal Differentiation. Front Cell Neurosci 2019; 13:120. [PMID: 31019453 PMCID: PMC6458285 DOI: 10.3389/fncel.2019.00120] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/11/2019] [Indexed: 12/22/2022] Open
Abstract
Mitochondria play a critical role in neuronal function and neurodegenerative disorders, including Alzheimer’s, Parkinson’s and Huntington diseases and amyotrophic lateral sclerosis, that show mitochondrial dysfunctions associated with excessive fission and increased levels of the fission protein dynamin-related protein 1 (Drp1). Our data demonstrate that Drp1 regulates the transcriptional program induced by retinoic acid (RA), leading to neuronal differentiation. When Drp1 was overexpressed, mitochondria underwent remodeling but failed to elongate and this enhanced autophagy and apoptosis. When Drp1 was blocked during differentiation by overexpressing the dominant negative form or was silenced, mitochondria maintained the same elongated shape, without remodeling and this increased cell death. The enhanced apoptosis, observed with both fragmented or elongated mitochondria, was associated with increased induction of unfolded protein response (UPR) and ER-associated degradation (ERAD) processes that finally affect neuronal differentiation. These findings suggest that physiological fission and mitochondrial remodeling, associated with early autophagy induction are essential for neuronal differentiation. We thus reveal the importance of mitochondrial changes to generate viable neurons and highlight that, rather than multiple parallel events, mitochondrial changes, autophagy and apoptosis proceed in a stepwise fashion during neuronal differentiation affecting the nuclear transcriptional program.
Collapse
Affiliation(s)
- Chiara Vantaggiato
- Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Lecco, Italy
| | - Marianna Castelli
- Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Lecco, Italy
| | - Matteo Giovarelli
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "Luigi Sacco", "Luigi Sacco" University Hospital, Università di Milano, Milan, Italy
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Milan, Italy
| | - Maria Teresa Bassi
- Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Lecco, Italy
| | - Emilio Clementi
- Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Lecco, Italy.,Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "Luigi Sacco", "Luigi Sacco" University Hospital, Università di Milano, Milan, Italy
| | - Clara De Palma
- Unit of Clinical Pharmacology, "Luigi Sacco" University Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| |
Collapse
|
102
|
Abstract
Mitochondria are ubiquitous and multi-functional organelles involved in diverse metabolic processes, namely energy production and biomolecule synthesis. The intracellular mitochondrial morphology and distribution change dynamically, which reflect the metabolic state of a given cell type. A dramatic change of the mitochondrial dynamics has been observed in early development that led to further investigations on the relationship between mitochondria and the process of development. A significant developmental process to focus on, in this review, is a differentiation of neural progenitor cells into neurons. Information on how mitochondria- regulated cellular energetics is linked to neuronal development will be discussed, followed by functions of mitochondria and associated diseases in neuronal development. Lastly, the potential use of mitochondrial features in analyzing various neurodevelopmental diseases will be addressed. [BMB Reports 2018; 51(11): 549-556].
Collapse
Affiliation(s)
- Geurim Son
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| | - Jinju Han
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
103
|
Vanhauwaert R, Bharat V, Wang X. Surveillance and transportation of mitochondria in neurons. Curr Opin Neurobiol 2019; 57:87-93. [PMID: 30784981 DOI: 10.1016/j.conb.2019.01.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
Neurons need to allocate and sustain mitochondria to provide adequate energy and sufficient Ca2+-buffering capacity in each sub specialization of their extensive arborizations. Damaged mitochondria, which are highly deleterious to the neuron, must be rapidly repaired or eliminated, even when they are left at terminals extremely far away from the soma. The unique shape of neurons complicates the tasks of both transporting and clearing mitochondria. Errors in the underlying molecular regulations cause detrimental neurodegeneration. Here, we review the molecular machinery and regulatory mechanisms employed to transport, distribute, and clear mitochondria in neurons, and how these fundamental regulations are compromised in neurological disorders.
Collapse
Affiliation(s)
- Roeland Vanhauwaert
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, United States
| | - Vinita Bharat
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, United States
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, United States.
| |
Collapse
|
104
|
Chronic Energy Depletion due to Iron Deficiency Impairs Dendritic Mitochondrial Motility during Hippocampal Neuron Development. J Neurosci 2018; 39:802-813. [PMID: 30523068 DOI: 10.1523/jneurosci.1504-18.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/25/2018] [Accepted: 11/25/2018] [Indexed: 11/21/2022] Open
Abstract
During development, neurons require highly integrated metabolic machinery to meet the large energy demands of growth, differentiation, and synaptic activity within their complex cellular architecture. Dendrites/axons require anterograde trafficking of mitochondria for local ATP synthesis to support these processes. Acute energy depletion impairs mitochondrial dynamics, but how chronic energy insufficiency affects mitochondrial trafficking and quality control during neuronal development is unknown. Because iron deficiency impairs mitochondrial respiration/ATP production, we treated mixed-sex embryonic mouse hippocampal neuron cultures with the iron chelator deferoxamine (DFO) to model chronic energetic insufficiency and its effects on mitochondrial dynamics during neuronal development. At 11 days in vitro (DIV), DFO reduced average mitochondrial speed by increasing the pause frequency of individual dendritic mitochondria. Time spent in anterograde motion was reduced; retrograde motion was spared. The average size of moving mitochondria was reduced, and the expression of fusion and fission genes was altered, indicating impaired mitochondrial quality control. Mitochondrial density was not altered, suggesting that respiratory capacity and not location is the key factor for mitochondrial regulation of early dendritic growth/branching. At 18 DIV, the overall density of mitochondria within terminal dendritic branches was reduced in DFO-treated neurons, which may contribute to the long-term deficits in connectivity and synaptic function following early-life iron deficiency. The study provides new insights into the cross-regulation between energy production and dendritic mitochondrial dynamics during neuronal development and may be particularly relevant to neuropsychiatric and neurodegenerative diseases, many of which are characterized by impaired brain iron homeostasis, energy metabolism and mitochondrial trafficking.SIGNIFICANCE STATEMENT This study uses a primary neuronal culture model of iron deficiency to address a gap in understanding of how dendritic mitochondrial dynamics are regulated when energy depletion occurs during a critical period of neuronal maturation. At the beginning of peak dendritic growth/branching, iron deficiency reduces mitochondrial speed through increased pause frequency, decreases mitochondrial size, and alters fusion/fission gene expression. At this stage, mitochondrial density in terminal dendrites is not altered, suggesting that total mitochondrial oxidative capacity and not trafficking is the main mechanism underlying dendritic complexity deficits in iron-deficient neurons. Our findings provide foundational support for future studies exploring the mechanistic role of developmental mitochondrial dysfunction in neurodevelopmental, psychiatric, and neurodegenerative disorders characterized by mitochondrial energy production and trafficking deficits.
Collapse
|
105
|
Singh M, Denny H, Smith C, Granados J, Renden R. Presynaptic loss of dynamin-related protein 1 impairs synaptic vesicle release and recycling at the mouse calyx of Held. J Physiol 2018; 596:6263-6287. [PMID: 30285293 DOI: 10.1113/jp276424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS This study characterizes the mechanisms underlying defects in synaptic transmission when dynamin-related protein 1 (DRP1) is genetically eliminated. Viral-mediated knockout of DRP1 from the presynaptic terminal at the mouse calyx of Held increased initial release probability, reduced the size of the synaptic vesicle recycling pool and impaired synaptic vesicle recycling. Transmission defects could be partially restored by increasing the intracellular calcium buffering capacity with EGTA-AM, implying close coupling of Ca2+ channels to synaptic vesicles was compromised. Acute restoration of ATP to physiological levels in the presynaptic terminal did not reverse the synaptic defects. Loss of DRP1 impairs mitochondrial morphology in the presynaptic terminal, which in turn seems to arrest synaptic maturation. ABSTRACT Impaired mitochondrial biogenesis and function is implicated in many neurodegenerative diseases, and likely affects synaptic neurotransmission prior to cellular loss. Dynamin-related protein 1 (DRP1) is essential for mitochondrial fission and is disrupted in neurodegenerative disease. In this study, we used the mouse calyx of Held synapse as a model to investigate the impact of presynaptic DRP1 loss on synaptic vesicle (SV) recycling and sustained neurotransmission. In vivo viral expression of Cre recombinase in ventral cochlear neurons of floxed-DRP1 mice generated a presynaptic-specific DRP1 knockout (DRP1-preKO), where the innervated postsynaptic cell was unperturbed. Confocal reconstruction of the calyx terminal suggested SV clusters and mitochondrial content were disrupted, and presynaptic terminal volume was decreased. Using postsynaptic voltage-clamp recordings, we found that DRP1-preKO synapses had larger evoked responses at low frequency stimulation. DRP1-preKO synapses also had profoundly altered short-term plasticity, due to defects in SV recycling. Readily releasable pool size, estimated with high-frequency trains, was dramatically reduced in DRP1-preKO synapses, suggesting an important role for DRP1 in maintenance of release-competent SVs at the presynaptic terminal. Presynaptic Ca2+ accumulation in the terminal was also enhanced in DRP1-preKO synapses. Synaptic transmission defects could be partially rescued with EGTA-AM, indicating close coupling of Ca2+ channels to SV distance normally found in mature terminals may be compromised by DRP1-preKO. Using paired recordings of the presynaptic and postsynaptic compartments, recycling defects could not be reversed by acute dialysis of ATP into the calyx terminals. Taken together, our results implicate a requirement for mitochondrial fission to coordinate postnatal synapse maturation.
Collapse
Affiliation(s)
- Mahendra Singh
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Henry Denny
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Christina Smith
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Jorge Granados
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Robert Renden
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| |
Collapse
|
106
|
Son G, Han J. Roles of mitochondria in neuronal development. BMB Rep 2018; 51:549-556. [PMID: 30269744 PMCID: PMC6283025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Indexed: 04/06/2024] Open
Abstract
Mitochondria are ubiquitous and multi-functional organelles involved in diverse metabolic processes, namely energy production and biomolecule synthesis. The intracellular mitochondrial morphology and distribution change dynamically, which reflect the metabolic state of a given cell type. A dramatic change of the mitochondrial dynamics has been observed in early development that led to further investigations on the relationship between mitochondria and the process of development. A significant developmental process to focus on, in this review, is a differentiation of neural progenitor cells into neurons. Information on how mitochondria- regulated cellular energetics is linked to neuronal development will be discussed, followed by functions of mitochondria and associated diseases in neuronal development. Lastly, the potential use of mitochondrial features in analyzing various neurodevelopmental diseases will be addressed. [BMB Reports 2018; 51(11): 549-556].
Collapse
Affiliation(s)
- Geurim Son
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Jinju Han
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141,
Korea
| |
Collapse
|
107
|
Mogre SS, Koslover EF. Multimodal transport and dispersion of organelles in narrow tubular cells. Phys Rev E 2018; 97:042402. [PMID: 29758750 DOI: 10.1103/physreve.97.042402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Indexed: 11/07/2022]
Abstract
Intracellular components explore the cytoplasm via active motor-driven transport in conjunction with passive diffusion. We model the motion of organelles in narrow tubular cells using analytical techniques and numerical simulations to study the efficiency of different transport modes in achieving various cellular objectives. Our model describes length and time scales over which each transport mode dominates organelle motion, along with various metrics to quantify exploration of intracellular space. For organelles that search for a specific target, we obtain the average capture time for given transport parameters and show that diffusion and active motion contribute to target capture in the biologically relevant regime. Because many organelles have been found to tether to microtubules when not engaged in active motion, we study the interplay between immobilization due to tethering and increased probability of active transport. We derive parameter-dependent conditions under which tethering enhances long-range transport and improves the target capture time. These results shed light on the optimization of intracellular transport machinery and provide experimentally testable predictions for the effects of transport regulation mechanisms such as tethering.
Collapse
Affiliation(s)
- Saurabh S Mogre
- Department of Physics, University of California San Diego, La Jolla, California 92093, USA
| | - Elena F Koslover
- Department of Physics, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
108
|
Arrázola MS, Andraini T, Szelechowski M, Mouledous L, Arnauné-Pelloquin L, Davezac N, Belenguer P, Rampon C, Miquel MC. Mitochondria in Developmental and Adult Neurogenesis. Neurotox Res 2018; 36:257-267. [PMID: 30215161 DOI: 10.1007/s12640-018-9942-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 07/18/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
Generation of new neurons is a tightly regulated process that involves several intrinsic and extrinsic factors. Among them, a metabolic switch from glycolysis to oxidative phosphorylation, together with mitochondrial remodeling, has emerged as crucial actors of neurogenesis. However, although accumulating data raise the importance of mitochondrial morphology and function in neural stem cell proliferation and differentiation during development, information regarding the contribution of mitochondria to adult neurogenesis processes remains limited. In the present review, we discuss recent evidence covering the importance of mitochondrial morphology, function, and energy metabolism in the regulation of neuronal development and adult neurogenesis, and their impact on memory processes.
Collapse
Affiliation(s)
- Macarena S Arrázola
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France. .,Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.
| | - Trinovita Andraini
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.,Department of Physiology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Marion Szelechowski
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lionel Mouledous
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laetitia Arnauné-Pelloquin
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Noélie Davezac
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pascale Belenguer
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Christine Miquel
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
109
|
Cesarini E, Cerioni L, Canonico B, Di Sario G, Guidarelli A, Lattanzi D, Savelli D, Guescini M, Nasoni MG, Bigini N, Cuppini R, Stocchi V, Ambrogini P, Papa S, Luchetti F. Melatonin protects hippocampal HT22 cells from the effects of serum deprivation specifically targeting mitochondria. PLoS One 2018; 13:e0203001. [PMID: 30157259 PMCID: PMC6114848 DOI: 10.1371/journal.pone.0203001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023] Open
Abstract
Neurons contain a high number of mitochondria, these neuronal cells produce elevated levels of oxidative stress and live for a long time without proliferation; therefore, mitochondrial homeostasis is crucial to their health. Investigations have recently focused on mitochondrial dynamics revealing the ability of these organelles to change their distribution and morphology. It is known that mitochondrial fission is necessary for the transmission of mitochondria to daughter cells during mitosis and mitochondrial fragmentation has been used as an indicator of cell death and mitochondrial dysfunction. Oxidative stress is a trigger able to induce changes in the mitochondrial network. The aim of the present study was to determine the effects of melatonin on the mitochondrial network in HT22 serum-deprived cells. Our results showed that serum deprivation increased reactive oxygen species (ROS) content, promoted the activation of plasma membrane voltage-dependent anion channels (VDACs) and affected the expression of pDRP1 and DRP1 fission proteins. Moreover, parallel increases in apoptotic and autophagic features were found. Damaged and dysfunctional mitochondria are deleterious to the cell; hence, the degradation of such mitochondria through mitophagy is crucial to cell survival. Our results suggest that melatonin supplementation reduces cell death and restores mitochondrial function through the regulation of autophagy.
Collapse
Affiliation(s)
- Erica Cesarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Liana Cerioni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Gianna Di Sario
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Davide Lattanzi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - David Savelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Guescini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Maria Gemma Nasoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Noemi Bigini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Riccardo Cuppini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Vilberto Stocchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Patrizia Ambrogini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
- * E-mail:
| |
Collapse
|
110
|
Verma M, Wills Z, Chu CT. Excitatory Dendritic Mitochondrial Calcium Toxicity: Implications for Parkinson's and Other Neurodegenerative Diseases. Front Neurosci 2018; 12:523. [PMID: 30116173 PMCID: PMC6083050 DOI: 10.3389/fnins.2018.00523] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/12/2018] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of calcium homeostasis has been linked to multiple neurological diseases. In addition to excitotoxic neuronal cell death observed following stroke, a growing number of studies implicate excess excitatory neuronal activity in chronic neurodegenerative diseases. Mitochondria function to rapidly sequester large influxes of cytosolic calcium through the activity of the mitochondrial calcium uniporter (MCU) complex, followed by more gradual release via calcium antiporters, such as NCLX. Increased cytosolic calcium levels almost invariably result in increased mitochondrial calcium uptake. While this response may augment mitochondrial respiration, limiting classic excitotoxic injury in the short term, recent studies employing live calcium imaging and molecular manipulation of calcium transporter activities suggest that mitochondrial calcium overload plays a key role in Parkinson’s disease (PD), Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), and related dementias [PD with dementia (PDD), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD)]. Herein, we review the literature on increased excitatory input, mitochondrial calcium dysregulation, and the transcriptional or post-translational regulation of mitochondrial calcium transport proteins, with an emphasis on the PD-linked kinases LRRK2 and PINK1. The impact on pathological dendrite remodeling and neuroprotective effects of manipulating MCU, NCLX, and LETM1 are reviewed. We propose that shortening and simplification of the dendritic arbor observed in neurodegenerative diseases occur through a process of excitatory mitochondrial toxicity (EMT), which triggers mitophagy and perisynaptic mitochondrial depletion, mechanisms that are distinct from classic excitotoxicity.
Collapse
Affiliation(s)
- Manish Verma
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Zachary Wills
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Charleen T Chu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Pittsburgh Institute for Neurodegenerative Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Protein Conformational Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
111
|
Hung CHL, Cheng SSY, Cheung YT, Wuwongse S, Zhang NQ, Ho YS, Lee SMY, Chang RCC. A reciprocal relationship between reactive oxygen species and mitochondrial dynamics in neurodegeneration. Redox Biol 2018; 14:7-19. [PMID: 28837882 PMCID: PMC5567977 DOI: 10.1016/j.redox.2017.08.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 01/31/2023] Open
Abstract
Mitochondrial fragmentation due to fission/fusion imbalance has often been linked to mitochondrial dysfunction and apoptosis in neurodegeneration. Conventionally, it is believed that once mitochondrial morphology shifts away from its physiological tubular form, mitochondria become defective and downstream apoptotic signaling pathways are triggered. However, our study shows that beta-amyloid (Aβ) induces morphological changes in mitochondria where they become granular-shaped and are distinct from fragmented mitochondria in terms of both morphology and functions. Accumulation of mitochondrial reactive oxygen species triggers granular mitochondria formation, while mitoTEMPO (a mitochondria-targeted superoxide scavenger) restores tubular mitochondrial morphology within Aβ-treated neurons. Interestingly, modulations of mitochondria fission and fusion by genetic and pharmacological tools attenuated not only the induction of granular mitochondria, but also mitochondrial superoxide levels in Aβ-treated neurons. Our study shows a reciprocal relationship between mitochondrial dynamics and reactive oxygen species and provides a new potential therapeutic target at early stages of neurodegenerative disease pathogenesis.
Collapse
Affiliation(s)
- Clara Hiu-Ling Hung
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Sally Shuk-Yee Cheng
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuen-Ting Cheung
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Suthicha Wuwongse
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Natalie Qishan Zhang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuen-Shan Ho
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | | | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
112
|
Nitric Oxide and Mitochondrial Function in Neurological Diseases. Neuroscience 2018; 376:48-71. [DOI: 10.1016/j.neuroscience.2018.02.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/20/2018] [Accepted: 02/09/2018] [Indexed: 12/17/2022]
|
113
|
Reeve AK, Grady JP, Cosgrave EM, Bennison E, Chen C, Hepplewhite PD, Morris CM. Mitochondrial dysfunction within the synapses of substantia nigra neurons in Parkinson's disease. NPJ Parkinsons Dis 2018; 4:9. [PMID: 29872690 PMCID: PMC5979968 DOI: 10.1038/s41531-018-0044-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial dysfunction within the cell bodies of substantia nigra neurons is prominent in both ageing and Parkinson's disease. The loss of dopaminergic substantia nigra neurons in Parkinson's disease is associated with loss of synapses within the striatum, and this may precede neuronal loss. We investigated whether mitochondrial changes previously reported within substantia nigra neurons were also seen within the synapses and axons of these neurons. Using high resolution quantitative fluorescence immunohistochemistry we determined mitochondrial density within remaining dopaminergic axons and synapses, and quantified deficiencies of mitochondrial Complex I and Complex IV in these compartments. In Parkinson's disease mitochondrial populations were increased within axons and the mitochondria expressed higher levels of key electron transport chain proteins compared to controls. Furthermore we observed synapses which were devoid of mitochondrial proteins in all groups, with a significant reduction in the number of these 'empty' synapses in Parkinson's disease. This suggests that neurons may attempt to maintain mitochondrial populations within remaining axons and synapses in Parkinson's disease to facilitate continued neural transmission in the presence of neurodegeneration, potentially increasing oxidative damage. This compensatory event may represent a novel target for future restorative therapies in Parkinson's disease.
Collapse
Affiliation(s)
- Amy K. Reeve
- MRC/BBSRC Centre for Ageing and Vitality and Wellcome Centre for Mitochondrial Research, Institute for Neuroscience, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - John P. Grady
- MRC/BBSRC Centre for Ageing and Vitality and Wellcome Centre for Mitochondrial Research, Institute for Neuroscience, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
- Kinghorn Centre for Clinical Genomics, Garvan Institute, 384 Victoria Street, Darlinghurst, Sydney NSW 2010 Australia
| | - Eve M. Cosgrave
- MRC/BBSRC Centre for Ageing and Vitality and Wellcome Centre for Mitochondrial Research, Institute for Neuroscience, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Emma Bennison
- MRC/BBSRC Centre for Ageing and Vitality and Wellcome Centre for Mitochondrial Research, Institute for Neuroscience, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Chun Chen
- MRC/BBSRC Centre for Ageing and Vitality and Wellcome Centre for Mitochondrial Research, Institute for Neuroscience, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Philippa D. Hepplewhite
- MRC/BBSRC Centre for Ageing and Vitality and Wellcome Centre for Mitochondrial Research, Institute for Neuroscience, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
- Newcastle Brain Tissue Resource, Newcastle University, Edwardson Building, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PJ UK
- Department of Cellular Pathology, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP UK
| | - Christopher M. Morris
- Newcastle Brain Tissue Resource, Newcastle University, Edwardson Building, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PJ UK
- Medical Toxicology Centre, Wolfson Building, Claremont Place, Newcastle upon Tyne, NE2 4AA UK
| |
Collapse
|
114
|
Mangold CA, Yao PJ, Du M, Freeman WM, Benkovic SJ, Szpara ML. Expression of the purine biosynthetic enzyme phosphoribosyl formylglycinamidine synthase in neurons. J Neurochem 2018; 144:723-735. [PMID: 29337348 DOI: 10.1111/jnc.14304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 12/16/2022]
Abstract
Purines are metabolic building blocks essential for all living organisms on earth. De novo purine biosynthesis occurs in the brain and appears to play important roles in neural development. Phosphoribosyl formylglycinamidine synthase (FGAMS, also known as PFAS or FGARAT), a core enzyme involved in the de novo synthesis of purines, may play alternative roles in viral pathogenesis. To date, no thorough investigation of the endogenous expression and localization of de novo purine biosynthetic enzymes has been conducted in human neurons or in virally infected cells. In this study, we characterized expression of FGAMS using multiple neuronal models. In differentiated human SH-SY5Y neuroblastoma cells, primary rat hippocampal neurons, and in whole-mouse brain sections, FGAMS immunoreactivity was distributed within the neuronal cytoplasm. FGAMS immunolabeling in vitro demonstrated extensive distribution throughout neuronal processes. To investigate potential changes in FGAMS expression and localization following viral infection, we infected cells with the human pathogen herpes simplex virus 1. In infected fibroblasts, FGAMS immunolabeling shifted from a diffuse cytoplasmic location to a mainly perinuclear localization by 12 h post-infection. In contrast, in infected neurons, FGAMS localization showed no discernable changes in the localization of FGAMS immunoreactivity. There were no changes in total FGAMS protein levels in either cell type. Together, these data provide insight into potential purine biosynthetic mechanisms utilized within neurons during homeostasis as well as viral infection. Cover Image for this Issue: doi: 10.1111/jnc.14169.
Collapse
Affiliation(s)
- Colleen A Mangold
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Pamela J Yao
- Laboratory of Neurosciences, National Institute of Aging/National Institute of Health, Baltimore, Maryland, USA
| | - Mei Du
- Department of Physiology, University of Oklahoma Health Sciences Center, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Willard M Freeman
- Department of Physiology, University of Oklahoma Health Sciences Center, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Stephen J Benkovic
- Department of Chemistry, and the Eberly College of Science, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Moriah L Szpara
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
115
|
Chen F, Danladi J, Ardalan M, Elfving B, Müller HK, Wegener G, Sanchez C, Nyengaard JR. A Critical Role of Mitochondria in BDNF-Associated Synaptic Plasticity After One-Week Vortioxetine Treatment. Int J Neuropsychopharmacol 2018; 21. [PMID: 29514282 PMCID: PMC6007239 DOI: 10.1093/ijnp/pyy022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Preclinical studies have indicated that antidepressant effect of vortioxetine involves increased synaptic plasticity and promotion of spine maturation. Mitochondria dysfunction may contribute to the pathophysiological basis of major depressive disorder. Taking into consideration that vortioxetine increases spine number and dendritic branching in hippocampus CA1 faster than fluoxetine, we hypothesize that new spines induced by vortioxetine can rapidly form functional synapses by mitochondrial support, accompanied by increased brain-derived neurotrophic factor signaling. METHODS Rats were treated for 1 week with vortioxetine or fluoxetine at pharmacologically relevant doses. Number of synapses and mitochondria in hippocampus CA1 were quantified by electron microscopy. Brain-derived neurotrophic factor protein levels were visualized with immunohistochemistry. Gene and protein expression of synapse and mitochondria-related markers were investigated with real-time quantitative polymerase chain reaction and immunoblotting. RESULTS Vortioxetine increased number of synapses and mitochondria significantly, whereas fluoxetine had no effect after 1-week dosing. BDNF levels in hippocampus DG and CA1 were significantly higher after vortioxetine treatment. Gene expression levels of Rac1 after vortioxetine treatment were significantly increased. There was a tendency towards increased gene expression levels of Drp1 and protein levels of Rac1. However, both gene and protein levels of c-Fos were significantly decreased. Furthermore, there was a significant positive correlation between BDNF levels and mitochondria and synapse numbers. CONCLUSION Our results imply that mitochondria play a critical role in synaptic plasticity accompanied by increased BDNF levels. Rapid changes in BDNF levels and synaptic/mitochondria plasticity of hippocampus following vortioxetine compared with fluoxetine may be ascribed to vortioxetine's modulation of serotonin receptors.
Collapse
Affiliation(s)
- Fenghua Chen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Correspondence: Fenghua Chen, Department of Clinical Medicine - Translational Neuropsychiatry Unit, Skovagervej 2, 8240 Risskov, Denmark ()
| | - Jibrin Danladi
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Maryam Ardalan
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
- Department of Clinical Medicine - Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Heidi K Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
- Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
- AUGUST Centre, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Connie Sanchez
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
- Alkermes, Biotechnology, Waltham, MA
| | - Jens R Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| |
Collapse
|
116
|
Abstract
Alzheimer's disease (AD) is characterized by brain deposition of amyloid plaques and tau neurofibrillary tangles along with steady cognitive decline. Synaptic damage, an early pathological event, correlates strongly with cognitive deficits and memory loss. Mitochondria are essential organelles for synaptic function. Neurons utilize specialized mechanisms to drive mitochondrial trafficking to synapses in which mitochondria buffer Ca2+ and serve as local energy sources by supplying ATP to sustain neurotransmitter release. Mitochondrial abnormalities are one of the earliest and prominent features in AD patient brains. Amyloid-β (Aβ) and tau both trigger mitochondrial alterations. Accumulating evidence suggests that mitochondrial perturbation acts as a key factor that is involved in synaptic failure and degeneration in AD. The importance of mitochondria in supporting synaptic function has made them a promising target of new therapeutic strategies for AD. Here, we review the molecular mechanisms regulating mitochondrial function at synapses, highlight recent findings on the disturbance of mitochondrial dynamics and transport in AD, and discuss how these alterations impact synaptic vesicle release and thus contribute to synaptic pathology associated with AD.
Collapse
|
117
|
Cackovic J, Gutierrez-Luke S, Call GB, Juba A, O'Brien S, Jun CH, Buhlman LM. Vulnerable Parkin Loss-of-Function Drosophila Dopaminergic Neurons Have Advanced Mitochondrial Aging, Mitochondrial Network Loss and Transiently Reduced Autophagosome Recruitment. Front Cell Neurosci 2018; 12:39. [PMID: 29497364 PMCID: PMC5818410 DOI: 10.3389/fncel.2018.00039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/31/2018] [Indexed: 12/20/2022] Open
Abstract
Selective degeneration of substantia nigra dopaminergic (DA) neurons is a hallmark pathology of familial Parkinson's disease (PD). While the mechanism of degeneration is elusive, abnormalities in mitochondrial function and turnover are strongly implicated. An Autosomal Recessive-Juvenile Parkinsonism (AR-JP) Drosophila melanogaster model exhibits DA neurodegeneration as well as aberrant mitochondrial dynamics and function. Disruptions in mitophagy have been observed in parkin loss-of-function models, and changes in mitochondrial respiration have been reported in patient fibroblasts. Whether loss of parkin causes selective DA neurodegeneration in vivo as a result of lost or decreased mitophagy is unknown. This study employs the use of fluorescent constructs expressed in Drosophila DA neurons that are functionally homologous to those of the mammalian substantia nigra. We provide evidence that degenerating DA neurons in parkin loss-of-function mutant flies have advanced mitochondrial aging, and that mitochondrial networks are fragmented and contain swollen organelles. We also found that mitophagy initiation is decreased in park (Drosophila parkin/PARK2 ortholog) homozygous mutants, but autophagosome formation is unaffected, and mitochondrial network volumes are decreased. As the fly ages, autophagosome recruitment becomes similar to control, while mitochondria continue to show signs of damage, and climbing deficits persist. Interestingly, aberrant mitochondrial morphology, aging and mitophagy initiation were not observed in DA neurons that do not degenerate. Our results suggest that parkin is important for mitochondrial homeostasis in vulnerable Drosophila DA neurons, and that loss of parkin-mediated mitophagy may play a role in degeneration of relevant DA neurons or motor deficits in this model.
Collapse
Affiliation(s)
- Juliana Cackovic
- Arizona College of Medicine, Midwestern University, Glendale, AZ, United States
| | | | - Gerald B Call
- Arizona College of Medicine, Midwestern University, Glendale, AZ, United States
| | - Amber Juba
- Department of Biomedical Sciences, College of Health Sciences, Midwestern University, Glendale, AZ, United States
| | - Stephanie O'Brien
- Arizona College of Medicine, Midwestern University, Glendale, AZ, United States
| | - Charles H Jun
- Arizona College of Medicine, Midwestern University, Glendale, AZ, United States
| | - Lori M Buhlman
- Department of Biomedical Sciences, College of Health Sciences, Midwestern University, Glendale, AZ, United States
| |
Collapse
|
118
|
Jha NK, Jha SK, Sharma R, Kumar D, Ambasta RK, Kumar P. Hypoxia-Induced Signaling Activation in Neurodegenerative Diseases: Targets for New Therapeutic Strategies. J Alzheimers Dis 2018; 62:15-38. [DOI: 10.3233/jad-170589] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Niraj Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| | - Saurabh Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| | - Renu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| | - Dhiraj Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| | - Rashmi K. Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| |
Collapse
|
119
|
Rozzi SJ, Avdoshina V, Fields JA, Mocchetti I. Human immunodeficiency virus Tat impairs mitochondrial fission in neurons. Cell Death Discov 2018. [PMID: 29531805 PMCID: PMC5841280 DOI: 10.1038/s41420-017-0013-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV) infection of the central nervous system promotes neuronal injury that culminates in HIV-associated neurocognitive disorders. Viral proteins, including transactivator of transcription (Tat), have emerged as leading candidates to explain HIV-mediated neurotoxicity, though the mechanisms remain unclear. Tat transgenic mice or neurons exposed to Tat, which show neuronal loss, exhibit smaller mitochondria as compared to controls. To provide an experimental clue as to which mechanisms are used by Tat to promote changes in mitochondrial morphology, rat cortical neurons were exposed to Tat (100 nM) for various time points. Within 30 min, Tat caused a significant reduction in mitochondrial membrane potential, a process that is regulated by fusion and fission. To further assess whether Tat changes these processes, fission and fusion proteins dynamin-related protein 1 (Drp1) and mitofusin-2 (Mfn2), respectively, were measured. We found that Drp1 levels increased beginning at 2 h after Tat exposure while Mfn2 remained unchanged. Moreover, increased levels of an active form of Drp1 were found to be present following Tat exposure. Furthermore, Drp1 and calcineurin inhibitors prevented Tat-mediated effects on mitochondria size. These findings indicate that mitochondrial fission is likely the leading factor in Tat-mediated alterations to mitochondrial morphology. This disruption in mitochondria homeostasis may contribute to the instability of the organelle and ultimately neuronal cell death following Tat exposure.
Collapse
Affiliation(s)
- Summer J Rozzi
- 1Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC USA.,2Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, Washington, DC USA
| | - Valeria Avdoshina
- 2Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, Washington, DC USA
| | - Jerel A Fields
- 3Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Italo Mocchetti
- 1Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC USA.,2Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, Washington, DC USA
| |
Collapse
|
120
|
Rybnicek J, Samtleben S, Herrera-Cruz MS, Simmen T. Expression of a T39N mutant Rab32 protein arrests mitochondria movement within neurites of differentiated SH-SY5Y cells. Small GTPases 2018; 11:289-292. [PMID: 29261068 DOI: 10.1080/21541248.2017.1411312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
We have shown that multiple sclerosis (MS) and endoplasmic reticulum (ER) stress induce Rab32, an ER/mitochondria-localized small GTPase. High levels of both dominant-active (Q85L) or dominant-inactive (T39N) Rab32 are toxic to neurons. While Rab32Q85L interacts with its effector Drp1 to promote mitochondria fission, it is unclear how Rab32T39N could result as toxic to neurons. Given the perinuclear clustering of mitochondria observed upon transfection of inactive Rab32, we hypothesized Rab32T39N could stall mitochondria within neurites. The movement of mitochondria depends on kinesin-binding Miro proteins. High cytosolic [Ca2+] is bound by an EF hand motif within Miro proteins, resulting in mitochondrial arrest. Consistent with increased cytosolic [Ca2+], expression of Rab32T39N arrests mitochondria movement within neurites.
Collapse
Affiliation(s)
- Jonas Rybnicek
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta , Edmonton, Alberta, Canada, T6R0K8
| | - Samira Samtleben
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta , Edmonton, Alberta, Canada, T6R0K8
| | - Maria Sol Herrera-Cruz
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta , Edmonton, Alberta, Canada, T6R0K8
| | - Thomas Simmen
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta , Edmonton, Alberta, Canada, T6R0K8
| |
Collapse
|
121
|
Yan SF, Akhter F, Sosunov AA, Yan SS. Identification and Characterization of Amyloid-β Accumulation in Synaptic Mitochondria. Methods Mol Biol 2018; 1779:415-433. [PMID: 29886547 DOI: 10.1007/978-1-4939-7816-8_25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Mitochondrial and synaptic dysfunction is an early pathological feature of Alzheimer's disease (AD). Accumulation of amyloid beta-peptide (Aβ) in mitochondria, particularly in synaptic mitochondria, potentiates and amplifies synaptic injury and disruption of synaptic transmission, leading to synaptic dysfunction and ultimately to synaptic failure. Thus, determination of the presence and levels of Aβ in synaptic mitochondria associated with amyloid pathology is important for studying mitochondrial amyloid pathology. Here, we present a detailed methodology for the isolation of synaptic mitochondria from brain tissues and the determination of Aβ levels in the isolated mitochondria as well as ultrastructural localization of synaptic mitochondrial Aβ. These methods have been used successfully for the identification and characterization of Aβ accumulation in synaptic mitochondria from mouse brains derived from transgenic AD mouse model. Additionally, we comprehensively discuss the sample preparation, experimental details, our unique procedures, optimization of parameters, and troubleshooting.
Collapse
Affiliation(s)
- Shi Fang Yan
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA.
| | - Firoz Akhter
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | | | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
122
|
Terron A, Bal-Price A, Paini A, Monnet-Tschudi F, Bennekou SH, Leist M, Schildknecht S. An adverse outcome pathway for parkinsonian motor deficits associated with mitochondrial complex I inhibition. Arch Toxicol 2018; 92:41-82. [PMID: 29209747 PMCID: PMC5773657 DOI: 10.1007/s00204-017-2133-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/22/2017] [Indexed: 12/21/2022]
Abstract
Epidemiological studies have observed an association between pesticide exposure and the development of Parkinson's disease, but have not established causality. The concept of an adverse outcome pathway (AOP) has been developed as a framework for the organization of available information linking the modulation of a molecular target [molecular initiating event (MIE)], via a sequence of essential biological key events (KEs), with an adverse outcome (AO). Here, we present an AOP covering the toxicological pathways that link the binding of an inhibitor to mitochondrial complex I (i.e., the MIE) with the onset of parkinsonian motor deficits (i.e., the AO). This AOP was developed according to the Organisation for Economic Co-operation and Development guidelines and uploaded to the AOP database. The KEs linking complex I inhibition to parkinsonian motor deficits are mitochondrial dysfunction, impaired proteostasis, neuroinflammation, and the degeneration of dopaminergic neurons of the substantia nigra. These KEs, by convention, were linearly organized. However, there was also evidence of additional feed-forward connections and shortcuts between the KEs, possibly depending on the intensity of the insult and the model system applied. The present AOP demonstrates mechanistic plausibility for epidemiological observations on a relationship between pesticide exposure and an elevated risk for Parkinson's disease development.
Collapse
Affiliation(s)
| | | | - Alicia Paini
- European Commission Joint Research Centre, Ispra, Italy
| | | | | | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstr. 10, PO Box M657, 78457, Konstanz, Germany
| | - Stefan Schildknecht
- In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstr. 10, PO Box M657, 78457, Konstanz, Germany.
| |
Collapse
|
123
|
Du F, Yu Q, Yan S, Hu G, Lue LF, Walker DG, Wu L, Yan SF, Tieu K, Yan SS. PINK1 signalling rescues amyloid pathology and mitochondrial dysfunction in Alzheimer's disease. Brain 2017; 140:3233-3251. [PMID: 29077793 PMCID: PMC5841141 DOI: 10.1093/brain/awx258] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 06/08/2017] [Accepted: 08/11/2017] [Indexed: 01/11/2023] Open
Abstract
Mitochondrial dysfunction and synaptic damage are early pathological features of the Alzheimer's disease-affected brain. Memory impairment in Alzheimer's disease is a manifestation of brain pathologies such as accumulation of amyloid-β peptide and mitochondrial damage. The underlying pathogenic mechanisms and effective disease-modifying therapies for Alzheimer's disease remain elusive. Here, we demonstrate for the first time that decreased PTEN-induced putative kinase 1 (PINK1) expression is associated with Alzheimer's disease pathology. Restoring neuronal PINK1 function strikingly reduces amyloid-β levels, amyloid-associated pathology, oxidative stress, as well as mitochondrial and synaptic dysfunction. In contrast, PINK1-deficient mAPP mice augmented cerebral amyloid-β accumulation, mitochondrial abnormalities, impairments in learning and memory, as well as synaptic plasticity at an earlier age than mAPP mice. Notably, gene therapy-mediated PINK1 overexpression promotes the clearance of damaged mitochondria by augmenting autophagy signalling via activation of autophagy receptors (OPTN and NDP52), thereby alleviating amyloid-β-induced loss of synapses and cognitive decline in Alzheimer's disease mice. Loss of PINK1 activity or blockade of PINK1-mediated signalling (OPTN or NDP52) fails to reverse amyloid-β-induced detrimental effects. Our findings highlight a novel mechanism by which PINK1-dependent signalling promotes the rescue of amyloid pathology and amyloid-β-mediated mitochondrial and synaptic dysfunctions in a manner requiring activation of autophagy receptor OPTN or NDP52. Thus, activation of PINK1 may represent a new therapeutic avenue for combating Alzheimer's disease.
Collapse
Affiliation(s)
- Fang Du
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, 66047, USA
| | - Qing Yu
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, 66047, USA
| | - Shijun Yan
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, 66047, USA
| | - Gang Hu
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, 66047, USA
| | - Lih-Fen Lue
- Arizona State University, Tempe, AZ85281, USA
| | | | - Long Wu
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, 66047, USA
| | - Shi Fang Yan
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, 66047, USA
| | - Kim Tieu
- Department of Environmental and Occupational Health, Florida International University, Miami, FL, 33199, USA
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, 66047, USA
| |
Collapse
|
124
|
Lee M, Lee EY, Lai GH, Kennedy NW, Posey AE, Xian W, Ferguson AL, Hill RB, Wong GCL. Molecular Motor Dnm1 Synergistically Induces Membrane Curvature To Facilitate Mitochondrial Fission. ACS CENTRAL SCIENCE 2017; 3:1156-1167. [PMID: 29202017 PMCID: PMC5704292 DOI: 10.1021/acscentsci.7b00338] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Indexed: 05/30/2023]
Abstract
Dnm1 and Fis1 are prototypical proteins that regulate yeast mitochondrial morphology by controlling fission, the dysregulation of which can result in developmental disorders and neurodegenerative diseases in humans. Loss of Dnm1 blocks the formation of fission complexes and leads to elongated mitochondria in the form of interconnected networks, while overproduction of Dnm1 results in excessive mitochondrial fragmentation. In the current model, Dnm1 is essentially a GTP hydrolysis-driven molecular motor that self-assembles into ring-like oligomeric structures that encircle and pinch the outer mitochondrial membrane at sites of fission. In this work, we use machine learning and synchrotron small-angle X-ray scattering (SAXS) to investigate whether the motor Dnm1 can synergistically facilitate mitochondrial fission by membrane remodeling. A support vector machine (SVM)-based classifier trained to detect sequences with membrane-restructuring activity identifies a helical Dnm1 domain capable of generating negative Gaussian curvature (NGC), the type of saddle-shaped local surface curvature found on scission necks during fission events. Furthermore, this domain is highly conserved in Dnm1 homologues with fission activity. Synchrotron SAXS measurements reveal that Dnm1 restructures membranes into phases rich in NGC, and is capable of inducing a fission neck with a diameter of 12.6 nm. Through in silico mutational analysis, we find that the helical Dnm1 domain is locally optimized for membrane curvature generation, and phylogenetic analysis suggests that dynamin superfamily proteins that are close relatives of human dynamin Dyn1 have evolved the capacity to restructure membranes via the induction of curvature mitochondrial fission. In addition, we observe that Fis1, an adaptor protein, is able to inhibit the pro-fission membrane activity of Dnm1, which points to the antagonistic roles of the two proteins in the regulation of mitochondrial fission.
Collapse
Affiliation(s)
- Michelle
W. Lee
- Department
of Bioengineering, Department of Chemistry & Biochemistry, and California NanoSystems
Institute, University of California, Los
Angeles, Los Angeles, California 90095, United States
| | - Ernest Y. Lee
- Department
of Bioengineering, Department of Chemistry & Biochemistry, and California NanoSystems
Institute, University of California, Los
Angeles, Los Angeles, California 90095, United States
| | - Ghee Hwee Lai
- Department
of Bioengineering, Department of Chemistry & Biochemistry, and California NanoSystems
Institute, University of California, Los
Angeles, Los Angeles, California 90095, United States
| | - Nolan W. Kennedy
- Department
of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Ammon E. Posey
- Department
of Biomedical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United
States
| | - Wujing Xian
- Department
of Bioengineering, Department of Chemistry & Biochemistry, and California NanoSystems
Institute, University of California, Los
Angeles, Los Angeles, California 90095, United States
| | - Andrew L. Ferguson
- Department of Materials Science
and Engineering and Department of Chemical and Biomolecular
Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - R. Blake Hill
- Department
of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Gerard C. L. Wong
- Department
of Bioengineering, Department of Chemistry & Biochemistry, and California NanoSystems
Institute, University of California, Los
Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
125
|
Jackson JG, Robinson MB. Regulation of mitochondrial dynamics in astrocytes: Mechanisms, consequences, and unknowns. Glia 2017; 66:1213-1234. [PMID: 29098734 DOI: 10.1002/glia.23252] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/20/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022]
Abstract
Astrocytes are the major glial cell in the central nervous system. These polarized cells possess numerous processes that ensheath the vasculature and contact synapses. Astrocytes play important roles in synaptic signaling, neurotransmitter synthesis and recycling, control of nutrient uptake, and control of local blood flow. Many of these processes depend on local metabolism and/or energy utilization. While astrocytes respond to increases in neuronal activity and metabolic demand by upregulating glycolysis and glycogenolysis, astrocytes also possess significant capacity for oxidative (mitochondrial) metabolism. Mitochondria mediate energy supply and metabolism, cellular survival, ionic homeostasis, and proliferation. These organelles are dynamic structures undergoing extensive fission and fusion, directed movement along cytoskeletal tracts, and degradation. While many of the mechanisms underlying the dynamics of these organelles and their physiologic roles have been characterized in neurons and other cells, the roles that mitochondrial dynamics play in glial physiology is less well understood. Recent work from several laboratories has demonstrated that mitochondria are present within the fine processes of astrocytes, that their movement is regulated, and that they contribute to local Ca2+ signaling within the astrocyte. They likely play a role in local ATP production and metabolism, particularly that of glutamate. Here we will review these and other findings describing the mechanism by which mitochondrial dynamics are regulated in astrocytes, how mitochondrial dynamics might influence astrocyte and brain metabolism, and draw parallels to mitochondrial dynamics in neurons. Additionally, we present new analyses of the size, distribution, and dynamics of mitochondria in astrocytes performed using in vivo using 2-photon microscopy.
Collapse
Affiliation(s)
- Joshua G Jackson
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, 19104.,Departments of Pediatrics, University of Pennsylvania, Philadelphia, PA, 19104
| | - Michael B Robinson
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, 19104.,Departments of Pediatrics, University of Pennsylvania, Philadelphia, PA, 19104.,Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
126
|
Kulbe JR, Hall ED. Chronic traumatic encephalopathy-integration of canonical traumatic brain injury secondary injury mechanisms with tau pathology. Prog Neurobiol 2017; 158:15-44. [PMID: 28851546 PMCID: PMC5671903 DOI: 10.1016/j.pneurobio.2017.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/09/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022]
Abstract
In recent years, a new neurodegenerative tauopathy labeled Chronic Traumatic Encephalopathy (CTE), has been identified that is believed to be primarily a sequela of repeated mild traumatic brain injury (TBI), often referred to as concussion, that occurs in athletes participating in contact sports (e.g. boxing, American football, Australian football, rugby, soccer, ice hockey) or in military combatants, especially after blast-induced injuries. Since the identification of CTE, and its neuropathological finding of deposits of hyperphosphorylated tau protein, mechanistic attention has been on lumping the disorder together with various other non-traumatic neurodegenerative tauopathies. Indeed, brains from suspected CTE cases that have come to autopsy have been confirmed to have deposits of hyperphosphorylated tau in locations that make its anatomical distribution distinct for other tauopathies. The fact that these individuals experienced repetitive TBI episodes during their athletic or military careers suggests that the secondary injury mechanisms that have been extensively characterized in acute TBI preclinical models, and in TBI patients, including glutamate excitotoxicity, intracellular calcium overload, mitochondrial dysfunction, free radical-induced oxidative damage and neuroinflammation, may contribute to the brain damage associated with CTE. Thus, the current review begins with an in depth analysis of what is known about the tau protein and its functions and dysfunctions followed by a discussion of the major TBI secondary injury mechanisms, and how the latter have been shown to contribute to tau pathology. The value of this review is that it might lead to improved neuroprotective strategies for either prophylactically attenuating the development of CTE or slowing its progression.
Collapse
Affiliation(s)
- Jacqueline R Kulbe
- Spinal Cord & Brain Injury Research Center, University of Kentucky College of Medicine, United States; Department of Neuroscience, University of Kentucky College of Medicine, United States
| | - Edward D Hall
- Spinal Cord & Brain Injury Research Center, University of Kentucky College of Medicine, United States; Department of Neuroscience, University of Kentucky College of Medicine, United States.
| |
Collapse
|
127
|
Graham LC, Eaton SL, Brunton PJ, Atrih A, Smith C, Lamont DJ, Gillingwater TH, Pennetta G, Skehel P, Wishart TM. Proteomic profiling of neuronal mitochondria reveals modulators of synaptic architecture. Mol Neurodegener 2017; 12:77. [PMID: 29078798 PMCID: PMC5659037 DOI: 10.1186/s13024-017-0221-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 10/19/2017] [Indexed: 02/16/2023] Open
Abstract
Background Neurons are highly polarized cells consisting of three distinct functional domains: the cell body (and associated dendrites), the axon and the synapse. Previously, it was believed that the clinical phenotypes of neurodegenerative diseases were caused by the loss of entire neurons, however it has recently become apparent that these neuronal sub-compartments can degenerate independently, with synapses being particularly vulnerable to a broad range of stimuli. Whilst the properties governing the differential degenerative mechanisms remain unknown, mitochondria consistently appear in the literature, suggesting these somewhat promiscuous organelles may play a role in affecting synaptic stability. Synaptic and non-synaptic mitochondrial subpools are known to have different enzymatic properties (first demonstrated by Lai et al., 1977). However, the molecular basis underpinning these alterations, and their effects on morphology, has not been well documented. Methods The current study has employed electron microscopy, label-free proteomics and in silico analyses to characterize the morphological and biochemical properties of discrete sub-populations of mitochondria. The physiological relevance of these findings was confirmed in-vivo using a molecular genetic approach at the Drosophila neuromuscular junction. Results Here, we demonstrate that mitochondria at the synaptic terminal are indeed morphologically different to non-synaptic mitochondria, in both rodents and human patients. Furthermore, generation of proteomic profiles reveals distinct molecular fingerprints – highlighting that the properties of complex I may represent an important specialisation of synaptic mitochondria. Evidence also suggests that at least 30% of the mitochondrial enzymatic activity differences previously reported can be accounted for by protein abundance. Finally, we demonstrate that the molecular differences between discrete mitochondrial sub-populations are capable of selectively influencing synaptic morphology in-vivo. We offer several novel mitochondrial candidates that have the propensity to significantly alter the synaptic architecture in-vivo. Conclusions Our study demonstrates discrete proteomic profiles exist dependent upon mitochondrial subcellular localization and selective alteration of intrinsic mitochondrial proteins alters synaptic morphology in-vivo. Electronic supplementary material The online version of this article (10.1186/s13024-017-0221-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura C Graham
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Samantha L Eaton
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Paula J Brunton
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Abdelmadjid Atrih
- FingerPrints Proteomics Facility, College of Life Sciences, University of Dundee, Dundee, UK
| | - Colin Smith
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,Department of Academic Neuropathology, University of Edinburgh, CCBS, Chancellor's Building, Little France, Edinburgh, UK
| | - Douglas J Lamont
- FingerPrints Proteomics Facility, College of Life Sciences, University of Dundee, Dundee, UK
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, UK
| | - Giuseppa Pennetta
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, UK
| | - Paul Skehel
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, UK
| | - Thomas M Wishart
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK. .,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
128
|
Martín-Montañez E, Millon C, Boraldi F, Garcia-Guirado F, Pedraza C, Lara E, Santin LJ, Pavia J, Garcia-Fernandez M. IGF-II promotes neuroprotection and neuroplasticity recovery in a long-lasting model of oxidative damage induced by glucocorticoids. Redox Biol 2017; 13:69-81. [PMID: 28575743 PMCID: PMC5454142 DOI: 10.1016/j.redox.2017.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/23/2017] [Indexed: 11/05/2022] Open
Abstract
Insulin-like growth factor-II (IGF-II) is a naturally occurring hormone that exerts neurotrophic and neuroprotective properties in a wide range of neurodegenerative diseases and ageing. Accumulating evidence suggests that the effects of IGF-II in the brain may be explained by its binding to the specific transmembrane receptor, IGFII/M6P receptor (IGF-IIR). However, relatively little is known regarding the role of IGF-II through IGF-IIR in neuroprotection. Here, using adult cortical neuronal cultures, we investigated whether IGF-II exhibits long-term antioxidant effects and neuroprotection at the synaptic level after oxidative damage induced by high and transient levels of corticosterone (CORT). Furthermore, the involvement of the IGF-IIR was also studied to elucidate its role in the neuroprotective actions of IGF-II. We found that neurons treated with IGF-II after CORT incubation showed reduced oxidative stress damage and recovered antioxidant status (normalized total antioxidant status, lipid hydroperoxides and NAD(P) H:quinone oxidoreductase activity). Similar results were obtained when mitochondria function was analysed (cytochrome c oxidase activity, mitochondrial membrane potential and subcellular mitochondrial distribution). Furthermore, neuronal impairment and degeneration were also assessed (synaptophysin and PSD-95 expression, presynaptic function and FluoroJade B® stain). IGF-II was also able to recover the long-lasting neuronal cell damage. Finally, the effects of IGF-II were not blocked by an IGF-IR antagonist, suggesting the involvement of IGF-IIR. Altogether these results suggest that, in or model, IGF-II through IGF-IIR is able to revert the oxidative damage induced by CORT. In accordance with the neuroprotective role of the IGF-II/IGF-IIR reported in our study, pharmacotherapy approaches targeting this pathway may be useful for the treatment of diseases associated with cognitive deficits (i.e., neurodegenerative disorders, depression, etc.).
Collapse
Affiliation(s)
- E Martín-Montañez
- Department of Pharmacology and Paediatrics, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - C Millon
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - F Boraldi
- Department of Life Sciences, University of Modena e Reggio Emilia, Modena, Italy
| | - F Garcia-Guirado
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - C Pedraza
- Department of Psychobiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - E Lara
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - L J Santin
- Department of Psychobiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - J Pavia
- Department of Pharmacology and Paediatrics, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain.
| | - M Garcia-Fernandez
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain.
| |
Collapse
|
129
|
Yin Z, Valkenburg F, Hornix BE, Mantingh-Otter I, Zhou X, Mari M, Reggiori F, Van Dam D, Eggen BJ, De Deyn PP, Boddeke E. Progressive Motor Deficit is Mediated by the Denervation of Neuromuscular Junctions and Axonal Degeneration in Transgenic Mice Expressing Mutant (P301S) Tau Protein. J Alzheimers Dis 2017; 60:S41-S57. [DOI: 10.3233/jad-161206] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Zhuoran Yin
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Femke Valkenburg
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Betty E. Hornix
- Department of Neurobiology, Groningen Institute for Evolutionary Life Science, University of Groningen, Groningen, The Netherlands
| | - Ietje Mantingh-Otter
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Xingdong Zhou
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Muriel Mari
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bart J.L. Eggen
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter P. De Deyn
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Biobank, Institute Born-Bunge, Antwerp, Belgium
| | - Erik Boddeke
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
130
|
Roberts RC. Postmortem studies on mitochondria in schizophrenia. Schizophr Res 2017; 187:17-25. [PMID: 28189530 PMCID: PMC5550365 DOI: 10.1016/j.schres.2017.01.056] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 01/02/2023]
Abstract
The aim of this paper is to provide a brief review of mitochondrial structure as it relates to function and then present abnormalities in mitochondria in postmortem schizophrenia with a focus on ultrastructure. Function, morphology, fusion, fission, motility, ΔΨmem, ATP production, mitochondrial derived vesicles, and mitochondria-associated ER membranes will be briefly covered. Pathology in mitochondria has long been implicated in schizophrenia, as shown by genetic, proteomic, enzymatic and anatomical abnormalities. The cortex and basal ganglia will be reviewed. In the anterior cingulate cortex, the number of mitochondria per neuronal somata in layers 5/6 in schizophrenia is decreased by 43%. There are also fewer mitochondria in terminals forming axospinous synapses. In the caudate and putamen the number of mitochondria is abnormal in both glial cells and neurons in schizophrenia subjects, the extent of which depends on treatment, response and predominant lifetime symptoms. Treatment-responsive schizophrenia subjects had about a 40% decrease in the number of mitochondria per synapse in the caudate nucleus and putamen, while treatment resistant cases had normal values. A decrease in mitochondrial density in the neuropil distinguishes paranoid from undifferentiated schizophrenia. The appearance, size and density of mitochondria were normal in the nucleus accumbens. In the substantia nigra, COX subunits were affected in rostral regions. Mitochondrial hyperplasia occurs within axon terminals that synapse onto dopamine neurons, but mitochondria in dopamine neuronal somata are similar in size and number. In schizophrenia, mitochondria are differentially affected depending on the brain region, cell type, subcellular location, treatment status, treatment response and symptoms.
Collapse
Affiliation(s)
- Rosalinda C. Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294
| |
Collapse
|
131
|
Reversible Disruption of Neuronal Mitochondria by Ischemic and Traumatic Injury Revealed by Quantitative Two-Photon Imaging in the Neocortex of Anesthetized Mice. J Neurosci 2017; 37:333-348. [PMID: 28077713 DOI: 10.1523/jneurosci.1510-16.2016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 10/03/2016] [Accepted: 10/23/2016] [Indexed: 12/31/2022] Open
Abstract
Mitochondria play a variety of functional roles in cortical neurons, from metabolic support and neuroprotection to the release of cytokines that trigger apoptosis. In dendrites, mitochondrial structure is closely linked to their function, and fragmentation (fission) of the normally elongated mitochondria indicates loss of their function under pathological conditions, such as stroke and brain trauma. Using in vivo two-photon microscopy in mouse brain, we quantified mitochondrial fragmentation in a full spectrum of cortical injuries, ranging from severe to mild. Severe global ischemic injury was induced by bilateral common carotid artery occlusion, whereas severe focal stroke injury was induced by Rose Bengal photosensitization. The moderate and mild traumatic injury was inflicted by focal laser lesion and by mild photo-damage, respectively. Dendritic and mitochondrial structural changes were tracked longitudinally using transgenic mice expressing fluorescent proteins localized either in cytosol or in mitochondrial matrix. In response to severe injury, mitochondrial fragmentation developed in parallel with dendritic damage signified by dendritic beading. Reconstruction from serial section electron microscopy confirmed mitochondrial fragmentation. Unlike dendritic beading, fragmentation spread beyond the injury core in focal stroke and focal laser lesion models. In moderate and mild injury, mitochondrial fragmentation was reversible with full recovery of structural integrity after 1-2 weeks. The transient fragmentation observed in the mild photo-damage model was associated with changes in dendritic spine density without any signs of dendritic damage. Our findings indicate that alterations in neuronal mitochondria structure are very sensitive to the tissue damage and can be reversible in ischemic and traumatic injuries. SIGNIFICANCE STATEMENT During ischemic stroke or brain trauma, mitochondria can either protect neurons by supplying ATP and adsorbing excessive Ca2+, or kill neurons by releasing proapoptotic factors. Mitochondrial function is tightly linked to their morphology: healthy mitochondria are thin and long; dysfunctional mitochondria are thick (swollen) and short (fragmented). To date, fragmentation of mitochondria was studied either in dissociated cultured neurons or in brain slices, but not in the intact living brain. Using real-time in vivo two-photon microscopy, we quantified mitochondrial fragmentation during acute pathological conditions that mimic severe, moderate, and mild brain injury. We demonstrated that alterations in neuronal mitochondria structural integrity can be reversible in traumatic and ischemic injuries, highlighting mitochondria as a potential target for therapeutic interventions.
Collapse
|
132
|
Godoy JA, Zolezzi JM, Inestrosa NC. INT131 increases dendritic arborization and protects against Aβ toxicity by inducing mitochondrial changes in hippocampal neurons. Biochem Biophys Res Commun 2017; 490:955-962. [PMID: 28655613 DOI: 10.1016/j.bbrc.2017.06.146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/23/2017] [Indexed: 01/09/2023]
Abstract
In previous studies, we have demonstrated the beneficial effects of classic PPARγ agonists on neuroprotection against Aβ oligomer neurotoxicity in a double transgenic mouse model of Alzheimer' disease (AD). INT-131, a novel, non-thiazolidinedione compound that belongs to a new family of drugs, selective PPARγ modulators (SPPARMs), has provided an emerging opportunity for the treatment of type 2 diabetes mellitus and metabolic syndrome. However, its role in the central nervous system has not been studied. The aim of this study was to evaluate the putative neuroprotective role of INT131 in hippocampal neurons. We found that INT131 increased dendritic branching, promoted neuronal survival against Aβ amyloid, increased expression of PGC1-1α and modulated neuronal mitochondrial dynamics. Our results suggest that INT131, a drug that has been shown to be safe and effective in metabolic disorders, may constitute a new therapeutic alternative for AD.
Collapse
Affiliation(s)
- Juan A Godoy
- Center for Aging and Regeneration (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Juan M Zolezzi
- Center for Aging and Regeneration (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Center for Aging and Regeneration (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
133
|
Robinson BJ, Stanisavljevic B, Silverman MA, Scalettar BA. Stochastic Subcellular Organization of Dense-Core Vesicles Revealed by Point Pattern Analysis. Biophys J 2017; 111:852-863. [PMID: 27558728 DOI: 10.1016/j.bpj.2016.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/20/2016] [Accepted: 07/05/2016] [Indexed: 12/20/2022] Open
Abstract
Dense-core vesicles (DCVs) are regulated secretory organelles found in many types of neurons. In neurons of the hippocampus, their cargo includes proteins that mediate several pivotal processes, including differentiation and synaptic plasticity. Motivated by interest in DCV distribution and its impact on cargo action, we have used fluorescence microscopy and statistical analysis to develop a quantitative model of the subcellular organization of DCVs in hippocampal neurons that are spontaneously active (their most prevalent state). We also have tested the functionally motivated hypothesis that these organelles are synaptically enriched. Variance-to-mean ratio, frequency distribution, and Moran's autocorrelation analyses reveal that DCV distribution along shafts, and within synapses, follows Poisson statistics, establishing that stochastically dictated organization sustains cargo function. Occupancy in boutons exceeds that at nearby extrasynaptic axonal sites by approximately threefold, revealing significant local presynaptic enrichment. Widespread stochastic organization is consistent with the emerging functional importance of synaptically and extrasynaptically localized DCVs. Presynaptic enrichment is consistent with the established importance of protecting presynaptic sites from depletion of DCV cargo. These results enhance understanding of the link between DCV organization and mechanisms of cargo action, and they reinforce the emerging theme that randomness is a prevalent aspect of synaptic organization and composition.
Collapse
Affiliation(s)
- Benjamin J Robinson
- Department of Physics, Lewis & Clark College, Portland, Oregon; Department of Mathematics, Lewis & Clark College, Portland, Oregon
| | - Bogdan Stanisavljevic
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Michael A Silverman
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Bethe A Scalettar
- Department of Physics, Lewis & Clark College, Portland, Oregon; Program in Biochemistry and Molecular Biology, Lewis & Clark College, Portland, Oregon.
| |
Collapse
|
134
|
Goo MS, Sancho L, Slepak N, Boassa D, Deerinck TJ, Ellisman MH, Bloodgood BL, Patrick GN. Activity-dependent trafficking of lysosomes in dendrites and dendritic spines. J Cell Biol 2017. [PMID: 28630145 PMCID: PMC5551717 DOI: 10.1083/jcb.201704068] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
How are membrane proteins in distal dendrites degraded by the lysosome? Goo et al. provide the first evidence that lysosomes are positioned locally at dendritic spines in an activity-dependent manner to facilitate the remodeling of synapses through local degradation. In neurons, lysosomes, which degrade membrane and cytoplasmic components, are thought to primarily reside in somatic and axonal compartments, but there is little understanding of their distribution and function in dendrites. Here, we used conventional and two-photon imaging and electron microscopy to show that lysosomes traffic bidirectionally in dendrites and are present in dendritic spines. We find that lysosome inhibition alters their mobility and also decreases dendritic spine number. Furthermore, perturbing microtubule and actin cytoskeletal dynamics has an inverse relationship on the distribution and motility of lysosomes in dendrites. We also find trafficking of lysosomes is correlated with synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid–type glutamate receptors. Strikingly, lysosomes traffic to dendritic spines in an activity-dependent manner and can be recruited to individual spines in response to local activation. These data indicate the position of lysosomes is regulated by synaptic activity and thus plays an instructive role in the turnover of synaptic membrane proteins.
Collapse
Affiliation(s)
- Marisa S Goo
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Laura Sancho
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Natalia Slepak
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Daniela Boassa
- National Center for Microscopy and Imaging Research and Center for Research on Biological Systems, University of California, San Diego, La Jolla, CA
| | - Thomas J Deerinck
- National Center for Microscopy and Imaging Research and Center for Research on Biological Systems, University of California, San Diego, La Jolla, CA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research and Center for Research on Biological Systems, University of California, San Diego, La Jolla, CA.,Department of Neurosciences, University of California, San Diego, La Jolla, CA.,Salk Institute for Biological Studies, San Diego, CA
| | - Brenda L Bloodgood
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Gentry N Patrick
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| |
Collapse
|
135
|
Sheng ZH. The Interplay of Axonal Energy Homeostasis and Mitochondrial Trafficking and Anchoring. Trends Cell Biol 2017; 27:403-416. [PMID: 28228333 PMCID: PMC5440189 DOI: 10.1016/j.tcb.2017.01.005] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/15/2017] [Accepted: 01/20/2017] [Indexed: 01/02/2023]
Abstract
Mitochondria are key cellular power plants essential for neuronal growth, survival, function, and regeneration after injury. Given their unique morphological features, neurons face exceptional challenges in maintaining energy homeostasis at distal synapses and growth cones where energy is in high demand. Efficient regulation of mitochondrial trafficking and anchoring is critical for neurons to meet altered energy requirements. Mitochondrial dysfunction and impaired transport have been implicated in several major neurological disorders. Thus, research into energy-mediated regulation of mitochondrial recruitment and redistribution is an important emerging frontier. In this review, I discuss new insights into the mechanisms regulating mitochondrial trafficking and anchoring, and provide an updated overview of how mitochondrial motility maintains energy homeostasis in axons, thus contributing to neuronal growth, regeneration, and synaptic function.
Collapse
Affiliation(s)
- Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA.
| |
Collapse
|
136
|
Delmotte P, Zavaletta VA, Thompson MA, Prakash YS, Sieck GC. TNFα decreases mitochondrial movement in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2017; 313:L166-L176. [PMID: 28473328 DOI: 10.1152/ajplung.00538.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/04/2017] [Accepted: 04/26/2017] [Indexed: 02/02/2023] Open
Abstract
In airway smooth muscle (ASM) cells, excitation-contraction coupling is accomplished via a cascade of events that connect an elevation of cytosolic Ca2+ concentration ([Ca2+]cyt) with cross-bridge attachment and ATP-consuming mechanical work. Excitation-energy coupling is mediated by linkage of the elevation of [Ca2+]cyt to an increase in mitochondrial Ca2+ concentration, which in turn stimulates ATP production. Proximity of mitochondria to the sarcoplasmic reticulum (SR) and plasma membrane is thought to be an important mechanism to facilitate mitochondrial Ca2+ uptake. In this regard, mitochondrial movement in ASM cells may be key in establishing proximity. Mitochondria also move where ATP or Ca2+ buffering is needed. Mitochondrial movement is mediated through interactions with the Miro-Milton molecular complex, which couples mitochondria to kinesin motors at microtubules. We examined mitochondrial movement in human ASM cells and hypothesized that, at basal [Ca2+]cyt levels, mitochondrial movement is necessary to establish proximity of mitochondria to the SR and that, during the transient increase in [Ca2+]cyt induced by agonist stimulation, mitochondrial movement is reduced, thereby promoting transient mitochondrial Ca2+ uptake. We further hypothesized that airway inflammation disrupts basal mitochondrial movement via a reduction in Miro and Milton expression, thereby disrupting the ability of mitochondria to establish proximity to the SR and, thus, reducing transient mitochondrial Ca2+ uptake during agonist activation. The reduced proximity of mitochondria to the SR may affect establishment of transient "hot spots" of higher [Ca2+]cyt at the sites of SR Ca2+ release that are necessary for mitochondrial Ca2+ uptake via the mitochondrial Ca2+ uniporter.
Collapse
Affiliation(s)
- Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Vanessa A Zavaletta
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Michael A Thompson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Y S Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
137
|
Abstract
Mitochondria mediate energy metabolism, apoptosis, and aging, while mitochondrial disruption leads to age-related diseases that include age-related macular degeneration. Descriptions of mitochondrial morphology have been non-systematic and qualitative, due to lack of knowledge on the molecular mechanism of mitochondrial dynamics. The current study analyzed mitochondrial size, shape, and position quantitatively in retinal pigment epithelial cells (RPE) using a systematic computational model to suggest mitochondrial trafficking under oxidative environment. Our previous proteomic study suggested that prohibitin is a mitochondrial decay biomarker in the RPE. The current study examined the prohibitin interactome map using immunoprecipitation data to determine the indirect signaling on cytoskeletal changes and transcriptional regulation by prohibitin. Immunocytochemistry and immunoprecipitation demonstrated that there is a positive correlation between mitochondrial changes and altered filaments as well as prohibitin interactions with kinesin and unknown proteins in the RPE. Specific cytoskeletal and nuclear protein-binding mechanisms may exist to regulate prohibitin-mediated reactions as key elements, including vimentin and p53, to control apoptosis in mitochondria and the nucleus. Prohibitin may regulate mitochondrial trafficking through unknown proteins that include 110 kDa protein with myosin head domain and 88 kDa protein with cadherin repeat domain. Altered cytoskeleton may represent a mitochondrial decay signature in the RPE. The current study suggests that mitochondrial dynamics and cytoskeletal changes are critical for controlling mitochondrial distribution and function. Further, imbalance of retrograde versus anterograde mitochondrial trafficking may initiate the pathogenic reaction in adult-onset neurodegenerative diseases.
Collapse
|
138
|
Abstract
Mitochondria are among a cell's most vital organelles. They not only produce the majority of the cell's ATP but also play a key role in Ca2+ buffering and apoptotic signaling. While proper allocation of mitochondria is critical to all cells, it is particularly important for the highly polarized neurons. Because mitochondria are mainly synthesized in the soma, they must be transported long distances to be distributed to the far-flung reaches of the neuron-up to 1 m in the case of some human motor neurons. Furthermore, damaged mitochondria can be detrimental to neuronal health, causing oxidative stress and even cell death, therefore the retrograde transport of damaged mitochondria back to the soma for proper disposal, as well as the anterograde transport of fresh mitochondria from the soma to repair damage, are equally critical. Intriguingly, errors in mitochondrial transport have been increasingly implicated in neurological disorders. Here, we describe how to investigate mitochondrial transport in three complementary neuronal systems: cultured induced pluripotent stem cell-derived neurons, cultured rat hippocampal and cortical neurons, and Drosophila larval neurons in vivo. These models allow us to uncover the molecular and cellular mechanisms underlying transport issues that may occur under physiological or pathological conditions.
Collapse
|
139
|
Zhang H, Zhao C, Lv C, Liu X, Du S, Li Z, Wang Y, Zhang W. Geniposide Alleviates Amyloid-Induced Synaptic Injury by Protecting Axonal Mitochondrial Trafficking. Front Cell Neurosci 2017; 10:309. [PMID: 28179878 PMCID: PMC5263130 DOI: 10.3389/fncel.2016.00309] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 12/26/2016] [Indexed: 12/04/2022] Open
Abstract
Synaptic and mitochondrial pathologies are early events in the progression of Alzheimer's disease (AD). Normal axonal mitochondrial function and transport play crucial roles in maintaining synaptic function by producing high levels of adenosine triphosphate and buffering calcium. However, there can be abnormal axonal mitochondrial trafficking, distribution, and fragmentation, which are strongly correlated with amyloid-β (Aβ)-induced synaptic loss and dysfunction. The present study examined the neuroprotective effect of geniposide, a compound extracted from gardenia fruit in Aβ-treated neurons and an AD mouse model. Geniposide alleviated Aβ-induced axonal mitochondrial abnormalities by increasing axonal mitochondrial density and length and improving mitochondrial motility and trafficking in cultured hippocampal neurons, consequently ameliorating synaptic damage by reversing synaptic loss, addressing spine density and morphology abnormalities, and ameliorating the decreases in synapse-related proteins in neurons and APPswe/PS1dE9 mice. These findings provide new insights into the effects of geniposide administration on neuronal and synaptic functions under conditions of Aβ enrichment.
Collapse
Affiliation(s)
- Haijing Zhang
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal UniversityBeijing, China; College of Life Science, Beijing Normal UniversityBeijing, China; Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal UniversityBeijing, China
| | - Chunhui Zhao
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal UniversityBeijing, China; Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal UniversityBeijing, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Cui Lv
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal UniversityBeijing, China; Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal UniversityBeijing, China; Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Shandong Academy of ScienceJinan, China
| | - Xiaoli Liu
- College of Resources Science Technology, Beijing Normal UniversityBeijing, China; Engineering Research Center of Sanqi Biotechnology and PharmaceuticalKunming, China
| | - Shijing Du
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal UniversityBeijing, China; Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal UniversityBeijing, China; College of Resources Science Technology, Beijing Normal UniversityBeijing, China
| | - Zhi Li
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal UniversityBeijing, China; Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal UniversityBeijing, China; College of Resources Science Technology, Beijing Normal UniversityBeijing, China
| | - Yongyan Wang
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal UniversityBeijing, China; Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal UniversityBeijing, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China; College of Resources Science Technology, Beijing Normal UniversityBeijing, China
| | - Wensheng Zhang
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal UniversityBeijing, China; Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal UniversityBeijing, China; College of Resources Science Technology, Beijing Normal UniversityBeijing, China; Engineering Research Center of Sanqi Biotechnology and PharmaceuticalKunming, China
| |
Collapse
|
140
|
Gusdon AM, Callio J, Distefano G, O'Doherty RM, Goodpaster BH, Coen PM, Chu CT. Exercise increases mitochondrial complex I activity and DRP1 expression in the brains of aged mice. Exp Gerontol 2017; 90:1-13. [PMID: 28108329 DOI: 10.1016/j.exger.2017.01.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/10/2017] [Accepted: 01/16/2017] [Indexed: 01/06/2023]
Abstract
Exercise is known to have numerous beneficial effects. Recent studies indicate that exercise improves mitochondrial energetics not only in skeletal muscle but also in other tissues. While exercise elicits positive effects on memory, neurogenesis, and synaptic plasticity, the effects of exercise on brain mitochondrial energetics remain relatively unknown. Herein, we studied the effects of exercise training in old and young mice on brain mitochondrial energetics, in comparison to known effects on peripheral tissues that utilize fatty acid oxidation. Exercise improved the capacity for muscle and liver to oxidize palmitate in old mice, but not young mice. In the brain, exercise increased rates of respiration and reactive oxygen species (ROS) production in the old group only while utilizing complex I substrates, effects that were not seen in the young group. Coupled complex I to III enzymatic activity was significantly increased in old trained versus untrained mice with no effect on coupled II to III enzymatic activity. Mitochondrial protein content and markers of mitochondrial biogenesis (PGC-1α and TFAM) were not affected by exercise training in the brain, in contrast to the skeletal muscle of old mice. Brain levels of the autophagy marker LC3-II and protein levels of other signaling proteins that regulate metabolism or transport (BDNF, HSP60, phosphorylated mTOR, FNDC5, SIRT3) were not significantly altered. Old exercised mice showed a significant increase in DRP1 protein levels in the brain without changes in phosphorylation, while MFN2 and OPA1 protein levels were unchanged. Our results suggest that exercise training in old mice can improve brain mitochondrial function through effects on electron transport chain function and mitochondrial dynamics without increasing mitochondrial biogenesis.
Collapse
Affiliation(s)
- Aaron M Gusdon
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, United States; Department of Neurology, NewYork-Presbyterian Hospital, Weill Cornell Medical College, United States
| | - Jason Callio
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, United States
| | - Giovanna Distefano
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, United States; Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, United States
| | - Robert M O'Doherty
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, United States
| | - Bret H Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, United States; Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, United States
| | - Paul M Coen
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, United States; Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, United States.
| | - Charleen T Chu
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, United States.
| |
Collapse
|
141
|
Vaccaro V, Devine MJ, Higgs NF, Kittler JT. Miro1-dependent mitochondrial positioning drives the rescaling of presynaptic Ca2+ signals during homeostatic plasticity. EMBO Rep 2016; 18:231-240. [PMID: 28039205 PMCID: PMC5286383 DOI: 10.15252/embr.201642710] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 11/16/2016] [Accepted: 11/28/2016] [Indexed: 11/27/2022] Open
Abstract
Mitochondrial trafficking is influenced by neuronal activity, but it remains unclear how mitochondrial positioning influences neuronal transmission and plasticity. Here, we use live cell imaging with the genetically encoded presynaptically targeted Ca2+ indicator, SyGCaMP5, to address whether presynaptic Ca2+ responses are altered by mitochondria in synaptic terminals. We find that presynaptic Ca2+ signals, as well as neurotransmitter release, are significantly decreased in terminals containing mitochondria. Moreover, the localisation of mitochondria at presynaptic sites can be altered during long‐term activity changes, dependent on the Ca2+‐sensing function of the mitochondrial trafficking protein, Miro1. In addition, we find that Miro1‐mediated activity‐dependent synaptic repositioning of mitochondria allows neurons to homeostatically alter the strength of presynaptic Ca2+ signals in response to prolonged changes in neuronal activity. Our results support a model in which mitochondria are recruited to presynaptic terminals during periods of raised neuronal activity and are involved in rescaling synaptic signals during homeostatic plasticity.
Collapse
Affiliation(s)
- Victoria Vaccaro
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Michael J Devine
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Nathalie F Higgs
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
142
|
Smith HL, Bourne JN, Cao G, Chirillo MA, Ostroff LE, Watson DJ, Harris KM. Mitochondrial support of persistent presynaptic vesicle mobilization with age-dependent synaptic growth after LTP. eLife 2016; 5. [PMID: 27991850 PMCID: PMC5235352 DOI: 10.7554/elife.15275] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 12/16/2016] [Indexed: 12/22/2022] Open
Abstract
Mitochondria support synaptic transmission through production of ATP, sequestration of calcium, synthesis of glutamate, and other vital functions. Surprisingly, less than 50% of hippocampal CA1 presynaptic boutons contain mitochondria, raising the question of whether synapses without mitochondria can sustain changes in efficacy. To address this question, we analyzed synapses from postnatal day 15 (P15) and adult rat hippocampus that had undergone theta-burst stimulation to produce long-term potentiation (TBS-LTP) and compared them to control or no stimulation. At 30 and 120 min after TBS-LTP, vesicles were decreased only in presynaptic boutons that contained mitochondria at P15, and vesicle decrement was greatest in adult boutons containing mitochondria. Presynaptic mitochondrial cristae were widened, suggesting a sustained energy demand. Thus, mitochondrial proximity reflected enhanced vesicle mobilization well after potentiation reached asymptote, in parallel with the apparently silent addition of new dendritic spines at P15 or the silent enlargement of synapses in adults. DOI:http://dx.doi.org/10.7554/eLife.15275.001
Collapse
Affiliation(s)
- Heather L Smith
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, United States
| | - Jennifer N Bourne
- Department of Cell and Developmental Biology, University of Colorado Denver - Anschutz Medical Campus, Aurora, United States
| | - Guan Cao
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, United States
| | - Michael A Chirillo
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, United States
| | - Linnaea E Ostroff
- Center for Neural Science, New York University, Washington, New York
| | - Deborah J Watson
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, United States
| | - Kristen M Harris
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, United States
| |
Collapse
|
143
|
Chen M, Li Y, Yang M, Chen X, Chen Y, Yang F, Lu S, Yao S, Zhou T, Liu J, Zhu L, Du S, Wu JY. A new method for quantifying mitochondrial axonal transport. Protein Cell 2016; 7:804-819. [PMID: 27225265 PMCID: PMC5084152 DOI: 10.1007/s13238-016-0268-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/31/2016] [Indexed: 01/26/2023] Open
Abstract
Axonal transport of mitochondria is critical for neuronal survival and function. Automatically quantifying and analyzing mitochondrial movement in a large quantity remain challenging. Here, we report an efficient method for imaging and quantifying axonal mitochondrial transport using microfluidic-chamber-cultured neurons together with a newly developed analysis package named "MitoQuant". This tool-kit consists of an automated program for tracking mitochondrial movement inside live neuronal axons and a transient-velocity analysis program for analyzing dynamic movement patterns of mitochondria. Using this method, we examined axonal mitochondrial movement both in cultured mammalian neurons and in motor neuron axons of Drosophila in vivo. In 3 different paradigms (temperature changes, drug treatment and genetic manipulation) that affect mitochondria, we have shown that this new method is highly efficient and sensitive for detecting changes in mitochondrial movement. The method significantly enhanced our ability to quantitatively analyze axonal mitochondrial movement and allowed us to detect dynamic changes in axonal mitochondrial transport that were not detected by traditional kymographic analyses.
Collapse
Affiliation(s)
- Mengmeng Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yang Li
- School of Electronic Science & Engineering, Nanjing University, Nanjing, 210093, China.
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Mengxue Yang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Xiaoping Chen
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yemeng Chen
- School of Electronic Science & Engineering, Nanjing University, Nanjing, 210093, China
| | - Fan Yang
- School of Electronic Science & Engineering, Nanjing University, Nanjing, 210093, China
| | - Sheng Lu
- School of Electronic Science & Engineering, Nanjing University, Nanjing, 210093, China
| | - Shengyu Yao
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Timothy Zhou
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jianghong Liu
- State Key Laboratory for Brain & Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Zhu
- State Key Laboratory for Brain & Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sidan Du
- School of Electronic Science & Engineering, Nanjing University, Nanjing, 210093, China
| | - Jane Y Wu
- State Key Laboratory for Brain & Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
144
|
Smit-Rigter L, Rajendran R, Silva CAP, Spierenburg L, Groeneweg F, Ruimschotel EM, van Versendaal D, van der Togt C, Eysel UT, Heimel JA, Lohmann C, Levelt CN. Mitochondrial Dynamics in Visual Cortex Are Limited In Vivo and Not Affected by Axonal Structural Plasticity. Curr Biol 2016; 26:2609-2616. [PMID: 27641766 DOI: 10.1016/j.cub.2016.07.033] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 06/30/2016] [Accepted: 07/13/2016] [Indexed: 12/30/2022]
Abstract
Mitochondria buffer intracellular Ca2+ and provide energy [1]. Because synaptic structures with high Ca2+ buffering [2-4] or energy demand [5] are often localized far away from the soma, mitochondria are actively transported to these sites [6-11]. Also, the removal and degradation of mitochondria are tightly regulated [9, 12, 13], because dysfunctional mitochondria are a source of reactive oxygen species, which can damage the cell [14]. Deficits in mitochondrial trafficking have been proposed to contribute to the pathogenesis of Parkinson's disease, schizophrenia, amyotrophic lateral sclerosis, optic atrophy, and Alzheimer's disease [13, 15-19]. In neuronal cultures, about a third of mitochondria are motile, whereas the majority remains stationary for several days [8, 20]. Activity-dependent mechanisms cause mitochondria to stop at synaptic sites [7, 8, 20, 21], which affects synapse function and maintenance. Reducing mitochondrial content in dendrites decreases spine density [22, 23], whereas increasing mitochondrial content or activity increases it [7]. These bidirectional interactions between synaptic activity and mitochondrial trafficking suggest that mitochondria may regulate synaptic plasticity. Here we investigated the dynamics of mitochondria in relation to axonal boutons of neocortical pyramidal neurons for the first time in vivo. We find that under these circumstances practically all mitochondria are stationary, both during development and in adulthood. In adult visual cortex, mitochondria are preferentially localized at putative boutons, where they remain for several days. Retinal-lesion-induced cortical plasticity increases turnover of putative boutons but leaves mitochondrial turnover unaffected. We conclude that in visual cortex in vivo, mitochondria are less dynamic than in vitro, and that structural plasticity does not affect mitochondrial dynamics.
Collapse
Affiliation(s)
- Laura Smit-Rigter
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Rajeev Rajendran
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Catia A P Silva
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Liselot Spierenburg
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Femke Groeneweg
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Emma M Ruimschotel
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Danielle van Versendaal
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Chris van der Togt
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Ulf T Eysel
- Department of Neurophysiology, Faculty of Medicine, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - J Alexander Heimel
- Department of Cortical Structure and Function, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Christian Lohmann
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Christiaan N Levelt
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands; Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, de Boelelaan 1085, 1081 HV, the Netherlands.
| |
Collapse
|
145
|
Beckhauser TF, Francis-Oliveira J, De Pasquale R. Reactive Oxygen Species: Physiological and Physiopathological Effects on Synaptic Plasticity. J Exp Neurosci 2016; 10:23-48. [PMID: 27625575 PMCID: PMC5012454 DOI: 10.4137/jen.s39887] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/09/2016] [Accepted: 08/13/2016] [Indexed: 12/18/2022] Open
Abstract
In the mammalian central nervous system, reactive oxygen species (ROS) generation is counterbalanced by antioxidant defenses. When large amounts of ROS accumulate, antioxidant mechanisms become overwhelmed and oxidative cellular stress may occur. Therefore, ROS are typically characterized as toxic molecules, oxidizing membrane lipids, changing the conformation of proteins, damaging nucleic acids, and causing deficits in synaptic plasticity. High ROS concentrations are associated with a decline in cognitive functions, as observed in some neurodegenerative disorders and age-dependent decay of neuroplasticity. Nevertheless, controlled ROS production provides the optimal redox state for the activation of transductional pathways involved in synaptic changes. Since ROS may regulate neuronal activity and elicit negative effects at the same time, the distinction between beneficial and deleterious consequences is unclear. In this regard, this review assesses current research and describes the main sources of ROS in neurons, specifying their involvement in synaptic plasticity and distinguishing between physiological and pathological processes implicated.
Collapse
Affiliation(s)
- Thiago Fernando Beckhauser
- Physiology and Biophysics Department, Biomedical Sciences Institute, Sao Paulo University (USP), Butanta, Sao Paulo, Brazil
| | - José Francis-Oliveira
- Physiology and Biophysics Department, Biomedical Sciences Institute, Sao Paulo University (USP), Butanta, Sao Paulo, Brazil
| | - Roberto De Pasquale
- Physiology and Biophysics Department, Biomedical Sciences Institute, Sao Paulo University (USP), Butanta, Sao Paulo, Brazil
| |
Collapse
|
146
|
Rui Y, Zheng JQ. Amyloid β oligomers elicit mitochondrial transport defects and fragmentation in a time-dependent and pathway-specific manner. Mol Brain 2016; 9:79. [PMID: 27535553 PMCID: PMC4989350 DOI: 10.1186/s13041-016-0261-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/11/2016] [Indexed: 12/17/2022] Open
Abstract
Small oligomeric forms of amyloid-β (Aβ) are believed to be the culprit for declined brain functions in AD in part through their impairment of neuronal trafficking and synaptic functions. However, the precise cellular actions of Aβ oligomers and underlying mechanisms in neurons remain to be fully defined. Previous studies have identified mitochondria as a major target of Aβ toxicity contributing to early cognitive decline and memory loss in neurodegenerative diseases including Alzheimer’s disease (AD). In this study, we report that Aβ oligomers acutely elicit distinct effects on the transport and integrity of mitochondria. We found that acute exposure of hippocampal neurons to Aβ oligomers from either synthetic peptides or AD brain homogenates selectively impaired fast transport of mitochondria without affecting the movement of late endosomes and lysosomes. Extended exposure of hipoocampal neurons to Aβ oligomers was found to result in mitochondrial fragmentation. While both mitochondrial effects induced by Aβ oligomers can be abolished by the inhibition of GSK3β, they appear to be independent from each other. Aβ oligomers impaired mitochondrial transport through HDAC6 activation whereas the fragmentation involved the GTPase Drp-1. These results show that Aβ oligomers can acutely disrupt mitochondrial transport and integrity in a time-dependent and pathway-specific manner. These findings thus provide new insights into Aβ-induced mitochondrial defects that may contribute to neuronal dysfunction and AD pathogenesis.
Collapse
Affiliation(s)
- Yanfang Rui
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA, 30322, USA.,Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - James Q Zheng
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA, 30322, USA. .,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
147
|
Imaging of neuronal mitochondria in situ. Curr Opin Neurobiol 2016; 39:152-63. [PMID: 27454347 DOI: 10.1016/j.conb.2016.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/04/2016] [Accepted: 06/07/2016] [Indexed: 11/21/2022]
Abstract
Neuronal mitochondria are receiving a rapidly increasing level of attention. This is to a significant part due to the ability to visualize neuronal mitochondria in novel ways, especially in vivo. Such an approach allows studying neuronal mitochondria in an intact tissue context, during different developmental states and in various genetic backgrounds and disease conditions. Hence, in vivo imaging of mitochondria in the nervous system can reveal aspects of the 'mitochondrial life cycle' in neurons that hitherto have remained obscure or could only be inferred indirectly. In this survey of the current literature, we review the new insights that have emerged from studies using mitochondrial imaging in intact neural preparations ranging from worms to mice.
Collapse
|
148
|
Zhang Y, Huang LJ, Shi S, Xu SF, Wang XL, Peng Y. L-3-n-butylphthalide Rescues Hippocampal Synaptic Failure and Attenuates Neuropathology in Aged APP/PS1 Mouse Model of Alzheimer's Disease. CNS Neurosci Ther 2016; 22:979-987. [PMID: 27439966 DOI: 10.1111/cns.12594] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 12/26/2022] Open
Abstract
AIMS Our previous studies showed that L-3-n-butylphthalide (L-NBP), an extract from seeds of Apium graveolens Linn (Chinese celery), improved cognitive ability in animal models of cerebral ischemia, vascular dementia, and Alzheimer's disease (AD). It is well known that cognitive deficit of AD is caused by synaptic dysfunction. In this study, we investigated the effect of L-NBP on hippocampal synaptic function in APP/PS1 AD transgenic mice and related mechanisms. METHODS Eighteen-month-old APP/PS1 transgenic (Tg) mice were administrated 15 mg/kg L-NBP by oral gavage for 3 months. Synaptic morphology and the thickness of postsynaptic density (PSD) in hippocampal neurons were investigated by electron microscope. The dendritic spines, Aβ plaques, and glial activation were detected by staining. The expressions of synapse-related proteins were observed by Western blotting. RESULTS L-NBP treatment significantly increased the number of synapses and apical dendritic thorns and the thickness of PSD, increased the expression levels of synapse-associated proteins including PSD95, synaptophysin (SYN), β-catenin, and GSK-3β, and attenuated Aβ plaques and neuroinflammatory responses in aged APP/PS1 Tg mice. CONCLUSION L-NBP may restore synaptic and spine function in aged APP Tg mice through inhibiting Aβ plaques deposition and neuroinflammatory response. Wnt/β-catenin signaling pathway may be involved in L-NBP-related restoration of synaptic function.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Long-Jian Huang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Si Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shao-Feng Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao-Liang Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
149
|
Abstract
Neurons demand vast and vacillating supplies of energy. As the key contributors of this energy, as well as primary pools of calcium and signaling molecules, mitochondria must be where the neuron needs them, when the neuron needs them. The unique architecture and length of neurons, however, make them a complex system for mitochondria to navigate. To add to this difficulty, mitochondria are synthesized mainly in the soma, but must be transported as far as the distant terminals of the neuron. Similarly, damaged mitochondria-which can cause oxidative stress to the neuron-must fuse with healthy mitochondria to repair the damage, return all the way back to the soma for disposal, or be eliminated at the terminals. Increasing evidence suggests that the improper distribution of mitochondria in neurons can lead to neurodegenerative and neuropsychiatric disorders. Here, we will discuss the machinery and regulatory systems used to properly distribute mitochondria in neurons, and how this knowledge has been leveraged to better understand neurological dysfunction.
Collapse
Affiliation(s)
- Meredith M Course
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA; Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
150
|
Scaini G, Rezin GT, Carvalho AF, Streck EL, Berk M, Quevedo J. Mitochondrial dysfunction in bipolar disorder: Evidence, pathophysiology and translational implications. Neurosci Biobehav Rev 2016; 68:694-713. [PMID: 27377693 DOI: 10.1016/j.neubiorev.2016.06.040] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 06/26/2016] [Accepted: 06/30/2016] [Indexed: 01/05/2023]
Abstract
Bipolar disorder (BD) is a chronic psychiatric illness characterized by severe and biphasic changes in mood. Several pathophysiological mechanisms have been hypothesized to underpin the neurobiology of BD, including the presence of mitochondrial dysfunction. A confluence of evidence points to an underlying dysfunction of mitochondria, including decreases in mitochondrial respiration, high-energy phosphates and pH; changes in mitochondrial morphology; increases in mitochondrial DNA polymorphisms; and downregulation of nuclear mRNA molecules and proteins involved in mitochondrial respiration. Mitochondria play a pivotal role in neuronal cell survival or death as regulators of both energy metabolism and cell survival and death pathways. Thus, in this review, we discuss the genetic and physiological components of mitochondria and the evidence for mitochondrial abnormalities in BD. The final part of this review discusses mitochondria as a potential target of therapeutic interventions in BD.
Collapse
Affiliation(s)
- Giselli Scaini
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Laboratory of Bioenergetics, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gislaine T Rezin
- Laboratory of Clinical and Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Andre F Carvalho
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Emilio L Streck
- Laboratory of Bioenergetics, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Faculty of Health, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health and The Centre for Youth Mental Health, The Department of Psychiatry and The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - João Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|