101
|
Neuroprotective effect of diazoxide on brain injury induced by cerebral ischemia/reperfusion during deep hypothermia. J Neurol Sci 2008; 268:18-27. [PMID: 18068190 DOI: 10.1016/j.jns.2007.10.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 10/14/2007] [Accepted: 10/23/2007] [Indexed: 11/23/2022]
Abstract
OBJECT The purpose of this study was to determine the effects of diazoxide on apoptosis and the relative mechanisms in a model of brain injury induced by cerebral ischemia/reperfusion (I/R) during deep hypothermia. METHODS Three-week-old Sprague-Dawley male rats were randomly and equitably divided into sham-operated group, placebo-treated group and diazoxide-treated group respectively. Specific examination of the regional cerebral blood flow (rCBF) was measured in the three groups continuously during the operation by laser Doppler flowmetry. Terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) was showed DNA fragmentation. The mRNA expressions of cytochrome c and full-length caspase-3 were determined by RT-PCR, while the protein expressions of cytochrome c and cleaved caspase-3 were determined by immunohistochemistry at 1 h, 6 h, 24 h, 72 h and 7 days after I/R, respectively. Cytosolic release of cytochrome c at 24 h after I/R was also confirmed by Western blot. RESULTS rCBF was significantly decreased in both of placebo-treated and diazoxide-treated group just after ischemia in the time interval 0-5 min, and had no obvious changes in all the time intervals during the operation. Diazoxide preconditioning significantly decreased the percentage of TUNEL-positive staining cells. The mRNA expressions of cytochrome c and full-length caspase-3 in diazoxide-treated group were significantly decreased. In addition, diazoxide provided a significant reduction in the protein expressions of cytochrome c and cleaved caspase-3. CONCLUSION These results suggested that the neuroprotective effects of diazoxide against cerebral I/R injury during deep hypothermia correlated with the reduction of DNA fragmentation, prevention of mitochondrial cytochrome c release and inhibition of caspase-3 activation.
Collapse
|
102
|
Nakka VP, Gusain A, Mehta SL, Raghubir R. Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities. Mol Neurobiol 2008. [PMID: 18066503 DOI: 10.1007/s12035-007-80139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Cerebral ischemia/reperfusion (I/R) injury triggers multiple and distinct but overlapping cell signaling pathways, which may lead to cell survival or cell damage. There is overwhelming evidence to suggest that besides necrosis, apoptosis do contributes significantly to the cell death subsequent to I/R injury. Both extrinsic and intrinsic apoptotic pathways play a vital role, and upon initiation, these pathways recruit downstream apoptotic molecules to execute cell death. Caspases and Bcl-2 family members appear to be crucial in regulating multiple apoptotic cell death pathways initiated during I/R. Similarly, inhibitor of apoptosis family of proteins (IAPs), mitogen-activated protein kinases, and newly identified apoptogenic molecules, like second mitochondrial-activated factor/direct IAP-binding protein with low pI (Smac/Diablo), omi/high-temperature requirement serine protease A2 (Omi/HtrA2), X-linked mammalian inhibitor of apoptosis protein-associated factor 1, and apoptosis-inducing factor, have emerged as potent regulators of cellular apoptotic/antiapoptotic machinery. All instances of cell survival/death mechanisms triggered during I/R are multifaceted and interlinked, which ultimately decide the fate of brain cells. Moreover, apoptotic cross-talk between major subcellular organelles suggests that therapeutic strategies should be optimally directed at multiple targets/mechanisms for better therapeutic outcome. Based on the current knowledge, this review briefly focuses I/R injury-induced multiple mechanisms of apoptosis, involving key apoptotic regulators and their emerging roles in orchestrating cell death programme. In addition, we have also highlighted the role of autophagy in modulating cell survival/death during cerebral ischemia. Furthermore, an attempt has been made to provide an encouraging outlook on emerging therapeutic approaches for cerebral ischemia.
Collapse
Affiliation(s)
- Venkata Prasuja Nakka
- Division of Pharmacology, Central Drug Research Institute, Chatter Manzil Palace, POB-173, Lucknow, 226001, India
| | | | | | | |
Collapse
|
103
|
Tharakan B, Holder-Haynes JG, Hunter FA, Childs EW. Alpha lipoic acid attenuates microvascular endothelial cell hyperpermeability by inhibiting the intrinsic apoptotic signaling. Am J Surg 2008; 195:174-8. [DOI: 10.1016/j.amjsurg.2007.09.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 09/25/2007] [Accepted: 09/25/2007] [Indexed: 11/24/2022]
|
104
|
Nakka VP, Gusain A, Mehta SL, Raghubir R. Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities. Mol Neurobiol 2008; 37:7-38. [PMID: 18066503 DOI: 10.1007/s12035-007-8013-9] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 11/05/2007] [Indexed: 12/18/2022]
Abstract
Cerebral ischemia/reperfusion (I/R) injury triggers multiple and distinct but overlapping cell signaling pathways, which may lead to cell survival or cell damage. There is overwhelming evidence to suggest that besides necrosis, apoptosis do contributes significantly to the cell death subsequent to I/R injury. Both extrinsic and intrinsic apoptotic pathways play a vital role, and upon initiation, these pathways recruit downstream apoptotic molecules to execute cell death. Caspases and Bcl-2 family members appear to be crucial in regulating multiple apoptotic cell death pathways initiated during I/R. Similarly, inhibitor of apoptosis family of proteins (IAPs), mitogen-activated protein kinases, and newly identified apoptogenic molecules, like second mitochondrial-activated factor/direct IAP-binding protein with low pI (Smac/Diablo), omi/high-temperature requirement serine protease A2 (Omi/HtrA2), X-linked mammalian inhibitor of apoptosis protein-associated factor 1, and apoptosis-inducing factor, have emerged as potent regulators of cellular apoptotic/antiapoptotic machinery. All instances of cell survival/death mechanisms triggered during I/R are multifaceted and interlinked, which ultimately decide the fate of brain cells. Moreover, apoptotic cross-talk between major subcellular organelles suggests that therapeutic strategies should be optimally directed at multiple targets/mechanisms for better therapeutic outcome. Based on the current knowledge, this review briefly focuses I/R injury-induced multiple mechanisms of apoptosis, involving key apoptotic regulators and their emerging roles in orchestrating cell death programme. In addition, we have also highlighted the role of autophagy in modulating cell survival/death during cerebral ischemia. Furthermore, an attempt has been made to provide an encouraging outlook on emerging therapeutic approaches for cerebral ischemia.
Collapse
Affiliation(s)
- Venkata Prasuja Nakka
- Division of Pharmacology, Central Drug Research Institute, Chatter Manzil Palace, POB-173, Lucknow, 226001, India
| | | | | | | |
Collapse
|
105
|
Abstract
More than half of the initially-formed neurons are deleted in certain brain regions during normal development. This process, whereby cells are discretely removed without interfering with the further development of remaining cells, is called programmed cell death (PCD). The term apoptosis is used to describe certain morphological manifestations of PCD. Many of the effectors of this developmental cell death program are highly expressed in the developing brain, making it more susceptible to accidental activation of the death machinery, e.g. following hypoxia-ischemia or irradiation. Recent evidence suggests, however, that activation and regulation of cell death mechanisms under pathological conditions do not exactly mirror physiological, developmentally regulated PCD. It may be argued that the conditions after e.g. ischemia are not even compatible with the execution of PCD as we know it. Under pathological conditions cells are exposed to various stressors, including energy failure, oxidative stress and unbalanced ion fluxes. This results in parallel triggering and potential overshooting of several different cell death pathways, which then interact with one another and result in complex patterns of biochemical manifestations and cellular morphological features. These types of cell death are here called "pathological apoptosis," where classical hallmarks of PCD, like pyknosis, nuclear condensation and caspase-3 activation, are combined with non-PCD features of cell death. Here we review our current knowledge of the mechanisms involved, with special focus on the potential for therapeutic intervention tailored to the needs of the developing brain.
Collapse
Affiliation(s)
- Klas Blomgren
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Göteborg University, SE 405 30 Göteborg, Sweden.
| | | | | |
Collapse
|
106
|
Wakade C, Khan MM, De Sevilla LM, Zhang QG, Mahesh VB, Brann DW. Tamoxifen neuroprotection in cerebral ischemia involves attenuation of kinase activation and superoxide production and potentiation of mitochondrial superoxide dismutase. Endocrinology 2008; 149:367-79. [PMID: 17901229 PMCID: PMC2194601 DOI: 10.1210/en.2007-0899] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The purpose of this study was to enhance our understanding of the mechanisms of neuronal death after focal cerebral ischemia and the neuroprotective effects of tamoxifen (TMX). The phosphorylation state of 31 protein kinases/signaling proteins and superoxide anion (O(2)(-)) production in the contralateral and ipsilateral cortex was measured after permanent middle cerebral artery occlusion (pMCAO) in ovariectomized rats treated with placebo or TMX. The study revealed that pMCAO modulated the phosphorylation of a number of kinases/proteins in the penumbra at 2 h after pMCAO. Of significant interest, phospho-ERK1/2 (pERK1/2) was elevated significantly after pMCAO. TMX attenuated the elevation of pERK1/2, an effect correlated with reduced infarct size. In situ detection of O(2)(-) production showed a significant elevation at 1-2 h after pMCAO in the ischemic cortex with enhanced oxidative damage detected at 24 h. ERK activation may be downstream of free radicals, a suggestion supported by the findings that cells positive for O(2)(-) had high pERK activation and that a superoxide dismutase (SOD) mimetic, tempol, significantly attenuated pERK activation after MCAO. TMX treatment significantly reduced the MCAO-induced elevation of O(2)(-) production, oxidative damage, and proapoptotic caspase-3 activation. Additionally, pMCAO induced a significant reduction in the levels of manganese SOD (MnSOD), which scavenge O(2)(-), an effect largely prevented by TMX treatment, thus providing a potential mechanistic basis for the antioxidant effects of TMX. As a whole, these studies suggest that TMX neuroprotection may be achieved via an antioxidant mechanism that involves enhancement of primarily MnSOD levels, with a corresponding reduction of O(2)(-) production, and downstream kinase and caspase-3 activation.
Collapse
Affiliation(s)
- Chandramohan Wakade
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, 1120 15th Street, Augusta, Georgia 30912, USA
| | | | | | | | | | | |
Collapse
|
107
|
Vanoye-Carlo A, Morales T, Ramos E, Mendoza-Rodríguez A, Cerbón M. Neuroprotective effects of lactation against kainic acid treatment in the dorsal hippocampus of the rat. Horm Behav 2008; 53:112-23. [PMID: 17963758 DOI: 10.1016/j.yhbeh.2007.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 08/31/2007] [Accepted: 09/04/2007] [Indexed: 01/20/2023]
Abstract
Marked hippocampal changes in response to excitatory amino acid agonists occur during pregnancy (e.g. decreased frequency in spontaneous recurrent seizures in rats with KA lesions of the hippocampus) and lactation (e.g. reduced c-Fos expression in response to N-methyl-d,l-aspartic acid but not to kainic acid). In this study, the possibility that lactation protects against the excitotoxic damage induced by KA in hippocampal areas was explored. We compared cell damage induced 24 h after a single systemic administration of KA (5 or 7.5 mg/kg bw) in regions CA1, CA3, and CA4 of the dorsal hippocampus of rats in the final week of lactation to that in diestrus phase. To determine cellular damage in a rostro-caudal segment of the dorsal hippocampus, we used NISSL and Fluorojade staining, immunohistochemistry for active caspase-3 and TUNEL, and we observed that the KA treatment provoked a significant loss of neurons in diestrus rats, principally in the pyramidal cells of CA1 region. In contrast, in lactating rats, pyramidal neurons from CA1, CA3, and CA4 in the dorsal hippocampus were significantly protected against KA-induced neuronal damage, indicating that lactation may be a natural model of neuroprotection.
Collapse
Affiliation(s)
- América Vanoye-Carlo
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, México, D.F., 04510, Mexico
| | | | | | | | | |
Collapse
|
108
|
Titova E, Ostrowski RP, Rowe J, Chen W, Zhang JH, Tang J. Effects of superoxide dismutase and catalase derivates on intracerebral hemorrhage-induced brain injury in rats. ACTA NEUROCHIRURGICA. SUPPLEMENT 2008; 105:33-35. [PMID: 19066078 DOI: 10.1007/978-3-211-09469-3_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The use of exogenous superoxide dismutase (SOD) and catalase (CAT) has been previously evaluated against various reactive oxygen species-mediated brain injuries, especially those associated with ischemia/ reperfusion. In this study, we investigated effects of these enzymatic antioxidants on intracerebral hemorrhage (ICH)-induced brain injury. A total of 65 male Sprague-Dawley rats (300-380 g) were divided into a sham group, an untreated ICH group, 3 groups of ICH rats treated with lecithinized SOD (PC-SOD) at doses of 0.1, 0.3, and 1 mg/kg, and a group treated with polyethylene glycol conjugated CAT (PEG-CAT) at a dose of 10,000 U/kg. An additional group of ICH rats received a combination of PC-SOD (1 mg/kg) and PEG-CAT (10,000 U/kg). ICH was induced by collagenase injection. All drugs were administered intravenously immediately after ICH induction. Brain injury was evaluated by scoring neurological function and measuring brain edema at 24 h after ICH induction. Our results demonstrated that ICH caused significant neurological deficit associated with remarkable brain edema. Treatment with PC-SOD, PEG-CAT, or PC-SOD in combination with PEG-CAT did not reduce brain edema or neurological deficit after ICH. We conclude that intravenously administered PC-SOD and/or PEG-CAT do not reduce brain injury in the collagenase-induced ICH rat model.
Collapse
Affiliation(s)
- E Titova
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | | | | | | | | | | |
Collapse
|
109
|
Zhao H, Steinberg GK, Sapolsky RM. General versus specific actions of mild-moderate hypothermia in attenuating cerebral ischemic damage. J Cereb Blood Flow Metab 2007; 27:1879-94. [PMID: 17684517 DOI: 10.1038/sj.jcbfm.9600540] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mild or moderate hypothermia is generally thought to block all changes in signaling events that are detrimental to ischemic brain, including ATP depletion, glutamate release, Ca(2+) mobilization, anoxic depolarization, free radical generation, inflammation, blood-brain barrier permeability, necrotic, and apoptotic pathways. However, the effects and mechanisms of hypothermia are, in fact, variable. We emphasize that, even in the laboratory, hypothermic protection is limited. In certain models of permanent focal ischemia, hypothermia may not protect at all. In cases where hypothermia reduces infarct, some studies have overemphasized its ability to maintain cerebral blood flow and ATP levels, and to prevent anoxic depolarization, glutamate release during ischemia. Instead, hypothermia may protect against ischemia by regulating cascades that occur after reperfusion, including blood-brain barrier permeability and the changes in gene and protein expressions associated with necrotic and apoptotic pathways. Hypothermia not only blocks multiple damaging cascades after stroke, but also selectively upregulates some protective genes. However, most of these mechanisms are addressed in models with intraischemic hypothermia; much less information is available in models with postischemic hypothermia. Moreover, although it has been confirmed that mild hypothermia is clinically feasible for acute focal stroke treatment, no definite beneficial effect has been reported yet. This lack of clinical protection may result from suboptimal criteria for patient entrance into clinical trials. To facilitate clinical translation, future efforts in the laboratory should focus more on the protective mechanisms of postischemic hypothermia, as well as on the effects of sex, age and rewarming during reperfusion on hypothermic protection.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Neurosurgery, Stanford University, Stanford, California 94305-5327, USA.
| | | | | |
Collapse
|
110
|
Son D, Kojima I, Inagi R, Matsumoto M, Fujita T, Nangaku M. Chronic hypoxia aggravates renal injury via suppression of Cu/Zn-SOD: a proteomic analysis. Am J Physiol Renal Physiol 2007; 294:F62-72. [PMID: 17959751 DOI: 10.1152/ajprenal.00113.2007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence suggests a pathogenic role of chronic hypoxia in various kidney diseases. Chronic hypoxia in the kidney was induced by unilateral renal artery stenosis, followed 7 days later by observation of tubulointerstitial injury. Proteomic analysis of the hypoxic kidney found various altered proteins. Increased proteins included lipocortin-5, calgizzarin, ezrin, and transferrin, whereas the decreased proteins were alpha(2u)-globulin PGCL1, eukaryotic translation elongation factor 1alpha(2), and Cu/Zn superoxide dismutase (SOD1). Among these proteins, we focused on Cu/Zn-SOD, a crucial antioxidant. Western blot analysis and real-time quantitative PCR analysis confirmed the downregulation of Cu/Zn-SOD in the chronic hypoxic kidney. Furthermore, our laser capture microdissection system showed that the expression of Cu/Zn-SOD was predominant in the tubulointerstitium and was decreased by chronic hypoxia. The tubulointerstitial injury estimated by histology and immunohistochemical markers was ameliorated by tempol, a SOD mimetic. This amelioration was associated with a decrease in levels of the oxidative stress markers 4-hydroxyl-2-nonenal and nitrotyrosine. Our in vitro studies utilizing cultured tubular cells revealed a role of TNF-alpha in downregulation of Cu/Zn-SOD. Since the administration of anti-TNF-alpha antibody ameliorated Cu/Zn-SOD suppression, TNF-alpha seems to be one of the suppressants of Cu/Zn-SOD. In conclusion, our proteomic analysis revealed a decrease in Cu/Zn-SOD, at least partly by TNF-alpha, in the chronic hypoxic kidney. This study, for the first time, uncovered maladaptive suppression of Cu/Zn-SOD as a mediator of a vicious cycle of oxidative stress and subsequent renal injury induced by chronic hypoxia.
Collapse
Affiliation(s)
- Daisuke Son
- Division of Nephrology and Endocrinology, University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | |
Collapse
|
111
|
Reduction of cerebral infarction in rats by biliverdin associated with amelioration of oxidative stress. Brain Res 2007; 1188:1-8. [PMID: 18035335 DOI: 10.1016/j.brainres.2007.07.104] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 07/18/2007] [Accepted: 07/20/2007] [Indexed: 11/23/2022]
Abstract
Biliverdin (BV), one of the byproducts of heme catalysis through heme oxygenase (HO) system, is a scavenger of reactive oxygen species (ROS). We hypothesized that BV treatment could protect rat brain cells from oxidative injuries via its anti-oxidant efficacies. Cerebral infarction was induced by transient middle cerebral artery occlusion (tMCAO) for 90 min, followed by reperfusion. BV or vehicle was administered intraperitoneally immediately after reperfusion. The size of the cerebral infarction 2 days after tMCAO was evaluated by 2,3,5-triphenyltetrazolium chloride (TTC) stain. Superoxide generation 4 h after tMCAO was determined by detection of oxidized hydroethidine. In addition, the oxidative impairment of neurons were immunohistochemically assessed by stain for lipid peroxidation with 4-hydroxy-2-nonenal (4-HNE) and damaged DNA with 8-hydroxy-2'-deoxyguanosine (8-OHdG). BV treatment significantly reduced infarct volume of the cerebral cortices associated with less superoxide production and decreased oxidative injuries of brain cells. The present study demonstrated that treatment with BV ameliorated the oxidative injuries on neurons and decreased brain infarct size in rat tMCAO model.
Collapse
|
112
|
Manni ML, Oury TD. Commentary on "Copper chaperone for Cu,Zn-SOD supplement potentiates the Cu,Zn-SOD function of neuroprotective effects against ischemic neuronal damage in the gerbil hippocampus". Free Radic Biol Med 2007; 43:899-900. [PMID: 17697934 DOI: 10.1016/j.freeradbiomed.2007.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 06/21/2007] [Indexed: 02/02/2023]
Affiliation(s)
- Michelle L Manni
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
113
|
Zheng L, Du Y, Miller C, Gubitosi-Klug RA, Kern TS, Ball S, Berkowitz BA. Critical role of inducible nitric oxide synthase in degeneration of retinal capillaries in mice with streptozotocin-induced diabetes. Diabetologia 2007; 50:1987-1996. [PMID: 17583794 DOI: 10.1007/s00125-007-0734-9] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 04/30/2007] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Diabetes results in the upregulation of the production of several components of the inflammatory response in the retina, including inducible nitric oxide synthase (iNOS). The aim of this study was to investigate the role of iNOS in the pathogenesis of the early stages of diabetic retinopathy using iNOS-deficient mice (iNos (-/-)). MATERIALS AND METHODS iNos (-/-) mice and wild-type (WT; C57BL/6J) mice were made diabetic with streptozotocin or kept as non-diabetic controls. Mice were killed at different time points after the induction of diabetes for assessment of vascular histopathology, cell loss in the ganglion cell layer (GCL), retinal thickness, and biochemical and physiological abnormalities. RESULTS The concentrations of nitric oxide, nitration of proteins, poly(ADP-ribose) (PAR)-modified proteins, endothelial nitric oxide synthase, prostaglandin E(2), superoxide and leucostasis were significantly (p < 0.05) increased in retinas of WT mice diabetic for 2 months compared with non-diabetic WT mice. All of these abnormalities except PAR-modified proteins in retinas were inhibited (p < 0.05) in diabetic iNos (-/-) mice. The number of acellular capillaries and pericyte ghosts was significantly increased in retinas from WT mice diabetic for 9 months compared with non-diabetic WT controls, these increases being significantly inhibited in diabetic iNos (-/-) mice (p < 0.05 for all). Retinas from WT diabetic mice were significantly thinner than those from their non-diabetic controls, whereas diabetic iNos (-/-) mice were protected from this abnormality. We found no evidence of cell loss in the GCL of diabetic WT or iNos (-/-) mice. Deletion of iNos had no beneficial effect on diabetes-induced abnormalities on the electroretinogram. CONCLUSIONS/INTERPRETATION We demonstrate that the inflammatory enzyme iNOS plays an important role in the pathogenesis of vascular lesions characteristic of the early stages of diabetic retinopathy in mice.
Collapse
Affiliation(s)
- L Zheng
- Department of Medicine, 448B Biomedical Research Building, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| | - Y Du
- Department of Medicine, 448B Biomedical Research Building, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - C Miller
- Department of Medicine, 448B Biomedical Research Building, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Alcon Research, Fort Worth, TX, USA
| | - R A Gubitosi-Klug
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - T S Kern
- Department of Medicine, 448B Biomedical Research Building, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- Department of Ophthalmology, 434 Biomedical Research Building, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- Cleveland VAMC Research Service 151, Cleveland, OH, USA.
| | - S Ball
- Cleveland VAMC Research Service 151, Cleveland, OH, USA
| | - B A Berkowitz
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI, USA
- Department of Ophthalmology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
114
|
Yu Y, Du JR, Wang CY, Qian ZM. Protection against hydrogen peroxide-induced injury by Z-ligustilide in PC12 cells. Exp Brain Res 2007; 184:307-12. [PMID: 17717647 DOI: 10.1007/s00221-007-1100-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 08/06/2007] [Indexed: 10/22/2022]
Abstract
Z-ligustilide (Z-LIG) is the primary lipophilic compound of the Chinese medicine Danggui (Radix Angelica sinensis). Previous studies demonstrated that Z-LIG had significant neuroprotective potential in both transient and permanent cerebral ischemia, possibly through antioxidant and anti-apoptotic mechanisms. The present study examined the mechanisms of Z-LIG on hydrogen peroxide (H(2)O(2))-induced injury in PC12 cells. Following exposure of the cells to H(2)O(2 )(500 microM), a significant reduction in cell survival and total antioxidant capacity (TAC), as well as increased intracellular reactive oxygen species (ROS), were observed. In addition, H(2)O(2 )treatment significantly upregulated Bax expression, cleaved-caspase 3, and cytosolic cytochrome-c, and decreased Bcl-2 protein levels. Pretreatment of the cells with Z-LIG (0.1, 1.0, 2.5, or 5.0 microg/ml) significantly attenuated H(2)O(2)-induced cell death, attenuated increased intracellular ROS levels, and decreased Bax expression, cleaved-caspase 3, and cytochrome-c. Further, Z-LIG improved cellular TAC and concentration-dependently upregulated Bcl-2 expression. These results demonstrate that Z-LIG has a pronounced protective effect against H(2)O(2)-induced cytotoxicity, at least partly through improving cellular antioxidant defense and inhibiting the mitochondrial apoptotic pathway. These findings suggest that Z-LIG may be useful in the treatment of neurodegenerative disorders in which oxidative stress and apoptosis are mainly implicated.
Collapse
Affiliation(s)
- Yan Yu
- Department of Pharmacology and Key Laboratory of Drug Targeting, Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | | | | | | |
Collapse
|
115
|
Okun E, Arumugam TV, Tang SC, Gleichmann M, Albeck M, Sredni B, Mattson MP. The organotellurium compound ammonium trichloro(dioxoethylene-0,0') tellurate enhances neuronal survival and improves functional outcome in an ischemic stroke model in mice. J Neurochem 2007; 102:1232-41. [PMID: 17542809 DOI: 10.1111/j.1471-4159.2007.04615.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ammonium trichloro(dioxoethylene-0,0') tellurate (AS101) is a non-toxic organotellurium compound with pleiotropic activities. It was recently shown to induce production of the neurotrophic factor glial cell line-derived neurotrophic factor and to rescue neuronal-like PC-12 cells from neurotrophic factor deprivation-induced apoptosis. In this study, we show that AS101 improves functional outcome and reduces brain damage in a mouse model of focal ischemic stroke. Both pre-stroke and post-stroke intraperitoneal treatments with AS101 reduced infarct size and edema and improved the neurological function of the animals. AS101 treatments reduced both apoptotic and inflammatory caspase activities, and also inhibited protein tyrosine nitration suggesting that AS101 suppresses oxidative stress. Studies of cultured neurons showed that AS101 confers protection against apoptosis induced by either glucose deprivation or the lipid peroxidation product 4-hydroxynonenal. Moreover, AS101 treatment reduced glutamate-induced intracellular calcium elevation, a major contributor to neuronal death in stroke. As AS101 has an excellent safety profile in humans, our pre-clinical data suggest a potential therapeutic benefit of AS101 in patients suffering from stroke and other neurodegenerative conditions.
Collapse
Affiliation(s)
- Eitan Okun
- CAIR Institute, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | | | |
Collapse
|
116
|
Brann DW, Dhandapani K, Wakade C, Mahesh VB, Khan MM. Neurotrophic and neuroprotective actions of estrogen: basic mechanisms and clinical implications. Steroids 2007; 72:381-405. [PMID: 17379265 PMCID: PMC2048656 DOI: 10.1016/j.steroids.2007.02.003] [Citation(s) in RCA: 481] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 02/07/2007] [Accepted: 02/09/2007] [Indexed: 12/16/2022]
Abstract
Estrogen is an important hormone signal that regulates multiple tissues and functions in the body. This review focuses on the neurotrophic and neuroprotective actions of estrogen in the brain, with particular emphasis on estrogen actions in the hippocampus, cerebral cortex and striatum. Sex differences in the risk, onset and severity of neurodegenerative disease such as Alzheimer's disease, Parkinson's disease and stroke are well known, and the potential role of estrogen as a neuroprotective factor is discussed in this context. The review assimilates a complex literature that spans research in humans, non-human primates and rodent animal models and attempts to contrast and compare the findings across species where possible. Current controversies regarding the Women's Health Initiative (WHI) study, its ramifications, concerns and the new studies needed to address these concerns are also addressed. Signaling mechanisms underlying estrogen-induced neuroprotection and synaptic plasticity are reviewed, including the important concepts of genomic versus nongenomic mechanisms, types of estrogen receptor involved and their subcellular targeting, and implicated downstream signaling pathways and mediators. Finally, a multicellular mode of estrogen action in the regulation of neuronal survival and neurotrophism is discussed, as are potential future directions for the field.
Collapse
Affiliation(s)
- Darrell W Brann
- Institute of Molecular Medicine and Genetics, School of Medicine, Medical College of Georgia, Augusta, GA 30912, United States.
| | | | | | | | | |
Collapse
|
117
|
Müller GJ, Lassmann H, Johansen FF. Anti-apoptotic signaling and failure of apoptosis in the ischemic rat hippocampus. Neurobiol Dis 2007; 25:582-93. [PMID: 17207631 DOI: 10.1016/j.nbd.2006.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 10/03/2006] [Accepted: 11/03/2006] [Indexed: 11/18/2022] Open
Abstract
Several anti-apoptotic proteins are induced in CA1 neurons after transient forebrain ischemia (TFI), but fail to protect the majority of these cells from demise. Correlating cell death morphologies (apoptosis-like and necrosis-like death) with immunohistochemistry (IHC), we investigated whether anti-apoptosis contributes to survival, compromises apoptosis effector functions and/or delays death in CA1 neurons 1-7 days after TFI. As surrogate markers for bioenergetic failure, the IHC of respiratory chain complex (RCC) subunits was investigated. Dentate granule cell (DGC) apoptosis following colchicine injection severed as a reference for classical apoptosis. Heat shock protein 70 (Hsp70), neuronal apoptosis inhibitory protein (NAIP) and manganese superoxide dismutase (MnSOD) were upregulated in the majority of intact CA1 neurons paralleling the occurrence of CA1 neuronal death (days 3-7) as well as in a proportion of apoptosis-(<50%) and necrosis-like (<30%) CA1 neurons. Colchicine did not provoke an anti-apoptotic response in DGC at all. In addition, more than 70% of apoptosis- and necrosis-like CA1 neurons had completely lost their RCC subunits suggesting bioenergetic failure; by contrast, following colchicine injection, 88% of all apoptotic DGC presented RCC subunits. Thus, anti-apoptotic proteins may, in a subset of ischemic CA1 neurons, prevent cell death, while in others, affected by pronounced energy failure, they may cause secondary necrosis.
Collapse
Affiliation(s)
- Georg Johannes Müller
- Molecular Neuropathology Group, University of Copenhagen, 11, Frederik V's vej, 2100-Copenhagen-O, Denmark
| | | | | |
Collapse
|
118
|
Endo H, Saito A, Chan PH. Mitochondrial translocation of p53 underlies the selective death of hippocampal CA1 neurons after global cerebral ischaemia. Biochem Soc Trans 2007; 34:1283-6. [PMID: 17073802 DOI: 10.1042/bst0341283] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
p53, a tumour suppressor, is involved in DNA repair and cell death processes and mediates apoptosis in response to death stimuli by transcriptional activation of pro-apoptotic genes and by transcription-independent mechanisms. In the latter process, p53 induces permeabilization of the outer mitochondrial membrane by forming an inhibitory complex with a protective Bcl-2 family protein, resulting in cytochrome c release in several cell line systems. However, it is unclear how the mitochondrial p53 pathway mediates neuronal apoptosis after cerebral ischaemia. We examined interaction between the mitochondrial p53 pathway and vulnerable hippocampal CA1 neurons using a tGCI (transient global cerebral ischaemia) rat model. We showed mitochondrial translocation of p53 and its binding to Bcl-X(L). Mitochondrial p53 translocation, interaction between p53 and Bcl-X(L), and cytochrome c release from mitochondria and subsequent CA1 neuronal death were prevented by pifithrin-alpha, a p53-specific inhibitor. These results suggest that the mitochondrial p53 pathway plays a role in delayed CA1 neuronal death after tGCI.
Collapse
Affiliation(s)
- H Endo
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS #P314, Stanford, CA 94305-5487, USA
| | | | | |
Collapse
|
119
|
Kern TS, Miller CM, Du Y, Zheng L, Mohr S, Ball SL, Kim M, Jamison JA, Bingaman DP. Topical administration of nepafenac inhibits diabetes-induced retinal microvascular disease and underlying abnormalities of retinal metabolism and physiology. Diabetes 2007; 56:373-9. [PMID: 17259381 DOI: 10.2337/db05-1621] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pharmacologic treatment of diabetic retinopathy via eyedrops could have advantages but has not been successful to date. We explored the effect of topical Nepafenac, an anti-inflammatory drug known to reach the retina when administered via eyedrops, on the development of early stages of diabetic retinopathy and on metabolic and physiologic abnormalities that contribute to the retinal disease. Streptozotocin-induced diabetic rats were assigned to three groups (0.3% Nepafenac eyedrops, vehicle eyedrops, and untreated control) for comparison to age-matched nondiabetic control animals. Eyedrops were administered in both eyes four times per day for 2 and 9 months. At 2 months of diabetes, insulin-deficient diabetic control rats exhibited significant increases in retinal prostaglandin E(2), superoxide, vascular endothelial growth factor (VEGF), nitric oxide (NO), cyclooxygenase-2, and leukostasis within retinal microvessels. All of these abnormalities except NO and VEGF were significantly inhibited by Nepafenac. At 9 months of diabetes, a significant increase in the number of transferase-mediated dUTP nick-end labeling-positive capillary cells, acellular capillaries, and pericyte ghosts were measured in control diabetic rats versus nondiabetic controls, and topical Nepafenac significantly inhibited all of these abnormalities (all P < 0.05). Diabetes-induced activation of caspase-3 and -6 in retina was partially inhibited by Nepafenac (all P < 0.05). Oscillatory potential latency was the only abnormality of retinal function reproducibly detected in these diabetic animals, and Nepafenac significantly inhibited this defect (P < 0.05). Nepafenac did not have a significant effect on diabetes-induced loss of cells in the ganglion cell layer or in corneal protease activity. Topical ocular administration of Nepafenac achieved sufficient drug delivery to the retina and diabetes-induced alterations in retinal vascular metabolism, function, and morphology were inhibited. In contrast, little or no effect was observed on diabetes-induced alterations in retinal ganglion cell survival. Local inhibition of inflammatory pathways in the eye offers a novel therapeutic approach toward inhibiting the development of lesions of diabetic retinopathy.
Collapse
Affiliation(s)
- Timothy S Kern
- Medicine and Ophthalmology, 434 Biomedical Research Building, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Kamada H, Yu F, Nito C, Chan PH. Influence of hyperglycemia on oxidative stress and matrix metalloproteinase-9 activation after focal cerebral ischemia/reperfusion in rats: relation to blood-brain barrier dysfunction. Stroke 2007; 38:1044-9. [PMID: 17272778 PMCID: PMC1828129 DOI: 10.1161/01.str.0000258041.75739.cb] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND PURPOSE Hyperglycemia is linked to a worse outcome after ischemic stroke. Among the manifestations of brain damage caused by ischemia are blood-brain barrier (BBB) disruption and edema formation. Oxidative stress and matrix metalloproteinase-9 (MMP-9) activation are implicated in BBB dysfunction after ischemia/reperfusion injury. Our present study was designed to clarify the relation among hyperglycemia, oxidative stress, and MMP-9 activation associated with BBB dysfunction after transient focal cerebral ischemia (tFCI). METHODS We used a model of 60 minutes of middle cerebral artery occlusion on the following animals: normoglycemic wild-type rats, wild-type rats with hyperglycemia induced by streptozotocin, and human copper/zinc superoxide dismutase (SOD1) transgenic rats with streptozotocin-induced hyperglycemia. We evaluated edema volume, Evans blue leakage, and oxidative stress, such as the carbonyl groups and oxidized hydroethidine (HEt), SOD activity, and gelatinolytic activity, including MMP-9. RESULTS Hyperglycemia significantly increased edema volume and Evans blue leakage. Moreover, it enhanced the levels of the carbonyl groups, the oxidized HEt signals, and MMP-9 activity after tFCI without alteration in SOD activity. Gelatinolytic activity and oxidized HEt signals had a clear spatial relation in the hyperglycemic rats. SOD1 overexpression reduced the hyperglycemia-enhanced Evans blue leakage and MMP-9 activation after tFCI. CONCLUSIONS Hyperglycemia increases oxidative stress and MMP-9 activity, exacerbating BBB dysfunction after ischemia/reperfusion injury. Superoxide overproduction may be a causal link among hyperglycemia, MMP-9 activation, and BBB dysfunction.
Collapse
Affiliation(s)
- Hiroshi Kamada
- Department of Neurosurgery, Stanford University, Stanford, CA 94305-5487, USA
| | | | | | | |
Collapse
|
121
|
Bas O, Songur A, Sahin O, Mollaoglu H, Ozen OA, Yaman M, Eser O, Fidan H, Yagmurca M. The protective effect of fish n-3 fatty acids on cerebral ischemia in rat hippocampus. Neurochem Int 2007; 50:548-54. [PMID: 17187901 DOI: 10.1016/j.neuint.2006.11.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 10/12/2006] [Accepted: 11/06/2006] [Indexed: 11/21/2022]
Abstract
Reactive oxygen species (ROS) have been implicated in the pathogenesis of cerebral injury after ischemia-reperfusion (I/R). Fish n-3 essential fatty acids (EFA), contain eicosapentaenoic acids (EPA) and docosahexoenoic acids (DHA), exhibit antioxidant properties. DHA is an important component of brain membrane phospholipids and is necessary for the continuity of neuronal functions. EPA prevents platelet aggregation and inhibits the conversion of arachidonic acid into thromboxane A(2) and prostaglandins. They have been suggested to be protective agents against neurological and neuropsychiatric disorders. In this study, the neuroprotective effects of fish n-3 EFA on oxidant-antioxidant systems and number of apoptotic neurons of the hippocampal formation (HF) subjected to cerebral I/R injury was investigated in Sprague-Dawley rats. Six rats were used as control (Group I). Cerebral ischemia was produced by occlusion of both the common carotid arteries combined with hypotension for 45 min, followed by reperfusion for 30 min, in rats either on a standard diet (Group II) or a standard diet plus fish n-3 EFA (Marincap((R)), 0.4 g/kg/day, by gavage) for 14 days (Group III). At the end of procedures, the rats were sacrificed and their brains were removed immediately. The levels of malonedialdehyde (MDA) and nitric oxide (NO) and activities of superoxide dismutase (SOD) and catalase (CAT) were measured in left HF. In addition, the number of apoptotic neurons was counted by terminal transferase dUTP nick end labelling (TUNEL) assay in histological samples of the right HF. We found that SOD activities and MDA levels increased in Group III rats compared with Group II rats. On the other hand, CAT activities and NO levels were found to be decreased in Group III rats compared with Group II rats. Additionally, the number of apoptotic neurons was lower in Group III in comparison with Group II rats. The present findings suggest that fish n-3 EFA could decrease the oxidative status and apoptotic changes in ischemic rat hippocampal formation. Dietary supplementation of n-3 EFA may be beneficial to preserve or ameliorate ischemic cerebral vascular disease.
Collapse
Affiliation(s)
- Orhan Bas
- Kocatepe University, School of Medicine, Department of Anatomy, Afyonkarahisar, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. ACTA ACUST UNITED AC 2007; 54:34-66. [PMID: 17222914 DOI: 10.1016/j.brainresrev.2006.11.003] [Citation(s) in RCA: 541] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 11/09/2006] [Accepted: 11/10/2006] [Indexed: 11/20/2022]
Abstract
Cerebral ischemia (stroke) triggers a complex series of biochemical and molecular mechanisms that impairs the neurologic functions through breakdown of cellular integrity mediated by excitotoxic glutamatergic signalling, ionic imbalance, free-radical reactions, etc. These intricate processes lead to activation of signalling mechanisms involving calcium/calmodulin-dependent kinases (CaMKs) and mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK). The distribution of these transducers bring them in contact with appropriate molecular targets leading to altered gene expression, e.g. ERK and JNK mediated early gene induction, responsible for activation of cell survival/damaging mechanisms. Moreover, inflammatory reactions initiated at the neurovascular interface and alterations in the dynamic communication between the endothelial cells, astrocytes and neurons are thought to substantially contribute to the pathogenesis of the disease. The damaging mechanisms may proceed through rapid nonspecific cell lysis (necrosis) or by active form of cell demise (apoptosis or necroptosis), depending upon the severity and duration of the ischemic insult. A systematic understanding of these molecular mechanisms with prospect of modulating the chain of events leading to cellular survival/damage may help to generate the potential strategies for neuroprotection. This review briefly covers the current status on the molecular mechanisms of stroke pathophysiology with an endeavour to identify potential molecular targets such as targeting postsynaptic density-95 (PSD-95)/N-methyl-d-aspartate (NMDA) receptor interaction, certain key proteins involved in oxidative stress, CaMKs and MAPKs (ERK, p38 and JNK) signalling, inflammation (cytokines, adhesion molecules, etc.) and cell death pathways (caspases, Bcl-2 family proteins, poly (ADP-ribose) polymerase-1 (PARP-1), apoptosis-inducing factor (AIF), inhibitors of apoptosis proteins (IAPs), heat shock protein 70 (HSP70), receptor interacting protein (RIP), etc., besides targeting directly the genes itself. However, selecting promising targets from various signalling cascades, for drug discovery and development is very challenging, nevertheless such novel approaches may lead to the emergence of new avenues for therapeutic intervention in cerebral ischemia.
Collapse
Affiliation(s)
- Suresh L Mehta
- Division of Pharmacology, Central Drug Research Institute, Chatter Manzil Palace, POB-173, Lucknow-226001, India
| | | | | |
Collapse
|
123
|
Stoka V, Turk V, Bredesen DE. Differential regulation of Smac/DIABLO and Hsp-70 during brain maturation. Neuromolecular Med 2007; 9:255-63. [PMID: 17914183 PMCID: PMC2755584 DOI: 10.1007/s12017-007-8007-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 11/30/1999] [Accepted: 03/14/2007] [Indexed: 12/23/2022]
Abstract
The heat shock protein (Hsp) system is a cell defense mechanism constitutively expressed at the basal state and essential for cell survival in response to damaging stimuli. Apoptosis is a physiological cell death program that preserves tissue homeostasis. We investigated the intrinsic pathway of apoptosis at various stages of brain maturation in CD-1 mice, triggered by two mitochondrial proapoptotic proteins, cytochrome c and Smac/DIABLO, and the pathway's regulation by Hsp-70. Smac/DIABLO and Hsp-70 proteins were upregulated 2-fold and 1.5-3-fold, respectively, after birth. In contrast, in the presence of cytochrome c/2'-deoxyadenosine 5'-triphosphate (dATP), caspase activity in mouse brain cell-free extracts increased 90-fold and 61-fold, at fetal and neonatal stages, whereas no activation was detected 15 days postnatally or at any subsequent times. These results indicate that the activation pattern of the intrinsic pathway of apoptosis undergoes a marked shift during postnatal maturation.
Collapse
Affiliation(s)
- Veronika Stoka
- Buck Institute for Age Research, 8001 Redwood Blvd., Novato, CA 94945, USA
- Department of Biochemistry, Molecular and Structural Biology, J. Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Vito Turk
- Department of Biochemistry, Molecular and Structural Biology, J. Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Dale E. Bredesen
- Buck Institute for Age Research, 8001 Redwood Blvd., Novato, CA 94945, USA
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
124
|
Niyaz M, Numakawa T, Matsuki Y, Kumamaru E, Adachi N, Kitazawa H, Kunugi H, Kudo M. MCI-186 prevents brain tissue from neuronal damage in cerebral infarction through the activation of intracellular signaling. J Neurosci Res 2007; 85:2933-42. [PMID: 17628025 DOI: 10.1002/jnr.21412] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mechanism by which MCI-186 (3-methyl-1-phenyl-2-prazolin-5-one) exerts protective effects during cerebral infarction, other than its function as a radical scavenger, has not been fully elucidated. Here, we found that MCI-186 stimulates intracellular survival signaling in vivo and in vitro. In a rat infarction model, the infarct area was significantly smaller and the degree of edema was reduced in MCI-186-treated animals. In the MCI-186-treated rats, the number of single stranded (ss) DNA-positive damaged cells in the peri-infarct area was decreased compared with the control, suggesting that MCI-186 protects cerebral tissues from cell damage. To clarify the mechanisms underlying the effect of MCI-186, we also examined the survival-promoting effect of this agent on cultured cortical neurons. In this in vitro system, MCI-186 blocked serum-free induced neuronal cell death. Interestingly, an increase in the activation of both Akt (a component of the PI3 kinase pathway) and ERK (a component of the MAP kinase pathway) was observed in the cortical cultures after MCI-186 exposure. Furthermore, the MCI-186-dependent survival effect in vitro was blocked by U0126, an MEK (an upstream of ERK) inhibitor, and also by LY294002, a PI3 kinase inhibitor. We also observed similar increases in the activation of Akt and ERK in the in vivo model, further suggesting that the antiapoptotic role of MCI-186 is mediated via the PI3 kinase and MAP kinase signaling pathways. We therefore conclude that, in addition to its role as a free radical scavenger, MCI-186 functions as an antiapoptotic factor by enhancing intracellular survival signaling.
Collapse
Affiliation(s)
- Madinyet Niyaz
- Department of Pathology, Tokyo Medical University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Davis AS, Zhao H, Sun GH, Sapolsky RM, Steinberg GK. Gene therapy using SOD1 protects striatal neurons from experimental stroke. Neurosci Lett 2006; 411:32-6. [PMID: 17110031 PMCID: PMC1716259 DOI: 10.1016/j.neulet.2006.08.089] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 08/24/2006] [Accepted: 08/25/2006] [Indexed: 11/19/2022]
Abstract
Reactive oxygen species contribute to neuronal death following cerebral ischemia. Prior studies using transgenic animals have demonstrated the neuroprotective effect of the antioxidant, copper/zinc superoxide dismutase (SOD1). In this study, we investigated whether SOD1 overexpression using gene therapy techniques in non-transgenic animals would increase neuronal survival. A neurotropic, herpes simplex virus-1 (HSV-1) vector containing the SOD1 gene was injected into the striatum either before or after transient focal cerebral ischemia. Striatal neuron survival at 2 days was improved by 52% when vector was delivered 12-15 h prior to ischemia and by 53% when vector delivery was delayed 2 h following ischemia. These data add to the growing literature, which suggests that an antioxidant approach, perhaps by employing gene therapy techniques, may be beneficial in the treatment of stroke.
Collapse
Affiliation(s)
- Alexis S Davis
- Department of Pediatrics, Stanford University School of Medicine, 300 Pasteur Drive R200, Stanford, CA 94305-5237, United States
| | | | | | | | | |
Collapse
|
126
|
Danielisová V, Némethová M, Gottlieb M, Burda J. The changes in endogenous antioxidant enzyme activity after postconditioning. Cell Mol Neurobiol 2006; 26:1181-91. [PMID: 16741674 PMCID: PMC11520593 DOI: 10.1007/s10571-006-9034-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 12/09/2005] [Indexed: 01/26/2023]
Abstract
1. The aim of this work was to study potential mechanisms participating in postischemic protection of selectively vulnerable CA1 neurons in the hippocampus. Experiments were focused on measuring changes in endogenous antioxidant enzyme activity. 2. Forebrain cerebral ischemia was induced in a rat by four-vessel occlusion. Ten minutes of ischemia induces so-called delayed neuronal death in selectively vulnerable CA1 region 3 days later. After 7 days of reperfusion, 71.6% of neurons succumb to neurodegeneration. When 5 min of ischemia was used as postconditioning, 2 days after 10 min of cerebral ischemia, delayed neuronal death in CA1 was almost completely (89.9%) prevented. 3. Searching for mechanisms of protection, we measured the activity of endogenous antioxidant enzymes. Activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were measured in the hippocampus, striatum and cortex by spectrophotometric methods after 10 min of ischemia used as the preconditioning. Two days after the preconditioning or the sham operation, second ischemia was induced for 5 min. We observed significant increase of total SOD activity in all studied regions of the brain 5 h after postconditioning (5 min of ischemia). SOD activity decreased to control values after 24 h. 4. In some experiments, we used intraperitoneal injections of norepinephrine (3.1 microM/kg) or 3-nitropropionic acid (20 mg/kg) as postconditioning, instead of ischemia. All three treatments resulted in significant increase of SOD activity, but norepinephrine was the most effective. The same effect as was seen for total SOD activity could be observed for CuZn-SOD as well as Mn-SOD activity. Similarly, considerable increase in the activity of catalase was detected 5 h after postconditioning (5 min of ischemia). It is interesting that the greatest changes were established in selectively vulnerable hippocampus and striatum. As in the case of SOD, the highest levels of CAT activity were induced by norepinephrine, while lower but significant increase in CAT activity was induced by 3-nitropropionic acid.5. Our results suggest that endogenous antioxidants SOD and CAT could play considerable neuroprotective role after postconditioning.
Collapse
Affiliation(s)
- Viera Danielisová
- Institute of Neurobiology, Slovak Academy of Sciences, Soltesovej, 040 01 Kosice, Soltesovej, Slovak Republic.
| | | | | | | |
Collapse
|
127
|
Chan PH. Mitochondrial dysfunction and oxidative stress as determinants of cell death/survival in stroke. Ann N Y Acad Sci 2006; 1042:203-9. [PMID: 15965064 DOI: 10.1196/annals.1338.022] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mitochondria are the powerhouse of the cell. Their primary physiological function is to generate ATP through oxidative phosphorylation via the electron transport chain. Reactive oxygen radicals generated from mitochondria have been implicated in acute brain injuries, like stroke and neurodegeneration. Recent studies have shown that mitochondrially formed oxidants are mediators of molecular signaling and have implicated mitochondria-dependent apoptosis involving pro- and antiapoptotic protein binding, the release of cytochrome c and Smac, the activation of downstream caspase-9 and -3, and the fragmentation of DNA. Oxidative stress and the redox state are also implicated in the survival signaling pathway that involves phosphatidylinositol 3-kinase (PI3-K)/Akt and downstream signaling molecular bindings like Bad/Bcl-X(L) and phosphorylated Bad/14-3-3. Genetically modified mice (SOD1, SOD2) or rats that overexpress or are deficient in superoxide dismutase have provided strong evidence in support of the role of mitochondrial dysfunction and oxidative stress as determinants of neuronal death/survival after stroke and neurodegeneration.
Collapse
Affiliation(s)
- Pak H Chan
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305-5487, USA.
| |
Collapse
|
128
|
Boukhtouche F, Vodjdani G, Jarvis CI, Bakouche J, Staels B, Mallet J, Mariani J, Lemaigre-Dubreuil Y, Brugg B. Human retinoic acid receptor-related orphan receptor alpha1 overexpression protects neurones against oxidative stress-induced apoptosis. J Neurochem 2006; 96:1778-89. [PMID: 16539693 DOI: 10.1111/j.1471-4159.2006.03708.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Retinoic acid receptor-related orphan receptor alpha (RORalpha) is a transcription factor belonging to the superfamily of nuclear receptors. Disruption of the Rora gene in the mouse results in a defect in the development of Purkinje cells leading to a cerebellar atrophy, which suggests a neuroprotective role for RORalpha. To test this hypothesis, the survival rate of lentiviral-mediated human RORalpha1-overexpressing neurones has been evaluated in response to different stressors disturbing the redox homeostasis, such as beta-amyloid peptide, c(2)-ceramide and H(2)O(2). We show that overexpression of human RORalpha1 provides neuroprotection by increasing the expression of the antioxidant proteins glutathione peroxidase 1 and peroxiredoxin 6, leading to a reduction in the accumulation of stress-induced reactive oxygen species. We further demonstrate that the neuroprotective effect of RORalpha is predominantly mediated by glutathione peroxidase 1 and peroxiredoxin 6. These results suggest a new role for RORalpha in the control of the neuronal oxidative stress and thus represents a new transcription factor of interest in the regulation of reactive oxygen species-induced neurodegenerative processes during ageing.
Collapse
Affiliation(s)
- Fatiha Boukhtouche
- Université Pierre et Marie Curie-Paris 6, UMR 7102, Neurobiologie des Processus Adaptifs CNRS, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Blomgren K, Hagberg H. Free radicals, mitochondria, and hypoxia-ischemia in the developing brain. Free Radic Biol Med 2006; 40:388-97. [PMID: 16443153 DOI: 10.1016/j.freeradbiomed.2005.08.040] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2005] [Revised: 08/01/2005] [Accepted: 08/24/2005] [Indexed: 11/17/2022]
Abstract
The immature brain is particularly susceptible to free radical injury because of its poorly developed scavenging systems and high availability of iron for the catalytic formation of free radicals. Neurons are more vulnerable to free radical damage than glial cells, but oligodendrocyte progenitors and immature oligodendrocytes in very prematurely born infants are selectively vulnerable to depletion of antioxidants and free radical attack. Reactive oxygen and nitrogen species play important roles in the initiation of apoptotic mechanisms and in mitochondrial permeability transition, and therefore constitute important targets for therapeutic intervention. Oxidative stress is an early feature after cerebral ischemia and experimental studies targeting the formation of free radicals demonstrate various degrees of protection after perinatal insults. Oxidative stress-regulated release of proapoptotic factors from mitochondria appears to play a much more important role in the immature brain. This review will summarize and compare with the adult brain some of the current knowledge of free radical formation in the developing brain and its roles in the pathophysiology after cerebral hypoxia-ischemia.
Collapse
Affiliation(s)
- Klas Blomgren
- Arvid Carlsson Institute, Sahlgrenska Academy, Göteborg University, Sweden.
| | | |
Collapse
|
130
|
Van Hemelrijck A, Hachimi-Idrissi S, Sarre S, Ebinger G, Michotte Y. Post-ischaemic mild hypothermia inhibits apoptosis in the penumbral region by reducing neuronal nitric oxide synthase activity and thereby preventing endothelin-1-induced hydroxyl radical formation. Eur J Neurosci 2006; 22:1327-37. [PMID: 16190888 DOI: 10.1111/j.1460-9568.2005.04331.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Previously, we showed that treatment with resuscitative, post-ischaemic mild hypothermia (34 degrees C for 2 h) reduced apoptosis in the penumbra (cortex), but not in the core (striatum) of an endothelin-1 (Et-1)-induced focal cerebral infarct in the anaesthetized rat. Therefore, the purpose of this study was to investigate by which pathways resuscitative mild hypothermia exerts its neuroprotective effect in this model. The amino acids glutamate, serine, glutamine, alanine, taurine, arginine and the NO-related compound citrulline were sampled from the striatum and cortex of the ischaemic hemisphere using in vivo microdialysis. The in vivo salicylate trapping method was applied for monitoring hydroxyl radical formation via 2,3 dihydroxybenzoic acid (2,3 DHBA) detection. Caspase-3, neuronal nitric oxide synthase (nNOS) immunoreactivity and the volume of ischaemic damage were determined 24 h after the insult. In both the striatum and the cortex, Et-1-induced increases in glutamate, taurine and alanine were refractory to mild hypothermia. However, mild hypothermia significantly attenuated the ischaemia-induced 2,3 DHBA levels and the nNOS immunoreactivity in the cortex, but not in the striatum. These observations were associated with a decreased caspase-3 immunoreactivity. These results suggest that mild hypothermia exerts its neuroprotective effect in the penumbra partially by reducing nNOS activity and thereby preventing oxidative stress. Furthermore, we confirm our previous findings that the neuroprotective effect of resuscitative hypothermia is not mediated by changes in ischaemia-induced amino acid release as they could not be associated with the ischaemia-induced damage in the Et-1 rat model.
Collapse
Affiliation(s)
- An Van Hemelrijck
- Department of Pharmaceutical Chemistry and Drug Analysis, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | | | | | | | | |
Collapse
|
131
|
Saito A, Hayashi T, Okuno S, Nishi T, Chan PH. Modulation of proline-rich akt substrate survival signaling pathways by oxidative stress in mouse brains after transient focal cerebral ischemia. Stroke 2006; 37:513-7. [PMID: 16397181 DOI: 10.1161/01.str.0000198826.56611.a2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE A proline-rich Akt substrate (PRAS) contributes to the regulation of apoptosis after a variety of cell death stimuli, as well as in an in vivo transient focal cerebral ischemia (tFCI) model. We reported previously that overexpression of copper/zinc-superoxide dismutase (SOD1) reduces apoptotic cell death after tFCI. Our present study was designed to clarify the relationship between the PRAS signaling pathway and oxidative stress in the regulation of apoptosis after tFCI. METHODS We used a tFCI model with SOD1 transgenic mice and wild-type littermates to examine the expression of phosphorylated PRAS (pPRAS) by Western blotting and immunohistochemistry and the interaction of pPRAS with phosphorylated Akt (pPRAS/pAkt) or the 14-3-3 protein (pPRAS/14-3-3) by coimmunoprecipitation. Direct oxidation of the carbonyl groups, an indication of oxidative injury to total and individual proteins caused by tFCI, was examined using a 2,4-dinitrophenylhydrazone reaction assay. RESULTS Expression of pPRAS, pPRAS/pAkt, and pPRAS/14-3-3 decreased 2 hours after tFCI. Oxidized hydroethidine did not colocalize with expression of pPRAS. Individual oxidized carbonyls in pPRAS remarkably increased 2 hours after tFCI but were significantly reduced by SOD1 2 hours after tFCI. Expression of pPRAS, pPRAS/pAkt, and pPRAS/14-3-3 was promoted by SOD1 during the same time course. CONCLUSIONS These results suggest that overexpression of SOD1 may affect the PRAS pathway after tFCI by reducing the direct oxidative reaction to pPRAS after reperfusion injury.
Collapse
Affiliation(s)
- Atsushi Saito
- Department of Neurosurgery, Program in Neurosciences, Stanford University School of Medicine, California, USA
| | | | | | | | | |
Collapse
|
132
|
Ishikawa A, Jinno S, Suzuki T, Hayashi T, Kawai T, Mizuno T, Mori T, Hattori M. Global Gene Expression Analyses of Mouse Fibroblast L929 Cells Exposed to IC50 MMA by DNA Microarray and Confirmation of Four Detoxification Genes' Expression by Real-time PCR. Dent Mater J 2006; 25:205-13. [PMID: 16916219 DOI: 10.4012/dmj.25.205] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Methyl methacrylate (MMA) is the main component of methyl methacrylic resin, which is widely used in dentistry. Previous studies have investigated whether MMA has any adverse effects on growth and gene expression in mouse fibroblast L929 cells. The present study was designed to further understand the effects of MMA by focusing on cDNA microarray data after L929 cells were exposed to MMA. MMA was found to inhibit cell growth and induce detoxification response genes in L929 cells. One of the most highly up-regulated genes was glutathione S-transferase, alpha 1 (Ya) (Gsta1), which has recently been shown to participate in Nrf2 regulation and is considered to be related to detoxification response. Molecular biological data obtained in the present study may therefore provide useful insights into the effects of MMA on living tissue.
Collapse
Affiliation(s)
- Atsuko Ishikawa
- Second Department of Prosthodontics, School of Dentistry, Aichi-gakuin University, 2-11 Suemori-dori, Chikusaku, Nagoyashi, Aichi-ken 464-8651, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Stroev SA, Gluschenko TS, Tjulkova EI, Rybnikova EA, Samoilov MO, Pelto-Huikko M. The effect of preconditioning on the Cu, Zn superoxide dismutase expression and enzyme activity in rat brain at the early period after severe hypobaric hypoxia. Neurosci Res 2005; 53:39-47. [PMID: 16039737 DOI: 10.1016/j.neures.2005.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 05/27/2005] [Indexed: 10/25/2022]
Abstract
Severe hypoxia results in functional and structural injury of the brain. A preconditioning with repetitive episodes of mild hypoxia considerably ameliorates neuronal resistance to subsequent severe hypoxia. Activation of endogenous antioxidants including Cu, Zn-depending superoxide dismutase (Cu, Zn-SOD) (EC.1.15.1.1) is one of the main cell defense mechanisms against oxidative stress induced by hypoxia. Alterations of expression and enzyme activity of Cu, Zn-SOD 3 and 24h after severe hypobaric hypoxia in forebrain structures of preconditioned and non-preconditioned rats were investigated. We found that hypoxia without preconditioning suppressed the Cu, Zn-SOD enzyme activity at 3h time-point but preconditioning essentially modified the reaction to severe hypoxia by increasing the expression and activity of Cu, Zn-SOD during early stages of reoxygenation crucial for apoptosis initiation.
Collapse
Affiliation(s)
- Serguei A Stroev
- Department of Developmental Biology, Tampere University Medical School and Department of Pathology, Tampere University Hospital, Tampere FIN-33014, Finland
| | | | | | | | | | | |
Collapse
|
134
|
Schild L, Reiser G. Oxidative stress is involved in the permeabilization of the inner membrane of brain mitochondria exposed to hypoxia/reoxygenation and low micromolar Ca2+. FEBS J 2005; 272:3593-601. [PMID: 16008559 DOI: 10.1111/j.1742-4658.2005.04781.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
From in vivo models of stroke it is known that ischemia/reperfusion induces oxidative stress that is accompanied by deterioration of brain mitochondria. Previously, we reported that the increase in Ca2+ induces functional breakdown and morphological disintegration in brain mitochondria subjected to hypoxia/reoxygenation (H/R). Protection by ADP indicated the involvement of the mitochondrial permeability transition pore in the mechanism of membrane permeabilization. Until now it has been unclear how reactive oxygen species (ROS) contribute to this process. We now report that brain mitochondria which had been subjected to H/R in the presence of low micromolar Ca2+ display low state 3 respiration (20% of control), loss of cytochrome c, and reduced glutathione levels (75% of control). During reoxygenation, significant mitochondrial generation of hydrogen peroxide (H2O2) was detected. The addition of the membrane permeant superoxide anion scavenger TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) suppressed the production of H2O2 by brain mitochondria metabolizing glutamate plus malate by 80% under normoxic conditions. TEMPOL partially protected brain mitochondria exposed to H/R and low micromolar Ca2+ from decrease in state 3 respiration (from 25% of control to 60% of control with TEMPOL) and permeabilization of the inner membrane. Membrane permeabilization was obvious, because state 3 respiration could be stimulated by extramitochondrial NADH. Our data suggest that ROS and Ca2+ synergistically induce permeabilization of the inner membrane of brain mitochondria exposed to H/R. However, permeabilization can only partially be prevented by suppressing mitochondrial generation of ROS. We conclude that transient deprivation of oxygen and glucose during temporary ischemia coupled with elevation in cytosolic Ca2+ concentration triggers ROS generation and mitochondrial permeabilization, resulting in neural cell death.
Collapse
Affiliation(s)
- Lorenz Schild
- Bereich Pathologische Biochemie des Instituts für Klinische Chemie und Pathologische Biochemie, Otto-von-Guericke-Universität Magdeburg, Germany.
| | | |
Collapse
|
135
|
Zhao H, Yenari MA, Cheng D, Sapolsky RM, Steinberg GK. Biphasic cytochrome c release after transient global ischemia and its inhibition by hypothermia. J Cereb Blood Flow Metab 2005; 25:1119-29. [PMID: 15789032 DOI: 10.1038/sj.jcbfm.9600111] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hypothermia is effective in preventing ischemic damage. A caspase-dependent apoptotic pathway is involved in ischemic damage, but how hypothermia inhibits this pathway after global cerebral ischemia has not been well explored. It was determined whether hypothermia protects the brain by altering cytochrome c release and caspase activity. Cerebral ischemia was produced by two-vessel occlusion plus hypotension for 10 mins. Body temperature in hypothermic animals was reduced to 33 degrees C before ischemia onset and maintained for 3 h after reperfusion. Western blots of subcellular fractions revealed biphasic cytosolic cytochrome c release, with an initial peak at about 5 h after ischemia, which decreased at 12 to 24 h, and a second, larger peak at 48 h. Caspase-3 and -9 activity increased at 12 and 24 h. A caspase inhibitor, Z-DEVD-FMK, administered 5 and 24 h after ischemia onset, protected hippocampal CA1 neurons from injury and blocked the second cytochrome c peak, suggesting that caspases mediate this second phase. Hypothermia (33 degrees C), which prevented CA1 injury, did not inhibit cytochrome c release at 5 h, but reduced cytochrome c release at 48 h. Caspase-3 and -9 activity was markedly attenuated by hypothermia at 12 and 24 h. Thus, biphasic cytochrome c release occurs after transient global ischemia and mild hypothermia protects against ischemic damage by blocking the second phase of cytochrome c release, possibly by blocking caspase activity.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Neurosurgery, Stanford University, Stanford, California 94305-5327, USA
| | | | | | | | | |
Collapse
|
136
|
Kofler J, Hurn PD, Traystman RJ. SOD1 overexpression and female sex exhibit region-specific neuroprotection after global cerebral ischemia due to cardiac arrest. J Cereb Blood Flow Metab 2005; 25:1130-7. [PMID: 15843790 DOI: 10.1038/sj.jcbfm.9600119] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cardiac arrest is often associated with poor neurologic outcome since therapeutic options are limited. We tested the hypothesis that overexpression of CuZn superoxide dismutase (SOD+/-) is neuroprotective in a new murine model of cardiac arrest and cardiopulmonary resuscitation (CPR). Second, we investigated if female and male mice sustain similar injury and if sex-specific outcomes are altered by SOD overexpression. Neuronal injury was quantified 3 days after 8 mins of KCl-induced cardiac arrest by calculating the percentage of ischemic neurons for caudoputamen and hippocampal CA1 region. In rostral caudoputamen, less neuronal cell loss was found for SOD+/- mice (31%+/-22%) when compared with wild-type (WT) mice (47%+/-31%, P<0.05). Superoxide dismutase overexpression did not reduce injury in the caudal caudoputamen. No sex-linked protection was evident in either genotype in the caudoputamen. Female WT mice had less CA1 injury than male WT mice (26%+/-31% versus 54%+/-30%, P<0.05), whereas no sex difference was found in SOD+/- mice (female: 42%+/-29%; male: 37%+/-37%). Comparison of hippocampal injury between genotypes revealed no differences for either males or females. In conclusion, SOD1 overexpression and female sex were associated with significant neuroprotection in this murine cardiac arrest model. However, no additive neuroprotection was observed, and these beneficial effects were restricted to specific brain regions.
Collapse
Affiliation(s)
- Julia Kofler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | | | | |
Collapse
|
137
|
Hwang IK, Eum WS, Yoo KY, Cho JH, Kim DW, Choi SH, Kang TC, Kwon OS, Kang JH, Choi SY, Won MH. Copper chaperone for Cu,Zn-SOD supplement potentiates the Cu,Zn-SOD function of neuroprotective effects against ischemic neuronal damage in the gerbil hippocampus. Free Radic Biol Med 2005; 39:392-402. [PMID: 15993338 PMCID: PMC1992741 DOI: 10.1016/j.freeradbiomed.2005.03.027] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2004] [Revised: 03/16/2005] [Accepted: 03/23/2005] [Indexed: 10/25/2022]
Abstract
In the present study, we investigated the chronological alterations in SOD1 and its copper chaperone (chaperone for superoxide dismutase, CCS) immunoreactivities and their neuroprotective effects against neuronal damage in the gerbil hippocampus after 5 min of transient forebrain ischemia. SOD1 and CCS immunoreactivities were significantly increased in the stratum pyramidale of the CA1 region at 24 and 12 h after ischemic insult, respectively. At 24 h after ischemic insult, the SOD1 and CCS immunoreactivities were colocalized in the CA1 pyramidal cells of the stratum pyramidale. Thereafter, their immunoreactivities were significantly decreased in the CA1 region. To elucidate the effects of CCS or CCS/SOD1, we constructed the expression vectors PEP-1-SOD and PEP-1-CCS. In the CCS-treated group and the CCS/SOD1-treated group, 43.9 and 78.9% pyramidal cells, respectively, compared to the sham-operated group, were stained with cresyl violet 5 or 7 days after ischemic insult. The distribution pattern of active astrocytes and microglia in the PEP-CCS/SOD1-treated group 5 days after ischemic insult was similar to that of the sham-operated group. In addition, the SOD activity in the PEP-CCS- or PEP-CCS/SOD1-treated group was maintained by 10 days after ischemic insult. The SOD activity was higher in the PEP-CCS/SOD1-treated group vs the CCS-treated group. These results suggest that the enhanced expression of SOD1 and CCS may be related to compensatory mechanisms against ischemic damage and that cotreatment with CCS and SOD1 has a greater neuroprotective effect than treatment with CCS or SOD1 in isolation.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Lalonde R, Le Pêcheur M, Strazielle C, London J. Exploratory activity and motor coordination in wild-type SOD1/SOD1 transgenic mice. Brain Res Bull 2005; 66:155-62. [PMID: 15982533 DOI: 10.1016/j.brainresbull.2005.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 03/30/2005] [Accepted: 04/18/2005] [Indexed: 11/30/2022]
Abstract
SOD1 is one of several overexpressed genes in trisomy 21. In order to dissect possible genetic causes of the syndrome, wild-type SOD1/SOD1 transgenic mice were compared to FVB/N non-transgenic controls at 5 months of age in tests of exploratory activity and motor coordination. Wild-type SOD1/SOD1 transgenic mice had fewer stereotyped movements in an open-field and fell sooner from a rotorod than controls. In contrast, wild-type SOD1/SOD1 transgenic mice had fewer falls on a wire suspension test. There was no intergroup difference for ambulatory movements in the open-field, exploration of the elevated plus-maze, emergence from a small compartment, and motor coordination on a stationary beam. These results indicate that homozygous mice expressing human SOD1 are impaired in their ability to adjust their posture in response to a moving surface and make fewer small-amplitude movements without any change in general exploratory activity.
Collapse
Affiliation(s)
- R Lalonde
- Université de Rouen, Faculté de Médecine et de Pharmacie, INSERM U614, Bâtiment de Recherche, 22 bld Gambetta, Salle 1D18, 76183 Rouen Cedex, France.
| | | | | | | |
Collapse
|
139
|
Sugawara T, Kinouchi H, Oda M, Shoji H, Omae T, Mizoi K. Candesartan reduces superoxide production after global cerebral ischemia. Neuroreport 2005; 16:325-8. [PMID: 15729131 DOI: 10.1097/00001756-200503150-00004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Excessive superoxide production after cerebral ischemia is known to mediate neuronal injury. Angiotensin II type 1 receptor activation results in production of superoxide, but whether angiotensin II type 1 receptor blockade prevents production of superoxide and subsequent neuronal injury after ischemia remains unclear. Normotensive rats received the angiotensin II type 1 receptor blocker, candesartan or only vehicle before induction of global cerebral ischemia. Approximately 30% of the hippocampal CA1 neurons survived in candesartan-treated animals, whereas only 2% of neurons survived in vehicle-treated animals. Superoxide production was significantly less in these vulnerable neurons in candesartan-treated animals than in vehicle-treated animals. Angiotensin II type 1 receptor may have an essential role in superoxide production and subsequent injury in vulnerable neurons after global cerebral ischemia.
Collapse
Affiliation(s)
- Taku Sugawara
- Department of Neurosurgery, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
| | | | | | | | | | | |
Collapse
|
140
|
Peluffo H, Acarin L, Faiz M, Castellano B, Gonzalez B. Cu/Zn superoxide dismutase expression in the postnatal rat brain following an excitotoxic injury. J Neuroinflammation 2005; 2:12. [PMID: 15929797 PMCID: PMC1164430 DOI: 10.1186/1742-2094-2-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Accepted: 06/01/2005] [Indexed: 01/11/2023] Open
Abstract
Background In the nervous system, as in other organs, Cu/Zn superoxide dismutase (Cu/Zn SOD) is a key antioxidant enzyme involved in superoxide detoxification in normal cellular metabolism and after cell injury. Although it has been suggested that immature brain has a different susceptibility to oxidative damage than adult brain, the distribution and cell-specific expression of this enzyme in immature brain and after postnatal brain damage has not been documented. Methods In this study, we used immunohistochemistry and western blot to analyze the expression of Cu/Zn SOD in intact immature rat brain and in immature rat brain after an NMDA-induced excitotoxic cortical injury performed at postnatal day 9. Double immunofluorescence labelling was used to identify Cu/Zn SOD-expressing cell populations. Results In intact immature brain, Cu/Zn SOD enzyme was widely expressed at high levels in neurons mainly located in cortical layers II, III and V, in the sub-plate, in the pyriform cortex, in the hippocampus, and in the hypothalamus. Glial fibrillary acidic protein-positive cells only showed Cu/Zn SOD expression in the glia limitans and in scattered cells of the ventricle walls. No expression was detected in interfascicular oligodendroglia, microglia or endothelial cells. Following excitotoxic damage, neuronal Cu/Zn SOD was rapidly downregulated (over 2–4 hours) at the injection site before neurodegeneration signals and TUNEL staining were observed. Later, from 1 day post-lesion onward, an upregulation of Cu/Zn SOD was found due to increased expression in astroglia. A further increase was observed at 3, 5 and 7 days that corresponded to extensive induction of Cu/Zn SOD in highly reactive astrocytes and in the astroglial scar. Conclusion We show here that, in the intact immature brain, the expression of Cu/Zn SOD was mainly found in neurons. When damage occurs, a strong and very rapid downregulation of this enzyme precedes neuronal degeneration, and is followed by an upregulation of Cu/Zn SOD in astroglial cells.
Collapse
Affiliation(s)
- Hugo Peluffo
- Unit of Histology, Department Of Cell Biology, Physiology, and Immunology; Autonomous University of Barcelona, 08193, Spain
- Institute of Neuroscience, Autonomous University of Barcelona, 08193, Spain
| | - Laia Acarin
- Unit of Histology, Department Of Cell Biology, Physiology, and Immunology; Autonomous University of Barcelona, 08193, Spain
- Institute of Neuroscience, Autonomous University of Barcelona, 08193, Spain
| | - Maryam Faiz
- Unit of Histology, Department Of Cell Biology, Physiology, and Immunology; Autonomous University of Barcelona, 08193, Spain
- Institute of Neuroscience, Autonomous University of Barcelona, 08193, Spain
| | - Bernardo Castellano
- Unit of Histology, Department Of Cell Biology, Physiology, and Immunology; Autonomous University of Barcelona, 08193, Spain
- Institute of Neuroscience, Autonomous University of Barcelona, 08193, Spain
| | - Berta Gonzalez
- Unit of Histology, Department Of Cell Biology, Physiology, and Immunology; Autonomous University of Barcelona, 08193, Spain
- Institute of Neuroscience, Autonomous University of Barcelona, 08193, Spain
| |
Collapse
|
141
|
Qian Y, Zheng Y, Abraham L, Ramos KS, Tiffany-Castiglioni E. Differential profiles of copper-induced ROS generation in human neuroblastoma and astrocytoma cells. ACTA ACUST UNITED AC 2005; 134:323-32. [PMID: 15836927 DOI: 10.1016/j.molbrainres.2004.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 11/05/2004] [Accepted: 11/06/2004] [Indexed: 10/25/2022]
Abstract
To determine neuronal and glial responses to copper (Cu) elevation in the CNS, human neuroblastoma and astrocytoma cells were used to compare their responses to Cu in terms of reactive oxygen species (ROS) generation and expression of enzymes responsible for anti-oxidation. Astrocytoma cells, not neuroblastoma cells, were responsive to Cu and Cu elevation was associated with ROS generation. Intracellular Cu levels as determined by inductively coupled plasma-mass spectrometry (ICP-MS), and expression levels of copper-transporting ATPase (ATP7A) and human copper transporter 1 (hCtr1) as detected by quantitative reverse transcription-polymerase chain reaction (RT-PCR), were comparable in both cell lines. Differences in Cu-induced ROS between two cell lines paralleled superoxide dismutase (SOD)-catalase expression as detected by Western blot analysis. Copper,zinc-SOD (Cu,Zn-SOD) and catalase protein levels were upregulated by Cu in neuroblastoma cells while Cu,Zn-SOD was down-regulated by Cu and catalase level was not changed in astrocytoma cells. Manganese-SOD (Mn-SOD) was not responsive to Cu in either cell line. Furthermore, 78-kDa glucose-regulated protein aggregation and upregulation were observed in Cu-treated astrocytoma cells, but not neuroblastoma cells. These data suggest that neurons use the SOD-catalase system to scavenge Cu-induced ROS while glia rely on the endoplasmic reticulum stress response to compensate for the reduction of ROS scavenging capacity.
Collapse
Affiliation(s)
- Yongchang Qian
- Department of Veterinary Integrative Biosciences, Texas A and M University, College Station, TX 77843, USA.
| | | | | | | | | |
Collapse
|
142
|
Danielisová V, Némethová M, Gottlieb M, Burda J. Changes of Endogenous Antioxidant Enzymes during Ischemic Tolerance Acquisition. Neurochem Res 2005; 30:559-65. [PMID: 16076025 DOI: 10.1007/s11064-005-2690-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to investigate the role of superoxide dismutase (SOD) and catalase (CAT) in brain ischemic tolerance induced by ischemic preconditioning. Forebrain cerebral ischemia was induced in rat by four vessel occlusion. The activities of the antioxidant enzymes CuZn-SOD, Mn-SOD and CAT were measured in the hippocampus, striatum and cortex after 5 min of ischemia used as a preconditioning and subsequent reperfusion, by spectrophotometric methods. In all ischemia-reperfusion groups (5 h, 1 and 2 days of reperfusion), CuZn-SOD activities were found to be increased if compared to the sham operated controls. The increase was significant (P < 0.05) in all reperfusion groups, particularly after 5 h of reperfusion (3 times) in all studied brain regions; the largest increase was detected in the more vulnerable hippocampus and striatum. Very similar changes were found in Mn-SOD activity. The activity of CAT was increased too, but reached the peak of postischemic activity 24 h after ischemia. Our attempt to understand the mechanisms of increased SOD and CAT activities by application of protein synthesis inhibitor cycloheximide showed that this increase was caused by de novo synthesis of enzymes during first hours after ischemia. Our findings indicate that both major endogenous antioxidant enzymes SOD and CAT are synthesized as soon as 5 h after ischemia. In spite of significant upregulation of these enzymes a large number of neurons in selectively vulnerable CA1 region of hippocampus undergoes to neurodegeneration within 7 days after ischemia.
Collapse
Affiliation(s)
- Viera Danielisová
- Department of Neurochemistry, Institute of Neurobiology, Slovak Academy of Sciences, 040 01, Kosice, Slovak Republic.
| | | | | | | |
Collapse
|
143
|
Galvão RIM, Diógenes JPL, Maia GCL, Filho EAS, Vasconcelos SMM, de Menezes DB, Cunha GMA, Viana GSB. Tenoxicam Exerts a Neuroprotective Action after Cerebral Ischemia in Rats. Neurochem Res 2005; 30:39-46. [PMID: 15756931 DOI: 10.1007/s11064-004-9684-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this study we investigated the effects of Tenoxicam, a type 2 cyclooxygenase (COX-2) inhibitor, on brain damage induced by ischemia-reperfusion. Male Wistar rats (18-month old average) were anesthetized and submitted to ischemia occlusion of both common carotid arteries (BCAO) for 45 min. After 24 h of reperfusion, rats were decapitated and hippocampi removed for further assays. Animals were divided into sham-operated, ischemia, ischemia + Tenoxicam 2.5 mg/kg, and ischemia + Tenoxicam 10 mg/kg groups. Tenoxicam was administered intraperitoneally immediately after BCAO. Histological analyses show that ischemia produced significant striatal as well as hippocampal lesions which were reversed by the Tenoxicam treatment. Tenoxicam also significantly reduced, to control levels, the increased myeloperoxidase activity in hippocampus homogenates observed after ischemia. However, nitrite concentrations showed only a tendency to decrease in the ischemia + Tenoxicam groups, as compared to that of ischemia alone. On the other hand, hippocampal glutamate and aspartate levels were not altered by Tenoxicam. In conclusion, we showed that ischemia is certainly related to inflammation and to increased free radical production, and selective COX-2 inhibitors might be neuroprotective agents of potential benefit in the treatment of cerebral brain ischemia.
Collapse
Affiliation(s)
- Rita I M Galvão
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Hayashi T, Saito A, Okuno S, Ferrand-Drake M, Dodd RL, Chan PH. Damage to the endoplasmic reticulum and activation of apoptotic machinery by oxidative stress in ischemic neurons. J Cereb Blood Flow Metab 2005; 25:41-53. [PMID: 15678111 DOI: 10.1038/sj.jcbfm.9600005] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The endoplasmic reticulum (ER), which plays a role in apoptosis, is susceptible to oxidative stress. Because superoxide is produced in the brain after ischemia/reperfusion, oxidative injury to this organelle may be implicated in ischemic neuronal cell death. Activating transcription factor-4 (ATF-4) and C/EBP-homologous protein (CHOP), both of which are involved in apoptosis, are induced by severe ER stress. Using wild-type and human copper/zinc superoxide dismutase transgenic rats, we observed induction of these molecules in the brain after global cerebral ischemia and compared them with neuronal degeneration. In ischemic, wild-type brains, expression of ATF-4 and CHOP was increased in the hippocampal CA1 neurons that would later undergo apoptosis. Transgenic rats had a mild increase in ATF-4 and CHOP and minimal neuronal degeneration, indicating that superoxide was involved in ER stress-induced cell death. We further confirmed attenuation on induction of these molecules in transgenic mouse brains after focal ischemia. When superoxide was visualized with ethidium, signals for ATF-4 and superoxide overlapped in the same cells. Moreover, lipids in the ER were robustly peroxidized by ischemia but were attenuated in transgenic animals. This indicates that superoxide attacked and damaged the ER, and that oxidative ER damage is implicated in ischemic neuronal cell death.
Collapse
Affiliation(s)
- Takeshi Hayashi
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305-5487, USA
| | | | | | | | | | | |
Collapse
|
145
|
Warner DS, Sheng H, Batinić-Haberle I. Oxidants, antioxidants and the ischemic brain. ACTA ACUST UNITED AC 2004; 207:3221-31. [PMID: 15299043 DOI: 10.1242/jeb.01022] [Citation(s) in RCA: 421] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite numerous defenses, the brain is vulnerable to oxidative stress resulting from ischemia/reperfusion. Excitotoxic stimulation of superoxide and nitric oxide production leads to formation of highly reactive products, including peroxynitrite and hydroxyl radical, which are capable of damaging lipids, proteins and DNA. Use of transgenic mutants and selective pharmacological antioxidants has greatly increased understanding of the complex interplay between substrate deprivation and ischemic outcome. Recent evidence that reactive oxygen/nitrogen species play a critical role in initiation of apoptosis, mitochondrial permeability transition and poly(ADP-ribose) polymerase activation provides additional mechanisms for oxidative damage and new targets for post-ischemic therapeutic intervention. Because oxidative stress involves multiple post-ischemic cascades leading to cell death, effective prevention/treatment of ischemic brain injury is likely to require intervention at multiple effect sites.
Collapse
Affiliation(s)
- David S Warner
- Department of Anesthesiology, The Multidisciplinary Neuroprotection Laboratories, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
146
|
Yokoyama K, Shimada Y, Hori E, Nakagawa T, Takagi S, Sekiya N, Kouta K, Nishijo H, Yokozawa T, Terasawa K. Effects of Choto-san and hooks and stems of Uncaria sinensis on antioxidant enzyme activities in the gerbil brain after transient forebrain ischemia. JOURNAL OF ETHNOPHARMACOLOGY 2004; 95:335-343. [PMID: 15507357 DOI: 10.1016/j.jep.2004.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Revised: 07/28/2004] [Accepted: 08/09/2004] [Indexed: 05/24/2023]
Abstract
Previously, we revealed that oral administrations of Choto-san, a Kampo formula, and the hooks and stems of Uncaria sinensis Haviland (Rubiaceae), a medicinal plant comprising Choto-san, enhanced superoxide anion and hydroxyl radical scavenging activities in the hippocampus, and prevented delayed neuronal death of pyramidal cells in the hippocampal CA1 region in a transient forebrain ischemia gerbil model. In the present study, for the purpose of clarifying whether the endogenous antioxidant enzymes contribute to these mechanisms, we investigated the effects of Choto-san extract (CSE) and Uncaria sinensis extract (USE) on superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities in the brain by using the same experimental model. 1.0% CSE or 3.0% USE were dissolved in water and provided to gerbils ad libitum from 7 days prior to ischemia/reperfusion (i/rp). Seven days of continuous administrations of CSE or USE without i/rp procedure enhanced CAT activity but not SOD and GSH-Px activities in both the hippocampus and cortex. CSE elevated CAT activity in the hippocampus at 7 days and in the cortex at 3h after i/rp. USE raised CAT activity in both the hippocampus and cortex at 3 h and 7 days after i/rp. These results suggest that one of the mechanisms of the protective effects of CSE and USE against transient brain ischemia-induced neuronal damage may be their enhancing effect on CAT activity in the brain.
Collapse
Affiliation(s)
- Koichi Yokoyama
- Department of Japanese Oriental Medicine, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Toyama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Eum WS, Kim DW, Hwang IK, Yoo KY, Kang TC, Jang SH, Choi HS, Choi SH, Kim YH, Kim SY, Kwon HY, Kang JH, Kwon OS, Cho SW, Lee KS, Park J, Won MH, Choi SY. In vivo protein transduction: biologically active intact pep-1-superoxide dismutase fusion protein efficiently protects against ischemic insult. Free Radic Biol Med 2004; 37:1656-69. [PMID: 15477017 DOI: 10.1016/j.freeradbiomed.2004.07.028] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Accepted: 07/22/2004] [Indexed: 11/20/2022]
Abstract
Reactive oxygen species (ROS) are implicated in reperfusion injury after transient focal cerebral ischemia. The antioxidant enzyme Cu,Zn-superoxide dismutase (SOD) is one of the major means by which cells counteract the deleterious effects of ROS after ischemia. Recently, we reported that denatured Tat-SOD fusion protein is transduced into cells and skin tissue. Moreover, PEP-1 peptide, which has 21 amino acid residues, is a known carrier peptide that delivers full-length native proteins in vitro and in vivo. In the present study, we investigated the protective effects of PEP-1-SOD fusion protein after ischemic insult. A human SOD gene was fused with PEP-1 peptide in a bacterial expression vector to produce a genetic in-frame PEP-1-SOD fusion protein. The expressed and purified fusion proteins were efficiently transduced both in vitro and in vivo with a native protein structure. Immunohistochemical analysis revealed that PEP-1-SOD injected intraperitoneally (i.p.) into mice can have access into brain neurons. When i.p.-injected into gerbils, PEP-1-SOD fusion proteins prevented neuronal cell death in the hippocampus caused by transient forebrain ischemia. These results suggest that the biologically active intact forms of PEP-1-SOD provide a more efficient strategy for therapeutic delivery in various human diseases related to this antioxidant enzyme or to ROS, including stroke.
Collapse
Affiliation(s)
- Won Sik Eum
- Department of Genetic Engineering, Research Institute for Bioscience and Biotechnology, Hallym University, 1-1 Okchon-Dong, Chunchon, Kangwon-Do, Korea, 200-702, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Sebastià J, Cristòfol R, Pertusa M, Vílchez D, Torán N, Barambio S, Rodríguez-Farré E, Sanfeliu C. Down's syndrome astrocytes have greater antioxidant capacity than euploid astrocytes. Eur J Neurosci 2004; 20:2355-66. [PMID: 15525277 DOI: 10.1111/j.1460-9568.2004.03686.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Down's syndrome (trisomy 21) brain tissue is considered to be susceptible to oxidative injury, mainly because its increased Cu/Zn-superoxide dismutase (SOD1) activity is not followed by an adaptive rise in hydrogen peroxide metabolizing enzymes. In vitro, trisomic neurons suffer oxidative stress and degenerate. We studied the response of trisomy 21 neuron and astrocyte cultures to hydrogen peroxide injury and found that they were, respectively, more and less vulnerable than their euploid counterparts. Differences were detected 24 h after exposures in the region of 50 microm and 500 microm hydrogen peroxide for neuron and astrocyte cultures, respectively. Cytotoxicity results were paralleled by a decrease in cellular glutathione. In addition, trisomic astrocytes showed a lower basal content of superoxide ion and a higher clearance of hydrogen peroxide from the culture medium. In the presence of hydrogen peroxide, trisomic astrocytes maintained their concentration of intracellular superoxide and hydroperoxides at a lower level than euploid astrocytes. Consistent with these results, trisomic astrocytes in neuron coculture were more neuroprotective than euploid astrocytes against hydrogen peroxide injury. We suggest that SOD1 overexpression has beneficial effects on astrocytes, as it does in other systems with similarly high disposal of hydroperoxides. In addition to a higher enzymatic activity of SOD1, cultures of trisomic astrocytes showed slightly higher glutathione reductase activity than euploid cultures. Thus, trisomy 21 astrocytes showed a greater antioxidant capacity against hydrogen peroxide than euploid astrocytes, and they partially counteracted the oxidative vulnerability of trisomic neurons in culture.
Collapse
Affiliation(s)
- Jordi Sebastià
- Departament de Farmacologia i Toxicologia. Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC-IDIBAPS, Rosselló 161, E-08036 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Abstract
Cumulative evidence suggests that apoptosis plays a pivotal role in neuronal death after cerebral ischemia in various experimental animal models. The time-dependent molecular and biochemical sequelae that lead to apoptotic cell death after the interruption of cerebral blood flow have been established. Many neuroprotective agents that target cell death pathways have been failures, and alternative strategies need to be considered. One such strategy is to target the neuronal survival signaling pathway, which involves the phosphatidylinositol 3-kinase (PI3-K)/Akt (protein kinase B) pathway. It has been demonstrated that PI3-K/Akt and downstream phosphorylated Bad and proline-rich Akt substrate survival signaling cascades are upregulated in surviving neurons in the ischemic brain that overexpresses copper-zinc superoxide dismutase activity. These studies provide an impetus for novel therapeutic targets in neuroprotective strategies in stroke.
Collapse
Affiliation(s)
- Pak H Chan
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, Calif 94305-5487, USA.
| |
Collapse
|
150
|
Lalonde R, Dumont M, Paly E, London J, Strazielle C. Characterization of hemizygous SOD1/wild-type transgenic mice with the SHIRPA primary screen and tests of sensorimotor function and anxiety. Brain Res Bull 2004; 64:251-8. [PMID: 15464862 DOI: 10.1016/j.brainresbull.2004.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Revised: 06/21/2004] [Accepted: 07/21/2004] [Indexed: 10/26/2022]
Abstract
SOD1 is one of several overexpressed genes in Down's syndrome. In order to dissect genetic causes of the syndrome, hemizygous human wild-type SOD1 transgenic mice were compared to FVB/N non-transgenic controls at 3 months of age in the SHIRPA primary screen of neurologic function as well as in tests of motor activity and coordination. The responsiveness of SOD1/wt transgenic mice to visual and somatosensory stimuli was reduced in placing, pinna, corneal, and toe-pinch tests. In addition, SOD1/wt transgenic mice crossed fewer segments on a stationary beam. On the contrary, there was no intergroup difference for motor activity and anxiety in open-field and emergence tests and for latencies before falling on the stationary beam, coat-hanger, and rotorod. These results indicate mild deficits in sensorimotor responsiveness in a mouse model expressing human SOD1 and that the overexpressed gene may be responsible for some Down symptoms.
Collapse
Affiliation(s)
- R Lalonde
- Faculté de Médecine et de Pharmacie, Université de Rouen, INSERM U614, Bâtiment de Recherche, 22 bld Gambetta, Salle 1D18, 76183 Rouen, Cedex, France.
| | | | | | | | | |
Collapse
|