101
|
Xu LJ, Zhao JX, Zhang T, Ren GG, Yang Z. In vitro study on influence of nano particles of CuO on CA1 pyramidal neurons of rat hippocampus potassium currents. ENVIRONMENTAL TOXICOLOGY 2009; 24:211-217. [PMID: 18623077 DOI: 10.1002/tox.20418] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The effects of nano particles of CuO on voltage-dependent potassium currents were studied in acutely isolated CA1 pyramidal neurons of rat hippocampus using the whole-cell patch-clamp techniques. Nano particles of CuO had small effects on transient outward potassium current (I(A), no statistical significance) and mainly inhibited delayed rectifier potassium current (I(K)) in the concentration of 5 x 10(-5) g/mL. Nano particles of CuO didn't shift the steady-state activation curve of I(K) and I(A) but negatively shifted the inactivation curve of I(K). The effects on inactivation curve of I(A) had no statistical significance. These results suggested that blockades of K+ currents by nano particles of CuO could be preferential for I(k) for the first time. This may interfere with the normal function of nerve cells.
Collapse
Affiliation(s)
- Lan-Ju Xu
- College of Medicine, Nankai University, Tianjin 300071, China
| | | | | | | | | |
Collapse
|
102
|
Rodrigues-Mascarenhas S, Da Silva de Oliveira A, Amoedo ND, Affonso-Mitidieri OR, Rumjanek FD, Rumjanek VM. Modulation of the immune system by ouabain. Ann N Y Acad Sci 2009; 1153:153-63. [PMID: 19236338 DOI: 10.1111/j.1749-6632.2008.03969.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ouabain, a known inhibitor of the Na,K-ATPase, has been shown to regulate a number of lymphocyte functions in vitro and in vivo. Lymphocyte proliferation, apoptosis, cytokine production, and monocyte function are all affected by ouabain. The ouabain-binding site occurs at the alpha subunit of the enzyme. The alpha subunit plays a critical role in the transport process, and four different alpha-subunit isoforms have been described with different sensitivities to ouabain. Analysis by RT-PCR indicates that alpha1, alpha2, and alpha3 isoforms are all present in murine lymphoid cells obtained from thymus, lymph nodes, and spleen. In these cells ouabain exerts an effect at concentrations that do not induce plasma membrane depolarization, suggesting a mechanism independent of the classical inhibition of the pump. In other systems, the Na,K-ATPase acts as a signal transducer in addition to being an ion pump, and ouabain is capable of inducing the activation of various signal transduction cascades. Neither resting nor concanavalin A (Con A)-activated thymocytes had their levels of phosphorylated-extracellular signal-regulated kinase (P-ERK) modified by ouabain. However, ouabain decreased p38 phosphorylation induced by Con A in these cells. The pathway induced by ouabain in lymphoid cells is still unclear but might vary with the type and state of activation of the cell.
Collapse
Affiliation(s)
- Sandra Rodrigues-Mascarenhas
- Laboratório de Tecnologia Farmacêutica, Departamento de Fisiologia e Patologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| | | | | | | | | | | |
Collapse
|
103
|
Brashear A. Botulinum toxin type A in the treatment of patients with cervical dystonia. Biologics 2009; 3:1-7. [PMID: 19707390 PMCID: PMC2726049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Dystonia is an involuntary movement involving twisting and turning of agonist and antagonist muscles. Cervical dystonia is isolated to neck musculature. Botulinum toxin type A is a safe and effective treatment of this disabling and often painful syndrome. Three forms of botulinum toxin type A are available worldwide to treat patients with cervical dystonia. This is a review of the studies of botulinum toxin type A to treat cervical dystonia.
Collapse
Affiliation(s)
- Allison Brashear
- Correspondence: Allison Brashear, Dept of Neurology, Wake Forest University Baptist Medical Center, Medical Center Blvd, Winston Salem, NC 27157, USA, Tel +1 336 716 3545, Fax +1 335 716 9489, Email
| |
Collapse
|
104
|
Li G, Sang N. Delayed rectifier potassium channels are involved in SO2 derivative-induced hippocampal neuronal injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:236-241. [PMID: 18206237 DOI: 10.1016/j.ecoenv.2007.11.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 11/17/2007] [Accepted: 11/29/2007] [Indexed: 05/25/2023]
Abstract
Recent studies implicate the possible neurotoxicity of SO(2), however, its mechanisms remain unclear. In the present study, we investigated SO(2) derivative-induced effect on delayed rectifier potassium channels (I(K)) and cellular death/apoptosis in primary cultured hippocampal neurons. The results demonstrate that SO(2) derivatives (NaHSO(3) and Na(2)SO(3), 3:1M/M) effectively augmented I(K) and promoted the activation of delayed rectifier potassium channels. Also, SO(2) derivatives increased neuronal death percentage and contributed to the formation of DNA ladder in concentration-dependent manners. Interestingly, the neuronal death and DNA ladder formation, caused by SO(2) derivatives, could be attenuated by the delayed rectifier potassium channel blocker (tetraethylammonium, TEA), but not by the transient outward potassium channel blocker (4-aminopyridine, 4-AP). It implies that stimulating delayed rectifier potassium channels were involved in SO(2) derivative-caused hippocampal neuronal insults, and blocking these channels might be one of the possibly clinical treatment for SO(2)-caused neuronal dysfunction.
Collapse
Affiliation(s)
- Guangke Li
- College of Environment and Resource, Center of Environment Science and Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Center of Environment Science and Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
105
|
Saradha B, Vaithinathan S, Mathur PP. Lindane induces testicular apoptosis in adult Wistar rats through the involvement of Fas-FasL and mitochondria-dependent pathways. Toxicology 2008; 255:131-9. [PMID: 19038305 DOI: 10.1016/j.tox.2008.10.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 10/07/2008] [Accepted: 10/09/2008] [Indexed: 11/19/2022]
Abstract
Lindane, an organochlorine pesticide, is known to impair testicular functions and fertility. To elucidate the mechanism(s) underpinning the gonadal effects of lindane, we sought to investigate the levels of apoptosis-related proteins, namely cytochrome c, caspase-3 and-9, Fas and FasL in the testis of adult rats. Furthermore, the study aims to delineate whether nuclear factor kappa B (NF-kappaB) is involved in meditating the testicular effects of lindane. Animals were administered with a single dose of lindane (5mg/kg body weight) and sacrificed at specific post-treatment intervals (0, 3, 6, 12, 24 and 72h). Significant elevations in the levels of cytosolic cytochrome c with a parallel increase in pro-caspase-9 were observed as early as 6h following exposure. Time-dependent elevations in the levels of Fas, FasL and caspase-3 were observed. Immunofluorescence studies revealed increased colocalization of Fas and caspase-3 in peritubular germ cells. FasL levels were increased in Sertoli and peritubular germ cells. The cytoplasmic levels of NF-kappaB p65 decreased from 3h following exposure with a maximal decline at 12 and 24h. Changes in the localization of NF-kappaB were observed with maximal nuclear translocation in germ cells at 12 and 24h. Terminal deoxynucleotidyl transferase-mediated dUTP nickend-labeling (TUNEL) assay revealed a time-dependent increase in the number of apoptotic cells. Taken together, the data illustrate induction of testicular apoptosis in adult rats following exposure to a single dose of lindane. Early activation of NF-kappaB in contrast to late increase in Fas expression suggests a pro-apoptotic role of NF-kappaB in testicular response to lindane.
Collapse
Affiliation(s)
- B Saradha
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry 605 014, India
| | | | | |
Collapse
|
106
|
Kawamoto EM, Munhoz CD, Lepsch LB, de Sá Lima L, Glezer I, Markus RP, de Silva CLM, Camarini R, Marcourakis T, Scavone C. Age-related changes in cerebellar phosphatase-1 reduce Na,K-ATPase activity. Neurobiol Aging 2008; 29:1712-20. [PMID: 17537548 DOI: 10.1016/j.neurobiolaging.2007.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 04/05/2007] [Accepted: 04/16/2007] [Indexed: 11/16/2022]
Abstract
We evaluated whether changes in protein content and activity of PP-1 and PP-2A were the mechanism underneath the basal age-related reduction in alpha(2/3)-Na,K-ATPase activity in rats cerebella and whether this occurred through the cyclic GMP-PKG pathway. PP1 activity, but not its expression, increased with age, whereas PP-2 was not changed. The activity of alpha(2/3)-Na,K-ATPase varied with age, and there was a negative association between the PP-1 and alpha(2/3)-Na,K-ATPase activities. In young rats, the inhibition of PP-1 and PP-2A by okadaic acid (OA) increased in a dose-dependent manner alpha(1)- and alpha(2/3)-Na,K-ATPase, but had no effect on Mg-ATPase activity. A direct stimulation of PKG with 8-Br-cyclic GMP did not surmount the effect of OA. This analogue of cyclic GMP inhibited PP-1 activity only, indicating that at least part of the increase in alpha(1)- and alpha(2/3)-Na,K-ATPase activity induced by OA was mediated by the cyclic GMP-PKG-PP-1 cascade. Taking into account that PP1 inhibition increased alpha(2/3)-Na,K-ATPase activity, we propose that an age-related increase in PP-1 activity due to a decrease in cyclic GMP-PKG modulation plays a role for the age-related reduction of alpha(2/3)-Na,K-ATPase activity in rat cerebellum.
Collapse
Affiliation(s)
- Elisa Mitiko Kawamoto
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, Avenida Lineu Prestes, 1524, 05508-900 São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Bagh MB, Maiti AK, Roy A, Chakrabarti S. Dietary supplementation with N-acetylcysteine, α-tocopherol and α-lipoic acid prevents age related decline in Na+,K+-ATPase activity and associated peroxidative damage in rat brain synaptosomes. Biogerontology 2008; 9:421-8. [DOI: 10.1007/s10522-008-9175-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 08/18/2008] [Indexed: 12/29/2022]
|
108
|
Kassardjian A, Kreydiyyeh SI. JNK modulates the effect of caspases and NF‐κB in the TNF‐α‐induced down‐regulation of Na+/K+ATPase in HepG2 cells. J Cell Physiol 2008; 216:615-20. [DOI: 10.1002/jcp.21436] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
109
|
Voltage-gated potassium channels in human immunodeficiency virus type-1 (HIV-1)-associated neurocognitive disorders. J Neuroimmune Pharmacol 2008; 4:60-70. [PMID: 18459047 DOI: 10.1007/s11481-008-9106-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 04/03/2008] [Indexed: 10/22/2022]
Abstract
Human immunodeficiency virus type-1 (HIV-1)-associated dementia (HAD), a severe form of HIV-associated neurocognitive disorders (HAND), describes the cognitive impairments and behavioral disturbances which afflict many HIV-infected individuals. Although the precise mechanism leading to HAD is incompletely understood, it is commonly accepted its progression involves a critical mass of infected and activated mononuclear phagocytes (brain perivascular macrophages and microglia) releasing immune and viral products in the brain. These cellular and viral products induce neuronal dysfunction and injury via various signaling pathways. Emerging evidence indicates voltage-gated potassium (K(v)) channels, key regulators of cell excitability and animal behavior (learning and memory), are involved in the pathogenesis of HAD/HAND. Here we survey the literature and find that HAD-related alterations in cellular and viral products can increase neuronal K(v) channel activity, leading to neuronal dysfunction and cognitive deficits. Thus, neuronal K(v) channels may be a new target in the effort to develop therapies for HAD and perhaps other inflammatory neurodegenerative disorders.
Collapse
|
110
|
Truncation of cytoplasmic tail of EIAV Env increases the pathogenic necrosis. Virus Res 2008; 133:201-10. [PMID: 18294721 DOI: 10.1016/j.virusres.2008.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 01/05/2008] [Accepted: 01/10/2008] [Indexed: 12/24/2022]
Abstract
Equine Infectious Anemia Virus (EIAV), like other lentiviruses, has a transmembrane glycoprotein with an unusually long cytoplasmic tail (CT). Viral envelope (Env) proteins having CT truncations just downstream the putative membrane-spanning domain (PMSD) are assumed to exist among all wild-type budded virions, and also in some cell-adapted strains. To determine whether CT-truncated Env proteins can cause particularly deleterious effects on the Env expressing cells and/or their neighboring cells, plasmids encoding codon-optimized env gene including full-length (pE863) or CT-truncated (pE686* and pE676*) were transiently transfected into 293T cells, respectively. Data from intracellular protein expression and cell death assays revealed that CT-truncated Env, compared to full-length Env, not only induced comparable apoptosis, but also caused much more intensive mitochondria-mediated necrosis that could simultaneously induce significant decrease of intracellular protein expression in the Env expressing cells. Moreover, results from flow cytometric analysis showed that mitochondrial depolarization preceded the caspase activation in cells no matter which env construct was delivered, and indicated that both full-length and CT-truncated Env proteins share a common intrinsic mitochondrial pathway to induce apoptosis. Our results partially elucidate the mechanisms underlying cell death resulting from EIAV pathogenesis.
Collapse
|
111
|
Keblesh JP, Reiner BC, Liu J, Xiong H. Pathogenesis of Human Immunodeficiency Virus Type-1 (HIV-1)-Associated Dementia: Role of Voltage-Gated Potassium Channels. RETROVIROLOGY : RESEARCH AND TREATMENT 2008; 2:1-10. [PMID: 20651955 PMCID: PMC2908044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
HIV-1-associated dementia (HAD) describes the cognitive impairments and behavioral disturbances which afflict many HIV-infected individuals. Although the incidence of HAD has decreased significantly in the era of HAART, it remains a significant complication of HIV-1 infection as patients with acquired immune deficient syndrome (AIDS) live longer, antiretroviral drugs remain unable to effectively cross the blood-brain barrier (BBB), and HIV-1 resistance grows due to viral strain mutation. Although the precise mechanism leading to HAD is incompletely understood, it is commonly accepted its progression involves a critical mass of infected and activated mononuclear phagocytes (MP; brain perivascular macrophages and microglia) releasing immune and viral products in brain. These cellular and viral products induce neuronal dysfunction and injury via various signaling pathways. Emerging evidence indicates that voltage-gated potassium (K(v)) channels, key regulators of cell excitability and animal behavior (learning and memory), are involved in the pathogenesis of HAD/HAND. Here we survey the literature and find HAD related alterations in cellular and viral products can alter MP and neuronal K(v) channel activity, leading to MP and neuronal dysfunction and cognitive deficits. Thus, MP and neuronal K(v) channels may be a new target in the effort to develop therapies for HAD and perhaps other inflammatory neurodegenerative disorders.
Collapse
|
112
|
Potassium channels in the regulation of pulmonary artery smooth muscle cell proliferation and apoptosis: pharmacotherapeutic implications. Br J Pharmacol 2007; 153 Suppl 1:S99-S111. [PMID: 18084317 DOI: 10.1038/sj.bjp.0707635] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Maintaining the proper balance between cell apoptosis and proliferation is required for normal tissue homeostasis; when this balance is disrupted, disease such as pulmonary arterial hypertension (PAH) can result. Activity of K(+) channels plays a major role in regulating the pulmonary artery smooth muscle cell (PASMC) population in the pulmonary vasculature, as they are involved in cell apoptosis, survival and proliferation. PASMCs from PAH patients demonstrate many cellular abnormalities linked to K(+) channels, including decreased K(+) current, downregulated expression of various K(+) channels, and inhibited apoptosis. K(+) is the major intracellular cation, and the K(+) current is a major determinant of cell volume. Apoptotic volume decrease (AVD), an early hallmark and prerequisite of programmed cell death, is characterized by K(+) and Cl(-) efflux. In addition to its role in AVD, cytosolic K(+) can be inhibitory toward endogenous caspases and nucleases and can suppress mitochondrial cytochrome c release. In PASMC, K(+) channel activation accelerates AVD and enhances apoptosis, while K(+) channel inhibition decelerates AVD and inhibits apoptosis. Finally, inhibition of K(+) channels, by increasing cytosolic [Ca(2+)] as a result of membrane depolarization-mediated opening of voltage-dependent Ca(2+) channels, leads to PASMC contraction and proliferation. The goals of this review are twofold: (1) to elucidate the role of K(+) ions and K(+) channels in the proliferation and apoptosis of PASMC, with an emphasis on abnormal cell growth in human and animal models of PAH, and (2) to elaborate upon the targeting of K(+) flux pathways for pharmacological treatment of pulmonary vascular disease.
Collapse
|
113
|
Dvela M, Rosen H, Feldmann T, Nesher M, Lichtstein D. Diverse biological responses to different cardiotonic steroids. ACTA ACUST UNITED AC 2007; 14:159-66. [PMID: 17964766 DOI: 10.1016/j.pathophys.2007.09.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cardiotonic steroids (CS) such as ouabain, digoxin and bufalin, are steroidal drugs prepared from the seeds and dried leaves of the genus Digitalis, and the skin and parotid gland of amphibians, are used as a cardiac stimulant. Steroids similar or identical to the cardiotonic steroids were identified in human tissues. The available literature unequivocally supports the notion that these endogenous CS function as hormones in mammals. Recent studies show that although similar in structure, the different CS exhibit diverse biological responses. This was shown at the molecular, cellular, tissue and whole animal levels. This review summarizes these diversities, raises a possible explanation for their presence and discusses their implication on the physiological role of the different steroids.
Collapse
Affiliation(s)
- Moran Dvela
- Department of Physiology and Institute of Microbiology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
114
|
Treschow A, Unger C, Aints A, Felldin U, Aschan J, Dilber MS. OuaSelect, a novel ouabain-resistant human marker gene that allows efficient cell selection within 48 h. Gene Ther 2007; 14:1564-72. [PMID: 17898799 DOI: 10.1038/sj.gt.3303015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Efficient selection of gene-modified cells is required for a number of potential gene therapy applications, as well as molecular biology studies. Ideally, a clinical selection regimen would combine high selection speed, efficiency and efficacy, in addition to clinical grade selection techniques and low immunogenicity. To our knowledge, a selection marker satisfying all these features is so far not available. Ouabain is a clinically used cardiac glycoside and selective Na(+)/K(+)-ATPase inhibitor. On the basis of the high sensitivity of human Na(+)/K(+)-ATPase proteins to ouabain, and rapid killing of cells upon exposure, we have screened the ubiquitously expressed Na(+)/K(+)-ATPase alpha1 subunit for mutations that could greatly increase its resistance to ouabain. Two amino-acid substitutions, Q118R and N129D were sufficient to confer a two log greater resistance to ouabain in HeLa, Jurkat, U2OS cells and in primary cells. Furthermore, following transduction of primary lymphocytes with the alpha1(Q118R/N129D) gene, >99% pure populations of gene-modified cells were achieved with a recovery rate of >80% after 48 h of exposure to ouabain. These results identify the human alpha1(Q118R/N129D) (OuaSelect) as a promising selection marker gene for safe, rapid and cost-effective selection in clinical gene therapy and molecular biology research.
Collapse
Affiliation(s)
- A Treschow
- Department of Medicine, Division of Hematology, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
115
|
López-Lázaro M. Digitoxin as an anticancer agent with selectivity for cancer cells: possible mechanisms involved. Expert Opin Ther Targets 2007; 11:1043-53. [PMID: 17665977 DOI: 10.1517/14728222.11.8.1043] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Accumulating preclinical and clinical data suggest that the cardiac drug digitoxin might be used in cancer therapy. Recent reports have shown that digitoxin can inhibit the growth and induce apoptosis in cancer cells at concentrations commonly found in the plasma of cardiac patients treated with this drug. Several mechanisms have been associated with the anticancer activity of digitoxin, yet at present it is unknown why malignant cells are more susceptible to this cardiac glycoside than non-malignant cells. This report analyses the possible anticancer mechanisms of digitoxin and proposes that the inhibition of glycolysis may be a key mechanism by which this natural product selectively targets cancer cells. Finally, whether or not there is enough evidence to support the clinical evaluation of digitoxin in patients with cancer is discussed.
Collapse
Affiliation(s)
- Miguel López-Lázaro
- University of Seville, Department of Pharmacology, Faculty of Pharmacy, Sevilla, Spain.
| |
Collapse
|
116
|
Khundmiri SJ, Amin V, Henson J, Lewis J, Ameen M, Rane MJ, Delamere NA. Ouabain stimulates protein kinase B (Akt) phosphorylation in opossum kidney proximal tubule cells through an ERK-dependent pathway. Am J Physiol Cell Physiol 2007; 293:C1171-80. [PMID: 17634416 PMCID: PMC2740654 DOI: 10.1152/ajpcell.00535.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Endogenous cardiotonic glycosides bind to the inhibitory binding site of the plasma membrane sodium pump (Na(+)/K(+)-ATPase). Plasma levels of endogenous cardiotonic glycosides increase in several disease states, such as essential hypertension and uremia. Low concentrations of ouabain, which do not inhibit Na(+)/K(+)-ATPase, induce cell proliferation. The mechanisms of ouabain-mediated response remain unclear. Recently, we demonstrated that in opossum kidney (OK) proximal tubular cells, low concentrations of ouabain induce cell proliferation through phosphorylation of protein kinase B (Akt) in a calcium-dependent manner. In the present study, we identified ERK as an upstream kinase regulating Akt activation in ouabain-stimulated cells. Furthermore, we provide evidence that low concentrations of ouabain stimulate Na(+)/K(+)-ATPase-mediated (86)Rb uptake in an Akt-, ERK-, and Src kinase-dependent manner. Ouabain-mediated ERK phosphorylation was inhibited by blockade of intracellular calcium release, calcium entry, tyrosine kinases, and phospholipase C. Pharmacological inhibition of phosphoinositide-3 kinase and Akt failed to inhibit ouabain-stimulated ERK phosphorylation. Ouabain-mediated Akt phosphorylation was inhibited by U0126, a MEK/ERK inhibitor, suggesting that ouabain-mediated Akt phosphorylation is dependent on ERK. In an in vitro kinase assay, active recombinant ERK phosphorylated recombinant Akt on Ser(473). Moreover, transient transfection with constitutively active MEK1, an upstream regulator of ERK, increased Akt phosphorylation and activation, whereas overexpression of constitutively active Akt failed to stimulate ERK phosphorylation. Ouabain at low concentrations also promoted cell proliferation in an ERK-dependent manner. These findings suggest that ouabain-stimulated ERK phosphorylation is required for Akt phosphorylation on Ser(473), cell proliferation, and stimulation of Na(+)/K(+)-ATPase-mediated (86)Rb uptake in OK cells.
Collapse
Affiliation(s)
- Syed J Khundmiri
- Kidney Disease Program, Univ. of Louisville, 570 S Preston St., South POD 102, Louisville, KY 40202, USA.
| | | | | | | | | | | | | |
Collapse
|
117
|
Ramirez-Ortega M, Zarco G, Maldonado V, Carrillo JF, Ramos P, Ceballos G, Melendez-Zajgla J, Garcia N, Zazueta C, Chanona J, Suarez J, Pastelin G. Is digitalis compound-induced cardiotoxicity, mediated through guinea-pig cardiomyocytes apoptosis? Eur J Pharmacol 2007; 566:34-42. [PMID: 17466970 DOI: 10.1016/j.ejphar.2007.03.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 02/28/2007] [Accepted: 03/12/2007] [Indexed: 11/22/2022]
Abstract
Our aim in performing this study was to analyze in vivo the cell death mechanism induced by toxic doses of digitalis compounds on guinea-pig cardiomyocytes. We analyzed three study groups of five male guinea pigs each. Guinea pigs were intoxicated under anesthesia with ouabain or digoxin (at a 50-60% lethal dose); the control group did not receive digitalis. A 5-hours period elapsed before guinea pig hearts were extracted to obtain left ventricle tissue. We carried out isolation of mitochondria and cytosol, cytochrome c and caspase-3 and -9 determination, and electrophoretic analysis of nuclear DNA. TdT-mediated DUTP-X nick end labeling (TUNEL) reaction was performed in histologic preparations to identify in situ apoptotic cell death. Ultrastructural analysis was performed by electron microscopy. Electrophoretic analysis of DNA showed degradation into fragments of 200-400 base pairs in digitalis-treated groups. TUNEL reaction demonstrated the following: in the control group, <10 positive nuclei per field; in the digoxin-treated group, 2-14 positive nuclei per field, while in the ouabain-treated group counts ranged from 9-30 positive nuclei per field. Extracts from ouabain-treated hearts had an elevation of cytochrome c in cytosol and a corresponding decrease in mitochondria; this release of cytochrome c provoked activation of caspase-9 and -3. Electron microscopy revealed presence of autophagic vesicles in cytoplasm of treated hearts. Toxic dosages of digitalis at 50-60% of the lethal dose are capable of inducing cytochrome c release from mitochondria, processing of procaspase-9 and -3, and DNA fragmentation; these observations are mainly indicative of apoptosis, although a mixed mechanism of cell death cannot be ruled out.
Collapse
Affiliation(s)
- Margarita Ramirez-Ortega
- Departamento de Farmacologia, Instituto Nacional de Cardiologia Ignacio Chavez, Juan Badiano 1, Col. Seccion XVI, 14080 Mexico, D. F., Mexico.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Kulikov A, Eva A, Kirch U, Boldyrev A, Scheiner-Bobis G. Ouabain activates signaling pathways associated with cell death in human neuroblastoma. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1691-702. [PMID: 17524349 DOI: 10.1016/j.bbamem.2007.04.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 03/29/2007] [Accepted: 04/03/2007] [Indexed: 10/23/2022]
Abstract
Cardiotonic steroids (CTS) like ouabain are not only specific inhibitors of the sodium pump (Na(+),K(+)-ATPase), they also can influence various cytosolic signaling events in a hormone-like manner. In the neuroblastoma cell line SH-SY5Y ouabain triggers multiple signaling pathways. Within 30 min of incubation with 1 or 10 microM ouabain, SH-SY5Y cells generate reactive oxygen species to a level approximately 50% above control and show a modest but significant elevation in cytosolic [Ca(2+)] of about 25%. After 6 h of exposure, ouabain stimulates a series of anti-apoptotic actions in SH-SY5Y cells, including concentration-dependent phosphorylation of Erk1/2, Akt, and Bad. Nevertheless, at the same time this CTS also induces a series of events that inhibit retinoic acid-induced neuritogenesis and promote cell death. Both of these latter phenomena are possibly associated with the observed ouabain-induced reduction in the abundance of the anti-apoptotic proteins Bcl-XL and Bcl-2. In addition, ouabain treatment results in cytochrome c release into the cytosol and induces activation of caspase 3, events that point towards the stimulation of apoptotic pathways that are probably enhanced by the stimulation of p53 phosphorylation at Ser15 also observed in this study. These pathways may eventually lead to cell death: treatment with 10 nM ouabain results in a 20% decrease in cell number after 4 days of incubation and treatment with 1 microM ouabain decreases cells number by about 75%. The results obtained here emphasize the importance of further research in order to elucidate the various signalling cascades triggered by ouabain and possibly other CTS that are used in the treatment of heart failure and to identify their primary receptor(s).
Collapse
Affiliation(s)
- Andrey Kulikov
- Institut für Biochemie und Endokrinologie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Frankfurter Str. 100, D-35392 Giessen, Germany
| | | | | | | | | |
Collapse
|
119
|
Stefanello FM, Scherer EBS, Kurek AG, Mattos CB, Wyse ATS. Effect of hypermethioninemia on some parameters of oxidative stress and on Na(+),K (+)-ATPase activity in hippocampus of rats. Metab Brain Dis 2007; 22:172-82. [PMID: 17473966 DOI: 10.1007/s11011-007-9052-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 12/12/2006] [Indexed: 01/24/2023]
Abstract
In the present study we investigated the effect of chronic administration of methionine, a metabolite accumulated in many inherited pathological conditions such as methionine adenosyltransferase deficiency and homocystinuria, on some parameters of oxidative stress, namely thiobarbituric acid reactive substances (TBARS), catalase activity and total thiol content, as well as on Na(+),K(+)-ATPase activity in rat hippocampus. For chronic treatment, rats received subcutaneous injections of methionine (1.34-2.68 mumol/g of body weight), twice a day, from the 6th to the 28th day of age and controls received saline. Animals were killed 12 h after the last injection. Results showed that chronic hypermethioninemia significantly increased TBARS, decreased Na(+),K(+)-ATPase activity but did not alter catalase and total thiol content. Since chronic hypermethioninemia altered TBARS and Na(+),K(+)-ATPase activity at 12 h after methionine administration, we also investigated the effect of acute administration of this amino acid on the same parameters studied after chronic methionine administration. For acute treatment,29-day-old rats received one single injection of methionine (2.68 mumol/g of body weight) or saline and were killed 1, 3 or 12 h later. Results showed that rats subjected to acute hypermethioninemia presented a reduction of Na(+),K(+)-ATPase activity and an increase in TBARS when the animals were killed at 3 and 12 h, but not at 1 h, after methionine administration. These data indicate that hypermethioninemia increases lipid peroxidation which may, at least partially, explain the effect of methionine on the reduction in Na(+),K(+)-ATPase activity. If confirmed in human beings, our findings could suggest that the induction of oxidative stress and the inhibition of Na(+),K(+)-ATPase activity caused by methionine might contribute to the neurophysiopathology observed in patients with severe hypermethioninemia.
Collapse
Affiliation(s)
- Francieli M Stefanello
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
120
|
Bavaresco CS, Chiarani F, Wannmacher CMD, Netto CA, Wyse ATDS. Intrastriatal hypoxanthine reduces Na(+),K (+)-ATPase activity and induces oxidative stress in the rats. Metab Brain Dis 2007; 22:1-11. [PMID: 17226099 DOI: 10.1007/s11011-006-9037-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 03/02/2006] [Indexed: 10/23/2022]
Abstract
The main objective of this study was to investigate the effects of a single intrastriatal injection of hypoxanthine, a metabolite accumulated in Lesch Nyhan disease and possibly involved in its neuropathology, on Na(+),K(+)-ATPase activity, as well as on some parameters of oxidative stress, namely chemiluminescence (an index of lipid peroxidation), total radical-trapping antioxidant parameter--TRAP (an index of total antioxidant capacity of the tissue) and total thiol protein membrane content, in striatum, cerebral cortex and hippocampus of rats. Results show that hypoxanthine significantly decreased Na(+),K(+)-ATPase activity and TRAP while increased chemiluminescence in all ipsislateral structures tested. However, no effect on total thiol protein membrane content was detected. We suggest that hypoxanthine induces oxidative stress in all cerebral structures studied (striatum, hippocampus and cerebral cortex) and that the reduction of Na(+),K(+)-ATPase activity was probably mediated by reactive oxygen species.
Collapse
Affiliation(s)
- Caren Serra Bavaresco
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
121
|
Wajner A, Bürger C, Dutra-Filho CS, Wajner M, de Souza Wyse AT, Wannmacher CMD. Synaptic plasma membrane Na(+), K (+)-ATPase activity is significantly reduced by the alpha-keto acids accumulating in maple syrup urine disease in rat cerebral cortex. Metab Brain Dis 2007; 22:77-88. [PMID: 17295076 DOI: 10.1007/s11011-007-9046-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The objective of the present study was to investigate the in vitro effects of the branched-chain alpha-keto acids accumulating in maple syrup urine disease, namely L-2-ketoisocaproic acid, L-2-keto-3-methylvaleric acid and L-2-ketoisovaleric acid on Na(+), K(+)-ATPase activity in synaptic plasma membranes from cerebral cortex of 35-day-old rats. All keto acids significantly inhibited Na(+), K(+)-ATPase activity at concentrations similar (1 mM) or even lower (0.5 mM) than those found in blood and cerebrospinal fluid of maple syrup urine disease patients. We also tested the effects of alanine on this enzyme activity. Alanine per se did not alter Na(+), K(+)-ATPase activity, but totally prevented the branched-chain alpha-keto acids-induced Na(+), K(+)-ATPase inhibition, indicating that alanine and the keto acids may possibly bind to the same site on the enzyme. We also observed that the branched-chain amino acids leucine, isoleucine and valine also inhibited Na(+) K(+)-ATPase activity to a similar degree as that of the branched-chain alpha-keto acids and that alanine was able to fully prevent these effects. Considering that Na(+), K(+)-ATPase is a critical enzyme for normal brain development and functioning, it is presumed that these findings may be involved in the pathophysiology of the neurological dysfunction of maple syrup urine disease.
Collapse
Affiliation(s)
- André Wajner
- Departamento de Bioquímica, Institute de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, CEP: 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
122
|
Bortner CD, Cidlowski JA. Cell shrinkage and monovalent cation fluxes: role in apoptosis. Arch Biochem Biophys 2007; 462:176-88. [PMID: 17321483 PMCID: PMC1941616 DOI: 10.1016/j.abb.2007.01.020] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 01/18/2007] [Accepted: 01/23/2007] [Indexed: 12/25/2022]
Abstract
The loss of cell volume or cell shrinkage has been a morphological hallmark of the programmed cell death process known as apoptosis. This isotonic loss of cell volume has recently been term apoptotic volume decrease or AVD to distinguish it from inherent volume regulatory responses that occurs in cells under anisotonic conditions. Recent studies examining the intracellular signaling pathways that result in this unique cellular characteristic have determined that a fundamental movement of ions, particularly monovalent ions, underlie the AVD process and plays an important role on controlling the cell death process. An efflux of intracellular potassium was shown to be a critical aspect of the AVD process, as preventing this ion loss could protect cells from apoptosis. However, potassium plays a complex role as a loss of intracellular potassium has also been shown to be beneficial to the health of the cell. Additionally, the mechanisms that a cell employs to achieve this loss of intracellular potassium vary depending on the cell type and stimulus used to induce apoptosis, suggesting multiple ways exist to accomplish the same goal of AVD. Additionally, sodium and chloride have been shown to play a vital role during cell death in both the signaling and control of AVD in various apoptotic model systems. This review examines the relationship between this morphological change and intracellular monovalent ions during apoptosis.
Collapse
Affiliation(s)
- Carl D Bortner
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
123
|
Khundmiri SJ, Metzler MA, Ameen M, Amin V, Rane MJ, Delamere NA. Ouabain induces cell proliferation through calcium-dependent phosphorylation of Akt (protein kinase B) in opossum kidney proximal tubule cells. Am J Physiol Cell Physiol 2006; 291:C1247-57. [PMID: 16807298 DOI: 10.1152/ajpcell.00593.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiotonic glycosides, like ouabain, inhibit Na+-K+-ATPase. Recent evidence suggests that low molar concentrations of ouabain alter cell growth. Studies were conducted to examine the effect of ouabain on Akt phosphorylation and rate of cell proliferation in opossum kidney (OK) proximal tubule cells. Cells exposed to 10 nM ouabain displayed increased Akt Ser473phosphorylation, as evidenced by an increase in phospho-Akt Ser473band density. Ouabain-stimulated Akt Ser473phosphorylation was inhibited by pretreatment with phosphatidylinositol 3-kinase (PI3K) inhibitors (LY294002 and wortmannin), a PLC inhibitor (edelfosine), and an Akt inhibitor. Moreover, ouabain-mediated Akt Ser473phosphorylation was suppressed by reduction of extracellular calcium (EGTA) or when intracellular calcium was buffered by BAPTA-AM. An inhibitor of calcium store release (TMB-8) and an inhibitor of calcium entry via store-operated calcium channels ( SKF96365 ) also suppressed ouabain-mediated Akt Ser473phosphorylation. In fura-2 AM-loaded cells, 10 nM ouabain increased capacitative calcium entry (CCE). Ouabain at 10 nM did not significantly alter baseline cytoplasmic calcium concentration in control cells. However, treatment with 10 nM ouabain caused a significantly higher ATP-mediated calcium store release. After 24 h, 10 nM ouabain increased the rate of cell proliferation. The Akt inhibitor, BAPTA-AM, SKF96365 , and cyclopiazonic acid suppressed the increase in the rate of cell proliferation caused by 10 nM ouabain. Ouabain at 10 nM caused a detectable increase in86Rb uptake but did not significantly alter Na+-K+-ATPase (ouabain-sensitive pNPPase) activity in crude membranes or cell sodium content. Taken together, the results point to a role for CCE and Akt phosphorylation, in response to low concentrations of ouabain, that increase the rate of cell proliferation without inhibiting Na+-K+-ATPase-mediated ion transport.
Collapse
Affiliation(s)
- Syed J Khundmiri
- Department of Medicine, University of Louisville, Louisville, Kentucky 40202, USA.
| | | | | | | | | | | |
Collapse
|
124
|
Apoptosis vs. oncosis: role of cell volume and intracellular monovalent cations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 559:219-33. [PMID: 18727243 DOI: 10.1007/0-387-23752-6_21] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Several research teams have proposed that shrinkage and swelling in cells undergoing apoptosis and oncosis are not only the earliest morphological markers of the two modes of cell death but are also obligatory steps in the development of the death machinery. We examined this hypothesis as well as the role of monovalent cations as major intracellular osmolytes using vascular smooth muscle cells (VSMC) from the rat aorta and C7-MDCK cells derived from the Madin-Darby canine kidney. 48-hr inhibition of the Na(+)-K+ pump with ouabain did not affect VSMC survival and delayed serum deprivation-induced apoptosis at a step upstream of caspase-3 via elevation of the [Na+]i/[K+]i ratio and the expression of Na+ i-sensitive antiapoptotic genes including mortalin. Transient and modest (15-20%) shrinkage observed in serum-deprived VSMC did not contribute to triggering of the apoptotic machinery. In contrast to VSMC, ouabain led to oncosis of C7-MDCK cells, indicated by swelling and resistance to the pan-caspase inhibitor z-VAD.fmk. In these cells, the death signal was mediated by interaction of ouabain with the Na(+)-K(+)-ATPase alpha-subunit but was independent of the inhibition of Na(+)-K+ pump-mediated ion fluxes and elevation of the [Na+]i/[K+]i ratio.
Collapse
|
125
|
Chai Y, Niu L, Sun XL, Ding JH, Hu G. Iptakalim protects PC12 cell against H2O2-induced oxidative injury via opening mitochondrial ATP-sensitive potassium channel. Biochem Biophys Res Commun 2006; 350:307-14. [PMID: 17010314 DOI: 10.1016/j.bbrc.2006.09.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 09/09/2006] [Indexed: 11/16/2022]
Abstract
The final common pathway in the demise of dopaminergic neurons in Parkinson's disease may involve oxidative stress and excitotoxicity. In this study, we examined the neuroprotective effects of a novel ATP-sensitive potassium channel (K(ATP)) opener, iptakalim (IPT), against H(2)O(2)-induced cytotoxicity in rat dopaminergic PC12 cells. Pretreatment with IPT could attenuate increased extracellular glutamate levels and inhibit calcium influxing induced by H(2)O(2). Moreover, IPT regulated the expressions of bcl-2 and bax which were responsible for inhibiting apoptosis in PC12 cells. These protective effects of IPT were abolished by selective mitoK(ATP) channel blocker 5-hydroxydecanoate. Therefore, IPT can protect PC12 cells against H(2)O(2)-induced oxidative injury via activating mitoK(ATP) channel.
Collapse
Affiliation(s)
- Yi Chai
- Laboratory of Neuropharmacology, Department of Anatomy, Histology and Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | | | | | | | | |
Collapse
|
126
|
Goldstein I, Levy T, Galili D, Ovadia H, Yirmiya R, Rosen H, Lichtstein D. Involvement of Na(+), K(+)-ATPase and endogenous digitalis-like compounds in depressive disorders. Biol Psychiatry 2006; 60:491-9. [PMID: 16712803 DOI: 10.1016/j.biopsych.2005.12.021] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 11/17/2005] [Accepted: 12/05/2005] [Indexed: 11/29/2022]
Abstract
BACKGROUND Sodium and potassium-activated adenosine triphosphatase (Na(+), K(+)-ATPase) and endogenous digitalis-like compounds (DLC) in the brain have been implicated in the pathogenesis of mood disorders. This hypothesis was examined by the determination of Na(+), K(+)-ATPase/DLC system in parietal cortex of patients with different mood disorders and two animal models of depression. METHODS Na(+), K(+)-ATPase concentrations in human brain synaptosomal fractions, from patients with mood disorders, schizophrenia, and normal individuals, were determined by (3)H-ouabain binding assay. Alpha isoforms were quantified by Western blotting. Brain DLC were measured using sensitive enzyme linked immunosorbant assay (ELISA). The effects of ouabain and ouabain-antibodies on behavior were determined in two animal models of depression. RESULTS (3)H-ouabain binding in bipolar patients was significantly lower than in major depressed and schizophrenic patients. Na(+), K(+)-ATPase alpha isoforms in synaptosomal fractions were not different among the groups. DLC levels in the parietal cortex of bipolar patients were significantly higher than in normal individuals and depressed patients. Injection of lipopolysaccharide (intraperitoneally) to rats elicited depression-like symptoms, which were significantly attenuated by pre-injection of ouabain-antibodies. Injection of ouabain and ouabain-antibodies (intracerebroventricular) reduced depression-like symptoms in the forced swimming test in rats. CONCLUSIONS The results support the possibility that Na(+), K(+)-ATPase and endogenous DLC participate in the pathogenesis of depressive disorders.
Collapse
Affiliation(s)
- Inbal Goldstein
- Department of Physiology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
127
|
Günzel D, Kucharski LM, Kehres DG, Romero MF, Maguire ME. The MgtC virulence factor of Salmonella enterica serovar Typhimurium activates Na(+),K(+)-ATPase. J Bacteriol 2006; 188:5586-94. [PMID: 16855249 PMCID: PMC1540036 DOI: 10.1128/jb.00296-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mgtC gene of Salmonella enterica serovar Typhimurium encodes a membrane protein of unknown function that is important for full virulence in the mouse. Since mgtC is part of an operon with mgtB which encodes a Mg(2+)-transporting P-type ATPase, MgtC was hypothesized to function in ion transport, possibly in Mg(2+) transport. Consequently, MgtC was expressed in Xenopus laevis oocytes, and its effect on ion transport was evaluated using ion selective electrodes. Oocytes expressing MgtC did not exhibit altered currents or membrane potentials in response to changes in extracellular H(+), Mg(2+), or Ca(2+), thus ruling out a previously postulated function as a Mg(2+)/H(+) antiporter. However, addition of extracellular K(+) markedly hyperpolarized membrane potential instead of the expected depolarization. Addition of ouabain to block the oocyte Na(+),K(+)-ATPase completely prevented hyperpolarization and restored the normal K(+)-induced depolarization response. These results suggested that the Na(+),K(+)-ATPase was constitutively activated in the presence of MgtC resulting in a membrane potential largely dependent on Na(+),K(+)-ATPase. Consistent with the involvement of Na(+),K(+)-ATPase, oocytes expressing MgtC exhibited an increased rate of (86)Rb(+) uptake and had increased intracellular free [K(+)] and decreased free [Na(+)] and ATP. The free concentrations of Mg(2+) and Ca(2+) and cytosolic pH were unchanged, although the total intracellular Ca(2+) content was slightly elevated. These results suggest that the serovar Typhimurium MgtC protein may be involved in regulating membrane potential but does not directly transport Mg(2+) or another ion.
Collapse
Affiliation(s)
- Dorothee Günzel
- Institut für klinische Physiologie, Charité-Universitätsmedizin Berlin, D-12200 Berlin, Germany
| | | | | | | | | |
Collapse
|
128
|
The MgtC virulence factor of Salmonella enterica serovar Typhimurium activates Na(+),K(+)-ATPase. J Bacteriol 2006. [PMID: 16855249 DOI: 10.1128/jb.00296-06/format/epub] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The mgtC gene of Salmonella enterica serovar Typhimurium encodes a membrane protein of unknown function that is important for full virulence in the mouse. Since mgtC is part of an operon with mgtB which encodes a Mg(2+)-transporting P-type ATPase, MgtC was hypothesized to function in ion transport, possibly in Mg(2+) transport. Consequently, MgtC was expressed in Xenopus laevis oocytes, and its effect on ion transport was evaluated using ion selective electrodes. Oocytes expressing MgtC did not exhibit altered currents or membrane potentials in response to changes in extracellular H(+), Mg(2+), or Ca(2+), thus ruling out a previously postulated function as a Mg(2+)/H(+) antiporter. However, addition of extracellular K(+) markedly hyperpolarized membrane potential instead of the expected depolarization. Addition of ouabain to block the oocyte Na(+),K(+)-ATPase completely prevented hyperpolarization and restored the normal K(+)-induced depolarization response. These results suggested that the Na(+),K(+)-ATPase was constitutively activated in the presence of MgtC resulting in a membrane potential largely dependent on Na(+),K(+)-ATPase. Consistent with the involvement of Na(+),K(+)-ATPase, oocytes expressing MgtC exhibited an increased rate of (86)Rb(+) uptake and had increased intracellular free [K(+)] and decreased free [Na(+)] and ATP. The free concentrations of Mg(2+) and Ca(2+) and cytosolic pH were unchanged, although the total intracellular Ca(2+) content was slightly elevated. These results suggest that the serovar Typhimurium MgtC protein may be involved in regulating membrane potential but does not directly transport Mg(2+) or another ion.
Collapse
|
129
|
Cho CW, Choi DS, Cardone MH, Kim CW, Sinskey AJ, Rha C. Glioblastoma cell death induced by asiatic acid. Cell Biol Toxicol 2006; 22:393-408. [PMID: 16897440 DOI: 10.1007/s10565-006-0104-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 05/31/2006] [Indexed: 10/24/2022]
Abstract
Asiatic acid (AA), a triterpene, is known to be cytotoxic to several tumor cell lines. AA induces dose- and time-dependent cell death in U-87 MG human glioblastoma. This cell death occurs via both apoptosis and necrosis. The effect of AA may be cell type-specific as AA-induced cell death was mainly apoptotic in colon cancer RKO cells. AA-induced glioblastoma cell death is associated with decreased mitochondrial membrane potential, activation of caspase-9 and -3, and increased intracellular free Ca2+. Although treatment of glioblastoma cells with the caspase inhibitor zVAD-fmk completely abolished AA-induced caspase activation, it did not significantly block AA-induced cell death. AA-induced cell death was significantly prevented by an intracellular Ca2+ inhibitor, BAPTA/AM. Taken together, these results indicate that AA induces cell death by both apoptosis and necrosis, with Ca2+-mediated necrotic cell death predominating.
Collapse
Affiliation(s)
- C W Cho
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
130
|
Roots K, Kairane C, Salum T, Kõks S, Karelson E, Vasar E, Zilmer M. Very low levels of cholecystokinin octapeptide activate Na‐pump in the cerebral cortex of CCK2receptor‐deficient mice. Int J Dev Neurosci 2006; 24:395-400. [PMID: 16822640 DOI: 10.1016/j.ijdevneu.2006.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 05/10/2006] [Accepted: 05/23/2006] [Indexed: 11/20/2022] Open
Abstract
This study provides the first evidence that CCK-8 (0.01 pM to 0.1 mM) stimulates Na,K-ATPase in the cortical membranes of wild-type and CCK(2) receptor-deficient mice. In each genotype, the maximal stimulation was about 40%. Homozygous mice revealed substantially lower EC50 (4 pM) than heterozygous (37 pM) or wild-type animals (682 pM). In homozygous CCK2 receptor-deficient mice, the expression of CCK1 receptor gene was 5-fold higher than in wild-type animals. CCK1 receptor antagonist devazepide counteracted effect of CCK-8 in all three genotypes, whereas CCK2 receptor antagonist L-365, 260 showed significant antagonism in wild-type and heterozygous mice. The cooperativity of Na,K-ATPase for Na+, but not for K+, was lost in homozygous mice. Altogether, very low concentrations of CCK-8 via CCK1 and CCK2 receptors stimulate Na,K-ATPase in the cerebral cortex. CCK2 receptor-deficiency leads to the altered functionality of Na,K-ATPase that might be compensated by CCK1 receptor mediated influence of CCK (and its agonists) on the enzyme.
Collapse
Affiliation(s)
- Kristiina Roots
- Department of Biochemistry, Tartu University, Ravila 19, 50411 Tartu, Estonia
| | | | | | | | | | | | | |
Collapse
|
131
|
Wang JKT, Portbury S, Thomas MB, Barney S, Ricca DJ, Morris DL, Warner DS, Lo DC. Cardiac glycosides provide neuroprotection against ischemic stroke: discovery by a brain slice-based compound screening platform. Proc Natl Acad Sci U S A 2006; 103:10461-10466. [PMID: 16793926 PMCID: PMC1481664 DOI: 10.1073/pnas.0600930103] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We report here the results of a chemical genetic screen using small molecules with known pharmacologies coupled with a cortical brain slice-based model for ischemic stroke. We identified a small-molecule compound not previously appreciated to have neuroprotective action in ischemic stroke, the cardiac glycoside neriifolin, and demonstrated that its properties in the brain slice assay included delayed therapeutic potential exceeding 6 h. Neriifolin is structurally related to the digitalis class of cardiac glycosides, and its putative target is the Na(+)/K(+)-ATPase. Other cardiac glycoside compounds tested also showed neuroprotective activity, although with lower apparent potencies. In subsequent whole-animal studies, we found that neriifolin provided significant neuroprotection in a neonatal model of hypoxia/ischemia and in a middle cerebral artery occlusion model of transient focal ischemia. The neuroprotective potential of Na(+)/K(+)-ATPase is of particular interest because of its known "druggability"; indeed, Food and Drug Administration-approved, small-molecule compounds such as digitoxin and digoxin have been in clinical usage for congestive heart failure and arrhythmias for several decades. Thus, an existing cardiac glycoside or closely related compound could provide an accelerated path toward clinical trial testing for ischemic stroke. Our findings underscore the important role that hypothesis-neutral, high-content, tissue-based screens can play in the identification of new candidate drugs and drug targets for the treatment of diseases for which validated therapeutic pathways are not currently available.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David S Warner
- Multidisciplinary Neuroprotection Laboratories and Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710; and
| | - Donald C Lo
- *Cogent Neuroscience, Inc., Durham, NC 27704;
- **Center for Drug Discovery and Department of Neurobiology, Duke University Medical Center, Durham, NC 27704
| |
Collapse
|
132
|
Hilgenberg LGW, Su H, Gu H, O'Dowd DK, Smith MA. Alpha3Na+/K+-ATPase is a neuronal receptor for agrin. Cell 2006; 125:359-69. [PMID: 16630822 DOI: 10.1016/j.cell.2006.01.052] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 12/12/2005] [Accepted: 01/18/2006] [Indexed: 11/25/2022]
Abstract
Agrin, through its interaction with the receptor tyrosine kinase MuSK, mediates accumulation of acetylcholine receptors (AChR) at the developing neuromuscular junction. Agrin has also been implicated in several functions in brain. However, the mechanism by which agrin exerts its effects in neural tissue is unknown. Here we present biochemical evidence that agrin binds to the alpha3 subunit of the Na+/K+-ATPase (NKA) in CNS neurons. Colocalization with agrin binding sites at synapses supports the hypothesis that the alpha3NKA is a neuronal agrin receptor. Agrin inhibition of alpha3NKA activity results in membrane depolarization and increased action potential frequency in cortical neurons in culture and acute slice. An agrin fragment that acts as a competitive antagonist depresses action potential frequency, showing that endogenous agrin regulates native alpha3NKA function. These data demonstrate that, through its interaction with the alpha3NKA, agrin regulates activity-dependent processes in neurons, providing a molecular framework for agrin action in the CNS.
Collapse
Affiliation(s)
- Lutz G W Hilgenberg
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
133
|
Panayiotidis MI, Bortner CD, Cidlowski JA. On the mechanism of ionic regulation of apoptosis: would the Na+/K+-ATPase please stand up? Acta Physiol (Oxf) 2006; 187:205-15. [PMID: 16734757 DOI: 10.1111/j.1748-1716.2006.01562.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Apoptosis is an active process with distinct features including loss of cell volume, chromatin condensation, internucleosomal DNA fragmentation, and apoptotic body formation. Among the classical characteristics that define apoptosis, the loss of cell volume has become a very important component of the programmed cell death process. Changes in cell volume result from alterations in the homeostasis of ions and in particular the movement of Na+ and K+ ions. Most living cells have a high concentration of intracellular K+ and a low concentration of intracellular Na+. This is in contrast to the outside of the cell, where there is a high concentration of extracellular Na+ and a low concentration of extracellular K+. Thus a concentration gradient exists for the loss and gain of intracellular K+ and Na+, respectively. This gradient is maintained through the activity of various ionic channels and transporters, but predominantly the activity of the Na+/K+-ATPase. During apoptosis, there is compelling evidence indicating an early increase in intracellular Na+ followed by a decrease in both intracellular K+ and Na+ suggesting a regulatory role for these cations during both the initial signalling, and the execution phase of apoptosis. Recent studies have shown that the Na+/K+-ATPase is involved in controlling perturbations of Na+ and K+ homeostasis during apoptosis, and that anti-apoptotic Bcl-2 and Bcl-XL molecules influence these ionic fluxes. Finally, understanding the regulation or deregulation of ionic homeostasis during apoptosis is critical to facilitate the treatment of cardiovascular, neurological, and renal diseases where apoptosis is known to play a major role.
Collapse
Affiliation(s)
- M I Panayiotidis
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
134
|
Abstract
A proper rate of programmed cell death or apoptosis is required to maintain normal tissue homeostasis. In disease states such as cancer and some forms of hypertension, apoptosis is blocked, resulting in hyperplasia. In neurodegenerative diseases, uncontrolled apoptosis leads to loss of brain tissue. The flow of ions in and out of the cell and its intracellular organelles is becoming increasingly linked to the generation of many of these diseased states. This review focuses on the transport of K(+) across the cell membrane and that of the mitochondria via integral K(+)-permeable channels. We describe the different types of K(+) channels that have been identified, and investigate the roles they play in controlling the different phases of apoptosis: early cell shrinkage, cytochrome c release, caspase activation, and DNA fragmentation. Attention is also given to K(+) channels on the inner mitochondrial membrane, whose activity may underlie anti- or pro-apoptotic mechanisms in neurons and cardiomyocytes.
Collapse
Affiliation(s)
- E D Burg
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0725, La Jolla, 92093-0725, USA
| | | | | |
Collapse
|
135
|
Franco R, Bortner CD, Cidlowski JA. Potential Roles of Electrogenic Ion Transport and Plasma Membrane Depolarization in Apoptosis. J Membr Biol 2006; 209:43-58. [PMID: 16685600 DOI: 10.1007/s00232-005-0837-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Indexed: 12/15/2022]
Abstract
Apoptosis is characterized by the programmed activation of specific biochemical pathways leading to the organized demise of cells. To date, aspects of the intracellular signaling machinery involved in this phenomenon have been extensively dissected and characterized. However, recent studies have elucidated a novel role for changes in the intracellular milieu of the cells as important modulators of the cell death program. Specially, intracellular ionic homeostasis has been reported to be a determinant in both the activation and progression of the apoptotic cascade. Several apoptotic insults trigger specific changes in ionic gradients across the plasma membrane leading to depolarization of the plasma membrane potential (PMP). These changes lead to ionic imbalance early during apoptosis. Several studies have also suggested the activation and/or modulation of specific ionic transport mechanisms including ion channels, transporters and ATPases, as mediators of altered intracellular ionic homeostasis leading to PMP depolarization during apoptosis. However, the role of PMP depolarization and of the changes in ionic homeostasis during the progression of apoptosis are still unclear. This review summarizes the current knowledge regarding the causes and consequences of PMP depolarization during apoptosis. We also review the potential electrogenic ion transport mechanisms associated with this event, including the net influx/efflux of cations and anions. An understanding of these mechamisms could lead to the generation of new therapeutic approaches for a variety of diseases involving apoptosis.
Collapse
Affiliation(s)
- R Franco
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
136
|
Wei L, Han BH, Li Y, Keogh CL, Holtzman DM, Yu SP. Cell death mechanism and protective effect of erythropoietin after focal ischemia in the whisker-barrel cortex of neonatal rats. J Pharmacol Exp Ther 2006; 317:109-16. [PMID: 16357210 DOI: 10.1124/jpet.105.094391] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cell death induced by the combined insult of hypoxia-ischemia in neonatal rodents has been extensively investigated. Ischemia-only-induced cell death, however, has been much less characterized. Based on the notion that 1) ischemic stroke is a relatively common disorder in human neonates, and 2) developing cells are more susceptible to apoptosis, the present study examined whether typical apoptosis was induced by cerebral ischemia in a new neonatal rat model. Erythropoietin (EPO; Epoetin) was tested for its protective effect against ischemia-induced cell death. Postnatal day 7 rats were subjected to permanent occlusion of the middle cerebral artery branch supplying the right whisker-barrel cortex. Terminal deoxynucleotidyl transferase biotin-dUTP nick end-labeled-positive cells in the ischemic region were detectable 4 h after ischemia and reached a peak level 16 h later. The cell death was preceded by caspase activation and cytochrome c release. Cell body shrinkage was evident among damaged cells. Agarose gel electrophoresis showed DNA damage with a smear pattern as well as DNA laddering. Electron microscopy demonstrated apoptotic features such as cell shrinkage, chromatin condensation, and fragmentation; meanwhile, necrotic alterations coexisted in the cytoplasm. EPO treatment increased signal transducers and activators of transcription-5 and Bcl-2 levels, markedly attenuated apoptotic cell death, and reduced ischemic infarct in the cortex. It is suggested that focal ischemia in the developing brain causes cell death with prominent apoptotic features coexisting with some characteristics of necrosis. This is consistent with the concept of hybrid death described previously in cultures and adult or developing brain. EPO may be explored as a potential therapy for neonatal ischemic stroke.
Collapse
Affiliation(s)
- Ling Wei
- Departments of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, USA
| | | | | | | | | | | |
Collapse
|
137
|
Wei L, Ying DJ, Cui L, Langsdorf J, Yu SP. Necrosis, apoptosis and hybrid death in the cortex and thalamus after barrel cortex ischemia in rats. Brain Res 2006; 1022:54-61. [PMID: 15353213 DOI: 10.1016/j.brainres.2004.06.080] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2004] [Indexed: 11/18/2022]
Abstract
Focal ischemia in the cerebral cortex results in acute and delayed cell death in the ischemic cortex and non-ischemic thalamus. We examined the hypothesis that neurons in ischemic and non-ischemic regions died from different mechanisms; specifically, we tested whether a mixed form of cell death containing both necrotic and apoptotic changes could be identified in individual cells. Focal barrel cortex ischemia in rats was induced by occlusion of small branches of the middle cerebral artery (MCA) corresponding to the barrel cortex, local blood flow was measured by quantitative autoradiography. Cell death was visualized by 2,3,5-triphenyltetrazolium chloride (TTC) staining, hematoxylin-eosin (H&E) staining, the terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), and caspase-3 staining 1 to 10 days after the ischemia. Electron microscopy was used for ultrastructural examination. Cell death occurred in the ipsilateral cortex 24 h after ischemia, followed by selective neuronal death in the ventrobasal (VB) thalamus 3 days later. TUNEL positive neurons were found in these two regions, but with striking morphological differences, designated as type I and type II TUNEL positive cells. The type I TUNEL positive cells in the ischemic cortex underwent necrotic changes. The type II TUNEL positive cells in the thalamus and the cortex penumbra region represented a hybrid death, featured by concurrent apoptotic and necrotic alterations in individual cells, including marked caspase-3 activation, nuclear condensation/fragmentation, but with swollen cytoplasm, damaged organelles and deteriorated membranes. Cell death in the thalamus and the cortex penumbra were attenuated by delayed administration of the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone (Z-VAD-FMK). Our data suggest that TUNEL staining should be evaluated with morphological changes, the hybrid death but not typical apoptosis occurs in the penumbra region and non-ischemic thalamus after cerebral ischemia.
Collapse
Affiliation(s)
- Ling Wei
- Department of Neurology, School of Medicine, Washington University, St. Louis, MO, USA
| | | | | | | | | |
Collapse
|
138
|
Ren YP, Huang RW, Lü ZR. Ouabain at pathological concentrations might induce damage in human vascular endothelial cells. Acta Pharmacol Sin 2006; 27:165-72. [PMID: 16412265 DOI: 10.1111/j.1745-7254.2006.00244.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
AIM To examine the time- and dose-dependent effects of ouabain on human umbilical vein endothelial cells (HUVEC) in vivo, and the changes in aortic endothelium and the different expression levels of Kv4.2 in vitro. METHODS The proliferation of HUVEC and cell death were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, the incorporation of [3H]TdR, trypan blue staining, and lactate dehydrogenase (LDH) release. The response of endothelial cells to ouabain was explored with a complementary DNA microarray and a candidate gene was found. Ouabain-sensitive hypertensive rats were established by chronic administration of ouabain. Changes in the aortic endothelium were observed by electron microscopy, and the expression level of Kv4.2 in different animals was studied by using real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR). RESULTS Ouabain stimulated the proliferation of HUVEC at physiological concentrations (0.3-0.9 nmol/L). Ouabain at pathological concentrations (0.9-1.8 nmol/L) inhibited proliferation and induced cell death. mRNA profile analysis indicated that 340 genes were differentially expressed after ouabain treatment: 145 were upregulated, of which 6 were upregulated significantly, including KCND2 (encoding the potassium voltage-gated channel shal-related subfamily member 2). The upregulated genes were mainly related to cell metabolism and transcription. In ouabain-sensitive hypertensive rats, the aortic endothelium was damaged and Kv4.2 (coded by KCND2) was over-expressed. CONCLUSION The physiological role of ouabain in HUVEC might involve the control of growth and metabolism. Ouabain at pathological concentrations might affect the structure and function of the vascular endothelium by modification of expression of the KCND2 gene, and participate vascular remodeling in hypertension.
Collapse
Affiliation(s)
- Yan-ping Ren
- Geriatric-Cardiovascular Department, First Hospital of Xi-an Jiaotong University, Xi-an 710061, China.
| | | | | |
Collapse
|
139
|
Sakamoto A, Iwata H, Sato H, Hayashi T, Kuwayama T, Monji Y. Effect of Modification of Ovary Preservation Solution by Adding Glucose on the Maturation and Development of Pig Oocytes after Prolonged Storage. J Reprod Dev 2006; 52:669-74. [PMID: 16873990 DOI: 10.1262/jrd.17112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oocytes lose their developmental competence during prolonged storage of the ovary. In the present study, we supplemented the preservation solution for pig ovaries (phosphate buffered saline, PBS) with glucose and preserved the ovaries for 6 h at 25 C. Subsequently, we examined the glucose concentration of the follicular fluid (FF), pH of the FF, survival rate of the granulosa cells, and maturation and developmental competence of oocytes after storage. During storage, the glucose concentration of the FF (2.1 mM), pH of the FF (7.4), and survival rate of the granulosa cells (69.5%) rapidly decreased (glucose concentration: under 1.1 mM; pH: 6.8; and survival rate: 43%). On the other hand, when the preservation solution was supplemented with glucose (15 mM), the glucose concentration of the FF increased and the survival rate of the granulosa cells improved, although the pH of the FF decreased further (from 6.8 to 6.6). In addition, supplementation with glucose significantly improved the rates of oocytes at metaphase II (0 h: 65.0%; 6 h without glucose: 23.8%; and 6 h with glucose: 43.8%) and attenuated the decline in the rates of fertilization and development that resulted from prolonged storage, although there were no significant differences. In conclusion, modification of the preservation solution by the addition of glucose increased the glucose concentration of the FF and improved the rate of maturation of pig oocytes.
Collapse
Affiliation(s)
- Asami Sakamoto
- Tokyo University of Agriculture, Department of Animal Science, Funako, Atsugi, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
140
|
Silveira MS, Linden R. Neuroprotection by cAMP: Another brick in the wall. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 557:164-76. [PMID: 16955710 DOI: 10.1007/0-387-30128-3_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Programmed cell death occurs in the nervous system both in normal development as well as in pathologic conditions, and is a key issue related to both brain repair and neurodegenerative diseases. Modulation of cell death in the nervous system may involve neurotrophic factors and other peptides, neurotransmitters and neuromodulators, that activate various signal transduction pathways, which in turn interact with the cell death execution machinery. Here we discuss the role of the second messenger cyclic adenosine 3'5'-monophosphate (cAMP) in cell death, and summarize current evidence that cAMP is a nodal point of neuroprotective signaling pathways.
Collapse
Affiliation(s)
- Mariana S Silveira
- Laboratório de Neurogênese, Instituto de Biofísca da UFRJ, Rio de Janeiro, Brazil
| | | |
Collapse
|
141
|
de Assis DR, Maria RC, Ferreira GC, Schuck PF, Latini A, Dutra-Filho CS, Wannmacher CMD, Wyse ATS, Wajner M. Na+, K+ ATPase activity is markedly reduced by cis-4-decenoic acid in synaptic plasma membranes from cerebral cortex of rats. Exp Neurol 2006; 197:143-9. [PMID: 16203000 DOI: 10.1016/j.expneurol.2005.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 07/25/2005] [Accepted: 09/02/2005] [Indexed: 11/19/2022]
Abstract
We have previously demonstrated that octanoic (OA) and decanoic acids (DA) inhibit Na+, K+ ATPase activity in synaptic plasma membranes from rat brain. The objective of the present study was to investigate the in vitro effects of the other metabolites that accumulate in tissues of medium-chain acyl-CoA dehydrogenase (MCAD)-deficient patients, namely cis-4-decenoic acid (cDA), octanoylcarnitine (OC), hexanoylcarnitine (HC), hexanoylglycine (HG), phenylpropionylglycine (PPG) and suberoylglycine (SG), on Na+, K+ ATPase activity in synaptic plasma membrane from cerebral cortex of 30-day-old rats. cDA, the pathognomonic compound found in this disorder, provoked the strongest inhibition on this enzyme activity at concentrations as low as 0.25 mM, whereas OC inhibited this activity at 1.0 mM and higher concentrations in a dose-dependent manner. In contrast, HC, HG, PPG and SG did not affect Na+, K+ ATPase activity. Furthermore, pre-treatment of cortical homogenates with the antioxidant enzymes catalase plus superoxide dismutase totally prevented cDA-induced Na+, K+ ATPase inhibition. We also provided evidence that cDA, as well as OA and DA, caused lipid peroxidation, which may explain, at least in part, the inhibitory properties of these compounds towards Na+, K+ ATPase. Considering that Na+, K+ ATPase is a critical enzyme for normal brain development and functioning, it is presumed that these findings, especially those regarding to the marked inhibitory effect of cDA, may be involved in the pathophysiology of the neurological dysfunction of MCAD-deficient patients.
Collapse
Affiliation(s)
- D R de Assis
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Golden WC, Martin LJ. Low-dose ouabain protects against excitotoxic apoptosis and up-regulates nuclear Bcl-2 in vivo. Neuroscience 2005; 137:133-44. [PMID: 16297565 DOI: 10.1016/j.neuroscience.2005.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 09/15/2005] [Accepted: 10/05/2005] [Indexed: 10/25/2022]
Abstract
Sodium-potassium ATPase (Na+,K+-ATPase) regulates the electrochemical gradient in cells, thereby providing fluid and ionic homeostasis. Additionally, interaction of the Na+,K+ pump with cardiac glycosides can activate intracellular signaling cascades (resulting in cell growth) and up-regulate transcription factors that promote cell survival. We used an in vivo excitotoxicity model to assess if Na+,K+-ATPase plays a role in neuronal apoptosis. After unilateral, intrastriatal injection of the glutamate receptor agonist kainic acid into postnatal day 7 rats, Na+,K+ pump function was increased at 12 h after excitotoxic challenge, and levels of neuron-specific enzyme subunits were preserved (up to 24 h after injection) in membrane-enriched striatal fractions. In addition, co-injection of kainic acid with a low-dose (0.01 nmol) of the cardiac glycoside ouabain significantly (P<0.05) reduced striatal apoptosis (at 24 h post-injection) without diminishing Na+,K+-ATPase activity. To evaluate the possible mechanisms for this neuroprotection, we examined the levels of nuclear factor kappa B and Bcl-2 after cardiac glycoside exposure. Low-dose ouabain increased nuclear Bcl-2 (but not nuclear factor kappa B) protein levels at 6 h post injection. Our results suggest that Na+,K+-ATPase allows for progression of apoptosis in excitotoxically-injured neurons, and that sublethal concentrations of ouabain provide neuroprotection against excitotoxicity. The mechanism for this ouabain neuroprotection could be intracellular cascades linked to the Na+,K+-ATPase-ouabain interaction that modulate subcellular Bcl-2 levels. Targeted, therapeutic inhibition of apoptosis through cardiac glycosides may represent an effective strategy against excitotoxicity-mediated neuronal injury.
Collapse
Affiliation(s)
- W C Golden
- Department of Pediatrics, Eudowood Neonatal Pulmonary Division, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Nelson-Harvey 2-133, Baltimore, MD 21287, USA.
| | | |
Collapse
|
143
|
Abstract
Mutations affecting ion channels and neuronal membrane excitability have been identified in Drosophila as well as in other organisms and characterized for their acute effects on behavior and neuronal function. However, the long-term effect of these perturbations on the maintenance of neuronal viability has not been studied in detail. Here we perform an initial survey of mutations affecting Na+ channels and K+ channels in Drosophila to investigate their effects on life span and neuronal viability as a function of age. We find that mutations that decrease membrane excitability as well as those that increase excitability can trigger neurodegeneration to varying degrees. Results of double-mutant interactions with dominant Na+/K+ ATPase mutations, which themselves cause severe neurodegeneration, suggest that excitotoxicity owing to hyperexcitability is insufficient to explain the resultant phenotype. Although the exact mechanisms remain unclear, our results suggest that there is an important link between maintenance of proper neuronal signaling and maintenance of long-term neuronal viability. Disruption of these signaling mechanisms in any of a variety of ways increases the incidence of neurodegeneration.
Collapse
Affiliation(s)
- Tim Fergestad
- Laboratory of Genetics, University of Wisconsin, Madison 53706, USA
| | | | | |
Collapse
|
144
|
Anbarasi K, Vani G, Balakrishna K, Devi CSS. Effect of bacoside A on membrane-bound ATPases in the brain of rats exposed to cigarette smoke. J Biochem Mol Toxicol 2005; 19:59-65. [PMID: 15736152 DOI: 10.1002/jbt.20050] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Membrane-bound enzymes play a vital role in neuronal function through maintenance of membrane potential and impulse propagation. We have evaluated the harmful effects of chronic cigarette smoking on membrane-bound ATPases and the protective effect of Bacoside A in rat brain. Adult male albino rats were exposed to cigarette smoke for a period of 12 weeks and simultaneously administered with Bacoside A (the active principle isolated from Bacopa monniera) at a dosage of 10 mg/kg b.w/day, p.o. The levels of lipid peroxides as marker for evaluating the extent of membrane damage, the activities of Na+/K+-ATPase, Ca2+-ATPase and Mg2+-ATPase, and associated cations sodium (Na+), potassium (K+), calcium (Ca2+), and magnesium (Mg2+) were investigated in the brain. Neuronal membrane damage was evident from the elevated levels of lipid peroxides and decreased activities of membrane-bound enzymes. Disturbances in the electrolyte balance with accumulation of Na+ and Ca2+ and depletion of K+ and Mg2+ were also observed. Administration of Bacoside A inhibited lipid peroxidation, improved the activities of ATPases, and maintained the ionic equilibrium. The results of our study indicate that Bacoside A protects the brain from cigarette smoking induced membrane damage.
Collapse
Affiliation(s)
- K Anbarasi
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai--600 025, India.
| | | | | | | |
Collapse
|
145
|
Abstract
The Na+, K+-ATPase or Na+, K+-pump plays a critical role in ion homeostasis and many cellular events. The Na+, K+-pump activity is regulated by serine/threonine phosphorylation, the role of tyrosine kinases in the regulation, however, is obscure. We now present novel evidence showing that tyrosine phosphorylation activates the Na+, K+-pump in cortical neurons. The electrogenic activity of the Na+, K+-pump was measured using whole-cell voltage clamp. A tonic activity was revealed by an inward current induced by the specific inhibitor ouabain or strophanthidin; an outward current due to activation of the pump was triggered by raising extracellular K+. The inward and outward currents were attenuated by the tyrosine kinase inhibitor genistein, herbimycin A, or lavendustin A, while blocking tyrosine phosphatases increased the pump current. Down-regulation of the pump current was also seen with the Src inhibitor PP1 and intracellularly applied anti-Lyn or anti-Yes antibody. Consistently, intracellular application of Lyn kinase up-regulated the pump current. Immunoprecipitation and western blotting showed tyrosine phosphorylation and a direct interaction between Lyn and the alpha3 subunit of the Na+, K+-pump. The tyrosine phosphorylation of the alpha3 subunit was reduced by serum deprivation. These data suggest that the Na+, K+-ATPase activity in central neurons is regulated by specific Src tyrosine kinases via a protein-protein mechanism and may play a role in apoptosis.
Collapse
Affiliation(s)
- Xue Qing Wang
- Department of Pharmaceutical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | |
Collapse
|
146
|
Masuda R, Monahan JW, Kashiwaya Y. D-beta-hydroxybutyrate is neuroprotective against hypoxia in serum-free hippocampal primary cultures. J Neurosci Res 2005; 80:501-9. [PMID: 15825191 DOI: 10.1002/jnr.20464] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hypoxia decreased survival of cultured rat primary hippocampal neurons in a time dependent manner. Addition of 4 mM Na D-beta-hydroxybutyrate (bHB), a ketone body, protected the cells for 2 hr and maintained the increase in survival compared to that of controls for up to 6 hr. Trypan blue exclusion indicated that acute cell death was reduced markedly after 2-hr exposure to hypoxia in the bHB-treated group. The presence of bHB also decreased the number of neurons exhibiting condensed nuclei visualized by propidium iodide, indicative of apoptosis. The mitochondrial transmembrane potential (Em/c) was maintained for up to 2 hr exposure to hypoxia in the bHB-treated group, whereas the potential in the control group was decreased. Furthermore, cytochrome C release, caspase-3 activation, and poly (ADP-ribose) polymerase (PARP) cleavage were decreased in the bHB-treated group for the first 2 hr of exposure. These findings indicate that ketone bodies may be a candidate for widening the therapeutic window before thrombolytic therapy and at the same time decreasing apoptotic damage in the ischemic penumbra.
Collapse
Affiliation(s)
- R Masuda
- Laboratory of Metabolic Control/National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, DHHS, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
147
|
Wei L, Keogh CL, Whitaker VR, Theus MH, Yu SP. Angiogenesis and stem cell transplantation as potential treatments of cerebral ischemic stroke. ACTA ACUST UNITED AC 2005; 12:47-62. [PMID: 15927824 DOI: 10.1016/j.pathophys.2004.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Accepted: 11/22/2004] [Indexed: 12/22/2022]
Abstract
Ischemic stroke is a leading cause of human death and disability. Although stroke survivors may gain spontaneous partial functional recovery, they often suffer from sensory-motor dysfunctions, behavioral/neurological alterations, and various degrees of paralysis. Currently, limited clinical intervention is available to prevent ischemic damage and restore lost function in stroke victims. In addition to the extensive research on protective maneuvers against ischemia-induced cell death, increasing attention has been focused on potential strategies of promoting tissue repair and functional recovery in the damaged post-ischemic brain. Angiogenesis, or the growth of new blood vessels, may contribute to cell survival and functional recovery of the area of insult. The study of angiogenesis will increase the understanding of the mechanism underlying post-ischemia neurovascular plasticity and regeneration. Additionally, stem cell transplantation has emerged in the last few years as a potential therapy for ischemic stroke, because of their capability to differentiate into multiple cell types and the possibility that they may provide trophic support for cell survival, tissue repair, and functional recovery.
Collapse
Affiliation(s)
- Ling Wei
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
148
|
Kawamoto EM, Munhoz CD, Glezer I, Bahia VS, Caramelli P, Nitrini R, Gorjão R, Curi R, Scavone C, Marcourakis T. Oxidative state in platelets and erythrocytes in aging and Alzheimer's disease. Neurobiol Aging 2005; 26:857-64. [PMID: 15718044 DOI: 10.1016/j.neurobiolaging.2004.08.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 07/19/2004] [Accepted: 08/12/2004] [Indexed: 11/29/2022]
Abstract
Several studies have shown involvement of peroxynitrite anion, a potent oxidative agent, in Alzheimer's disease (AD) neuropathology. Herein, we assessed in platelets and erythrocytes of AD patients, age-matched and young adults controls: thiobarbituric acid-reactive substances (TBARS) production; superoxide dismutase (SOD), nitric oxide synthase (NOS) and Na,K-ATPase activities; cyclic GMP (cGMP) content, both basal and after sodium nitroprusside (SNP) stimulation. Aging was associated with an increase in TBARS production and NOS activity, a decrease in basal cGMP content and no change in SOD and Na,K-ATPase activities. AD patients, compared to aged controls, have: increase in TBARS production and in NOS, SOD and Na,K-ATPase activities but no alteration in basal cGMP content. SNP increased cGMP platelets production in all groups. In conclusion, we demonstrated in platelets and erythrocytes a disruption in systemic modulation of oxidative stress in aging and with more intensity in AD.
Collapse
Affiliation(s)
- Elisa Mitiko Kawamoto
- Department of Pharmacology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Scavone C, Munhoz CD, Kawamoto EM, Glezer I, de Sá Lima L, Marcourakis T, Markus RP. Age-related changes in cyclic GMP and PKG-stimulated cerebellar Na,K-ATPase activity. Neurobiol Aging 2005; 26:907-16. [PMID: 15718050 DOI: 10.1016/j.neurobiolaging.2004.08.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 06/08/2004] [Accepted: 08/04/2004] [Indexed: 10/26/2022]
Abstract
Energy deficiency and dysfunction of the Na,K-ATPase are common consequences of many pathological insults. Glutamate through cyclic GMP and cyclic GMP-dependent protein kinase (PKG) has been shown to stimulate alpha(2/3)-Na,K-ATPase activity in the central nervous system. Thus, a slight impairment of this pathway may amplify the disruption of ion homeostasis in the presence of a non-lethal insult. We investigate the effect of aging (4, 12 and 24 months) on the glutamate-cyclic GMP-PKG modulation of alpha1, alpha(2/3)-Na,K-ATPase activity in rat cerebellum and the stimulation of the glutamate-cyclic GMP-PKG pathway at different levels. Cyclic GMP levels and alpha(2/3)-Na,K-ATPase activity were progressively decreased from 4 and 24 month-old animals. However, PKG basal activity was reduced between 4 and 12 months, and no additional change was observed at 24 months. The ability of 8-Br-cyclic GMP to stimulate PKG activity was only reduced between 12 and 24 months. Moreover, glutamate or 8-Br-cyclic GMP promoted a smaller increase of alpha(2/3)-Na,K-ATPase activity at 24 months, when compared to 4 and 12 months. In spite of the age-related reduced basal levels of cyclic GMP, the production induced by CO or NO was not age-related. Finally, inhibition of PKG activation by KT5823 revealed a lower sensitivity of the enzyme at the older age. Taken together, these data show that basal age-related decline in sodium pump activity is a consequence of changes in different steps of the cyclic GMP-PKG pathway. On the other hand, age-related reduction in glutamate positive modulation of cerebellar alpha(2/3)-Na,K-ATPase is linked to a defective PKG signaling pathway.
Collapse
Affiliation(s)
- Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science University of São Paulo Avenida Lineu Prestes, São Paulo 152405508-900, Brazil.
| | | | | | | | | | | | | |
Collapse
|
150
|
Lang H, Schulte BA, Schmiedt RA. Ouabain induces apoptotic cell death in type I spiral ganglion neurons, but not type II neurons. J Assoc Res Otolaryngol 2005; 6:63-74. [PMID: 15735933 PMCID: PMC2504640 DOI: 10.1007/s10162-004-5021-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Accepted: 11/16/2004] [Indexed: 01/03/2023] Open
Abstract
Application of ouabain to the intact round-window (RW) membrane of the gerbil cochlea induces apoptosis in most spiral ganglion neurons (SGNs), leaving a few neurons intact (Schmiedt et al. 2002). Here, physiological measures and immunostaining were used to examine the process of SGN degeneration at 3, 6, 12, and 24 h, 4 days, and 1 and 5 months after ouabain treatment. The few remaining neurons surviving up to 5 months after ouabain treatment were immunoreactive for peripherin, a type II neuron marker. Peripherin-positive cell counts indicate that about 7% of the SGNs in the gerbil cochlea are type II neurons, and these neurons survive intact after ouabain treatment. Ouabain exposure had little effect on the outer hair cell and lateral wall systems, even after a 5 month loss of auditory-nerve function. The cellular locations of cytochrome c, poly (ADP-ribose) polymerase (PARP), and activated caspase 3 were examined in control and ouabain-treated cochleas. A redistribution of cytochrome c in peripherin-negative (type I) neurons was observed at 3 h after ouabain exposure. Degraded PARP and activated caspase 3 were also detected in peripherin-negative SGNs at 6 and 24 h after treatment, respectively. These results suggest that the redistribution of cytochrome c is an early event during apoptosis in type I SGNs and that activation of PARP and caspase 3 are associated with apoptosis in these cells. Calcineurin and NF-kappaB are two important signaling pathways that may modulate cell survival in the central nervous system. Here, we found that calcineurin and NF-kappaB selectively labeled type II neurons. It is speculated that the high levels of calcineurin and NF-kappaB in type II SGNs, as compared with type I SGNs, may play protective roles in enhancing the survival of type II neurons exposed to ouabain.
Collapse
Affiliation(s)
- H Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | |
Collapse
|