101
|
Kovalevich J, Tracy B, Langford D. PINCH: More than just an adaptor protein in cellular response. J Cell Physiol 2011; 226:940-7. [PMID: 20945343 DOI: 10.1002/jcp.22437] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Particularly interesting new cysteine-histidine-rich protein (PINCH) is a LIM-domain-only adaptor protein involved in protein recruitment, subsequent assembly of multi-protein complexes, and subcellular localization of these complexes. PINCH is developmentally regulated and its expression is critical for proper cytoskeletal organization and extracellular matrix adhesion. Although PINCH has no catalytic abilities, the PIP (PINCH-ILK-parvin) complex serves as a link between integrins and components of growth factor receptor kinase and GTPase signaling pathways. Accordingly, PINCH-mediated signaling induces cell migration, spreading, and survival. Further research on the signaling cascades affected by PINCH is key to appreciating its biological significance in cell fate and systems maintenance, as the developmental functions of PINCH may extend to disease states and the cellular response to damage. PINCH is implicated in a diverse array of diseases including renal failure, cardiomyopathy, nervous system degeneration and demyelination, and tumorigenesis. This review presents evidence for PINCH's structural and functional importance in normal cellular processes and in pathogenesis. The current data for PINCH expression in nervous system disease is substantial, but due to the complex and ubiquitous nature of this protein, our understanding of its function in pathology remains unclear. In this review, an overview of studies identifying PINCH binding partners, their molecular interactions, and the potentially overlapping role(s) of PINCH in cancer and in nervous system diseases will be discussed. Many questions remain regarding PINCH's role in cells. What induces cell-specific PINCH expression? How does PINCH expression contribute to cell fate in the central nervous system? More broadly, is PINCH expression in disease a good thing? Clarifying the ambiguous functions of PINCH expression in the central nervous system and other systems is important to understand more clearly signaling events both in health and disease.
Collapse
Affiliation(s)
- Jane Kovalevich
- Temple University School of Medicine, Department of Neuroscience, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
102
|
Joyashiki E, Matsuya Y, Tohda C. Sominone Improves Memory Impairments and Increases Axonal Density in Alzheimer's Disease Model Mice, 5XFAD. Int J Neurosci 2011; 121:181-90. [DOI: 10.3109/00207454.2010.541571] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
103
|
Davis RC, Marsden IT, Maloney MT, Minamide LS, Podlisny M, Selkoe DJ, Bamburg JR. Amyloid beta dimers/trimers potently induce cofilin-actin rods that are inhibited by maintaining cofilin-phosphorylation. Mol Neurodegener 2011; 6:10. [PMID: 21261978 PMCID: PMC3037337 DOI: 10.1186/1750-1326-6-10] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 01/24/2011] [Indexed: 11/10/2022] Open
Abstract
Background Previously we reported 1 μM synthetic human amyloid beta1-42 oligomers induced cofilin dephosphorylation (activation) and formation of cofilin-actin rods within rat hippocampal neurons primarily localized to the dentate gyrus. Results Here we demonstrate that a gel filtration fraction of 7PA2 cell-secreted SDS-stable human Aβ dimers and trimers (Aβd/t) induces maximal neuronal rod response at ~250 pM. This is 4,000-fold more active than traditionally prepared human Aβ oligomers, which contain SDS-stable trimers and tetramers, but are devoid of dimers. When incubated under tyrosine oxidizing conditions, synthetic human but not rodent Aβ1-42, the latter lacking tyrosine, acquires a marked increase (620 fold for EC50) in rod-inducing activity. Gel filtration of this preparation yielded two fractions containing SDS-stable dimers, trimers and tetramers. One, eluting at a similar volume to 7PA2 Aβd/t, had maximum activity at ~5 nM, whereas the other, eluting at the void volume (high-n state), lacked rod inducing activity at the same concentration. Fractions from 7PA2 medium containing Aβ monomers are not active, suggesting oxidized SDS-stable Aβ1-42 dimers in a low-n state are the most active rod-inducing species. Aβd/t-induced rods are predominantly localized to the dentate gyrus and mossy fiber tract, reach significance over controls within 2 h of treatment, and are reversible, disappearing by 24 h after Aβd/t washout. Overexpression of cofilin phosphatases increase rod formation when expressed alone and exacerbate rod formation when coupled with Aβd/t, whereas overexpression of a cofilin kinase inhibits Aβd/t-induced rod formation. Conclusions Together these data support a mechanism by which Aβd/t alters the actin cytoskeleton via effects on cofilin in neurons critical to learning and memory.
Collapse
Affiliation(s)
- Richard C Davis
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA.
| | | | | | | | | | | | | |
Collapse
|
104
|
Manetti F. LIM kinases are attractive targets with many macromolecular partners and only a few small molecule regulators. Med Res Rev 2011; 32:968-98. [PMID: 22886629 DOI: 10.1002/med.20230] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The LIM kinases 1 and 2 (LIMK1 and LIMK2) are dual specificity (serine/threonine and tyrosine) kinases. Although they show significant structural similarity, LIMK1 and LIMK2 show different expression, subcellular localization, and functions. They are involved in many cellular functions, such as migration, cycle, and neuronal differentiation and also have a role in pathological processes, such as cancer cell invasion and metastatis, as well as in neurodevelopmental disorders (namely, the William's syndrome). LIM kinases have a relevant number of known partners that are able to induce or limit the ability of LIMK1 and LIMK2 to phosphorylate and inactivate their major substrate, cofilin. On the contrary, only a limited number of small molecules that interact with the two proteins to modulate their kinase activity have been identified. In this review, the most important partners of LIM kinases and their modulating activity toward LIMKs are described. The small compounds identified as LIMK1 and LIMK2 modulators are also reported, as well as their role as possible therapeutic agents for LIMK-induced diseases.
Collapse
Affiliation(s)
- Fabrizio Manetti
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, via Alcide de Gasperi 2, I-53100 Siena, Italy.
| |
Collapse
|
105
|
Maruta H. Effective neurofibromatosis therapeutics blocking the oncogenic kinase PAK1. Drug Discov Ther 2011; 5:266-78. [DOI: 10.5582/ddt.2011.v5.6.266] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
106
|
Bernstein BW, Maloney MT, Bamburg JR. Actin and Diseases of the Nervous System. ADVANCES IN NEUROBIOLOGY 2011; 5:201-234. [PMID: 35547659 PMCID: PMC9088176 DOI: 10.1007/978-1-4419-7368-9_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abnormal regulation of the actin cytoskeleton results in several pathological conditions affecting primarily the nervous system. Those of genetic origin arise during development, but others manifest later in life. Actin regulation is also affected profoundly by environmental factors that can have sustained consequences for the nervous system. Those consequences follow from the fact that the actin cytoskeleton is essential for a multitude of cell biological functions ranging from neuronal migration in cortical development and dendritic spine formation to NMDA receptor activity in learning and alcoholism. Improper regulation of actin, causing aggregation, can contribute to the neurodegeneration of amyloidopathies, such as Down's syndrome and Alzheimer's disease. Much progress has been made in understanding the molecular basis of these diseases.
Collapse
Affiliation(s)
- Barbara W Bernstein
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Michael T Maloney
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
107
|
Moreno-López B, Sunico CR, González-Forero D. NO orchestrates the loss of synaptic boutons from adult "sick" motoneurons: modeling a molecular mechanism. Mol Neurobiol 2010; 43:41-66. [PMID: 21190141 DOI: 10.1007/s12035-010-8159-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 12/02/2010] [Indexed: 12/14/2022]
Abstract
Synapse elimination is the main factor responsible for the cognitive decline accompanying many of the neuropathological conditions affecting humans. Synaptic stripping of motoneurons is also a common hallmark of several motor pathologies. Therefore, knowledge of the molecular basis underlying this plastic process is of central interest for the development of new therapeutic tools. Recent advances from our group highlight the role of nitric oxide (NO) as a key molecule triggering synapse loss in two models of motor pathologies. De novo expression of the neuronal isoform of NO synthase (nNOS) in motoneurons commonly occurs in response to the physical injury of a motor nerve and in the course of amyotrophic lateral sclerosis. In both conditions, this event precedes synaptic withdrawal from motoneurons. Strikingly, nNOS-synthesized NO is "necessary" and "sufficient" to induce synaptic detachment from motoneurons. The mechanism involves a paracrine/retrograde action of NO on pre-synaptic structures, initiating a downstream signaling cascade that includes sequential activation of (1) soluble guanylyl cyclase, (2) cyclic guanosine monophosphate-dependent protein kinase, and (3) RhoA/Rho kinase (ROCK) signaling. Finally, ROCK activation promotes phosphorylation of regulatory myosin light chain, which leads to myosin activation and actomyosin contraction. This latter event presumably contributes to the contractile force to produce ending axon retraction. Several findings support that this mechanism may operate in the most prevalent neurodegenerative diseases.
Collapse
Affiliation(s)
- Bernardo Moreno-López
- Grupo de NeuroDegeneración y NeuroReparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Plaza Falla, 9, 11003 Cádiz, Spain.
| | | | | |
Collapse
|
108
|
Gu J, Lee CW, Fan Y, Komlos D, Tang X, Sun C, Yu K, Hartzell HC, Chen G, Bamburg JR, Zheng JQ. ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity. Nat Neurosci 2010; 13:1208-15. [PMID: 20835250 PMCID: PMC2947576 DOI: 10.1038/nn.2634] [Citation(s) in RCA: 259] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 08/17/2010] [Indexed: 02/08/2023]
Abstract
Dendritic spines undergo actin-based growth and shrinkage during synaptic plasticity, in which the actin depolymerizing factor (ADF)/cofilin family of actin-associated proteins are important. Elevated ADF/cofilin activities often lead to reduced spine size and immature spine morphology but can also enhance synaptic potentiation in some cases. Thus, ADF/cofilin may have distinct effects on postsynaptic structure and function. We found that ADF/cofilin-mediated actin dynamics regulated AMPA receptor (AMPAR) trafficking during synaptic potentiation, which was distinct from actin's structural role in spine morphology. Specifically, elevated ADF/cofilin activity markedly enhanced surface addition of AMPARs after chemically induced long-term potentiation (LTP), whereas inhibition of ADF/cofilin abolished AMPAR addition. We found that chemically induced LTP elicited a temporal sequence of ADF/cofilin dephosphorylation and phosphorylation that underlies AMPAR trafficking and spine enlargement. These findings suggest that temporally regulated ADF/cofilin activities function in postsynaptic modifications of receptor number and spine size during synaptic plasticity.
Collapse
Affiliation(s)
- Jiaping Gu
- Department of Cell Biology, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Julien C, Tremblay C, Phivilay A, Berthiaume L, Émond V, Julien P, Calon F. High-fat diet aggravates amyloid-beta and tau pathologies in the 3xTg-AD mouse model. Neurobiol Aging 2010; 31:1516-31. [DOI: 10.1016/j.neurobiolaging.2008.08.022] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 08/22/2008] [Accepted: 08/29/2008] [Indexed: 01/12/2023]
|
110
|
Ward MW, Concannon CG, Whyte J, Walsh CM, Corley B, Prehn JHM. The amyloid precursor protein intracellular domain(AICD) disrupts actin dynamics and mitochondrial bioenergetics. J Neurochem 2010; 113:275-84. [PMID: 20405578 DOI: 10.1111/j.1471-4159.2010.06615.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The amyloid precursor protein (APP) is critically involved in the pathogenesis of Alzheimer's disease, and is strongly up-regulated in response to traumatic, metabolic, or toxic insults to the nervous system. The processing of APP by gamma/epsilon-secretase activity results in the generation of the APP intracellular domain (AICD). Previously, we have shown that AICD induces the expression of genes (transgelin, alpha2-actin) with functional roles in actin organization and dynamics and demonstrated that the induction of AICD and its co-activator Fe65 (AICD/Fe65) resulted in a loss of organized filamentous actin structures within the cell. As mitochondrial function is thought to be reliant on ordered actin dynamics, we examined mitochondrial function in human SHEP neuroblastoma cells inducibly expressing AICD/Fe65. Confocal analysis of the mitochondrial membrane potential (DeltaPsim) identified a significant decrease in the DeltaPsim in the AICD50/Fe65 over-expressing cells. This was paralleled by significantly reduced ATP levels and decreased basal superoxide production. Overexpression of the proposed AICD target gene transgelin in SHEP-SF parental cells and primary neurons was sufficient to destabilize actin filaments, depolarize DeltaPsim, and significantly alter mitochondrial distribution and morphology. Our data demonstrate that the induction of AICD/Fe65 or transgelin significantly alters actin dynamics and mitochondrial function in neuronal cells.
Collapse
Affiliation(s)
- Manus W Ward
- Department of Physiology and Medical Physics and RCSI Neuroscience Research Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|
111
|
Nitric oxide induces pathological synapse loss by a protein kinase G-, Rho kinase-dependent mechanism preceded by myosin light chain phosphorylation. J Neurosci 2010; 30:973-84. [PMID: 20089906 DOI: 10.1523/jneurosci.3911-09.2010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The molecular signaling that underpins synapse loss in neuropathological conditions remains unknown. Concomitant upregulation of the neuronal nitric oxide (NO) synthase (nNOS) in neurodegenerative processes places NO at the center of attention. We found that de novo nNOS expression was sufficient to induce synapse loss from motoneurons at adult and neonatal stages. In brainstem slices obtained from neonatal animals, this effect required prolonged activation of the soluble guanylyl cyclase (sGC)/protein kinase G (PKG) pathway and RhoA/Rho kinase (ROCK) signaling. Synapse elimination involved paracrine/retrograde action of NO. Furthermore, before bouton detachment, NO increased synapse myosin light chain phosphorylation (p-MLC), which is known to trigger actomyosin contraction and neurite retraction. NO-induced MLC phosphorylation was dependent on cGMP/PKG-ROCK signaling. In adulthood, motor nerve injury induced NO/cGMP-dependent synaptic stripping, strongly affecting ROCK-expressing synapses, and increased the percentage of p-MLC-expressing inputs before synapse destabilization. We propose that this molecular cascade could trigger synapse loss underlying early cognitive/motor deficits in several neuropathological states.
Collapse
|
112
|
Perucho J, Casarejos MJ, Rubio I, Rodriguez-Navarro JA, Gómez A, Ampuero I, Rodal I, Solano RM, Carro E, de Yébenes JG, Mena MA. The effects of parkin suppression on the behaviour, amyloid processing, and cell survival in APP mutant transgenic mice. Exp Neurol 2010; 221:54-67. [DOI: 10.1016/j.expneurol.2009.09.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/11/2009] [Accepted: 09/29/2009] [Indexed: 12/30/2022]
|
113
|
Deyts C, Galan-Rodriguez B, Martin E, Bouveyron N, Roze E, Charvin D, Caboche J, Bétuing S. Dopamine D2 receptor stimulation potentiates PolyQ-Huntingtin-induced mouse striatal neuron dysfunctions via Rho/ROCK-II activation. PLoS One 2009; 4:e8287. [PMID: 20016831 PMCID: PMC2790370 DOI: 10.1371/journal.pone.0008287] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 11/18/2009] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) is a polyglutamine-expanded related neurodegenerative disease. Despite the ubiquitous expression of expanded, polyQ-Huntingtin (ExpHtt) in the brain, striatal neurons present a higher susceptibility to the mutation. A commonly admitted hypothesis is that Dopaminergic inputs participate to this vulnerability. We previously showed that D2 receptor stimulation increased aggregate formation and neuronal death induced by ExpHtt in primary striatal neurons in culture, and chronic D2 antagonist treatment protects striatal dysfunctions induced by ExpHtt in a lentiviral-induced model system in vivo. The present work was designed to elucidate the signalling pathways involved, downstream D2 receptor (D2R) stimulation, in striatal vulnerability to ExpHtt. METHODOLOGY/PRINCIPAL FINDINGS Using primary striatal neurons in culture, transfected with a tagged-GFP version of human exon 1 ExpHtt, and siRNAs against D2R or D1R, we confirm that DA potentiates neuronal dysfunctions via D2R but not D1R stimulation. We demonstrate that D2 agonist treatment induces neuritic retraction and growth cone collapse in Htt- and ExpHtt expressing neurons. We then tested a possible involvement of the Rho/ROCK signalling pathway, which plays a key role in the dynamic of the cytoskeleton, in these processes. The pharmacological inhibitors of ROCK (Y27632 and Hydroxyfasudil), as well as siRNAs against ROCK-II, reversed D2-related effects on neuritic retraction and growth cone collapse. We show a coupling between D2 receptor stimulation and Rho activation, as well as hyperphosphorylation of Cofilin, a downstream effector of ROCK-II pathway. Importantly, D2 agonist-mediated potentiation of aggregate formation and neuronal death induced by ExpHtt, was totally reversed by Y27632 and Hydroxyfasudil and ROCK-II siRNAs. CONCLUSIONS/SIGNIFICANCE Our data provide the first demonstration that D2R-induced vulnerability in HD is critically linked to the activation of the Rho/ROCK signalling pathway. The inclusion of Rho/ROCK inhibitors could be an interesting therapeutic option aimed at forestalling the onset of the disease.
Collapse
Affiliation(s)
- Carole Deyts
- CNRS UMR 7102, Université Pierre et Marie Curie-Paris 6, Paris, France
- INSERM UMRS 952, CNRS UMR 7224, Université Pierre et Marie Curie-Paris 6, Paris, France
- Biological Sciences Division, University of Chicago, Chicago, Illinois, United States of America
| | - Beatriz Galan-Rodriguez
- CNRS UMR 7102, Université Pierre et Marie Curie-Paris 6, Paris, France
- INSERM UMRS 952, CNRS UMR 7224, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Elodie Martin
- CNRS UMR 7102, Université Pierre et Marie Curie-Paris 6, Paris, France
- INSERM UMRS 952, CNRS UMR 7224, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Nicolas Bouveyron
- CNRS UMR 7102, Université Pierre et Marie Curie-Paris 6, Paris, France
- INSERM UMRS 952, CNRS UMR 7224, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Emmanuel Roze
- CNRS UMR 7102, Université Pierre et Marie Curie-Paris 6, Paris, France
- INSERM UMRS 952, CNRS UMR 7224, Université Pierre et Marie Curie-Paris 6, Paris, France
- Service de Neurologie, Hôpital Salpêtrière, Assitance Publique-Hôpitaux de Paris, Paris, France
| | - Delphine Charvin
- CNRS UMR 7102, Université Pierre et Marie Curie-Paris 6, Paris, France
- INSERM UMRS 952, CNRS UMR 7224, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Jocelyne Caboche
- CNRS UMR 7102, Université Pierre et Marie Curie-Paris 6, Paris, France
- INSERM UMRS 952, CNRS UMR 7224, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Sandrine Bétuing
- CNRS UMR 7102, Université Pierre et Marie Curie-Paris 6, Paris, France
- INSERM UMRS 952, CNRS UMR 7224, Université Pierre et Marie Curie-Paris 6, Paris, France
- Université Evry Val d'Essonne, Evry, France
- * E-mail:
| |
Collapse
|
114
|
Vlecken DH, Bagowski CP. LIMK1 and LIMK2 Are Important for Metastatic Behavior and Tumor Cell-Induced Angiogenesis of Pancreatic Cancer Cells. Zebrafish 2009; 6:433-9. [DOI: 10.1089/zeb.2009.0602] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Danielle H. Vlecken
- Research and Development—Process Development (O&O-PO), Nederlands Vaccin Instituut (NVI), Bilthoven, The Netherlands
| | - Christoph P. Bagowski
- Department of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo City, Egypt
| |
Collapse
|
115
|
Kim KH, Son JH. PINK1 gene knockdown leads to increased binding of parkin with actin filament. Neurosci Lett 2009; 468:272-6. [PMID: 19909785 DOI: 10.1016/j.neulet.2009.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/27/2009] [Accepted: 11/05/2009] [Indexed: 10/20/2022]
Abstract
Mutations in the PINK1 gene are known to cause early onset familial Parkinson's disease (PD). Genetic fruit fly model studies and rescue experiments with parkin overexpression suggest that PINK1 and parkin are associated via an unidentified mechanism. To gain additional insight into this interaction, we have investigated the impact of PINK1 deficiency on the biological function of parkin using actin filament dynamics. Actin is known to be associated with parkin and is a key regulator of eukaryotic cell death. PINK1 gene knockdown (KD) significantly increased actin aggregation and its binding with parkin. Known PD-related pathological conditions, such as oxidative stress and mitochondrial dysfunction, also increased actin aggregation and parkin binding. PINK1 KD resulted in the increased phosphorylation of cofilin, a protein important for the remodeling of actin filament and neurodegeneration. These results suggest that altered actin dynamics and increased association of parkin with actin filament might underlie the pathological conditions resulting from PINK1 deficiency.
Collapse
Affiliation(s)
- Kyung-Hee Kim
- Laboratory of Neuroprotection, Division of Life & Pharmaceutical Sciences, Brain Disease Research Institute, College of Pharmacy, Ewha Woman's University, Seoul, South Korea
| | | |
Collapse
|
116
|
Knowles JK, Rajadas J, Nguyen TVV, Yang T, LeMieux MC, Vander Griend L, Ishikawa C, Massa SM, Wyss-Coray T, Longo FM. The p75 neurotrophin receptor promotes amyloid-beta(1-42)-induced neuritic dystrophy in vitro and in vivo. J Neurosci 2009; 29:10627-37. [PMID: 19710315 PMCID: PMC2771439 DOI: 10.1523/jneurosci.0620-09.2009] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 06/16/2009] [Accepted: 07/14/2009] [Indexed: 01/30/2023] Open
Abstract
Oligomeric forms of amyloid-beta (Abeta) are thought to play a causal role in Alzheimer's disease (AD), and the p75 neurotrophin receptor (p75(NTR)) has been implicated in Abeta-induced neurodegeneration. To further define the functions of p75(NTR) in AD, we examined the interaction of oligomeric Abeta(1-42) with p75(NTR), and the effects of that interaction on neurite integrity in neuron cultures and in a chronic AD mouse model. Atomic force microscopy was used to ascertain the aggregated state of Abeta, and fluorescence resonance energy transfer analysis revealed that Abeta oligomers interact with the extracellular domain of p75(NTR). In vitro studies of Abeta-induced death in neuron cultures isolated from wild-type and p75(NTR-/-) mice, in which the p75(NTR) extracellular domain is deleted, showed reduced sensitivity of mutant cells to Abeta-induced cell death. Interestingly, Abeta-induced neuritic dystrophy and activation of c-Jun, a known mediator of Abeta-induced deleterious signaling, were completely prevented in p75(NTR-/-) neuron cultures. Thy1-hAPP(Lond/Swe) x p75(NTR-/-) mice exhibited significantly diminished hippocampal neuritic dystrophy and complete reversal of basal forebrain cholinergic neurite degeneration relative to those expressing wild-type p75(NTR). Abeta levels were not affected, suggesting that removal of p75(NTR) extracellular domain reduced the ability of excess Abeta to promote neuritic degeneration. These findings indicate that although p75(NTR) likely does not mediate all Abeta effects, it does play a significant role in enabling Abeta-induced neurodegeneration in vitro and in vivo, establishing p75(NTR) as an important therapeutic target for AD.
Collapse
Affiliation(s)
- Juliet K. Knowles
- Departments of Neurology and Neurological Science, and
- Department of Neurology, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jayakumar Rajadas
- Departments of Neurology and Neurological Science, and
- Chemical Engineering, Stanford University, Stanford, California 94305
| | | | - Tao Yang
- Departments of Neurology and Neurological Science, and
- Department of Neurology, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina 27599
| | | | | | - Chihiro Ishikawa
- Departments of Neurology and Neurological Science, and
- Palo Alto Veterans Affairs Health Care System, Palo Alto, California 94304
| | - Stephen M. Massa
- Department of Neurology and Laboratory for Computational Neurochemistry and Drug Discovery, Department of Veterans Affairs Medical Center, San Francisco, and
- Department of Neurology, University of California, San Francisco, San Francisco, California 94121
| | - Tony Wyss-Coray
- Departments of Neurology and Neurological Science, and
- Palo Alto Veterans Affairs Health Care System, Palo Alto, California 94304
| | - Frank M. Longo
- Departments of Neurology and Neurological Science, and
- Department of Neurology, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
117
|
Abstract
The histopathological hallmarks of Alzheimer disease are the extracellular amyloid plaques, composed principally of the amyloid beta peptide, and the intracellular neurofibrillary tangles, composed of paired helical filaments of the microtubule-associated protein, tau. Other histopathological structures involving actin and the actin-binding protein, cofilin, have more recently been recognized. Here we review new findings about these cytoskeletal pathologies, and, emphasize how plaques, tangles, the actin-containing inclusions and their respective building blocks may contribute to Alzheimer pathogenesis and the primary behavioral symptoms of the disease. Cell Motil. Cytoskeleton, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- James R Bamburg
- Department of Biochemistry and Molecular Biology, Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado, USA.
| | | |
Collapse
|
118
|
Stanwood GD, Leitch DB, Savchenko V, Wu J, Fitsanakis VA, Anderson DJ, Stankowski JN, Aschner M, McLaughlin B. Manganese exposure is cytotoxic and alters dopaminergic and GABAergic neurons within the basal ganglia. J Neurochem 2009; 110:378-89. [PMID: 19457100 PMCID: PMC2737271 DOI: 10.1111/j.1471-4159.2009.06145.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Manganese is an essential nutrient, integral to proper metabolism of amino acids, proteins and lipids. Excessive environmental exposure to manganese can produce extrapyramidal symptoms similar to those observed in Parkinson's disease (PD). We used in vivo and in vitro models to examine cellular and circuitry alterations induced by manganese exposure. Primary mesencephalic cultures were treated with 10-800 microM manganese chloride which resulted in dramatic changes in the neuronal cytoskeleton even at subtoxic concentrations. Using cultures from mice with red fluorescent protein driven by the tyrosine hydroxylase (TH) promoter, we found that dopaminergic neurons were more susceptible to manganese toxicity. To understand the vulnerability of dopaminergic cells to chronic manganese exposure, mice were given i.p. injections of MnCl(2) for 30 days. We observed a 20% reduction in TH-positive neurons in the substantia nigra pars compacta (SNpc) following manganese treatment. Quantification of Nissl bodies revealed a widespread reduction in SNpc cell numbers. Other areas of the basal ganglia were also altered by manganese as evidenced by the loss of glutamic acid decarboxylase 67 in the striatum. These studies suggest that acute manganese exposure induces cytoskeletal dysfunction prior to degeneration and that chronic manganese exposure results in neurochemical dysfunction with overlapping features to PD.
Collapse
Affiliation(s)
- Gregg D. Stanwood
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37232
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Duncan B. Leitch
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee 37232
- Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232
| | - Valentina Savchenko
- Department of Neurology, Northwestern University School of Medicine Lurie Building 6117; 303 E. Superior St, Chicago, IL 60611
| | - Jane Wu
- Department of Neurology, Northwestern University School of Medicine Lurie Building 6117; 303 E. Superior St, Chicago, IL 60611
| | | | | | - Jeannette N. Stankowski
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37232
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee 37232
| | - Michael Aschner
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37232
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee 37232
| | - BethAnn McLaughlin
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37232
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
- Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
119
|
Zhao L, Zhao ST, Qian ZM, Zhang C, Wu XM, Du F, Ke Y. Activation of group III metabotropic glutamate receptor reduces intracellular calcium in beta-amyloid peptide [31-35]-treated cortical neurons. Neurotox Res 2009; 16:174-83. [PMID: 19526293 DOI: 10.1007/s12640-009-9068-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 12/06/2008] [Accepted: 05/18/2009] [Indexed: 11/25/2022]
Abstract
It is unknown whether amyloid beta-protein 31-35 (Abeta[31-35]) has effects similar to Abeta[1-40] and Abeta[25-35] on the intracellular calcium ([Ca(2+)]i) to induce a disruption of calcium homeostasis. In this study, we investigated the effects of Abeta[31-35] on [Ca(2+)]i in primary cultured cortical neurons using real time fluorescence imaging technique and the Ca(2+)-sensitive dye Furo-2/AM. It was found that Abeta[31-35] (25 microM) could induce a significant elevation in [Ca(2+)]i and a decrease in the average latency in the cortical neurons in a dose-dependent manner. To examine whether the activation of group III mGluRs could block the changes in [Ca(2+)]i and protect neurons from apoptosis induced by Abeta[31-35], we then investigated the effects of L: -serine-O-phosphate (L: -SOP) and (R,S)-4-phosphonophenylglycine ((R,S)-PPG), the selective agonists of group III metabotropic glutamate receptors (mGluRs), on [Ca(2+)]i and apoptosis in neurons treated by Abeta[31-35]. We demonstrated that L: -SOP or (R,S)-PPG (100 microM) treatment suppresses significantly the elevation of [Ca(2+)]i induced by Abeta[31-35] and also induces an almost complete recovery of both the fluorescence intensity and apoptotic cells (%) to the control level in the neurons. These results suggest that Abeta[31-35] may be the shortest sequence responsible for the neuronal toxicity of Abeta protein and that the neuroprotective role of the activation of group III mGluRs from the apoptosis induced by Abeta[31-35] might be partly due to its ability to inhibit the increased calcium influx, which results from Abeta[31-35].
Collapse
Affiliation(s)
- Li Zhao
- Department of Neurobiology, Shanxi Medical University, 030001, Taiyuan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
120
|
Hocking JC, Hehr CL, Bertolesi G, Funakoshi H, Nakamura T, McFarlane S. LIMK1 acts downstream of BMP signaling in developing retinal ganglion cell axons but not dendrites. Dev Biol 2009; 330:273-85. [PMID: 19361494 DOI: 10.1016/j.ydbio.2009.03.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Revised: 03/26/2009] [Accepted: 03/30/2009] [Indexed: 10/20/2022]
Abstract
The actin cytoskeleton inside extending axonal and dendritic processes must undergo continuous assembly and disassembly. Some extrinsic factors modulate actin turnover through controlling the activity of LIM kinase 1 (LIMK1), which phosphorylates and inactivates the actin depolymerizing factor cofilin. Here, we for the first time examine the function and regulation of LIMK1 in vivo in the vertebrate nervous system. Upon expression of wildtype or kinase-dead forms of the protein, dendrite growth by Xenopus retinal ganglion cells (RGCs) was unchanged. In contrast, maintaining a low, but significant level, of LIMK1 function in the RGC axon is critical for proper extension. Interestingly, bone morphogenetic protein receptor II (BMPRII) is a major regulator of LIMK1 in extending RGC axons, as expression of a BMPRII lacking the LIMK1 binding region caused a dramatic shortening of the axons. Previously, we found that BMPRIIs stimulate dendrite initiation in vivo. Thus, the fact that manipulation of LIMK1 activity failed to alter dendrite growth suggests that BMPs may activate distinct signalling pathways in axons and dendrites.
Collapse
Affiliation(s)
- Jennifer C Hocking
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
121
|
Yang T, Knowles JK, Lu Q, Zhang H, Arancio O, Moore LA, Chang T, Wang Q, Andreasson K, Rajadas J, Fuller GG, Xie Y, Massa SM, Longo FM. Small molecule, non-peptide p75 ligands inhibit Abeta-induced neurodegeneration and synaptic impairment. PLoS One 2008; 3:e3604. [PMID: 18978948 PMCID: PMC2575383 DOI: 10.1371/journal.pone.0003604] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 10/09/2008] [Indexed: 11/19/2022] Open
Abstract
The p75 neurotrophin receptor (p75(NTR)) is expressed by neurons particularly vulnerable in Alzheimer's disease (AD). We tested the hypothesis that non-peptide, small molecule p75(NTR) ligands found to promote survival signaling might prevent Abeta-induced degeneration and synaptic dysfunction. These ligands inhibited Abeta-induced neuritic dystrophy, death of cultured neurons and Abeta-induced death of pyramidal neurons in hippocampal slice cultures. Moreover, ligands inhibited Abeta-induced activation of molecules involved in AD pathology including calpain/cdk5, GSK3beta and c-Jun, and tau phosphorylation, and prevented Abeta-induced inactivation of AKT and CREB. Finally, a p75(NTR) ligand blocked Abeta-induced hippocampal LTP impairment. These studies support an extensive intersection between p75(NTR) signaling and Abeta pathogenic mechanisms, and introduce a class of specific small molecule ligands with the unique ability to block multiple fundamental AD-related signaling pathways, reverse synaptic impairment and inhibit Abeta-induced neuronal dystrophy and death.
Collapse
Affiliation(s)
- Tao Yang
- Department of Neurology and Neurological Science, Stanford University, Stanford, California, United States of America
- Department of Neurology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Juliet K. Knowles
- Department of Neurology and Neurological Science, Stanford University, Stanford, California, United States of America
- Department of Neurology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Qun Lu
- Department of Anatomy and Cell Biology, The Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States of America
| | - Hong Zhang
- Department of Pathology and Taub Institute, Columbia University, New York, New York, United States of America
| | - Ottavio Arancio
- Department of Pathology and Taub Institute, Columbia University, New York, New York, United States of America
| | - Laura A. Moore
- Department of Neurology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Timothy Chang
- Department of Neurology and Neurological Science, Stanford University, Stanford, California, United States of America
| | - Qian Wang
- Department of Neurology and Neurological Science, Stanford University, Stanford, California, United States of America
| | - Katrin Andreasson
- Department of Neurology and Neurological Science, Stanford University, Stanford, California, United States of America
| | - Jayakumar Rajadas
- Department of Neurology and Neurological Science, Stanford University, Stanford, California, United States of America
- Department of Chemical Engineering, Stanford University, Stanford, California, United States of America
| | - Gerald G. Fuller
- Department of Chemical Engineering, Stanford University, Stanford, California, United States of America
| | - Youmei Xie
- Department of Neurology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Stephen M. Massa
- Department of Neurology and Laboratory for Computational Neurochemistry and Drug Discovery, San Francisco Veterans Affairs Medical Center, and Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Frank M. Longo
- Department of Neurology and Neurological Science, Stanford University, Stanford, California, United States of America
- Department of Neurology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
122
|
Abstract
Failure of normal brain development leads to mental retardation or autism in about 3% of children. Many genes integral to pathways by which synaptic modification and the remodelling of neuronal networks mediate cognitive and social development have been identified, usually through loss of function. Evidence is accumulating, however, that either loss or gain of molecular functions can be deleterious to the nervous system. Copy-number variation, regulation of gene expression by non-coding RNAs and epigenetic changes are all mechanisms by which altered gene dosage can cause the failure of neuronal homeostasis.
Collapse
Affiliation(s)
- Melissa B Ramocki
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, MS 225, BCMT-T807, Houston, Texas 77030, USA.
| | | |
Collapse
|
123
|
Medina PMB, Worthen RJ, Forsberg LJ, Brenman JE. The actin-binding protein capulet genetically interacts with the microtubule motor kinesin to maintain neuronal dendrite homeostasis. PLoS One 2008; 3:e3054. [PMID: 18725959 PMCID: PMC2516187 DOI: 10.1371/journal.pone.0003054] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Accepted: 08/06/2008] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Neurons require precise cytoskeletal regulation within neurites, containing microtubule tracks for cargo transport in axons and dendrites or within synapses containing organized actin. Due to the unique architecture and specialized function of neurons, neurons are particularly susceptible to perturbation of the cytoskeleton. Numerous actin-binding proteins help maintain proper cytoskeletal regulation. METHODOLOGY/PRINCIPAL FINDINGS From a Drosophila forward genetic screen, we identified a mutation in capulet--encoding a conserved actin-binding protein--that causes abnormal aggregates of actin within dendrites. Through interaction studies, we demonstrate that simultaneous genetic inactivation of capulet and kinesin heavy chain, a microtubule motor protein, produces elongate cofilin-actin rods within dendrites but not axons. These rods resemble actin-rich structures induced in both mammalian neurodegenerative and Drosophila Alzheimer's models, but have not previously been identified by loss of function mutations in vivo. We further demonstrate that mitochondria, which are transported by Kinesin, have impaired distribution along dendrites in a capulet mutant. While Capulet and Cofilin may biochemically cooperate in certain circumstances, in neuronal dendrites they genetically antagonize each other. CONCLUSIONS/SIGNIFICANCE The present study is the first molecularly defined loss of function demonstration of actin-cofilin rods in vivo. This study suggests that simultaneous, seemingly minor perturbations in neuronal dendrites can synergize producing severe abnormalities affecting actin, microtubules and mitochondria/energy availability in dendrites. Additionally, as >90% of Alzheimer's and Parkinson's cases are sporadic this study suggests mechanisms by which multiple mutations together may contribute to neurodegeneration instead of reliance on single mutations to produce disease.
Collapse
Affiliation(s)
- Paul M. B. Medina
- Neuroscience Center, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Ryan J. Worthen
- Neuroscience Center, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Lawrence J. Forsberg
- Neuroscience Center, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Jay E. Brenman
- Neuroscience Center, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
- Department of Cell and Developmental Biology, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
124
|
Tohda C, Naito R, Joyashiki E. Kihi-to, a herbal traditional medicine, improves Abeta(25-35)-induced memory impairment and losses of neurites and synapses. Altern Ther Health Med 2008; 8:49. [PMID: 18706097 PMCID: PMC2532680 DOI: 10.1186/1472-6882-8-49] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 08/16/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND We previously hypothesized that achievement of recovery of brain function after the injury requires the reconstruction of neuronal networks, including neurite regeneration and synapse reformation. Kihi-to is composed of twelve crude drugs, some of which have already been shown to possess neurite extension properties in our previous studies. The effect of Kihi-to on memory deficit has not been examined. Thus, the goal of the present study is to determine the in vivo and in vitro effects of Kihi-to on memory, neurite growth and synapse reconstruction. METHODS Effects of Kihi-to, a traditional Japanese-Chinese traditional medicine, on memory deficits and losses of neurites and synapses were examined using Alzheimer's disease model mice. Improvements of Abeta(25-35)-induced neuritic atrophy by Kihi-to and the mechanism were investigated in cultured cortical neurons. RESULTS Administration of Kihi-to for consecutive 3 days resulted in marked improvements of Abeta(25-35)-induced impairments in memory acquisition, memory retention, and object recognition memory in mice. Immunohistochemical comparisons suggested that Kihi-to attenuated neuritic, synaptic and myelin losses in the cerebral cortex, hippocampus and striatum. Kihi-to also attenuated the calpain increase in the cerebral cortex and hippocampus. When Kihi-to was added to cells 4 days after Abeta(25-35) treatment, axonal and dendritic outgrowths in cultured cortical neurons were restored as demonstrated by extended lengths of phosphorylated neurofilament-H (P-NF-H) and microtubule-associated protein (MAP)2-positive neurites. Abeta(25-35)-induced cell death in cortical culture was also markedly inhibited by Kihi-to. Since NF-H, MAP2 and myelin basic protein (MBP) are substrates of calpain, and calpain is known to be involved in Abeta-induced axonal atrophy, expression levels of calpain and calpastatin were measured. Treatment with Kihi-to inhibited the Abeta(25-35)-evoked increase in the calpain level and decrease in the calpastatin level. In addition, Kihi-to inhibited Abeta(25-35)-induced calcium entry. CONCLUSION In conclusion Kihi-to clearly improved the memory impairment and losses of neurites and synapses.
Collapse
|
125
|
Chaerkady R, Thuluvath PJ, Kim MS, Nalli A, Vivekanandan P, Simmers J, Torbenson M, Pandey A. O Labeling for a Quantitative Proteomic Analysis of Glycoproteins in Hepatocellular Carcinoma. Clin Proteomics 2008; 4:137-155. [PMID: 20357908 PMCID: PMC2847390 DOI: 10.1007/s12014-008-9013-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 06/23/2008] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION: Quantitative proteomics using tandem mass spectrometry is an attractive approach for identification of potential cancer biomarkers. Fractionation of complex tissue samples into subproteomes prior to mass spectrometric analyses increases the likelihood of identifying cancer-specific proteins that might be present in low abundance. In this regard, glycosylated proteins are an interesting class of proteins that are already established as biomarkers for several cancers. MATERIALS AND METHODS: In this study, we carried out proteomic profiling of tumor and adjacent non-cancer liver tissues from hepatocellular carcinoma (HCC) patients. Glycoprotein enrichment from liver samples using lectin affinity chromatography and subsequent (18)O/(16)O labeling of peptides allowed us to obtain relative abundance levels of lectin-bound proteins. As a complementary approach, we also examined the relative expression of proteins in HCC without glycoprotein enrichment. Lectin affinity enrichment was found to be advantageous to quantitate several interesting proteins, which were not detected in the whole proteome screening approach. We identified and quantitated over 200 proteins from the lectin-based approach. Interesting among these were fetuin, cysteine-rich protein 1, serpin peptidase inhibitor, leucine-rich alpha-2-glycoprotein 1, melanoma cell adhesion molecule, and heparan sulfate proteoglycan-2. Using lectin affinity followed by PNGase F digestion coupled to (18)O labeling, we identified 34 glycosylation sites with consensus sequence N-X-T/S. Western blotting and immunohistochemical staining were carried out for several proteins to confirm mass spectrometry results. CONCLUSION: This study indicates that quantitative proteomic profiling of tumor tissue versus non-cancerous tissue is a promising approach for the identification of potential biomarkers for HCC.
Collapse
Affiliation(s)
- Raghothama Chaerkady
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul J. Thuluvath
- Departments of Hepatology and Liver Transplantation, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Min-Sik Kim
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anuradha Nalli
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Perumal Vivekanandan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jessica Simmers
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Torbenson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
126
|
Medvedeva AV, Molotkov DA, Nikitina EA, Popov AV, Karagodin DA, Baricheva EM, Savvateeva-Popova EV. Systemic regulation of genetic and cytogenetic processes by a signal cascade of actin remodeling: Locus agnostic in Drosophila. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408060069] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
127
|
Abstract
Neurofibrillary tangles are a characteristic hallmark of Alzheimer's and other neurodegenerative diseases, such as Pick's disease (PiD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). These diseases are summarized as tauopathies, because neurofibrillary tangles are composed of intracellular aggregates of the microtubule-associated protein tau. The molecular mechanisms of tau-mediated neurotoxicity are not well understood; however, pathologic hyperphosphorylation and aggregation of tau play a central role in neurodegeneration and neuronal dysfunction. The present review, therefore, focuses on therapeutic approaches that aim to inhibit tau phosphorylation and aggregation or to dissolve preexisting tau aggregates. Further experimental therapy strategies include the enhancement of tau clearance by activation of proteolytic, proteasomal, or autophagosomal degradation pathways or anti-tau directed immunotherapy. Hyperphosphorylated tau does not bind microtubules, leading to microtubule instability and transport impairment. Pharmacological stabilization of microtubule networks might counteract this effect. In several tauopathies there is a shift toward four-repeat tau isoforms, and interference with the splicing machinery to decrease four-repeat splicing might be another therapeutic option.
Collapse
Affiliation(s)
- Anja Schneider
- grid.7450.60000000123644210Department of Psychiatry and Psychotherapy, University of Goettingen, Von-Siebold-Strasse 5, 37075 Goettingen, Germany
- grid.419522.90000000106686902Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Goettingen, Germany
| | - Eckhard Mandelkow
- Max-Planck-Unit for Structural Molecular Biology, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
128
|
Ma QL, Yang F, Calon F, Ubeda OJ, Hansen JE, Weisbart RH, Beech W, Frautschy SA, Cole GM. p21-activated kinase-aberrant activation and translocation in Alzheimer disease pathogenesis. J Biol Chem 2008; 283:14132-43. [PMID: 18347024 PMCID: PMC2376243 DOI: 10.1074/jbc.m708034200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 03/14/2008] [Indexed: 11/06/2022] Open
Abstract
Defects in dendritic spines and synapses contribute to cognitive deficits in mental retardation syndromes and, potentially, Alzheimer disease. p21-activated kinases (PAKs) regulate actin filaments and morphogenesis of dendritic spines regulated by the Rho family GTPases Rac and Cdc42. We previously reported that active PAK was markedly reduced in Alzheimer disease cytosol, accompanied by downstream loss of the spine actin-regulatory protein Drebrin. beta-Amyloid (Abeta) oligomer was implicated in PAK defects. Here we demonstrate that PAK is aberrantly activated and translocated from cytosol to membrane in Alzheimer disease brain and in 22-month-old Tg2576 transgenic mice with Alzheimer disease. This active PAK coimmunoprecipitated with the small GTPase Rac and both translocated to granules. Abeta42 oligomer treatment of cultured hippocampal neurons induced similar effects, accompanied by reduction of dendrites that were protected by kinase-active but not kinase-dead PAK. Abeta42 oligomer treatment also significantly reduced N-methyl-d-aspartic acid receptor subunit NR2B phosphotyrosine labeling. The Src family tyrosine kinase inhibitor PP2 significantly blocked the PAK/Rac translocation but not the loss of p-NR2B in Abeta42 oligomer-treated neurons. Src family kinases are known to phosphorylate the Rac activator Tiam1, which has recently been shown to be Abeta-responsive. In addition, anti-oligomer curcumin comparatively suppressed PAK translocation in aged Tg2576 transgenic mice with Alzheimer amyloid pathology and in Abeta42 oligomer-treated cultured hippocampal neurons. Our results implicate aberrant PAK in Abeta oligomer-induced signaling and synaptic deficits in Alzheimer disease.
Collapse
Affiliation(s)
- Qiu-Lan Ma
- Department of Medicine, UCLA, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Salminen A, Suuronen T, Kaarniranta K. ROCK, PAK, and Toll of synapses in Alzheimer's disease. Biochem Biophys Res Commun 2008; 371:587-90. [PMID: 18466762 DOI: 10.1016/j.bbrc.2008.04.148] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 04/28/2008] [Indexed: 10/22/2022]
Abstract
Alzheimer's disease is a neurodegenerative disorder where the cognitive deficit is the hallmark symptom reflecting the progression of the disease. Synaptic dysfunction is a sensitive parameter of the AD pathology. Rho GTPases and the Rho kinases, ROCK1/2, and PAK1-3, are important regulators of synaptic plasticity, especially in maintaining the actin cytoskeleton of dendritic spines. Recent studies have revealed that beta-amyloid oligomers can inhibit PAK and stimulate ROCK-mediated signaling. Both of these effects enhance the disassembly of synaptic actin filaments and ultimately evoke synaptic loss. Brain tissue in AD recognizes the beta-amyloid peptide oligomers as foreign protein particles and mounts an inflammatory defense via Toll-like receptor (TLR) signaling which causes synaptic impairment. We will review here the dysfunction of ROCK, PAK, and Toll signaling associated with AD pathology. The protection of synapses in AD may provide new therapeutic approaches to combatting the cognitive impairment in AD.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Kuopio, P.O. Box 1627, Kuopio FIN-70211, Finland.
| | | | | |
Collapse
|
130
|
Williamson R, Usardi A, Hanger DP, Anderton BH. Membrane-bound beta-amyloid oligomers are recruited into lipid rafts by a fyn-dependent mechanism. FASEB J 2008; 22:1552-9. [PMID: 18096814 DOI: 10.1096/fj.07-9766com] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2025]
Abstract
Recently published research indicates that soluble oligomers of beta-amyloid (Abeta) may be the key neurotoxic species associated with the progression of Alzheimer's disease (AD) and that the process of Abeta aggregation may drive this event. Furthermore, soluble oligomers of Abeta and tau accumulate in the lipid rafts of brains from AD patients through an as yet unknown mechanism. Using cell culture models we report a novel action of Abeta on neuronal plasma membranes where exogenously applied Abeta in the form of ADDLs can be trafficked on the neuronal membrane and accumulate in lipid rafts. ADDL-induced dynamic alterations in lipid raft protein composition were found to facilitate this movement. We show clear associations between Abeta accumulation and redistribution on the neuronal membrane and alterations in the protein composition of lipid rafts. In addition, our data from fyn(-/-) transgenic mice show that accumulation of Abeta on the neuronal surface was not sufficient to cause cell death but that fyn is required for both the redistribution of Abeta and subsequent cell death. These results identify fyn-dependent Abeta redistribution and accumulation in lipid rafts as being key to ADDL-induced cell death and defines a mechanism by which oligomers of Abeta and tau accumulate in lipid rafts.
Collapse
Affiliation(s)
- Ritchie Williamson
- MRC Centre for Neurodegeneration Research, Department of Neuroscience (Box 037), Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK.
| | | | | | | |
Collapse
|
131
|
Hunsucker SW, Solomon B, Gawryluk J, Geiger JD, Vacano GN, Duncan MW, Patterson D. Assessment of post-mortem-induced changes to the mouse brain proteome. J Neurochem 2008; 105:725-37. [DOI: 10.1111/j.1471-4159.2007.05183.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
132
|
Kitsou E, Pan S, Zhang J, Shi M, Zabeti A, Dickson DW, Albin R, Gearing M, Kashima DT, Wang Y, Beyer RP, Zhou Y, Pan C, Caudle WM, Zhang J. Identification of proteins in human substantia nigra. Proteomics Clin Appl 2008; 2:776-82. [DOI: 10.1002/prca.200800028] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
133
|
Knobloch M, Mansuy IM. Dendritic spine loss and synaptic alterations in Alzheimer's disease. Mol Neurobiol 2008; 37:73-82. [PMID: 18438727 DOI: 10.1007/s12035-008-8018-z] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 03/28/2008] [Indexed: 01/04/2023]
Abstract
Dendritic spines are tiny protrusions along dendrites, which constitute major postsynaptic sites for excitatory synaptic transmission. These spines are highly motile and can undergo remodeling even in the adult nervous system. Spine remodeling and the formation of new synapses are activity-dependent processes that provide a basis for memory formation. A loss or alteration of these structures has been described in patients with neurodegenerative disorders such as Alzheimer's disease (AD), and in mouse models for these disorders. Such alteration is thought to be responsible for cognitive deficits long before or even in the absence of neuronal loss, but the underlying mechanisms are poorly understood. This review will describe recent findings and discoveries on the loss or alteration of dendritic spines induced by the amyloid beta (Abeta) peptide in the context of AD.
Collapse
Affiliation(s)
- Marlen Knobloch
- Division of Psychiatry Research, University of Zurich, 8008 Zurich, Switzerland
| | | |
Collapse
|
134
|
Sola Vigo F, Kedikian G, Heredia L, Heredia F, Añel AD, Rosa AL, Lorenzo A. Amyloid-beta precursor protein mediates neuronal toxicity of amyloid beta through Go protein activation. Neurobiol Aging 2008; 30:1379-92. [PMID: 18187234 DOI: 10.1016/j.neurobiolaging.2007.11.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 10/25/2007] [Accepted: 11/16/2007] [Indexed: 11/19/2022]
Abstract
Amyloid beta (Abeta) is a metabolic product of amyloid-beta precursor protein (APP). Deposition of Abeta in the brain and neuronal degeneration are characteristic hallmarks of Alzheimer's disease (AD). Abeta induces neuronal degeneration, but the mechanism of neurotoxicity remains elusive. Here we show that overexpression of APP renders hippocampal neurons vulnerable to Abeta toxicity. Deletion of the extracellular Abeta sequence of APP prevents binding of APP to Abeta, and abolishes toxicity. Abeta toxicity is also abrogated by deletion of the cytoplasmic domain of APP, or by deletions comprising the Go protein-binding sequence of APP. Treatment with Pertussis toxin (PTX) abrogates APP-dependent toxicity of Abeta. Overexpression of PTX-insensitive Galpha-o subunit, but not Galpha-i subunit, of G protein restores Abeta toxicity in the presence of PTX, and this requires the integrity of APP-binding site for Go protein. Altogether, these experiments indicate that interaction of APP with toxic Abeta-species promotes toxicity in hippocampal neurons by a mechanism that involves APP-mediated Go protein activation, revealing an Abeta-receptor-like function of APP directly implicated in neuronal degeneration in AD.
Collapse
|
135
|
Tohda C, Ichimura M, Bai Y, Tanaka K, Zhu S, Komatsu K. Inhibitory Effects of Eleutherococcus senticosus Extracts on Amyloid β(25-35)–Induced Neuritic Atrophy and Synaptic Loss. J Pharmacol Sci 2008; 107:329-39. [DOI: 10.1254/jphs.08046fp] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
136
|
Zhao L, Qian ZM, Zhang C, Wing HY, Du F, Ya K. Amyloid beta-peptide 31-35-induced neuronal apoptosis is mediated by caspase-dependent pathways via cAMP-dependent protein kinase A activation. Aging Cell 2008; 7:47-57. [PMID: 18005252 DOI: 10.1111/j.1474-9726.2007.00352.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This study aims to investigate the roles of the protein kinase A (PKA)- and caspase-dependent pathways in amyloid beta-peptide 31-35 (Abeta[31-35])-induced apoptosis, and the mechanisms of neuroprotection by group III metabotropic glutamate receptor (mGluR) activation against apoptosis induced by Abeta[31-35] in cortical neurons. We demonstrated that Abeta[31-35] induces neuronal apoptosis as well as a significant increase in caspase-3, -8 and -9. Activation of group III mGluRs by l-serine-O-phosphate and (R,S)-4-phosphonophenylglycine (two group III mGluR agonists), which attenuate the effects of Abeta[31-35], provides neuroprotection to the cortical neurons subjected to Abeta[31-35]. We also showed that Rp-cAMP, an inhibitor of cAMP-dependent PKA, has the ability to protect neurons from Abeta[31-35]-induced apoptosis and to reverse almost completely the effects of Abeta[31-35] on the activities of caspase-3. Further, we found that Sp-cAMP, an activator of cAMP-dependent PKA, can significantly abolish the l-serine-O-phosphate- and (R,S)-4-phosphonophenylglycine-induced neuroprotection against apoptosis, and decrease caspase-3, -8 and -9 in the Abeta[31-35]-treated neurons. Our findings suggest that neuronal apoptosis induced by Abeta[31-35] is mediated by the PKA-dependent pathway as well as the caspase-dependent intrinsic and extrinsic apoptotic pathways. Activation of group III mGluRs protects neurons from Abeta[31-35]-induced apoptosis by blocking the caspase-dependent pathways. Inhibition of the PKA-dependent pathway might also protect neurons from Abeta[31-35]-induced apoptosis by blocking the caspase-dependent pathways. Taken together, our observations suggest that Abeta[31-35] might have the ability to activate PKA, which in turn activates the caspase-dependent intrinsic and extrinsic apoptotic pathways, inducing apoptosis in the cortical neurons.
Collapse
Affiliation(s)
- Li Zhao
- Department of Sports Physiology, Beijing Sport University, Beijing 100084, China
| | | | | | | | | | | |
Collapse
|
137
|
Bell KFS, Bennett DA, Cuello AC. Paradoxical upregulation of glutamatergic presynaptic boutons during mild cognitive impairment. J Neurosci 2007; 27:10810-7. [PMID: 17913914 PMCID: PMC6672819 DOI: 10.1523/jneurosci.3269-07.2007] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic integrity is now recognized as a central component of Alzheimer's disease. Surprisingly, however, the structural status of glutamatergic synapses in Alzheimer's disease is unclear, despite the fact that glutamate is the major excitatory transmitter of the CNS and has key roles in excitotoxicity and long-term potentiation. The identification of specific markers of glutamatergic neurons now allows an assessment of the structural involvement of the glutamatergic system across progressive stages of the Alzheimer's pathology, an opportunity not afforded by previously used neurochemical approaches. Glutamatergic presynaptic bouton density and dystrophic neurite abundance were quantified in midfrontal gyrus brain tissue from subjects with no cognitive impairment, mild cognitive impairment, or mild- or severe-stage Alzheimer's disease. Our study demonstrates a striking pathology-dependent pattern of glutamatergic synaptic remodeling with disease progression. Subjects with mild cognitive impairment display a paradoxical elevation in glutamatergic presynaptic bouton density, a situation akin to that observed in the cholinergic system, which then depletes and drops with disease progression. This pattern of synaptic remodeling mirrors our previous findings in transgenic animal models and is of major relevance to current transmitter-based therapeutics.
Collapse
Affiliation(s)
| | - David A. Bennett
- Rush Alzheimer's Disease Center, Armour Academic Center, Chicago, Illinois 60612
| | - A. Claudio Cuello
- Departments of Pharmacology and Therapeutics
- Anatomy and Cell Biology, and
- Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3G 1Y6, and
| |
Collapse
|
138
|
Nadif Kasri N, Van Aelst L. Rho-linked genes and neurological disorders. Pflugers Arch 2007; 455:787-97. [PMID: 18004590 DOI: 10.1007/s00424-007-0385-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 10/29/2007] [Indexed: 12/11/2022]
Abstract
Mental retardation (MR) is a common cause of intellectual disability and affects approximately 2 to 3% of children and young adults. Many forms of MR are associated with abnormalities in dendritic structure and/or dendritic spine morphology. Given that dendritic spine morphology has been tightly linked to synaptic activity, altered spine morphology has been suggested to underlie or contribute to the cognitive disabilities associated with MR. The structure and dynamics of dendritic spines is determined by its underlying actin cytoskeleton. Signaling molecules and cascades important for cytoskeletal regulation have therefore attracted a great deal of attention. As key regulators of both the actin and microtubule cytoskeletons, it is not surprising that the Rho GTPases have emerged as important regulators of dendrite and spine structural plasticity. Significantly, mutations in regulators and effectors of Rho GTPases have been associated with diseases affecting the nervous system, including MR and amyotrophic lateral sclerosis (ALS). Here, we will discuss Rho GTPase-related genes and their signaling pathways involved in MR and ALS.
Collapse
Affiliation(s)
- Nael Nadif Kasri
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Demerec Building, Cold Spring Harbor, NY 11724, USA.
| | | |
Collapse
|
139
|
Petratos S, Li QX, George AJ, Hou X, Kerr ML, Unabia SE, Hatzinisiriou I, Maksel D, Aguilar MI, Small DH. The β-amyloid protein of Alzheimer's disease increases neuronal CRMP-2 phosphorylation by a Rho-GTP mechanism. Brain 2007; 131:90-108. [DOI: 10.1093/brain/awm260] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
140
|
Maloney MT, Bamburg JR. Cofilin-mediated neurodegeneration in Alzheimer's disease and other amyloidopathies. Mol Neurobiol 2007; 35:21-44. [PMID: 17519504 DOI: 10.1007/bf02700622] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 11/30/1999] [Accepted: 09/05/2006] [Indexed: 12/16/2022]
Abstract
Transport defects may arise in various neurodegenerative diseases from failures in molecular motors, microtubule abnormalities, and the chaperone/proteasomal degradation pathway leading to aggresomal-lysosomal accumulations. These defects represent important steps in the neurodegenerative cascade, although in many cases, a clear consensus has yet to be reached regarding their causal relationship to the disease. A growing body of evidence lends support to a link between neurite transport defects in the very early stages of many neurodegenerative diseases and alterations in the organization and dynamics of the actin cytoskeleton initiated by filament dynamizing proteins in the ADF/cofilin family. This article focuses on cofilin, which in neurons under stress, including stress induced by the amyloid-beta (Abeta) 1-42 peptide, undergoes dephosphorylation (activation) and forms rod-shaped actin bundles (rods). Rods inhibit transport, are sites of amyloid precursor protein accumulation, and contribute to the pathology of Alzheimer's disease. Because rods form rapidly in response to anoxia, they could also contribute to synaptic deficits associated with ischemic brain injury (e.g., stroke). Surprisingly, cofilin undergoes phosphorylation (inactivation) in hippocampal neurons treated with Abeta1-40 at high concentrations, and these neurons undergo dystrophic morphological changes, including accumulation of pretangle phosphorylated-tau. Therefore, extremes in phosphoregulation of cofilin by different forms of Abeta may explain much of the Alzheimer's disease pathology and provide mechanisms for synaptic loss and plaque expansion.
Collapse
Affiliation(s)
- Michael T Maloney
- Department of Biochemistry and Molecular Biology, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
141
|
Wen Z, Han L, Bamburg JR, Shim S, Ming GL, Zheng JQ. BMP gradients steer nerve growth cones by a balancing act of LIM kinase and Slingshot phosphatase on ADF/cofilin. ACTA ACUST UNITED AC 2007; 178:107-19. [PMID: 17606869 PMCID: PMC2064427 DOI: 10.1083/jcb.200703055] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bone morphogenic proteins (BMPs) are involved in axon pathfinding, but how they guide growth cones remains elusive. In this study, we report that a BMP7 gradient elicits bidirectional turning responses from nerve growth cones by acting through LIM kinase (LIMK) and Slingshot (SSH) phosphatase to regulate actin-depolymerizing factor (ADF)/cofilin-mediated actin dynamics. Xenopus laevis growth cones from 4–8-h cultured neurons are attracted to BMP7 gradients but become repelled by BMP7 after overnight culture. The attraction and repulsion are mediated by LIMK and SSH, respectively, which oppositely regulate the phosphorylation-dependent asymmetric activity of ADF/cofilin to control the actin dynamics and growth cone steering. The attraction to repulsion switching requires the expression of a transient receptor potential (TRP) channel TRPC1 and involves Ca2+ signaling through calcineurin phosphatase for SSH activation and growth cone repulsion. Together, we show that spatial regulation of ADF/cofilin activity controls the directional responses of the growth cone to BMP7, and Ca2+ influx through TRPC tilts the LIMK-SSH balance toward SSH-mediated repulsion.
Collapse
Affiliation(s)
- Zhexing Wen
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
142
|
Lim MK, Kawamura T, Ohsawa Y, Ohtsubo M, Asakawa S, Takayanagi A, Shimizu N. Parkin interacts with LIM Kinase 1 and reduces its cofilin-phosphorylation activity via ubiquitination. Exp Cell Res 2007; 313:2858-74. [PMID: 17512523 DOI: 10.1016/j.yexcr.2007.04.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 04/07/2007] [Accepted: 04/16/2007] [Indexed: 01/07/2023]
Abstract
Mutations in the PARKIN (PARK2) gene have been found in the majority of early-onset familial Parkinson's disease (PD) patients with autosomal recessive juvenile parkinsonism (ARJP). Parkin protein functions as an ubiquitin (E3) ligase that targets specific proteins for degradation in the 26S proteasome. Here, based on a mass spectrometry analysis of the human dopaminergic neuroblastoma-derived cell line SH-SY5Y that over-expresses parkin, we found that parkin may suppress cofilin phosphorylation. LIM Kinase 1 (LIMK1) is the upstream protein that phosphorylates cofilin, an actin depolymerizing protein. Thus, we postulated a possible connection between parkin and LIMK1. Our studies in other cell lines, using co-transfection assays, demonstrated that LIMK1 and parkin bind each other. LIMK1 also interacted with previously known parkin interactors Hsp70 and CHIP. Parkin enhanced LIMK1-ubiquitination in the human neuroblastoma-derived BE(2)-M17 cell line, but not in the human embryonic kidney-derived HEK293 cell line. In fact, parkin-over-expression reduced the level of LIMK1-induced phosphocofilin in the BE(2)-M17 cells but not in the HEK293 cells. Additionally, in simian kidney-derived COS-7 cells, parkin-over-expression reduced LIMK1-induced actin filament accumulation. LIMK1 in cultured cells regulates parkin reversibly: LIMK1 did not phosphorylate parkin but LIMK1 overexpression reduced parkin self-ubiquitination in vitro and in HEK293 cells. Furthermore, in the cells co-transfected with parkin and p38, LIMK1 significantly decreased p38-ubiquitination by parkin. These findings demonstrate a cell-type dependent functional interaction between parkin and LIMK1 and provide new evidence that links parkin and LIMK1 in the pathogenesis of familial PD.
Collapse
Affiliation(s)
- Meng K Lim
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
143
|
|
144
|
Scott RW, Olson MF. LIM kinases: function, regulation and association with human disease. J Mol Med (Berl) 2007; 85:555-68. [PMID: 17294230 DOI: 10.1007/s00109-007-0165-6] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 12/15/2006] [Accepted: 12/27/2006] [Indexed: 12/20/2022]
Abstract
The LIM kinase family consists of just two members: LIM kinase 1 (LIMK1) and LIM kinase 2 (LIMK2). With uniquely organised signalling domains, LIM kinases are regulated by several upstream signalling pathways, principally acting downstream of Rho GTPases to influence the architecture of the actin cytoskeleton by regulating the activity of the cofilin family proteins cofilin1, cofilin2 and destrin. Although the LIM kinases are very homologous, particularly when comparing kinase domains, there is emerging evidence that each may be subject to different regulatory pathways and may contribute to both distinct and overlapping cellular and developmental functions. Normal central nervous system development is reliant upon the presence of LIMK1, and its deletion has been implicated in the development of the human genetic disorder Williams syndrome. Normal testis development, on the other hand, is disrupted by the deletion of LIMK2. In addition, the possible involvement of each kinase in cardiovascular disorders as well as cancer has recently emerged. The LIM kinases have been proposed to play an important role in tumour-cell invasion and metastasis; fine-tuning the balance between phosphorylated and non-phosphorylated cofilin may be a significant determinant of tumour-cell metastatic potential. In this review, we outline the structure, regulation and function of LIM kinases and their functions at cellular and organismal levels, as well as their possible contributions to human disease.
Collapse
Affiliation(s)
- Rebecca W Scott
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | | |
Collapse
|
145
|
Sharma VM, Litersky JM, Bhaskar K, Lee G. Tau impacts on growth-factor-stimulated actin remodeling. J Cell Sci 2007; 120:748-57. [PMID: 17284520 DOI: 10.1242/jcs.03378] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The microtubule-associated protein tau interacts with the SH3 domain of non-receptor Src family protein tyrosine kinases. A potential consequence of the SH3 interaction is the upregulation of tyrosine kinase activity. Here we investigated the activation of Src or Fyn by tau, both in vitro and in vivo. Tau increased the kinase activity in in vitro assays and in transfected COS7 cells. In platelet-derived growth factor (PDGF)-stimulated fibroblasts, tau appeared to prime Src for activation following PDGF stimulation, as reflected by changes in Src-mediated actin rearrangements. In addition, while fibroblasts normally recovered actin stress fibers by 5-7 hours after PDGF stimulation, tau-expressing cells showed sustained actin breakdown. Microtubule association by tau was not required for the observed changes in actin morphology. Inhibition of Src kinases or a mutant deficient in Src interaction reduced the effects, implicating Src family protein tyrosine kinases as a mediator of the effects of tau on actin rearrangements. Our results provide evidence that the interaction of tau with Src upregulates tyrosine kinase activity and that this interaction allows tau to impact on growth-factor-induced actin remodeling.
Collapse
Affiliation(s)
- Vandana M Sharma
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
146
|
Bernard O. Lim kinases, regulators of actin dynamics. Int J Biochem Cell Biol 2007; 39:1071-6. [PMID: 17188549 DOI: 10.1016/j.biocel.2006.11.011] [Citation(s) in RCA: 258] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 10/30/2006] [Accepted: 11/04/2006] [Indexed: 01/03/2023]
Abstract
The members of the LIM kinase (LIMK) family, which include LIMK 1 and 2, are serine protein kinases involved in the regulation of actin polymerisation and microtubule disassembly. Their activity is regulated by phosphorylation of a threonine residue within the activation loop of the kinase by p21-activated kinases 1 and 4 and by Rho kinase. LIMKs phosphorylate and inactivate the actin depolymerising factors ADF/cofilin resulting in net increase in the cellular filamentous actin. Hsp90 regulates the levels of the LIM kinase proteins by promoting their homo-dimerisation and trans-phosphorylation. Rnf6 is an E3 ubiquitin ligase responsible for LIMK degradation in neurons. The activity of LIMK1 is also required for microtubule disassembly in endothelial cells. While LIMK1 localizes mainly at focal adhesions, LIMK2 is found in cytoplasmic punctae, suggesting that they may have different cellular functions. LIMK1 was shown to be involved in cancer metastasis, while LIMK2 activation promotes cells cycle progression.
Collapse
Affiliation(s)
- Ora Bernard
- St. Vincent Institute of Medical Research, 9 Princes Street Fitzroy, Victoria 3065, Australia.
| |
Collapse
|