101
|
Legras G, Loiseau N, Gaertner JC, Poggiale JC, Ienco D, Mazouni N, Mérigot B. Assessment of congruence between co-occurrence and functional networks: A new framework for revealing community assembly rules. Sci Rep 2019; 9:19996. [PMID: 31882755 PMCID: PMC6934466 DOI: 10.1038/s41598-019-56515-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/09/2019] [Indexed: 12/23/2022] Open
Abstract
Describing how communities change over space and time is crucial to better understand and predict the functioning of ecosystems. We propose a new methodological framework, based on network theory and modularity concept, to determine which type of mechanisms (i.e. deterministic versus stochastic processes) has the strongest influence on structuring communities. This framework is based on the computation and comparison of two networks: the co-occurrence (based on species abundances) and the functional networks (based on the species traits values). In this way we can assess whether the species belonging to a given functional group also belong to the same co-occurrence group. We adapted the Dg index of Gauzens et al. (2015) to analyze congruence between both networks. This offers the opportunity to identify which assembly rule(s) play(s) the major role in structuring the community. We illustrate our framework with two datasets corresponding to different faunal groups and ecosystems, and characterized by different scales (spatial and temporal scales). By considering both species abundance and multiple functional traits, our framework improves significantly the ability to discriminate the main assembly rules structuring the communities. This point is critical not only to understand community structuring but also its response to global changes and other disturbances.
Collapse
Affiliation(s)
- Gaëlle Legras
- Univ. Polynesie francaise, ifremer, ilm, ird, eio umr 241, tahiti, French Polynesia.
| | - Nicolas Loiseau
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
- University Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, LECA, Laboratoire d'Ecologie Alpine F-38000, Grenoble, France
| | - Jean-Claude Gaertner
- Institut de Recherche pour le Développement (IRD) - UMR 241 EIO (UPF, IRD, Ifremer, ILM) -Centre IRD de Tahiti, 98713, Papeete, French Polynesia
| | - Jean-Christophe Poggiale
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
| | - Dino Ienco
- IRSTEA Montpellier, UMR TETIS - F-34093, Montpellier, France
| | - Nabila Mazouni
- Univ. Polynesie francaise, ifremer, ilm, ird, eio umr 241, tahiti, French Polynesia
| | | |
Collapse
|
102
|
Meyer J, Kröncke I. Shifts in trait-based and taxonomic macrofauna community structure along a 27-year time-series in the south-eastern North Sea. PLoS One 2019; 14:e0226410. [PMID: 31851700 PMCID: PMC6919609 DOI: 10.1371/journal.pone.0226410] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 11/26/2019] [Indexed: 11/19/2022] Open
Abstract
Current research revealed distinct changes in ecosystem functions, and thus in ecosystem stability and resilience, caused by changes in community structure and diversity loss. Benthic species play an important role in benthic-pelagic coupling, such as through the remineralization of deposited organic material, and changes to benthic community structure and diversity have associated with changes in ecosystem functioning, ecosystem stability and resilience. However, the long-term variability of traits and functions in benthic communities is largely unknown. By using abundance and bioturbation potential of macrofauna samples, taken along a transect from the German Bight towards the Dogger Bank in May 1990 and annually from 1995 to 2017, we analysed the taxonomic and trait-based macrofauna long-term community variability and diversity. Taxonomic and trait-based diversity remained stable over time, while three different regimes were found, characterised by changes in taxonomic and trait-based community structure. Min/max autocorrelation factor analysis revealed the climatic variables sea surface temperature (SST) and North Atlantic Oscillation Index (NAOI), nitrite, and epibenthic abundance as most important environmental drivers for taxonomic and trait-based community changes.
Collapse
Affiliation(s)
- Julia Meyer
- Marine Research, Senckenberg am Meer, Wilhelmshaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, Benthic Ecology, Oldenburg, Germany
- * E-mail:
| | - Ingrid Kröncke
- Marine Research, Senckenberg am Meer, Wilhelmshaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, Benthic Ecology, Oldenburg, Germany
| |
Collapse
|
103
|
Myers EMV, Anderson MJ, Eme D, Liggins L, Roberts CD. Changes in key traits versus depth and latitude suggest energy-efficient locomotion, opportunistic feeding and light lead to adaptive morphologies of marine fishes. J Anim Ecol 2019; 89:309-322. [PMID: 31646627 DOI: 10.1111/1365-2656.13131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 10/03/2019] [Indexed: 11/27/2022]
Abstract
Understanding patterns and processes governing biodiversity along broad-scale environmental gradients, such as depth or latitude, requires an assessment of not just taxonomic richness, but also morphological and functional traits of organisms. Studies of traits can help to identify major selective forces acting on morphology. Currently, little is known regarding patterns of variation in the traits of fishes at broad spatial scales. The aims of this study were (a) to identify a suite of key traits in marine fishes that would allow assessment of morphological variability across broad-scale depth (50-1200 m) and latitudinal (29.15-50.91°S) gradients, and (b) to characterize patterns in these traits across depth and latitude for 144 species of ray-finned fishes in New Zealand waters. Here, we describe three new morphological traits, namely fin-base-to-perimeter ratio, jaw-length-to-mouth-width ratio, and pectoral-fin-base-to-body-depth ratio. Four other morphological traits essential for locomotion and food acquisition that are commonly measured in fishes were also included in the study. Spatial ecological distributions of individual fish species were characterized in response to a standardized replicated sampling design, and morphological measurements were obtained for each species from preserved museum specimens. With increasing depth, fishes, on average, became larger and more elongate, with higher fin-base-to-perimeter ratio and larger jaw-length-to-mouth-width ratio, all of which translates into a more eel-like anguilliform morphology. Variation in mean trait values along the depth gradient was stronger at lower latitudes for fin-base-to-perimeter ratio, elongation and total body length. Average eye size peaked at intermediate depths (500-700 m) and increased with increasing latitude at 700 m. These findings suggest that, in increasingly extreme environments, fish morphology shifts towards a body shape that favours an energy-efficient undulatory swimming style and an increase in jaw-length vs. mouth width for opportunistic feeding. Furthermore, increases in eye size with both depth and latitude indicate that changes in both the average ambient light conditions as well as seasonal variations in day-length can act to select ecomorphological adaptations in fishes.
Collapse
Affiliation(s)
- Elisabeth M V Myers
- New Zealand Institute for Advanced Study (NZIAS), Massey University, Auckland, New Zealand
| | - Marti J Anderson
- New Zealand Institute for Advanced Study (NZIAS), Massey University, Auckland, New Zealand
| | - David Eme
- New Zealand Institute for Advanced Study (NZIAS), Massey University, Auckland, New Zealand.,IFREMER, unité Ecologie et Modèles pour l'Halieutique, Nantes, France
| | - Libby Liggins
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand.,Auckland War Memorial Museum, Tāmaki Paenga Hira, Auckland, New Zealand
| | - Clive D Roberts
- Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand
| |
Collapse
|
104
|
Bejarano S, Pardede S, Campbell SJ, Hoey AS, Ferse SCA. Herbivorous fish rise as a destructive fishing practice falls in an Indonesian marine national park. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01981. [PMID: 31349375 DOI: 10.1002/eap.1981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/18/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Securing ecosystem functions is challenging, yet common priority in conservation efforts. While marine parks aim to meet this challenge by regulating fishing through zoning plans, their effectiveness hinges on compliance levels and may respond to changes in fishing practices. Here we use a speciose assemblage of nominally herbivorous reef fish in Karimunjawa National Park (zoned since 1989) to investigate whether areas subject to a restrictive management regime sustained higher biomass over seven years compared to areas where moderate and permissive regulations apply. Using a trait-based approach we characterize the functional space of the entire species pool and ask whether changes in biomass translate into changes in functional structure. We track changes in predator biomass, benthic community structure, and fishing practices that could influence herbivore trajectories. Overall herbivore biomass doubled in 2012 compared to 2006-2009 and remained high in 2013 across all management regimes. We found no evidence that this biomass build-up resulted from predator depletion or increased food availability but suggest it emerged in response to a park-wide cessation of fishing with large drive nets known as muroami. The biomass increase was accompanied by a modest increase in taxonomic richness and a slight decrease in community-scale rarity that did not alter functional redundancy levels. Subtle changes in both functional specialization and identity of assemblages emerged as generalist species with low intrinsic vulnerability to fishing recovered sooner than more vulnerable specialists. While this implies a recovery of mechanisms responsible for the grazing of algal turfs and detritus, restoring other facets of herbivory (e.g., macroalgal consumption) may require more time. An increase in the cost-benefit ratio per journey of muroami fishing facilitated a ban on muroami nets that met minimal resistance. Similar windows of opportunity may emerge elsewhere in which gear-based regulations can supplement zoning plans, especially when compliance is low. This does not advocate for implementing such regulations once a fishery has become unprofitable. Rather, it underlines their importance for breaking the cycle of resource depletion and low compliance to zoning, thus alleviating the resulting threats to food security and ecosystem integrity.
Collapse
Affiliation(s)
- Sonia Bejarano
- Reef Systems Research Group, Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany
| | - Shinta Pardede
- Indonesia Marine Programme, Wildlife Conservation Society, Bogor, 16151, West Java, Indonesia
| | - Stuart J Campbell
- Indonesia Marine Programme, Wildlife Conservation Society, Bogor, 16151, West Java, Indonesia
- Rare Indonesia, Jalan Gunung Gede 1 No. 6, Taman Kencana, Bogor, 16151, West Java, Indonesia
| | - Andrew S Hoey
- ARC Centre of Excellence of Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Sebastian C A Ferse
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany
- Faculty of Biology and Chemistry (FB2), University of Bremen, Bibliothekstraße 1, 28359, Bremen, Germany
| |
Collapse
|
105
|
Milardi M, Gavioli A, Soininen J, Castaldelli G. Exotic species invasions undermine regional functional diversity of freshwater fish. Sci Rep 2019; 9:17921. [PMID: 31784553 PMCID: PMC6884620 DOI: 10.1038/s41598-019-54210-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/09/2019] [Indexed: 11/08/2022] Open
Abstract
Exotic species invasions often result in native biodiversity loss, i.e. a lower taxonomic diversity, but current knowledge on invasions effects underlined a potential increase of functional diversity. We thus explored the connections between functional diversity and exotic species invasions, while accounting for their environmental drivers, using a fine-resolution large dataset of Mediterranean stream fish communities. While functional diversity of native and exotic species responded similarly to most environmental constraints, we found significant differences in the effects of altitude and in the different ranking of constraints. These differences suggest that invasion dynamics could play a role in overriding some major environmental drivers. Our results also showed that a lower diversity of ecological traits in communities (about half of less disturbed communities) corresponded to a high invasion degree, and that the exotic component of communities had typically less diverse ecological traits than the native one, even when accounting for stream order and species richness. Overall, our results suggest that possible outcomes of severe exotic species invasions could include a reduced functional diversity of invaded communities, but analyzing data with finer ecological, temporal and spatial resolutions would be needed to pinpoint the causal relationship between invasions and functional diversity.
Collapse
Affiliation(s)
- Marco Milardi
- University of Ferrara, Department of Life Sciences and Biotechnology, via Luigi Borsari 46, 44121, Ferrara, Italy
- Fisheries New Zealand - Tini a Tangaroa, Ministry for Primary Industries - Manatū Ahu Matua, 34 - 38 Bowen Street, Wellington, New Zealand
| | - Anna Gavioli
- University of Ferrara, Department of Life Sciences and Biotechnology, via Luigi Borsari 46, 44121, Ferrara, Italy.
| | - Janne Soininen
- University of Helsinki, Department of Geosciences and Geography, PO Box 64, 34 - 38 Bowen Street, FI-00014, Helsinki, Finland
| | - Giuseppe Castaldelli
- University of Ferrara, Department of Life Sciences and Biotechnology, via Luigi Borsari 46, 44121, Ferrara, Italy
| |
Collapse
|
106
|
Taxonomic and functional anuran beta diversity of a subtropical metacommunity respond differentially to environmental and spatial predictors. PLoS One 2019; 14:e0214902. [PMID: 31725730 PMCID: PMC6855460 DOI: 10.1371/journal.pone.0214902] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/25/2019] [Indexed: 11/19/2022] Open
Abstract
Anurans exhibit limited dispersion ability and have physiological and behavioural characteristics that narrow their relationships with both environmental and spatial predictors. So, the relative contributions of environmental and spatial predictors in the patterns of taxonomic and functional anuran beta diversity were examined in a metacommunity of 33 ponds along the coast of south Brazil. We expected that neutral processes and, in particular, niche-based processes could have similar influence on the taxonomic and functional beta diversity patterns. Distance-based methods (db-RDA) with variation partitioning were conducted with abundance data to examine taxonomic and functional facets and components (total, turnover and nestedness) in relation to environmental and spatial predictors. Processes determining metacommunity structure differed between the components of beta diversity and among taxonomic and functional diversity. While taxonomic beta diversity was further accounted by both environmental and spatial predictors, functional beta diversity responded more strongly to spatial predictors. These two contrasting patterns were different to what we had predicted, suggesting that while there is a taxonomic turnover mediated by environmental filters, the spatial distance promotes the trait dissimilarity between sites. In addition, our data confirm that neutral and niche-based processes operate on anuran metacommunities even at short geographic scales. Our results reinforce the idea that studies aiming to evaluate the patterns of structure in metacommunities should include different facets of diversity so that better interpretations can be achieved.
Collapse
|
107
|
Chen K, Rajper AR, Hughes RM, Olson JR, Wei H, Wang B. Incorporating functional traits to enhance multimetric index performance and assess land use gradients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:1005-1015. [PMID: 31326793 DOI: 10.1016/j.scitotenv.2019.07.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Taxonomic-based multimetric indices (MMIs) have been widely employed for assessing ecosystem status, particularly through the use of stream macroinvertebrate assemblages. However, the functional diversity and composition of assemblages is also important for maintaining stream ecosystem condition. Nonetheless, aquatic insect functional diversity and composition have not commonly been included in MMIs. Our goal was to advance our understanding of the performance and ecological interpretation of an MMI that potentially combined functional and taxonomic metrics. We sampled aquatic insects and natural and land-use variables at 74 temperate Chinese streams. We selected a candidate set of 36 functional and 20 taxonomic metrics that were screened by range tests, natural variation, responsiveness to anthropogenic disturbance, and redundancy for subsequent inclusion in MMIs. We determined if natural variation adjustments improved the performance of a functional-taxonomic MMI. Finally, we evaluated the degree to which the functional-taxonomic MMI served as an early-warning indicator of land use intensity. Natural variation explained between 19.62% and 71.02% of metric variability, indicating that functional metrics changed systematically along natural gradients. The final functional-taxonomic MMI adjusted for natural variation incorporated multiple aspects of assemblage characteristics: functional richness, Rao's quadratic entropy, abundance-weighted frequency of soft bodies, abundance-weighted frequency of predators, and number of Diptera taxa. In contrast to the natural variation unadjusted MMI, the functional-taxonomic adjusted MMI clearly distinguished least-disturbed sites from most-disturbed sites, exhibited high precision and low bias, and showed a significant negative response to land uses. The slope of a linear regression relative to 0-10% urban and 0-20% agriculture was significantly steeper for the functional-taxonomic adjusted MMI than that of the taxonomic adjusted MMI. We conclude that functional-taxonomic adjusted MMIs are more effective indicators of ecological condition and risks to biota from human pressures than are purely taxonomic unadjusted MMIs because functional-taxonomic MMIs are more sensitive to subtle anthropogenic pressures.
Collapse
Affiliation(s)
- Kai Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| | - Abdul Razzaque Rajper
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| | - Robert M Hughes
- Amnis Opes Institute and Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97333, USA.
| | - John R Olson
- School of Natural Sciences, California State University Monterey Bay, Seaside, CA 93955, USA.
| | - Huiyu Wei
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| | - Beixin Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
108
|
McLean M, Mouillot D, Lindegren M, Villéger S, Engelhard G, Murgier J, Auber A. Fish communities diverge in species but converge in traits over three decades of warming. GLOBAL CHANGE BIOLOGY 2019; 25:3972-3984. [PMID: 31376310 DOI: 10.1111/gcb.14785] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/12/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Describing the spatial and temporal dynamics of communities is essential for understanding the impacts of global environmental change on biodiversity and ecosystem functioning. Trait-based approaches can provide better insight than species-based (i.e. taxonomic) approaches into community assembly and ecosystem functioning, but comparing species and trait dynamics may reveal important patterns for understanding community responses to environmental change. Here, we used a 33-year database of fish monitoring to compare the spatio-temporal dynamics of taxonomic and trait structure in North Sea fish communities. We found that the majority of variation in both taxonomic and trait structure was explained by a pronounced spatial gradient, with distinct communities in the southern and northern North Sea related to depth, sea surface temperature, salinity and bed shear stress. Both taxonomic and trait structure changed significantly over time; however taxonomically, communities in the south and north diverged towards different species, becoming more dissimilar over time, yet they converged towards the same traits regardless of species differences. In particular, communities shifted towards smaller, faster growing species with higher thermal preferences and pelagic water column position. Although taxonomic structure changed over time, its spatial distribution remained relatively stable, whereas in trait structure, the southern zone of the North Sea shifted northward and expanded, leading to homogenization. Our findings suggest that global environmental change, notably climate warming, will lead to convergence towards traits more adapted for novel environments regardless of species composition.
Collapse
Affiliation(s)
- Matthew McLean
- Unité Halieutique de Manche et mer du Nord, IFREMER, Boulogne-sur-Mer, France
- MARBEC, Université de Montpellier, CNRS, IFREMER, IRD, Montpellier Cedex, France
| | - David Mouillot
- MARBEC, Université de Montpellier, CNRS, IFREMER, IRD, Montpellier Cedex, France
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia
| | - Martin Lindegren
- Centre for Ocean Life, National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark
| | - Sébastien Villéger
- MARBEC, Université de Montpellier, CNRS, IFREMER, IRD, Montpellier Cedex, France
| | - Georg Engelhard
- Centre for Environment, Fisheries & Aquaculture Science (Cefas), Lowestoft, UK
- Collaborative Centre for Sustainable Use of the Seas (CCSUS), University of East Anglia, Norwich, UK
| | - Juliette Murgier
- Unité Halieutique de Manche et mer du Nord, IFREMER, Boulogne-sur-Mer, France
| | - Arnaud Auber
- Unité Halieutique de Manche et mer du Nord, IFREMER, Boulogne-sur-Mer, France
| |
Collapse
|
109
|
McLean M, Auber A, Graham NAJ, Houk P, Villéger S, Violle C, Thuiller W, Wilson SK, Mouillot D. Trait structure and redundancy determine sensitivity to disturbance in marine fish communities. GLOBAL CHANGE BIOLOGY 2019; 25:3424-3437. [PMID: 31006156 DOI: 10.1111/gcb.14662] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Trait diversity is believed to influence ecosystem dynamics through links between organismal traits and ecosystem processes. Theory predicts that key traits and high trait redundancy-large species richness and abundance supporting the same traits-can buffer communities against environmental disturbances. While experiments and data from simple ecological systems lend support, large-scale evidence from diverse, natural systems under major disturbance is lacking. Here, using long-term data from both temperate (English Channel) and tropical (Seychelles Islands) fishes, we show that sensitivity to disturbance depends on communities' initial trait structure and initial trait redundancy. In both ecosystems, we found that increasing dominance by climatically vulnerable traits (e.g., small, fast-growing pelagics/corallivores) rendered fish communities more sensitive to environmental change, while communities with higher trait redundancy were more resistant. To our knowledge, this is the first study demonstrating the influence of trait structure and redundancy on community sensitivity over large temporal and spatial scales in natural systems. Our results exemplify a consistent link between biological structure and community sensitivity that may be transferable across ecosystems and taxa and could help anticipate future disturbance impacts on biodiversity and ecosystem functioning.
Collapse
Affiliation(s)
- Matthew McLean
- IFREMER, Unité Halieutique de Manche et mer du Nord, Boulogne-sur-Mer, France
- MARBEC, Université de Montpellier, CNRS, IFREMER, IRD, Montpellier Cedex, France
| | - Arnaud Auber
- IFREMER, Unité Halieutique de Manche et mer du Nord, Boulogne-sur-Mer, France
| | | | - Peter Houk
- UOG Station, University of Guam Marine Laboratory, Mangilao, Guam, USA
| | - Sébastien Villéger
- MARBEC, Université de Montpellier, CNRS, IFREMER, IRD, Montpellier Cedex, France
| | - Cyrille Violle
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Unité Mixte de Recherche (UMR) 5175, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Université Paul-Valéry Montpellier, Ecole Pratique des Hautes Etudes (EPHE), Montpellier, France
| | - Wilfried Thuiller
- Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, Laboratoire d'Ecologie Alpine (LECA), Grenoble, France
| | - Shaun K Wilson
- Department of Biodiversity Conservation and Attractions, Kensington, WA, Australia
- Oceans Institute, University of Western Australia, Crawley, WA, Australia
| | - David Mouillot
- MARBEC, Université de Montpellier, CNRS, IFREMER, IRD, Montpellier Cedex, France
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia
| |
Collapse
|
110
|
Using a trait-based approach to understand the efficiency of a selective device in a multispecific fishery. Sci Rep 2019; 9:12489. [PMID: 31462717 PMCID: PMC6713766 DOI: 10.1038/s41598-019-47117-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 06/28/2019] [Indexed: 11/09/2022] Open
Abstract
Improving the selectivity of a fishing gear is one technical management measure to significantly reduce by-catch of non-commercial species or undersized individuals. The efficiency of selective device is mainly estimated by comparing species composition, the biomass and length spectrum of caught individuals and escapees while the functional traits of species are rarely accounted for. Using an innovative technical device to reduce catches of undersized individuals in a multispecific bottom trawl fishery in the Bay of Biscay, namely a T90 mesh cylinder, we measured functional traits on both caught and escaped individuals of 18 species. Using a Principal Component Analysis and K-means partitioning, we clustered species into 6 groups illustrating 6 different locomotion strategies. We identified functional traits related to body size, visual ability and locomotion, differing between caught individuals and escapees using Linear Mixed-effects Models. As expected, escapees were smaller on average but also tended to be more streamlined, with a high position of the eyes and fin features characteristic of manoeuvrability and propulsion. Here, we present how a trait-based approach can shed light on the biological characteristics influencing the efficiency of selective devices.
Collapse
|
111
|
Hartz SM, Rocha EA, Brum FT, Luza AL, Guimarães TDFR, Becker FG. Influences of the area, shape and connectivity of coastal lakes on the taxonomic and functional diversity of fish communities in Southern Brazil. ZOOLOGIA 2019. [DOI: 10.3897/zoologia.36.e23539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study we investigated the influence of landscape variables on the alpha taxonomic and functional diversity of fish communities in coastal lakes. We built an analytical framework that included possible causal connections among variables, which we analyzed using path analysis. We obtained landscape metrics for the area, shape and connectivity (estuary connectivity and primary connectivity to neighboring lakes) of 37 coastal lakes in the Tramandaí River Basin. We collected fish data from 49 species using standardized sampling with gillnets and obtained a set of traits related to dispersal abilities and food acquisition. The model that best explained the taxonomic diversity and functional richness took into account the shape of the lakes. Functional richness was also explained by estuary connectivity. Functional evenness and dispersion were not predicted by area or connectivity, but they were influenced by the abundant freshwater species. This indicates that all lakes support most of the regional functional diversity. The results highlight the importance of the dispersal process in this lake system and allow the conclusion that considering multiple diversity dimensions can aid the conservation of local and regional fish communities.
Collapse
|
112
|
Drainage network position and historical connectivity explain global patterns in freshwater fishes' range size. Proc Natl Acad Sci U S A 2019; 116:13434-13439. [PMID: 31209040 DOI: 10.1073/pnas.1902484116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Identifying the drivers and processes that determine globally the geographic range size of species is crucial to understanding the geographic distribution of biodiversity and further predicting the response of species to current global changes. However, these drivers and processes are still poorly understood, and no ecological explanation has emerged yet as preponderant in explaining the extent of species' geographical range. Here, we identify the main drivers of the geographic range size variation in freshwater fishes at global and biogeographic scales and determine how these drivers affect range size both directly and indirectly. We tested the main hypotheses already proposed to explain range size variation, using geographic ranges of 8,147 strictly freshwater fish species (i.e., 63% of all known species). We found that, contrary to terrestrial organisms, for which climate and topography seem preponderant in determining species' range size, the geographic range sizes of freshwater fishes are mostly explained by the species' position within the river network, and by the historical connection among river basins during Quaternary low-sea-level periods. Large-ranged fish species inhabit preferentially lowland areas of river basins, where hydrological connectivity is the highest, and also are found in river basins that were historically connected. The disproportionately high explanatory power of these two drivers suggests that connectivity is the key component of riverine fish geographic range sizes, independent of any other potential driver, and indicates that the accelerated rates in river fragmentation might strongly affect fish species distribution and freshwater biodiversity.
Collapse
|
113
|
Legras G, Loiseau N, Gaertner JC, Poggiale JC, Gaertner-Mazouni N. Assessing functional diversity: the influence of the number of the functional traits. THEOR ECOL-NETH 2019. [DOI: 10.1007/s12080-019-00433-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
114
|
Hernández‐Ordóñez O, Santos BA, Pyron RA, Arroyo‐Rodríguez V, Urbina‐Cardona JN, Martínez‐Ramos M, Parra‐Olea G, Reynoso VH. Species sorting and mass effect along forest succession: Evidence from taxonomic, functional, and phylogenetic diversity of amphibian communities. Ecol Evol 2019; 9:5206-5218. [PMID: 31110673 PMCID: PMC6509387 DOI: 10.1002/ece3.5110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/03/2019] [Accepted: 02/27/2019] [Indexed: 12/25/2022] Open
Abstract
Species recovery after forest disturbance is a highly studied topic in the tropics, but considerable debate remains on the role of secondary forests as biodiversity repositories, especially regarding the functional and phylogenetic dimensions of biodiversity. Also, studies generally overlook how alpha and beta diversities interact to produce gamma diversity along successional gradients.We used a metacommunity approach to assess how species sorting (i.e., environmental filtering) and mass effect (i.e., source-sink dynamics) affect 14 complementary metrics of amphibian taxonomic, functional, and phylogenetic diversity along a successional gradient in southern Mexico. As amphibians have narrow environmental tolerances and low dispersal capabilities, we expected that species sorting may be relatively more important than mass effect in structuring amphibian communities.Between 2010 and 2012, we sampled frogs, salamanders, and caecilians in 23 communities distributed in four successional stages: young (2-5 years old) and intermediate (13-28 years old) secondary forests, old-growth forest fragments, and old-growth continuous forest. We assessed 15 ecologically relevant functional traits per species and used a time-calibrated molecular phylogeny.We recorded 1,672 individuals belonging to 30 species and 11 families. Supporting our expectations from the species sorting perspective, from the poorest (younger forests) to the best quality (continuous forest) scenarios, we observed (a) an increase in alpha diversity regardless of species abundances; (b) a clear taxonomic segregation across successional stages; (c) an increase in functional richness and dispersion; (d) an increase in mean phylogenetic distance and nearest taxon index; and (e) a reduction in mean nearest taxon distance. However, 10 species occurred in all successional stages, resulting in relatively low beta diversity. This supports a mass effect, where interpatch migrations contribute to prevent local extinctions and increase compositional similarity at the regional scale.Our findings indicate that amphibian metacommunities along forest successional gradients are mainly structured by species sorting, but mass effects may also play a role if high levels of forest cover are conserved in the region. In fact, secondary forests and forest fragments can potentially safeguard different aspects of amphibian diversity, but their long-term conservation value requires preventing additional deforestation.
Collapse
Affiliation(s)
- Omar Hernández‐Ordóñez
- Departamento de Zoología, Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Bráulio A. Santos
- Departamento de Sistemática e EcologiaUniversidade Federal da ParaíbaJoão Pessoa, ParaíbaBrazil
| | - Robert Alexander Pyron
- Department of Biological SciencesThe George Washington UniversityWashingtonDistrict of Columbia
| | - Víctor Arroyo‐Rodríguez
- Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de MéxicoMoreliaMéxico
| | - J. Nicolás Urbina‐Cardona
- Ecology and Territory Department, School of Rural and Environmental StudiesPontificia Universidad JaverianaBogotaColombia
| | - Miguel Martínez‐Ramos
- Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de MéxicoMoreliaMéxico
| | - Gabriela Parra‐Olea
- Departamento de Zoología, Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Víctor Hugo Reynoso
- Departamento de Zoología, Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| |
Collapse
|
115
|
Pravia A, andersen R, Artz RE, Pakeman RJ, Littlewood NA. Restoration trajectory of carabid functional traits in a formerly afforested blanket bog. ACTA ZOOL ACAD SCI H 2019. [DOI: 10.17109/azh.65.suppl.33.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
116
|
Siliprandi CC, Tuset VM, Lombarte A, Farré M, Rossi-Wongtschowski CLDB. Optimal fishing samplers to reveal the morphological structure of a fish assemblage in a subtropical tidal flat. NEOTROPICAL ICHTHYOLOGY 2019. [DOI: 10.1590/1982-0224-20170168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Morphological characters of species are essential for assessing the functional structure of a fish assemblage, since differences between them, for example in body shape, are related to many functional and ecological traits (e.g., swimming, search for food, striking and capturing prey, evading predators, spawning). Globally, tidal flats are relevant to fish assemblages by offering feeding, refuge, and reproduction grounds. To analyze the morphofunctional structure of the fish assemblage from a tidal flat on the Brazilian coast, we conducted standardized sampling using nine different fishing gears. The geometric morphometric method was applied to describe the fish shapes and verify the morphological structure of the assemblage. Here, we present the influence/susceptibility of each gear type on the morphological diversity of the fish assemblage. The results indicated that beach seine, otter trawl, marginal encircling gillnet, and fish traps, together, were the most effective gears to represent the maximum morphological variability of fish inhabiting that tidal flat. Moreover, the assemblage showed high morphological redundancy considered as a resistance of the ecosystem for avoiding functional diversity loss, emphasizing the importance of complementary gear use when determining fish assemblages in a conservation context.
Collapse
Affiliation(s)
| | | | | | - Marc Farré
- Consejo Superior de Investigación Científica, Spain
| | | |
Collapse
|
117
|
Lechêne A, Lobry J, Boët P, Laffaille P. Change in fish functional diversity and assembly rules in the course of tidal marsh restoration. PLoS One 2018; 13:e0209025. [PMID: 30566467 PMCID: PMC6300267 DOI: 10.1371/journal.pone.0209025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/27/2018] [Indexed: 11/18/2022] Open
Abstract
Functional trait theory provides a mechanistic framework to understand change in community composition and community assembly through time and space. Despite this, trait-based approaches have seldom been used in ecological restoration. Succession theory predicts that habitat complexity and resource availability will increase with restoration time, leading to increased functional dissimilarity among coexisting species. However, in the case of tidal marsh restoration, it is not clear whether reestablishing the harsh abiotic conditions typical of estuaries will initiate successional trajectories. We investigated monotonic changes in the functional structure of fish communities and shifts in assembly mechanisms, with tidal restoration time. A five-level gradient of ‘intertidal habitat naturalness’ was constructed from a set of artificialized (dyked), restored (with different ages) and natural intertidal sites, and used as a surrogate for restoration progress. The fish ecophases were described using ten functional traits related to food acquisition and swimming ability. The trends in six functional dimensions (identity, richness, evenness, dispersion, originality and specialization) were investigated along the naturalness gradient. Consistenly with succession theory, functional specialization, dispersion and, less markedly, richness increased with intertidal naturalness meaning that restored and natural intertidal habitats supplied fish with specific foraging and dwelling conditions absent from dyked marshes. Community assembly patterns varied with respect to traits and differed at both ends of the naturalness gradient. Dyked marshes were more affected by trait convergence possibly due to limiting resources. Environmental filtering was detected all along the naturalness gradient although the traits affected varied depending on the naturalness level of habitats. Environmental filtering tended to decrease in restored and natural intertidal habitats. Increased naturalness restored the attractivity of benthic habitats as feeding or settling grounds, promoted shelter-seeking vs. free-swimming strategists and favoured ecophases with carnivorous diets, feeding on microinvertebrates and benthic low-mobility macroinvertebrates. Approaches based on functional trait diversity have the potential to question and refine the theoretical frame of ecological restoration and to assist managers in their efforts to restore tidal wetlands.
Collapse
Affiliation(s)
- Alain Lechêne
- Irstea, UR EABX, centre de Bordeaux, 50 avenue de Verdun, F-33612 Cestas cedex, France
- * E-mail:
| | - Jérémy Lobry
- Irstea, UR EABX, centre de Bordeaux, 50 avenue de Verdun, F-33612 Cestas cedex, France
| | - Philippe Boët
- Irstea, UR EABX, centre de Bordeaux, 50 avenue de Verdun, F-33612 Cestas cedex, France
| | - Pascal Laffaille
- EcoLab, Université de Toulouse, INP, UPS, ENSAT, Castanet-Tolosan, France
| |
Collapse
|
118
|
Liu X, Wang H. Effects of loss of lateral hydrological connectivity on fish functional diversity. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2018; 32:1336-1345. [PMID: 29802749 DOI: 10.1111/cobi.13142] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Loss of lateral hydrological connectivity (LHC) is a major cause of biodiversity decline in river floodplains, yet little is known about its effects on aquatic functional diversity in these ecosystems. We quantified functional alpha and beta diversity of fish assemblages in Yangtze River floodplain lakes and explored their responses to loss of LHC with generalized linear mixed models. Functional richness was much lower in lakes that were not connected to the Yangtze River (i.e., disconnected lakes), where functional evenness and divergence were higher. LHC was the most important factor shaping fish diversity patterns in this region. Predicted reductions in functional richness and taxonomic richness due to LHC loss were higher for functional richness (0.47-0.82) than taxonomic richness (0.32) for all species assemblages except nonmigratory species. The distribution of functional strategies of migratory and nonmigratory fishes was highly uneven throughout the floodplain. Taxonomic beta diversity was much higher than functional beta diversity. The former was due mainly to spatial turnover (73.6-83.8%), which suggested that dissimilarity of diversity among fish assemblages was largely induced by species replacement. The latter was induced by the nestedness-resultant component of overall beta diversity (70.7-86.0%), which indicated a high degree of function loss without replacement. Both taxonomic and functional beta diversity were higher in disconnected lakes, where they were significantly correlated with fishing activity and water quality, than in river-connected lakes. We showed for the first time the effects of loss of LHC on fish functional diversity in large river floodplains. We found a serious decline of fish functional richness in the Yangtze floodplain, and functional diversity remained highly vulnerable to loss of LHC even though this is a species-rich ecosystem.
Collapse
Affiliation(s)
- Xueqin Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Hongzhu Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
119
|
Santillán V, Quitián M, Tinoco BA, Zárate E, Schleuning M, Böhning-Gaese K, Neuschulz EL. Different responses of taxonomic and functional bird diversity to forest fragmentation across an elevational gradient. Oecologia 2018; 189:863-873. [PMID: 30506305 DOI: 10.1007/s00442-018-4309-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 11/16/2018] [Indexed: 11/24/2022]
Abstract
Many studies have investigated how habitat fragmentation affects the taxonomic and functional diversity of species assemblages. However, the joint effects of habitat fragmentation and environmental conditions on taxonomic and functional diversity, for instance across elevational gradients, have largely been neglected so far. In this study, we compare whether taxonomic and functional indicators show similar or distinct responses to forest fragmentation across an elevational gradient. We based our analysis on a comprehensive data set of species-rich bird assemblages from tropical montane forest in the Southern Andes of Ecuador. We monitored birds over 2 years in two habitat types (continuous and fragmented forest) at three elevations (i.e., 1000, 2000, and 3000 m a.s.l) and measured nine morphological traits for each bird species on museum specimens. Bird species richness and abundance were significantly higher in fragmented compared to continuous forests and decreased towards high elevations. In contrast, functional diversity was significantly reduced in fragmented compared to continuous forests at low elevations, but fragmentation effects on functional diversity tended to be reversed at high elevations. Our results demonstrate that taxonomic and functional indicators can show decoupled responses to forest fragmentation and that these effects are highly variable across elevations. Our findings reveal that functional homogenization in bird communities in response to fragmentation can be masked by apparent increases in taxonomic diversity, particularly in diverse communities at low elevations.
Collapse
Affiliation(s)
- Vinicio Santillán
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt Am Main, Germany. .,Department of Biological Sciences, Goethe-Universität Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt Am Main, Germany. .,Escuela de Biología, Ecología Y Gestión, Universidad Del Azuay, Av. 24 de Mayo 7-77 Y Hernán Malo, 01.01.981, Cuenca, Ecuador.
| | - Marta Quitián
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt Am Main, Germany.,Department of Biological Sciences, Goethe-Universität Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt Am Main, Germany
| | - Boris A Tinoco
- Escuela de Biología, Ecología Y Gestión, Universidad Del Azuay, Av. 24 de Mayo 7-77 Y Hernán Malo, 01.01.981, Cuenca, Ecuador
| | - Edwin Zárate
- Escuela de Biología, Ecología Y Gestión, Universidad Del Azuay, Av. 24 de Mayo 7-77 Y Hernán Malo, 01.01.981, Cuenca, Ecuador
| | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
| | - Katrin Böhning-Gaese
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt Am Main, Germany.,Department of Biological Sciences, Goethe-Universität Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt Am Main, Germany
| | - Eike Lena Neuschulz
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
| |
Collapse
|
120
|
Zhao T, Villéger S, Cucherousset J. Accounting for intraspecific diversity when examining relationships between non-native species and functional diversity. Oecologia 2018; 189:171-183. [PMID: 30470889 DOI: 10.1007/s00442-018-4311-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/19/2018] [Indexed: 11/29/2022]
Abstract
Quantifying changes in functional diversity, the facet of biodiversity accounting for the biological features of organisms, has been advocated as one of the most integrative ways to unravel how communities are affected by human-induced perturbations. The present study assessed how functional diversity patterns varied among communities that differed in the degree to which non-native species dominated the community in temperate lake fish communities and whether accounting for intraspecific functional variability could provide a better understanding of the variation of functional diversity across communities. Four functional diversity indices were computed for 18 temperate lake fish communities along a gradient of non-native fish dominance using morphological functional traits assessed for each life-stage within each species. First, we showed that intraspecific variability in functional traits was high and comparable to interspecific variability. Second, we found that non-native fish were functionally distinct from native fish. Finally, we demonstrated that there was a significant relationship between functional diversity and the degree to which non-native fish currently dominated the community and that this association could be better detected when accounting for intraspecific functional variability. These findings highlighted the importance of incorporating intraspecific variability to better quantify the variation of functional diversity patterns in communities facing human-induced perturbations.
Collapse
Affiliation(s)
- T Zhao
- Laboratoire Evolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse, CNRS, ENFA, UPS, 118 route de Narbonne, 31062, Toulouse, France.
| | - S Villéger
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - J Cucherousset
- Laboratoire Evolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse, CNRS, ENFA, UPS, 118 route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
121
|
Shuai F, Yu S, Lek S, Li X. Habitat effects on intra-species variation in functional morphology: Evidence from freshwater fish. Ecol Evol 2018; 8:10902-10913. [PMID: 30519416 PMCID: PMC6262925 DOI: 10.1002/ece3.4555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 05/15/2018] [Accepted: 07/16/2018] [Indexed: 11/16/2022] Open
Abstract
Biotic-environment interactions have long been considered an important factor in functional phenotype differentiation in organisms. The differentiation processes determining functional phenotypes can reveal important mechanisms yielding differences in specific functions of animal traits in the ecosystem. In the present study, we examined functional morphological variations in relation to increasing geographic altitude. Six fish species were examined for how environment factors affect intra-specific functional morphology in the subtropical Pearl River in southern China. Functional morphology traits revealed variable effects due to geographic elevation, although spatial autocorrelation existed among the species tested. The results showed that high-elevation individuals had a more narrow-bodied morphology, with more flexible maneuvrability when swimming, and more evenly distributed musculature than low-elevation individuals. Low-elevation individuals preyed upon larger food sources than high-elevation individuals in some species. Fish functional morphology was strongly affected by regional environmental factors (such as elevation and water temperature) and physical characteristics of local rivers (such as flow velocity, river fractals, and coefficients of fluvial facies). In addition, the effects of the regional factors were stronger than those of the local factors in the Pearl River. Furthermore, it was found that morphological traits associated with locomotion were primarily effected by the river's physical characteristics. While morphological traits associated with food acquisition were primarily affected by water chemical factors (such as DO, water clarity, NH 4-N concentration, and TDS). These results demonstrated that habitat has an influence on the biological morphology of fish species, which further affects the functioning of the organism within the ecosystem.
Collapse
Affiliation(s)
- Fangmin Shuai
- Pearl River Fisheries Research InstituteCAFSGuangzhouChina
- Ministry of AgricultureExperimental Station for Scientific Observation on Fishery Resources and Environment in the Middle and Lower Reaches of Pearl RiverGuangdongChina
| | - Shixiao Yu
- State Key Laboratory of BiocontrolDepartment of EcologySchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Sovan Lek
- Université de Toulouse ‐ Paul SabatierToulouse CedexFrance
| | - Xinhui Li
- Pearl River Fisheries Research InstituteCAFSGuangzhouChina
- Ministry of AgricultureExperimental Station for Scientific Observation on Fishery Resources and Environment in the Middle and Lower Reaches of Pearl RiverGuangdongChina
| |
Collapse
|
122
|
Teichert N, Lepage M, Lobry J. Beyond classic ecological assessment: The use of functional indices to indicate fish assemblages sensitivity to human disturbance in estuaries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:465-475. [PMID: 29800840 DOI: 10.1016/j.scitotenv.2018.05.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Assessing ecological health of aquatic ecosystems is crucial in the current context of biodiversity loss to guide and prioritize management actions. Although several fish-based indices were developed to assess the ecological status of estuarine ecosystems, they do not provide guidance on the causal responses of communities to disturbances. The functional trait-based approach provides an understanding of how human disturbance affects the composition of biological and ecological traits in assemblages, as well as their consequences for ecosystem functioning. Here, we evaluate the responses of fish assemblages to human disturbance in 30 French estuaries using several taxonomic and functional indices (e.g. diversity, evenness or redundancy). We tested whether these indices can provide additional information on the human impacts and health of assemblages that are not reflected by the ecological indicator (fish-based index ELFI). Results indicated that high values of local human disturbances were associated to a decrease in fish abundance, decrease in species richness and reduced functional redundancy, whereas taxonomic and functional evenness increased. In contrast, the functional richness remained stable suggesting that the functional traits of species removed by stressors were maintained by more tolerant species. Indeed, we found that the local disturbances mainly resulted in a decrease in the proportions of small benthic species feeding on macro-invertebrates, which were dominant in the studied estuaries. Some functional alterations were detected by the fish-based index, but the decline of functional redundancy was not reflected, highlighting a serious concern for management. Indeed, the abrupt collapse of functional redundancy in response to local disturbances can decrease the ability of assemblages to maintain certain species traits in the face of future environmental disturbance, including climate change. From a management perspective, the application of such functional redundancy measure in monitoring programs can help stakeholders identify sensitive areas where conservation efforts need to be planned.
Collapse
Affiliation(s)
- Nils Teichert
- Irstea, UR EABX, 50 avenue de Verdun, 33612 Cestas, France.
| | - Mario Lepage
- Irstea, UR EABX, 50 avenue de Verdun, 33612 Cestas, France
| | - Jérémy Lobry
- Irstea, UR EABX, 50 avenue de Verdun, 33612 Cestas, France
| |
Collapse
|
123
|
Rincón-Díaz MP, Pittman SJ, Arismendi I, Heppell SS. Functional diversity metrics detect spatio-temporal changes in the fish communities of a Caribbean marine protected area. Ecosphere 2018. [DOI: 10.1002/ecs2.2433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
| | - Simon J. Pittman
- Marine Spatial Ecology Division's Biogeography Branch; National Centers for Coastal Ocean Science; U.S. National Oceanic and Atmospheric Administration; 1305 East-West Highway Silver Spring Maryland 20910 USA
- Marine Institute; Plymouth University; Drake Circus Plymouth Devon PL4 8AA UK
| | - Ivan Arismendi
- Department of Fisheries and Wildlife; Oregon State University; 104 Nash Hall Corvallis Oregon 97331 USA
| | - Selina S. Heppell
- Department of Fisheries and Wildlife; Oregon State University; 104 Nash Hall Corvallis Oregon 97331 USA
| |
Collapse
|
124
|
Simulating shifts in taxonomic and functional β-diversity of ray-finned fishes: Probing the Mariana disaster. Perspect Ecol Conserv 2018. [DOI: 10.1016/j.pecon.2018.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
125
|
Kissick AL, Dunning JB, Fernandez-Juricic E, Holland JD. Different responses of predator and prey functional diversity to fragmentation. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:1853-1866. [PMID: 30007101 DOI: 10.1002/eap.1780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 04/08/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
The study of functional diversity, or the range of species' ecological roles in a community, is a rapidly expanding area in ecology. Given the extent that ecosystems are being altered, effort should shift toward assessing variation in functional diversity across landscapes with the goal of improving land use management decisions. We construct a workflow that creates three-dimensional surfaces and maps of functional diversity to examine changes in beetle functional diversity across an Indiana, USA landscape. We sampled 105 prey wood-borer and predator beetle species along a gradient of forest fragmentation across Indiana and used a number of functional traits from literature sources to capture their functional roles. We developed newly measured functional traits to estimate several traits relevant to beetles' ecological function that was unknown and not easily measured. Functional diversity indices (FRic, FDis, FDiv, and FEve) were calculated from species abundance and functional traits and used to assess changes in functional diversity along the fragmentation gradient. We predicted that habitat fragmentation would have a greater negative impact on predator beetle functional diversity than prey wood-borer functional diversity. Landscape metrics most important to the functional diversity of both wood-borer and predator beetle communities were landscape division index (LDI, an assessment of landscape subdivision) and mean shape index (MSI, a measure of patch shape complexity). Overall, three-dimensional surfaces of functional diversity and functional diversity maps across the Indiana landscape revealed that beetle functional diversity was greatest with minimal landscape subdivision. Opposite to what we predicted, we found that the prey wood-borer functional diversity was more negatively impacted by LDI than the predator beetle functional diversity. Furthermore, predator beetle functional diversity was greater with increasing MSI. The map predicted predator FRic to be highest in forested areas with intact habitat and also less sensitive to habitat fragmentation adjacent to more continuous forest. We propose that land management may be guided by revealing landscapes that are most appropriate for maximizing functional diversity of multiple communities or shifting the relative abundance within prey and beneficial predator beetle functional groups with the use of three-dimensional plots or maps.
Collapse
Affiliation(s)
- Ashley L Kissick
- Department of Entomology, Purdue University, West Lafayette, Indiana, 47907, USA
| | - John B Dunning
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, 47907, USA
| | | | - Jeffrey D Holland
- Department of Entomology, Purdue University, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
126
|
Toussaint A, Charpin N, Beauchard O, Grenouillet G, Oberdorff T, Tedesco PA, Brosse S, Villéger S. Non-native species led to marked shifts in functional diversity of the world freshwater fish faunas. Ecol Lett 2018; 21:1649-1659. [DOI: 10.1111/ele.13141] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/03/2018] [Accepted: 07/24/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Aurèle Toussaint
- Université Paul Sabatier; CNRS; IRD; UMR5174 EDB (Laboratoire Évolution et Diversité Biologique); 118 route de Narbonne F-31062 Toulouse France
- Institute of Ecology and Earth Sciences; Department of Botany; University of Tartu; Lai 40 Tartu 51005 Estonia
| | - Nicolas Charpin
- Université Paul Sabatier; CNRS; IRD; UMR5174 EDB (Laboratoire Évolution et Diversité Biologique); 118 route de Narbonne F-31062 Toulouse France
| | - Olivier Beauchard
- Flanders Marine Institute (VLIZ); Wandelaarkaai 7 8400 Oostende Belgium
- Ecosystem Management Research Group; University of Antwerp; Universiteitsplein 1 2610 Wilrijk Belgium
| | - Gaël Grenouillet
- Université Paul Sabatier; CNRS; IRD; UMR5174 EDB (Laboratoire Évolution et Diversité Biologique); 118 route de Narbonne F-31062 Toulouse France
| | - Thierry Oberdorff
- Université Paul Sabatier; CNRS; IRD; UMR5174 EDB (Laboratoire Évolution et Diversité Biologique); 118 route de Narbonne F-31062 Toulouse France
| | - Pablo A. Tedesco
- Université Paul Sabatier; CNRS; IRD; UMR5174 EDB (Laboratoire Évolution et Diversité Biologique); 118 route de Narbonne F-31062 Toulouse France
| | - Sébastien Brosse
- Université Paul Sabatier; CNRS; IRD; UMR5174 EDB (Laboratoire Évolution et Diversité Biologique); 118 route de Narbonne F-31062 Toulouse France
| | | |
Collapse
|
127
|
Kang B, Huang X, Yan Y, Yan Y, Lin H. Continental-scale analysis of taxonomic and functional fish diversity in the Yangtze river. Glob Ecol Conserv 2018. [DOI: 10.1016/j.gecco.2018.e00442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
128
|
Veen GF, van der Putten WH, Bezemer TM. Biodiversity-ecosystem functioning relationships in a long-term non-weeded field experiment. Ecology 2018; 99:1836-1846. [PMID: 29845613 DOI: 10.1002/ecy.2400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/01/2018] [Accepted: 05/09/2018] [Indexed: 11/11/2022]
Abstract
Many grassland biodiversity experiments show a positive relationship between biodiversity and ecosystem functioning, however, in most of these experiments plant communities are established by sowing and natural colonization is prevented by selective weeding of non-sown species. During ecosystem restoration, for example on abandoned fields, plant communities start on bare soil, and diversity is often manipulated in a single sowing event. How such initial plant diversity manipulations influence plant biodiversity development and ecosystem functioning is not well understood. We examined how relationships between taxonomic and functional diversity, biomass production and stability develop over 16 yr in non-weeded plots sown with 15 species, four species, or that were not sown. We found that sown plant communities become functionally similar to unsown, naturally colonized plant communities. However, initial sowing treatments had long-lasting effects on species composition and taxonomic diversity. We found only few relationships between biomass production, or stability in biomass production, and functional or taxonomic diversity, and the ones we observed were negative. In addition, the cover of dominant plant species was positively related to biomass production and stability. We conclude that effects of introducing plant species at the start of secondary succession can persist for a long time, and that in secondary succession communities with natural plant species dynamics diversity-functioning relationships can be weak or negative. Moreover, our findings indicate that in systems where natural colonization of species is allowed effects of plant dominance may underlie diversity-functioning relationships.
Collapse
Affiliation(s)
- G F Veen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, P.O. Box 50, Wageningen, 6700 AB, The Netherlands
| | - Wim H van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, P.O. Box 50, Wageningen, 6700 AB, The Netherlands.,Laboratory of Nematology, Wageningen University, P.O. Box 8123, Wageningen, 6700 ES, The Netherlands
| | - T Martijn Bezemer
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, P.O. Box 50, Wageningen, 6700 AB, The Netherlands
| |
Collapse
|
129
|
Colin N, Villéger S, Wilkes M, de Sostoa A, Maceda-Veiga A. Functional diversity measures revealed impacts of non-native species and habitat degradation on species-poor freshwater fish assemblages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:861-871. [PMID: 29306829 DOI: 10.1016/j.scitotenv.2017.12.316] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/27/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
Trait-based ecology has been developed for decades to infer ecosystem responses to stressors based on the functional structure of communities, yet its value in species-poor systems is largely unknown. Here, we used an extensive dataset in a Spanish region highly prone to non-native fish invasions (15 catchments, N=389 sites) to assess for the first time how species-poor communities respond to large-scale environmental gradients using a taxonomic and functional trait-based approach in riverine fish. We examined total species richness and three functional trait-based indices available when many sites have ≤3 species (specialization, FSpe; originality, FOri and entropy, FEnt). We assessed the responses of these taxonomic and functional indices along gradients of altitude, water pollution, physical habitat degradation and non-native fish biomass. Whilst species richness was relatively sensitive to spatial effects, functional diversity indices were responsive across natural and anthropogenic gradients. All four diversity measures declined with altitude but this decline was modulated by physical habitat degradation (richness, FSpe and FEnt) and the non-native:total fish biomass ratio (FSpe and FOri) in ways that varied between indices. Furthermore, FSpe and FOri were significantly correlated with Total Nitrogen. Non-native fish were a major component of the taxonomic and functional structure of fish communities, raising concerns about potential misdiagnosis between invaded and environmentally-degraded river reaches. Such misdiagnosis was evident in a regional fish index widely used in official monitoring programs. We recommend the application of FSpe and FOri to extensive datasets from monitoring programs in order to generate valuable cross-system information about the impacts of non-native species and habitat degradation, even in species-poor systems. Scoring non-native species apart from habitat degradation in the indices used to determine ecosystem health is essential to develop better management strategies.
Collapse
Affiliation(s)
- Nicole Colin
- Department of Evolutionary Biology, Ecology & Environmental Sciences-Institute of Research in Biodiversity (IRBio-UB), University of Barcelona, 08028 Barcelona, Spain; Center for Research on Biodiversity and Sustainable Environments (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile.
| | - Sébastien Villéger
- Biodiversité marine et ses usages (UMR 9190 MARBEC), CNRS, Université de Montpellier, Place Eugène Bataillon, CP 34095, Montpellier Cedex 5, France
| | - Martin Wilkes
- Centre for Agroecology, Water and Resilience, Coventry University, Ryton Organic Gardens, Wolston Lane, Ryton-On-Dunsmore, CV8 3LG, UK
| | - Adolfo de Sostoa
- Department of Evolutionary Biology, Ecology & Environmental Sciences-Institute of Research in Biodiversity (IRBio-UB), University of Barcelona, 08028 Barcelona, Spain
| | - Alberto Maceda-Veiga
- Department of Evolutionary Biology, Ecology & Environmental Sciences-Institute of Research in Biodiversity (IRBio-UB), University of Barcelona, 08028 Barcelona, Spain; Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), 41092, Sevilla, Spain
| |
Collapse
|
130
|
Biological invasions undermine the functional diversity of fish community in a large subtropical river. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1751-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
131
|
Arévalo-Sandi A, Bobrowiec PED, Rodriguez Chuma VJU, Norris D. Diversity of terrestrial mammal seed dispersers along a lowland Amazon forest regrowth gradient. PLoS One 2018; 13:e0193752. [PMID: 29547648 PMCID: PMC5856264 DOI: 10.1371/journal.pone.0193752] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/17/2018] [Indexed: 11/19/2022] Open
Abstract
There is increasing interest in the restoration/regeneration of degraded tropical habitats yet the potential role of natural regenerators remains unclear. We test the hypothesis that the richness and functional diversity of terrestrial mammals differs between forest regrowth stages. We quantified the richness and functional diversity of eight terrestrial mammal seed-disperser species across a forest regrowth gradient in the eastern Brazilian Amazon. We installed camera-traps in 15 sites within small-holder properties with forest regrowth stage classified into three groups, with five sites each of: late second-regrowth forest, early second-regrowth forest and abandoned pasture. Species richness and functional dispersion from the regrowth sites were compared with 15 paired forest control sites. Multi model selection showed that regrowth class was more important for explaining patterns in richness and functional diversity than other variables from three non-mutually exclusive hypotheses: hunting (distance to house, distance to river, distance to town, small holder residence), land cover (% forest cover within 50 meters, 1 kilometer and 5 kilometers) and land use (regrowth class, time since last use). Differences in functional diversity were most strongly explained by a loss of body mass. We found that diversity in regrowth sites could be similar to control sites even in some early-second regrowth areas. This finding suggests that when surrounded by large intact forest areas the richness and functional diversity close to human small-holdings can return to pre-degradation values. Yet we also found a significant reduction in richness and functional diversity in more intensely degraded pasture sites. This reduction in richness and functional diversity may limit the potential for regeneration and increase costs for ecological regeneration and restoration actions around more intense regrowth areas.
Collapse
Affiliation(s)
- Alexander Arévalo-Sandi
- Programa de Pós-graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia (INPA), Av. André Araújo 2936, Petrópolis, Manaus, AM, Brazil
| | - Paulo Estefano D. Bobrowiec
- Programa de Pós-graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia (INPA), Av. André Araújo 2936, Petrópolis, Manaus, AM, Brazil
| | - Victor Juan Ulises Rodriguez Chuma
- Programa de Pós-Graduação em Biodiversidade Tropical, Universidade Federal do Amapá (UNIFAP), Rod. Juscelino Kubitscheck, Km 02, Macapá, AP, Brazil
- Facultad de Ciencias Forestales, Universidad Nacional de la Amazonía Peruana (UNAP), Pevas 5ta cdra, Iquitos, Perú
| | - Darren Norris
- Programa de Pós-graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia (INPA), Av. André Araújo 2936, Petrópolis, Manaus, AM, Brazil
- Programa de Pós-Graduação em Biodiversidade Tropical, Universidade Federal do Amapá (UNIFAP), Rod. Juscelino Kubitscheck, Km 02, Macapá, AP, Brazil
- Coordenação de Ciências Ambientais, Universidade Federal do Amapá (UNIFAP), Rod. Juscelino Kubitschek Km 02, Macapá, AP, Brazil
- * E-mail:
| |
Collapse
|
132
|
Tinoco BA, Santillán VE, Graham CH. Land use change has stronger effects on functional diversity than taxonomic diversity in tropical Andean hummingbirds. Ecol Evol 2018; 8:3478-3490. [PMID: 29607040 PMCID: PMC5869371 DOI: 10.1002/ece3.3813] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/10/2017] [Accepted: 12/06/2017] [Indexed: 11/10/2022] Open
Abstract
Land use change modifies the environment at multiple spatial scales, and is a main driver of species declines and deterioration of ecosystem services. However, most of the research on the effects of land use change has focused on taxonomic diversity, while functional diversity, an important predictor of ecosystem services, is often neglected. We explored how local and landscape scale characteristics influence functional and taxonomic diversity of hummingbirds in the Andes Mountains in southern Ecuador. Data was collected in six landscapes along a land use gradient, from an almost intact landscape to one dominated by cattle pastures. We used point counts to sample hummingbirds from 2011 to 2012 to assessed how local factors (i.e., vegetation structure, flowering plants richness, nectar availability) and landscape factors (i.e., landscape heterogeneity, native vegetation cover) influenced taxonomic and functional diversity. Then, we analyzed environment – trait relationships (RLQ test) to explore how different hummingbird functional traits influenced species responses to these factors. Taxonomic and functional diversity of hummingbirds were positively associated with landscape heterogeneity but only functional diversity was positively related to native vegetation coverage. We found a weak response of taxonomic and functional diversity to land use change at the local scale. Environment‐trait associations showed that body mass of hummingbirds likely influenced species sensitivity to land use change. In conclusion, landscape heterogeneity created by land use change can positively influence hummingbird taxonomic and functional diversity; however, a reduction of native vegetation cover could decrease functional diversity. Given that functional diversity can mediate ecosystem services, the conservation of native vegetation cover could play a key role in the maintenance of hummingbird pollination services in the tropical Andes. Moreover, there are particular functional traits, such as body mass, that increase a species sensitivity to land use change.
Collapse
Affiliation(s)
- Boris A Tinoco
- Department of Ecology and Evolution Stony Brook University Stony Brook NY USA.,Escuela de Biología Ecología y Gestión Universidad del Azuay Cuenca Ecuador
| | | | - Catherine H Graham
- Department of Ecology and Evolution Stony Brook University Stony Brook NY USA.,Swiss Federal Research Institute WSL Birmensdorf Switzerland
| |
Collapse
|
133
|
Functional richness: Overview of indices and underlying concepts. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2018. [DOI: 10.1016/j.actao.2018.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
134
|
Xu Y, Fan X, Warren A, Zhang L, Xu H. Functional diversity of benthic ciliate communities in response to environmental gradients in a wetland of Yangtze Estuary, China. MARINE POLLUTION BULLETIN 2018; 127:726-732. [PMID: 29475716 DOI: 10.1016/j.marpolbul.2017.12.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/21/2017] [Accepted: 12/30/2017] [Indexed: 06/08/2023]
Abstract
Researches on the functional diversity of benthic ecosystems have mainly focused on macrofauna, and studies on functional structure of ciliate communities have been based only on trophic- or size-groups. Current research was carried out on the changing patterns of classical and functional diversity of benthic ciliates in response to environmental gradients at three sites in a wetland in Yangtze Estuary. The results showed that changes of environmental factors (e.g. salinity, sediment grain size and hydrodynamic conditions) in the Yangtze Estuary induce variability in species composition and functional trait distribution. Furthermore, increased species richness and diversity did not lead to significant changes in functional diversity due to functional redundancy. However, salt water intrusion of Yangtze Estuary during the dry season could cause reduced functional diversity of ciliate communities. Current study provides the first insight into the functional diversity of ciliate communities in response to environmental gradients.
Collapse
Affiliation(s)
- Yuan Xu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Xinpeng Fan
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Liquan Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China.
| | - Henglong Xu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
135
|
Sterling KA, Warren ML. Effects of Introduced Small Wood in a Degraded Stream on Fish Community and Functional Diversity. SOUTHEAST NAT 2018. [DOI: 10.1656/058.017.0106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Ken A. Sterling
- USDA Forest Service, Southern Research Station, Stream Ecology Laboratory, 1000 Front Street, Oxford, MS 38655
| | - Melvin L. Warren
- USDA Forest Service, Southern Research Station, Stream Ecology Laboratory, 1000 Front Street, Oxford, MS 38655
| |
Collapse
|
136
|
Leitão RP, Zuanon J, Mouillot D, Leal CG, Hughes RM, Kaufmann PR, Villéger S, Pompeu PS, Kasper D, de Paula FR, Ferraz SFB, Gardner TA. Disentangling the pathways of land use impacts on the functional structure of fish assemblages in Amazon streams. ECOGRAPHY 2018; 41:219-232. [PMID: 29910537 PMCID: PMC5998685 DOI: 10.1111/ecog.02845] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/28/2017] [Indexed: 05/24/2023]
Abstract
Agricultural land use is a primary driver of environmental impacts on streams. However, the causal processes that shape these impacts operate through multiple pathways and at several spatial scales. This complexity undermines the development of more effective management approaches, and illustrates the need for more in-depth studies to assess the mechanisms that determine changes in stream biodiversity. Here we present results of the most comprehensive multi-scale assessment of the biological condition of streams in the Amazon to date, examining functional responses of fish assemblages to land use. We sampled fish assemblages from two large human-modified regions, and characterized stream conditions by physical habitat attributes and key landscape-change variables, including density of road crossings (i.e. riverscape fragmentation), deforestation, and agricultural intensification. Fish species were functionally characterized using ecomorphological traits describing feeding, locomotion, and habitat preferences, and these traits were used to derive indices that quantitatively describe the functional structure of the assemblages. Using structural equation modeling, we disentangled multiple drivers operating at different spatial scales, identifying causal pathways that significantly affect stream condition and the structure of the fish assemblages. Deforestation at catchment and riparian network scales altered the channel morphology and the stream bottom structure, changing the functional identity of assemblages. Local deforestation reduced the functional evenness of assemblages (i.e. increased dominance of specific trait combinations) mediated by expansion of aquatic vegetation cover. Riverscape fragmentation reduced functional richness, evenness and divergence, suggesting a trend toward functional homogenization and a reduced range of ecological niches within assemblages following the loss of regional connectivity. These results underscore the often-unrecognized importance of different land use changes, each of which can have marked effects on stream biodiversity. We draw on the relationships observed herein to suggest priorities for the improved management of stream systems in the multiple-use landscapes that predominate in human-modified tropical forests.
Collapse
Affiliation(s)
- Rafael P Leitão
- R. P. Leitão (http://orcid.org/0000-0001-7990-0068) , Depto de Biologia Geral, Univ. Federal de Minas Gerais, Belo Horizonte, Brazil. - J. Zuanon, D. Kasper and RPL, Coordenação de Biodiversidade, Inst. Nacional de Pesquisas da Amazônia, Manaus, Brazil. DK also at: Univ. Federal do Rio de Janeiro, Rio de Janeiro, Brazil. - D. Mouillot, S. Villéger and RPL, Laboratoire biodiversité marine et ses usages, UMR 9190 MARBEC CNRS-UM-IRD-IFREMER, Univ. de Montpellier, Montpellier, France. DM also at: Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook Univ., Townsville, QLD, Australia. - C. G. Leal and P. S. Pompeu, Depto de Biologia, Univ. Federal de Lavras, Lavras, Brazil. CGL also at: Lancaster Environment Centre, Lancaster Univ., Lancaster, UK, and Museu Paraense Emílio Goeldi, Belém, Brazil. - R. M. Hughes, Amnis Opes Inst. and Dept of Fisheries and Wildlife, Oregon State Univ., Corvallis, USA. - P. R. Kaufmann, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, USA. - Felipe R. de Paula and Silvio F. B. Ferraz, Laboratório de Hidrologia Florestal (LHF), ESALQ, Univ. de São Paulo, Piracicaba, Brazil. - T. A. Gardner, Stockholm Environment Inst., Stockholm, Sweden
| | - Jansen Zuanon
- R. P. Leitão (http://orcid.org/0000-0001-7990-0068) , Depto de Biologia Geral, Univ. Federal de Minas Gerais, Belo Horizonte, Brazil. - J. Zuanon, D. Kasper and RPL, Coordenação de Biodiversidade, Inst. Nacional de Pesquisas da Amazônia, Manaus, Brazil. DK also at: Univ. Federal do Rio de Janeiro, Rio de Janeiro, Brazil. - D. Mouillot, S. Villéger and RPL, Laboratoire biodiversité marine et ses usages, UMR 9190 MARBEC CNRS-UM-IRD-IFREMER, Univ. de Montpellier, Montpellier, France. DM also at: Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook Univ., Townsville, QLD, Australia. - C. G. Leal and P. S. Pompeu, Depto de Biologia, Univ. Federal de Lavras, Lavras, Brazil. CGL also at: Lancaster Environment Centre, Lancaster Univ., Lancaster, UK, and Museu Paraense Emílio Goeldi, Belém, Brazil. - R. M. Hughes, Amnis Opes Inst. and Dept of Fisheries and Wildlife, Oregon State Univ., Corvallis, USA. - P. R. Kaufmann, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, USA. - Felipe R. de Paula and Silvio F. B. Ferraz, Laboratório de Hidrologia Florestal (LHF), ESALQ, Univ. de São Paulo, Piracicaba, Brazil. - T. A. Gardner, Stockholm Environment Inst., Stockholm, Sweden
| | - David Mouillot
- R. P. Leitão (http://orcid.org/0000-0001-7990-0068) , Depto de Biologia Geral, Univ. Federal de Minas Gerais, Belo Horizonte, Brazil. - J. Zuanon, D. Kasper and RPL, Coordenação de Biodiversidade, Inst. Nacional de Pesquisas da Amazônia, Manaus, Brazil. DK also at: Univ. Federal do Rio de Janeiro, Rio de Janeiro, Brazil. - D. Mouillot, S. Villéger and RPL, Laboratoire biodiversité marine et ses usages, UMR 9190 MARBEC CNRS-UM-IRD-IFREMER, Univ. de Montpellier, Montpellier, France. DM also at: Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook Univ., Townsville, QLD, Australia. - C. G. Leal and P. S. Pompeu, Depto de Biologia, Univ. Federal de Lavras, Lavras, Brazil. CGL also at: Lancaster Environment Centre, Lancaster Univ., Lancaster, UK, and Museu Paraense Emílio Goeldi, Belém, Brazil. - R. M. Hughes, Amnis Opes Inst. and Dept of Fisheries and Wildlife, Oregon State Univ., Corvallis, USA. - P. R. Kaufmann, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, USA. - Felipe R. de Paula and Silvio F. B. Ferraz, Laboratório de Hidrologia Florestal (LHF), ESALQ, Univ. de São Paulo, Piracicaba, Brazil. - T. A. Gardner, Stockholm Environment Inst., Stockholm, Sweden
| | - Cecília G Leal
- R. P. Leitão (http://orcid.org/0000-0001-7990-0068) , Depto de Biologia Geral, Univ. Federal de Minas Gerais, Belo Horizonte, Brazil. - J. Zuanon, D. Kasper and RPL, Coordenação de Biodiversidade, Inst. Nacional de Pesquisas da Amazônia, Manaus, Brazil. DK also at: Univ. Federal do Rio de Janeiro, Rio de Janeiro, Brazil. - D. Mouillot, S. Villéger and RPL, Laboratoire biodiversité marine et ses usages, UMR 9190 MARBEC CNRS-UM-IRD-IFREMER, Univ. de Montpellier, Montpellier, France. DM also at: Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook Univ., Townsville, QLD, Australia. - C. G. Leal and P. S. Pompeu, Depto de Biologia, Univ. Federal de Lavras, Lavras, Brazil. CGL also at: Lancaster Environment Centre, Lancaster Univ., Lancaster, UK, and Museu Paraense Emílio Goeldi, Belém, Brazil. - R. M. Hughes, Amnis Opes Inst. and Dept of Fisheries and Wildlife, Oregon State Univ., Corvallis, USA. - P. R. Kaufmann, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, USA. - Felipe R. de Paula and Silvio F. B. Ferraz, Laboratório de Hidrologia Florestal (LHF), ESALQ, Univ. de São Paulo, Piracicaba, Brazil. - T. A. Gardner, Stockholm Environment Inst., Stockholm, Sweden
| | - Robert M Hughes
- R. P. Leitão (http://orcid.org/0000-0001-7990-0068) , Depto de Biologia Geral, Univ. Federal de Minas Gerais, Belo Horizonte, Brazil. - J. Zuanon, D. Kasper and RPL, Coordenação de Biodiversidade, Inst. Nacional de Pesquisas da Amazônia, Manaus, Brazil. DK also at: Univ. Federal do Rio de Janeiro, Rio de Janeiro, Brazil. - D. Mouillot, S. Villéger and RPL, Laboratoire biodiversité marine et ses usages, UMR 9190 MARBEC CNRS-UM-IRD-IFREMER, Univ. de Montpellier, Montpellier, France. DM also at: Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook Univ., Townsville, QLD, Australia. - C. G. Leal and P. S. Pompeu, Depto de Biologia, Univ. Federal de Lavras, Lavras, Brazil. CGL also at: Lancaster Environment Centre, Lancaster Univ., Lancaster, UK, and Museu Paraense Emílio Goeldi, Belém, Brazil. - R. M. Hughes, Amnis Opes Inst. and Dept of Fisheries and Wildlife, Oregon State Univ., Corvallis, USA. - P. R. Kaufmann, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, USA. - Felipe R. de Paula and Silvio F. B. Ferraz, Laboratório de Hidrologia Florestal (LHF), ESALQ, Univ. de São Paulo, Piracicaba, Brazil. - T. A. Gardner, Stockholm Environment Inst., Stockholm, Sweden
| | - Philip R Kaufmann
- R. P. Leitão (http://orcid.org/0000-0001-7990-0068) , Depto de Biologia Geral, Univ. Federal de Minas Gerais, Belo Horizonte, Brazil. - J. Zuanon, D. Kasper and RPL, Coordenação de Biodiversidade, Inst. Nacional de Pesquisas da Amazônia, Manaus, Brazil. DK also at: Univ. Federal do Rio de Janeiro, Rio de Janeiro, Brazil. - D. Mouillot, S. Villéger and RPL, Laboratoire biodiversité marine et ses usages, UMR 9190 MARBEC CNRS-UM-IRD-IFREMER, Univ. de Montpellier, Montpellier, France. DM also at: Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook Univ., Townsville, QLD, Australia. - C. G. Leal and P. S. Pompeu, Depto de Biologia, Univ. Federal de Lavras, Lavras, Brazil. CGL also at: Lancaster Environment Centre, Lancaster Univ., Lancaster, UK, and Museu Paraense Emílio Goeldi, Belém, Brazil. - R. M. Hughes, Amnis Opes Inst. and Dept of Fisheries and Wildlife, Oregon State Univ., Corvallis, USA. - P. R. Kaufmann, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, USA. - Felipe R. de Paula and Silvio F. B. Ferraz, Laboratório de Hidrologia Florestal (LHF), ESALQ, Univ. de São Paulo, Piracicaba, Brazil. - T. A. Gardner, Stockholm Environment Inst., Stockholm, Sweden
| | - Sébastien Villéger
- R. P. Leitão (http://orcid.org/0000-0001-7990-0068) , Depto de Biologia Geral, Univ. Federal de Minas Gerais, Belo Horizonte, Brazil. - J. Zuanon, D. Kasper and RPL, Coordenação de Biodiversidade, Inst. Nacional de Pesquisas da Amazônia, Manaus, Brazil. DK also at: Univ. Federal do Rio de Janeiro, Rio de Janeiro, Brazil. - D. Mouillot, S. Villéger and RPL, Laboratoire biodiversité marine et ses usages, UMR 9190 MARBEC CNRS-UM-IRD-IFREMER, Univ. de Montpellier, Montpellier, France. DM also at: Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook Univ., Townsville, QLD, Australia. - C. G. Leal and P. S. Pompeu, Depto de Biologia, Univ. Federal de Lavras, Lavras, Brazil. CGL also at: Lancaster Environment Centre, Lancaster Univ., Lancaster, UK, and Museu Paraense Emílio Goeldi, Belém, Brazil. - R. M. Hughes, Amnis Opes Inst. and Dept of Fisheries and Wildlife, Oregon State Univ., Corvallis, USA. - P. R. Kaufmann, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, USA. - Felipe R. de Paula and Silvio F. B. Ferraz, Laboratório de Hidrologia Florestal (LHF), ESALQ, Univ. de São Paulo, Piracicaba, Brazil. - T. A. Gardner, Stockholm Environment Inst., Stockholm, Sweden
| | - Paulo S Pompeu
- R. P. Leitão (http://orcid.org/0000-0001-7990-0068) , Depto de Biologia Geral, Univ. Federal de Minas Gerais, Belo Horizonte, Brazil. - J. Zuanon, D. Kasper and RPL, Coordenação de Biodiversidade, Inst. Nacional de Pesquisas da Amazônia, Manaus, Brazil. DK also at: Univ. Federal do Rio de Janeiro, Rio de Janeiro, Brazil. - D. Mouillot, S. Villéger and RPL, Laboratoire biodiversité marine et ses usages, UMR 9190 MARBEC CNRS-UM-IRD-IFREMER, Univ. de Montpellier, Montpellier, France. DM also at: Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook Univ., Townsville, QLD, Australia. - C. G. Leal and P. S. Pompeu, Depto de Biologia, Univ. Federal de Lavras, Lavras, Brazil. CGL also at: Lancaster Environment Centre, Lancaster Univ., Lancaster, UK, and Museu Paraense Emílio Goeldi, Belém, Brazil. - R. M. Hughes, Amnis Opes Inst. and Dept of Fisheries and Wildlife, Oregon State Univ., Corvallis, USA. - P. R. Kaufmann, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, USA. - Felipe R. de Paula and Silvio F. B. Ferraz, Laboratório de Hidrologia Florestal (LHF), ESALQ, Univ. de São Paulo, Piracicaba, Brazil. - T. A. Gardner, Stockholm Environment Inst., Stockholm, Sweden
| | - Daniele Kasper
- R. P. Leitão (http://orcid.org/0000-0001-7990-0068) , Depto de Biologia Geral, Univ. Federal de Minas Gerais, Belo Horizonte, Brazil. - J. Zuanon, D. Kasper and RPL, Coordenação de Biodiversidade, Inst. Nacional de Pesquisas da Amazônia, Manaus, Brazil. DK also at: Univ. Federal do Rio de Janeiro, Rio de Janeiro, Brazil. - D. Mouillot, S. Villéger and RPL, Laboratoire biodiversité marine et ses usages, UMR 9190 MARBEC CNRS-UM-IRD-IFREMER, Univ. de Montpellier, Montpellier, France. DM also at: Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook Univ., Townsville, QLD, Australia. - C. G. Leal and P. S. Pompeu, Depto de Biologia, Univ. Federal de Lavras, Lavras, Brazil. CGL also at: Lancaster Environment Centre, Lancaster Univ., Lancaster, UK, and Museu Paraense Emílio Goeldi, Belém, Brazil. - R. M. Hughes, Amnis Opes Inst. and Dept of Fisheries and Wildlife, Oregon State Univ., Corvallis, USA. - P. R. Kaufmann, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, USA. - Felipe R. de Paula and Silvio F. B. Ferraz, Laboratório de Hidrologia Florestal (LHF), ESALQ, Univ. de São Paulo, Piracicaba, Brazil. - T. A. Gardner, Stockholm Environment Inst., Stockholm, Sweden
| | - Felipe R de Paula
- R. P. Leitão (http://orcid.org/0000-0001-7990-0068) , Depto de Biologia Geral, Univ. Federal de Minas Gerais, Belo Horizonte, Brazil. - J. Zuanon, D. Kasper and RPL, Coordenação de Biodiversidade, Inst. Nacional de Pesquisas da Amazônia, Manaus, Brazil. DK also at: Univ. Federal do Rio de Janeiro, Rio de Janeiro, Brazil. - D. Mouillot, S. Villéger and RPL, Laboratoire biodiversité marine et ses usages, UMR 9190 MARBEC CNRS-UM-IRD-IFREMER, Univ. de Montpellier, Montpellier, France. DM also at: Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook Univ., Townsville, QLD, Australia. - C. G. Leal and P. S. Pompeu, Depto de Biologia, Univ. Federal de Lavras, Lavras, Brazil. CGL also at: Lancaster Environment Centre, Lancaster Univ., Lancaster, UK, and Museu Paraense Emílio Goeldi, Belém, Brazil. - R. M. Hughes, Amnis Opes Inst. and Dept of Fisheries and Wildlife, Oregon State Univ., Corvallis, USA. - P. R. Kaufmann, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, USA. - Felipe R. de Paula and Silvio F. B. Ferraz, Laboratório de Hidrologia Florestal (LHF), ESALQ, Univ. de São Paulo, Piracicaba, Brazil. - T. A. Gardner, Stockholm Environment Inst., Stockholm, Sweden
| | - Silvio F B Ferraz
- R. P. Leitão (http://orcid.org/0000-0001-7990-0068) , Depto de Biologia Geral, Univ. Federal de Minas Gerais, Belo Horizonte, Brazil. - J. Zuanon, D. Kasper and RPL, Coordenação de Biodiversidade, Inst. Nacional de Pesquisas da Amazônia, Manaus, Brazil. DK also at: Univ. Federal do Rio de Janeiro, Rio de Janeiro, Brazil. - D. Mouillot, S. Villéger and RPL, Laboratoire biodiversité marine et ses usages, UMR 9190 MARBEC CNRS-UM-IRD-IFREMER, Univ. de Montpellier, Montpellier, France. DM also at: Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook Univ., Townsville, QLD, Australia. - C. G. Leal and P. S. Pompeu, Depto de Biologia, Univ. Federal de Lavras, Lavras, Brazil. CGL also at: Lancaster Environment Centre, Lancaster Univ., Lancaster, UK, and Museu Paraense Emílio Goeldi, Belém, Brazil. - R. M. Hughes, Amnis Opes Inst. and Dept of Fisheries and Wildlife, Oregon State Univ., Corvallis, USA. - P. R. Kaufmann, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, USA. - Felipe R. de Paula and Silvio F. B. Ferraz, Laboratório de Hidrologia Florestal (LHF), ESALQ, Univ. de São Paulo, Piracicaba, Brazil. - T. A. Gardner, Stockholm Environment Inst., Stockholm, Sweden
| | - Toby A Gardner
- R. P. Leitão (http://orcid.org/0000-0001-7990-0068) , Depto de Biologia Geral, Univ. Federal de Minas Gerais, Belo Horizonte, Brazil. - J. Zuanon, D. Kasper and RPL, Coordenação de Biodiversidade, Inst. Nacional de Pesquisas da Amazônia, Manaus, Brazil. DK also at: Univ. Federal do Rio de Janeiro, Rio de Janeiro, Brazil. - D. Mouillot, S. Villéger and RPL, Laboratoire biodiversité marine et ses usages, UMR 9190 MARBEC CNRS-UM-IRD-IFREMER, Univ. de Montpellier, Montpellier, France. DM also at: Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook Univ., Townsville, QLD, Australia. - C. G. Leal and P. S. Pompeu, Depto de Biologia, Univ. Federal de Lavras, Lavras, Brazil. CGL also at: Lancaster Environment Centre, Lancaster Univ., Lancaster, UK, and Museu Paraense Emílio Goeldi, Belém, Brazil. - R. M. Hughes, Amnis Opes Inst. and Dept of Fisheries and Wildlife, Oregon State Univ., Corvallis, USA. - P. R. Kaufmann, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, USA. - Felipe R. de Paula and Silvio F. B. Ferraz, Laboratório de Hidrologia Florestal (LHF), ESALQ, Univ. de São Paulo, Piracicaba, Brazil. - T. A. Gardner, Stockholm Environment Inst., Stockholm, Sweden
| |
Collapse
|
137
|
Dencker TS, Pecuchet L, Beukhof E, Richardson K, Payne MR, Lindegren M. Temporal and spatial differences between taxonomic and trait biodiversity in a large marine ecosystem: Causes and consequences. PLoS One 2017; 12:e0189731. [PMID: 29253876 PMCID: PMC5734758 DOI: 10.1371/journal.pone.0189731] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/30/2017] [Indexed: 11/19/2022] Open
Abstract
Biodiversity is a multifaceted concept, yet most biodiversity studies have taken a taxonomic approach, implying that all species are equally important. However, species do not contribute equally to ecosystem processes and differ markedly in their responses to changing environments. This recognition has led to the exploration of other components of biodiversity, notably the diversity of ecologically important traits. Recent studies taking into account both taxonomic and trait diversity have revealed that the two biodiversity components may exhibit pronounced temporal and spatial differences. These apparent incongruences indicate that the two components may respond differently to environmental drivers and that changes in one component might not affect the other. Such incongruences may provide insight into the structuring of communities through community assembly processes, and the resilience of ecosystems to change. Here we examine temporal and spatial patterns and drivers of multiple marine biodiversity indicators using the North Sea fish community as a case study. Based on long-term spatially resolved survey data on fish species occurrences and biomasses from 1983 to 2014 and an extensive trait dataset we: (i) investigate temporal and spatial incongruences between taxonomy and trait-based indicators of both richness and evenness; (ii) examine the underlying environmental drivers and, (iii) interpret the results in the context of assembly rules acting on community composition. Our study shows that taxonomy and trait-based biodiversity indicators differ in time and space and that these differences are correlated to natural and anthropogenic drivers, notably temperature, depth and substrate richness. Our findings show that trait-based biodiversity indicators add information regarding community composition and ecosystem structure compared to and in conjunction with taxonomy-based indicators. These results emphasize the importance of examining and monitoring multiple indicators of biodiversity in ecological studies as well as for conservation and ecosystem-based management purposes.
Collapse
Affiliation(s)
- Tim Spaanheden Dencker
- Centre for Ocean Life, National Institute of Aquatic Resources (DTU-Aqua), Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Laurene Pecuchet
- Centre for Ocean Life, National Institute of Aquatic Resources (DTU-Aqua), Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Esther Beukhof
- Centre for Ocean Life, National Institute of Aquatic Resources (DTU-Aqua), Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Katherine Richardson
- Centre for Macroecology, Evolution and Climate, Danish Natural History Museum, University of Copenhagen, Copenhagen, Denmark
| | - Mark R. Payne
- Centre for Ocean Life, National Institute of Aquatic Resources (DTU-Aqua), Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Martin Lindegren
- Centre for Ocean Life, National Institute of Aquatic Resources (DTU-Aqua), Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
138
|
Bregman TP, Lees AC, MacGregor HEA, Darski B, de Moura NG, Aleixo A, Barlow J, Tobias JA. Using avian functional traits to assess the impact of land-cover change on ecosystem processes linked to resilience in tropical forests. Proc Biol Sci 2017; 283:rspb.2016.1289. [PMID: 27928045 DOI: 10.1098/rspb.2016.1289] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/19/2016] [Indexed: 11/12/2022] Open
Abstract
Vertebrates perform key roles in ecosystem processes via trophic interactions with plants and insects, but the response of these interactions to environmental change is difficult to quantify in complex systems, such as tropical forests. Here, we use the functional trait structure of Amazonian forest bird assemblages to explore the impacts of land-cover change on two ecosystem processes: seed dispersal and insect predation. We show that trait structure in assemblages of frugivorous and insectivorous birds remained stable after primary forests were subjected to logging and fire events, but that further intensification of human land use substantially reduced the functional diversity and dispersion of traits, and resulted in communities that occupied a different region of trait space. These effects were only partially reversed in regenerating secondary forests. Our findings suggest that local extinctions caused by the loss and degradation of tropical forest are non-random with respect to functional traits, thus disrupting the network of trophic interactions regulating seed dispersal by forest birds and herbivory by insects, with important implications for the structure and resilience of human-modified tropical forests. Furthermore, our results illustrate how quantitative functional traits for specific guilds can provide a range of metrics for estimating the contribution of biodiversity to ecosystem processes, and the response of such processes to land-cover change.
Collapse
Affiliation(s)
- Tom P Bregman
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford OX1 3PS, UK .,Global Canopy Programme, 23 Park End Street, Oxford OX1 1HU, UK
| | - Alexander C Lees
- Division of Biology and Conservation Ecology, School of Science and the Environment, Manchester Metropolitan University, Manchester M1 5GD, UK.,Cornell Laboratory of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA.,Departamento de Zoologia, Universidade Federal do Pará/Museu Paraense Emílio Goeldi, Caixa Postal 399, Belém, Pará CEP 66040-170, Brazil
| | - Hannah E A MacGregor
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.,School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Bianca Darski
- Curso de Pós-graduação de Zoologia, Universidade Federal do Pará/Museu Paraense Emílio Goeldi, Caixa Postal 399, Belém, Pará CEP 66040-170, Brazil.,Programa de Pós-graduação em Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Nárgila G de Moura
- Cornell Laboratory of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA.,Departamento de Zoologia, Universidade Federal do Pará/Museu Paraense Emílio Goeldi, Caixa Postal 399, Belém, Pará CEP 66040-170, Brazil
| | - Alexandre Aleixo
- Departamento de Zoologia, Universidade Federal do Pará/Museu Paraense Emílio Goeldi, Caixa Postal 399, Belém, Pará CEP 66040-170, Brazil
| | - Jos Barlow
- Departamento de Zoologia, Universidade Federal do Pará/Museu Paraense Emílio Goeldi, Caixa Postal 399, Belém, Pará CEP 66040-170, Brazil.,Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Joseph A Tobias
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford OX1 3PS, UK .,Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| |
Collapse
|
139
|
Functional redundancy and sensitivity of fish assemblages in European rivers, lakes and estuarine ecosystems. Sci Rep 2017; 7:17611. [PMID: 29242556 PMCID: PMC5730594 DOI: 10.1038/s41598-017-17975-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/04/2017] [Indexed: 11/08/2022] Open
Abstract
The impact of species loss on ecosystems functioning depends on the amount of trait similarity between species, i.e. functional redundancy, but it is also influenced by the order in which species are lost. Here we investigated redundancy and sensitivity patterns across fish assemblages in lakes, rivers and estuaries. Several scenarios of species extinction were simulated to determine whether the loss of vulnerable species (with high propensity of extinction when facing threats) causes a greater functional alteration than random extinction. Our results indicate that the functional redundancy tended to increase with species richness in lakes and rivers, but not in estuaries. We demonstrated that i) in the three systems, some combinations of functional traits are supported by non-redundant species, ii) rare species in rivers and estuaries support singular functions not shared by dominant species, iii) the loss of vulnerable species can induce greater functional alteration in rivers than in lakes and estuaries. Overall, the functional structure of fish assemblages in rivers is weakly buffered against species extinction because vulnerable species support singular functions. More specifically, a hotspot of functional sensitivity was highlighted in the Iberian Peninsula, which emphasizes the usefulness of quantitative criteria to determine conservation priorities.
Collapse
|
140
|
Barnum TR, Weller DE, Williams M. Urbanization reduces and homogenizes trait diversity in stream macroinvertebrate communities. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2017; 27:2428-2442. [PMID: 28872731 DOI: 10.1002/eap.1619] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/21/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
More than one-half of the world's population lives in urban areas, so quantifying the effects of urbanization on ecological communities is important for understanding whether anthropogenic stressors homogenize communities across environmental and climatic gradients. We examined the relationship of impervious surface coverage (a marker of urbanization) and the structure of stream macroinvertebrate communities across the state of Maryland and within each of Maryland's three ecoregions: Coastal Plain, Piedmont, and Appalachian, which differ in stream geomorphology and community composition. We considered three levels of trait organization: individual traits, unique combinations of traits, and community metrics (functional richness, functional evenness, and functional divergence) and three levels of impervious surface coverage (low [<2.5%], medium [2.5% to 10%], and high [>10%]). The prevalence of an individual trait differed very little between low impervious surface and high impervious surface sites. The arrangement of trait combinations in community trait space for each ecoregion differed when impervious surface coverage was low, but the arrangement became more similar among ecoregions as impervious surface coverage increased. Furthermore, trait combinations that occurred only at low or medium impervious surface coverage were clustered in a subset of the community trait space, indicating that impervious surface affected the presence of only a subset of trait combinations. Functional richness declined with increasing impervious surface, providing evidence for environmental filtering. Community metrics that include abundance were also sensitive to increasing impervious surface coverage: functional divergence decreased while functional evenness increased. These changes demonstrate that increasing impervious surface coverage homogenizes the trait diversity of macroinvertebrate communities in streams, despite differences in initial community composition and stream geomorphology among ecoregions. Community metrics were also more sensitive to changes in the abundance rather than the gain or loss of trait combinations, showing the potential for trait-based approaches to serve as early warning indicators of environmental stress for monitoring and biological assessment programs.
Collapse
Affiliation(s)
- Thomas R Barnum
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, Maryland, 21037, USA
| | - Donald E Weller
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, Maryland, 21037, USA
| | - Meghan Williams
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, Maryland, 21037, USA
| |
Collapse
|
141
|
Arantes CC, Winemiller KO, Petrere M, Castello L, Hess LL, Freitas CEC. Relationships between forest cover and fish diversity in the Amazon River floodplain. J Appl Ecol 2017. [DOI: 10.1111/1365-2664.12967] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Caroline C. Arantes
- Department of Wildlife and Fisheries Sciences; Texas A&M University; College Station TX USA
| | - Kirk O. Winemiller
- Department of Wildlife and Fisheries Sciences; Texas A&M University; College Station TX USA
| | - Miguel Petrere
- Programa de Pós-Graduação em Sustentabilidade de Ecossistemas Costeiros e Marinho; Universidade Santa Cecília Santos, São Paulo Brazil
| | - Leandro Castello
- Department of Fish and Wildlife Conservation; Virginia Polytechnic Institute and State University; Blacksburg VA USA
| | - Laura L. Hess
- Earth Research Institute; University of California; Santa Barbara CA USA
| | - Carlos E. C. Freitas
- Departamento de Ciências Pesqueiras; Universidade Federal do Amazonas; Manaus Amazonas Brazil
| |
Collapse
|
142
|
Cosset CCP, Edwards DP. The effects of restoring logged tropical forests on avian phylogenetic and functional diversity. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2017; 27:1932-1945. [PMID: 28543995 DOI: 10.1002/eap.1578] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Selective logging is the most prevalent land-use change in the tropics. Despite the resulting degradation of forest structure, selectively logged forests still harbor a substantial amount of biodiversity leading to suggestions that their protection is the next best alternative to conserving primary, old-growth forests. Restoring carbon stocks under Reducing Emissions from Deforestation and Forest Degradation (REDD+) schemes is a potential method for obtaining funding to protect logged forests, via enrichment planting and liberation cutting of vines. This study investigates the impacts of restoring logged forests in Borneo on avian phylogenetic diversity, the total evolutionary history shared across all species within a community, and on functional diversity, with important implications for the protection of evolutionarily unique species and the provision of many ecosystem services. Overall and understorey avifaunal communities were studied using point count and mist netting surveys, respectively. Restoration caused a significant loss in phylogenetic diversity and MPD (mean pairwise distance) leaving an overall bird community of less total evolutionary history and more closely related species compared to unlogged forests, while the understorey bird community had MNTD (mean nearest taxon distance) that returned toward the lower levels found in a primary forest, indicating more closely related species pairs. The overall bird community experienced a significant loss of functional strategies and species with more specialized traits in restored forests compared to that of unlogged forests, which led to functional clustering in the community. Restoration also led to a reduction in functional richness and thus niches occupied in the understorey bird community compared to unlogged forests. While there are additional benefits of restoration for forest regeneration, carbon sequestration, future timber harvests, and potentially reduced threat of forest conversion, this must be weighed against the apparent loss of phylogenetic and functional diversity from unlogged forest levels, making the biodiversity-friendliness of carbon sequestration schemes questionable under future REDD+ agreements. To reduce perverse biodiversity outcomes, it is important to focus restoration only on the most degraded areas or at reduced intensity where breaks between regimes are incorporated.
Collapse
Affiliation(s)
- Cindy C P Cosset
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - David P Edwards
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| |
Collapse
|
143
|
Azevedo MCC, Gomes-Gonçalves RDS, Mattos TM, Uehara W, Guedes GHS, Araújo FG. Taxonomic and functional distinctness of the fish assemblages in three coastal environments (bays, coastal lagoons and oceanic beaches) in Southeastern Brazil. MARINE ENVIRONMENTAL RESEARCH 2017; 129:180-188. [PMID: 28601347 DOI: 10.1016/j.marenvres.2017.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/04/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
Several species of marine fish use different coastal systems especially during their early development. However, these habitats are jeopardized by anthropogenic influences threatening the success of fish populations, and urgent measures are needed to priorize areas to protect their sustainability. We applied taxonomic (Δ+) and functional (X+) distinctiveness indices that represent taxonomic composition and functional roles to assess biodiversity of three different costal systems: bays, coastal lagoons and oceanic beaches. We hypothesized that difference in habitat characteristics, especially in the more dynamism and habitat homogeneity of oceanic beaches compared with more habitat diversity and sheltered conditions of bays and coastal lagoons results in differences in fish richness and taxonomic and functional diversity. The main premise is that communities phylogenetically and functionally more distinct have more interest in conservation policies. Significant differences (P < 0.004) were found in the species richness, Δ+ and X+ among the three systems according to PERMANOVA. Fish richness was higher in bays compared with the coastal lagoons and oceanic beaches. Higher Δ+ was found for the coastal lagoons compared with the bays and oceanic beaches, with the bays having some values below the confidence limit. Similar patterns were found for X+, although all values were within the confidence limits for the bays, suggesting that the absence of some taxa does not interfere in functional diversity. The hypothesis that taxonomic and functional structure of fish assemblages differ among the three systems was accepted and we suggest that coastal lagoons should be priorized in conservation programs because they support more taxonomic and functional distinctiveness.
Collapse
Affiliation(s)
- Márcia Cristina Costa Azevedo
- Universidade Federal Rural do Rio de Janeiro, Laboratório de Ecologia de Peixes, BR 465, Km 7 23851-930, Seropédica, RJ, Brazil
| | | | - Tailan Moretti Mattos
- Universidade Federal Rural do Rio de Janeiro, Laboratório de Ecologia de Peixes, BR 465, Km 7 23851-930, Seropédica, RJ, Brazil
| | - Wagner Uehara
- Universidade Federal Rural do Rio de Janeiro, Laboratório de Ecologia de Peixes, BR 465, Km 7 23851-930, Seropédica, RJ, Brazil
| | - Gustavo Henrique Soares Guedes
- Universidade Federal Rural do Rio de Janeiro, Laboratório de Ecologia de Peixes, BR 465, Km 7 23851-930, Seropédica, RJ, Brazil
| | - Francisco Gerson Araújo
- Universidade Federal Rural do Rio de Janeiro, Laboratório de Ecologia de Peixes, BR 465, Km 7 23851-930, Seropédica, RJ, Brazil.
| |
Collapse
|
144
|
Veríssimo H, Patrício J, Gonçalves É, Moura GC, Barbosa JEL, Gonçalves AMM. Functional diversity of zooplankton communities in two tropical estuaries (NE Brazil) with different degrees of human-induced disturbance. MARINE ENVIRONMENTAL RESEARCH 2017; 129:46-56. [PMID: 28473172 DOI: 10.1016/j.marenvres.2017.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
This study assessed the functional diversity (FD) of copepod communities along the environmental gradient of two tropical estuaries with different intensities of human impact - the environmentally protected "Mamanguape" and the urbanised "Paraiba". Different trait-based approaches were used: functional groups identification and description, and FD indices estimation. The results showed similar functional groups and functional indices between the two estuaries with some variability attributed to seasonality. Copepods in each estuary seemed to perform similar functions. Overall, biomass was more evenly distributed among groups, and mean total biomass and FD indices were slightly higher in the Mamanguape. Nevertheless, both estuaries presented comparable FD, indicating that environmental filters may be the main driver of species coexistence within systems. Results also pointed towards anthropogenic disturbance, despite the protection status of the Mamanguape.
Collapse
Affiliation(s)
- Helena Veríssimo
- MARE - Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, University of Coimbra, 3004-517 Coimbra, Portugal.
| | - Joana Patrício
- MARE - Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Érica Gonçalves
- Department of Biology, Paraíba State University, 58429-500 Campina Grande, Brazil
| | - Gustavo C Moura
- Department of Biology, Paraíba State University, 58429-500 Campina Grande, Brazil
| | - José Etham L Barbosa
- Department of Biology, Paraíba State University, 58429-500 Campina Grande, Brazil
| | - Ana M M Gonçalves
- MARE - Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, University of Coimbra, 3004-517 Coimbra, Portugal; Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
145
|
Oliveira Hagen E, Hagen O, Ibáñez-Álamo JD, Petchey OL, Evans KL. Impacts of Urban Areas and Their Characteristics on Avian Functional Diversity. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00084] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
146
|
Escalas A, Troussellier M, Yuan T, Bouvier T, Bouvier C, Mouchet MA, Flores Hernandez D, Ramos Miranda J, Zhou J, Mouillot D. Functional diversity and redundancy across fish gut, sediment and water bacterial communities. Environ Microbiol 2017; 19:3268-3282. [PMID: 28618142 DOI: 10.1111/1462-2920.13822] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 06/07/2017] [Indexed: 11/26/2022]
Abstract
This article explores the functional diversity and redundancy in a bacterial metacommunity constituted of three habitats (sediment, water column and fish gut) in a coastal lagoon under anthropogenic pressure. Comprehensive functional gene arrays covering a wide range of ecological processes and stress resistance genes to estimate the functional potential of bacterial communities were used. Then, diversity partitioning was used to characterize functional diversity and redundancy within (α), between (β) and across (γ) habitats. It was showed that all local communities exhibit a highly diversified potential for the realization of key ecological processes and resistance to various environmental conditions, supporting the growing evidence that macro-organisms microbiomes harbour a high functional potential and are integral components of functional gene dynamics in aquatic bacterial metacommunities. Several levels of functional redundancy at different scales of the bacterial metacommunity were observed (within local communities, within habitats and at the metacommunity level). The results suggested a high potential for the realization of spatial ecological insurance within this ecosystem, that is, the functional compensation among microorganisms for the realization and maintenance of key ecological processes, within and across habitats. Finally, the role of macro-organisms as dispersal vectors of microbes and their potential influence on marine metacommunity dynamics were discussed.
Collapse
Affiliation(s)
- Arthur Escalas
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Marc Troussellier
- UMR 9190 MARBEC, IRD-CNRS-UM-IFREMER, Université Montpellier, 34095 Montpellier Cedex, France
| | - Tong Yuan
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Thierry Bouvier
- UMR 9190 MARBEC, IRD-CNRS-UM-IFREMER, Université Montpellier, 34095 Montpellier Cedex, France
| | - Corinne Bouvier
- UMR 9190 MARBEC, IRD-CNRS-UM-IFREMER, Université Montpellier, 34095 Montpellier Cedex, France
| | - Maud A Mouchet
- UMR 7204 CESCO, Muséum d'Histoire Naturelle, 55 rue Buffon, Paris, 75005, France
| | - Domingo Flores Hernandez
- Centro de Ecología, Pesquerias y Oceanographia de Golfo de México, Universidad Autonoma de Campeche, Campeche, Mexico
| | - Julia Ramos Miranda
- Centro de Ecología, Pesquerias y Oceanographia de Golfo de México, Universidad Autonoma de Campeche, Campeche, Mexico
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA.,Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - David Mouillot
- UMR 9190 MARBEC, IRD-CNRS-UM-IFREMER, Université Montpellier, 34095 Montpellier Cedex, France.,Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
147
|
Zhong X, Xu G, Xu H. Use of multiple functional traits of protozoa for bioassessment of marine pollution. MARINE POLLUTION BULLETIN 2017; 119:33-38. [PMID: 28359536 DOI: 10.1016/j.marpolbul.2017.03.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/10/2017] [Accepted: 03/21/2017] [Indexed: 06/07/2023]
Abstract
Ecological parameters based on multiply functional traits have many advantages for monitoring programs by reducing "signal to noise" ratios of observed species data. To identify potential indicators for bioassessment of marine pollution in function space, the functional patterns of protozoan communities and relationships with environmental changes were studied in coastal waters of the Yellow Sea during a 1-year period. The results showed that: (1) the spatial variability in functional trait distributions of the protozoa was significantly associated with changes in environmental variables, especially chemical oxygen demand (COD) and nutrients on spatial scale; (2) the functional traits, especially food resources and feeding type, were significantly correlated with COD and nutrients; and (3) the functional diversity indices were generally related to nutrients or COD. Based on the results, we suggest that the functional traits and diversity indices of protozoan communities may be used as more effective indicators for bioassessment of marine pollution.
Collapse
Affiliation(s)
- Xiaoxiao Zhong
- Laboratory of Microbial Ecology, Ocean University of China, Qingdao 266003, China
| | - Guangjian Xu
- Laboratory of Microbial Ecology, Ocean University of China, Qingdao 266003, China
| | - Henglong Xu
- Laboratory of Microbial Ecology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
148
|
Ibarra JT, Martin M, Cockle KL, Martin K. Maintaining ecosystem resilience: functional responses of tree cavity nesters to logging in temperate forests of the Americas. Sci Rep 2017; 7:4467. [PMID: 28667282 PMCID: PMC5493693 DOI: 10.1038/s41598-017-04733-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/19/2017] [Indexed: 11/10/2022] Open
Abstract
Logging often reduces taxonomic diversity in forest communities, but little is known about how this biodiversity loss affects the resilience of ecosystem functions. We examined how partial logging and clearcutting of temperate forests influenced functional diversity of birds that nest in tree cavities. We used point-counts in a before-after-control-impact design to examine the effects of logging on the value, range, and density of functional traits in bird communities in Canada (21 species) and Chile (16 species). Clearcutting, but not partial logging, reduced diversity in both systems. The effect was much more pronounced in Chile, where logging operations removed critical nesting resources (large decaying trees), than in Canada, where decaying aspen Populus tremuloides were retained on site. In Chile, logging was accompanied by declines in species richness, functional richness (amount of functional niche occupied by species), community-weighted body mass (average mass, weighted by species densities), and functional divergence (degree of maximization of divergence in occupied functional niche). In Canada, clearcutting did not affect species richness but nevertheless reduced functional richness and community-weighted body mass. Although some cavity-nesting birds can persist under intensive logging operations, their ecosystem functions may be severely compromised unless future nest trees can be retained on logged sites.
Collapse
Affiliation(s)
- José Tomás Ibarra
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
- Centre for Local Development, Education and Interculturality (CEDEL), Villarrica Campus, Pontificia Universidad Católica de Chile, La Araucanía Region, Chile.
- Fauna Australis Wildlife Laboratory, Department of Ecosystems and Environment, School of Agriculture and Forest Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Michaela Martin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kristina L Cockle
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Instituto de Bio y Geociencias del NOA (IBIGEO-CONICET-UNSa), Salta, Argentina
| | - Kathy Martin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Environment & Climate Change Canada, Pacific Wildlife Research Centre, Delta, British Columbia, Canada
| |
Collapse
|
149
|
Stoker D, Falkner AJ, Murray KM, Lang AK, Barnum TR, Hepinstall‐Cymerman J, Conroy MJ, Cooper RJ, Pringle CM. Decomposition of terrestrial resource subsidies in headwater streams: Does consumer diversity matter? Ecosphere 2017. [DOI: 10.1002/ecs2.1868] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- David Stoker
- Odum School of Ecology University of Georgia Athens Georgia 30602 USA
| | - Amber J. Falkner
- Odum School of Ecology University of Georgia Athens Georgia 30602 USA
| | - Kelly M. Murray
- Department of Entomology University of Georgia Athens Georgia 30602 USA
| | - Ashley K. Lang
- Odum School of Ecology University of Georgia Athens Georgia 30602 USA
| | - Thomas R. Barnum
- Odum School of Ecology University of Georgia Athens Georgia 30602 USA
| | | | - Michael J. Conroy
- Warnell School of Forestry and Natural Resources University of Georgia Athens Georgia 30602 USA
| | - Robert J. Cooper
- Warnell School of Forestry and Natural Resources University of Georgia Athens Georgia 30602 USA
| | | |
Collapse
|
150
|
Bosch NE, Gonçalves JMS, Erzini K, Tuya F. "How" and "what" matters: Sampling method affects biodiversity estimates of reef fishes. Ecol Evol 2017; 7:4891-4906. [PMID: 28690817 PMCID: PMC5496540 DOI: 10.1002/ece3.2979] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 03/06/2017] [Accepted: 03/16/2017] [Indexed: 11/28/2022] Open
Abstract
Understanding changes in biodiversity requires the implementation of monitoring programs encompassing different dimensions of biodiversity through varying sampling techniques. In this work, fish assemblages associated with the “outer” and “inner” sides of four marinas, two at the Canary Islands and two at southern Portugal, were investigated using three complementary sampling techniques: underwater visual censuses (UVCs), baited cameras (BCs), and fish traps (FTs). We firstly investigated the complementarity of these sampling methods to describe species composition. Then, we investigated differences in taxonomic (TD), phylogenetic (PD) and functional diversity (FD) between sides of the marinas according to each sampling method. Finally, we explored the applicability/reproducibility of each sampling technique to characterize fish assemblages according to these metrics of diversity. UVCs and BCs provided complementary information, in terms of the number and abundances of species, while FTs sampled a particular assemblage. Patterns of TD, PD, and FD between sides of the marinas varied depending on the sampling method. UVC was the most cost‐efficient technique, in terms of personnel hours, and it is recommended for local studies. However, for large‐scale studies, BCs are recommended, as it covers greater spatio‐temporal scales by a lower cost. Our study highlights the need to implement complementary sampling techniques to monitor ecological change, at various dimensions of biodiversity. The results presented here will be useful for optimizing future monitoring programs.
Collapse
Affiliation(s)
- Néstor E Bosch
- Grupo en Biodiversidad y Conservación IU-ECOAQUA Universidad de Las Palmas de Gran Canaria Las Palmas de G.C. Canary Islands Spain.,Centro de Ciências do Mar (CCMAR) Universidade do Algarve Faro Portugal
| | | | - Karim Erzini
- Centro de Ciências do Mar (CCMAR) Universidade do Algarve Faro Portugal
| | - Fernando Tuya
- Grupo en Biodiversidad y Conservación IU-ECOAQUA Universidad de Las Palmas de Gran Canaria Las Palmas de G.C. Canary Islands Spain
| |
Collapse
|