101
|
Wu H, Truncali K, Ritchie J, Kroe-Barrett R, Singh S, Robinson AS, Roberts CJ. Weak protein interactions and pH- and temperature-dependent aggregation of human Fc1. MAbs 2015; 7:1072-83. [PMID: 26267255 PMCID: PMC4966490 DOI: 10.1080/19420862.2015.1079678] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/21/2015] [Accepted: 07/27/2015] [Indexed: 01/29/2023] Open
Abstract
The Fc (fragment crystallizable) is a common structural region in immunoglobulin gamma (IgG) proteins, IgG-based multi-specific platforms, and Fc-fusion platform technologies. Changes in conformational stability, protein-protein interactions, and aggregation of NS0-produced human Fc1 were quantified experimentally as a function of pH (4 to 6) and temperature (30 to 77 °C), using a combination of differential scanning calorimetry, laser light scattering, size-exclusion chromatography, and capillary electrophoresis. The Fc1 was O-glycosylated at position 3 (threonine), and confirmed to correspond to the intact IgG1 by comparison with Fc1 produced by cleavage of the parent IgG1. Changing the pH caused large effects for thermal unfolding transitions, but it caused surprisingly smaller effects for electrostatic protein-protein interactions. The aggregation behavior was qualitatively similar across different solution conditions, with soluble dimers and larger oligomers formed in most cases. Aggregation rates spanned approximately 5 orders of magnitude and could be divided into 2 regimes: (i) Arrhenius, unfolding-limited aggregation at temperatures near or above the midpoint-unfolding temperature of the CH2 domain; (ii) a non-Arrhenius regime at lower temperatures, presumably as a result of the temperature dependence of the unfolding enthalpy for the CH2 domain. The non-Arrhenius regime was most pronounced for lower temperatures. Together with the weak protein-protein repulsions, these highlight challenges that are expected for maintaining long-term stability of biotechnology products that are based on human Fc constructs.
Collapse
Affiliation(s)
- Haixia Wu
- Department of Chemistry and Biochemistry; University of Delaware; Newark, DE USA
- Department of Biotherapeutics; Boehringer Ingelheim Pharmaceuticals Inc.; Ridgefield, CT USA
| | - Kristopher Truncali
- Department of Biotherapeutics; Boehringer Ingelheim Pharmaceuticals Inc.; Ridgefield, CT USA
| | - Julie Ritchie
- Department of Biotherapeutics; Boehringer Ingelheim Pharmaceuticals Inc.; Ridgefield, CT USA
| | - Rachel Kroe-Barrett
- Department of Biotherapeutics; Boehringer Ingelheim Pharmaceuticals Inc.; Ridgefield, CT USA
| | - Sanjaya Singh
- Department of Biotherapeutics; Boehringer Ingelheim Pharmaceuticals Inc.; Ridgefield, CT USA
| | - Anne S Robinson
- Department of Chemical and Biomolecular Engineering; Tulane University; New Orleans, LA USA
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark, DE USA
| | - Christopher J Roberts
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark, DE USA
| |
Collapse
|
102
|
Rotman M, Welling MM, van den Boogaard ML, Moursel LG, van der Graaf LM, van Buchem MA, van der Maarel SM, van der Weerd L. Fusion of hIgG1-Fc to 111In-anti-amyloid single domain antibody fragment VHH-pa2H prolongs blood residential time in APP/PS1 mice but does not increase brain uptake. Nucl Med Biol 2015; 42:695-702. [PMID: 25960433 DOI: 10.1016/j.nucmedbio.2015.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/06/2015] [Accepted: 03/12/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Llama single domain antibody fragments (VHH), which can pass endothelial barriers, are being investigated for targeting amyloid plaque load in Alzheimer's disease (AD). Contrary to conventional human or murine antibodies consisting of IgG or F(ab')2 antibody fragments, VHH are able to effectively pass the blood brain barrier (BBB) in vitro. However, in earlier in vivo studies, anti-amyloid VHH showed poor BBB passage due to their short serum half-lives. It would be of interest to develop a VHH based protein with elongated serum half-life to enhance BBB passage, allowing the VHH to more easily reach the cerebral amyloid deposits. METHODS To increase serum persistence, the Fc portion of the human IgG1 antibody (hinge plus CH2 and CH3 domains) was fused to the C-terminus of the VHH (VHH-pa2H-Fc). To determine the pharmacokinetics and biodistribution profile of the fusion protein, the chelator p-SCN-Bz-DTPA was linked to the protein and thereafter labeled with radioactive indium-111 ((111)In). Double transgenic APPswe/PS1dE9 and wild type littermates were injected with 20 μg VHH-pa2H-Fc-DTPA-(111)In (10-20 MBq). Pharmacokinetics of the tracer was determined in blood samples at 10 intervals after injection and imaging using microSPECT was performed. The biodistribution of the radioactivity in various excised tissues was measured at 48 h after injection. RESULTS We succeeded in the expression of the fusion protein VHH-pa2H-Fc in HEK293T cells with a yield of 50mg/L growth medium. The fusion protein showed homodimerization - necessary for successful Fc neonatal receptor recycling. Compared to VHH-pa2H, the Fc tailed protein retained high affinity for amyloid beta on human AD patient brain tissue sections, and significantly improved serum retention of the VHH. However, at 48 h after systemic injection of the non-fused VHH-DTPA-(111)In and the VHH-Fc-DTPA-(111)In fusion protein in transgenic mice, the specific brain uptake of VHH-Fc-DTPA-(111)In was not improved compared to non-fused VHH-DTPA-(111)In. CONCLUSION Using VHH-Fc conjugates increases the blood half-life of the protein. However, purely extending the time window for brain uptake does not increase BBB passage. Nevertheless, VHH-Fc holds promise for therapeutic applications where a sustained systemic circulation of VHH is advantageous.
Collapse
Affiliation(s)
- Maarten Rotman
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mick M Welling
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Laure Grand Moursel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda M van der Graaf
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mark A van Buchem
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Louise van der Weerd
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
103
|
Abstract
The purpose of making a "biobetter" biologic is to improve on the salient characteristics of a known biologic for which there is, minimally, clinical proof of concept or, maximally, marketed product data. There already are several examples in which second-generation or biobetter biologics have been generated by improving the pharmacokinetic properties of an innovative drug, including Neulasta(®) [a PEGylated, longer-half-life version of Neupogen(®) (filgrastim)] and Aranesp(®) [a longer-half-life version of Epogen(®) (epoetin-α)]. This review describes the use of protein fusion technologies such as Fc fusion proteins, fusion to human serum albumin, fusion to carboxy-terminal peptide, and other polypeptide fusion approaches to make biobetter drugs with more desirable pharmacokinetic profiles.
Collapse
Affiliation(s)
- William R Strohl
- Janssen BioTherapeutics, Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, SH31-21757, 1400 Welsh and McKean Roads, PO Box 776, Spring House, PA, 19477, USA,
| |
Collapse
|
104
|
Peh P, Lim NSJ, Blocki A, Chee SML, Park HC, Liao S, Chan C, Raghunath M. Simultaneous Delivery of Highly Diverse Bioactive Compounds from Blend Electrospun Fibers for Skin Wound Healing. Bioconjug Chem 2015; 26:1348-58. [DOI: 10.1021/acs.bioconjchem.5b00123] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Priscilla Peh
- Department
of Biomedical Engineering, National University of Singapore, 9 Engineering
Drive 1, Block EA, #03-12, Singapore 117575, Singapore
- NUS
Tissue Engineering Programme, Life Sciences Institute, National University of Singapore, 27 Medical Drive, Level 4, Singapore 117510, Singapore
| | - Natalie Sheng Jie Lim
- Department
of Biomedical Engineering, National University of Singapore, 9 Engineering
Drive 1, Block EA, #03-12, Singapore 117575, Singapore
- NUS
Tissue Engineering Programme, Life Sciences Institute, National University of Singapore, 27 Medical Drive, Level 4, Singapore 117510, Singapore
| | - Anna Blocki
- Department
of Biomedical Engineering, National University of Singapore, 9 Engineering
Drive 1, Block EA, #03-12, Singapore 117575, Singapore
- NUS
Tissue Engineering Programme, Life Sciences Institute, National University of Singapore, 27 Medical Drive, Level 4, Singapore 117510, Singapore
- Singapore
Bioimaging Consortium (SBIC), Biomedical Sciences Institute, A*STAR,
11 Biopolis Way, #02-02 Helios, Singapore 138667, Singapore
- NUS Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, Centre for Life Sciences (CeLS), #05-01, 28 Medical Drive, Singapore 117456, Singapore
| | - Stella Min Ling Chee
- Department
of Biomedical Engineering, National University of Singapore, 9 Engineering
Drive 1, Block EA, #03-12, Singapore 117575, Singapore
- NUS
Tissue Engineering Programme, Life Sciences Institute, National University of Singapore, 27 Medical Drive, Level 4, Singapore 117510, Singapore
| | - Heyjin Chris Park
- Carl Zeiss Pte Ltd, Microscopy Business Group, 50 Kaki Bukit Place, #05-01, Singapore 415926, Singapore
| | - Susan Liao
- School of
Materials Science and Engineering, Nanyang Technological University, Block N4.1 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Casey Chan
- Department
of Biomedical Engineering, National University of Singapore, 9 Engineering
Drive 1, Block EA, #03-12, Singapore 117575, Singapore
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent
Ridge Road, Singapore 119288, Singapore
| | - Michael Raghunath
- Department
of Biomedical Engineering, National University of Singapore, 9 Engineering
Drive 1, Block EA, #03-12, Singapore 117575, Singapore
- NUS
Tissue Engineering Programme, Life Sciences Institute, National University of Singapore, 27 Medical Drive, Level 4, Singapore 117510, Singapore
- Department
of Biochemistry, National University of Singapore, Block MD 7,
8 Medical Drive, #02-06, Singapore 117597, Singapore
| |
Collapse
|
105
|
Izaki S, Kurinomaru T, Maruyama T, Uchida T, Handa K, Kimoto T, Shiraki K. Feasibility of Antibody–Poly(Glutamic Acid) Complexes: Preparation of High-Concentration Antibody Formulations and Their Pharmaceutical Properties. J Pharm Sci 2015; 104:1929-1937. [DOI: 10.1002/jps.24422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/09/2015] [Accepted: 02/20/2015] [Indexed: 02/01/2023]
|
106
|
Pasut G. Pegylation of biological molecules and potential benefits: pharmacological properties of certolizumab pegol. BioDrugs 2015; 28 Suppl 1:S15-23. [PMID: 24687235 DOI: 10.1007/s40259-013-0064-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PEGylation of biological proteins, defined as the covalent conjugation of proteins with polyethylene glycol (PEG), leads to a number of biopharmaceutical improvements, including increased half-life, increased solubility and reduced aggregation, and reduced immunogenicity. Since their introduction in 1990, PEGylated proteins have significantly improved the management of various chronic diseases, including rheumatoid arthritis (RA) and Crohn's disease. Certolizumab pegol is the only PEGylated anti-tumour necrosis factor (TNF)-α agent. It is a PEGylated, humanised, antigen-binding fragment of an anti-TNF monoclonal antibody. Unlike other anti-TNF agents, it has no crystallisable fragment (Fc) domain. Because of its novel structure, certolizumab pegol may have a different mechanism of action to the other anti-TNF agents, and also has different pharmacodynamic properties, which could possibly translate to a different safety profile. Pharmacodynamic studies have shown that certolizumab pegol binds to TNF with a higher affinity than adalimumab and infliximab. Certolizumab pegol is also more potent at neutralising soluble TNF-mediated signalling than adalimumab and infliximab, and has similar or lesser potency to etanercept. Certolizumab pegol does not cause detrimental in vitro effects such as degranulation, loss of cell integrity, apoptosis, complement-dependent cytotoxicity and antibody-dependent cell-mediated cytotoxicity. Certolizumab pegol may also penetrate more effectively into inflamed arthritic tissue than other anti-TNF agents, and is not actively transported across the placenta during pregnancy. Pharmacokinetic studies in healthy volunteers demonstrated that single intravenous and subcutaneous doses of certolizumab pegol had predictable pharmacokinetics. The pharmacokinetics of certolizumab pegol in patients with RA and Crohn's disease were consistent with pharmacokinetics in healthy volunteers.
Collapse
Affiliation(s)
- Gianfranco Pasut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padova, Italy,
| |
Collapse
|
107
|
Nuñez-Prado N, Compte M, Harwood S, Álvarez-Méndez A, Lykkemark S, Sanz L, Álvarez-Vallina L. The coming of age of engineered multivalent antibodies. Drug Discov Today 2015; 20:588-94. [PMID: 25757598 DOI: 10.1016/j.drudis.2015.02.013] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 02/14/2015] [Accepted: 02/27/2015] [Indexed: 12/01/2022]
Abstract
The development of monoclonal antibody (mAb) technology has had a profound impact on medicine. The therapeutic use of first-generation mAb achieved considerable success in the treatment of major diseases, including cancer, inflammation, autoimmune, cardiovascular, and infectious diseases. Next-generation antibodies have been engineered to further increase potency, improve the safety profile and acquire non-natural properties, and constitute a thriving area of mAb research and development. Currently, a variety of alternative antibody formats with modified architectures have been generated and are moving fast into the clinic. In fact, the bispecific antibody blinatumomab was the first in its class to be approved by the US Food and Drug Administration (FDA) as recently as December 2014. Here, we outline the fundamental strategies used for designing the next generation of therapeutic antibodies, as well as the most relevant results obtained in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Natalia Nuñez-Prado
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Marta Compte
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | | | | | - Simon Lykkemark
- Department of Clinical Medicine and Sino-Danish Center, Aarhus University, Aarhus, Denmark
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain.
| | | |
Collapse
|
108
|
Bispecific antibodies. Drug Discov Today 2015; 20:838-47. [PMID: 25728220 DOI: 10.1016/j.drudis.2015.02.008] [Citation(s) in RCA: 440] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/29/2015] [Accepted: 02/11/2015] [Indexed: 11/23/2022]
Abstract
Bispecific antibodies (bsAbs) combine specificities of two antibodies and simultaneously address different antigens or epitopes. BsAbs with 'two-target' functionality can interfere with multiple surface receptors or ligands associated, for example with cancer, proliferation or inflammatory processes. BsAbs can also place targets into close proximity, either to support protein complex formation on one cell, or to trigger contacts between cells. Examples of 'forced-connection' functionalities are bsAbs that support protein complexation in the clotting cascade, or tumor-targeted immune cell recruiters and/or activators. Following years of research and development (R&D), the first bsAb was approved in 2009. Another bsAb entered the market in December 2014 and several more are in clinical trials. Here, we describe the potentials of bsAbs to become the next wave of antibody-based therapies, focusing on molecules in clinical development.
Collapse
|
109
|
Liebner R, Meyer M, Hey T, Winter G, Besheer A. Head to head comparison of the formulation and stability of concentrated solutions of HESylated versus PEGylated anakinra. J Pharm Sci 2014; 104:515-26. [PMID: 25445200 DOI: 10.1002/jps.24253] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/12/2014] [Accepted: 10/17/2014] [Indexed: 12/31/2022]
Abstract
Although PEGylation of biologics is currently the gold standard for half-life extension, the technology has a number of limitations, most importantly the non-biodegradability of PEG and the extremely high viscosity at high concentrations. HESylation is a promising alternative based on coupling to the biodegradable polymer hydroxyethyl starch (HES). In this study, we are comparing HESylation with PEGylation regarding the effect on the protein's physicochemical properties, as well as on formulation at high concentrations, where protein stability and viscosity can be compromised. For this purpose, the model protein anakinra is coupled to HES or PEG by reductive amination. Results show that coupling of HES or PEG had practically no effect on the protein's secondary structure, and that it reduced protein affinity by one order of magnitude, with HESylated anakinra more affine than the PEGylated protein. The viscosity of HESylated anakinra at protein concentrations up to 75 mg/mL was approximately 40% lower than that of PEG-anakinra. Both conjugates increased the apparent melting temperature of anakinra in concentrated solutions. Finally, HESylated anakinra was superior to PEG-anakinra regarding monomer recovery after 8 weeks of storage at 40°C. These results show that HESylating anakinra offers formulation advantages compared with PEGylation, especially for concentrated protein solutions.
Collapse
Affiliation(s)
- Robert Liebner
- Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Ludwig-Maximillians-University Munich, Munich, 81377, Germany
| | | | | | | | | |
Collapse
|
110
|
Ying T, Gong R, Ju TW, Prabakaran P, Dimitrov DS. Engineered Fc based antibody domains and fragments as novel scaffolds. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:1977-1982. [PMID: 24792384 PMCID: PMC4185235 DOI: 10.1016/j.bbapap.2014.04.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/17/2014] [Accepted: 04/21/2014] [Indexed: 11/23/2022]
Abstract
Therapeutic monoclonal antibodies (mAbs) have been successful for the therapy of a number of diseases mostly cancer and immune disorders. However, the vast majority of mAbs approved for clinical use are full size, typically in IgG1 format. These mAbs may exhibit relatively poor tissue penetration and restricted epitope access due to their large size. A promising solution to this fundamental limitation is the engineering of smaller scaffolds based on the IgG1 Fc region. These scaffolds can be used for the generation of libraries of mutants from which high-affinity binders can be selected. Comprised of the CH2 and CH3 domains, the Fc region is important not only for the antibody effector function but also for its long half-life. This review focuses on engineered Fc based antibody fragments and domains including native (dimeric) Fc and monomeric Fc as well as CH2 and monomeric CH3, and their use as novel scaffolds and binders. The Fc based binders are promising candidate therapeutics with optimized half-life, enhanced tissue penetration and access to sterically restricted binding sites resulting in an increased therapeutic efficacy. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
Affiliation(s)
- Tianlei Ying
- Protein Interactions Group, Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health (NIH), Frederick, MD 21702, USA.
| | - Rui Gong
- Antibody Engineering Group, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Tina W Ju
- Protein Interactions Group, Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Ponraj Prabakaran
- Protein Interactions Group, Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health (NIH), Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Dimiter S Dimitrov
- Protein Interactions Group, Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health (NIH), Frederick, MD 21702, USA
| |
Collapse
|
111
|
|
112
|
Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo. J Virol 2014; 88:12669-82. [PMID: 25142607 DOI: 10.1128/jvi.02213-14] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Over the past 5 years, a new generation of highly potent and broadly neutralizing HIV-1 antibodies has been identified. These antibodies can protect against lentiviral infection in nonhuman primates (NHPs), suggesting that passive antibody transfer would prevent HIV-1 transmission in humans. To increase the protective efficacy of such monoclonal antibodies, we employed next-generation sequencing, computational bioinformatics, and structure-guided design to enhance the neutralization potency and breadth of VRC01, an antibody that targets the CD4 binding site of the HIV-1 envelope. One variant, VRC07-523, was 5- to 8-fold more potent than VRC01, neutralized 96% of viruses tested, and displayed minimal autoreactivity. To compare its protective efficacy to that of VRC01 in vivo, we performed a series of simian-human immunodeficiency virus (SHIV) challenge experiments in nonhuman primates and calculated the doses of VRC07-523 and VRC01 that provide 50% protection (EC50). VRC07-523 prevented infection in NHPs at a 5-fold lower concentration than VRC01. These results suggest that increased neutralization potency in vitro correlates with improved protection against infection in vivo, documenting the improved functional efficacy of VRC07-523 and its potential clinical relevance for protecting against HIV-1 infection in humans. IMPORTANCE In the absence of an effective HIV-1 vaccine, alternative strategies are needed to block HIV-1 transmission. Direct administration of HIV-1-neutralizing antibodies may be able to prevent HIV-1 infections in humans. This approach could be especially useful in individuals at high risk for contracting HIV-1 and could be used together with antiretroviral drugs to prevent infection. To optimize the chance of success, such antibodies can be modified to improve their potency, breadth, and in vivo half-life. Here, knowledge of the structure of a potent neutralizing antibody, VRC01, that targets the CD4-binding site of the HIV-1 envelope protein was used to engineer a next-generation antibody with 5- to 8-fold increased potency in vitro. When administered to nonhuman primates, this antibody conferred protection at a 5-fold lower concentration than the original antibody. Our studies demonstrate an important correlation between in vitro assays used to evaluate the therapeutic potential of antibodies and their in vivo effectiveness.
Collapse
|
113
|
Pepinsky RB, Arndt JW, Quan C, Gao Y, Quintero-Monzon O, Lee X, Mi S. Structure of the LINGO-1-anti-LINGO-1 Li81 antibody complex provides insights into the biology of LINGO-1 and the mechanism of action of the antibody therapy. J Pharmacol Exp Ther 2014; 350:110-23. [PMID: 24756303 DOI: 10.1124/jpet.113.211771] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Multiple sclerosis (MS) is an autoimmune-inflammatory disease of the central nervous system (CNS) with prominent demyelination and axonal injury. While most MS therapies target the immunologic response, there is a large unmet need for treatments that can promote CNS repair. LINGO-1 (leucine-rich repeat and Ig-containing Nogo receptor interacting protein-1) is a membrane protein selectively expressed in the CNS that suppresses myelination, preventing the repair of damaged axons. We are investigating LINGO-1 antagonist antibodies that lead to remyelination as a new paradigm for treatment of individuals with MS. The anti-LINGO-1 Li81 antibody,BIIB033, is currently in clinical trials and is the first MS treatment targeting CNS repair. Here, to elucidate the mechanism of action of the antibody, we solved the crystal structure of the LINGO-1-Li81 Fab complex and used biochemical and functional studies to investigate structure-function relationships. Li81 binds to the convex surface of the leucine-rich repeat domain of LINGO-1 within repeats 4-8. Fab binding blocks contact points used in the oligomerization of LINGO-1 and produces a stable complex containing two copies each of LINGO-1 and Fab that results from a rearrangement of contacts stabilizing the quaternary structure of LINGO-1. The formation of the LINGO-1-Li81 Fab complex masks functional epitopes within the Ig domain of LINGO-1 that are important for its biologic activity in oligodendrocyte differentiation. These studies provide new insights into the structure and biology of LINGO-1 and how Li81 monoclonal antibody can block its function.
Collapse
Affiliation(s)
- R Blake Pepinsky
- Departments of Drug and Molecular Discovery, Biogen Idec, Inc., Cambridge, Massachusetts
| | - Joseph W Arndt
- Departments of Drug and Molecular Discovery, Biogen Idec, Inc., Cambridge, Massachusetts
| | - Chao Quan
- Departments of Drug and Molecular Discovery, Biogen Idec, Inc., Cambridge, Massachusetts
| | - Yan Gao
- Departments of Drug and Molecular Discovery, Biogen Idec, Inc., Cambridge, Massachusetts
| | - Omar Quintero-Monzon
- Departments of Drug and Molecular Discovery, Biogen Idec, Inc., Cambridge, Massachusetts
| | - Xinhua Lee
- Departments of Drug and Molecular Discovery, Biogen Idec, Inc., Cambridge, Massachusetts
| | - Sha Mi
- Departments of Drug and Molecular Discovery, Biogen Idec, Inc., Cambridge, Massachusetts
| |
Collapse
|
114
|
Liebner R, Mathaes R, Meyer M, Hey T, Winter G, Besheer A. Protein HESylation for half-life extension: Synthesis, characterization and pharmacokinetics of HESylated anakinra. Eur J Pharm Biopharm 2014; 87:378-85. [DOI: 10.1016/j.ejpb.2014.03.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 03/13/2014] [Accepted: 03/18/2014] [Indexed: 01/07/2023]
|
115
|
Abstract
Monoclonal antibodies have been successfully used for the therapy of various diseases. However, because of their large size (∼150 kD), many limitations have also been found during their development and manufacture. The use of antibody fragments with smaller sizes is one of the strategies to overcome these limitations. Antibody heavy chain variable domains (12∼15 kD) have already been widely used for the development of variable domain-based engineered antibody domains (termed V-based eAds) targeting different antigens. Recently, antibody second heavy chain constant domains (∼12 kD) were proposed as novel scaffolds for library construction and selection of specific binders termed constant domain-based eAds (C-based eAds) as novel candidate therapeutics, which might also confer additional crystallizable fragment functions. Both V- and C-based eAds are promising therapeutic candidates. This review summarizes progress in the development of eAds, and discusses the related patents and their potential applications.
Collapse
|
116
|
Sawant SG, Fielden MR, Black KA. Evaluation of genotoxicity testing of FDA approved large molecule therapeutics. Regul Toxicol Pharmacol 2014; 70:87-97. [PMID: 24932799 DOI: 10.1016/j.yrtph.2014.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/02/2014] [Accepted: 06/06/2014] [Indexed: 11/25/2022]
Abstract
Large molecule therapeutics (MW>1000daltons) are not expected to enter the cell and thus have reduced potential to interact directly with DNA or related physiological processes. Genotoxicity studies are therefore not relevant and typically not required for large molecule therapeutic candidates. Regulatory guidance supports this approach; however there are examples of marketed large molecule therapeutics where sponsors have conducted genotoxicity studies. A retrospective analysis was performed on genotoxicity studies of United States FDA approved large molecule therapeutics since 1998 identified through the Drugs@FDA website. This information was used to provide a data-driven rationale for genotoxicity evaluations of large molecule therapeutics. Fifty-three of the 99 therapeutics identified were tested for genotoxic potential. None of the therapeutics tested showed a positive outcome in any study except the peptide glucagon (GlucaGen®) showing equivocal in vitro results, as stated in the product labeling. Scientific rationale and data from this review indicate that testing of a majority of large molecule modalities do not add value to risk assessment and support current regulatory guidance. Similarly, the data do not support testing of peptides containing only natural amino acids. Peptides containing non-natural amino acids and small molecules in conjugated products may need to be tested.
Collapse
Affiliation(s)
- Satin G Sawant
- Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, CA 91320, United States.
| | - Mark R Fielden
- Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, CA 91320, United States
| | - Kurt A Black
- Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, CA 91320, United States
| |
Collapse
|
117
|
Morais M, Cantante C, Gano L, Santos I, Lourenço S, Santos C, Fontes C, Aires da Silva F, Gonçalves J, Correia JD. Biodistribution of a 67Ga-labeled anti-TNF VHH single-domain antibody containing a bacterial albumin-binding domain (Zag). Nucl Med Biol 2014; 41 Suppl:e44-8. [DOI: 10.1016/j.nucmedbio.2014.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/03/2014] [Accepted: 01/10/2014] [Indexed: 11/30/2022]
|
118
|
Oshiro S, Honda S. Imparting albumin-binding affinity to a human protein by mimicking the contact surface of a bacterial binding protein. ACS Chem Biol 2014; 9:1052-60. [PMID: 24533528 DOI: 10.1021/cb400946m] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Attachment of a bacterial albumin-binding protein module is an attractive strategy for extending the plasma residence time of protein therapeutics. However, a protein fused with such a bacterial module could induce unfavorable immune reactions. To address this, we designed an alternative binding protein by imparting albumin-binding affinity to a human protein using molecular surface grafting. The result was a series of human-derived 6 helix-bundle proteins, one of which specifically binds to human serum albumin (HSA) with adequate affinity (KD = 100 nM). The proteins were designed by transferring key binding residues of a bacterial albumin-binding module, Finegoldia magna protein G-related albumin-binding domain (GA) module, onto the human protein scaffold. Despite 13-15 mutations, the designed proteins maintain the original secondary structure by virtue of careful grafting based on structural informatics. Competitive binding assays and thermodynamic analyses of the best binders show that the binding mode resembles that of the GA module, suggesting that the contacting surface of the GA module is mimicked well on the designed protein. These results indicate that the designed protein may act as an alternative low-risk binding module to HSA. Furthermore, molecular surface grafting in combination with structural informatics is an effective approach for avoiding deleterious mutations on a target protein and for imparting the binding function of one protein onto another.
Collapse
Affiliation(s)
- Satoshi Oshiro
- Department
of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Shinya Honda
- Department
of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- Biomedical
Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
119
|
Silacci M, Baenziger-Tobler N, Lembke W, Zha W, Batey S, Bertschinger J, Grabulovski D. Linker length matters, fynomer-Fc fusion with an optimized linker displaying picomolar IL-17A inhibition potency. J Biol Chem 2014; 289:14392-8. [PMID: 24692552 PMCID: PMC4022905 DOI: 10.1074/jbc.m113.534578] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fynomers are small binding proteins derived from the human Fyn SH3 domain. Using phage display technology, Fynomers were generated inhibiting the activity of the proinflammatory cytokine interleukin-17A (IL-17A). One specific Fynomer called 2C1 inhibited human IL-17A in vitro with an IC50 value of 2.2 nm. Interestingly, when 2C1 was genetically fused to the Fc part of a human antibody via four different amino acid linkers to yield bivalent IL-17A binding proteins (each linker differed in length), the 2C1-Fc fusion protein with the longest linker displayed the most potent inhibitory activity. It blocked homodimeric IL-17A with an IC50 value of 21 pm, which corresponds to a hundredfold improved IC50 value as compared to the value obtained with monovalent Fynomer 2C1. In contrast, the 2C1-Fc fusion with the shortest linker showed only an ∼8-fold improved IC50 value of 260 pm. Furthermore, in a mouse model of acute inflammation, we have shown that the most potent 2C1-Fc fusion protein is able to efficiently inhibit IL-17A in vivo. With their suitable biophysical properties, Fynomer-Fc fusion proteins represent new drug candidates for the treatment of IL-17A mediated inflammatory conditions such as psoriasis, psoriatic arthritis, or rheumatoid arthritis.
Collapse
Affiliation(s)
- Michela Silacci
- From Covagen AG, Wagistrasse 25, CH-8952 Schlieren, Switzerland
| | | | - Wibke Lembke
- From Covagen AG, Wagistrasse 25, CH-8952 Schlieren, Switzerland
| | - Wenjuan Zha
- From Covagen AG, Wagistrasse 25, CH-8952 Schlieren, Switzerland
| | - Sarah Batey
- From Covagen AG, Wagistrasse 25, CH-8952 Schlieren, Switzerland
| | | | | |
Collapse
|
120
|
Zheng J, Ma C, Sun Y, Pan M, Li L, Hu X, Yang W. Maltodextrin-modified magnetic microspheres for selective enrichment of maltose binding proteins. ACS APPLIED MATERIALS & INTERFACES 2014; 6:3568-3574. [PMID: 24405246 DOI: 10.1021/am405773m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this work, maltodextrin-modified magnetic microspheres Fe3O4@SiO2-Maltodextrin (Fe3O4@SiO2-MD) with uniform size and fine morphology were synthesized through a facile and low-cost method. As the maltodextrins on the surface of microspheres were combined with maltose binding proteins (MBP), the magnetic microspheres could be applied to enriching standard MBP fused proteins. Then, the application of Fe3O4@SiO2-MD in one-step purification and immobilization of MBP fused proteins was demonstrated. For the model protein we examined, Fe3O4@SiO2-MD showed excellent binding selectivity and capacity against other Escherichia coli proteins in the crude cell lysate. Additionally, the maltodextrin-modified magnetic microspheres can be recycled for several times without significant loss of binding capacity.
Collapse
Affiliation(s)
- Jin Zheng
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University , No. 220 Handan Road, Shanghai 200433, China
| | | | | | | | | | | | | |
Collapse
|
121
|
Jørgensen ML, Friis NA, Just J, Madsen P, Petersen SV, Kristensen P. Expression of single-chain variable fragments fused with the Fc-region of rabbit IgG in Leishmania tarentolae. Microb Cell Fact 2014; 13:9. [PMID: 24428896 PMCID: PMC3917567 DOI: 10.1186/1475-2859-13-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/04/2014] [Indexed: 12/03/2022] Open
Abstract
Background In recent years the generation of antibodies by recombinant methods, such as phage display technology, has increased the speed by which antibodies can be obtained. However, in some cases when recombinant antibodies have to be validated, expression in E. coli can be problematic. This primarily occurs when codon usage or protein folding of specific antibody fragments is incompatible with the E. coli translation and folding machinery, for instance when recombinant antibody formats that include the Fc-region are needed. In such cases other expression systems can be used, including the protozoan parasite Leishmania tarentolae (L. tarentolae). This novel host for recombinant protein expression has recently shown promising properties for the expression of single-chain antibody fragments. We have utilised the L. tarentolae T7-TR system to achieve expression and secretion of two scFvs fused to the Fc-region of rabbit immunoglobulin G (IgG). Results Based on the commercial vector pLEXSY_IE-blecherry4 (Jena Bioscience; Cat. No. EGE-255), we generated a vector containing the Fragment Crystallisable (Fc) region of rabbit IgG allowing insertions of single chain antibody fragments (scFvs) in frame via Ncol/Notl cloning (pMJ_LEXSY-rFc). For the expression of rabbit Fc-fusion scFvs (scFv-rFc) we cloned two scFvs binding to human vimentin (LOB7 scFv) and murine laminin (A10 scFv) respectively, into the modified vector. The LOB7-rFc and A10-rFc fusions expressed at levels up to 2.95 mg/L in L. tarentolae T7-TR. Both scFv-rFcs were purified from the culture supernatants using protein A affinity chromatography. Additionally, we expressed three different scFvs without the rFc regions using a similar expression cassette, obtaining yields up to 1.00 mg/L. Conclusions To our knowledge, this is the first time that antibody fragments with intact Fc-region of immunoglobulin have been produced in L. tarentolae. Using the plasmid pMJ_LEXSY-rFc, L. tarentolae T7-TR can be applied as an efficient tool for expression of rFc fusion antibody fragments, allowing easy purification from the growth medium. This system provides an alternative in cases where antibody constructs express poorly in standard prokaryotic systems. Furthermore, in cases where bivalent Fc-fused antibody constructs are needed, using L. tarentolae for expression provides an efficient alternative to mammalian expression.
Collapse
Affiliation(s)
| | | | | | | | | | - Peter Kristensen
- Department of Engineering, Aarhus University, Gustav Wieds Vej 10, Aarhus, Denmark.
| |
Collapse
|
122
|
Liu W, Tan J, Mehryar MM, Teng Z, Zeng Y. Peptide HIV fusion inhibitors: modifications and conjugations. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00214h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HIV fusion inhibitors are a group of virus entry preventing drugs aimed at membrane fusion.
Collapse
Affiliation(s)
- Wei Liu
- College of Life Science and Bioengineering
- Beijing University of Technology
- Beijing 100124, China
- State Key Laboratory for Infectious Disease Prevention and Control
- National Institute for Viral disease control and prevention
| | - Jianjun Tan
- College of Life Science and Bioengineering
- Beijing University of Technology
- Beijing 100124, China
| | | | - Zhiping Teng
- State Key Laboratory for Infectious Disease Prevention and Control
- National Institute for Viral disease control and prevention
- Chinese Centre for Disease Control and Prevention
- Beijing 100052, China
| | - Yi Zeng
- College of Life Science and Bioengineering
- Beijing University of Technology
- Beijing 100124, China
- State Key Laboratory for Infectious Disease Prevention and Control
- National Institute for Viral disease control and prevention
| |
Collapse
|
123
|
He H, Ye J, Wang Y, Liu Q, Chung HS, Kwon YM, Shin MC, Lee K, Yang VC. Cell-penetrating peptides meditated encapsulation of protein therapeutics into intact red blood cells and its application. J Control Release 2013; 176:123-132. [PMID: 24374002 DOI: 10.1016/j.jconrel.2013.12.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022]
Abstract
Red blood cells (RBCs) based drug carrier appears to be the most appealing for protein drugs due to their unmatched biocompatability, biodegradability, and long lifespan in the circulation. Numerous methods for encapsulating protein drugs into RBCs were developed, however, most of them induce partial disruption of the cell membrane, resulting in irreversible alterations in both physical and chemical properties of RBCs. Herein, we introduce a novel method for encapsulating proteins into intact RBCs, which was meditated by a cell penetrating peptide (CPP) developed in our lab-low molecular weight protamine (LMWP). l-asparaginase, one of the primary drugs used in treatment of acute lymphoblastic leukemia (ALL), was chosen as a model protein to illustrate the encapsulation into erythrocytes mediated by CPPs. In addition current treatment of ALL using different l-asparaginase delivery and encapsulation methods as well as their associated problems were also reviewed.
Collapse
Affiliation(s)
- Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300072, P.R. China.,Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Shanghai, 201203, China
| | - Junxiao Ye
- State Key Laboratory for Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yinsong Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300072, P.R. China
| | - Quan Liu
- State Key Laboratory for Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Hee Sun Chung
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065, USA
| | - Young Min Kwon
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, Florida 33328, USA
| | - Meong Cheol Shin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065, USA
| | - Kyuri Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065, USA
| | - Victor C Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300072, P.R. China.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065, USA.,Department of Molecular Medicine and Biopharmaceutical Sciences, College of Medicine & College of Pharmacy, Seoul National University, South Korea
| |
Collapse
|
124
|
Nilvebrant J, Åstrand M, Löfblom J, Hober S. Development and characterization of small bispecific albumin-binding domains with high affinity for ErbB3. Cell Mol Life Sci 2013; 70:3973-85. [PMID: 23728098 PMCID: PMC11113916 DOI: 10.1007/s00018-013-1370-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/17/2013] [Accepted: 05/13/2013] [Indexed: 11/27/2022]
Abstract
Affinity proteins based on small scaffolds are currently emerging as alternatives to antibodies for therapy. Similarly to antibodies, they can be engineered to have high affinity for specific proteins. A potential problem with small proteins and peptides is their short in vivo circulation time, which might limit the therapeutic efficacy. To circumvent this issue, we have engineered bispecificity into an albumin-binding domain (ABD) derived from streptococcal Protein G. The inherent albumin binding was preserved while the opposite side of the molecule was randomized for selection of high-affinity binders. Here we present novel ABD variants with the ability to bind to the epidermal growth factor receptor 3 (ErbB3). Isolated candidates were shown to have an extraordinary thermal stability and affinity for ErbB3 in the nanomolar range. Importantly, they were also shown to retain their affinity to albumin, hence demonstrating that the intended strategy to engineer bispecific single-domain proteins against a tumor-associated receptor was successful. Moreover, competition assays revealed that the new binders could block the natural ligand Neuregulin-1 from binding to ErbB3, indicating a potential anti-proliferative effect. These new binders thus represent promising candidates for further development into ErbB3-signaling inhibitors, where the albumin interaction could result in prolonged in vivo half-life.
Collapse
Affiliation(s)
- Johan Nilvebrant
- Division of Protein Technology, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Mikael Åstrand
- Division of Protein Technology, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - John Löfblom
- Division of Protein Technology, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Sophia Hober
- Division of Protein Technology, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| |
Collapse
|
125
|
Schulte S. Innovative coagulation factors: albumin fusion technology and recombinant single-chain factor VIII. Thromb Res 2013; 131 Suppl 2:S2-6. [PMID: 23537723 DOI: 10.1016/s0049-3848(13)70150-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Albumin fusion technology has been used to enhance the pharmacokinetic properties of recombinant coagulation factors. The goal of linking albumin to coagulation factors is to extend the half-life of the coagulation factor, thereby allowing for less frequent dosing for patients with bleeding disorders, such as hemophilia. The novel recombinant fusion proteins linking coagulation factors VIIa and IX with albumin (rVIIa-FP and rIX-FP, respectively) have a longer half-life and similar hemostatic efficacy compared with available recombinant coagulation factor products. Clinical evaluation of these fusion proteins is underway, and preliminary results with rIX-FP in patients with hemophilia B are encouraging. Other advances in coagulation factor therapy include a unique recombinant single-chain factor VIII (FVIII) protein, which has improved intrinsic stability and a higher affinity for von Willebrand factor (VWF), relative to other recombinant FVIIIs, and a recombinant VWF-albumin fusion protein (rVWF-FP), which has a significant longer half-life compared to available VWF products. Evaluation of these novel recombinant proteins continues and will help determine their potential to enhance the management of patients with bleeding disorders.
Collapse
Affiliation(s)
- Stefan Schulte
- Research & Development, CSL Behring GmbH, Marburg, Germany.
| |
Collapse
|
126
|
Koussoroplis SJ, Heywood S, Uyttenhove C, Barilly C, Van Snick J, Vanbever R. Production, purification and biological characterization of mono-PEGylated anti-IL-17A antibody fragments. Int J Pharm 2013; 454:107-15. [DOI: 10.1016/j.ijpharm.2013.06.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/19/2013] [Accepted: 06/27/2013] [Indexed: 11/26/2022]
|
127
|
Metzner HJ, Pipe SW, Weimer T, Schulte S. Extending the pharmacokinetic half-life of coagulation factors by fusion to recombinant albumin. Thromb Haemost 2013; 110:931-9. [PMID: 24178510 DOI: 10.1160/th13-03-0213] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/17/2013] [Indexed: 11/05/2022]
Abstract
The prophylactic treatment of haemophilia B and the management of haemophilia A or B with inhibitors demand frequent administrations of coagulation factors due to the suboptimal half-lives of the products commercially available and currently in use, e.g. recombinant factor IX (rFIX) and recombinant factor VIIa (rFVIIa), respectively. The extension of the half-lives of rFIX and rFVIIa could allow for longer intervals between infusions and could thereby improve adherence and clinical outcomes and may improve quality of life. Albumin fusion is one of a number of different techniques currently being examined to prolong the half-life of rFIX and rFVIIa. Results from a phase I clinical trial demonstrated that the recombinant fusion protein linking FIX to albumin (rIX-FP) has a five-times longer half-life than rFIX, and preclinical studies with the recombinant fusion protein linking FVIIa to albumin (rVIIa-FP) suggest that rVIIa-FP possesses a significantly extended half-life versus rFVIIa. In this review, we describe albumin fusion technology and examine the recent progress in the development of rIX-FP and rVIIa-FP.
Collapse
Affiliation(s)
- H J Metzner
- Hubert J. Metzner, CSL Behring GmbH, Emil-von-Behring-Str. 76, 35041 Marburg, Germany, Tel.: +49 6421 394417, Fax: +49 6421 394663, E-mail:
| | | | | | | |
Collapse
|
128
|
Malek A. Role of IgG antibodies in association with placental function and immunologic diseases in human pregnancy. Expert Rev Clin Immunol 2013; 9:235-49. [PMID: 23445198 DOI: 10.1586/eci.12.99] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
During human pregnancy, the maternal immune system develops and changes, providing protection for the growing placenta and fetus. These protective changes provide mechanisms allowing two genetically different individuals to interact with each other without allograft rejection. In addition to normal pregnancy, some pregnancies may develop under immunologic diseases, during which specific monitoring and medical treatments are essential. The aim of this current review is to provide information regarding the development of human placental function during pregnancy, the immunology of human pregnancy and the role of the placenta in providing the fetal tissue with antibodies (IgG and its subclasses 1-4), which are required for the passive immunization of the newborn. In addition, the available methods for the determination of placental function will be explored. Furthermore, immunologic diseases observed during pregnancy and the possible therapies for these diseases will be assessed.
Collapse
Affiliation(s)
- Antoine Malek
- Department of Obstetrics, University Hospital Zurich, Research Division, Frauenklinikstrasse 10, 8091 Zurich, Switzerland.
| |
Collapse
|
129
|
Fournier P, Schirrmacher V. Bispecific antibodies and trispecific immunocytokines for targeting the immune system against cancer: preparing for the future. BioDrugs 2013; 27:35-53. [PMID: 23329400 DOI: 10.1007/s40259-012-0008-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Monoclonal anti-tumor antibodies (mAbs) that are clinically effective usually recruit, via their constant fragment (Fc) domain, Fc receptor (FcR)-positive accessory cells of the immune system and engage these additionally against the tumor. Since T cells are FcR negative, these important cells are not getting involved. In contrast to mAbs, bispecific antibodies (bsAbs) can be designed in such a way that they involve T cells. bsAbs are artificially designed molecules that bind simultaneously to two different antigens, one on the tumor cell, the other one on an immune effector cell such as CD3 on T cells. Such dual antibody constructs can cross-link tumor cells and T cells. Many such bsAb molecules at the surface of tumor cells can thus build a bridge to T cells and aggregate their CD3 molecules, thereby activating them for cytotoxic activity. BsAbs can also contain a third binding site, for instance a Fc domain or a cytokine that would bind to its respective cytokine receptor. The present review discusses the pros and cons for the use of the Fc fragment during the development of bsAbs using either cell-fusion or recombinant DNA technologies. The recombinant antibody technology allows the generation of very efficient bsAbs containing no Fc domain such as the bi-specific T-cell engager (BiTE). The strong antitumor activity of these molecules makes them very interesting new cancer therapeutics. Over the last decade, we have developed another concept, namely to combine bsAbs and multivalent immunocytokines with a tumor cell vaccine. The latter are patient-derived tumor cells modified by infection with a virus. The virus-Newcastle Disease Virus (NDV)-introduces, at the surface of the tumor cells, viral molecules that can serve as general anchors for the bsAbs. Our strategy aims at redirecting, in an Fc-independent fashion, activities of T cells and accessory cells against autologous tumor antigens. It creates very promising perspectives for a new generation of efficient and safe cancer therapeutics that should confer long-lasting anti-tumor immunity.
Collapse
Affiliation(s)
- Philippe Fournier
- German Cancer Research Center DKFZ, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany,
| | | |
Collapse
|
130
|
Challenges for PEGylated Proteins and Alternative Half-Life Extension Technologies Based on Biodegradable Polymers. ACTA ACUST UNITED AC 2013. [DOI: 10.1021/bk-2013-1135.ch013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
131
|
Fields C, O'Connell D, Xiao S, Lee GU, Billiald P, Muzard J. Creation of recombinant antigen-binding molecules derived from hybridomas secreting specific antibodies. Nat Protoc 2013; 8:1125-48. [DOI: 10.1038/nprot.2013.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
132
|
Smith R, Duguay A, Bakker A, Li P, Weiszmann J, Thomas MR, Alba BM, Wu X, Gupte J, Yang L, Stevens J, Hamburger A, Smith S, Chen J, Komorowski R, Moore KW, Véniant MM, Li Y. FGF21 can be mimicked in vitro and in vivo by a novel anti-FGFR1c/β-Klotho bispecific protein. PLoS One 2013; 8:e61432. [PMID: 23630589 PMCID: PMC3632592 DOI: 10.1371/journal.pone.0061432] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/09/2013] [Indexed: 12/14/2022] Open
Abstract
The endocrine hormone FGF21 has attracted considerable interest as a potential therapeutic for treating diabetes and obesity. As an alternative to the native cytokine, we generated bispecific Avimer polypeptides that bind with high affinity and specificity to one of the receptor and coreceptor pairs used by FGF21, FGFR1c and β-Klotho. These Avimers exhibit FGF21-like activity in in vitro assays with potency greater than FGF21. In a study conducted in obese male cynomolgus monkeys, animals treated with an FGFR1c/β-Klotho bispecific Avimer showed improved metabolic parameters and reduced body weight comparable to the effects seen with FGF21. These results not only demonstrate the essential roles of FGFR1c and β-Klotho in mediating the metabolic effects of FGF21, they also describe a first bispecific activator of this unique receptor complex and provide validation for a novel therapeutic approach to target this potentially important pathway for treating diabetes and obesity.
Collapse
Affiliation(s)
- Richard Smith
- Therapeutic Discovery, Amgen Inc., South San Francisco, California, United States of America
| | - Amy Duguay
- Therapeutic Discovery, Amgen Inc., South San Francisco, California, United States of America
| | - Alice Bakker
- Therapeutic Discovery, Amgen Inc., South San Francisco, California, United States of America
| | - Peng Li
- Therapeutic Discovery, Amgen Inc., South San Francisco, California, United States of America
| | - Jennifer Weiszmann
- Metabolic Disorders, Amgen Inc., South San Francisco, California, United States of America
| | - Melissa R. Thomas
- Therapeutic Discovery, Amgen Inc., South San Francisco, California, United States of America
| | - Benjamin M. Alba
- Therapeutic Discovery, Amgen Inc., South San Francisco, California, United States of America
| | - Xinle Wu
- Metabolic Disorders, Amgen Inc., South San Francisco, California, United States of America
| | - Jamila Gupte
- Metabolic Disorders, Amgen Inc., South San Francisco, California, United States of America
| | - Li Yang
- Metabolic Disorders, Amgen Inc., South San Francisco, California, United States of America
| | - Jennitte Stevens
- Therapeutic Discovery, Amgen Inc., Thousand Oaks, California, United States of America
| | - Agnes Hamburger
- Therapeutic Discovery, Amgen Inc., Thousand Oaks, California, United States of America
| | - Stephen Smith
- Therapeutic Discovery, Amgen Inc., Thousand Oaks, California, United States of America
| | - Jiyun Chen
- Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, California, United States of America
| | - Renee Komorowski
- Metabolic Disorders, Amgen Inc., Thousand Oaks, California, United States of America
| | - Kevin W. Moore
- Therapeutic Discovery, Amgen Inc., South San Francisco, California, United States of America
| | - Murielle M. Véniant
- Metabolic Disorders, Amgen Inc., Thousand Oaks, California, United States of America
| | - Yang Li
- Metabolic Disorders, Amgen Inc., South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
133
|
Yu HK, Lee HJ, Ahn JH, Lim IH, Moon JH, Yoon Y, Yi LSH, Kim SJ, Kim JS. Immunoglobulin Fc domain fusion to apolipoprotein(a) kringle V significantly prolongs plasma half-life without affecting its anti-angiogenic activity. Protein Eng Des Sel 2013; 26:425-32. [PMID: 23571426 DOI: 10.1093/protein/gzt015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Angiogenesis is crucial for tumor growth and metastasis. Blocking this process is, therefore, a potentially powerful approach for the treatment of cancer. Human apolipoprotein(a) kringle V (rhLK8) is an angiogenesis inhibitor and is currently under development as an anti-cancer therapeutic. However, a relatively short in vivo half-life limits its widespread clinical use. This study was performed to evaluate whether fusion of an Fc domain to rhLK8 can extend plasma half-life. RhLK8-Fc fusion protein was expressed in CHO DG44 cells as a dimer and was readily purified by protein G affinity chromatography. The anti-angiogenic activity of rhLK8-Fc was similar to that of rhLK8, as determined by migration and tube formation assays with endothelial cells in vitro and a chorioallantoic membrane assay in vivo. Pharmacokinetic profiles in mice after single intravenous administration of rhLK8 or rhLK8-Fc showed that Fc fusion significantly increased the elimination half-life (t(½)) and the systemic exposure (AUC(inf)) of the protein, in parallel with a significant decrease in total clearance (CL). These data suggest that Fc fusion to rhLK8 is a powerful strategy for extending the plasma half-life of rhLK8 without affecting its anti-angiogenic activity, and could thus improve the clinical applicability of rhLK8.
Collapse
Affiliation(s)
- Hyun-Kyung Yu
- Cancer Therapeutics Team, Mogam Biotechnology Research Institute, 341 Bojeong-dong, Giheung-gu, Yongin 449-910, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
PROLONG-9FP clinical development program – phase I results of recombinant fusion protein linking coagulation factor IX with recombinant albumin (rIX-FP). Thromb Res 2013; 131 Suppl 2:S7-10. [DOI: 10.1016/s0049-3848(13)70151-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
135
|
Production and characterization of a CD25-specific scFv-Fc antibody secreted from Pichia pastoris. Appl Microbiol Biotechnol 2012; 97:3855-63. [PMID: 23250227 DOI: 10.1007/s00253-012-4632-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/29/2012] [Accepted: 12/01/2012] [Indexed: 02/05/2023]
Abstract
Antibodies against CD25 would be novel tools for the diagnosis and treatment of adult T cell leukemia lymphoma (ATLL) and many other immune disorders. In our previous work, we successfully produced the single-chain fragment of a variable antibody against CD25, the Dmab(scFv) antibody, using Pichia pastoris. Here, we describe a novel form of an antibody against CD25, the Dmab(scFv)-Fc antibody, also produced by P. pastoris. To construct the Dmab(scFv)-Fc antibody, the Dmab(scFv) antibody was genetically fused to the Fc fragment of a human IgG1 antibody. A fusion gene encoding Dmab(scFv)-Fc antibody was cloned into the pPIC9K plasmid and expressed at high levels, 60-70 mg/l, by P. pastoris under optimized conditions. The Dmab(scFv)-Fc antibody was similar to the Dmab(scFv) antibody in its binding specificity but different in its molecular form and Fc-mediated effector functions. The Dmab(scFv)-Fc antibody and the Dmab(scFv) antibody both bound to CD25-positive MJ cells but not to CD25-negative K562 cells. The Dmab(scFv)-Fc antibody existed as a dimer whereas the Dmab(scFv) antibody was a monomer because it lacks the Fc fragment. The Dmab(scFv)-Fc antibody enhanced the antibody-dependent cellular cytotoxicity of CD25-positive cancer cells, whereas the Dmab(scFv) antibody was inactive in the antibody-dependent cellular cytotoxicity assays. In addition, compared to the Dmab(scFv) antibody, the Dmab(scFv)-Fc antibody showed stronger immunosuppressive activity in the Con A-stimulated lymphocyte proliferation system and in the mixed lymphocyte reaction system. These results demonstrate that the Dmab(scFv)-Fc antibody produced in P. pastoris is functional, and therefore it might be developed as a novel diagnostic and therapeutic tool for ATLL and other immune disorders.
Collapse
|
136
|
Antibody–cytokine fusion proteins. Arch Biochem Biophys 2012; 526:194-205. [PMID: 22445675 DOI: 10.1016/j.abb.2012.03.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 01/01/2023]
|
137
|
Abstract
Antibody-based therapeutics have been successfully used for the treatment of various diseases and as research tools. Several well characterized, broadly neutralizing monoclonal antibodies (bnmAbs) targeting HIV-1 envelope glycoproteins or related host cell surface proteins show sterilizing protection of animals, but they are not effective when used for therapy of an established infection in humans. Recently, a number of novel bnmAbs, engineered antibody domains (eAds), and multifunctional fusion proteins have been reported which exhibit exceptionally potent and broad neutralizing activity against a wide range of HIV-1 isolates from diverse genetic subtypes. eAds could be more effective in vivo than conventional full-size antibodies generated by the human immune system. Because of their small size (12∼15 kD), they can better access sterically restricted epitopes and penetrate densely packed tissue where HIV-1 replicates than the larger full-size antibodies. HIV-1 possesses a number of mechanisms to escape neutralization by full-size antibodies but could be less likely to develop resistance to eAds. Here, we review the in vitro and in vivo antiviral efficacies of existing HIV-1 bnmAbs, summarize the development of eAds and multispecific fusion proteins as novel types of HIV-1 inhibitors, and discuss possible strategies to generate more potent antibody-based candidate therapeutics against HIV-1, including some that could be used to eradicate the virus.
Collapse
Affiliation(s)
- Rui Gong
- Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702-1201, USA.
| | | | | |
Collapse
|
138
|
Abstract
Peptibodies or peptide-Fc fusions are an attractive alternative therapeutic format to monoclonal antibodies. They consist of biologically active peptides grafted onto an Fc domain. This approach retains certain desirable features of antibodies, notably an increased apparent affinity through the avidity conferred by the dimerization of two Fcs and a long plasma residency time. Peptibodies can be made in E. coli using recombinant technology. The manufacturing process involves fermentation and downstream processing, including refolding and multiple column chromatographic steps, that result in overall yields and quality suitable for commercial development. Romiplostim, marketed under the brand name Nplate®, is the first peptibody to be approved by the United States Food and Drug Administration and the European Medicines Agency and is indicated for the treatment of immune thrombocytopenic purpura. AMG 386, a peptibody antagonist to angiopoietins 1 and 2, is being evaluated in Phase 3 clinical testing in combination with chemotherapy in women with ovarian cancer. AMG 819, a peptibody targeting nerve growth factor for pain has also progressed to clinical trials. These peptibodies illustrate the versatility of the modality.
Collapse
|
139
|
Cancer Immunotherapy by Retargeting of Immune Effector Cells via Recombinant Bispecific Antibody Constructs. Antibodies (Basel) 2012. [DOI: 10.3390/antib1020172] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
140
|
Vugmeyster Y, Harrold J, Xu X. Absorption, distribution, metabolism, and excretion (ADME) studies of biotherapeutics for autoimmune and inflammatory conditions. AAPS JOURNAL 2012; 14:714-27. [PMID: 22798020 DOI: 10.1208/s12248-012-9385-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/13/2012] [Indexed: 01/09/2023]
Abstract
Biotherapeutics are becoming an increasingly common drug class used to treat autoimmune and other inflammatory conditions. Optimization of absorption, distribution, metabolism, and excretion (ADME) profiles of biotherapeutics is crucial for clinical, as well as commercial, success of these drugs. This review focuses on the common questions and challenges in ADME optimization of biotherapeutics for inflammatory conditions. For these immunomodulatory and/or immunosuppressive biotherapeutics, special consideration should be given to the assessment of the interdependency of ADME profiles, pharmacokinetic/pharmacodynamic (PK/PD) relationships, and immunogenicity profiles across various preclinical species and humans, including the interdependencies both in biology and in assay readouts. The context of usage, such as dosing regimens, extent of disease, concomitant medications, and drug product characteristics may have a direct or indirect (via modulation of immunogenicity) impact on ADME profiles of biotherapeutics. Along these lines, emerging topics include assessments of preexisting reactivity to a biotherapeutic agent, impact of immunogenicity on tissue exposure, and analysis of penetration to normal versus inflamed tissues. Because of the above complexities and interdependences, it is essential to interpret PK, PD, and anti-drug antibody results in an integrated manner. In addition, because of the competitive landscape in autoimmune and inflammatory markets, many pioneering ADME-centric protein engineering and subsequent in vivo testing (such as optimization of novel modalities to extend serum and tissue exposures and to improve bioavailability) are being conducted with biotherapeutics in this therapeutic area. However, the ultimate challenge is demonstration of the clinical relevance (or lack thereof) of modified ADME and immunogenicity profiles.
Collapse
Affiliation(s)
- Yulia Vugmeyster
- Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., One Burtt Road, Andover, Massachusetts, USA.
| | | | | |
Collapse
|
141
|
Abstract
INTRODUCTION Over a half a century ago, radiolabeled antibodies were shown to localize selectively in tissues based on the expression of unique antigens. Antibodies have since become the de facto targeting agent, even inspiring the development of non-antibody compounds for targeting purposes. AREAS COVERED In this article, we review various aspects of how antibodies are transforming the way cancer is being detected and treated, with the growing demand for unconjugated and many new antibody conjugates. While unconjugated antibodies continue to garner most of the attention, interest in new antibody drug conjugates and immunotoxins has expanded over the past few years. However, there continues to be active research with new radioimmunoconjugates for imaging and therapy, particularly with α-emitters, as well as antibody-targeted cytokines and other biological response modifiers. EXPERT OPINION The increasing number of new agents being developed and tested clinically suggests that antibody-targeted compounds will have an expanding role in the future.
Collapse
Affiliation(s)
- David M Goldenberg
- Center for Molecular Medicine and Immunology, 300 The American Road, Morris Plains, NJ 07950, USA
| | | |
Collapse
|
142
|
Bacterial cocaine esterase: a protein-based therapy for cocaine overdose and addiction. Future Med Chem 2012; 4:137-50. [PMID: 22300094 DOI: 10.4155/fmc.11.194] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cocaine is highly addictive and there are no pharmacotherapeutic drugs available to treat acute cocaine toxicity or chronic abuse. Antagonizing an inhibitor such as cocaine using a small molecule has proven difficult. The alternative approach is to modify cocaine's pharmacokinetic properties by sequestering or hydrolyzing it in serum and limiting access to its sites of action. We took advantage of a bacterial esterase (CocE) that has evolved to hydrolyze cocaine and have developed it as a therapeutic that rapidly and specifically clears cocaine from the subject. Native enzyme was unstable at 37°C, thus limiting CocE's potential. Innovative computational methods based on the protein's structure helped elucidate its mechanism of destabilization. Novel protein engineering methodologies were applied to substantially improve its stability in vitro and in vivo. These improvements rendered CocE as a powerful and efficacious therapeutic to treat cocaine intoxication and lead the way towards developing a therapy for addiction.
Collapse
|
143
|
Tradtrantip L, Zhang H, Saadoun S, Phuan PW, Lam C, Papadopoulos MC, Bennett JL, Verkman AS. Anti-aquaporin-4 monoclonal antibody blocker therapy for neuromyelitis optica. Ann Neurol 2012; 71:314-22. [PMID: 22271321 PMCID: PMC3314396 DOI: 10.1002/ana.22657] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/02/2011] [Accepted: 10/07/2011] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system. Circulating autoantibodies (NMO-immunoglobulin [Ig]G) against astrocyte water channel aquaporin-4 (AQP4) cause complement- and cell-mediated astrocyte damage with consequent neuroinflammation and demyelination. Current NMO therapies, which have limited efficacy, include immunosuppression and plasma exchange. The objective of this study was to develop a potential new NMO therapy based on blocking of pathogenic NMO-IgG binding to its target, AQP4. METHODS We generated nonpathogenic recombinant monoclonal anti-AQP4 antibodies that selectively block NMO-IgG binding to AQP4. These antibodies comprise a tight-binding anti-AQP4 Fab and a mutated Fc that lacks functionality for complement- and cell-mediated cytotoxicity. The efficacy of the blocking antibodies was studied using cell culture, spinal cord slice, and in vivo mouse models of NMO. RESULTS In AQP4-expressing cell cultures, the nonpathogenic competing antibodies blocked binding of NMO-IgG in human sera, reducing to near zero complement- and cell-mediated cytotoxicity. The antibodies prevented the development of NMO lesions in an ex vivo spinal cord slice model of NMO and in an in vivo mouse model, without causing cytotoxicity. INTERPRETATION Our results provide proof of concept for a therapy of NMO with blocking antibodies. The broad efficacy of antibody inhibition is likely due to steric competition because of its large physical size compared to AQP4. Blocker therapy to prevent binding of pathogenic autoantibodies to their targets may be useful for treatment of other autoimmune diseases as well.
Collapse
Affiliation(s)
- Lukmanee Tradtrantip
- Department of Medicine, University of California, San Francisco, CA 94143-0521, USA
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Abstract
Monoclonal antibodies are widely used for the treatment of cancer, inflammatory and infectious diseases and other disorders. Most of the marketed antibodies are monospecific and therefore capable of interacting and interfering with a single target. However, complex diseases are often multifactorial in nature, and involve redundant or synergistic action of disease mediators or upregulation of different receptors, including crosstalk between their signaling networks. Consequently, blockade of multiple, different pathological factors and pathways may result in improved therapeutic efficacy. This result can be achieved by combining different drugs, or use of the dual targeting strategies applying bispecific antibodies that have emerged as an alternative to combination therapy. This review discusses the various dual targeting strategies for which bispecific antibodies have been developed and provides an overview of the established bispecific antibody formats.
Collapse
Affiliation(s)
- Roland E Kontermann
- Institut für Zellbiologie und Immunologie; Universität Stuttgart; Stuttgart, Germany
| |
Collapse
|
145
|
Activation of pro-uPA is critical for initial escape from the primary tumor and hematogenous dissemination of human carcinoma cells. Neoplasia 2012; 13:806-21. [PMID: 21969814 DOI: 10.1593/neo.11704] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/22/2011] [Accepted: 07/27/2011] [Indexed: 01/09/2023] Open
Abstract
Urokinase-type plasminogen activator (uPA) and plasmin have long been implicated in cancer progression. However, the precise contributions of the uPA/plasmin system to specific steps involved in cancer cell dissemination have not been fully established. Herein, we have used a highly disseminating variant of the human PC-3 prostate carcinoma cell line, PC-hi/diss, as a prototype of aggressive carcinomas to investigate the mechanisms whereby pro-uPA activation and uPA-generated plasmin functionally contribute to specific stages of metastasis. The PC-hi/diss cells secrete and activate significant amounts of pro-uPA, leading to efficient generation of plasmin in solution and at the cell surface. In a mouse orthotopic xenograft model, treatment with the specific pro-uPA activation-blocking antibody mAb-112 significantly inhibited local invasion and distant metastasis of the PC-hi/diss cells. To mechanistically examine the uPA/plasmin-mediated aspects of tumor cell dissemination, the anti-pro-uPA mAb-112 and the potent serine protease inhibitor, aprotinin, were used in parallel in a number of in vivo assays modeling various rate-limiting steps in early metastatic spread. Our findings demonstrate that, by generating plasmin, activated tumor-derived uPA facilitates early stages of PC-hi/diss dissemination, specifically the escape from the primary tumor and tumor cell intravasation. Moreover, through a series of in vitro and in vivo analyses, we suggest that PC-hi/diss-invasive escape and dissemination may be enhanced by cleavage of stromal fibronectin by uPA-generated plasmin. Together, our findings point to inhibition of pro-uPA activation at the apex of the uPA/plasmin cascade as a therapy-valid approach to control onset of tumor escape and ensuing metastatic spread.
Collapse
|
146
|
Hutt M, Färber-Schwarz A, Unverdorben F, Richter F, Kontermann RE. Plasma half-life extension of small recombinant antibodies by fusion to immunoglobulin-binding domains. J Biol Chem 2012; 287:4462-9. [PMID: 22147690 PMCID: PMC3281650 DOI: 10.1074/jbc.m111.311522] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/23/2011] [Indexed: 12/22/2022] Open
Abstract
Many therapeutic proteins possessing a small size are rapidly cleared from circulation. Half-life extension strategies have therefore become increasingly important to improve the pharmacokinetic and pharmacodynamic properties of protein therapeutics. Here, we performed a comparative analysis of the half-life extension properties of various bacterial immunoglobulin-binding domains (IgBDs) derived from Staphylococcus protein A (SpA), Streptococcus protein G (SpG), and Finegoldia (formerly Peptostreptococcus) protein L (PpL). These domains, composed of 50-60 amino acid residues, were fused to the C terminus of a single-chain Fv and a bispecific single-chain diabody, respectively. All fusion proteins were produced in mammalian cells and retained their antigen-binding properties. The half-lives of the antibody molecules were prolonged to varying extents for the different IgBDs. The strongest effects in mice were observed for domain C3 of SpG (SpG(C3)) followed by domains B and D of SpA, suggesting that SpG(C3) is particularly useful to extend the plasma half-life of small proteins.
Collapse
Affiliation(s)
- Meike Hutt
- From the Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Aline Färber-Schwarz
- From the Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Felix Unverdorben
- From the Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Fabian Richter
- From the Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Roland E. Kontermann
- From the Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
147
|
Unverdorben F, Färber-Schwarz A, Richter F, Hutt M, Kontermann RE. Half-life extension of a single-chain diabody by fusion to domain B of staphylococcal protein A. Protein Eng Des Sel 2012; 25:81-8. [PMID: 22238430 DOI: 10.1093/protein/gzr061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Binding of a therapeutic protein to a long-circulating plasma protein can result in a strongly extended half-life. Among these plasma proteins, albumin and immunoglobulins are of special interest because of their exceptionally long half-life, which is to a great extent determined by recycling through the neonatal Fc receptor (FcRn). Many strategies have been established employing reversible binding to albumin, e.g. using an albumin-binding domain from streptococcal protein G. We show here that the half-life of a recombinant antibody molecule can also be prolonged by fusion to a single immunoglobulin-binding domain (IgBD) from staphylococcal protein A. This domain (domain B, SpA(B)) is composed of 56 amino acid residues and was fused to the C-terminus of a bispecific single-chain diabody (scDb). The scDb-SpA(B) fusion protein was produced in HEK293 cells and retained its antigen-binding activity as shown by enzyme-linked immunosorbent assay and flow cytometry. Furthermore, the fusion protein was capable of binding to human and mouse IgG in a pH-dependent manner. In mice, the terminal half-life of the fusion protein was improved from ∼1-2 h of the unmodified scDb to 11.8 h. Although the fusion protein did not reach the long half-life seen for IgG, our results established the applicability of a single bacterial IgBD for half-life extension purposes.
Collapse
Affiliation(s)
- Felix Unverdorben
- Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
148
|
Modjtahedi H, Ali S, Essapen S. Therapeutic application of monoclonal antibodies in cancer: advances and challenges. Br Med Bull 2012; 104:41-59. [PMID: 23118261 DOI: 10.1093/bmb/lds032] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Monoclonal antibody (mAb)-based products are highly specific for a particular antigen. This characteristic feature of the molecules makes them an ideal tool for many applications including cancer diagnosis and therapy. SOURCES OF DATA We performed comprehensive searches of PubMed, Medline and the Food and Drug Administration website using keywords such as 'therapeutic antibodies' and 'anti-cancer antibodies'. AREAS OF AGREEMENT Treatment of cancer patients with antibodies when used alone or in combination with chemotherapy and radiotherapy, or conjugated to drugs or radioisotopes, prolongs overall survival in cancer patients. Currently, there are 14 mAb-based drugs that have been approved for the treatment of cancer patients. AREAS OF CONTROVERSY The response of cancer patients to antibody therapy can be of short duration. Therapeutic antibodies are expensive and may have side effects. There are no reliable predictive biomarkers for sensitivity or resistance to certain therapeutic antibodies. FUTURE FOCUS: There should be additional studies to discover novel therapeutic targets, to develop more effective antibody-based drugs with fewer side effects, to identify more reliable predictive biomarker(s) for response to therapy with antibody-based drugs and to develop alternative strategies (e.g. transgenic plants, transgenic farm animals) for production of large quantities and more affordable batches of therapeutic antibodies. AREAS TIMELY FOR DEVELOPING RESEARCH A better understanding of cancer biology, the hallmarks of human cancers and the immune system would lead to identification of additional cell surface biomarkers. These in turn would facilitate the development of novel and biosimilar antibody-based drugs and their routine use as 'magic bullets' for the targeted therapy of human cancers.
Collapse
Affiliation(s)
- Helmout Modjtahedi
- School of Life Sciences, Kingston University London, Penrhyn Road, Kingston KT12EE, UK.
| | | | | |
Collapse
|
149
|
Abstract
Antibody fragments (Fab's) represent important structure for creating new therapeutics. Compared to full antibodies Fab' fragments possess certain advantages, including higher mobility and tissue penetration, ability to bind antigen monovalently and lack of fragment crystallizable (Fc) region-mediated functions such as antibody-dependent cell mediated cytotoxicity (ADCC) or complement-dependent cytotoxicity (CDC). The main drawback for the use of Fab's in clinical applications is associated with their short half-life in vivo, which is a consequence of no longer having the Fc region. To exert meaningful clinical effects, the half-life of Fab's need to be extended, which has been achieved by postproduction chemical attachment of polyethylene glycol (PEG) chain to protein using PEGylation technology. The most suitable approach employs PEG-maleimide attachment to cysteines, either to the free hinge cysteine or to C-terminal cysteines involved in interchain disulfide linkage of the heavy and light chain. Hence, protocols for mono-PEGylation of Fab via free cysteine in the hinge region and di-PEGylation of Fab via interchain disulfide bridge are provided in this chapter.
Collapse
Affiliation(s)
- Simona Jevševar
- Sandoz Biopharmaceuticals, Mengeš, Lek Pharmaceuticals d.d, Mengeš, Slovenia.
| | | | | |
Collapse
|
150
|
Chen C, Constantinou A, Deonarain M. Modulating antibody pharmacokinetics using hydrophilic polymers. Expert Opin Drug Deliv 2011; 8:1221-36. [PMID: 21854300 DOI: 10.1517/17425247.2011.602399] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The use of hydrophilic polymers as a substitute for the Fc-domain in immuno- or non-immuno-based binding proteins is accelerating. Chemical PEGylation has led the way and is still the most advanced and clinically-approved approach. Hydrophilic polymers act by maintaining a flexible conformation and hydrogen bonding to a network of water molecules to acquire a larger hydrodynamic volume and apparent mass than their actual molecular mass suggest. The benefits are increased blood half-life and bioavailability, stability and reduced immunogenicity. In the case of PEG, there is also evidence of enhanced targeting and reduced side effects, but drawbacks include the fact that PEG is non-biodegradable. AREAS COVERED This report reviews the state of the art for antibody PEGylation in terms of approaches and effects. Additionally, non-biological (such as N-(2-hydroxypropyl)methacrylamide) and potentially superior biological alternatives (such as polysialylation) are described, ending with recombinant approaches (such as hydrophilic peptides and glyco-engineering), which promise to circumvent the need for chemical modification altogether. EXPERT OPINION The emergence of many small, antibody fragment-like mimics will drive the need for such technologies, and PEGylation is still the choice polymer due to its established use and track record. However, there will be a place for many alternative technologies if they can match the pharmacokinetics of PEG-conjugates and bring addition beneficial features such as easier production.
Collapse
Affiliation(s)
- Chen Chen
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | | | | |
Collapse
|