101
|
Gisina AM, Kim YS, Gabashvili AN, Tsvetkova AV, Vakhrushev IV, Yarygin KN, Lupatov AY. Expression of Epithelial Cell Adhesion Molecule (EpCAM) in Tumor Spheroids of Human Colorectal Adenocarcinoma Cells. Bull Exp Biol Med 2020; 170:135-141. [PMID: 33231806 DOI: 10.1007/s10517-020-05018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Indexed: 10/22/2022]
Abstract
We studied the formation of spheroids by Caco-2, SW480, and HCT116 human colorectal adenocarcinoma cell lines under low-adhesion culturing conditions. Of these three cell lines, only HCT116 formed stable tumor spheroids. Flow cytometry analysis of 19 surface markers in monolayer HCT116 culture and spheroids formed by these cells revealed considerable similarity of the expression profiles in these two culturing modes. The only exception was EpCAM molecule: its expression in spheroids was 3-fold higher than in the monolayer culture. Scanning confocal laser microscopy showed equal EpCAM distribution in the inner mass of the spheroids.
Collapse
Affiliation(s)
- A M Gisina
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia.
| | - Ya S Kim
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - A N Gabashvili
- National University of Science and Technology MISIS, Moscow, Russia
| | - A V Tsvetkova
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - I V Vakhrushev
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - K N Yarygin
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - A Yu Lupatov
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
102
|
Oswald JT, Patel H, Khan D, Jeorje NN, Golzar H, Oswald EL, Tang S. Drug Delivery Systems Using Surface Markers for Targeting Cancer Stem Cells. Curr Pharm Des 2020; 26:2057-2071. [PMID: 32250211 DOI: 10.2174/1381612826666200406084900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
The innate abilities of cancer stem cells (CSCs), such as multi-drug resistance, drug efflux, quiescence and ionizing radiation tolerance, protect them from most traditional chemotherapeutics. As a result, this small subpopulation of persistent cells leads to more aggressive and chemoresistant cancers, causing tumour relapse and metastasis. This subpopulation is differentiated from the bulk tumour population through a wide variety of surface markers expressed on the cell surface. Recent developments in nanomedicine and targeting delivery methods have given rise to new possibilities for specifically targeting these markers and preferentially eliminating CSCs. Herein, we first summarize the range of surface markers identifying CSC populations in a variety of cancers; then, we discuss recent attempts to actively target CSCs and their niches using liposomal, nanoparticle, carbon nanotube and viral formulations.
Collapse
Affiliation(s)
- James T Oswald
- School Of Nanotechnology Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Haritosh Patel
- School Of Nanotechnology Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Daid Khan
- School Of Nanotechnology Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Ninweh N Jeorje
- School Of Nanotechnology Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Hossein Golzar
- Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Erin L Oswald
- School Of Nanotechnology Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Shirley Tang
- Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
103
|
Czaplicka M, Niciński K, Nowicka A, Szymborski T, Chmielewska I, Trzcińska-Danielewicz J, Girstun A, Kamińska A. Effect of Varying Expression of EpCAM on the Efficiency of CTCs Detection by SERS-Based Immunomagnetic Optofluidic Device. Cancers (Basel) 2020; 12:cancers12113315. [PMID: 33182636 PMCID: PMC7697545 DOI: 10.3390/cancers12113315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary In this work we present a magnetically supported SERS-based immunoassay based on solid SERS-active support for the detection of circulating tumor cells. The SERS response in our optofluidic device was correlated with the level of EpCAM expression. The level of EpCAM cell expression in four cell lines with relatively high (human metastatic prostate adenocarcinoma cells (LNCaP)), medium (human metastatic prostate adenocarcinoma cells (LNCaP)), weak (human metastatic prostate adenocarcinoma cells (LNCaP)), and no EpCAM expressions (cervical cancer cells (HeLa) has been estimated using Western Blot method supported by immunochemistry and correlated with responses of immunomagnetic SERS-based analysis. The capture efficiency of developed assay was investigated in metastatic lung cancer patients. The assay demonstrates the capability to detect circulating tumor cells from blood samples over a broad linear range (from 1 to 100 cells/mL) reflecting clinically relevant amount of CTCs depending on the stage of metastasis, age, applied therapy. Abstract The circulating tumor cells (CTCs) isolation and characterization has a great potential for non-invasive biopsy. In the present research, the surface–enhanced Raman spectroscopy (SERS)-based assay utilizing magnetic nanoparticles and solid SERS-active support integrated in the external field assisted microfluidic device was designed for efficient isolation of CTCs from blood samples. Magnetic nanospheres (Fe2O3) were coated with SERS-active metal and then modified with p-mercaptobenzoic acid (p-MBA) which works simultaneously as a Raman reporter and linker to an antiepithelial-cell-adhesion-molecule (anti-EpCAM) antibodies. The newly developed laser-induced SERS-active silicon substrate with a very strong enhancement factor (up to 108) and high stability and reproducibility provide the additional extra-enhancement in the sandwich plasmonic configuration of immune assay which finally leads to increase the efficiency of detection. The sensitive immune recognition of cancer cells is assisted by the introducing of the controllable external magnetic field into the microfluidic chip. Moreover, the integration of the SERS-active platform and p-MBA-labeled immuno-Ag@Fe2O3 nanostructures with microfluidic device offers less sample and analytes demand, precise operation, increase reproducibly of spectral responses, and enables miniaturization and portability of the presented approach. In this work, we have also investigated the effect of varying expression of the EpCAM established by the Western Blot method supported by immunochemistry on the efficiency of CTCs’ detection with the developed SERS method. We used four target cancer cell lines with relatively high (human metastatic prostate adenocarcinoma cells (LNCaP)), medium (human metastatic prostate adenocarcinoma cells (LNCaP)), weak (human metastatic prostate adenocarcinoma cells (LNCaP)), and no EpCAM expressions (cervical cancer cells (HeLa)) to estimate the limits of detection based on constructed calibration curves. Finally, blood samples from lung cancer patients were used to validate the efficiency of the developed method in clinical trials.
Collapse
Affiliation(s)
- Marta Czaplicka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (M.C.); (K.N.); (A.N.); (T.S.)
| | - Krzysztof Niciński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (M.C.); (K.N.); (A.N.); (T.S.)
| | - Ariadna Nowicka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (M.C.); (K.N.); (A.N.); (T.S.)
| | - Tomasz Szymborski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (M.C.); (K.N.); (A.N.); (T.S.)
| | - Izabela Chmielewska
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-950 Lublin, Poland;
| | - Joanna Trzcińska-Danielewicz
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (J.T.-D.); (A.G.)
| | - Agnieszka Girstun
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (J.T.-D.); (A.G.)
| | - Agnieszka Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (M.C.); (K.N.); (A.N.); (T.S.)
- Correspondence:
| |
Collapse
|
104
|
Vav1 Sustains the In Vitro Differentiation of Normal and Tumor Precursors to Insulin Producing Cells Induced by all-Trans Retinoic Acid (ATRA). Stem Cell Rev Rep 2020; 17:673-684. [PMID: 33165749 PMCID: PMC8036226 DOI: 10.1007/s12015-020-10074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
All-trans retinoic acid (ATRA) promotes the development and the function of insulin producing cells and induces partial differentiation of pancreatic tumor cells. A number of evidences clearly indicate that the ATRA mediated signaling may have a substantial role in therapeutic approaches based on restoration of functional β-cells. Among the proteins up-regulated by ATRA, Vav1 is involved in maturation and function of haematopoietic cells and is essential for retinoids induced differentiation of tumor promyelocytes. The presence of Vav1 in solid tissues, including pancreas, is considered ectopic and no role in the differentiation of human epithelial cells has so far been described. We demonstrated here that Vav1 sustains the maturation to β-cells of the normal precursors human Biliary Tree Stem/progenitor Cells (hBTSCs) induced by a differentiation medium containing ATRA and that, in the mature normal pancreas, insulin-producing cells express variable levels of Vav1. Using pancreatic ductal adenocarcinoma (PDAC)-derived cells, we also revealed that the ATRA induced up-modulation of Vav1 is essential for the retinoid-induced trans-differentiation of neoplastic cells into insulin producing cells. The results of this study identify Vav1 as crucial molecule in ATRA induced maturation of insulin producing cells and suggest this protein as a marker for new strategies ended to restore functional β-cells. Graphical abstract ![]()
Collapse
|
105
|
Bordron A, Bagacean C, Tempescul A, Berthou C, Bettacchioli E, Hillion S, Renaudineau Y. Complement System: a Neglected Pathway in Immunotherapy. Clin Rev Allergy Immunol 2020; 58:155-171. [PMID: 31144209 DOI: 10.1007/s12016-019-08741-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Approved for the treatment of autoimmune diseases, hematological malignancies, and solid cancers, several monoclonal antibodies (mAb) make use of complement in their mechanism of action. Such an assessment is based on comprehensive investigations that used mouse models, in vitro studies, and analyses from patients at initiation (basal level to highlight deficiencies) and after treatment initiation (mAb impact on complement), which have further provided key insights into the importance of the complement activation and/or complement deficiencies in mAb activity. Accordingly, new approaches can now be developed with the final objective of increasing the clinical efficacy of mAb. These improvements include (i) the concurrent administration of fresh frozen plasma during mAb therapy; (ii) mAb modifications such as immunoglobulin G subclass switching, Fc mutation, or IgG hexamerization to improve the fixation and activation of C1q; (iii) optimization of the target recognition to induce a higher complement-dependent cytotoxicity (CDC) and/or complement-dependant cellular cytotoxicity (CDCC); and (iv) the control of soluble and cellular complement inhibitors.
Collapse
Affiliation(s)
- Anne Bordron
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France
| | - Cristina Bagacean
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France.,Service d'Hématologie, CHU de Brest, Brest, France
| | - Adrian Tempescul
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France.,Service d'Hématologie, CHU de Brest, Brest, France
| | - Christian Berthou
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France.,Service d'Hématologie, CHU de Brest, Brest, France
| | | | - Sophie Hillion
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France.,Laboratory of Immunology and Immunotherapy, CHU de Brest, Brest, France
| | - Yves Renaudineau
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France. .,Laboratory of Immunology and Immunotherapy, CHU de Brest, Brest, France.
| |
Collapse
|
106
|
Hosono H, Ohishi T, Takei J, Asano T, Sayama Y, Kawada M, Kaneko MK, Kato Y. The anti-epithelial cell adhesion molecule (EpCAM) monoclonal antibody EpMab-16 exerts antitumor activity in a mouse model of colorectal adenocarcinoma. Oncol Lett 2020; 20:383. [PMID: 33154781 PMCID: PMC7608076 DOI: 10.3892/ol.2020.12246] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
The epithelial cell adhesion molecule (EpCAM), which is a calcium-independent homophilic intercellular adhesion factor, contributes to cell signaling, differentiation, proliferation and migration. EpCAM is essential for carcinogenesis in numerous types of human cancer. The purpose of the present study was to establish an anti-EpCAM monoclonal antibody (mAb) for targeting colorectal adenocarcinomas. Thus, an anti-EpCAM mAb, EpMab-16 (IgG2a, κ), was established by immunizing mice with EpCAM-overexpressing CHO-K1 cells, and validated using flow cytometry, western blot, and immunohistochemical analyses. EpMab-16 reacted with endogenous EpCAM specifically in a colorectal adenocarcinoma cell line as determined by flow cytometry and western blot analyses. Immunohistochemical analysis demonstrated that EpMab-16 stained a plasma membrane-like pattern in clinical colorectal adenocarcinoma tissues. The dissociation constant (K D) for EpMab-16 in a Caco-2 colorectal adenocarcinoma cell line determined by flow cytometry was 1.8×10-8 M, suggesting moderate binding affinity of EpMab-16 for EpCAM. Whether the EpMab-16 induced antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against Caco-2 or antitumor activity was then assessed in a murine xenograft model. In vitro experiments revealed strong ADCC and CDC induction in Caco-2 cells by EpMab-16 treatment. In vivo experiments in a Caco-2 ×enograft model demonstrated that EpMab-16 treatment significantly reduced tumor growth compared with that in mice treated with the control mouse IgG. These results suggested that EpMab-16 may be a promising treatment option for EpCAM-expressing colorectal adenocarcinomas.
Collapse
Affiliation(s)
- Hideki Hosono
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu, Shizuoka 410-0301, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yusuke Sayama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu, Shizuoka 410-0301, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
107
|
Kaneko MK, Ohishi T, Takei J, Sano M, Nakamura T, Hosono H, Yanaka M, Asano T, Sayama Y, Harada H, Kawada M, Kato Y. Anti‑EpCAM monoclonal antibody exerts antitumor activity against oral squamous cell carcinomas. Oncol Rep 2020; 44:2517-2526. [PMID: 33125138 PMCID: PMC7640354 DOI: 10.3892/or.2020.7808] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
The epithelial cell adhesion molecule (EpCAM) is a calcium-independent, homophilic, intercellular adhesion factor classified as a transmembrane glycoprotein. In addition to cell adhesion, EpCAM also contributes to cell signaling, differentiation, proliferation, and migration. EpCAM is an essential factor in the carcinogenesis of numerous human cancers. In the present study, we developed and validated an anti-EpCAM monoclonal antibody (mAb), EpMab-16 (IgG2a, kappa), by immunizing mice with EpCAM-overexpressing CHO-K1 cells. EpMab-16 specifically reacted with endogenous EpCAM in oral squamous cell carcinoma (OSCC) cell lines in flow cytometry and Western blot analyses. It exhibited a plasma membrane-like stain pattern in OSCC tissues upon immunohistochemical analysis. The KD for EpMab-16 in SAS and HSC-2 OSCC cells were assessed via flow cytometry at 1.1×10−8 and 1.9×10−8 M, respectively, suggesting moderate binding affinity of EpMab-16 for EpCAM. We then assessed whether the EpMab-16 induced antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against OSCC cell lines, and antitumor capacity in a murine xenograft model. In vitro experiments revealed strong ADCC and CDC inducement against OSCC cells treated with EpMab-16. In vivo experiments on OSCC xenografts revealed that EpMab-16 treatment significantly reduced tumor growth compared with the control mouse IgG. These data indicated that EpMab-16 could be a promising treatment option for EpCAM-expressing OSCCs.
Collapse
Affiliation(s)
- Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu‑shi, Shizuoka 410‑0301, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Hideki Hosono
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Yusuke Sayama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo‑ku, Tokyo 113‑8510, Japan
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu‑shi, Shizuoka 410‑0301, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| |
Collapse
|
108
|
Agbana P, Lee MJ, Rychahou P, Kim KB, Bae Y. Ternary Polypeptide Nanoparticles with Improved Encapsulation, Sustained Release, and Enhanced In Vitro Efficacy of Carfilzomib. Pharm Res 2020; 37:213. [PMID: 33025286 DOI: 10.1007/s11095-020-02922-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/01/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To develop a new nanoparticle formulation for a proteasome inhibitor Carfilzomib (CFZ) to improve its stability and efficacy for future in vivo applications. METHODS CFZ-loaded ternary polypeptide nanoparticles (CFZ/tPNPs) were prepared by using heptakis(6-amino-6-deoxy)-β-cyclodextrin(hepta-hydrochloride) (HaβCD) and azido-poly(ethylene glycol)-block-poly(L-glutamic acid sodium salt) (N3-PEG-PLE). The process involved ternary (hydrophobic/ionic/supramolecular) interactions in three steps: 1) CFZ was entrapped in the cavity of HaβCD by hydrophobic interaction, 2) the drug-cyclodextrin inclusion complexes were mixed with N3-PEG-PLE to form polyion complex nanoparticles, and 3) the nanoparticles were modified with fluorescent dyes (AFDye 647) for imaging and/or epithelial cell adhesion molecule (EpCAM) antibodies for cancer cell targeting. CFZ/tPNPs were characterized for particle size, surface charge, drug release, stability, intracellular uptake, proteasome inhibition, and in vitro cytotoxicity. RESULTS tPNPs maintained an average particle size of 50 nm after CFZ entrapment, EpCAM conjugation, and freeze drying. tPNPs achieved high aqueous solubility of CFZ (>1 mg/mL), sustained drug release (t1/2 = 6.46 h), and EpCAM-mediated cell targeting, which resulted in increased intracellular drug accumulation, prolonged proteasome inhibition, and enhanced cytotoxicity of CFZ in drug-resistant DLD-1 colorectal cancer cells. CONCLUSIONS tPNPs improved stability and efficacy of CFZ in vitro, and these results potentiate effective cancer treatment using CFZ/tPNPs in future vivo studies.
Collapse
Affiliation(s)
- Preye Agbana
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, Kentucky, 40536-0596, USA
| | - Min Jae Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, Kentucky, 40536-0596, USA
| | - Piotr Rychahou
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, 40536, USA
| | - Kyung-Bo Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, Kentucky, 40536-0596, USA
| | - Younsoo Bae
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, Kentucky, 40536-0596, USA.
| |
Collapse
|
109
|
Krishna Y, Acha-Sagredo A, Sabat-Pośpiech D, Kipling N, Clarke K, Figueiredo CR, Kalirai H, Coupland SE. Transcriptome Profiling Reveals New Insights into the Immune Microenvironment and Upregulation of Novel Biomarkers in Metastatic Uveal Melanoma. Cancers (Basel) 2020; 12:cancers12102832. [PMID: 33008022 PMCID: PMC7650807 DOI: 10.3390/cancers12102832] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/17/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Uveal melanoma (UM) is a rare aggressive eye cancer. Although treatment of the eye tumour is successful, about 50% of UM patients develop a relapse of their cancer in the liver. At present, such advanced disease is not curable. A better understanding of the metastatic UM (mUM) in the liver is essential to improve patient survival. This study examines both the response of immune cells within the liver to the UM secondaries (metastases), as well as the expression of various proteins by the UM cells. Our study demonstrates that there is a limited immune response to the mUM, but reveals that a certain type of reactive immune cell: a protumourigenic subset of macrophage is dominant within the mUM. Our research also reveals novel proteins within the mUM, which are specific to these cells and therefore may be targetable in future therapies. Abstract Metastatic uveal melanoma (mUM) to the liver is incurable. Transcriptome profiling of 40 formalin-fixed paraffin-embedded mUM liver resections and 6 control liver specimens was undertaken. mUMs were assessed for morphology, nuclear BAP1 (nBAP1) expression, and their tumour microenvironments (TME) using an “immunoscore” (absent/altered/high) for tumour-infiltrating lymphocytes (TILs) and macrophages (TAMs). Transcriptomes were compared between mUM and control liver; intersegmental and intratumoural analyses were also undertaken. Most mUM were epithelioid cell-type (75%), amelanotic (55%), and nBAP1-ve (70%). They had intermediate (68%) or absent (15%) immunoscores for TILs and intermediate (53%) or high (45%) immunoscores for TAMs. M2-TAMs were dominant in the mUM-TME, with upregulated expression of ANXA1, CD74, CXCR4, MIF, STAT3, PLA2G6, and TGFB1. Compared to control liver, mUM showed significant (p < 0.01) upregulation of 10 genes: DUSP4, PRAME, CD44, IRF4/MUM1, BCL2, CD146/MCAM/MUC18, IGF1R, PNMA1, MFGE8/lactadherin, and LGALS3/Galectin-3. Protein expression of DUSP4, CD44, IRF4, BCL-2, CD146, and IGF1R was validated in all mUMs, whereas protein expression of PRAME was validated in 10% cases; LGALS3 stained TAMs, and MFGEF8 highlighted bile ducts only. Intersegmental mUMs show differing transcriptomes, whereas those within a single mUM were similar. Our results show that M2-TAMs dominate mUM-TME with upregulation of genes contributing to immunosuppression. mUM significantly overexpress genes with targetable signalling pathways, and yet these may differ between intersegmental lesions.
Collapse
Affiliation(s)
- Yamini Krishna
- Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Duncan Building, Daulby Street, Liverpool L69 3GA, UK;
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK; (A.A.-S.); (D.S.-P.); (N.K.); (H.K.)
| | - Amelia Acha-Sagredo
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK; (A.A.-S.); (D.S.-P.); (N.K.); (H.K.)
| | - Dorota Sabat-Pośpiech
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK; (A.A.-S.); (D.S.-P.); (N.K.); (H.K.)
| | - Natalie Kipling
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK; (A.A.-S.); (D.S.-P.); (N.K.); (H.K.)
| | - Kim Clarke
- Computational Biology Facility, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
| | - Carlos R. Figueiredo
- MediCity Research Laboratory and Institute of Biomedicine, University of Turku, Turun yliopisto, FI-20014 Turku, Finland;
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK; (A.A.-S.); (D.S.-P.); (N.K.); (H.K.)
| | - Sarah E. Coupland
- Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Duncan Building, Daulby Street, Liverpool L69 3GA, UK;
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK; (A.A.-S.); (D.S.-P.); (N.K.); (H.K.)
- Correspondence: ; Tel.: +44-151-794-9104
| |
Collapse
|
110
|
Fagotto F. EpCAM as Modulator of Tissue Plasticity. Cells 2020; 9:E2128. [PMID: 32961790 PMCID: PMC7563481 DOI: 10.3390/cells9092128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/24/2020] [Accepted: 09/14/2020] [Indexed: 01/01/2023] Open
Abstract
The Epithelial Cell Adhesion Molecule or EpCAM is a well-known marker highly expressed in carcinomas and showing a strong correlation with poor cancer prognosis. While its name relates to its proposed function as a cell adhesion molecule, EpCAM has been shown to have various signalling functions. In particular, it has been identified as an important positive regulator of cell adhesion and migration, playing an essential role in embryonic morphogenesis as well as intestinal homeostasis. This activity is not due to its putative adhesive function, but rather to its ability to repress myosin contractility by impinging on a PKC signalling cascade. This mechanism confers EpCAM the unique property of favouring tissue plasticity. I review here the currently available data, comment on possible connections with other properties of EpCAM, and discuss the potential significance in the context of cancer invasion.
Collapse
Affiliation(s)
- François Fagotto
- CRBM, University of Montpellier and CNRS, 34293 Montpellier, France
| |
Collapse
|
111
|
Schulte am Esch J, Windmöller BA, Hanewinkel J, Storm J, Förster C, Wilkens L, Krüger M, Kaltschmidt B, Kaltschmidt C. Isolation and Characterization of Two Novel Colorectal Cancer Cell Lines, Containing a Subpopulation with Potential Stem-Like Properties: Treatment Options by MYC/NMYC Inhibition. Cancers (Basel) 2020; 12:cancers12092582. [PMID: 32927768 PMCID: PMC7564713 DOI: 10.3390/cancers12092582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The aim of this study was to gain a better understanding of cancer stem cells, which are a small subpopulation of tumor cells with high plasticity driving tumor growth and metastasis. Here we isolated two novel colorectal cancer cell lines originating from a rectal neuroendocrine carcinoma and a colorectal adenocarcinoma, depicting stem-like properties. These in vitro models offer the possibility to evaluate pathophysiological mechanisms in order to develop tailored therapeutic strategies for distinct colorectal malignancies. Investigations revealed gene copy number gain of the N-myc proto-oncogene for both. Accordingly, inhibition of the protein–protein interaction of myc and N-myc proto-oncogenes with the myc-associated factor X utilizing small molecule KJ-Pyr-9, exhibited a significant reduction in survival of both cell lines by the induction of apoptosis. Consequently, the blockage of these interactions may serve as a possible treatment strategy for colorectal cancer cell lines with gene copy number gain of the N-myc proto-oncogene. Abstract Cancer stem cells (CSC) are crucial mediators of cancer relapse. Here, we isolated two primary human colorectal cancer cell lines derived from a rectal neuroendocrine carcinoma (BKZ-2) and a colorectal adenocarcinoma (BKZ-3), both containing subpopulations with potential stem-like properties. Protein expression of CSC-markers prominin-1 and CD44 antigen was significantly higher for BKZ-2 and BKZ-3 in comparison to well-established colon carcinoma cell lines. High sphere-formation capacity further confirmed the existence of a subpopulation with potential stem-like phenotype. Epithelial–mesenchymal transition markers as well as immune checkpoint ligands were expressed more pronounced in BKZ-2. Both cell populations demonstrated N-myc proto-oncogene (NMYC) copy number gain. Myc proto-oncogene (MYC)/NMYC activity inhibitor all-trans retinoic acid (ATRA) significantly reduced the number of tumor spheres for both and the volume of BKZ-2 spheres. In contrast, the sphere volume of ATRA-treated BKZ-3 was increased, and only BKZ-2 cell proliferation was reduced in monolayer culture. Treatment with KJ-Pyr-9, a specific inhibitor of MYC/NMYC-myc-associated factor X interaction, decreased survival by the induction of apoptosis of both. In summary, here, we present the novel colorectal cancer cell lines BKZ-2 and BKZ-3 as promising cellular in vitro models for colorectal carcinomas and identify the MYC/NMYC molecular pathway involved in CSC-induced carcinogenesis with relevant therapeutic potential.
Collapse
Affiliation(s)
- Jan Schulte am Esch
- Department of General and Visceral Surgery, Protestant Hospital of Bethel Foundation, 33611 Bielefeld, Germany;
- Forschungsverbund BioMedizin Bielefeld (FBMB), 33611 Bielefeld, Germany; (J.S.); (C.F.); (L.W.); (M.K.); (B.K.); (C.K.)
| | - Beatrice Ariane Windmöller
- Forschungsverbund BioMedizin Bielefeld (FBMB), 33611 Bielefeld, Germany; (J.S.); (C.F.); (L.W.); (M.K.); (B.K.); (C.K.)
- Department of Cell Biology, University of Bielefeld, 33611 Bielefeld, Germany;
- Correspondence: ; Tel.: +49-0521-106-5629
| | - Johannes Hanewinkel
- Department of Cell Biology, University of Bielefeld, 33611 Bielefeld, Germany;
| | - Jonathan Storm
- Forschungsverbund BioMedizin Bielefeld (FBMB), 33611 Bielefeld, Germany; (J.S.); (C.F.); (L.W.); (M.K.); (B.K.); (C.K.)
- Department of Cell Biology, University of Bielefeld, 33611 Bielefeld, Germany;
| | - Christine Förster
- Forschungsverbund BioMedizin Bielefeld (FBMB), 33611 Bielefeld, Germany; (J.S.); (C.F.); (L.W.); (M.K.); (B.K.); (C.K.)
- Institute of Pathology, KRH Hospital Nordstadt, affiliated with the Protestant Hospital of Bethel Foundation, 30167 Hannover, Germany
| | - Ludwig Wilkens
- Forschungsverbund BioMedizin Bielefeld (FBMB), 33611 Bielefeld, Germany; (J.S.); (C.F.); (L.W.); (M.K.); (B.K.); (C.K.)
- Institute of Pathology, KRH Hospital Nordstadt, affiliated with the Protestant Hospital of Bethel Foundation, 30167 Hannover, Germany
| | - Martin Krüger
- Forschungsverbund BioMedizin Bielefeld (FBMB), 33611 Bielefeld, Germany; (J.S.); (C.F.); (L.W.); (M.K.); (B.K.); (C.K.)
- Department of Internal Medicine and Gastroenterology, Protestant Hospital of Bethel Foundation, 33611 Bielefeld, Germany
| | - Barbara Kaltschmidt
- Forschungsverbund BioMedizin Bielefeld (FBMB), 33611 Bielefeld, Germany; (J.S.); (C.F.); (L.W.); (M.K.); (B.K.); (C.K.)
- Department of Cell Biology, University of Bielefeld, 33611 Bielefeld, Germany;
- Molecular Neurobiology, University of Bielefeld, 33615 Bielefeld, Germany
| | - Christian Kaltschmidt
- Forschungsverbund BioMedizin Bielefeld (FBMB), 33611 Bielefeld, Germany; (J.S.); (C.F.); (L.W.); (M.K.); (B.K.); (C.K.)
- Department of Cell Biology, University of Bielefeld, 33611 Bielefeld, Germany;
| |
Collapse
|
112
|
Markers of Angiogenesis, Lymphangiogenesis, and Epithelial-Mesenchymal Transition (Plasticity) in CIN and Early Invasive Carcinoma of the Cervix: Exploring Putative Molecular Mechanisms Involved in Early Tumor Invasion. Int J Mol Sci 2020; 21:ijms21186515. [PMID: 32899940 PMCID: PMC7554870 DOI: 10.3390/ijms21186515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 02/01/2023] Open
Abstract
The establishment of a proangiogenic phenotype and epithelial-to-mesenchymal transition (EMT) are considered as critical events that promote the induction of invasive growth in epithelial tumors, and stimulation of lymphangiogenesis is believed to confer the capacity for early dissemination to cancer cells. Recent research has revealed substantial interdependence between these processes at the molecular level as they rely on common signaling networks. Of great interest are the molecular mechanisms of (lymph-)angiogenesis and EMT associated with the earliest stages of transition from intraepithelial development to invasive growth, as they could provide the source of potentially valuable tools for targeting tumor metastasis. However, in the case of early-stage cervical cancer, the players of (lymph-)angiogenesis and EMT processes still remain substantially uncharacterized. In this study, we used RNA sequencing to compare transcriptomes of HPV(+) preinvasive neoplastic lesions and early-stage invasive carcinoma of the cervix and to identify (lymph-)angiogenesis- and EMT-related genes and pathways that may underlie early acquisition of invasive phenotype and metastatic properties by cervical cancer cells. Second, we applied flow cytometric analysis to evaluate the expression of three key lymphangiogenesis/EMT markers (VEGFR3, MET, and SLUG) in epithelial cells derived from enzymatically treated tissue specimens. Overall, among 201 differentially expressed genes, a considerable number of (lymph-)angiogenesis and EMT regulatory factors were identified, including genes encoding cytokines, growth factor receptors, transcription factors, and adhesion molecules. Pathway analysis confirmed enrichment for angiogenesis, epithelial differentiation, and cell guidance pathways at transition from intraepithelial neoplasia to invasive carcinoma and suggested immune-regulatory/inflammatory pathways to be implicated in initiation of invasive growth of cervical cancer. Flow cytometry showed cell phenotype-specific expression pattern for VEGFR3, MET, and SLUG and revealed correlation with the amount of tumor-infiltrating lymphocytes at the early stages of cervical cancer progression. Taken together, these results extend our understanding of driving forces of angiogenesis and metastasis in HPV-associated cervical cancer and may be useful for developing new treatments.
Collapse
|
113
|
Qin D, Li D, Zhang B, Chen Y, Liao X, Li X, Alexander PB, Wang Y, Li QJ. Potential lung attack and lethality generated by EpCAM-specific CAR-T cells in immunocompetent mouse models. Oncoimmunology 2020; 9:1806009. [PMID: 32923168 PMCID: PMC7458607 DOI: 10.1080/2162402x.2020.1806009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
The tumoricidal efficiency of human CAR-T cells is generally evaluated using immune-deficient mouse models; however, due to their immune-incompetency and the species-specific reactivity of a target antigen, these models are problematic to imitate CAR-T-induced adverse effects in the clinic. Epithelial cell adhesion molecule (EpCAM) is a tumor-associated antigen overtly presented on the cell surface of various carcinomas, making it an attractive target for CAR-T therapy. Here, we developed an anti-mouse EpCAM CAR to evaluate its safety and efficacy in immunocompetent mouse models. As previously reported for their human equivalents, murine EpCAM CAR-T cells exhibit promising anti-tumor efficacy in vitro and in vivo. However, after CAR-T infusion, various dose-depended toxicities including body weight loss, cytokine-release syndrome (CRS), and death were observed in both tumor-bearing and tumor-free mice. Pathological examination revealed unexpected and severe pulmonary immunopathology due to basal EpCAM expression in normal lung. While our study validates EpCAM CAR-T's potent anti-tumor efficacy, it also reveals that EpCAM CAR-T cells used for the treatment of solid tumors may cause lethal toxicity and should, therefore, be evaluated in patients with caution.
Collapse
Affiliation(s)
- Diyuan Qin
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Dan Li
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Benxia Zhang
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yue Chen
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xuelian Liao
- Department of oncology, The First People’s Hospital of Jintang, Chengdu, China
| | - Xiaoyu Li
- Institute of Drug Clinical Trial, West China Hospital, Sichuan University, Chengdu, China
| | | | - Yongsheng Wang
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
- Institute of Drug Clinical Trial, West China Hospital, Sichuan University, Chengdu, China
| | - Qi-Jing Li
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
114
|
Wang Z, Xu Q, Zhang N, Du X, Xu G, Yan X. CD146, from a melanoma cell adhesion molecule to a signaling receptor. Signal Transduct Target Ther 2020; 5:148. [PMID: 32782280 PMCID: PMC7421905 DOI: 10.1038/s41392-020-00259-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
CD146 was originally identified as a melanoma cell adhesion molecule (MCAM) and highly expressed in many tumors and endothelial cells. However, the evidence that CD146 acts as an adhesion molecule to mediate a homophilic adhesion through the direct interactions between CD146 and itself is still lacking. Recent evidence revealed that CD146 is not merely an adhesion molecule, but also a cellular surface receptor of miscellaneous ligands, including some growth factors and extracellular matrixes. Through the bidirectional interactions with its ligands, CD146 is actively involved in numerous physiological and pathological processes of cells. Overexpression of CD146 can be observed in most of malignancies and is implicated in nearly every step of the development and progression of cancers, especially vascular and lymphatic metastasis. Thus, immunotherapy against CD146 would provide a promising strategy to inhibit metastasis, which accounts for the majority of cancer-associated deaths. Therefore, to deepen the understanding of CD146, we review the reports describing the newly identified ligands of CD146 and discuss the implications of these findings in establishing novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Zhaoqing Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Qingji Xu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Nengwei Zhang
- Department of Gastrointestinal Hepatobiliary Tumor Surgery, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Xuemei Du
- Departments of Pathology, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Guangzhong Xu
- Department of Gastrointestinal Hepatobiliary Tumor Surgery, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
115
|
Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauß A, Blaudszun AR, Yevsa T, Fricke S, Kossatz-Boehlert U. Cancer Stem Cells-Origins and Biomarkers: Perspectives for Targeted Personalized Therapies. Front Immunol 2020; 11:1280. [PMID: 32849491 PMCID: PMC7426526 DOI: 10.3389/fimmu.2020.01280] [Citation(s) in RCA: 557] [Impact Index Per Article: 111.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
The use of biomarkers in diagnosis, therapy and prognosis has gained increasing interest over the last decades. In particular, the analysis of biomarkers in cancer patients within the pre- and post-therapeutic period is required to identify several types of cells, which carry a risk for a disease progression and subsequent post-therapeutic relapse. Cancer stem cells (CSCs) are a subpopulation of tumor cells that can drive tumor initiation and can cause relapses. At the time point of tumor initiation, CSCs originate from either differentiated cells or adult tissue resident stem cells. Due to their importance, several biomarkers that characterize CSCs have been identified and correlated to diagnosis, therapy and prognosis. However, CSCs have been shown to display a high plasticity, which changes their phenotypic and functional appearance. Such changes are induced by chemo- and radiotherapeutics as well as senescent tumor cells, which cause alterations in the tumor microenvironment. Induction of senescence causes tumor shrinkage by modulating an anti-tumorigenic environment in which tumor cells undergo growth arrest and immune cells are attracted. Besides these positive effects after therapy, senescence can also have negative effects displayed post-therapeutically. These unfavorable effects can directly promote cancer stemness by increasing CSC plasticity phenotypes, by activating stemness pathways in non-CSCs, as well as by promoting senescence escape and subsequent activation of stemness pathways. At the end, all these effects can lead to tumor relapse and metastasis. This review provides an overview of the most frequently used CSC markers and their implementation as biomarkers by focussing on deadliest solid (lung, stomach, liver, breast and colorectal cancers) and hematological (acute myeloid leukemia, chronic myeloid leukemia) cancers. Furthermore, it gives examples on how the CSC markers might be influenced by therapeutics, such as chemo- and radiotherapy, and the tumor microenvironment. It points out, that it is crucial to identify and monitor residual CSCs, senescent tumor cells, and the pro-tumorigenic senescence-associated secretory phenotype in a therapy follow-up using specific biomarkers. As a future perspective, a targeted immune-mediated strategy using chimeric antigen receptor based approaches for the removal of remaining chemotherapy-resistant cells as well as CSCs in a personalized therapeutic approach are discussed.
Collapse
Affiliation(s)
- Lia Walcher
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Ann-Kathrin Kistenmacher
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Huizhen Suo
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Reni Kitte
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Sarah Dluczek
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Alexander Strauß
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - André-René Blaudszun
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Tetyana Yevsa
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Stephan Fricke
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Uta Kossatz-Boehlert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
116
|
Eslami-S Z, Cortés-Hernández LE, Alix-Panabières C. Epithelial Cell Adhesion Molecule: An Anchor to Isolate Clinically Relevant Circulating Tumor Cells. Cells 2020; 9:cells9081836. [PMID: 32764280 PMCID: PMC7464831 DOI: 10.3390/cells9081836] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
In the last few decades, the epithelial cell adhesion molecule (EpCAM) has received increased attention as the main membrane marker used in many enrichment technologies to isolate circulating tumor cells (CTCs). Although there has been a great deal of progress in the implementation of EpCAM-based CTC detection technologies in medical settings, several issues continue to limit their clinical utility. The biology of EpCAM and its role are not completely understood but evidence suggests that the expression of this epithelial cell-surface protein is crucial for metastasis-competent CTCs and may not be lost completely during the epithelial-to-mesenchymal transition. In this review, we summarize the most significant advantages and disadvantages of using EpCAM as a marker for CTC enrichment and its potential biological role in the metastatic cascade.
Collapse
|
117
|
Wang L, Dorn P, Simillion C, Froment L, Berezowska S, Tschanz SA, Haenni B, Blank F, Wotzkow C, Peng RW, Marti TM, Bode PK, Moehrlen U, Schmid RA, Hall SRR. EpCAM +CD73 + mark epithelial progenitor cells in postnatal human lung and are associated with pathogenesis of pulmonary disease including lung adenocarcinoma. Am J Physiol Lung Cell Mol Physiol 2020; 319:L794-L809. [PMID: 32726135 DOI: 10.1152/ajplung.00279.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lung injury in mice induces mobilization of discrete subsets of epithelial progenitor cells to promote new airway and alveolar structures. However, whether similar cell types exist in human lung remains unresolved. Using flow cytometry, we identified a distinct cluster of cells expressing the epithelial cell adhesion molecule (EpCAM), a cell surface marker expressed on epithelial progenitor cells, enriched in the ecto-5'-nucleotidase CD73 in unaffected postnatal human lungs resected from pediatric patients with congenital lung lesions. Within the EpCAM+CD73+ population, a small subset coexpresses integrin β4 and HTII-280. This population remained stable with age. Spatially, EpCAM+CD73+ cells were positioned along the basal membrane of respiratory epithelium and alveolus next to CD73+ cells lacking EpCAM. Expanded EpCAM+CD73+ cells give rise to a pseudostratified epithelium in a two-dimensional air-liquid interface or a clonal three-dimensional organoid assay. Organoids generated under alveolar differentiation conditions were cystic-like and lacked robust alveolar mature cell types. Compared with unaffected postnatal lung, congenital lung lesions were marked by clusters of EpCAM+CD73+ cells in airway and cystic distal lung structures lined by simple epithelium composed of EpCAM+SCGB1A1+ cells and hyperplastic EpCAM+proSPC+ cells. In non-small-cell lung cancer (NSCLC), there was a marked increase in EpCAM+CD73+ tumor cells enriched in inhibitory immune checkpoint molecules CD47 and programmed death-ligand 1 (PD-L1), which was associated with poor survival in lung adenocarcinoma (LUAD). In conclusion, EpCAM+CD73+ cells are rare novel epithelial progenitor cells in the human lung. Importantly, reemergence of CD73 in lung adenocarcinoma enriched in negative immune checkpoint molecules may serve as a novel therapeutic target.
Collapse
Affiliation(s)
- Limei Wang
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department of BioMedical Research, University of Bern, Switzerland
| | - Patrick Dorn
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
| | | | - Laurène Froment
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department of BioMedical Research, University of Bern, Switzerland
| | | | | | - Beat Haenni
- Institute of Anatomy, University of Bern, Switzerland
| | - Fabian Blank
- Department of BioMedical Research, University of Bern, Switzerland.,DCR Live Imaging Core, University of Bern, Switzerland
| | | | - Ren-Wang Peng
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department of BioMedical Research, University of Bern, Switzerland
| | - Thomas M Marti
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department of BioMedical Research, University of Bern, Switzerland
| | - Peter K Bode
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Switzerland
| | - Ueli Moehrlen
- Department of Pediatric Surgery, University Children's Hospital, Zurich, Switzerland
| | - Ralph A Schmid
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department of BioMedical Research, University of Bern, Switzerland
| | - Sean R R Hall
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department of BioMedical Research, University of Bern, Switzerland
| |
Collapse
|
118
|
Kottmann JS, Jørgensen MGP, Bertolini F, Loh A, Tomkiewicz J. Differential impacts of carp and salmon pituitary extracts on induced oogenesis, egg quality, molecular ontogeny and embryonic developmental competence in European eel. PLoS One 2020; 15:e0235617. [PMID: 32634160 PMCID: PMC7340298 DOI: 10.1371/journal.pone.0235617] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022] Open
Abstract
Low egg quality and embryonic survival are critical challenges in aquaculture, where assisted reproduction procedures and other factors may impact egg quality. This includes European eel (Anguilla anguilla), where pituitary extract from carp (CPE) or salmon (SPE) is applied to override a dopaminergic inhibition of the neuroendocrine system, preventing gonadotropin secretion and gonadal development. The present study used either CPE or SPE to induce vitellogenesis in female European eel and compared impacts on egg quality and offspring developmental competence with emphasis on the maternal-to-zygotic transition (MZT). Females treated with SPE produced significantly higher proportions of floating eggs with fewer cleavage abnormalities and higher embryonic survival. These findings related successful embryogenesis to higher abundance of mRNA transcripts of genes involved in cell adhesion, activation of MZT, and immune response (dcbld1, epcam, oct4, igm) throughout embryonic development. The abundance of mRNA transcripts of cldnd, foxr1, cea, ccna1, ccnb1, ccnb2, zar1, oct4, and npm2 was relatively stable during the first eight hours, followed by a drop during MZT and low levels thereafter, indicating transfer and subsequent clearance of maternal mRNA. mRNA abundance of zar1, epcam, and dicer1 was associated with cleavage abnormalities, while mRNA abundance of zar1, sox2, foxr1, cldnd, phb2, neurod4, and neurog1 (before MZT) was associated with subsequent embryonic survival. In a second pattern, low initial mRNA abundance with an increase during MZT and higher levels persisting thereafter indicating the activation of zygotic transcription. mRNA abundance of ccna1, npm2, oct4, neurod4, and neurog1 during later embryonic development was associated with hatch success. A deviating pattern was observed for dcbld1, which mRNA levels followed the maternal-effect gene pattern but only for embryos from SPE treated females. Together, the differences in offspring production and performance reported in this study show that PE composition impacts egg quality and embryogenesis and in particular, the transition from initial maternal transcripts to zygotic transcription.
Collapse
Affiliation(s)
- Johanna S. Kottmann
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Francesca Bertolini
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Adrian Loh
- School of Science, University of Greenwich, Chatham Maritime, Kent, United Kingdom
| | - Jonna Tomkiewicz
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
119
|
van den Brand D, van Lith SAM, de Jong JM, Gorris MAJ, Palacio-Castañeda V, Couwenbergh ST, Goldman MRG, Ebisch I, Massuger LF, Leenders WPJ, Brock R, Verdurmen WPR. EpCAM-Binding DARPins for Targeted Photodynamic Therapy of Ovarian Cancer. Cancers (Basel) 2020; 12:E1762. [PMID: 32630661 PMCID: PMC7409335 DOI: 10.3390/cancers12071762] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy due to late detection associated with dissemination throughout the abdominal cavity. Targeted photodynamic therapy (tPDT) aimed at epithelial cell adhesion molecule (EpCAM), overexpressed in over 90% of ovarian cancer metastatic lesions, is a promising novel therapeutic modality. Here, we tested the specificity and activity of conjugates of EpCAM-directed designed ankyrin repeat proteins (DARPins) with the photosensitizer IRDye 700DX in in vitro and in vivo ovarian cancer models. EpCAM-binding DARPins (Ec1: Kd = 68 pM; Ac2: Kd = 130 nM) and a control DARPin were site-specifically functionalized with fluorophores or IRDye 700DX. Conjugation of anti-EpCAM DARPins with fluorophores maintained EpCAM-specific binding in cell lines and patient-derived ovarian cancer explants. Penetration of DARPin Ec1 into tumor spheroids was slower than that of Ac2, indicative of a binding site barrier effect for Ec1. DARPin-IRDye 700DX conjugates killed EpCAM-expressing cells in a highly specific and illumination-dependent fashion in 2D and 3D cultures. Furthermore, they effectively homed to EpCAM-expressing subcutaneous OV90 xenografts in mice. In conclusion, the high activity and specificity observed in preclinical ovarian cancer models, combined with a high specificity in patient material, warrant a further investigation of EpCAM-targeted PDT for ovarian cancer.
Collapse
Affiliation(s)
- Dirk van den Brand
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands;
| | - Sanne A. M. van Lith
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands;
| | - Jelske M. de Jong
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
| | - Mark A. J. Gorris
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands;
| | - Valentina Palacio-Castañeda
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
| | - Stijn T. Couwenbergh
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
| | - Mark R. G. Goldman
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
| | - Inge Ebisch
- Department of Obstetrics and Gynaecology, Canisius Wilhelmina Hospital, Weg door Jonkerbos 100, 6532 SZ Nijmegen, The Netherlands;
| | - Leon F. Massuger
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands;
| | - William P. J. Leenders
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
| | - Wouter P. R. Verdurmen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (D.v.d.B.); (J.M.d.J.); (V.P.-C.); (S.T.C.); (M.R.G.G.); (W.P.J.L.); (R.B.)
| |
Collapse
|
120
|
Gaber A, Lenarčič B, Pavšič M. Current View on EpCAM Structural Biology. Cells 2020; 9:cells9061361. [PMID: 32486423 PMCID: PMC7349879 DOI: 10.3390/cells9061361] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
EpCAM, a carcinoma cell-surface marker protein and a therapeutic target, has been primarily addressed as a cell adhesion molecule. With regard to recent discoveries of its role in signaling with implications in cell proliferation and differentiation, and findings contradicting a direct role in mediating adhesion contacts, we provide a comprehensive and updated overview on the available structural data on EpCAM and interpret it in the light of recent reports on its function. First, we describe the structure of extracellular part of EpCAM, both as a subunit and part of a cis-dimer which, according to several experimental observations, represents a biologically relevant oligomeric state. Next, we provide a thorough evaluation of reports on EpCAM as a homophilic cell adhesion molecule with a structure-based explanation why direct EpCAM participation in cell–cell contacts is highly unlikely. Finally, we review the signaling aspect of EpCAM with focus on accessibility of signaling-associated cleavage sites.
Collapse
Affiliation(s)
- Aljaž Gaber
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.G.); (B.L.)
| | - Brigita Lenarčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.G.); (B.L.)
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Miha Pavšič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.G.); (B.L.)
- Correspondence: ; Tel.: +386-1-479-8550
| |
Collapse
|
121
|
Liu YC, Yeh CT, Lin KH. Cancer Stem Cell Functions in Hepatocellular Carcinoma and Comprehensive Therapeutic Strategies. Cells 2020; 9:cells9061331. [PMID: 32466488 PMCID: PMC7349579 DOI: 10.3390/cells9061331] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant cause of cancer-related mortality owing to resistance to traditional treatments and tumor recurrence after therapy, which leads to poor therapeutic outcomes. Cancer stem cells (CSC) are a small subset of tumor cells with the capability to influence self-renewal, differentiation, and tumorigenesis. A number of surface markers for liver cancer stem cell (LCSC) subpopulations (EpCAM, CD133, CD44, CD13, CD90, OV-6, CD47, and side populations) in HCC have been identified. LCSCs play critical roles in regulating HCC stemness, self-renewal, tumorigenicity, metastasis, recurrence, and therapeutic resistance via genetic mutations, epigenetic disruption, signaling pathway dysregulation, or alterations microenvironment. Accumulating studies have shown that biomarkers for LCSCs contribute to diagnosis and prognosis prediction of HCC, supporting their utility in clinical management and development of therapeutic strategies. Preclinical and clinical analyses of therapeutic approaches for HCC using small molecule inhibitors, oncolytic measles viruses, and anti-surface marker antibodies have demonstrated selective, efficient, and safe targeting of LCSC populations. The current review focuses on recent reports on the influence of LCSCs on HCC stemness, tumorigenesis, and multiple drug resistance (MDR), along with LCSC-targeted therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Yu-Chin Liu
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan;
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan;
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Correspondence: ; Tel./Fax: +886-3-211-8263
| |
Collapse
|
122
|
Mitochondrial bioenergetics, uncoupling protein-2 activity, and reactive oxygen species production in the small intestine of a TNBS-induced colitis rat model. Mol Cell Biochem 2020; 470:87-98. [PMID: 32394310 DOI: 10.1007/s11010-020-03749-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/06/2020] [Indexed: 10/24/2022]
Abstract
Inflammatory bowel disease (IBD) is often associated with a decrease in energy-dependent nutrient uptake across the jejunum that serves as the main site for absorption in the small intestine. This association has prompted us to investigate the bioenergetics underlying the alterations in jejunal absorption in 2,4,6-trinitrobenzenesulfonic acid-induced colitis in rats. We have found that mitochondrial oxygen consumption did not change in state 2 and state 3 respirations but showed an increase in state 4 respiration indicating a decrease in the respiratory control ratio of jejunal mitochondria during the peak of inflammation. This decrease in the coupling state was found to be guanosine diphosphate-sensitive, hence, implicating the involvement of uncoupling protein-2 (UCP2). Furthermore, the study has reported that the production of reactive oxygen species (ROS), known to be activators of UCP2, correlated negatively with UCP2 activity. Thus, we suggest that ROS production in the jejunum might be activating UCP2 which has an antioxidant activity, and that uncoupling of the mitochondria decreases the efficiency of energy production, leading to a decrease in energy-dependent nutrient absorption. Hence, this study is the first to account for an involvement of energy production and a role for UCP2 in the absorptive abnormalities of the small intestine in animal models of colitis.
Collapse
|
123
|
Thong T, Wang Y, Brooks MD, Lee CT, Scott C, Balzano L, Wicha MS, Colacino JA. Hybrid Stem Cell States: Insights Into the Relationship Between Mammary Development and Breast Cancer Using Single-Cell Transcriptomics. Front Cell Dev Biol 2020; 8:288. [PMID: 32457901 PMCID: PMC7227401 DOI: 10.3389/fcell.2020.00288] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/02/2020] [Indexed: 12/15/2022] Open
Abstract
Similarities between stem cells and cancer cells have implicated mammary stem cells in breast carcinogenesis. Recent evidence suggests that normal breast stem cells exist in multiple phenotypic states: epithelial, mesenchymal, and hybrid epithelial/mesenchymal (E/M). Hybrid E/M cells in particular have been implicated in breast cancer metastasis and poor prognosis. Mounting evidence also suggests that stem cell phenotypes change throughout the life course, for example, through embryonic development and pregnancy. The goal of this study was to use single cell RNA-sequencing to quantify cell state distributions of the normal mammary (NM) gland throughout developmental stages and when perturbed into a stem-like state in vitro using conditional reprogramming (CR). Using machine learning based dataset alignment, we integrate multiple mammary gland single cell RNA-seq datasets from human and mouse, along with bulk RNA-seq data from breast tumors in the Cancer Genome Atlas (TCGA), to interrogate hybrid stem cell states in the normal mammary gland and cancer. CR of human mammary cells induces an expanded stem cell state, characterized by increased expression of embryonic stem cell associated genes. Alignment to a mouse single-cell transcriptome atlas spanning mammary gland development from in utero to adulthood revealed that NM cells align to adult mouse cells and CR cells align across the pseudotime trajectory with a stem-like population aligning to the embryonic mouse cells. Three hybrid populations emerge after CR that are rare in NM: KRT18+/KRT14+ (hybrid luminal/basal), EPCAM+/VIM+ (hybrid E/M), and a quadruple positive population, expressing all four markers. Pseudotime analysis and alignment to the mouse developmental trajectory revealed that E/M hybrids are the most developmentally immature. Analyses of single cell mouse mammary RNA-seq throughout pregnancy show that during gestation, there is an enrichment of hybrid E/M cells, suggesting that these cells play an important role in mammary morphogenesis during lactation. Finally, pseudotime analysis and alignment of TCGA breast cancer expression data revealed that breast cancer subtypes express distinct developmental signatures, with basal tumors representing the most “developmentally immature” phenotype. These results highlight phenotypic plasticity of normal mammary stem cells and provide insight into the relationship between hybrid cell populations, stemness, and cancer.
Collapse
Affiliation(s)
- Tasha Thong
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Yutong Wang
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States
| | - Michael D Brooks
- Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Christopher T Lee
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Clayton Scott
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States.,Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Laura Balzano
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States
| | - Max S Wicha
- Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States.,Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Justin A Colacino
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States.,Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States.,Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
124
|
Das B, Okamoto K, Rabalais J, Marchelletta RR, Barrett KE, Das S, Niwa M, Sivagnanam M. Congenital Tufting Enteropathy-Associated Mutant of Epithelial Cell Adhesion Molecule Activates the Unfolded Protein Response in a Murine Model of the Disease. Cells 2020; 9:cells9040946. [PMID: 32290509 PMCID: PMC7226999 DOI: 10.3390/cells9040946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022] Open
Abstract
Congenital tufting enteropathy (CTE) is a rare chronic diarrheal disease of infancy caused by mutations in epithelial cell adhesion molecule (EpCAM). Previously, a murine CTE model showed mis-localization of EpCAM away from the basolateral cell surface in the intestine. Here we demonstrate that mutant EpCAM accumulated in the endoplasmic reticulum (ER) where it co-localized with ER chaperone, GRP78/BiP, revealing potential involvement of ER stress-induced unfolded protein response (UPR) pathway in CTE. To investigate the significance of ER-localized mutant EpCAM in CTE, activation of the three UPR signaling branches initiated by the ER transmembrane protein components IRE1, PERK, and ATF6 was tested. A significant reduction in BLOS1 and SCARA3 mRNA levels in EpCAM mutant intestinal cells demonstrated that regulated IRE1-dependent decay (RIDD) was activated. However, IRE1 dependent XBP1 mRNA splicing was not induced. Furthermore, an increase in nuclear-localized ATF6 in mutant intestinal tissues revealed activation of the ATF6-signaling arm. Finally, an increase in both the phosphorylated form of the translation initiation factor, eIF2α, and ATF4 expression in the mutant intestine provided support for activation of the PERK-mediated pathway. Our results are consistent with a significant role for UPR in gastrointestinal homeostasis and provide a working model for CTE pathophysiology.
Collapse
Affiliation(s)
- Barun Das
- Department of Pediatrics, University of California, San Diego, CA 92093, USA; (B.D.); (K.O.); (J.R.)
| | - Kevin Okamoto
- Department of Pediatrics, University of California, San Diego, CA 92093, USA; (B.D.); (K.O.); (J.R.)
| | - John Rabalais
- Department of Pediatrics, University of California, San Diego, CA 92093, USA; (B.D.); (K.O.); (J.R.)
| | - Ronald R. Marchelletta
- Department of Medicine, University of California, San Diego, CA 92093, USA; (R.R.M.); (K.E.B.)
| | - Kim E. Barrett
- Department of Medicine, University of California, San Diego, CA 92093, USA; (R.R.M.); (K.E.B.)
| | - Soumita Das
- Department of Pathology, University of California, San Diego, CA 92093, USA;
| | - Maho Niwa
- Division of Biological Sciences, University of California, San Diego, CA 92093, USA;
| | - Mamata Sivagnanam
- Department of Pediatrics, University of California, San Diego, CA 92093, USA; (B.D.); (K.O.); (J.R.)
- Rady Children’s Hospital, San Diego, CA 92123, USA
- Correspondence: ; Tel.: +1-858-966-8907
| |
Collapse
|
125
|
Bankers L, Miller C, Liu G, Thongkittidilok C, Morrison J, Poeschla EM. Development of IFN-Stimulated Gene Expression from Embryogenesis through Adulthood, with and without Constitutive MDA5 Pathway Activation. THE JOURNAL OF IMMUNOLOGY 2020; 204:2791-2807. [PMID: 32277054 DOI: 10.4049/jimmunol.1901421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/26/2020] [Indexed: 11/19/2022]
Abstract
Pathogen-associated molecular patterns (e.g., dsRNA) activate expression of IFN-stimulated genes (ISGs), which protect hosts from infection. Although transient ISG upregulation is essential for effective innate immunity, constitutive activation typically causes harmful autoimmunity in mice and humans, often including severe developmental abnormalities. We have shown that transgenic mice expressing a picornavirus RNA-dependent RNA polymerase (RdRP) outside the viral context (RdRP mice) exhibit constitutive, MDA5-dependent, and quantitatively dramatic upregulation of many ISGs, which confers broad viral infection resistance. Remarkably, RdRP mice never develop autoinflammation, interferonopathy, or other discernible abnormalities. In this study, we used RNA sequencing and other methods to analyze ISG expression across five time points from fetal development to adulthood in wild-type and RdRP mice. In RdRP mice, the proportion of upregulated ISGs increased during development, with the most dramatic induction occurring 2 wk postnatally. The amplified ISG profile is then maintained lifelong. Molecular pathways and biological functions associated with innate immune and IFN signaling are only activated postnatally, suggesting constrained fetal responsiveness to innate immune stimuli. Biological functions supporting replication of viruses are only inhibited postnatally. We further determined that the RdRP is expressed at low levels and that blocking Ifnar1 reverses the amplified ISG transcriptome in adults. In conclusion, the upregulated ISG profile of RdRP mice is mostly triggered early postnatally, is maintained through adulthood, and requires ongoing type I IFN signaling to maintain it. The model provides opportunities to study the systems biology of innate immunity and to determine how sustained ISG upregulation can be compatible with robust health.
Collapse
Affiliation(s)
- Laura Bankers
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado Denver School of Medicine, Aurora, CO 80045
| | - Caitlin Miller
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado Denver School of Medicine, Aurora, CO 80045
| | - Guoqi Liu
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado Denver School of Medicine, Aurora, CO 80045
| | - Chommanart Thongkittidilok
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado Denver School of Medicine, Aurora, CO 80045
| | - James Morrison
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado Denver School of Medicine, Aurora, CO 80045
| | - Eric M Poeschla
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado Denver School of Medicine, Aurora, CO 80045
| |
Collapse
|
126
|
Hosseini ZS, Hashemi Golpayegani SMR. Esophageal epithelium modeling based on globally coupled map: an approach toward precancerous lesion diagnosis. Med Biol Eng Comput 2020; 58:1297-1308. [PMID: 32239347 DOI: 10.1007/s11517-020-02151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 02/19/2020] [Indexed: 11/25/2022]
Abstract
Esophageal squamous cell carcinoma is the most predominant malignancy of the esophagus. Its histological precursors (dysplasia) emerge in the esophageal epithelium that their progression into the underlying layers leads to cancer. The epithelium is the origin of many solid cancers and, accordingly, the focus of numerous computational models. In this work, we proposed a framework to establish a two-dimensional, globally coupled map to model the epithelium dynamics. The model aims at diagnosing the early stage of dysplasia based on microscopic images of endoscopic biopsies. We used the logistic map as a black-box model for the epithelial cells. By relating between the structure and dynamic of the epithelium, we defined the coupling function and proposed a case-dependent model in which the parameters were adjusted based on fractal geometry of each pathological image. Thus, by assigning different attractors to the cells' behavior, the lattice dynamic was investigated by the Lyapunov exponent. The decreasing pattern of Lyapunov exponent variations across the epithelium thickness had reasonable performance in diagnosing the normal specimens from the low-grade dysplasia ones. The results showed that there could be a direct relationship between the structural complexity of this system and its uncertainty of dynamics. Graphical abstract The modeling process of the esophageal epithelium to classify the experimental data at normal and LGD stages.
Collapse
Affiliation(s)
- Zahra Sadat Hosseini
- Complex Systems and Cybernetic Control Lab, Biomedical Engineering Department, Amirkabir University of Technology, P.O. Box 1591634311, Tehran, Iran
| | | |
Collapse
|
127
|
In silico design and validation of high-affinity RNA aptamers targeting epithelial cellular adhesion molecule dimers. Proc Natl Acad Sci U S A 2020; 117:8486-8493. [PMID: 32234785 DOI: 10.1073/pnas.1913242117] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nucleic acid aptamers hold great promise for therapeutic applications due to their favorable intrinsic properties, as well as high-throughput experimental selection techniques. Despite the utility of the systematic evolution of ligands by the exponential enrichment (SELEX) method for aptamer determination, complementary in silico aptamer design is highly sought after to facilitate virtual screening and increased understanding of important nucleic acid-protein interactions. Here, with a combined experimental and theoretical approach, we have developed two optimal epithelial cellular adhesion molecule (EpCAM) aptamers. Our structure-based in silico method first predicts their binding modes and then optimizes them for EpCAM with molecular dynamics simulations, docking, and free energy calculations. Our isothermal titration calorimetry experiments further confirm that the EpCAM aptamers indeed exhibit enhanced affinity over a previously patented nanomolar aptamer, EP23. Moreover, our study suggests that EP23 and the de novo designed aptamers primarily bind to EpCAM dimers (and not monomers, as hypothesized in previous published works), suggesting a paradigm for developing EpCAM-targeted therapies.
Collapse
|
128
|
Coleman MC, Whitfield-Cargile C, Cohen ND, Goldsby JL, Davidson L, Chamoun-Emanuelli AM, Ivanov I, Eades S, Ing N, Chapkin RS. Non-invasive evaluation of the equine gastrointestinal mucosal transcriptome. PLoS One 2020; 15:e0229797. [PMID: 32176710 PMCID: PMC7075554 DOI: 10.1371/journal.pone.0229797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
Evaluating the health and function of the gastrointestinal tract can be challenging in all species, but is especially difficult in horses due to their size and length of the gastrointestinal (GI) tract. Isolation of mRNA of cells exfoliated from the GI mucosa into feces (i.e., the exfoliome) offers a novel means of non-invasively examining the gene expression profile of the GI mucosa. This approach has been utilized in people with colorectal cancer. Moreover, we have utilized this approach in a murine model of GI inflammation and demonstrated that the exfoliome reflects the tissue transcriptome. The ability of the equine exfoliome to provide non-invasive information regarding the health and function of the GI tract is not known. The objective of this study was to characterize the gene expression profile found in exfoliated intestinal epithelial cells from normal horses and compare the exfoliome data with the tissue mucosal transcriptome. Mucosal samples were collected from standardized locations along the GI tract (i.e. ileum, cecum, right dorsal colon, and rectum) from four healthy horses immediately following euthanasia. Voided feces were also collected. RNA isolation, library preparation, and RNA sequencing was performed on fecal and intestinal mucosal samples. Comparison of gene expression profiles from the tissue and exfoliome revealed correlation of gene expression. Moreover, the exfoliome contained reads representing the diverse array of cell types found in the GI mucosa suggesting the equine exfoliome serves as a non-invasive means of examining the global gene expression pattern of the equine GI tract.
Collapse
Affiliation(s)
- Michelle C. Coleman
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Canaan Whitfield-Cargile
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| | - Noah D. Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jennifer L. Goldsby
- Program in Integrative Nutrition & Complex Diseases, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, United States America
| | - Laurie Davidson
- Program in Integrative Nutrition & Complex Diseases, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, United States America
| | - Ana M. Chamoun-Emanuelli
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Ivan Ivanov
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Susan Eades
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Nancy Ing
- Department of Animal Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Robert S. Chapkin
- Program in Integrative Nutrition & Complex Diseases, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, United States America
| |
Collapse
|
129
|
Liu A, Sun X, Xu J, Xuan Y, Zhao Y, Qiu T, Hou F, Qin Y, Wang Y, Lu T, Wo Y, Li Y, Xing X, Jiao W. Relevance and prognostic ability of Twist, Slug and tumor spread through air spaces in lung adenocarcinoma. Cancer Med 2020; 9:1986-1998. [PMID: 31970942 PMCID: PMC7064118 DOI: 10.1002/cam4.2858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tumor spread through air spaces (STAS) is a novel pathologic characteristic in lung adenocarcinomas that indicates invasive tumor behavior. We aimed to explore the relationship between Twist, Slug and STAS in lung adenocarcinoma and to investigate the potential relationship between epithelial-mesenchymal transition (EMT) and STAS. MATERIALS AND METHODS Our study retrospectively analyzed 115 patients with resected lung adenocarcinomas to evaluate the relationship between Twist, Slug and STAS. STAS was diagnosed using hematoxylin-eosin (H&E) staining. Immunohistochemistry was used to evaluate the expression levels of Slug and Twist. RESULTS In this study, 56 (48.7%) patients had STAS, 40 (34.8%) patients had Slug overexpression, and 28 (24.3%) patients had Twist overexpression. Patients with either STAS or Slug and Twist overexpression experienced poor recurrence-free survival (RFS) and overall survival (OS). There were significant associations between Twist overexpression, Slug overexpression and the presence of STAS. The logistic model further revealed that pathological stage, Twist overexpression and Slug overexpression were independent risk factors for STAS. A multivariate analysis that contained Twist, Slug, pathologic stage and STAS, showed that pathologic stage and STAS were independent prognostic factors for poor RFS and OS. Another multivariate model that contained Twist, Slug and pathologic stage, showed that pathologic stage, Twist overexpression and Slug overexpression were independent risk factors for poor RFS and OS. In the cohort with STAS, the multivariate analysis showed that pathologic stage and Twist overexpression were independent risk factors for poor survival. The subgroup analysis showed that patients with both Slug overexpression and Twist overexpression with STAS received a poor prognosis. CONCLUSIONS STAS, Slug and Twist were correlated with poor RFS and OS in resected lung adenocarcinomas. Additionally, STAS was correlated with the overexpression of Twist and Slug, which could potentially provide information on the mechanism of STAS.
Collapse
Affiliation(s)
- Ao Liu
- Department of Thoracic SurgeryAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xiao Sun
- Department of Thoracic SurgeryAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Jin Xu
- Department of PathologyAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yunpeng Xuan
- Department of Thoracic SurgeryAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yandong Zhao
- Department of Thoracic SurgeryAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Tong Qiu
- Department of Thoracic SurgeryAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Feng Hou
- Department of PathologyAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yi Qin
- Department of Thoracic SurgeryAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yuanyong Wang
- Department of Thoracic SurgeryAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Tong Lu
- Department of Thoracic SurgeryAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yang Wo
- Department of Thoracic SurgeryAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yujun Li
- Department of PathologyAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xiaoming Xing
- Department of PathologyAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Wenjie Jiao
- Department of Thoracic SurgeryAffiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
130
|
Grimaldi A, Cammarata I, Martire C, Focaccetti C, Piconese S, Buccilli M, Mancone C, Buzzacchino F, Berrios JRG, D'Alessandris N, Tomao S, Giangaspero F, Paroli M, Caccavale R, Spinelli GP, Girelli G, Peruzzi G, Nisticò P, Spada S, Panetta M, Letizia Cecere F, Visca P, Facciolo F, Longo F, Barnaba V. Combination of chemotherapy and PD-1 blockade induces T cell responses to tumor non-mutated neoantigens. Commun Biol 2020; 3:85. [PMID: 32099064 PMCID: PMC7042341 DOI: 10.1038/s42003-020-0811-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/06/2020] [Indexed: 12/16/2022] Open
Abstract
Here, we developed an unbiased, functional target-discovery platform to identify immunogenic proteins from primary non-small cell lung cancer (NSCLC) cells that had been induced to apoptosis by cisplatin (CDDP) treatment in vitro, as compared with their live counterparts. Among the multitude of proteins identified, some of them were represented as fragmented proteins in apoptotic tumor cells, and acted as non-mutated neoantigens (NM-neoAgs). Indeed, only the fragmented proteins elicited effective multi-specific CD4+ and CD8+ T cell responses, upon a chemotherapy protocol including CDDP. Importantly, these responses further increased upon anti-PD-1 therapy, and correlated with patients' survival and decreased PD-1 expression. Cross-presentation assays showed that NM-neoAgs were unveiled in apoptotic tumor cells as the result of caspase-dependent proteolytic activity of cellular proteins. Our study demonstrates that apoptotic tumor cells generate a repertoire of immunogenic NM-neoAgs that could be potentially used for developing effective T cell-based immunotherapy across multiple cancer patients.
Collapse
MESH Headings
- Aged
- Antigen Presentation/drug effects
- Antigen Presentation/immunology
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/isolation & purification
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/therapy
- Case-Control Studies
- Cell Line, Tumor
- Cisplatin/administration & dosage
- Cisplatin/pharmacology
- Combined Modality Therapy
- Drug Screening Assays, Antitumor/methods
- Female
- Humans
- Immunity, Cellular/drug effects
- Immunotherapy/methods
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Lung Neoplasms/therapy
- Male
- Middle Aged
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- T-Lymphocytes/drug effects
- T-Lymphocytes/physiology
Collapse
Affiliation(s)
- Alessio Grimaldi
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00161, Rome, Italy
| | - Ilenia Cammarata
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00161, Rome, Italy
| | - Carmela Martire
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00161, Rome, Italy
| | - Chiara Focaccetti
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00161, Rome, Italy
| | - Silvia Piconese
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00161, Rome, Italy
| | - Marta Buccilli
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00161, Rome, Italy
| | - Carmine Mancone
- Dipartimento di Medicina Molecolare, Sapienza Università di Roma, 00161, Rome, Italy
| | - Federica Buzzacchino
- Dipartimento di Scienze Radiologiche, Oncologiche e Anatomo Patologiche, Oncologia Medica, Università di Roma, 00161, Rome, Italy
| | - Julio Rodrigo Giron Berrios
- Dipartimento di Scienze Radiologiche, Oncologiche e Anatomo Patologiche, Oncologia Medica, Università di Roma, 00161, Rome, Italy
| | - Nicoletta D'Alessandris
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Silverio Tomao
- Dipartimento di Scienze Radiologiche, Oncologiche e Anatomo Patologiche, Oncologia Medica, Università di Roma, 00161, Rome, Italy
| | - Felice Giangaspero
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Marino Paroli
- Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Sapienza Università di Roma - Polo Pontino, 04100, Latina, Italy
| | - Rosalba Caccavale
- Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Sapienza Università di Roma - Polo Pontino, 04100, Latina, Italy
| | - Gian Paolo Spinelli
- UOC Oncologia Universitaria, ASL Latina (distretto Aprilia), Sapienza Università di Roma, Via Giustiniano snc, 04011, Aprilia, Latina, Italy
| | - Gabriella Girelli
- Dipartimento di Medicina Molecolare, Sapienza Università di Roma, 00161, Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - Paola Nisticò
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Sheila Spada
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Mariangela Panetta
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | | | - Paolo Visca
- Unit of Pathology, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Facciolo
- Thoracic Surgery Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Flavia Longo
- Dipartimento di Scienze Radiologiche, Oncologiche e Anatomo Patologiche, Oncologia Medica, Università di Roma, 00161, Rome, Italy
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00161, Rome, Italy.
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161, Rome, Italy.
- Istituto Pasteur - Fondazione Cenci Bolognetti, 00185, Rome, Italy.
| |
Collapse
|
131
|
Tracing tumorigenesis in a solid tumor model at single-cell resolution. Nat Commun 2020; 11:991. [PMID: 32080185 PMCID: PMC7033116 DOI: 10.1038/s41467-020-14777-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/29/2020] [Indexed: 12/28/2022] Open
Abstract
Characterizing the complex composition of solid tumors is fundamental for understanding tumor initiation, progression and metastasis. While patient-derived samples provide valuable insight, they are heterogeneous on multiple molecular levels, and often originate from advanced tumor stages. Here, we use single-cell transcriptome and epitope profiling together with pathway and lineage analyses to study tumorigenesis from a developmental perspective in a mouse model of salivary gland squamous cell carcinoma. We provide a comprehensive cell atlas and characterize tumor-specific cells. We find that these cells are connected along a reproducible developmental trajectory: initiated in basal cells exhibiting an epithelial-to-mesenchymal transition signature, tumorigenesis proceeds through Wnt-differential cancer stem cell-like subpopulations before differentiating into luminal-like cells. Our work provides unbiased insights into tumor-specific cellular identities in a whole tissue environment, and emphasizes the power of using defined genetic model systems. Understanding tumour development at a granular level is a challenge in solid tumours. Here, the authors provide a cell atlas across tumour development in a genetic model of salivary gland squamous cell carcinoma using single-cell transcriptome and epitope profiling.
Collapse
|
132
|
Tang D, Chen Y, Fu GB, Yuan TJ, Huang WJ, Wang ZY, Li WJ, Jiao YF, Yu WF, Yan HX. EpCAM inhibits differentiation of human liver progenitor cells into hepatocytes in vitro by activating Notch1 signaling. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30309-0. [PMID: 32087972 DOI: 10.1016/j.bbrc.2020.02.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/08/2020] [Indexed: 12/26/2022]
Abstract
In both normal turnover of the hepatic tissue and acute hepatic injury, the liver predominantly activates terminally differentiated hepatocytes to proliferate and repair. However, in chronic and severe chronic injury, this capacity fails, and liver progenitor cells (LPCs) can give rise to hepatocytes to restore both hepatic architecture and liver metabolic function. Although the promotion of LPC-to-hepatocyte differentiation to acquire a considerable number of functional hepatocytes could serve as a potentially new therapeutic option for patients with end-stage liver disease, its development first requires the identification of the molecular mechanisms driving this process. Here, we found that the epithelial cell adhesion molecule (EpCAM), a progenitor cell marker, regulates the differentiation of LPCs into hepatocytes through Notch1 signaling pathway. Western blotting (WB) revealed a consistent expression pattern of EpCAM and Notch1 during LPC-to-hepatocyte differentiation in vitro. Additionally, overexpression of EpCAM blocked LPC-to-hepatocyte differentiation, which was in consistent with the repressive role of Notch signaling during hepatic differentiation. WB and immunofluorescence data also showed that the upregulation of EpCAM expression increased the generation of Notch intracellular domain (N1ICD), indicating the promotion of Notch1 activity. Our results established the EpCAM-Notch1 signaling axis as an inhibitory mechanism preventing LPC-to-hepatocyte differentiation in vitro.
Collapse
Affiliation(s)
- Dan Tang
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yi Chen
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Gong-Bo Fu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Tian-Jie Yuan
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei-Jian Huang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zhen-Yu Wang
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei-Jian Li
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying-Fu Jiao
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Wei-Feng Yu
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - He-Xin Yan
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
133
|
Mohtar MA, Syafruddin SE, Nasir SN, Yew LT. Revisiting the Roles of Pro-Metastatic EpCAM in Cancer. Biomolecules 2020; 10:biom10020255. [PMID: 32046162 PMCID: PMC7072682 DOI: 10.3390/biom10020255] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is a cell surface protein that was discovered as a tumour marker of epithelial origins nearly four decades ago. EpCAM is expressed at basal levels in the basolateral membrane of normal epithelial cells. However, EpCAM expression is upregulated in solid epithelial cancers and stem cells. EpCAM can also be found in disseminated tumour cells and circulating tumour cells. Various OMICs studies have demonstrated that EpCAM plays roles in several key biological processes such as cell adhesion, migration, proliferation and differentiation. Additionally, EpCAM can be detected in the bodily fluid of cancer patients suggesting that EpCAM is a pathophysiologically relevant anti-tumour target as well as being utilized as a diagnostic/prognostic agent for a variety of cancers. This review will focus on the structure-features of EpCAM protein and discuss recent evidence on the pathological and physiological roles of EpCAM in modulating cell adhesion and signalling pathways in cancers as well as deliberating the clinical implication of EpCAM as a therapeutic target.
Collapse
|
134
|
Near-Infrared Fluorescent Imaging for Monitoring of Treatment Response in Endometrial Carcinoma Patient-Derived Xenograft Models. Cancers (Basel) 2020; 12:cancers12020370. [PMID: 32041116 PMCID: PMC7072497 DOI: 10.3390/cancers12020370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 01/16/2023] Open
Abstract
Imaging of clinically relevant preclinical animal models is critical to the development of personalized therapeutic strategies for endometrial carcinoma. Although orthotopic patient-derived xenografts (PDXs) reflecting heterogeneous molecular subtypes are considered the most relevant preclinical models, their use in therapeutic development is limited by the lack of appropriate imaging modalities. Here, we describe molecular imaging of a near-infrared fluorescently labeled monoclonal antibody targeting epithelial cell adhesion molecule (EpCAM) as an in vivo imaging modality for visualization of orthotopic endometrial carcinoma PDX. Application of this near-infrared probe (EpCAM-AF680) enabled both spatio-temporal visualization of development and longitudinal therapy monitoring of orthotopic PDX. Notably, EpCAM-AF680 facilitated imaging of multiple PDX models representing different subtypes of the disease. Thus, the combined implementation of EpCAM-AF680 and orthotopic PDX models creates a state-of-the-art preclinical platform for identification and validation of new targeted therapies and corresponding response predicting markers for endometrial carcinoma.
Collapse
|
135
|
Tsunedomi R, Yoshimura K, Suzuki N, Hazama S, Nagano H. Clinical implications of cancer stem cells in digestive cancers: acquisition of stemness and prognostic impact. Surg Today 2020; 50:1560-1577. [PMID: 32025858 DOI: 10.1007/s00595-020-01968-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
Digestive system cancers are the most frequent cancers worldwide and often associated with poor prognosis because of their invasive and metastatic characteristics. Recent studies have found that the plasticity of cancer cells can impart cancer stem-like properties via the epithelial-mesenchymal transition (EMT). Cancer stem-like properties such as tumor initiation are integral to the formation of metastasis, which is the main cause of poor prognosis. Numerous markers of cancer stem cells (CSCs) have been identified in many types of cancer. Therefore, CSCs, via their stem cell-like functions, may play an important role in prognosis after surgery. While several reports have described prognostic analysis using CSC markers, few reviews have summarized CSCs and their association with prognosis. Herein, we review the prognostic potential of eight CSC markers, CD133, CD44, CD90, ALDH1A1, EPCAM, SOX2, SOX9, and LGR5, in digestive cancers including those of the pancreas, colon, liver, gastric, and esophagus.
Collapse
Affiliation(s)
- Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Kiyoshi Yoshimura
- Showa University Clinical Research Institute for Clinical Pharmacology and Therapeutics, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.,Faculty of Medicine, Department of Translational Research and Developmental Therapeutics against Cancer, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
136
|
Murakami N, Mori T, Kubo Y, Yoshimoto S, Ito K, Honma Y, Ueno T, Kobayashi K, Okamoto H, Boku N, Takahashi K, Inaba K, Okuma K, Igaki H, Nakayama Y, Itami J. Prognostic impact of immunohistopathologic features in definitive radiation therapy for nasopharyngeal cancer patients. JOURNAL OF RADIATION RESEARCH 2020; 61:161-168. [PMID: 31822892 PMCID: PMC6976734 DOI: 10.1093/jrr/rrz071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/27/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Our previous study by Murakami N, Mori T, Nakamura S, Yoshimoto S, Honma Y, Ueno T, Kobayashi K, Kashihara T, Takahashi K, Inaba K, Okuma K, Igaki H, Nakayama Y, Itami J. (J Radiat Res. 2019 Jul 30. pii: rrz053. doi: 10.1093/jrr/rrz053. [Epub ahead of print]) showed that strong expression of epithelial cell adhesion molecule (EpCAM) was associated with radiation resistance in head and neck squamous cell cancer patients (SCC). In this study, the prognostic impact of histopathologic features including EpCAM for nasopharyngeal cancer (NPC) patients was investigated. Since 2009, our institution has performed chemoradiation for locally advanced NPC patients with intensity modulated radiation therapy (IMRT). Tri-weekly adjuvant cisplatin (CDDP, 80 mg/m2) was administered concurrently with definitive radiation therapy 70 Gy in 35 fractions. One month after radiation therapy, adjuvant chemotherapy of three cycles of CDDP/5 fluorouracil (5-FU) was administered. Using a pretreatment biopsy specimen, EBV-encoded small RNA in situ hybridization (EBER-ISH), EpCAM, p16 and p53 were assessed by immunohistochemical analysis. Between May 2009 and September 2017, 51 NPC patients received definitive radiation therapy. Five, 13, 17 and 16 patients were staged as I, II, III and IV, respectively. The median follow-up period for alive patients was 31.1 months (12.4-109.7 months). Three-year overall survival (OS), progression-free survival (PFS) and locoregional control (LRC) were 87.1, 57.1 and 85.7%, respectively. EpCAM, p16 and p53 were not associated with PFS, OS nor LRC. Three-year PFS for patients with keratinizing and non-keratinizing SCC were 25 and 60.5%, respectively (P = 0.033, hazard ratio 4.851 (95% confidence interval 1.321-17.814)).Prognosis of NPC patients with keratinizing SCC was worse than non-keratinizing SCC patients, suggesting a biological difference between the two types of tumor.
Collapse
Affiliation(s)
- Naoya Murakami
- Department of Radiation Oncology, National Cancer Center Hospital, Japan
| | - Taisuke Mori
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Japan
| | - Yuko Kubo
- Department of Diagnostic Radiology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan
| | - Seiichi Yoshimoto
- Department of Head and Neck Surgery, National Cancer Center Hospital, Japan
| | - Kimiteru Ito
- Department of Diagnostic Radiology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan
| | - Yoshitaka Honma
- Department of Head and Neck Medical Oncology, Head and Neck Medical Oncology Division, National Cancer Center Hospital, Japan
| | - Takao Ueno
- Department of Oral Health and Diagnostic Sciences, National Cancer Center Hospital, Japan
| | - Kenya Kobayashi
- Department of Head and Neck Surgery, National Cancer Center Hospital, Japan
| | - Hiroyuki Okamoto
- Department of Radiation Oncology, National Cancer Center Hospital, Japan
| | - Narikazu Boku
- Department of Head and Neck Medical Oncology, Head and Neck Medical Oncology Division, National Cancer Center Hospital, Japan
| | - Kana Takahashi
- Department of Radiation Oncology, National Cancer Center Hospital, Japan
| | - Koji Inaba
- Department of Radiation Oncology, National Cancer Center Hospital, Japan
| | - Kae Okuma
- Department of Radiation Oncology, National Cancer Center Hospital, Japan
| | - Hiroshi Igaki
- Department of Radiation Oncology, National Cancer Center Hospital, Japan
| | - Yuko Nakayama
- Department of Radiation Oncology, National Cancer Center Hospital, Japan
| | - Jun Itami
- Department of Radiation Oncology, National Cancer Center Hospital, Japan
| |
Collapse
|
137
|
Conciatori F, Bazzichetto C, Falcone I, Ferretti G, Cognetti F, Milella M, Ciuffreda L. Colorectal cancer stem cells properties and features: evidence of interleukin-8 involvement. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:968-979. [PMID: 35582268 PMCID: PMC9019202 DOI: 10.20517/cdr.2019.56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/13/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) still remains a disease with high percentage of death, principally due to therapy resistance and metastasis. During the time the hypothesis has been reinforced that CRC stem cells (CRCSC) are involved in allowing intratumoral heterogeneity, drug escape mechanisms and secondary tumors. CRCSC are characterized by specific surface markers (i.e., CD44 and CD133), signaling pathways activation (i.e., Wnt and Notch) and gene expression (i.e., Oct4 and Snail), which confer to CRCSC self-renewal abilities and pluripotent capacity. Interleukin (IL)-8 is correlated to CRC progression, development of liver metastases and chemoresistance; moreover, IL-8 modulates not only stemness maintenance but also stemness promotion, such as epithelial-mesenchymal transition. This review wants to give a brief and up-to-date overview on IL-8 implication in CRCSC cues.
Collapse
Affiliation(s)
- Fabiana Conciatori
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Chiara Bazzichetto
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Italia Falcone
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Gianluigi Ferretti
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Francesco Cognetti
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona 37126, Italy
| | - Ludovica Ciuffreda
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy.,SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| |
Collapse
|
138
|
Haga N, Onagi A, Koguchi T, Hoshi S, Ogawa S, Akaihata H, Hata J, Hiraki H, Honda R, Tanji R, Matsuoka K, Kataoka M, Sato Y, Ishibashi K, Kojima Y. Perioperative Detection of Circulating Tumor Cells in Radical or Partial Nephrectomy for Renal Cell Carcinoma. Ann Surg Oncol 2019; 27:1272-1281. [PMID: 31832914 DOI: 10.1245/s10434-019-08127-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND The current study was conducted to clarify the frequency of systemic circulating tumor cells (CTCs) appearing after surgery for renal cell carcinoma and to evaluate the differences in postoperative CTCs between different surgical procedures. METHODS This prospective, cohort study included 60 consecutive patients who underwent laparoscopic radical nephrectomy (RN) (n = 22), laparoscopic partial nephrectomy (PN) (n = 19), open RN (n = 8), or open PN (n = 11). In this study CTCs were measured by the FISHMAN-R system, and CTCs drawn from a peripheral artery were collected just before and immediately after surgery. The number of pre- and postoperative CTCs and the perioperative changes in CTCs were measured for each surgical method. RESULTS Six patients were excluded from the current analyses. Preoperative CTCs did not differ significantly by surgical approach (laparoscopic RN: 3.4 ± 4.2; laparoscopic PN: 3.4 ± 4.1; open RN: 7.7 ± 6.8; open PN: 6.0 ± 7.6; P = 0.19). Open RN resulted in a significantly greater number of postoperative CTCs (laparoscopic RN: 4.8 ± 3.7; laparoscopic PN: 7.9 ± 9.1; open RN: 22.5 ± 26.3; open PN: 6.4 ± 6.3; P < 0.001) and perioperative changes in CTCs (laparoscopic RN: 1.3 ± 5.3; laparoscopic PN: 4.5 ± 9.6; open RN: 14.7 ± 25.0; open PN: 0.4 ± 6.3; P < 0.001). No significant differences in these were observed among the three groups except in the open RN group. In the multivariate analysis, the surgical approach was significantly correlated with the number of postoperative CTCs (P = 0.016) and the perioperative change in CTCs (P = 0.01). CONCLUSIONS This proof-of-concept study indicated that after surgery, more cancer cells can be expelled into the bloodstream, especially after open RN. Sufficient and careful follow-up assessment for the emergence of distant metastases is needed for patients undergoing open RN.
Collapse
Affiliation(s)
- Nobuhiro Haga
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, Japan.
| | - Akifumi Onagi
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomoyuki Koguchi
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Seiji Hoshi
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Soichiro Ogawa
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hidenori Akaihata
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Junya Hata
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroyuki Hiraki
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Ruriko Honda
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Ryo Tanji
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kanako Matsuoka
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Masao Kataoka
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yuichi Sato
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kei Ishibashi
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yoshiyuki Kojima
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
139
|
PULLIERO A, PERGOLI L, LA MAESTRA S, MICALE R, CAMOIRANO A, BOLLATI V, IZZOTTI A, DE FLORA S. Extracellular vesicles in biological fluids. A biomarker of exposure to cigarette smoke and treatment with chemopreventive drugs. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2019; 60:E327-E336. [PMID: 31967089 PMCID: PMC6953455 DOI: 10.15167/2421-4248/jpmh2019.60.4.1284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are released from cells and enter into body fluids thereby providing a toxicological mechanism of cell-cell communication. The present study aimed at assessing (a) the presence of EVs in mouse body fluids under physiological conditions, (b) the effect of exposure of mice to cigarette smoke for 8 weeks, and (c) modulation of smoke-related alterations by the nonsteroidal anti-inflammatory drug celecoxib, a selective cyclooxygenase-2 inhibitor. To this purpose, ICR (CD-1) mice were either unexposed or exposed to cigarette smoke, either treated or untreated with oral celecoxib. EVs, isolated from bronchoalveolar lavage fluid (BALF), blood serum, and urines, were analyzed by nanoparticle tracking analysis and flow cytometry. EVs baseline concentrations in BALF were remarkably high. Larger EVs were detected in urines. Smoking increased EVs concentrations but only in BALF. Celecoxib remarkably increased EVs concentrations in the blood serum of both male and female smoking mice. The concentration of EVs positive for EpCAM, a mediator of cell-cell adhesion in epithelia playing a role in tumorigenesis, was much higher in urines than in BALF, and celecoxib significantly decreased their concentration. Thus, the effects of smoke on EVs concentrations were well detectable in the extracellular environment of the respiratory tract, where they could behave as delivery carriers to target cells. Celecoxib exerted both protective mechanisms in the urinary tract and adverse systemic effects of likely hepatotoxic origin in smoke-exposed mice. Detection of EVs in body fluids may provide an early diagnostic tool and an end-point exploitable for preventive medicine strategies.
Collapse
Affiliation(s)
- A. PULLIERO
- Department of Health Sciences, University of Genoa, Italy
| | - L. PERGOLI
- EPIGET LAB, Department of Clinical Sciences and Community Health, University of Milan, Italy
| | - S. LA MAESTRA
- Department of Health Sciences, University of Genoa, Italy
| | - R.T. MICALE
- Department of Health Sciences, University of Genoa, Italy
| | - A. CAMOIRANO
- Department of Health Sciences, University of Genoa, Italy
| | - V. BOLLATI
- EPIGET LAB, Department of Clinical Sciences and Community Health, University of Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Unit of Occupational Medicine, Milan, Italy
| | - A. IZZOTTI
- Department of Health Sciences, University of Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - S. DE FLORA
- Department of Health Sciences, University of Genoa, Italy
| |
Collapse
|
140
|
Murakami N, Mori T, Nakamura S, Yoshimoto S, Honma Y, Ueno T, Kobayashi K, Kashihara T, Takahashi K, Inaba K, Okuma K, Igaki H, Nakayama Y, Itami J. Prognostic value of the expression of epithelial cell adhesion molecules in head and neck squamous cell carcinoma treated by definitive radiotherapy. JOURNAL OF RADIATION RESEARCH 2019; 60:803-811. [PMID: 31361893 PMCID: PMC6873617 DOI: 10.1093/jrr/rrz053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/30/2019] [Indexed: 06/10/2023]
Abstract
A reliable biomarker can contribute to appropriate treatment selection in the management of head and neck squamous cell carcinoma (HNSCC). Recently, epithelial cell adhesion molecule (EpCAM) was shown to have prognostic features in several malignancies. However, it remains to be elucidated whether EpCAM predicts prognosis of HNSCC after radiotherapy. Therefore, the prognostic potential of EpCAM in HNSCC patients treated by radiotherapy was investigated in this study. All HNSCCs patients examined between January 2013 and December 2015 were analyzed for the expression of EpCAM. One hundred HNSCC patients were identified who were treated by primary radiotherapy. Intense expression of EpCAM was found in 29 HNSCC patients. Two-year overall survival (OS) for patients with intense EpCAM expression was 62.2%, whereas it was 87.9% for those without (P = 0.011). In multivariate analysis, intense EpCAM expression was found to be an independent prognostic factors for OS (P = 0.036). Overall, EpCAM was found to be an independent prognostic factor for HNSCC.
Collapse
Affiliation(s)
- Naoya Murakami
- Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan
| | - Taisuke Mori
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan
| | - Satoshi Nakamura
- Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan
| | - Seiichi Yoshimoto
- Department of Head and Neck Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji Chuo-ku, Tokyo, Japan
| | - Yoshitaka Honma
- Head and Neck Medical Oncology Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan
| | - Takao Ueno
- Department of Oral Health and Diagnostic Sciences, National Cancer Center Hospital, 5-1-1, Tsukiji Chuo-ku, Tokyo, Japan
| | - Kenya Kobayashi
- Department of Head and Neck Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji Chuo-ku, Tokyo, Japan
| | - Tairo Kashihara
- Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan
| | - Kana Takahashi
- Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan
| | - Koji Inaba
- Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan
| | - Kae Okuma
- Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan
| | - Hiroshi Igaki
- Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan
| | - Yuko Nakayama
- Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan
| | - Jun Itami
- Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan
| |
Collapse
|
141
|
Das B, Okamoto K, Rabalais J, Kozan PA, Marchelletta RR, McGeough MD, Durali N, Go M, Barrett KE, Das S, Sivagnanam M. Enteroids expressing a disease-associated mutant of EpCAM are a model for congenital tufting enteropathy. Am J Physiol Gastrointest Liver Physiol 2019; 317:G580-G591. [PMID: 31433211 PMCID: PMC6879886 DOI: 10.1152/ajpgi.00098.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Congenital tufting enteropathy (CTE) is an autosomal recessive disease characterized by severe intestinal failure in infancy and mutations in the epithelial cell adhesion molecule (EPCAM) gene. Previous studies of CTE in mice expressing mutant EpCAM show neonatal lethality. Hence, to study the cellular, molecular, and physiological alterations that result from EpCAM mutation, a tamoxifen-inducible mutant EpCAM enteroid model has been generated. The presence of mutant EpCAM in the model was confirmed at both mRNA and protein levels. Immunofluorescence microscopy demonstrated the reduced expression of mutant EpCAM. Mutant enteroids had reduced budding potential as well as significantly decreased mRNA expression for epithelial lineage markers (Mucin 2, lysozyme, sucrase-isomaltase), proliferation marker Ki67, and secretory pathway transcription factors (Atoh1, Hnf1b). Significantly decreased numbers of Paneth and goblet cells were confirmed by staining. These findings were correlated with intestinal tissue from CTE patients and the mutant mice model that had significantly fewer Paneth and goblet cells than in healthy counterparts. FITC-dextran studies demonstrated significantly impaired barrier function in monolayers derived from mutant enteroids compared with control monolayers. In conclusion, we have established an ex vivo CTE model. The role of EpCAM in the budding potential, differentiation, and barrier function of enteroids is noted. Our study establishes new facets of EpCAM biology that will aid in understanding the pathophysiology of CTE and role of EpCAM in health and disease.NEW & NOTEWORTHY Here, we develop a novel ex vivo enteroid model for congenital tufting enteropathy (CTE) based on epithelial cell adhesion molecule (EPCAM) gene mutations found in patients. With this model we demonstrate the role of EpCAM in maintaining the functional homeostasis of the intestinal epithelium, including differentiation, proliferation, and barrier integrity. This study further establishes a new direction in EpCAM biology that will help in understanding the detailed pathophysiology of CTE and role of EpCAM.
Collapse
Affiliation(s)
- Barun Das
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Kevin Okamoto
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - John Rabalais
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Philip A. Kozan
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California
| | | | - Matthew D. McGeough
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Nassim Durali
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Maria Go
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Kim E. Barrett
- 2Department of Medicine, University of California, San Diego, La Jolla, California
| | - Soumita Das
- 3Department of Pathology, University of California, San Diego, La Jolla, California
| | - Mamata Sivagnanam
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California,4Rady Children’s Hospital, San Diego, California
| |
Collapse
|
142
|
Ahamadi-Fesharaki R, Fateh A, Vaziri F, Solgi G, Siadat SD, Mahboudi F, Rahimi-Jamnani F. Single-Chain Variable Fragment-Based Bispecific Antibodies: Hitting Two Targets with One Sophisticated Arrow. Mol Ther Oncolytics 2019; 14:38-56. [PMID: 31011631 PMCID: PMC6463744 DOI: 10.1016/j.omto.2019.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite the success of monoclonal antibodies (mAbs) to treat some disorders, the monospecific molecular entity of mAbs as well as the presence of multiple factors and pathways involved in the pathogenesis of disorders, such as various malignancies, infectious diseases, and autoimmune disorders, and resistance to therapy have restricted the therapeutic efficacy of mAbs in clinical use. Bispecific antibodies (bsAbs), by concurrently recognizing two targets, can partly circumvent these problems. Serial killing of tumor cells by bsAb-redirected T cells, simultaneous blocking of two antigens involved in the HIV-1 infection, and concurrent targeting of the activating and inhibitory receptors on B cells to modulate autoimmunity are part of the capabilities of bsAbs. After designing and developing a large number of bsAbs for years, catumaxomab, a full-length bsAb targeting EpCAM and CD3, was approved in 2009 to treat EpCAM-positive carcinomas besides blinatumomab, a bispecific T cell engager antibody targeting CD19 and CD3, which was approved in 2014 to treat relapsed or refractory acute lymphoblastic leukemia. Furthermore, approximately 60 bsAbs are under investigation in clinical trials. The current review aims at portraying different formats of the single-chain variable fragment (scFv)-based bsAbs and shedding light on the scFv-based bsAbs in preclinical development, different phases of clinical trials, and the market.
Collapse
Affiliation(s)
- Raoufeh Ahamadi-Fesharaki
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ghasem Solgi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Davar Siadat
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Rahimi-Jamnani
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
143
|
Olajuyin AM, Olajuyin AK, Wang Z, Zhao X, Zhang X. CD146 T cells in lung cancer: its function, detection, and clinical implications as a biomarker and therapeutic target. Cancer Cell Int 2019; 19:247. [PMID: 31572064 PMCID: PMC6761715 DOI: 10.1186/s12935-019-0969-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
CD146 alternatively called melanoma cell adhesion molecule (MCAM), is a biomarker and therapeutic target of clinical significance. It is found on different cells including the endothelial cells and lymphocytes which participate in heterotypic and homotypic ligand-receptor. This review concentrated on the CD146 expression T cells (or lymphocytes) centering on Treg in lung cancer. Here, we have also considered the vigorous investigation of CD146 mainly acknowledged new roles, essential mechanisms and clinical implications of CD146 in cancer. CD146 has progressively become a significant molecule, particularly recognized as a novel biomarker, prognosis and therapy for cancer. Hence, targeting CD146 expression by utilization of methanol extracts of Calotropis procera leaf may be useful for the treatment of carcinogenesis.
Collapse
Affiliation(s)
- Ayobami Matthew Olajuyin
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Adefunke Kafayat Olajuyin
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Ziqi Wang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Xingru Zhao
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| |
Collapse
|
144
|
Athyala PK, Chitipothu S, Kanwar JR, Krishnakumar S, Narayanan J. Synthesis of saporin-antibody conjugates for targeting EpCAM positive tumour cells. IET Nanobiotechnol 2019; 13:90-99. [PMID: 30964044 DOI: 10.1049/iet-nbt.2018.5222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein involved in cell proliferation and differentiation. Ribosomal inactivating proteins derived from plants specifically target ribosomes and irreversibly inhibit protein synthesis. EpCAM antibody and saporin were conjugated using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride/N-hydroxysuccinimide chemistry. The mass of the conjugates were characterised using matrix-assisted laser desorption ionisation (MALDI). The saporin-EpCAM (SAP-EpAB) conjugates were tested in-vitro against MCF-7 (breast cancer cells), WERI-Rb1 (retinoblastoma) cells. The flow cytometry and fluorescence microscopy were performed to show the binding efficiency of SAP-EpAB conjugate. Whole transcriptome changes of sap-conjugate treated cells were studied using affymetrix microarrays. MALDI-TOF analysis and polyacrylamide gel electrophoresis confirmed the conjugation of SAP with EpCAM antibody. Flow cytometry and fluorescent microscopy analysis revealed the binding of SAP-EpAB conjugates to the MCF-7, WERI-Rb1 cells. Apoptosis assay by annexin-V has shown an increased apoptotic and necrotic population in conjugate treated cells. MTT assay confirmed the tumour cell death and had shown the IC50 value of 0.8 µg for conjugate in MCF-7 (breast cancer cells), and 1 µg for WERI-Rb1 (retinoblastoma) cells. The microarray analysis revealed downregulation of the tumourigenic genes and upregulation of pro-apoptotic genes leading to apoptosis of tumour cells.
Collapse
Affiliation(s)
- Prasanna Kumar Athyala
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Centre for Molecular and Medical Research (C-MMR), Faculty of Health, Deakin University, Geelong, Pigdons Road, Waurn Ponds, Geelong, Victoria 3217, Australia
| | - Srujana Chitipothu
- Central Research Instrumentation Facility, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai-600006, India
| | - Jagat Rakesh Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Centre for Molecular and Medical Research (C-MMR), Faculty of Health, Deakin University, Geelong, Pigdons Road, Waurn Ponds, Geelong, Victoria 3217, Australia
| | - Subramanian Krishnakumar
- Department of Nanobiotechnology, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai-600006, India
| | - Janakiraman Narayanan
- Department of Nanobiotechnology, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai-600006, India.
| |
Collapse
|
145
|
Engineering microfluidic chip for circulating tumor cells: From enrichment, release to single cell analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
146
|
Kumar J, Chudasama D, Roberts C, Kubista M, Sjöback R, Chatterjee J, Anikin V, Karteris E, Hall M. Detection of Abundant Non-Haematopoietic Circulating Cancer-Related Cells in Patients with Advanced Epithelial Ovarian Cancer. Cells 2019; 8:cells8070732. [PMID: 31319587 PMCID: PMC6678489 DOI: 10.3390/cells8070732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/05/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022] Open
Abstract
: Background: Current diagnosis and staging of advanced epithelial ovarian cancer (aEOC) has important limitations and better biomarkers are needed. We investigate the performance of non-haematopoietic circulating cells (CCs) at the time of disease presentation and relapse. Methods: Venous blood was collected prospectively from 37 aEOC patients and 39 volunteers. CCs were evaluated using ImageStream TechnologyTM and specific antibodies to differentiate epithelial cells from haematopoetic cells. qRT-PCR from whole blood of relapsed aEOC patients was carried out for biomarker discovery. Results: Significant numbers of CCs (CK+/WT1+/CD45-) were identified, quantified and characterised from aEOC patients compared to volunteers. CCs are abundant in women with newly diagnosed aEOC, prior to any treatment. Evaluation of RNA from the CCs in relapsed aEOC patients (n = 5) against a 79-gene panel revealed several differentially expressed genes compared to volunteers (n = 14). Size differentiation of CCs versus CD45+ haematopoietic cells was not reliable. Conclusion: CCs of non-haematopoetic origin are prevalent, particularly in patients with newly diagnosed aEOC. Exploiting a CC-rich population in aEOC patients offers insights into a part of the circulating microenvironment.
Collapse
Affiliation(s)
- Juhi Kumar
- Department Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Dimple Chudasama
- Department Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | | | - Mikael Kubista
- TATAA Biocenter, 411 03 Göteborg, Sweden
- Laboratory of Gene Expression, Institute of Biotechnology CAS, v.v.i., 252 50 Vestec, Czech Republic
| | | | - Jayanta Chatterjee
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Vladimir Anikin
- Department Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
- Division of Thoracic Surgery, The Royal Brompton & Harefield NHS Foundation Trust, Harefield Hospital, London UB9 6JH, UK
- Department of Oncology and Reconstructive Surgery, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Emmanouil Karteris
- Department Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Marcia Hall
- Department Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
- Mount Vernon Cancer Centre, Middlesex HA6 2RN, UK.
| |
Collapse
|
147
|
Schnalzger TE, de Groot MH, Zhang C, Mosa MH, Michels BE, Röder J, Darvishi T, Wels WS, Farin HF. 3D model for CAR-mediated cytotoxicity using patient-derived colorectal cancer organoids. EMBO J 2019; 38:e100928. [PMID: 31036555 PMCID: PMC6576164 DOI: 10.15252/embj.2018100928] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/14/2023] Open
Abstract
Immunotherapy using chimeric antigen receptor (CAR)-engineered lymphocytes has shown impressive results in leukemia. However, for solid tumors such as colorectal cancer (CRC), new preclinical models are needed that allow to test CAR-mediated cytotoxicity in a tissue-like environment. Here, we developed a platform to study CAR cell cytotoxicity against 3-dimensional (3D) patient-derived colon organoids. Luciferase-based measurement served as a quantitative read-out for target cell viability. Additionally, we set up a confocal live imaging protocol to monitor effector cell recruitment and cytolytic activity at a single organoid level. As proof of principle, we demonstrated efficient targeting in diverse organoid models using CAR-engineered NK-92 cells directed toward a ubiquitous epithelial antigen (EPCAM). Tumor antigen-specific cytotoxicity was studied with CAR-NK-92 cells targeting organoids expressing EGFRvIII, a neoantigen found in several cancers. Finally, we tested a novel CAR strategy targeting FRIZZLED receptors that show increased expression in a subgroup of CRC tumors. Here, comparative killing assays with normal organoids failed to show tumor-specific activity. Taken together, we report a sensitive in vitro platform to evaluate CAR efficacy and tumor specificity in a personalized manner.
Collapse
MESH Headings
- Cells, Cultured
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/immunology
- Colorectal Neoplasms/pathology
- Colorectal Neoplasms/therapy
- Cytotoxicity, Immunologic/drug effects
- Cytotoxicity, Immunologic/genetics
- Genetic Therapy/methods
- HEK293 Cells
- Humans
- Immunotherapy, Adoptive/methods
- Models, Biological
- Organoids/pathology
- Primary Cell Culture/methods
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/therapeutic use
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/therapeutic use
- Tissue Culture Techniques/methods
- Tissue Scaffolds/chemistry
Collapse
Affiliation(s)
- Theresa E Schnalzger
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- University of Konstanz, Konstanz, Germany
| | - Marnix Hp de Groot
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Congcong Zhang
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mohammed H Mosa
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Birgitta E Michels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
- Faculty of Biological Sciences, Goethe University, Frankfurt, Germany
| | - Jasmin Röder
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Tahmineh Darvishi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Henner F Farin
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| |
Collapse
|
148
|
The rBC2LCN-positive subpopulation of PC-3 cells exhibits cancer stem-like properties. Biochem Biophys Res Commun 2019; 515:176-182. [PMID: 31133376 DOI: 10.1016/j.bbrc.2019.05.108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 12/27/2022]
Abstract
The recombinant lectin rBC2LCN is a useful marker for discriminating the undifferentiated status of human induced or embryonic stem cells. Recently, rBC2LCN has also been used for detecting some cancers and niche cells. However, the generality of which types of cells are detected by rBC2LCN is unclear. In this study, we demonstrated the potential of rBC2LCN as a probe for detecting and isolating cancer stem-like cells. Interestingly, flow cytometric analysis of various human cell lines indicated that the human prostate cancer cell line PC-3 consisted of rBC2LCN-positive and -negative subpopulations. Compared with the rBC2LCN-negative subpopulation, the rBC2LCN-positive subpopulation possessed representative features of cancer stem cells and malignancy, such as slow proliferation, increased cell motility, anchorage-independent growth, and drug resistance. The comprehensive expression profiles revealed that the rBC2LCN-positive subpopulation expressed higher levels of cancer stem cell markers. These findings indicate that rBC2LCN is useful for detecting not only pluripotent stem cells but also the cancer stem-like subpopulation of PC-3 cells. Pluripotent and cancer cells with rBC2LCN positivity would be important for future stem cell research.
Collapse
|
149
|
Kaufman G, Skrtic D. Morphological and kinetic study of oral keratinocytes assembly on reconstituted basement membrane: Effect of TEGDMA. Arch Oral Biol 2019; 104:103-111. [PMID: 31177012 DOI: 10.1016/j.archoralbio.2019.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/01/2019] [Accepted: 05/21/2019] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Open wounds of oral cavity require rapid healing. The cytotoxic monomer, triethylene glycol dimethacrylate (TEGDMA) can leach out from dental restoratives, reach the oral epithelial barrier and trigger an immune response. It is speculated that low and moderate concentrations of TEGDMA (0.5 and 1.5 mmol/L, respectively) influence the assembly kinetics and morphology of the keratinocyte layers overlying the extracellular matrix (ECM) in vivo. A three-dimensional cell system composed of immortalized oral keratinocytes (iMOK) cultured on reconstituted basement membrane (ECM) was used to investigate the development of epithelial layers upon exposure to TEGDMA. METHODS Adherence and opposing movement of adjacent keratinocytes using actin protrusions (lamellipodia and filopodia) to create spheroids, and their fusion capacity to establish subsequent layers were tested at different time points. Fluorescent, confocal, differential interference contrast microscopy and image processing were employed to quantify the morphological modifications over time. RESULTS Increasing concentrations of TEGDMA decreased the number of viable cells that utilized the actin protrusions and led to a delay in the communication/interaction among cells. Consequently, cells assembly was affected and the formation of more than a single layer prevented. Areas of basal-like proliferating cells were replaced with the increasing areas of non-replicating large cell population and extended gaps. CONCLUSIONS These findings suggest that TEGDMA may prevent rapid sealing of open wounds by keratinocytes and suppress the establishment of a resistant and impermeable barrier against pathogen internalization. The iMOK-ECM-based platform facilitated the validation and quantification of solubilized dental materials impact on the reconstitution of epithelial layer.
Collapse
Affiliation(s)
- Gili Kaufman
- Volpe Research Center, American Dental Association Foundation, 100 Bureau Drive, Gaithersburg, MD 20899, USA.
| | - Drago Skrtic
- Volpe Research Center, American Dental Association Foundation, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| |
Collapse
|
150
|
Aftab S, Shakoori AR. Low glucose availability alters the expression of genes involved in initial adhesion of human glioblastoma cancer cell line SF767. J Cell Biochem 2019; 120:16824-16839. [PMID: 31111555 DOI: 10.1002/jcb.28940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 01/09/2023]
Abstract
Studying the metabolic pathways of cancer cells is considered as a key to control cancer malignancies and open windows for effective drug discovery against cancer. Of all the properties of a tumor, metastasis potential is a defining characteristic. Metastasis is controlled by a variety of factors that directly control the expression of cell adhesion proteins. In this study we have investigated the expression of cell to cell and cell to matrix adhesion protein genes during the initial phases of attachment of human glioblastoma cancer cell line SF767 (66Y old human female: UCSF Neurosurgery Tissue Bank) to the attachment surface under (Cell culture treated polystyrene plate bottom) glucose-rich and glucose-starved conditions. The aim was to imitate the natural microenvironment of glucose availability to cancer cells inside a tumor that triggers epithelial to mesenchymal transition (EMT). In this study, we have observed the gene expression of epithelial and mesenchymal isoforms of cadherin (E-CAD and N-CAD) and Ig like cell adhesion molecules (E-CAM and N-CAM) along with Integrin family subunits for the initial attachment of cancer cells. We observed that high glucose environments promoted cell survival and cell adhesion, whereas low glucose accelerated EMT by downregulating the expression level of integrin, E-CAD, and N-CAD, and upregulation of N-CAM during early period of cell adhesion. Low glucose availability also downregulated variety of structural and regulatory genes, such as zinc finger E-box binding home box 1A), cytokeratin, Snail, and β catenin, and upregulation of hypoxia-inducible factor 1, matrix metalloprotease 13/Collagenase 3, vimentim, p120, and fructose 1,6 bisphosphatase. Glucose conditions are more efficient for cancer studies in this case glioblastoma cells.
Collapse
Affiliation(s)
- Saira Aftab
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, Pakistan
| | - Abdul Rauf Shakoori
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, Pakistan.,Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|