101
|
Clemens Z, Sivakumar S, Pius A, Sahu A, Shinde S, Mamiya H, Luketich N, Cui J, Dixit P, Hoeck JD, Kreuz S, Franti M, Barchowsky A, Ambrosio F. The biphasic and age-dependent impact of klotho on hallmarks of aging and skeletal muscle function. eLife 2021; 10:e61138. [PMID: 33876724 PMCID: PMC8118657 DOI: 10.7554/elife.61138] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Aging is accompanied by disrupted information flow, resulting from accumulation of molecular mistakes. These mistakes ultimately give rise to debilitating disorders including skeletal muscle wasting, or sarcopenia. To derive a global metric of growing 'disorderliness' of aging muscle, we employed a statistical physics approach to estimate the state parameter, entropy, as a function of genes associated with hallmarks of aging. Escalating network entropy reached an inflection point at old age, while structural and functional alterations progressed into oldest-old age. To probe the potential for restoration of molecular 'order' and reversal of the sarcopenic phenotype, we systemically overexpressed the longevity protein, Klotho, via AAV. Klotho overexpression modulated genes representing all hallmarks of aging in old and oldest-old mice, but pathway enrichment revealed directions of changes were, for many genes, age-dependent. Functional improvements were also age-dependent. Klotho improved strength in old mice, but failed to induce benefits beyond the entropic tipping point.
Collapse
Affiliation(s)
- Zachary Clemens
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
- Department of Environmental and Occupational Health, University of PittsburghPittsburghUnited States
| | - Sruthi Sivakumar
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
- Department of Bioengineering, University of PittsburghPittsburghUnited States
| | - Abish Pius
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
- Department of Computational & Systems Biology, School of Medicine, University of PittsburghPittsburghUnited States
| | - Amrita Sahu
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
| | - Sunita Shinde
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
| | - Hikaru Mamiya
- Department of Bioengineering, University of PittsburghPittsburghUnited States
| | - Nathaniel Luketich
- Department of Bioengineering, University of PittsburghPittsburghUnited States
| | - Jian Cui
- Department of Computational & Systems Biology, School of Medicine, University of PittsburghPittsburghUnited States
| | - Purushottam Dixit
- Department of Physics, University of FloridaGainesvilleUnited States
| | - Joerg D Hoeck
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals, IncRheinGermany
| | - Sebastian Kreuz
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals, IncRheinGermany
| | - Michael Franti
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals, IncRheinGermany
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of PittsburghPittsburghUnited States
| | - Fabrisia Ambrosio
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
- Department of Environmental and Occupational Health, University of PittsburghPittsburghUnited States
- Department of Bioengineering, University of PittsburghPittsburghUnited States
- McGowan Institute for Regenerative Medicine, University of PittsburghPittsburghUnited States
| |
Collapse
|
102
|
Zhao Y, Cholewa J, Shang H, Yang Y, Ding X, Wang Q, Su Q, Zanchi NE, Xia Z. Advances in the Role of Leucine-Sensing in the Regulation of Protein Synthesis in Aging Skeletal Muscle. Front Cell Dev Biol 2021; 9:646482. [PMID: 33869199 PMCID: PMC8047301 DOI: 10.3389/fcell.2021.646482] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle anabolic resistance (i.e., the decrease in muscle protein synthesis (MPS) in response to anabolic stimuli such as amino acids and exercise) has been identified as a major cause of age-related sarcopenia, to which blunted nutrition-sensing contributes. In recent years, it has been suggested that a leucine sensor may function as a rate-limiting factor in skeletal MPS via small-molecule GTPase. Leucine-sensing and response may therefore have important therapeutic potential in the steady regulation of protein metabolism in aging skeletal muscle. This paper systematically summarizes the three critical processes involved in the leucine-sensing and response process: (1) How the coincidence detector mammalian target of rapamycin complex 1 localizes on the surface of lysosome and how its crucial upstream regulators Rheb and RagB/RagD interact to modulate the leucine response; (2) how complexes such as Ragulator, GATOR, FLCN, and TSC control the nucleotide loading state of Rheb and RagB/RagD to modulate their functional activity; and (3) how the identified leucine sensor leucyl-tRNA synthetase (LARS) and stress response protein 2 (Sestrin2) participate in the leucine-sensing process and the activation of RagB/RagD. Finally, we discuss the potential mechanistic role of exercise and its interactions with leucine-sensing and anabolic responses.
Collapse
Affiliation(s)
- Yan Zhao
- Exercise Physiology and Biochemistry Laboratory, College of Physical Education, Jinggangshan University, Ji'an, China
| | - Jason Cholewa
- Department of Exercise Physiology, University of Lynchburg, Lynchburg, VA, United States
| | - Huayu Shang
- School of Sport Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yueqin Yang
- Hubei Provincial Collaborative Innovation Center for Exercise and Health Promotion, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Xiaomin Ding
- Exercise Physiology and Biochemistry Laboratory, College of Physical Education, Jinggangshan University, Ji'an, China
| | - Qianjin Wang
- Exercise Physiology and Biochemistry Laboratory, College of Physical Education, Jinggangshan University, Ji'an, China
| | - Quansheng Su
- School of Sport Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Nelo Eidy Zanchi
- Department of Physical Education, Federal University of Maranhão (UFMA), São Luís-MA, Brazil.,Laboratory of Cellular and Molecular Biology of Skeletal Muscle (LABCEMME), São Luís-MA, Brazil
| | - Zhi Xia
- Exercise Physiology and Biochemistry Laboratory, College of Physical Education, Jinggangshan University, Ji'an, China.,School of Sport Medicine and Health, Chengdu Sport University, Chengdu, China
| |
Collapse
|
103
|
Yasar Z, Elliott BT, Kyriakidou Y, Nwokoma CT, Postlethwaite RD, Gaffney CJ, Dewhurst S, Hayes LD. Sprint interval training (SIT) reduces serum epidermal growth factor (EGF), but not other inflammatory cytokines in trained older men. Eur J Appl Physiol 2021; 121:1909-1919. [PMID: 33723630 PMCID: PMC8192388 DOI: 10.1007/s00421-021-04635-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
Purpose The present study aimed to investigate the effect of age on circulating pro- and anti-inflammatory cytokines and growth factors. A secondary aim was to investigate whether a novel sprint interval training (SIT) intervention (3 × 20 s ‘all out’ static sprints, twice a week for 8 weeks) would affect inflammatory markers in older men. Methods Nine older men [68 (1) years] and eleven younger men [28 (2) years] comprised the younger group. Aerobic fitness and inflammatory markers were taken at baseline for both groups and following the SIT intervention for the older group. Results Interleukin (IL)-8, vascular endothelial growth factor (VEGF), and monocyte chemoattractant protein-1 (MCP-1) were unchanged for the older and younger groups at baseline (IL-8, p = 0.819; MCP-1, p = 0.248; VEGF, p = 0.264). Epidermal growth factor (EGF) was greater in the older group compared to the younger group at baseline [142 (20) pg mL−1 and 60 (12) pg mL−1, respectively, p = 0.001, Cohen's d = 1.64]. Following SIT, older men decreased EGF to 100 (12) pg mL−1 which was similar to that of young men who did not undergo training (p = 0.113, Cohen's d = 1.07). Conclusion Older aerobically trained men have greater serum EGF than younger aerobically trained men. A novel SIT intervention in older men can shift circulating EGF towards trained younger concentrations. As lower EGF has previously been associated with longevity in C. elegans, the manipulative effect of SIT on EGF in healthy ageing in the human may be of further interest.
Collapse
Affiliation(s)
- Zerbu Yasar
- Active Ageing Research Group, Institute of Health, University of Cumbria, Lancaster, UK
| | - Bradley T Elliott
- Translational Physiology Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish St, London, W1W 6UW, UK.
| | - Yvoni Kyriakidou
- Translational Physiology Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish St, London, W1W 6UW, UK
| | - Chiazor T Nwokoma
- Translational Physiology Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish St, London, W1W 6UW, UK
| | - Ruth D Postlethwaite
- Active Ageing Research Group, Institute of Health, University of Cumbria, Lancaster, UK.,Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| | - Christopher J Gaffney
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Susan Dewhurst
- Department of Rehabilitation and Sport Sciences, Bournemouth University, Bournemouth, UK
| | - Lawrence D Hayes
- Active Ageing Research Group, Institute of Health, University of Cumbria, Lancaster, UK.,School of Health and Life Sciences, University of the West of Scotland, Glasgow, UK
| |
Collapse
|
104
|
Scaricamazza S, Salvatori I, Ferri A, Valle C. Skeletal Muscle in ALS: An Unappreciated Therapeutic Opportunity? Cells 2021; 10:525. [PMID: 33801336 PMCID: PMC8000428 DOI: 10.3390/cells10030525] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the selective degeneration of upper and lower motor neurons and by the progressive weakness and paralysis of voluntary muscles. Despite intense research efforts and numerous clinical trials, it is still an incurable disease. ALS had long been considered a pure motor neuron disease; however, recent studies have shown that motor neuron protection is not sufficient to prevent the course of the disease since the dismantlement of neuromuscular junctions occurs before motor neuron degeneration. Skeletal muscle alterations have been described in the early stages of the disease, and they seem to be mainly involved in the "dying back" phenomenon of motor neurons and metabolic dysfunctions. In recent years, skeletal muscles have been considered crucial not only for the etiology of ALS but also for its treatment. Here, we review clinical and preclinical studies that targeted skeletal muscles and discuss the different approaches, including pharmacological interventions, supplements or diets, genetic modifications, and training programs.
Collapse
Affiliation(s)
- Silvia Scaricamazza
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.)
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Illari Salvatori
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.)
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy
| | - Alberto Ferri
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Cristiana Valle
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; (S.S.); (I.S.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| |
Collapse
|
105
|
de Souto Barreto P, Vellas B, Rolland Y. Physical activity and exercise in the context of SARS-Cov-2: A perspective from geroscience field. Ageing Res Rev 2021; 66:101258. [PMID: 33450400 PMCID: PMC8042847 DOI: 10.1016/j.arr.2021.101258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 01/08/2023]
Abstract
The recent pandemics of the SARS-Cov-2 has pushed physical activity (PA) and exercise at the forefront of the discussion, since PA is associated with a reduced risk of developing all the chronic diseases strongly associated with severe cases of SARS-Cov-2 and exercise is considered a complimentary therapeutics for the treatment of these age-related conditions. The mechanisms through which PA and exercise could contribute to reduce the severity of the SARS-Cov-2 infection would be multiple, including their capacity to boost the immune system, but also their global effect on slowing down the progression of the aging process. The present perspective presents a discussion on how PA and exercise might hypothetically be linked with SARS-Cov-2 infection, current scientific gaps and shortcomings as well as recommendations for advancing research in this area, placing the debate in the context of aging and gerosciences.
Collapse
Affiliation(s)
- Philipe de Souto Barreto
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), Toulouse, France; UPS/Inserm UMR1027, University of Toulouse III, Toulouse, France.
| | - Bruno Vellas
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), Toulouse, France; UPS/Inserm UMR1027, University of Toulouse III, Toulouse, France
| | - Yves Rolland
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), Toulouse, France; UPS/Inserm UMR1027, University of Toulouse III, Toulouse, France
| |
Collapse
|
106
|
Martignon C, Pedrinolla A, Ruzzante F, Giuriato G, Laginestra FG, Bouça-Machado R, Ferreira JJ, Tinazzi M, Schena F, Venturelli M. Guidelines on exercise testing and prescription for patients at different stages of Parkinson's disease. Aging Clin Exp Res 2021; 33:221-246. [PMID: 32514871 DOI: 10.1007/s40520-020-01612-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/26/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Exercise is highly recommended in patients with Parkinson's disease (PD). Exercise-induced amelioration of motor, non-motor, and drug-induced symptoms are widely known. However, specific guidelines on exercise testing and prescription in PD are lacking. OBJECTIVE This study reviews the literature on exercise-based approaches to the management of symptoms at each stage of the disease and evaluate: (1) the most suitable clinical exercise testing; (2) training programs based on testing outcomes and PD stage; (3) the effects of exercise on antiparkinsonian drugs and to suggest the most effective exercise-medication combination. METHODS A systematic search was conducted using the databases MEDLINE, Google Scholar and, Cochrane Library using "Parkinson's Disease AND Physical therapy", "Training AND Parkinson", "Exercise", "Exercise AND Drug" as key words. In addition, references list from the included articles were searched and cross-checked to identify any further potentially eligible studies. RESULTS Of a total of 115 records retrieved, 50 (43%) were included. From these, 23 were included under the rubric "exercise testing"; 20 focused on the effectiveness of different types of exercise in PD motor-functional symptoms and neuroprotective effects, throughout disease progression, were included under the rubric "training protocol prescription"; and 7 concern the rubric "interaction between exercise and medication", although none reported consistent results. CONCLUSIONS Despite the lack of standardized parameters for exercise testing and prescription, all studies agree that PD patients should be encouraged to regularly train according to their severity-related limitations and their personalized treatment plan. In this manuscript, specific guidelines for tailored clinical testing and prescription are provided for each stage of PD.
Collapse
|
107
|
Chen J, Sivan U, Tan SL, Lippo L, De Angelis J, Labella R, Singh A, Chatzis A, Cheuk S, Medhghalchi M, Gil J, Hollander G, Marsden BD, Williams R, Ramasamy SK, Kusumbe AP. High-resolution 3D imaging uncovers organ-specific vascular control of tissue aging. SCIENCE ADVANCES 2021; 7:eabd7819. [PMID: 33536212 PMCID: PMC7857692 DOI: 10.1126/sciadv.abd7819] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 12/23/2020] [Indexed: 02/05/2023]
Abstract
Blood vessels provide supportive microenvironments for maintaining tissue functions. Age-associated vascular changes and their relation to tissue aging and pathology are poorly understood. Here, we perform 3D imaging of young and aging vascular beds. Multiple organs in mice and humans demonstrate an age-dependent decline in vessel density and pericyte numbers, while highly remodeling tissues such as skin preserve the vasculature. Vascular attrition precedes the appearance of cellular hallmarks of aging such as senescence. Endothelial VEGFR2 loss-of-function mice demonstrate that vascular perturbations are sufficient to stimulate cellular changes coupled with aging. Age-associated tissue-specific molecular changes in the endothelium drive vascular loss and dictate pericyte to fibroblast differentiation. Lineage tracing of perivascular cells with inducible PDGFRβ and NG2 Cre mouse lines demonstrated that increased pericyte to fibroblast differentiation distinguishes injury-induced organ fibrosis and zymosan-induced arthritis. To spur further discoveries, we provide a freely available resource with 3D vascular and tissue maps.
Collapse
Affiliation(s)
- Junyu Chen
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Unnikrishnan Sivan
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Sin Lih Tan
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Luciana Lippo
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Jessica De Angelis
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Rossella Labella
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Amit Singh
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, Heidelberg D-69120, Germany
| | - Alexandros Chatzis
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Stanley Cheuk
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Mino Medhghalchi
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Jesus Gil
- Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
- MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Georg Hollander
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Brian D Marsden
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
- Structural Genomics Consortium, NDM, University of Oxford, Oxford OX3 7DQ, UK
| | - Richard Williams
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Saravana K Ramasamy
- Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
- MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK.
| |
Collapse
|
108
|
Rottenberg H, Hoek JB. The Mitochondrial Permeability Transition: Nexus of Aging, Disease and Longevity. Cells 2021; 10:cells10010079. [PMID: 33418876 PMCID: PMC7825081 DOI: 10.3390/cells10010079] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 01/01/2021] [Indexed: 12/11/2022] Open
Abstract
The activity of the mitochondrial permeability transition pore, mPTP, a highly regulated multi-component mega-channel, is enhanced in aging and in aging-driven degenerative diseases. mPTP activity accelerates aging by releasing large amounts of cell-damaging reactive oxygen species, Ca2+ and NAD+. The various pathways that control the channel activity, directly or indirectly, can therefore either inhibit or accelerate aging or retard or enhance the progression of aging-driven degenerative diseases and determine lifespan and healthspan. Autophagy, a catabolic process that removes and digests damaged proteins and organelles, protects the cell against aging and disease. However, the protective effect of autophagy depends on mTORC2/SKG1 inhibition of mPTP. Autophagy is inhibited in aging cells. Mitophagy, a specialized form of autophagy, which retards aging by removing mitochondrial fragments with activated mPTP, is also inhibited in aging cells, and this inhibition leads to increased mPTP activation, which is a major contributor to neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. The increased activity of mPTP in aging turns autophagy/mitophagy into a destructive process leading to cell aging and death. Several drugs and lifestyle modifications that enhance healthspan and lifespan enhance autophagy and inhibit the activation of mPTP. Therefore, elucidating the intricate connections between pathways that activate and inhibit mPTP, in the context of aging and degenerative diseases, could enhance the discovery of new drugs and lifestyle modifications that slow aging and degenerative disease.
Collapse
Affiliation(s)
- Hagai Rottenberg
- New Hope Biomedical R&D, 23 W. Bridge street, New Hope, PA 18938, USA
- Correspondence: ; Tel.: +1-267-614-5588
| | - Jan B. Hoek
- MitoCare Center, Department of Anatomy, Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
109
|
Siadat SM, Zamboulis DE, Thorpe CT, Ruberti JW, Connizzo BK. Tendon Extracellular Matrix Assembly, Maintenance and Dysregulation Throughout Life. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:45-103. [PMID: 34807415 DOI: 10.1007/978-3-030-80614-9_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In his Lissner Award medal lecture in 2000, Stephen Cowin asked the question: "How is a tissue built?" It is not a new question, but it remains as relevant today as it did when it was asked 20 years ago. In fact, research on the organization and development of tissue structure has been a primary focus of tendon and ligament research for over two centuries. The tendon extracellular matrix (ECM) is critical to overall tissue function; it gives the tissue its unique mechanical properties, exhibiting complex non-linear responses, viscoelasticity and flow mechanisms, excellent energy storage and fatigue resistance. This matrix also creates a unique microenvironment for resident cells, allowing cells to maintain their phenotype and translate mechanical and chemical signals into biological responses. Importantly, this architecture is constantly remodeled by local cell populations in response to changing biochemical (systemic and local disease or injury) and mechanical (exercise, disuse, and overuse) stimuli. Here, we review the current understanding of matrix remodeling throughout life, focusing on formation and assembly during the postnatal period, maintenance and homeostasis during adulthood, and changes to homeostasis in natural aging. We also discuss advances in model systems and novel tools for studying collagen and non-collagenous matrix remodeling throughout life, and finally conclude by identifying key questions that have yet to be answered.
Collapse
Affiliation(s)
| | - Danae E Zamboulis
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Chavaunne T Thorpe
- Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Jeffrey W Ruberti
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Brianne K Connizzo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
110
|
Ozdemir F, Cansel N, Kizilay F, Guldogan E, Ucuz I, Sinanoglu B, Colak C, Cumurcu HB. The role of physical activity on mental health and quality of life during COVID-19 outbreak: A cross-sectional study. Eur J Integr Med 2020; 40:101248. [PMID: 33200007 PMCID: PMC7655489 DOI: 10.1016/j.eujim.2020.101248] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The COVID-19 pandemic has placed restrictions on people's physical activities. The aim of this study was to evaluate the physical activity levels of individuals and assess the effects of physical activity on quality of life, depression and anxiety levels during the COVID-19 outbreak. METHODS This cross-sectional study were included 2301 participants aged 20-75 years. The data were collected through the Google Forms web survey platform by the virtual snowball sampling method. In the multivariate analysis, the independent predictors were analyzed using possible factors identified in previous analyses by multinomial logistic regression analysis. Hosmer-Lemeshow and Omnibus tests were used to evaluate the logistic regression model and coefficients. RESULTS The mean weekly energy consumption of the participants was 875±1588 MET-min, and only 6.9% were physically active enough to maintain their health. There was a weak positive relationship between physical activity levels and quality of life, while there was a weak negative relationship between physical activity levels, depression and anxiety (p<0.05). In the multinomial logistic regression model established for comparison of physically active and inactive participants, general health status and physical health status variables were statistically significant (p<0.05). However, relationships between psychological status, social relationships and environment scores, Beck Depression and Beck Anxiety Inventory scores were not statistically significant (p>0.05). CONCLUSIONS Results showed that physical activity programs should be included in guidelines as an integrative approach to pandemic management. During COVID-19 outbreak, community-based rehabilitation programs are needed, and these programs should be carried out in cooperation with community stakeholders.
Collapse
Affiliation(s)
- Filiz Ozdemir
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Inonu University, 44280 Malatya, Turkey
| | - Neslihan Cansel
- Department of Psychiatry, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Fatma Kizilay
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Inonu University, 44280 Malatya, Turkey
| | - Emek Guldogan
- Department of Biostatistics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Ilknur Ucuz
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Bercem Sinanoglu
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Inonu University, 44280 Malatya, Turkey
| | - Cemil Colak
- Department of Biostatistics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Hatice Birgul Cumurcu
- Department of Psychiatry, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| |
Collapse
|
111
|
Plagg B, Zerbe S. How does the environment affect human ageing? An interdisciplinary review. JOURNAL OF GERONTOLOGY AND GERIATRICS 2020. [DOI: 10.36150/2499-6564-420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
112
|
Critselis E, Panaretos D, Sánchez-Niubò A, Giné-Vázquez I, Ayuso-Mateos JL, Caballero FF, de la Fuente J, Haro JM, Panagiotakos D. Ageing trajectories of health-longitudinal opportunities and synergies (ATHLOS) Healthy Ageing Scale in adults from 16 international cohorts representing 38 countries worldwide. J Epidemiol Community Health 2020; 74:1043-1049. [PMID: 32801117 DOI: 10.1136/jech-2020-214496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Uniform international measurement tools for assessing healthy ageing are currently lacking. OBJECTIVES The study assessed the novel comprehensive global Ageing Trajectories of Health: Longitudinal Opportunities and Synergies (ATHLOS) Healthy Ageing Scale, using an Item Response Theory approach, for evaluating healthy ageing across populations. DESIGN Pooled analysis of 16 international longitudinal studies. SETTING 38 countries in five continents. SUBJECTS International cohort (n=355 314), including 44.4% (n=153 597) males, aged (mean±SD) 61.7±11.5 years old. METHODS The ATHLOS Healthy Ageing Scale (including 41 items related to intrinsic capacity and functional ability) was evaluated in a pooled international cohort (n=355 314 from 16 studies) according to gender, country of residence and age group. It was also assessed in a subset of eight cohorts with ≥3 waves of follow-up assessment. The independent samples t-test and Mann-Whitney test were applied for comparing normally and skewed continuous variables between groups, respectively. RESULTS The ATHLOS Scale (range: 12.49-68.84) had a mean (±SD) value of 50.2±10.0, with males and individuals >65 years old exhibiting higher and lower mean scores, respectively. Highest mean scores were detected in Switzerland, Japan and Denmark, while lowest in Ghana, India and Russia. When the ATHLOS Scale was evaluated in a subset of cohorts with ≥3 study waves, mean scores were significantly higher than those of the baseline cohort (mean scores in ≥3 study waves vs baseline: 51.6±9.4 vs 50.2±10.0; p<0.01). CONCLUSIONS The ATHLOS Healthy Ageing Scale may be adequately applied for assessing healthy ageing across populations.
Collapse
Affiliation(s)
- Elena Critselis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece.,Proteomics Facility, Center for Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitris Panaretos
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Albert Sánchez-Niubò
- Research, Innovation and Teaching Unit, Parc Sanitari Sant Joan De Deu, Sant Boi De Llobregat, Spain.,Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM), Instituto De Salud Carlos III, Madrid, Spain
| | - Iago Giné-Vázquez
- Research, Innovation and Teaching Unit, Parc Sanitari Sant Joan De Deu, Sant Boi De Llobregat, Spain
| | - José Luis Ayuso-Mateos
- Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM), Instituto De Salud Carlos III, Madrid, Spain.,Department of Psychiatry, Universidad Autonoma De Madrid, Madrid, Spain.,Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS Princesa), Madrid, Spain
| | - Francisco Felix Caballero
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid/Idipaz, Madrid, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, CIBERESP, Madrid, Spain
| | - Javier de la Fuente
- Department of Psychiatry, Universidad Autonoma De Madrid, Madrid, Spain.,Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS Princesa), Madrid, Spain
| | - Josep Maria Haro
- Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM), Instituto De Salud Carlos III, Madrid, Spain
| | - Demosthenes Panagiotakos
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece .,Faculty of Health, University of Canberra, Canberra, Australia
| |
Collapse
|
113
|
Comparison of the Mediterranean diet and the Dietary Approach Stop Hypertension in reducing the risk of 10-year fatal and non-fatal CVD events in healthy adults: the ATTICA Study (2002-2012). Public Health Nutr 2020; 24:2746-2757. [PMID: 32744196 DOI: 10.1017/s136898002000230x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To compare the Mediterranean and Dietary Approaches to Stop Hypertension (DASH) diets in deterring 10-year CVD. DESIGN Prospective cohort (n 2020) with a 10-year follow-up period for the occurrence of combined (fatal or non-fatal) CVD incidence (International Classification of Diseases (ICD)-10). Baseline adherence to the Mediterranean and DASH diets was assessed via a semi-quantitative FFQ according to the MedDietScore and DASH scores, respectively. SETTING Attica, Greece. PARTICIPANTS Two thousand twenty individuals (mean age at baseline 45·2 (sd 14·0) years). RESULTS One-third of individuals in the lowest quartile of Mediterranean diet consumption, as compared with 3·1 % of those in the highest quartile, developed 10-year CVD (P < 0·0001). In contrast, individuals in the lowest and highest DASH diet quartiles exhibited similar 10-year CVD rates (n (%) of 10-year CVD in DASH diet quartiles 1 v. 4: 79 (14·7 %) v. 75 (15·3 %); P = 0·842). Following adjustment for demographic, lifestyle and clinical confounding factors, those in the highest Mediterranean diet quartile had a 4-fold reduced 10-year CVD risk (adjusted hazard ratio (HR) 4·52, 95 % CI 1·76, 11·63). However, individuals with highest DASH diet quartile scores did not differ from their lowest quartile counterparts in developing such events (adjusted HR 1·05, 95 % CI 0·69, 1·60). CONCLUSIONS High adherence to the Mediterranean diet, and not to the DASH diet, was associated with a lower risk of 10-year fatal and non-fatal CVD. Therefore, public health interventions aimed at enhancing adherence to the Mediterranean diet, rather than the DASH diet, may most effectively deter long-term CVD outcomes particularly in Mediterranean populations.
Collapse
|
114
|
A Discussion on Different Approaches for Prescribing Physical Interventions - Four Roads Lead to Rome, but Which One Should We Choose? J Pers Med 2020; 10:jpm10030055. [PMID: 32605044 PMCID: PMC7565695 DOI: 10.3390/jpm10030055] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023] Open
Abstract
It is well recognized that regular physical exercise has positive effects on physical and mental health. To use the beneficial health effects of physical exercise, there are worldwide movements encouraging health care providers to include physical exercise in their care and treatments strategies. However, a crucial point in administering the "exercise polypill" is the dosing and, in turn, the prescription of the physical intervention (PI). In this perspective article, we discuss the advantages and disadvantages of different approaches to prescribe PI. In this context, we also highlight outstanding questions and potential areas of opportunity for further investigations.
Collapse
|
115
|
Martel J, Ojcius DM, Wu CY, Peng HH, Voisin L, Perfettini JL, Ko YF, Young JD. Emerging use of senolytics and senomorphics against aging and chronic diseases. Med Res Rev 2020; 40:2114-2131. [PMID: 32578904 DOI: 10.1002/med.21702] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/04/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Senescence is a state of cell cycle arrest that plays an important role in embryogenesis, wound healing and protection against cancer. Senescent cells also accumulate during aging and contribute to the development of age-related disorders and chronic diseases, such as atherosclerosis, type 2 diabetes, osteoarthritis, idiopathic pulmonary fibrosis, and liver disease. Molecules that induce apoptosis of senescent cells, such as dasatinib, quercetin, and fisetin, produce health benefits and extend lifespan in animal models. We describe here the mechanism of action of senolytics and senomorphics, many of which are derived from plants and fungi. We also discuss the possibility of using such compounds to delay aging and treat chronic diseases in humans.
Collapse
Affiliation(s)
- Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, Republic of China
| | - David M Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, Republic of China.,Department of Biomedical Sciences, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, California
| | - Cheng-Yeu Wu
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, Republic of China.,Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Hsin-Hsin Peng
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, Republic of China.,Laboratory Animal Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, Republic of China
| | - Laurent Voisin
- Institut Gustave Roussy, INSERM U1030, Université Paris-Sud, Villejuif, France
| | - Jean-Luc Perfettini
- Department of Biomedical Sciences, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, California.,Institut Gustave Roussy, INSERM U1030, Université Paris-Sud, Villejuif, France
| | - Yun-Fei Ko
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, Republic of China.,Chang Gung Biotechnology Corporation, Taipei, Taiwan, Republic of China.,Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City, Taiwan, Republic of China
| | - John D Young
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, Republic of China.,Chang Gung Biotechnology Corporation, Taipei, Taiwan, Republic of China.,Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City, Taiwan, Republic of China
| |
Collapse
|
116
|
Nair VD, Ge Y, Li S, Pincas H, Jain N, Seenarine N, Amper MAS, Goodpaster BH, Walsh MJ, Coen PM, Sealfon SC. Sedentary and Trained Older Men Have Distinct Circulating Exosomal microRNA Profiles at Baseline and in Response to Acute Exercise. Front Physiol 2020; 11:605. [PMID: 32587527 PMCID: PMC7298138 DOI: 10.3389/fphys.2020.00605] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/14/2020] [Indexed: 12/20/2022] Open
Abstract
Exercise has multi-systemic benefits and attenuates the physiological impairments associated with aging. Emerging evidence suggests that circulating exosomes mediate some of the beneficial effects of exercise via the transfer of microRNAs between tissues. However, the impact of regular exercise and acute exercise on circulating exosomal microRNAs (exomiRs) in older populations remains unknown. In the present study, we analyzed circulating exomiR expression in endurance-trained elderly men (n = 5) and age-matched sedentary males (n = 5) at baseline (Pre), immediately after a forty minute bout of aerobic exercise on a cycle ergometer (Post), and three hours after this acute exercise (3hPost). Following the isolation and enrichment of exosomes from plasma, exosome-enriched preparations were characterized and exomiR levels were determined by sequencing. The effect of regular exercise on circulating exomiRs was assessed by comparing the baseline expression levels in the trained and sedentary groups. The effect of acute exercise was determined by comparing baseline and post-training expression levels in each group. Regular exercise resulted in significantly increased baseline expression of three exomiRs (miR-486-5p, miR-215-5p, miR-941) and decreased expression of one exomiR (miR-151b). Acute exercise altered circulating exomiR expression in both groups. However, exomiRs regulated by acute exercise in the trained group (7 miRNAs at Post and 8 at 3hPost) were distinct from those in the sedentary group (9 at Post and 4 at 3hPost). Pathway analysis prediction and reported target validation experiments revealed that the majority of exercise-regulated exomiRs are targeting genes that are related to IGF-1 signaling, a pathway involved in exercise-induced muscle and cardiac hypertrophy. The immediately post-acute exercise exomiR signature in the trained group correlates with activation of IGF-1 signaling, whereas in the sedentary group it is associated with inhibition of IGF-1 signaling. While further validation is needed, including measurements of IGF-1/IGF-1 signaling in blood or skeletal muscle, our results suggest that training status may counteract age-related anabolic resistance by modulating circulating exomiR profiles both at baseline and in response to acute exercise.
Collapse
Affiliation(s)
- Venugopalan D. Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yongchao Ge
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Side Li
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Hanna Pincas
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nimisha Jain
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nitish Seenarine
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mary Anne S. Amper
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bret H. Goodpaster
- Translational Research Institute, AdventHealth, Orlando, FL, United States
| | - Martin J. Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Paul M. Coen
- Translational Research Institute, AdventHealth, Orlando, FL, United States
| | - Stuart C. Sealfon
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
117
|
Kuraszkiewicz B, Goszczyńska H, Podsiadły-Marczykowska T, Piotrkiewicz M, Andersen P, Gromicho M, Grosskreutz J, Kuźma-Kozakiewicz M, Petri S, Stubbendorf B, Szacka K, Uysal H, de Carvalho M. Potential Preventive Strategies for Amyotrophic Lateral Sclerosis. Front Neurosci 2020; 14:428. [PMID: 32528241 PMCID: PMC7264408 DOI: 10.3389/fnins.2020.00428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
It may seem useless to propose preventive measures for a disease without established pathogenesis and successful therapy, such as amyotrophic lateral sclerosis (ALS). However, we will show that ALS shares essential molecular mechanisms with aging and that established anti-aging strategies, such as healthy diet or individually adjusted exercise, may be successfully applied to ameliorate the condition of ALS patients. These strategies might be applied for prevention if persons at ALS risk could be identified early enough. Recent research advances indicate that this may happen soon.
Collapse
Affiliation(s)
- B Kuraszkiewicz
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - H Goszczyńska
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - T Podsiadły-Marczykowska
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - M Piotrkiewicz
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - P Andersen
- Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - M Gromicho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - J Grosskreutz
- Department of Neurology, University Hospital Jena, Jena, Germany.,Jena Centre for Healthy Aging, University Hospital Jena, Jena, Germany
| | | | - S Petri
- Clinic for Neurology, Hannover Medical School, Hanover, Germany
| | - B Stubbendorf
- Department of Neurology, University Hospital Jena, Jena, Germany
| | - K Szacka
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - H Uysal
- Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - M de Carvalho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
118
|
Peres-Ueno MJ, Fernandes F, Brito VGB, Nicola ÂC, Stringhetta-Garcia CT, Castoldi RC, Menezes AP, Ciarlini PC, Louzada MJQ, Oliveira SHP, Ervolino E, Chaves-Neto AH, Dornelles RCM. Effect of pre-treatment of strength training and raloxifene in periestropause on bone healing. Bone 2020; 134:115285. [PMID: 32097761 DOI: 10.1016/j.bone.2020.115285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/31/2020] [Accepted: 02/14/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND There is evidence that strength training (ST) and raloxifene (Ral) treatment during periestropause promotes better bone quality. We wanted to determine whether the skeletal benefits of ST or Ral treatment, performed during periestropause, would persist after fracture. Therefore, the present study aimed to analyze the influence of pre-treatment with ST and administration of Ral during periestropause on bone healing after total unilateral osteotomy. METHODS Senescent female Wistar rats between 18 and 21 months of age, performed ST on a ladder three times per week, were administered Ral by gavage (2.3 mg/kg/day), or an association of both. After 120 days, the treatments were interrupted, and a total osteotomy was performed on the left tibia in all animals. They were euthanized 1 and 8 weeks post-osteotomy. RESULTS The administration of Ral during periestropause worsened the biochemical and oxidative profile, decreased gene expression of markers related to bone resorption and remodeling, which negatively affected the physicochemical properties; this lead to changes in the bone callus microarchitecture and mass, as well as a decrease in callus resistance to torsional deformation, resulting in lower tissue quality during bone healing. In contrast, ST performed prior to the osteotomy resulted in better bone healing, improvement of the biochemical and oxidative profile, alteration of the genetic profile in favor of bone formation and resorption, as well as the physic-ochemical properties of the callus. These changes led to better microarchitecture and bone mass and increased callus resistance to torsional deformation, confirming its beneficial effect on the quality of bone tissue, providing acceleration of bone consolidation. The combination of therapies at this exercise intensity and drug dosage showed a negative interaction, where the negative effect of Ral overcame the positive effect of ST, leading to decreased tissue quality in the bone healing process. CONCLUSIONS This study indicates that in addition to excellent non-pharmacological therapy and action in the prevention of osteoporosis, ST performed during the aging period may increase bone quality at the onset of healing and provide improved bone consolidation. Furthermore, the anti-osteoclastogenic effect of Ral shown in this model delayed the bone repair process, resulting in considerable clinical concern.
Collapse
Affiliation(s)
- Melise Jacon Peres-Ueno
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.
| | - Fernanda Fernandes
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Victor Gustavo Balera Brito
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Ângela Cristina Nicola
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Camila Tami Stringhetta-Garcia
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Robson Chacon Castoldi
- Faculty of Science and Technology, São Paulo State University (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Amanda Pinatti Menezes
- Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Paulo Cézar Ciarlini
- Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Mário Jeferson Quirino Louzada
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Sandra Helena Penha Oliveira
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil; Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Edilson Ervolino
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Antonio Hernandes Chaves-Neto
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil; Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Rita Cassia Menegati Dornelles
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil; Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.
| |
Collapse
|
119
|
Schöller-Mann A, Matt K, Schniertshauer D, Hochecker B, Bergemann J. 12 days of in vivo caloric reduction can improve important parameters of aging in humans. Mech Ageing Dev 2020; 188:111238. [PMID: 32272119 DOI: 10.1016/j.mad.2020.111238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/13/2020] [Accepted: 03/26/2020] [Indexed: 01/16/2023]
Abstract
Caloric reduction (CR) is considered as the most reasonable intervention to delay aging and age-related diseases. Numerous studies in various model organisms provide the main basis for this hypothesis. Human studies exist, but they differ widely in study design, characteristics of test persons and study outcome. In this study we investigated CR in humans on a molecular level to gain a better understanding in these processes. For that purpose, we analyzed human peripheral blood mononuclear cells of healthy people fasting according to F.X. Mayr. In a previous study our group could show a significantly improved DNA repair capacity after fasting. Here we were able to confirm these findings despite a slightly modified fasting therapy. Furthermore, the function of the mitochondrial respiratory chain and the mRNA levels of the mitochondria-associated genes SIRT3 and NDUFS1 were significantly affected by CR. However, these changes were only detectable in people who exhibited no improvement in DNA repair capacity. In contrast to that we could not observe any changes in ROS levels, mitochondrial DNA copy number and non-mitochondrial respiration. Altogether our results reveal that CR in form of F. X. Mayr therapy is able to positively influence several cellular parameters and especially mitochondrial function.
Collapse
Affiliation(s)
- Alica Schöller-Mann
- Department of Life Sciences, Albstadt-Sigmaringen University of Applied Sciences, Sigmaringen, Germany.
| | - Katja Matt
- Department of Life Sciences, Albstadt-Sigmaringen University of Applied Sciences, Sigmaringen, Germany
| | - Daniel Schniertshauer
- Department of Life Sciences, Albstadt-Sigmaringen University of Applied Sciences, Sigmaringen, Germany
| | - Barbara Hochecker
- Department of Life Sciences, Albstadt-Sigmaringen University of Applied Sciences, Sigmaringen, Germany
| | - Jörg Bergemann
- Department of Life Sciences, Albstadt-Sigmaringen University of Applied Sciences, Sigmaringen, Germany
| |
Collapse
|
120
|
Mañas A, Del Pozo-Cruz B, Rodríguez-Gómez I, Losa-Reyna J, Rodríguez-Mañas L, García-García FJ, Ara I. Which one came first: movement behavior or frailty? A cross-lagged panel model in the Toledo Study for Healthy Aging. J Cachexia Sarcopenia Muscle 2020; 11:415-423. [PMID: 31912990 PMCID: PMC7113532 DOI: 10.1002/jcsm.12511] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/05/2019] [Accepted: 09/25/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND There has been limited longitudinal assessment of the relationship between moderate-to-vigorous physical activity (MVPA) and sedentary behaviour (SB) with frailty, and no studies have explored the possibility of reverse causality. This study aimed to determine the potential bidirectionality of the relationship between accelerometer-assessed MVPA, SB, and frailty over time in older adults. METHODS Participants were from the Toledo Study for Healthy Aging. We analysed 186 older people aged 67 to 90 (76.7 ± 3.9; 52.7% female participants) over a 4-year period. Time spent in SB and MVPA was assessed by accelerometry. Frailty Trait Scale was used to determine frailty levels. A cross-lagged panel model design was used to test the reciprocal relationships between MVPA/SB and frailty. RESULTS Frailty Trait Scale score changed from 35.4 to 43.8 points between the two times (P < 0.05). We also found a reduction of 7 min/day in the time spent on MVPA (P < 0.05), and participants tended to spend more time on SB (P = 0.076). Our analyses revealed that lower levels of initial MVPA predicted higher levels of later frailty [std. β = -0.126; confidence interval (CI) = -0.231, -0.021; P < 0.05], whereas initial spent time on SB did not predict later frailty (std. β = -0.049; CI = -0.185, 0.087; P = 0.48). Conversely, an initial increased frailty status predicted higher levels of later SB (std. β = 0.167; CI = 0.026, 0.307; P < 0.05) but not those of MVPA (std. β = 0.071; CI = -0.033, 0.175; P = 0.18). CONCLUSIONS Our observations suggest that the relationship between MVPA/SB and frailty is unidirectional: individuals who spent less time on MVPA at baseline are more likely to increase their frailty score, and individuals who are more frail are more likely to spent more time on SB at follow-up. Interventions and policies should aim to increase MVPA levels from earlier stages to promote successful aging.
Collapse
Affiliation(s)
- Asier Mañas
- GENUD Toledo Research Group, University of Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Borja Del Pozo-Cruz
- Motivation and Behaviour Research Program, Institute for Positive Psychology and Education, Faculty of Health Sciences, Australian Catholic University, Sydney, NSW, Australia
| | - Irene Rodríguez-Gómez
- GENUD Toledo Research Group, University of Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - José Losa-Reyna
- GENUD Toledo Research Group, University of Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.,Geriatric Department, Hospital Virgen del Valle, Toledo, Spain
| | - Leocadio Rodríguez-Mañas
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.,Geriatric Department, Hospital Universitario de Getafe, Getafe, Spain
| | - Francisco J García-García
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.,Geriatric Department, Hospital Virgen del Valle, Toledo, Spain
| | - Ignacio Ara
- GENUD Toledo Research Group, University of Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| |
Collapse
|
121
|
Dimauro I, Paronetto MP, Caporossi D. Exercise, redox homeostasis and the epigenetic landscape. Redox Biol 2020; 35:101477. [PMID: 32127290 PMCID: PMC7284912 DOI: 10.1016/j.redox.2020.101477] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/12/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023] Open
Abstract
Physical exercise represents one of the strongest physiological stimuli capable to induce functional and structural modifications in all biological systems. Indeed, beside the traditional genetic mechanisms, physical exercise can modulate gene expression through epigenetic modifications, namely DNA methylation, post-translational histone modification and non-coding RNA transcripts. Initially considered as merely damaging molecules, it is now well recognized that both reactive oxygen (ROS) and nitrogen species (RNS) produced under voluntary exercise play an important role as regulatory mediators in signaling processes. While robust scientific evidences highlight the role of exercise-associated redox modifications in modulating gene expression through the genetic machinery, the understanding of their specific impact on epigenomic profile is still at an early stage. This review will provide an overview of the role of ROS and RNS in modulating the epigenetic landscape in the context of exercise-related adaptations. Physical exercise can modulate gene expression through epigenetic modifications. Epigenetic regulation of ROS/RNS generating, sensing and neutralizing enzymes can impact the cellular levels of ROS and RNS. ROS might act as modulators of epigenetic machinery, interfering with DNA methylation, hPTMs and ncRNAs expression. Redox homeostasis might hold a relevant role in the epigenetic landscape modulating exercise-related adaptations.
Collapse
Affiliation(s)
- Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Maria Paola Paronetto
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy; Laboratory of Cellular and Molecular Neurobiology, IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, Rome, Italy
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy.
| |
Collapse
|
122
|
Zhu J, Wang F, Shi L, Cai H, Zheng Y, Zheng W, Bao P, Shu XO. Accelerated aging in breast cancer survivors and its association with mortality and cancer recurrence. Breast Cancer Res Treat 2020; 180:449-459. [PMID: 32020433 DOI: 10.1007/s10549-020-05541-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/18/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE To prospectively investigate accelerated aging and its association with total mortality and breast cancer-specific mortality/recurrence among breast cancer survivors. METHODS This study included 4218 female breast cancer patients enrolled into a population-based cohort study approximately 6-month post-diagnosis. Information on aging-related symptoms (i.e., self-rated overall health condition, energy level, depression, sleep difficulty, and quality) was collected at 18- and 36-month post-diagnosis surveys. Information on overall health, daily function impairments, survival status, and recurrence was collected at 10-year post-diagnosis survey. Record linkages with vital statistics were conducted to collect mortality information. Cox proportional hazards model was applied. RESULTS Among 3041 10-year survivors with a mean age of 63.7 ± 9.7 years, respectively, 52.3%, 19.0%, and 27.6% reported poor health, limitation in daily activity, and climbing floors. Age-specific prevalence revealed that breast cancer survivors reached similar prevalence of the functional limitations 5-10 years earlier than cancer-free women. At the 18-month post-diagnosis survey, respectively, 47.0%, 72.5%, and 25.1% of survivors reported unsatisfied overall health condition, reduced energy level, and depression symptoms. After a median follow-up of 10.9 years, low self-rated overall health, low energy level, and depression were significantly associated with increased total mortality, with hazard ratios (HRs; 95% confidence intervals [CI]) of 3.14 (2.43, 4.06), 1.49 (1.20, 1.84), and 1.59 (1.21, 2.09), respectively. Low self-rated health was associated with breast cancer-specific mortality/recurrence (HR 1.85, 95% CI 1.30, 2.65). No significant association was found for sleep difficulty and quality. CONCLUSION Aging-related physical changes/symptoms are commonly presented at 18 months after breast cancer diagnosis and are associated with worse prognosis. IMPACT Our findings highlight the concern of accelerated aging among breast cancer survivors.
Collapse
Affiliation(s)
- Jingjing Zhu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 600 (IMPH), Nashville, TN, USA
| | - Fei Wang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 600 (IMPH), Nashville, TN, USA.,Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Liang Shi
- Department of Chronic Non-Communicable Disease Surveillance, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Hui Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 600 (IMPH), Nashville, TN, USA
| | - Ying Zheng
- Department of Cancer Control and Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China.,Department of Cancer Prevention, Shanghai Cancer Center, Fudan University, Shanghai, People's Republic of China
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 600 (IMPH), Nashville, TN, USA
| | - Pingping Bao
- Department of Chronic Non-Communicable Disease Surveillance, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 600 (IMPH), Nashville, TN, USA.
| |
Collapse
|
123
|
Guo S, Huang Y, Zhang Y, Huang H, Hong S, Liu T. Impacts of exercise interventions on different diseases and organ functions in mice. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:53-73. [PMID: 31921481 PMCID: PMC6943779 DOI: 10.1016/j.jshs.2019.07.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/09/2019] [Accepted: 04/29/2019] [Indexed: 05/20/2023]
Abstract
Background In recent years, much evidence has emerged to indicate that exercise can benefit people when performed properly. This review summarizes the exercise interventions used in studies involving mice as they are related to special diseases or physiological status. To further understand the effects of exercise interventions in treating or preventing diseases, it is important to establish a template for exercise interventions that can be used in future exercise-related studies. Methods PubMed was used as the data resource for articles. To identify studies related to the effectiveness of exercise interventions for treating various diseases and organ functions in mice, we used the following search language: (exercise [Title] OR training [Title] OR physical activity [Title]) AND (mice [title/abstract] OR mouse [title/abstract] OR mus [title/abstract]). To limit the range of search results, we included 2 filters: one that limited publication dates to "in 10 years" and one that sorted the results as "best match". Then we grouped the commonly used exercise methods according to their similarities and differences. We then evaluated the effectiveness of the exercise interventions for their impact on diseases and organ functions in 8 different systems. Results A total of 331 articles were included in the analysis procedure. The articles were then segmented into 8 systems for which the exercise interventions were used in targeting and treating disorders: motor system (60 studies), metabolic system (45 studies), cardio-cerebral vascular system (58 studies), nervous system (74 studies), immune system (32 studies), respiratory system (7 studies), digestive system (1 study), and the system related to the development of cancer (54 studies). The methods of exercise interventions mainly involved the use of treadmills, voluntary wheel-running, forced wheel-running, swimming, and resistance training. It was found that regardless of the specific exercise method used, most of them demonstrated positive effects on various systemic diseases and organ functions. Most diseases were remitted with exercise regardless of the exercise method used, although some diseases showed the best remission effects when a specific method was used. Conclusion Our review strongly suggests that exercise intervention is a cornerstone in disease prevention and treatment in mice. Because exercise interventions in humans typically focus on chronic diseases, national fitness, and body weight loss, and typically have low intervention compliance rates, it is important to use mice models to investigate the molecular mechanisms underlying the health benefits from exercise interventions in humans.
Collapse
Affiliation(s)
- Shanshan Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yiru Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Yan Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - He Huang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, Changchun 130012, China
| | - Shangyu Hong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Tiemin Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Department of Endocrinology and Metabolism, State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
124
|
Maltais M, Boisvert-Vigneault K, Rolland Y, Vellas B, de Souto Barreto P. Longitudinal associations of physical activity levels with morphological and functional changes related with aging: The MAPT study. Exp Gerontol 2019; 128:110758. [PMID: 31669813 DOI: 10.1016/j.exger.2019.110758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/27/2019] [Accepted: 10/18/2019] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The biological process of aging is characterized by molecular and physiological processes that lead to alterations in the organism. There is still a lack of a consensus about the measurement of biological aging, but physical activity (PA) could be a potential marker of an aging phenotype. METHODS Measurements of body composition, muscle quality (MQ), blood biochemistry, and neurodegeneration were assessed over three years. Physical activity levels were measured using a self-reported questionnaire. RESULTS Three-year progression of PA levels showed that those who maintained low levels of PA was significantly associated with the evolution of brain and hippocampal volume, compared to inactive individuals. Similar results were found always active individuals, but also had better cognition. CONCLUSION PA levels are associated with some elements of biological aging, but more studies with objective-based PA measurements could provide a more in-depth knowledge on biological aging.
Collapse
Affiliation(s)
- Mathieu Maltais
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 allée Jules Guesdes, 31000 Toulouse, France.
| | | | - Yves Rolland
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 allée Jules Guesdes, 31000 Toulouse, France; UMR INSERM, 1027 University of Toulouse III, Toulouse, France Faculté de médecine, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Bruno Vellas
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 allée Jules Guesdes, 31000 Toulouse, France; UMR INSERM, 1027 University of Toulouse III, Toulouse, France Faculté de médecine, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Philipe de Souto Barreto
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 allée Jules Guesdes, 31000 Toulouse, France; UMR INSERM, 1027 University of Toulouse III, Toulouse, France Faculté de médecine, 37 allées Jules Guesde, 31000 Toulouse, France
| | | |
Collapse
|
125
|
Hernández-Saavedra D, Stanford KI. The Regulation of Lipokines by Environmental Factors. Nutrients 2019; 11:E2422. [PMID: 31614481 PMCID: PMC6835582 DOI: 10.3390/nu11102422] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 01/08/2023] Open
Abstract
Adipose tissue is a highly metabolically-active tissue that senses and secretes hormonal and lipid mediators that facilitate adaptations to metabolic tissues. In recent years, the role of lipokines, which are lipid species predominantly secreted from adipose tissue that act as hormonal regulators in many metabolic tissues, has been an important area of research for obesity and diabetes. Previous studies have identified that these secreted lipids, including palmitoleate, 12,13-diHOME, and fatty acid-hydroxy-fatty acids (FAHFA) species, are important regulators of metabolism. Moreover, environmental factors that directly affect the secretion of lipokines such as diet, exercise, and exposure to cold temperatures constitute attractive therapeutic strategies, but the mechanisms that regulate lipokine stimulation have not been thoroughly reviewed. In this study, we will discuss the chemical characteristics of lipokines that position them as attractive targets for chronic disease treatment and prevention and the emerging roles of lipokines as regulators of inter-tissue communication. We will define the target tissues of lipokines, and explore the ability of lipokines to prevent or delay the onset and development of chronic diseases. Comprehensive understanding of the lipokine synthesis and lipokine-driven regulation of metabolic outcomes is instrumental for developing novel preventative and therapeutic strategies that harness adipose tissue-derived lipokines.
Collapse
Affiliation(s)
- Diego Hernández-Saavedra
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
126
|
Kooman JP, Stenvinkel P, Shiels PG. Fabry Disease: A New Model of Premature Ageing? Nephron Clin Pract 2019; 144:1-4. [PMID: 31563917 DOI: 10.1159/000503290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jeroen P Kooman
- Maastricht University Medical Center, Department of Internal Medicine, Division of Nephrology, Maastricht, The Netherlands,
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
127
|
Ferioli M, Zauli G, Maiorano P, Milani D, Mirandola P, Neri LM. Role of physical exercise in the regulation of epigenetic mechanisms in inflammation, cancer, neurodegenerative diseases, and aging process. J Cell Physiol 2019; 234:14852-14864. [PMID: 30767204 DOI: 10.1002/jcp.28304] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
The genetic heritage for decades has been considered to respond only to gene promoters or suppressors, with specific roles for oncogenes or tumor-suppressor genes. Epigenetics is progressively attracting increasing interest because it has demonstrated the capacity of these regulatory processes to regulate the gene expression without modifying gene sequence. Several factors may influence epigenetics, such as lifestyles including food selection. A role for physical exercise is emerging in the epigenetic regulation of gene expression. In this review, we resume physiological and pathological implications of epigenetic modification induced by the physical activity (PA). Inflammation and cancer mechanisms, immune system, central nervous system, and the aging process receive benefits due to PA through epigenetic mechanisms. Thus, the modulation of epigenetic processes by physical exercise positively influences prevention, development, and the course of inflammatory and cancer diseases, as well as neurodegenerative illnesses. This growing field of studies gives rise to a new role for PA as an option in prevention strategies and to integrate pharmacological therapeutic treatments.
Collapse
Affiliation(s)
- Martina Ferioli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Patrizia Maiorano
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Daniela Milani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Prisco Mirandola
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
128
|
West MA, van Dijk DP, Gleadowe F, Reeves T, Primrose JN, Abu Hilal M, Edwards MR, Jack S, Rensen SS, Grocott MP, Levett DZ, Olde Damink SW. Myosteatosis is associated with poor physical fitness in patients undergoing hepatopancreatobiliary surgery. J Cachexia Sarcopenia Muscle 2019; 10:860-871. [PMID: 31115169 PMCID: PMC6711456 DOI: 10.1002/jcsm.12433] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/21/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Body composition assessment, measured using single-slice computed tomography (CT) image at L3 level, and aerobic physical fitness, objectively measured using cardiopulmonary exercise testing (CPET), are each independently used for perioperative risk assessment. Sarcopenia (i.e. low skeletal muscle mass), myosteatosis [i.e. low skeletal muscle radiation attenuation (SM-RA)], and impaired objectively measured aerobic fitness (reduced oxygen uptake) have been associated with poor post-operative outcomes and survival in various cancer types. However, the association between CT body composition and physical fitness has not been explored. In this study, we assessed the association of CT body composition with selected CPET variables in patients undergoing hepatobiliary and pancreatic surgery. METHODS A pragmatic prospective cohort of 123 patients undergoing hepatobiliary and pancreatic surgery were recruited. All patients underwent preoperative CPET. Preoperative CT scans were analysed using a single-slice CT image at L3 level to assess skeletal muscle mass, adipose tissue mass, and muscle radiation attenuation. Multivariate linear regression was used to test the association between CPET variables and body composition. Main outcomes were oxygen uptake at anaerobic threshold ( V̇ O2 at AT), oxygen uptake at peak exercise ( V̇ O2 peak), skeletal muscle mass, and SM-RA. RESULTS Of 123 patients recruited [77 men (63%), median age 66.9 ± 11.7, median body mass index 27.3 ± 5.2], 113 patients had good-quality abdominal CT scans available and were included. Of the CT body composition variables, SM-RA had the strongest correlation with V̇ O2 peak (r = 0.57, P < 0.001) and V̇ O2 at AT (r = 0.45, P < 0.001) while skeletal muscle mass was only weakly associated with V̇ O2 peak (r = 0.24, P < 0.010). In the multivariate analysis, only SM-RA was associated with V̇ O2 peak (B = 0.25, 95% CI 0.15-0.34, P < 0.001, R2 = 0.42) and V̇ O2 at AT (B = 0.13, 95% CI 0.06-0.18, P < 0.001, R2 = 0.26). CONCLUSIONS There is a positive association between preoperative CT SM-RA and preoperative physical fitness ( V̇ O2 at AT and at peak). This study demonstrates that myosteatosis, and not sarcopenia, is associated with reduced aerobic physical fitness. Combining both myosteatosis and physical fitness variables may provide additive risk stratification accuracy and guide interventions during the perioperative period.
Collapse
Affiliation(s)
- Malcolm A. West
- Academic Unit of Cancer Sciences, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- Respiratory and Critical Care Research Theme, Southampton NIHR Biomedical Research CentreUniversity Hospital Southampton NHS Foundation Trust, Anaesthesia and Critical CareSouthamptonUK
| | - David P.J. van Dijk
- Department of SurgeryMaastricht University Medical CentreMaastrichtThe Netherlands
- NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands
| | - Fredrick Gleadowe
- Academic Unit of Cancer Sciences, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- Respiratory and Critical Care Research Theme, Southampton NIHR Biomedical Research CentreUniversity Hospital Southampton NHS Foundation Trust, Anaesthesia and Critical CareSouthamptonUK
| | - Thomas Reeves
- Academic Unit of Cancer Sciences, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- Respiratory and Critical Care Research Theme, Southampton NIHR Biomedical Research CentreUniversity Hospital Southampton NHS Foundation Trust, Anaesthesia and Critical CareSouthamptonUK
| | - John N. Primrose
- Academic Unit of Cancer Sciences, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Mohammed Abu Hilal
- Academic Unit of Cancer Sciences, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Mark R. Edwards
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- Respiratory and Critical Care Research Theme, Southampton NIHR Biomedical Research CentreUniversity Hospital Southampton NHS Foundation Trust, Anaesthesia and Critical CareSouthamptonUK
| | - Sandy Jack
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- Respiratory and Critical Care Research Theme, Southampton NIHR Biomedical Research CentreUniversity Hospital Southampton NHS Foundation Trust, Anaesthesia and Critical CareSouthamptonUK
| | - Sander S.S. Rensen
- Department of SurgeryMaastricht University Medical CentreMaastrichtThe Netherlands
- NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands
| | - Michael P.W. Grocott
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- Respiratory and Critical Care Research Theme, Southampton NIHR Biomedical Research CentreUniversity Hospital Southampton NHS Foundation Trust, Anaesthesia and Critical CareSouthamptonUK
| | - Denny Z.H. Levett
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- Respiratory and Critical Care Research Theme, Southampton NIHR Biomedical Research CentreUniversity Hospital Southampton NHS Foundation Trust, Anaesthesia and Critical CareSouthamptonUK
| | - Steven W.M. Olde Damink
- Department of SurgeryMaastricht University Medical CentreMaastrichtThe Netherlands
- NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands
- Departments of General, Visceral and Transplantation SurgeryRWTH University Hospital AachenAachenGermany
| |
Collapse
|
129
|
Musci RV, Hamilton KL, Linden MA. Exercise-Induced Mitohormesis for the Maintenance of Skeletal Muscle and Healthspan Extension. Sports (Basel) 2019; 7:E170. [PMID: 31336753 PMCID: PMC6681340 DOI: 10.3390/sports7070170] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 12/25/2022] Open
Abstract
Oxidative damage is one mechanism linking aging with chronic diseases including the progressive loss of skeletal muscle mass and function called sarcopenia. Thus, mitigating oxidative damage is a potential avenue to prevent or delay the onset of chronic disease and/or extend healthspan. Mitochondrial hormesis (mitohormesis) occurs when acute exposure to stress stimulates adaptive mitochondrial responses that improve mitochondrial function and resistance to stress. For example, an acute oxidative stress via mitochondrial superoxide production stimulates the activation of endogenous antioxidant gene transcription regulated by the redox sensitive transcription factor Nrf2, resulting in an adaptive hormetic response. In addition, acute stresses such as aerobic exercise stimulate the expansion of skeletal muscle mitochondria (i.e., mitochondrial biogenesis), constituting a mitohormetic response that protects from sarcopenia through a variety of mechanisms. This review summarized the effects of age-related declines in mitochondrial and redox homeostasis on skeletal muscle protein homeostasis and highlights the mitohormetic mechanisms by which aerobic exercise mitigates these age-related declines and maintains function. We discussed the potential efficacy of targeting the Nrf2 signaling pathway, which partially mediates adaptation to aerobic exercise, to restore mitochondrial and skeletal muscle function. Finally, we highlight knowledge gaps related to improving redox signaling and make recommendations for future research.
Collapse
Affiliation(s)
- Robert V Musci
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523, USA.
| | - Karyn L Hamilton
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523, USA
| | - Melissa A Linden
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
130
|
Critselis E, Panagiotakos D. Adherence to the Mediterranean diet and healthy ageing: Current evidence, biological pathways, and future directions. Crit Rev Food Sci Nutr 2019; 60:2148-2157. [PMID: 31272195 DOI: 10.1080/10408398.2019.1631752] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With an ever-ageing population in developed countries, healthy ageing is an emerging public health priority for securing citizens' quality of life and minimizing healthcare associated costs. While adherence to the Mediterranean diet is associated with numerous health benefits and deterrence of age-related disorders, a comprehensive review of the current evidence to guide further public health interventions is lacking. This study systematically assessed, according to PRISMA guidelines, current evidence arising from observational studies regarding the potential impact of adherence to the Mediterranean diet on healthy ageing among elder adults. Of 509 initially retrieved unique items, 9 studies (including 2 cross-sectional and 7 prospective cohort studies) were reviewed. The reviewed evidence support that adherence to the Mediterranean diet during midlife was associated with 36%-46% greater likelihood of healthy ageing. Among the elderly, adherence to the Mediterranean diet was significantly associated with healthy ageing, while diets similar to that of the Mediterranean diet were associated with 269% greater likelihood of successful ageing and 33% reduction in mortality risk. Therefore, public health interventions aimed at promoting adherence to the Mediterranean diet, particularly among the elderly, may propagate healthy ageing and diminish the healthcare associated costs associated with age-related morbidity and mortality.
Collapse
Affiliation(s)
- Elena Critselis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece.,Proteomics Facility, Center for Systems Biology, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Demosthenes Panagiotakos
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece.,Faculty of Health, University of Canberra, Canberra, Australia
| |
Collapse
|
131
|
Yıldırım D, Yıldırım A, Eryılmaz M. Sağlık çalışanlarında fiziksel aktivite ile yaşam kalitesi ilişkisi. CUKUROVA MEDICAL JOURNAL 2019. [DOI: 10.17826/cumj.451087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
132
|
Gadecka A, Bielak-Zmijewska A. Slowing Down Ageing: The Role of Nutrients and Microbiota in Modulation of the Epigenome. Nutrients 2019; 11:nu11061251. [PMID: 31159371 PMCID: PMC6628342 DOI: 10.3390/nu11061251] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
The human population is getting ageing. Both ageing and age-related diseases are correlated with an increased number of senescent cells in the organism. Senescent cells do not divide but are metabolically active and influence their environment by secreting many proteins due to a phenomenon known as senescence associated secretory phenotype (SASP). Senescent cells differ from young cells by several features. They possess more damaged DNA, more impaired mitochondria and an increased level of free radicals that cause the oxidation of macromolecules. However, not only biochemical and structural changes are related to senescence. Senescent cells have an altered chromatin structure, and in consequence, altered gene expression. With age, the level of heterochromatin decreases, and less condensed chromatin is more prone to DNA damage. On the one hand, some gene promoters are easily available for the transcriptional machinery; on the other hand, some genes are more protected (locally increased level of heterochromatin). The structure of chromatin is precisely regulated by the epigenetic modification of DNA and posttranslational modification of histones. The methylation of DNA inhibits transcription, histone methylation mostly leads to a more condensed chromatin structure (with some exceptions) and acetylation plays an opposing role. The modification of both DNA and histones is regulated by factors present in the diet. This means that compounds contained in daily food can alter gene expression and protect cells from senescence, and therefore protect the organism from ageing. An opinion prevailed for some time that compounds from the diet do not act through direct regulation of the processes in the organism but through modification of the physiology of the microbiome. In this review we try to explain the role of some food compounds, which by acting on the epigenetic level might protect the organism from age-related diseases and slow down ageing. We also try to shed some light on the role of microbiome in this process.
Collapse
Affiliation(s)
- Agnieszka Gadecka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Anna Bielak-Zmijewska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
133
|
Sarin HV, Gudelj I, Honkanen J, Ihalainen JK, Vuorela A, Lee JH, Jin Z, Terwilliger JD, Isola V, Ahtiainen JP, Häkkinen K, Jurić J, Lauc G, Kristiansson K, Hulmi JJ, Perola M. Molecular Pathways Mediating Immunosuppression in Response to Prolonged Intensive Physical Training, Low-Energy Availability, and Intensive Weight Loss. Front Immunol 2019; 10:907. [PMID: 31134054 PMCID: PMC6511813 DOI: 10.3389/fimmu.2019.00907] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/09/2019] [Indexed: 01/21/2023] Open
Abstract
Exercise and exercise-induced weight loss have a beneficial effect on overall health, including positive effects on molecular pathways associated with immune function, especially in overweight individuals. The main aim of our study was to assess how energy deprivation (i.e., “semi-starvation”) leading to substantial fat mass loss affects the immune system and immunosuppression in previously normal weight individuals. Thus, to address this hypothesis, we applied a high-throughput systems biology approach to better characterize potential key pathways associated with immune system modulation during intensive weight loss and subsequent weight regain. We examined 42 healthy female physique athletes (age 27.5 ± 4.0 years, body mass index 23.4 ± 1.7 kg/m2) volunteered into either a diet group (n = 25) or a control group (n = 17). For the diet group, the energy intake was reduced and exercise levels were increased to induce loss of fat mass that was subsequently regained during a recovery period. The control group was instructed to maintain their typical lifestyle, exercise levels, and energy intake at a constant level. For quantification of systems biology markers, fasting blood samples were drawn at three time points: baseline (PRE), at the end of the weight loss period (MID 21.1 ± 3.1 weeks after PRE), and at the end of the weight regain period (POST 18.4 ± 2.9 weeks after MID). In contrast to the control group, the diet group showed significant (false discovery rate <0.05) alteration of all measured immune function parameters—white blood cells (WBCs), immunoglobulin G glycome, leukocyte transcriptome, and cytokine profile. Integrative omics suggested effects on multiple levels of immune system as dysregulated hematopoiesis, suppressed immune cell proliferation, attenuated systemic inflammation, and loss of immune cell function by reduced antibody and chemokine secretion was implied after intense weight loss. During the weight regain period, the majority of the measured immune system parameters returned back to the baseline. In summary, this study elucidated a number of molecular pathways presumably explaining immunosuppression in individuals going through prolonged periods of intense training with low-energy availability. Our findings also reinforce the perception that the way in which weight loss is achieved (i.e., dietary restriction, exercise, or both) has a distinct effect on how the immune system is modulated.
Collapse
Affiliation(s)
- Heikki V Sarin
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ivan Gudelj
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Jarno Honkanen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Pedia Laboratory, Clinicum, University of Helsinki, Helsinki, Finland
| | - Johanna K Ihalainen
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland.,Department of Health Sciences, Swedish Winter Sports Research Centre, Mid Sweden University, Östersund, Sweden
| | - Arja Vuorela
- Pedia Laboratory, Clinicum, University of Helsinki, Helsinki, Finland
| | - Joseph H Lee
- Sergievsky Center, Taub Institute and Departments of Epidemiology and Neurology, Columbia University, New York, NY, United States
| | - Zhenzhen Jin
- Department of Biostatistics, Columbia University, New York, NY, United States
| | - Joseph D Terwilliger
- Division of Medical Genetics, Departments of Psychiatry, Genetics & Development, Sergievsky Center, New York State Psychiatric Institute, Columbia University, New York, NY, United States
| | - Ville Isola
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland
| | - Juha P Ahtiainen
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland
| | - Keijo Häkkinen
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland
| | - Julija Jurić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Kati Kristiansson
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juha J Hulmi
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland.,Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Markus Perola
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
134
|
Association of physical activity and fitness with S-Klotho plasma levels in middle-aged sedentary adults: The FIT-AGEING study. Maturitas 2019; 123:25-31. [DOI: 10.1016/j.maturitas.2019.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 12/14/2022]
|
135
|
Kim K. Role and Perspective of Sport Science in Health Promotion and Elite Sport. THE ASIAN JOURNAL OF KINESIOLOGY 2019. [DOI: 10.15758/ajk.2019.21.2.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
136
|
Graber TG, Fandrey KR, Thompson LV. Novel individualized power training protocol preserves physical function in adult and older mice. GeroScience 2019; 41:165-183. [PMID: 31076998 PMCID: PMC6544743 DOI: 10.1007/s11357-019-00069-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/16/2019] [Indexed: 11/27/2022] Open
Abstract
Sarcopenia, the age-related loss of muscle mass and strength, contributes to frailty, functional decline, and reduced quality of life in older adults. Exercise is a recognized therapy for sarcopenia and muscle dysfunction, though not a cure. Muscle power declines at an increased rate compared to force, and force output declines earlier than mass. Thus, there is a need for research of exercise focusing on improving power output and functionality in older adults. Our primary purpose was proof-of-concept that a novel individualized power exercise modality would induce positive adaptations in adult mice, before the exercise program was applied to an aged cohort. We hypothesized that after following our protocol, both adult and older mice would show improved function, though there would be evidence of anabolic resistance in the older mice. Male C57BL/6 mice (12 months of age at study conclusion) were randomized into control (n = 9) and exercise (n = 6) groups. The trained group used progressive resistance (with a weighted harness) and intensity (~ 4-10 rpm) on a custom motorized running wheel. The mice trained similarly to a human workout regimen (4-5 sets/session, 3 sessions/week, for 12 weeks). We determined significant (p < 0.05) positive adaptations post-intervention, including: neuromuscular function (rotarod), strength/endurance (inverted cling grip test), training physiology (force/power output per session), muscle size (soleus mass), and power/velocity of contraction (in vitro physiology). Secondly, we trained a cohort of older male mice (28 months old at conclusion): control (n = 12) and exercised (n = 8). While the older exercised mice did preserve function and gain benefits, they also demonstrated evidence of anabolic resistance.
Collapse
Affiliation(s)
- Ted G. Graber
- Department of Nutrition and Metabolism, Division of Rehabilitation Science, University of Texas Medical Branch, Galveston, TX USA
| | - Katie R. Fandrey
- Program in Physical Therapy, University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - LaDora V. Thompson
- Department of Physical Therapy & Athletic Training, Boston University, Boston, MA USA
| |
Collapse
|
137
|
Strickland M, Yacoubi-Loueslati B, Bouhaouala-Zahar B, Pender SLF, Larbi A. Relationships Between Ion Channels, Mitochondrial Functions and Inflammation in Human Aging. Front Physiol 2019; 10:158. [PMID: 30881309 PMCID: PMC6405477 DOI: 10.3389/fphys.2019.00158] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/08/2019] [Indexed: 12/19/2022] Open
Abstract
Aging is often associated with a loss of function. We believe aging to be more an adaptation to the various, and often continuous, stressors encountered during life in order to maintain overall functionality of the systems. The maladaptation of a system during aging may increase the susceptibility to diseases. There are basic cellular functions that may influence and/or are influenced by aging. Mitochondrial function is amongst these. Their presence in almost all cell types makes of these valuable targets for interventions to slow down or even reserve signs of aging. In this review, the role of mitochondria and essential physiological regulators of mitochondria and cellular functions, ion channels, will be discussed in the context of human aging. The origins of inflamm-aging, associated with poor clinical outcomes, will be linked to mitochondria and ion channel biology.
Collapse
Affiliation(s)
- Marie Strickland
- Singapore Immunology Network, Agency for Science Technology and Research, Singapore, Singapore
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Besma Yacoubi-Loueslati
- Laboratory of Mycology, Pathologies and Biomarkers, Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Balkiss Bouhaouala-Zahar
- Laboratory of Venoms and Therapeutic Molecules, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia
- Medical School of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Sylvia L. F. Pender
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Chinese University of Hong Kong – University of Southampton Joint Lab for Stem Cell and Regenerative Medicine, Hong Kong, China
| | - Anis Larbi
- Singapore Immunology Network, Agency for Science Technology and Research, Singapore, Singapore
- Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Geriatrics Division, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
138
|
Cao P, Zhang J, Huang Y, Fang Y, Lyu J, Shen Y. The age-related changes and differences in energy metabolism and glutamate-glutamine recycling in the d-gal-induced and naturally occurring senescent astrocytes in vitro. Exp Gerontol 2019; 118:9-18. [PMID: 30610899 DOI: 10.1016/j.exger.2018.12.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 01/10/2023]
Abstract
Previously, we successfully established a d-galactose (d-gal)-induced astrocyte aging model in vitro. However, whether the changes in the aged astrocytes induced by d-gal are similar to those occurred in naturally are unknown. Therefore, in current study, we simultaneously established d-gal-induced and naturally aged astrocyte aging models in vitro to explore the age-related changes and to compare the differences in these two astrocyte aging models. The Seahorse Extracellular Flux Analyzer was used to examine the mitochondrial metabolism and glycolysis activities of the young and senescent astrocytes. The results showed that the mitochondrial ATP-linked oxygen consumption rates (OCRs) were decreased markedly both in the d-gal-induced and naturally occurring senescent astrocytes. The basal glycolysis activity was increased in the naturally occurring senescent astrocytes, whereas it was decreased in the d-gal-induced senescent astrocytes. Western blot analysis showed that isocitrate dehydrogenase 3 (IDH3), succinate dehydrogenase (SDH) and malate dehydrogenase 2 (MDH2) were markedly decreased both in these two aging models, whereas the iron‑sulfur cluster assembly enzyme (ISCU) was up-regulated in the naturally occurring senescent astrocytes but was down-regulated in the d-gal-induced senescent astrocytes. The expression levels of glial glutamate transporter-1 (GLT-1), glutamine synthetase (GS) and γ-aminobutyric acid type B receptor subunit 2 (GABABR2) were also markedly decreased in these two aging models. In addition, the PI3K/AKT signaling pathway was to be inactivated both in the d-gal-induced and naturally occurring senescent astrocytes. These results indicate that the age-related changes in d-gal-induced senescent astrocytes are not fully consistent with those in naturally occurring senescent astrocytes, and it may be not suitable to use d-gal-induced senescent astrocytes to replace the naturally occurring senescent astrocytes to explore the aging mechanisms under some circumstances.
Collapse
Affiliation(s)
- Pei Cao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Jingjing Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yuyan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yujia Fang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Jianxin Lyu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China; Zhejiang Provincial People's Hospital, Affliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| | - Yao Shen
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
139
|
Saghebjoo M, Sadeghi-Tabas S, Saffari I, Ghane A, Dimauro I. Sex Differences in antiaging response to short- and long-term high-intensity interval exercise in rat cardiac muscle: Telomerase activity, total antioxidant/oxidant status. CHINESE J PHYSIOL 2019; 62:261-266. [DOI: 10.4103/cjp.cjp_52_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
140
|
Canciglieri PH, Kuga GK, Muñoz VR, Gaspar RC, da Rocha AL, Breda L, Anaruma CP, Minuzzi LG, da Silva ASR, Cintra DE, de Moura LP, Ropelle ER, Pauli JR. The reversal effect of physical exercise on aging-related increases in APPL2 content in skeletal muscle. Life Sci 2018; 210:209-213. [PMID: 30189216 DOI: 10.1016/j.lfs.2018.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/14/2018] [Accepted: 09/02/2018] [Indexed: 01/27/2023]
Abstract
AIMS The aim of this study was to evaluate the effects of aging on intracellular adiponectin signaling and the possible therapeutic effect of physical exercise. MAIN METHODS Fischer 344 rats were distributed in the following groups: Young (3 months old); Sedentary Old (Old, 27 months old); and Old Exercised (Old-Exe, 27 months old), which were subjected to a short-term exercise training protocol. KEY FINDINGS The results showed that the old rats presented glucose intolerance without increased adiposity. However, short-term exercise training reversed this disorder, which was associated with a decrease in the pleckstrin homology domain, phosphotyrosine-binding domain, and leucine zipper motif (APPL) isoform 2 (APPL2) content. The APPL isoform 1 (APPL1) and TRB3 (Tribbles homolog 3) contents were not altered. Akt phosphorylation was only increased in the old exercised rats. There was a reduction in the content of adiponectin receptor 1 in the old rats. SIGNIFICANCE The short-term exercise training protocol was able to decrease APPL2 content in the skeletal muscle, which was accompanied by an improvement in the glucose tolerance of the old Fischer 344 rats. These findings provide new evidence supporting the role of physical exercise as a non-pharmacological therapeutic intervention to attenuate age-related deficits.
Collapse
Affiliation(s)
- Paulo Henrique Canciglieri
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Gabriel Keine Kuga
- Post-graduate Program in Movement Sciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Vitor Rosetto Muñoz
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Rafael Calais Gaspar
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Alisson Luiz da Rocha
- School of Physical Education and Sport of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Leonardo Breda
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Chadi Pellegrini Anaruma
- Post-graduate Program in Movement Sciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Luciele Guerra Minuzzi
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | | | - Dennys Esper Cintra
- Laboratory of Nutritional Genomics (LabGeN), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil; Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil; Post-graduate Program in Movement Sciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil; Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil; CEPECE - Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil; Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil; CEPECE - Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil; Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil; CEPECE - Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil.
| |
Collapse
|
141
|
Pokorski M, Barassi G, Bellomo RG, Prosperi L, Crudeli M, Saggini R. Bioprogressive Paradigm in Physiotherapeutic and Antiaging Strategies: A Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1116:1-9. [DOI: 10.1007/5584_2018_281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|