101
|
Vazquez DS, Schilbert HM, Dodero VI. Molecular and Structural Parallels between Gluten Pathogenic Peptides and Bacterial-Derived Proteins by Bioinformatics Analysis. Int J Mol Sci 2021; 22:9278. [PMID: 34502187 PMCID: PMC8430993 DOI: 10.3390/ijms22179278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Gluten-related disorders (GRDs) are a group of diseases that involve the activation of the immune system triggered by the ingestion of gluten, with a worldwide prevalence of 5%. Among them, Celiac disease (CeD) is a T-cell-mediated autoimmune disease causing a plethora of symptoms from diarrhea and malabsorption to lymphoma. Even though GRDs have been intensively studied, the environmental triggers promoting the diverse reactions to gluten proteins in susceptible individuals remain elusive. It has been proposed that pathogens could act as disease-causing environmental triggers of CeD by molecular mimicry mechanisms. Additionally, it could also be possible that unrecognized molecular, structural, and physical parallels between gluten and pathogens have a relevant role. Herein, we report sequence, structural and physical similarities of the two most relevant gluten peptides, the 33-mer and p31-43 gliadin peptides, with bacterial pathogens using bioinformatics going beyond the molecular mimicry hypothesis. First, a stringent BLASTp search using the two gliadin peptides identified high sequence similarity regions within pathogen-derived proteins, e.g., extracellular proteins from Streptococcus pneumoniae and Granulicatella sp. Second, molecular dynamics calculations of an updated α-2-gliadin model revealed close spatial localization and solvent-exposure of the 33-mer and p31-43 peptide, which was compared with the pathogen-related proteins by homology models and localization predictors. We found putative functions of the identified pathogen-derived sequence by identifying T-cell epitopes and SH3/WW-binding domains. Finally, shape and size parallels between the pathogens and the superstructures of gliadin peptides gave rise to novel hypotheses about activation of innate immunity and dysbiosis. Based on our structural findings and the similarities with the bacterial pathogens, evidence emerges that these pathologically relevant gluten-derived peptides could behave as non-replicating pathogens opening new research questions in the interface of innate immunity, microbiome, and food research.
Collapse
Affiliation(s)
- Diego S. Vazquez
- Grupo de Biología Estructural y Biotecnología (GBEyB-IMBICE), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma C1033AAJ, Buenos Aires, Argentina
| | - Hanna M. Schilbert
- Department of Chemistry, Organic Chemistry OCIII, Universität Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany;
| | - Veronica I. Dodero
- Department of Chemistry, Organic Chemistry OCIII, Universität Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany;
| |
Collapse
|
102
|
Green AE, Howarth D, Chaguza C, Echlin H, Langendonk RF, Munro C, Barton TE, Hinton JCD, Bentley SD, Rosch JW, Neill DR. Pneumococcal Colonization and Virulence Factors Identified Via Experimental Evolution in Infection Models. Mol Biol Evol 2021; 38:2209-2226. [PMID: 33502519 PMCID: PMC8136498 DOI: 10.1093/molbev/msab018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Streptococcus pneumoniae is a commensal of the human nasopharynx and a major cause of respiratory and invasive disease. We examined adaptation and evolution of pneumococcus, within nasopharynx and lungs, in an experimental system where the selective pressures associated with transmission were removed. This was achieved by serial passage of pneumococci, separately, in mouse models of nasopharyngeal carriage or pneumonia. Passaged pneumococci became more effective colonizers of the respiratory tract and we observed several examples of potential parallel evolution. The cell wall-modifying glycosyltransferase LafA was under strong selection during lung passage, whereas the surface expressed pneumococcal vaccine antigen gene pvaA and the glycerol-3-phosphate dehydrogenase gene gpsA were frequent targets of mutation in nasopharynx-passaged pneumococci. These mutations were not identified in pneumococci that were separately evolved by serial passage on laboratory agar. We focused on gpsA, in which the same single nucleotide polymorphism arose in two independently evolved nasopharynx-passaged lineages. We describe a new role for this gene in nasopharyngeal carriage and show that the identified single nucleotide change confers resistance to oxidative stress and enhanced nasopharyngeal colonization potential. We demonstrate that polymorphisms in gpsA arise and are retained during human colonization. These findings highlight how within-host environmental conditions can determine trajectories of bacterial evolution. Relative invasiveness or attack rate of pneumococcal lineages may be defined by genes that make niche-specific contributions to bacterial fitness. Experimental evolution in animal infection models is a powerful tool to investigate the relative roles played by pathogen virulence and colonization factors within different host niches.
Collapse
Affiliation(s)
- Angharad E Green
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Deborah Howarth
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Chrispin Chaguza
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Haley Echlin
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - R Frèdi Langendonk
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Connor Munro
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Thomas E Barton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jay C D Hinton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Stephen D Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Jason W Rosch
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel R Neill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
103
|
Sundaresh B, Xu S, Noonan B, Mansour MK, Leong JM, van Opijnen T. Host-informed therapies for the treatment of pneumococcal pneumonia. Trends Mol Med 2021; 27:971-989. [PMID: 34376327 DOI: 10.1016/j.molmed.2021.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022]
Abstract
Over the past two decades, traditional antimicrobial strategies have lost efficacy due to a rapid rise in antibiotic resistance and limited success in developing new antibiotics. Rather than relying on therapeutics solely targeting the bacterial pathogen, therapies are emerging that simultaneously focus on host responses. Here, we describe the most promising 'host-informed therapies' (HITs) in two categories: those that aid patients with fully functional immune systems, and those that aid patients with perturbed immune processes. Using Streptococcus pneumoniae, the leading cause of bacterial pneumonia, as a case study, we show HITs as an attractive option for supplementing infection management. However, to broaden their applicability and design new strategies, targeted research and clinical trials will be essential.
Collapse
Affiliation(s)
| | - Shuying Xu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA; Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA, USA
| | - Brian Noonan
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts Medical Center, Boston, MA, USA
| | - Michael K Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts Medical Center, Boston, MA, USA.
| | - Tim van Opijnen
- Department of Biology, Boston College, Chestnut Hill, MA, USA; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|
104
|
Surabhi S, Jachmann LH, Shumba P, Burchhardt G, Hammerschmidt S, Siemens N. Hydrogen Peroxide Is Crucial for NLRP3 Inflammasome-Mediated IL-1β Production and Cell Death in Pneumococcal Infections of Bronchial Epithelial Cells. J Innate Immun 2021; 14:192-206. [PMID: 34515145 PMCID: PMC9149442 DOI: 10.1159/000517855] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/14/2021] [Indexed: 11/19/2022] Open
Abstract
Epithelial cells play a crucial role in detection of the pathogens as well as in initiation of the host immune response. Streptococcus pneumoniae (pneumococcus) is a typical colonizer of the human nasopharynx, which can disseminate to the lower respiratory tract and subsequently cause severe invasive diseases such as pneumonia, sepsis, and meningitis. Hydrogen peroxide (H2O2) is produced by pneumococci as a product of the pyruvate oxidase SpxB. However, its role as a virulence determinant in pneumococcal infections of the lower respiratory tract is not well understood. In this study, we investigated the role of pneumococcal-derived H2O2 in initiating epithelial cell death by analyzing the interplay between 2 key cell death pathways, namely, apoptosis and pyroptosis. We demonstrate that H2O2 primes as well as activates the NLRP3 inflammasome and thereby mediates IL-1β production and release. Furthermore, we show that pneumococcal H2O2 causes cell death via the activation of both apoptotic as well as pyroptotic pathways which are mediated by the activation of caspase-3/7 and caspase-1, respectively. However, H2O2-mediated IL-1β release itself occurs mainly via apoptosis.
Collapse
Affiliation(s)
- Surabhi Surabhi
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Lana H Jachmann
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Patience Shumba
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Gerhard Burchhardt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| |
Collapse
|
105
|
Salsabila K, Paramaiswari WT, Amalia H, Ruyani A, Tafroji W, Winarti Y, Khoeri MM, Safari D. Nasopharyngeal carriage rate, serotype distribution, and antimicrobial susceptibility profile of Streptococcus pneumoniae isolated from children under five years old in Kotabaru, South Kalimantan, Indonesia. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 55:482-488. [PMID: 34294592 DOI: 10.1016/j.jmii.2021.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Streptococcus pneumoniae is a bacterial pathogen that colonizes the human nasopharynx. Colonization is frequently reported to be high in young children. In this study, we investigated the nasopharyngeal (NP) carriage rate, serotype distribution, and antibiotic susceptibility of S. pneumoniae in children under five years of age in Kotabaru, South Kalimantan, Indonesia. METHODS NP swab specimens were collected from 399 young children (mean age: 30 months) who participated in the Rampa Village Community Health Center, with 74% of the participants being Bajau children. S. pneumoniae was identified using optochin susceptibility and bile solubility tests. Serotyping was performed by sequential multiplex PCR, and antimicrobial susceptibility profiling was performed by disk diffusion and microdilution methods. RESULTS The NP carriage rate of S. pneumoniae was 45% (180/399). The most commonly serotypes were 6A/6B (18%), followed by 15B/15C (17%), 19F (16%), 34 (8%), and 23F (5%); 46% of them were identified as strains of the PCV13 vaccine type. Additionally, almost half of the pneumococcal isolates were non-susceptible to penicillin (40%), whereas non-susceptibility to tetracycline (36.8%), trimethoprim/sulfamethoxazole (29.7%), erythromycin (16.8%), chloramphenicol (9.7%), and clindamycin (8.6%) was also found. We identified 18% (n = 34) of S. pneumoniae isolates as multidrug-resistant (MDR) strains, and serotype 19F was the most common (74%) among them. CONCLUSIONS MDR S. pneumoniae vaccine type strains were dominated by serotype 19F. The implementation of a pneumococcal conjugate vaccine program in Indonesia might reduce MDR strains circulating in the community in the future.
Collapse
Affiliation(s)
| | | | - Hafsah Amalia
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Akhmad Ruyani
- District Health Office, Kotabaru, South Kalimantan, Indonesia
| | - Wisnu Tafroji
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Yayah Winarti
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | | - Dodi Safari
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia.
| |
Collapse
|
106
|
Lella M, Tal-Gan Y. Strategies to Attenuate the Competence Regulon in Streptococcus pneumoniae. Pept Sci (Hoboken) 2021; 113:e24222. [PMID: 34337308 PMCID: PMC8323945 DOI: 10.1002/pep2.24222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/19/2021] [Indexed: 12/18/2022]
Abstract
Streptococcus pneumoniae is an opportunistic respiratory human pathogen that poses a continuing threat to human health. Natural competence for genetic transformation in S. pneumoniae plays an important role in aiding pathogenicity and it is the best-characterized feature to acquire antimicrobial resistance genes by a frequent process of recombination. In S. pneumoniae, competence, along with virulence factor production, is controlled by a cell-density communication mechanism termed the competence regulon. In this review, we present the recent advances in the development of alternative methods to attenuate the pathogenicity of S. pneumoniae by targeting the various stages of the non-essential competence regulon communication system. We mainly focus on new developments related to competitively intercepting the competence regulon signaling through the introduction of promising dominant-negative Competence Stimulating Peptide (dnCSP) scaffolds. We also discuss recent reports on antibiotics that can block CSP export by disturbing the proton motive force (PMF) across the membrane and various ways to control the pneumococcal pathogenicity by activating the counter signaling circuit and targeting the pneumococcal proteome.
Collapse
Affiliation(s)
- Muralikrishna Lella
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557 (USA)
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557 (USA)
| |
Collapse
|
107
|
Briestenská K, Mikušová M, Tomčíková K, Kostolanský F, Varečková E. Quantification of bacteria by in vivo bioluminescence imaging in comparison with standard spread plate method and reverse transcription quantitative PCR (RT-qPCR). Arch Microbiol 2021; 203:4737-4742. [PMID: 34184097 PMCID: PMC8360831 DOI: 10.1007/s00203-021-02458-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/03/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022]
Abstract
In vivo bioluminescence imaging (BLI) offers a unique opportunity to analyze ongoing bacterial infections qualitatively and quantitatively in intact animals over time, leading to a reduction in the number of animals needed for a study. Since accurate determination of the bacterial burden plays an essential role in microbiological research, the present study aimed to evaluate the ability to quantify bacteria by non-invasive BLI technique in comparison to standard spread plate method and reverse transcription quantitative PCR (RT-qPCR). For this purpose, BALB/c mice were intranasally infected with 1 × 105 CFU of bioluminescent Streptococcus pneumoniae A66.1. At day 1 post-infection, the presence of S. pneumoniae in lungs was demonstrated by spread plate method and RT-qPCR, but not by in vivo BLI. However, on the second day p.i., the bioluminescent signal was already detectable, and the photon flux values positively correlated with CFU counts and RT-qPCR data within days 2–6. Though in vivo BLI is valuable research tool allowing the continuous monitoring and quantification of pneumococcal infection in living mice, it should be kept in mind that early in the infection, depending on the infective dose, the bioluminescent signal may be below the detection limit.
Collapse
Affiliation(s)
- Katarína Briestenská
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Miriam Mikušová
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Karolína Tomčíková
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - František Kostolanský
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Eva Varečková
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
108
|
Ding Y, Wu Q, Guo Y, Li M, Li P, Ma Y, Liu W. Effects of in vitro-induced drug resistance on the virulence of Streptococcus. Vet Med Sci 2021; 7:935-943. [PMID: 33314727 PMCID: PMC8136945 DOI: 10.1002/vms3.404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/25/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
This study aimed to evaluate the effects of in vitro-induced drug resistance on the virulence of Streptococcus. Micro-dilution method was used to determine the minimal inhibitory concentration (MIC). In vitro-induced drug resistance was conducted for S. agalactiae (CVCC1886) and S. dysgalactiae (CVCC3701) by gradually increasing the antimicrobial concentration (strains were from IVDC, China). PCR was used to detect the resistance and virulence genes of the strains before and after resistance induction. Colony morphology was observed to compare the physiological and biochemical properties of the strains. A total of 88 clean-grade Kunming mice (obtained from Inner Mongolia University, Hohhot, China) were used in half of the lethal dose (LD50) test for detecting the changes in virulence of strains. The results showed that S. agalactiae (CVCC1886) and S. dysgalactiae (CVCC3701) developed resistance against seven kinds of antibiotics, respectively. Resistance and virulence genes of CVCC3701 were changed when treated by the Penicillin-inducing. The growth of the CVCC3701-PEN was decreased compared to the CVCC3701. Virulence test in mice indicated that the LD50 of CVCC3701 before induction and CVCC3701-PEN after induction were 5.45 × 106 and 5.82 × 108 CFU/ml, respectively. Compared with the untreated bacteria, the bacterial virulence was reduced 1.1 × 102 times after resistance induction. In conclusion, S. dysgalactiae (CVCC3701) is a susceptible strain of drug resistance to antibiotics, in vitro-induced drug resistance reduced the virulence of CVCC3701, but the virulence is still existing and also could result in the death of mice. For public health safety, it must be alert to the emergence of drug resistance of Streptococcus in animal production.
Collapse
Affiliation(s)
- Yue‐Xia Ding
- College of Coastal Agricultural SciencesGuangdong Ocean UniversityZhanjiangPR China
- Department of Veterinary Pharmacology & ToxicologyCollege of Veterinary MedicineInner Mongolia Agricultural UniversityHohhotPR China
- Laboratory of Clinical Diagnosis and Treatment Techniques for Animal DiseaseMinistry of AgricultureHohhotPR China
| | - Qun Wu
- Research Institute of Agricultural MachineryChinese Academy of Tropical Agricultural SciencesZhanjiangPR China
| | - Yan Guo
- College of Coastal Agricultural SciencesGuangdong Ocean UniversityZhanjiangPR China
| | - Man Li
- Department of Veterinary Pharmacology & ToxicologyCollege of Veterinary MedicineInner Mongolia Agricultural UniversityHohhotPR China
- Laboratory of Clinical Diagnosis and Treatment Techniques for Animal DiseaseMinistry of AgricultureHohhotPR China
| | - Pei‐Feng Li
- Department of Veterinary Pharmacology & ToxicologyCollege of Veterinary MedicineInner Mongolia Agricultural UniversityHohhotPR China
- Laboratory of Clinical Diagnosis and Treatment Techniques for Animal DiseaseMinistry of AgricultureHohhotPR China
| | - Yi Ma
- College of Coastal Agricultural SciencesGuangdong Ocean UniversityZhanjiangPR China
- Maoming BranchGuangdong Laboratory for Lingnan Modern AgricultureMaomingPR China
| | - Wen‐Chao Liu
- College of Coastal Agricultural SciencesGuangdong Ocean UniversityZhanjiangPR China
| |
Collapse
|
109
|
Ferrara F, Rial A, Suárez N, Chabalgoity JA. Polyvalent Bacterial Lysate Protects Against Pneumonia Independently of Neutrophils, IL-17A or Caspase-1 Activation. Front Immunol 2021; 12:562244. [PMID: 33981296 PMCID: PMC8108696 DOI: 10.3389/fimmu.2021.562244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 03/18/2021] [Indexed: 11/28/2022] Open
Abstract
Polyvalent bacterial lysates have been in use for decades for prevention and treatment of respiratory infections with reported clinical benefits. However, besides claims of broad immune activation, the mode of action is still a matter of debate. The lysates, formulated with the main bacterial species involved in respiratory infections, are commonly prepared by chemical or mechanical disruption of bacterial cells, what is believed influences the biological activity of the product. Here, we prepared two polyvalent lysates with the same composition but different method of bacterial cell disruption and evaluated their biological activity in a comparative fashion. We found that both bacterial lysates induce NF-kB activation in a MyD88 dependent manner, suggesting they work as TLR agonists. Further, we found that a single intranasal dose of any of the two lysates, is sufficient to protect against pneumococcal pneumonia, suggesting that they exert similar biological activity. We have previously shown that protection against pneumococcal pneumonia can also be induced by prior S. pneumoniae sub lethal infection or therapeutic treatment with a TLR5 agonist. Protection in those cases depends on neutrophil recruitment to the lungs, and can be associated with increased local expression of IL-17A. Here, we show that bacterial lysates exert protection against pneumococcal pneumonia independently of neutrophils, IL-17A or Caspase-1/11 activation, suggesting the existence of redundant mechanisms of protection. Trypsin-treated lysates afford protection to the same extent, suggesting that just small peptides suffice to exert the protective effect or that the molecules responsible for the protective effect are not proteins. Understanding the mechanism of action of bacterial lysates and deciphering the active components shall allow redesigning them with more precisely defined formulations and expanding their range of action.
Collapse
Affiliation(s)
- Florencia Ferrara
- Laboratory for Vaccine Research, Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Instituto de Higiene, Montevideo, Uruguay
| | - Analía Rial
- Laboratory for Vaccine Research, Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Instituto de Higiene, Montevideo, Uruguay
| | - Norma Suárez
- Laboratory for Vaccine Research, Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Instituto de Higiene, Montevideo, Uruguay
| | - José Alejandro Chabalgoity
- Laboratory for Vaccine Research, Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Instituto de Higiene, Montevideo, Uruguay
| |
Collapse
|
110
|
Ko E, Jeong S, Jwa MY, Kim AR, Ha YE, Kim SK, Jeong S, Ahn KB, Seo HS, Yun CH, Han SH. Immune Responses to Irradiated Pneumococcal Whole Cell Vaccine. Vaccines (Basel) 2021; 9:vaccines9040405. [PMID: 33921842 PMCID: PMC8073785 DOI: 10.3390/vaccines9040405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) can cause respiratory and systemic diseases. Recently, γ-irradiation-inactivated, non-encapsulated, intranasal S. pneumoniae (r-SP) vaccine has been introduced as a novel serotype-independent and cost-effective vaccine. However, the immunogenic mechanism of r-SP is poorly understood. Here, we comparatively investigated the protective immunity and immunogenicity of r-SP to the heat-(h-SP) or formalin-inactivated vaccine (f-SP) without adjuvants. Mice were intranasally immunized with each vaccine three times and then challenged with a lethal dose of S. pneumoniae TIGR4 strain and then subsequently evaluated for their immune responses. Immunization with r-SP elicited modestly higher protection against S. pneumoniae than h-SP or f-SP. Immunization with r-SP enhanced pneumococcal-specific IgA in the nasal wash and IgG in bronchoalveolar lavage fluid. Immunization with r-SP enhanced S. pneumoniae-specific IgG, IgG1, and IgG2b in the serum. r-SP more potently induced the maturation of dendritic cells in the cervical lymph nodes than h-SP or f-SP. Interestingly, populations of follicular helper T cells and IL-4-producing cells were potently increased in cervical lymph nodes of r-SP-immunized mice. Collectively, r-SP could be an effective intranasal, inactivated whole-cell vaccine in that it elicits S. pneumoniae-specific antibody production and follicular helper T cell activation leading to protective immune responses against S. pneumoniae infection.
Collapse
Affiliation(s)
- Eunbyeol Ko
- Department of Oral Microbiology and Immunology and DRI, School of Dentistry, Seoul National University, Seoul 08826, Korea; (E.K.); (S.J.); (M.Y.J.); (AR.K.); (Y.-E.H.); (S.K.K.); (S.J.)
| | - Soyoung Jeong
- Department of Oral Microbiology and Immunology and DRI, School of Dentistry, Seoul National University, Seoul 08826, Korea; (E.K.); (S.J.); (M.Y.J.); (AR.K.); (Y.-E.H.); (S.K.K.); (S.J.)
| | - Min Yong Jwa
- Department of Oral Microbiology and Immunology and DRI, School of Dentistry, Seoul National University, Seoul 08826, Korea; (E.K.); (S.J.); (M.Y.J.); (AR.K.); (Y.-E.H.); (S.K.K.); (S.J.)
| | - A Reum Kim
- Department of Oral Microbiology and Immunology and DRI, School of Dentistry, Seoul National University, Seoul 08826, Korea; (E.K.); (S.J.); (M.Y.J.); (AR.K.); (Y.-E.H.); (S.K.K.); (S.J.)
| | - Ye-Eun Ha
- Department of Oral Microbiology and Immunology and DRI, School of Dentistry, Seoul National University, Seoul 08826, Korea; (E.K.); (S.J.); (M.Y.J.); (AR.K.); (Y.-E.H.); (S.K.K.); (S.J.)
| | - Sun Kyung Kim
- Department of Oral Microbiology and Immunology and DRI, School of Dentistry, Seoul National University, Seoul 08826, Korea; (E.K.); (S.J.); (M.Y.J.); (AR.K.); (Y.-E.H.); (S.K.K.); (S.J.)
| | - Sungho Jeong
- Department of Oral Microbiology and Immunology and DRI, School of Dentistry, Seoul National University, Seoul 08826, Korea; (E.K.); (S.J.); (M.Y.J.); (AR.K.); (Y.-E.H.); (S.K.K.); (S.J.)
| | - Ki Bum Ahn
- Radiation Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (K.B.A.); (H.S.S.)
| | - Ho Seong Seo
- Radiation Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (K.B.A.); (H.S.S.)
- Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon 34113, Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology and DRI, School of Dentistry, Seoul National University, Seoul 08826, Korea; (E.K.); (S.J.); (M.Y.J.); (AR.K.); (Y.-E.H.); (S.K.K.); (S.J.)
- Correspondence: ; Tel.: +82-2-880-2310
| |
Collapse
|
111
|
Xu D, Wu X, Peng L, Chen T, Huang Q, Wang Y, Ye C, Peng Y, Hu D, Fang R. The Critical Role of NLRP6 Inflammasome in Streptococcus pneumoniae Infection In Vitro and In Vivo. Int J Mol Sci 2021; 22:ijms22083876. [PMID: 33918100 PMCID: PMC8069100 DOI: 10.3390/ijms22083876] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pneumoniae (S. pneumoniae) causes severe pulmonary diseases, leading to high morbidity and mortality. It has been reported that inflammasomes such as NLR family pyrin domain containing 3 (NLRP3) and absent in melanoma 2 (AIM2) play an important role in the host defense against S. pneumoniae infection. However, the role of NLRP6 in vivo and in vitro against S. pneumoniae remains unclear. Therefore, we investigated the role of NLRP6 in regulating the S. pneumoniae-induced inflammatory signaling pathway in vitro and the role of NLRP6 in the host defense against S. pneumoniae in vivo by using NLRP6−/− mice. The results showed that the NLRP6 inflammasome regulated the maturation and secretion of IL-1β, but it did not affect the induction of IL-1β transcription in S. pneumoniae-infected macrophages. Furthermore, the activation of caspase-1, caspase-11, and gasdermin D (GSDMD) as well as the oligomerization of apoptosis-associated speck-like protein (ASC) were also mediated by NLRP6 in S. pneumoniae-infected macrophages. However, the activation of NLRP6 reduced the expression of NF-κB and ERK signaling pathways in S. pneumoniae-infected macrophages. In vivo study showed that NLRP6−/− mice had a higher survival rate, lower number of bacteria, and milder inflammatory response in the lung compared with wild-type (WT) mice during S. pneumoniae infection, indicating that NLRP6 plays a negative role in the host defense against S. pneumoniae. Furthermore, increased bacterial clearance in NLRP6 deficient mice was modulated by the recruitment of macrophages and neutrophils. Our study provides a new insight on S. pneumoniae-induced activation of NLRP6 and suggests that blocking NLRP6 could be considered as a potential therapeutic strategy to treat S. pneumoniae infection.
Collapse
Affiliation(s)
- Dongyi Xu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Xingping Wu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Lianci Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Tingting Chen
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Qingyuan Huang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Yu Wang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Chao Ye
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Yuanyi Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
| | - Dongliang Hu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
- Department of Zoonoses, School of Veterinary Medicine, Kitasato University, Towada 034-8628, Japan
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (D.X.); (X.W.); (L.P.); (T.C.); (Q.H.); (Y.W.); (C.Y.); (Y.P.); (D.H.)
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
- Correspondence: ; Tel./Fax: +86-23-68251196
| |
Collapse
|
112
|
Garrido-Jareño M, Puchades-Carrasco L, Orti-Pérez L, Sahuquillo-Arce JM, Del Carmen Meyer-García M, Mollar-Maseres J, Lloret-Sos C, Gil-Brusola A, López-Hontangas JL, Beltrán-Garrido JM, Pemán-García J, Pineda-Lucena A. A surface plasmon resonance based approach for measuring response to pneumococcal vaccine. Sci Rep 2021; 11:6502. [PMID: 33753824 PMCID: PMC7985148 DOI: 10.1038/s41598-021-85958-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
Incidence of pneumococcal disease has increased worldwide in recent years. Response to pneumococcal vaccine is usually measured using the multiserotype enzyme-linked immunosorbent assay (ELISA) pneumococcal test. However, this approach presents several limitations. Therefore, the introduction of new and more robust analytical approaches able to provide information on the efficacy of the pneumococcal vaccine would be very beneficial for the clinical management of patients. Surface plasmon resonance (SPR) has been shown to offer a valuable understanding of vaccines' properties over the last years. The aim of this study is to evaluate the reliability of SPR for the anti-pneumococcal capsular polysaccharides (anti-PnPs) IgGs quantification in vaccinated. Fast protein liquid chromatography (FPLC) was used for the isolation of total IgGs from serum samples of vaccinated patients. Binding-SPR assays were performed to study the interaction between anti-PnPs IgGs and PCV13. A robust correlation was found between serum levels of anti-PnPs IgGs, measured by ELISA, and the SPR signal. Moreover, it was possible to correctly classify patients into "non-responder", "responder" and "high-responder" groups according to their specific SPR PCV13 response profiles. SPR technology provides a valuable tool for reliably characterize the interaction between anti-PnPs IgGs and PCV13 in a very short experimental time.
Collapse
Affiliation(s)
- Marta Garrido-Jareño
- Drug Discovery Unit, Health Research Institute La Fe, Valencia, Spain.,Microbiology Department, University and Polytechnic Hospital La Fe, Valencia, Spain
| | | | | | | | | | - Joan Mollar-Maseres
- Preventive Medicine Department, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Carmina Lloret-Sos
- Microbiology Department, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Ana Gil-Brusola
- Microbiology Department, University and Polytechnic Hospital La Fe, Valencia, Spain.,Severe Infection Group, Health Research Institute Hospital La Fe, Valencia, Spain
| | | | | | - Javier Pemán-García
- Microbiology Department, University and Polytechnic Hospital La Fe, Valencia, Spain. .,Severe Infection Group, Health Research Institute Hospital La Fe, Valencia, Spain.
| | - Antonio Pineda-Lucena
- Drug Discovery Unit, Health Research Institute La Fe, Valencia, Spain. .,Molecular Therapeutics Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain.
| |
Collapse
|
113
|
Hemoglobin Induces Early and Robust Biofilm Development in Streptococcus pneumoniae by a Pathway That Involves comC but Not the Cognate comDE Two-Component System. Infect Immun 2021; 89:IAI.00779-20. [PMID: 33397818 DOI: 10.1128/iai.00779-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae grows in biofilms during both asymptomatic colonization and infection. Pneumococcal biofilms on abiotic surfaces exhibit delayed growth and lower biomass and lack the structures seen on epithelial cells or during nasopharyngeal carriage. We show here that adding hemoglobin to the medium activated unusually early and vigorous biofilm growth in multiple S. pneumoniae serotypes grown in batch cultures on abiotic surfaces. Human blood (but not serum, heme, or iron) also stimulated biofilms, and the pore-forming pneumolysin, ply, was required for this induction. S. pneumoniae transitioning from planktonic into sessile growth in the presence of hemoglobin displayed an extensive transcriptome remodeling within 1 and 2 h. Differentially expressed genes included those involved in the metabolism of carbohydrates, nucleotides, amino acid, and lipids. The switch into adherent states also influenced the expression of several regulatory systems, including the comCDE genes. Inactivation of comC resulted in 67% reduction in biofilm formation, while the deletion of comD or comE had limited or no effect, respectively. These observations suggest a novel route for CSP-1 signaling independent of the cognate ComDE two-component system. Biofilm induction and the associated transcriptome remodeling suggest hemoglobin serves as a signal for host colonization in pneumococcus.
Collapse
|
114
|
Domon H, Terao Y. The Role of Neutrophils and Neutrophil Elastase in Pneumococcal Pneumonia. Front Cell Infect Microbiol 2021; 11:615959. [PMID: 33796475 PMCID: PMC8008068 DOI: 10.3389/fcimb.2021.615959] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Streptococcus pneumoniae, also known as pneumococcus, is a Gram-positive diplococcus and a major human pathogen. This bacterium is a leading cause of bacterial pneumonia, otitis media, meningitis, and septicemia, and is a major cause of morbidity and mortality worldwide. To date, studies on S. pneumoniae have mainly focused on the role of its virulence factors including toxins, cell surface proteins, and capsules. However, accumulating evidence indicates that in addition to these studies, knowledge of host factors and host-pathogen interactions is essential for understanding the pathogenesis of pneumococcal diseases. Recent studies have demonstrated that neutrophil accumulation, which is generally considered to play a critical role in host defense during bacterial infections, can significantly contribute to lung injury and immune subversion, leading to pneumococcal invasion of the bloodstream. Here, we review bacterial and host factors, focusing on the role of neutrophils and their elastase, which contribute to the progression of pneumococcal pneumonia.
Collapse
Affiliation(s)
- Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
115
|
Manna T, Misra AK. Synthesis of the sialylated pentasaccharide repeating unit of the capsular polysaccharide of Streptococcus group B type VI. Carbohydr Res 2021; 502:108294. [PMID: 33765475 DOI: 10.1016/j.carres.2021.108294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
An efficient synthetic strategy has been developed for the synthesis of the sialic acid containing pentasaccharide repeating unit of the cell wall O-antigen of Streptococcus group B type VI strain involving stereoselective α-glycosylation of sialic acid thioglycoside derivative. Stereoselective glycosylation of glycosyl trichloroacetimidate derivatives and thioglycosides were carried out using perchloric acid supported over silica (HClO4-SiO2) as a solid acid catalyst. A panel of sialic acid donors has been screened for achieving satisfactory yield and stereochemical outcome of the glycosylation reaction.
Collapse
Affiliation(s)
- Tapasi Manna
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII-M, Kolkata, 700054, India
| | - Anup Kumar Misra
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII-M, Kolkata, 700054, India.
| |
Collapse
|
116
|
Ramos-Sevillano E, Ercoli G, Guerra-Assunção JA, Felgner P, Ramiro de Assis R, Nakajima R, Goldblatt D, Tetteh KKA, Heyderman RS, Gordon SB, Ferreria DM, Brown JS. Protective Effect of Nasal Colonisation with ∆cps/piaA and ∆cps/proABCStreptococcus pneumoniae Strains against Recolonisation and Invasive Infection. Vaccines (Basel) 2021; 9:vaccines9030261. [PMID: 33804077 PMCID: PMC8000150 DOI: 10.3390/vaccines9030261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Nasopharyngeal administration of live virulence-attenuated Streptococcus pneumoniae strains is a potential novel preventative strategy. One target for creating reduced virulence S. pneumoniae strains is the capsule, but loss of the capsule reduces the duration of S. pneumoniae colonisation in mice which could impair protective efficacy against subsequent infection. OBJECTIVES To assess protective efficacy of nasopharyngeal administration of unencapsulated S. pneumoniae strains in murine infection models. METHODS Strains containing cps locus deletions combined with the S. pneumoniae virulence factors psaA (reduces colonisation) or proABC (no effect on colonisation) were constructed and their virulence phenotypes and ability to prevent recolonisation or invasive infection assessed using mouse infection models. Serological responses to colonisation were compared between strains using ELISAs, immunoblots and 254 S. pneumoniae protein antigen array. MEASUREMENTS AND MAIN RESULTS The ∆cps/piaA and ∆cps/proABC strains were strongly attenuated in virulence in both invasive infection models and had a reduced ability to colonise the nasopharynx. ELISAs, immunoblots and protein arrays showed colonisation with either strain stimulated weaker serological responses than the wild type strain. Mice previously colonised with these strains were protected against septicaemic pneumonia but, unlike mice colonised with the wild type strain, not against S. pneumoniae recolonisation. CONCLUSIONS Colonisation with the ∆cps/piaA and ∆cps/proABC strains prevented subsequent septicaemia, but in contrast, to published data for encapsulated double mutant strains they did not prevent recolonisation with S. pneumoniae. These data suggest targeting the cps locus is a less effective option for creating live attenuated strains that prevent S. pneumoniae infections.
Collapse
Affiliation(s)
- Elisa Ramos-Sevillano
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London, Rayne Institute, London WC1E 6JF, UK;
- Correspondence: (E.R.-S.); (J.S.B.); Tel.: +44-20-7679-6008 (J.S.B.); Fax: +44-20-7679-6973 (J.S.B.)
| | - Giuseppe Ercoli
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London, Rayne Institute, London WC1E 6JF, UK;
| | | | - Philip Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697-4560, USA; (P.F.); (R.R.d.A.); (R.N.)
| | - Rafael Ramiro de Assis
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697-4560, USA; (P.F.); (R.R.d.A.); (R.N.)
| | - Rie Nakajima
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697-4560, USA; (P.F.); (R.R.d.A.); (R.N.)
| | - David Goldblatt
- Immunobiology Section, UCL Great Ormond Street Institute of Child Health, NIHR Biomedical Research Centre, London WC1N 1EH, UK;
| | - Kevin Kweku Adjei Tetteh
- Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine and Hygiene, London WC1E 7HT, UK;
| | - Robert Simon Heyderman
- Research Department of Infection, Division of Infection and Immunity, University College London, Rayne Institute, London WC1E 6JF, UK;
| | - Stephen Brian Gordon
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 30096, Malawi;
| | - Daniela Mulari Ferreria
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
| | - Jeremy Stuart Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London, Rayne Institute, London WC1E 6JF, UK;
- Correspondence: (E.R.-S.); (J.S.B.); Tel.: +44-20-7679-6008 (J.S.B.); Fax: +44-20-7679-6973 (J.S.B.)
| |
Collapse
|
117
|
Obakiro SB, Kiyimba K, Paasi G, Napyo A, Anthierens S, Waako P, Royen PV, Iramiot JS, Goossens H, Kostyanev T. Prevalence of antibiotic-resistant bacteria among patients in two tertiary hospitals in Eastern Uganda. J Glob Antimicrob Resist 2021; 25:82-86. [PMID: 33662642 DOI: 10.1016/j.jgar.2021.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/11/2021] [Accepted: 02/19/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE The aim of this study was to determine the prevalence and antibiotic resistance patterns of bacterial isolates from inpatients and outpatients in Mbale and Soroti regional referral hospitals in Eastern Uganda. METHODS A retrospective analysis of culture and antibiotic sensitivity test results from the microbiology laboratories of the two tertiary hospitals was conducted for a 3-year period (January 2016-December 2018). RESULTS Microbiology records of 3092 patients were reviewed and analysed, with 1305 (42.1%) samples yielding clinical isolates. The most prevalent isolates were Escherichia coli (n = 442; 33.9%), Staphylococcus aureus (n = 376; 28.8%), Klebsiella pneumoniae (n = 237; 18.2%), and Streptococcus pneumoniae (n = 76; 5.8%). High rates of antimicrobial resistance were detected across both Gram-negative and Gram-positive bacteria. Escherichia coli and K. pneumoniae were resistant to several agents such as amoxicillin/clavulanate (83.5%; 64.6%), cefotaxime (74.2%; 52.7%), ciprofloxacin (92.1%; 27.8%), gentamicin (51.8%; 76%), imipenem (3.2%; 10.5%), tetracycline (98%; 74.5%), and trimethoprim-sulfamethoxazole (74.1%; 74.3%), respectively. Staphylococcus aureus and S. pneumoniae exhibited the following resistance profile: cefoxitin (44.4%; 40.9%), chloramphenicol (69.1%; 27.6%) clindamycin (21.5%; 24.4%), gentamicin (83.2%; 66.9%), penicillin (46.5%; -) tetracycline (85.6%; 97.6%), trimethoprim-sulfamethoxazole (88%; 91.3%), and vancomycin (41.2%; -). CONCLUSION We observed high resistance rates to antibiotics among the majority of microorganisms that were isolated from the samples collected from patients in Eastern Uganda. Furthermore, measures should be undertaken locally to improve microbiology diagnostics and to prevent the spread of antibiotic-resistant strains as this impedes the optimal treatment of bacterial infections and narrows the choice of effective therapeutic options.
Collapse
Affiliation(s)
- Samuel Baker Obakiro
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, Mbale, Uganda
| | - Kenedy Kiyimba
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, Mbale, Uganda.
| | - George Paasi
- Department of Public Health, Faculty of Health Sciences, Busitema University, Mbale, Uganda
| | - Agnes Napyo
- Department of Public Health, Faculty of Health Sciences, Busitema University, Mbale, Uganda
| | - Sibyl Anthierens
- Department of Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Paul Waako
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, Mbale, Uganda
| | - Paul Van Royen
- Department of Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Jacob Stanley Iramiot
- Department of Microbiology and Immunology, Faculty of Health Sciences, Busitema University, Mbale, Uganda
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Tomislav Kostyanev
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
118
|
Samadder S. Immunopathological Changes in SARS-CoV-2 Critical and Non-critical Pneumonia Patients: A Systematic Review to Determine the Cause of Co-infection. Front Public Health 2021; 8:544993. [PMID: 33634060 PMCID: PMC7899999 DOI: 10.3389/fpubh.2020.544993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 12/30/2020] [Indexed: 01/04/2023] Open
Abstract
The ongoing COVID-19 pandemic originating from Wuhan, China is causing major fatalities across the world. Viral pneumonia is commonly observed in COVID-19 pandemic. The number of deaths caused by viral pneumonia is mainly due to secondary bacterial or fungal infection. The immunopathology of SARS-CoV-2 viral pneumonia is poorly understood with reference to human clinical data collected from patients infected by virus and secondary bacterial or fungal infection occurring simultaneously. The co-infection inside the lungs caused by pneumonia has direct impact on the changing lymphocyte and neutrophil counts. Understanding the attribution of these two immunological cells triggered by cytokines level change is of great importance to identify the progression of pneumonia from non-severe to severe state in hospitalized patients. This review elaborates the cytokines imbalance observed in SARS-CoV-1 (2003 epidemic), SARS-CoV-2 (2019 pandemic) viral pneumonia and community acquired pneumonia (CAP), respectively, in patients to determine the potential reason of co-infection. In this review the epidemiology, virology, clinical symptoms, and immunopathology of SARS-CoV-2 pneumonia are narrated. The immune activation during SARS-CoV-1 pneumonia, bacterial, and fungal pneumonia is discussed. Here it is further analyzed with the available literatures to predict the potential internal medicines, prognosis and monitoring suggesting better treatment strategy for SARS-CoV-2 pneumonia patients.
Collapse
|
119
|
Gupta V, Yu KC, Schranz J, Gelone SP. A Multicenter Evaluation of the US Prevalence and Regional Variation in Macrolide-Resistant S. pneumoniae in Ambulatory and Hospitalized Adult Patients in the United States. Open Forum Infect Dis 2021; 8:ofab063. [PMID: 34250183 PMCID: PMC8266646 DOI: 10.1093/ofid/ofab063] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/29/2021] [Indexed: 01/16/2023] Open
Abstract
Macrolide resistance was found in 39.5% of 3626 nonduplicate Streptococcus pneumoniae isolates from adult ambulatory and inpatient settings at 329 US hospitals (2018–2019). Macrolide resistance was significantly higher for respiratory vs blood isolates and ambulatory vs inpatient settings. Despite geographic variation, S. pneumoniae macrolide resistance was >25% in most regions.
Collapse
Affiliation(s)
- Vikas Gupta
- Becton, Dickinson and Company, Franklin Lakes, New Jersey, USA
| | - Kalvin C Yu
- Becton, Dickinson and Company, Franklin Lakes, New Jersey, USA
| | - Jennifer Schranz
- Nabriva Therapeutics US, Inc., King of Prussia, Pennsylvania, USA
| | - Steven P Gelone
- Nabriva Therapeutics US, Inc., King of Prussia, Pennsylvania, USA
| |
Collapse
|
120
|
Bhattacharyya A, Herta T, Conrad C, Frey D, García P, Suttorp N, Hippenstiel S, Zahlten J. Induction of Krüppel-Like Factor 4 Mediates Polymorphonuclear Neutrophil Activation in Streptococcus pneumoniae Infection. Front Microbiol 2021; 11:582070. [PMID: 33613460 PMCID: PMC7887292 DOI: 10.3389/fmicb.2020.582070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022] Open
Abstract
The recruitment and activation of polymorphonuclear neutrophils (PMNs) are of central importance for the elimination of pathogens in bacterial infections. We investigated the Streptococcus pneumoniae-dependent induction of the transcription factor Krüppel-like factor (KLF) 4 in PMNs as a potential regulator of PMN activation. We found that KLF4 expression is induced in human blood-derived PMNs in a time- and dose-dependent manner by wild-type S. pneumoniae and capsule knockout mutants. Unencapsulated knockout mutants induced stronger KLF4 expression than encapsulated wild types. The presence of autolysin LytA-competent (thus viable) pneumococci and LytA-mediated bacterial autolysis were required for KLF4 induction in human and murine PMNs. LyzMcre-mediated knockdown of KLF4 in murine blood-derived PMNs revealed that KLF4 influences pneumococci killing and increases the release of the proinflammatory cytokines tumor necrosis factor α and keratinocyte chemoattractant and decreases the release of the anti-inflammatory cytokine interleukin-10. Thus, S. pneumoniae induces KLF4 expression in PMNs, which contributes to PMN activation in S. pneumoniae infection.
Collapse
Affiliation(s)
- Aritra Bhattacharyya
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Toni Herta
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Conrad
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Doris Frey
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Pedro García
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Norbert Suttorp
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Hippenstiel
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Janine Zahlten
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
121
|
Kostić M, Ivanov M, Babić SS, Petrović J, Soković M, Ćirić A. An Up-to-Date Review on Bio-Resource Therapeutics Effective against Bacterial Species Frequently Associated with Chronic Sinusitis and Tonsillitis. Curr Med Chem 2021; 27:6892-6909. [PMID: 32368971 DOI: 10.2174/0929867327666200505093143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 01/26/2023]
Abstract
Upper respiratory tract infections include inflammations of the nose, sinuses (sinusitis), pharynx (tonsillitis, pharyngitis) and larynx (laryngitis) with bacteria or viruses as the main cause of these conditions. Due to their repetitive nature, chronic respiratory infections represent a global problem which is often a result of improper treatment. If not treated adequately, these conditions may have serious consequences. On the other hand, mis - and overuse of antibiotics has reduced their efficiency and accelerated the development of resistant bacterial strains, which further complicates the treatment of infections. This literature review will focus on current knowledge regarding medicinal plants and mushrooms which have been traditionally used in the treatment of infections caused by chronic sinusitis and tonsillitis commonly linked to bacteria - Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, Fusobacterium nucleatum, Haemophilus influenzae and Moraxella catarrhalis. The present literature overview might be considered as a starting point for the development of novel, natural antimicrobial products with potential practical use in the treatment of chronic tonsillitis and sinusitis.
Collapse
Affiliation(s)
- Marina Kostić
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marija Ivanov
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | | | - Jovana Petrović
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Soković
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Ana Ćirić
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
122
|
Yakabe K, Uchiyama J, Akiyama M, Kim YG. Understanding Host Immunity and the Gut Microbiota Inspires the New Development of Vaccines and Adjuvants. Pharmaceutics 2021; 13:163. [PMID: 33530627 PMCID: PMC7911583 DOI: 10.3390/pharmaceutics13020163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/26/2022] Open
Abstract
Vaccinations improve the mortality and morbidity rates associated with several infections through the generation of antigen-specific immune responses. Adjuvants are often used together with vaccines to improve immunogenicity. However, the immune responses induced by most on-going vaccines and adjuvants approved for human use vary in individuals; this is a limitation that must be overcome to improve vaccine efficacy. Several reports have indicated that the symbiotic bacteria, particularly the gut microbiota, impact vaccine-mediated antigen-specific immune responses and promote the induction of nonspecific responses via the "training" of innate immune cells. Therefore, the interaction between gut microbiota and innate immune cells should be considered to ensure the optimal immunogenicity of vaccines and adjuvants. In this review, we first introduce the current knowledge on the immunological mechanisms of vaccines and adjuvants. Subsequently, we discuss how the gut microbiota influences immunity and highlight the relationship between gut microbes and trained innate immunity, vaccines, and adjuvants. Understanding these complex interactions will provide insights into novel vaccine approaches centered on the gut microbiota.
Collapse
Affiliation(s)
- Kyosuke Yakabe
- Research Center for Drug Discovery, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan; (K.Y.); (J.U.); (M.A.)
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Jun Uchiyama
- Research Center for Drug Discovery, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan; (K.Y.); (J.U.); (M.A.)
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Masahiro Akiyama
- Research Center for Drug Discovery, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan; (K.Y.); (J.U.); (M.A.)
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Yun-Gi Kim
- Research Center for Drug Discovery, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan; (K.Y.); (J.U.); (M.A.)
| |
Collapse
|
123
|
Du S, Vilhena C, King S, Sahagún-Ruiz A, Hammerschmidt S, Skerka C, Zipfel PF. Molecular analyses identifies new domains and structural differences among Streptococcus pneumoniae immune evasion proteins PspC and Hic. Sci Rep 2021; 11:1701. [PMID: 33462258 PMCID: PMC7814132 DOI: 10.1038/s41598-020-79362-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
The PspC and Hic proteins of Streptococcuspneumoniae are some of the most variable microbial immune evasion proteins identified to date. Due to structural similarities and conserved binding profiles, it was assumed for a long time that these pneumococcal surface proteins represent a protein family comprised of eleven subgroups. Recently, however, the evaluation of more proteins revealed a greater diversity of individual proteins. In contrast to previous assumptions a pattern evaluation of six PspC and five Hic variants, each representing one of the previously defined subgroups, revealed distinct structural and likely functionally regions of the proteins, and identified nine new domains and new domain alternates. Several domains are unique to PspC and Hic variants, while other domains are also present in other virulence factors encoded by pneumococci and other bacterial pathogens. This knowledge improved pattern evaluation at the level of full-length proteins, allowed a sequence comparison at the domain level and identified domains with a modular composition. This novel strategy increased understanding of individual proteins variability and modular domain composition, enabled a structural and functional characterization at the domain level and furthermore revealed substantial structural differences between PspC and Hic proteins. Given the exceptional genomic diversity of the multifunctional PspC and Hic proteins a detailed structural and functional evaluation need to be performed at the strain level. Such knowledge will also be useful for molecular strain typing and characterizing PspC and Hic proteins from new clinical S. pneumoniae strains.
Collapse
Affiliation(s)
- Shanshan Du
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Cláudia Vilhena
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Samantha King
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Alfredo Sahagún-Ruiz
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany.,Molecular Immunology Laboratory, Department of Microbiology and Immunology, Faculty of Veterinary Medicine and Animal Husbandry, National Autonomous University of Mexico, Mexico City, Mexico
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany. .,Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany.
| |
Collapse
|
124
|
Cools F, Delputte P, Cos P. The search for novel treatment strategies for Streptococcus pneumoniae infections. FEMS Microbiol Rev 2021; 45:6064299. [PMID: 33399826 PMCID: PMC8371276 DOI: 10.1093/femsre/fuaa072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/01/2021] [Indexed: 12/13/2022] Open
Abstract
This review provides an overview of the most important novel treatment strategies against Streptococcus pneumoniae infections published over the past 10 years. The pneumococcus causes the majority of community-acquired bacterial pneumonia cases, and it is one of the prime pathogens in bacterial meningitis. Over the last 10 years, extensive research has been conducted to prevent severe pneumococcal infections, with a major focus on (i) boosting the host immune system and (ii) discovering novel antibacterials. Boosting the immune system can be done in two ways, either by actively modulating host immunity, mostly through administration of selective antibodies, or by interfering with pneumococcal virulence factors, thereby supporting the host immune system to effectively overcome an infection. While several of such experimental therapies are promising, few have evolved to clinical trials. The discovery of novel antibacterials is hampered by the high research and development costs versus the relatively low revenues for the pharmaceutical industry. Nevertheless, novel enzymatic assays and target-based drug design, allow the identification of targets and the development of novel molecules to effectively treat this life-threatening pathogen.
Collapse
Affiliation(s)
- F Cools
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - P Delputte
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - P Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
125
|
Bonville C, Domachowske J. Pneumococcus. Vaccines (Basel) 2021. [DOI: 10.1007/978-3-030-58414-6_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
126
|
Luck JN, Tettelin H, Orihuela CJ. Sugar-Coated Killer: Serotype 3 Pneumococcal Disease. Front Cell Infect Microbiol 2020; 10:613287. [PMID: 33425786 PMCID: PMC7786310 DOI: 10.3389/fcimb.2020.613287] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Capsular polysaccharide (CPS), which surrounds the bacteria, is one of the most significant and multifaceted contributors to Streptococcus pneumoniae virulence. Capsule prevents entrapment in mucus during colonization, traps water to protect against desiccation, can serve as an energy reserve, and protects the bacterium against complement-mediated opsonization and immune cell phagocytosis. To date, 100 biochemically and serologically distinct capsule types have been identified for S. pneumoniae; 20 to 30 of which have well-defined propensity to cause opportunistic human infection. Among these, serotype 3 is perhaps the most problematic as serotype 3 infections are characterized as having severe clinical manifestations including empyema, bacteremia, cardiotoxicity, and meningitis; consequently, with a fatality rate of 30%-47%. Moreover, serotype 3 resists antibody-mediated clearance despite its inclusion in the current 13-valent conjugate vaccine formulation. This review covers the role of capsule in pneumococcal pathogenesis and the importance of serotype 3 on human disease. We discuss how serotype 3 capsule synthesis and presentation on the bacterial surface is distinct from other serotypes, the biochemical and physiological properties of this capsule type that facilitate its ability to cause disease, and why existing vaccines are unable to confer protection. We conclude with discussion of the clonal properties of serotype 3 and how these have changed since introduction of the 13-valent vaccine in 2000.
Collapse
Affiliation(s)
- Jennifer N. Luck
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Carlos J. Orihuela
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
127
|
Jaufmann J, Tümen L, Schmitt F, Schäll D, von Holleben M, Beer-Hammer S. SLy2-deficiency promotes B-1 cell immunity and triggers enhanced production of IgM and IgG 2 antibodies against pneumococcal vaccine. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:736-752. [PMID: 33098380 PMCID: PMC7654406 DOI: 10.1002/iid3.365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/15/2020] [Accepted: 10/13/2020] [Indexed: 01/01/2023]
Abstract
Background Despite the benefits of existing vaccines, Streptococcus pneumoniae is still responsible for the greatest proportion of respiratory tract infections around the globe, thereby substantially contributing to morbidity and mortality in humans. B‐1 cells are key players of bacterial clearance during pneumococcal infection and even provide long‐lasting immunity towards S. pneumoniae. Previous reports strongly suggest an essential role of the immunoinhibitory adapter Src homology domain 3 lymphocyte protein 2 (SLy2) for B‐1 cell‐mediated antibody production. The objective of this study is to evaluate S. pneumoniae‐directed B cell responses in the context of SLy2 deficiency. Methods B‐1 cell populations were analyzed via flow cytometry before and after pneumococcal immunization of SLy2‐deficient and wild‐type control mice. Global and vaccine‐specific immunoglobulin M (IgM) and IgG antibody titers were assessed by enzyme‐linked immunosorbent assay. To investigate survival rates during acute pneumococcal lung infection, mice were intranasally challenged with S. pneumoniae (serotype 3). Complementary isolated splenic B cells were stimulated in vitro and their proliferative response was assessed by fluorescent staining. In vitro antibody secretion was quantified by LEGENDplex. Results We demonstrate increased frequencies of B‐1 cells and elevated titers of preantigenic IgM in SLy2‐deficient mice. In addition, these mice produce significantly more amounts of IgM and IgG2 upon pneumococcal vaccination. Knocking out SLy2 did not induce survival advantages in our murine model of acute pneumonia, indicating the presence of compensatory mechanisms. Conclusion Our results reveal reinforced specific antibody responses towards pneumococcal polysaccharides and enhanced IgG2 secretion as a consequence of SLy2 deficiency, which could be relevant to the development of more efficient vaccines.
Collapse
Affiliation(s)
- Jennifer Jaufmann
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Leyla Tümen
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Fee Schmitt
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Daniel Schäll
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Max von Holleben
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University, Duesseldorf, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany.,Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University, Duesseldorf, Germany
| |
Collapse
|
128
|
Isono T, Domon H, Nagai K, Maekawa T, Tamura H, Hiyoshi T, Yanagihara K, Kunitomo E, Takenaka S, Noiri Y, Terao Y. Treatment of severe pneumonia by hinokitiol in a murine antimicrobial-resistant pneumococcal pneumonia model. PLoS One 2020; 15:e0240329. [PMID: 33057343 PMCID: PMC7561173 DOI: 10.1371/journal.pone.0240329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022] Open
Abstract
Streptococcus pneumoniae is often isolated from patients with community-acquired pneumonia. Antibiotics are the primary line of treatment for pneumococcal pneumonia; however, rising antimicrobial resistance is becoming more prevalent. Hinokitiol, which is isolated from trees in the cypress family, has been demonstrated to exert antibacterial activity against S. pneumoniae in vitro regardless of antimicrobial resistance. In this study, the efficacy of hinokitiol was investigated in a mouse pneumonia model. Male 8-week-old BALB/c mice were intratracheally infected with S. pneumoniae strains D39 (antimicrobial susceptible) and NU4471 (macrolide resistant). After 1 h, hinokitiol was injected via the tracheal route. Hinokitiol significantly decreased the number of S. pneumoniae in the bronchoalveolar lavage fluid (BALF) and the concentration of pneumococcal DNA in the serum, regardless of whether bacteria were resistant or susceptible to macrolides. In addition, hinokitiol decreased the infiltration of neutrophils in the lungs, as well as the concentration of inflammatory cytokines in the BALF and serum. Repeated hinokitiol injection at 18 h intervals showed downward trend in the number of S. pneumoniae in the BALF and the concentration of S. pneumoniae DNA in the serum with the number of hinokitiol administrations. These findings suggest that hinokitiol reduced bacterial load and suppressed excessive host immune response in the pneumonia mouse model. Accordingly, hinokitiol warrants further exploration as a potential candidate for the treatment of pneumococcal pneumonia.
Collapse
Affiliation(s)
- Toshihito Isono
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kosuke Nagai
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoki Maekawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hikaru Tamura
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takumi Hiyoshi
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Eiji Kunitomo
- Central Research and Development Laboratory, Kobayashi Pharmaceutical Co., Ltd., Osaka, Japan
| | - Shoji Takenaka
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yuichiro Noiri
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- * E-mail:
| |
Collapse
|
129
|
Targeting Streptococcus pneumoniae UDP-glucose pyrophosphorylase (UGPase): in vitro validation of a putative inhibitor. Drug Target Insights 2020; 14:26-33. [PMID: 33132696 PMCID: PMC7597228 DOI: 10.33393/dti.2020.2103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Genome plasticity of Streptococcus pneumoniae is responsible for the reduced efficacy of various antibiotics and capsular polysaccharide-based vaccines. Therefore, targets independent of capsular types are sought to control the pneumococcal pathogenicity. UDP-glucose pyrophosphorylase (UGPase) is one such desired candidate being responsible for the synthesis of UDP-glucose, a sugar precursor in capsular biosynthesis and metabolic Leloir pathway. Being crucial to pneumococcal pathobiology, the effect of UGPase inhibition on virulence was evaluated in vitro. Methods: A putative inhibitor, uridine diphosphate (UDP), was evaluated for effective inhibitory concentration in S. pneumoniae and A549 cells, its efficacy and toxicity. The effect of UDP on adherence and phagocytosis was measured in human respiratory epithelial (A549 and HEp-2) and macrophage (THP1 and J774.A.1) cell lines respectively. Results: A differential effective inhibitory concentration of UDP for UGPase inhibition was observed in S. pneumoniae and A549 cells, that is, 5 and 100 µM respectively. UDP treatments lowered percent cytotoxicity in pneumococcal-infected monolayers and didn’t exert adverse effects on viabilities. S. pneumoniae adherence to host cells decreased significantly with UDP treatments. UDP induced the secretion of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, and IL-8 and increased pneumococcal phagocytosis. Conclusion: Our study shows UDP-mediated decrease in the virulence of S. pneumoniae and demonstrates UDP as an effective inhibitor of pneumococcal UGPase.
Collapse
|
130
|
Kuek LE, Lee RJ. First contact: the role of respiratory cilia in host-pathogen interactions in the airways. Am J Physiol Lung Cell Mol Physiol 2020; 319:L603-L619. [PMID: 32783615 PMCID: PMC7516383 DOI: 10.1152/ajplung.00283.2020] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory cilia are the driving force of the mucociliary escalator, working in conjunction with secreted airway mucus to clear inhaled debris and pathogens from the conducting airways. Respiratory cilia are also one of the first contact points between host and inhaled pathogens. Impaired ciliary function is a common pathological feature in patients with chronic airway diseases, increasing susceptibility to respiratory infections. Common respiratory pathogens, including viruses, bacteria, and fungi, have been shown to target cilia and/or ciliated airway epithelial cells, resulting in a disruption of mucociliary clearance that may facilitate host infection. Despite being an integral component of airway innate immunity, the role of respiratory cilia and their clinical significance during airway infections are still poorly understood. This review examines the expression, structure, and function of respiratory cilia during pathogenic infection of the airways. This review also discusses specific known points of interaction of bacteria, fungi, and viruses with respiratory cilia function. The emerging biological functions of motile cilia relating to intracellular signaling and their potential immunoregulatory roles during infection will also be discussed.
Collapse
Affiliation(s)
- Li Eon Kuek
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Robert J Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
131
|
Arokiaraj MC. Considering Interim Interventions to Control COVID-19 Associated Morbidity and Mortality-Perspectives. Front Public Health 2020; 8:444. [PMID: 33072682 PMCID: PMC7537040 DOI: 10.3389/fpubh.2020.00444] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
Aims and objectives: The pandemic of COVID-19 is evolving worldwide, and it is associated with high mortality and morbidity. There is a growing need to discuss the elements of a coordinated strategy to control the spread and mitigate the severity of COVID-19. H1N1 and Streptococcus pneumonia vaccines are available. The current analysis was performed to analyze the severity of COVID-19 and influenza (H1N1) vaccination in adults ≥ 65. Also, to correlate the lower respiratory tract infections (LRIs), and influenza attributable to the lower respiratory tract infections' incidence with Covid-19 mortality. Evolutionarily influenza is close in resemblance to SARS-CoV-2 viruses and shares some common epitopes and mechanisms. Methods: Recent influenza vaccination data of 34 countries from OECD and other publications were correlated with COVID-19 mortality from worldometer data. LRIs attributable to influenza and streptococcus pneumonia were correlated with COVID-19 mortality. Specifically, influenza-attributable LRI incidence data of various countries (n = 182) was correlated with COVID-19 death by linear regression and receiver operating characteristic (ROC) curve analyzes. In a logistic regression model, population density and influenza LRI incidence were correlated with COVID-19 mortality. Results: There is a correlation between COVID-19-related mortality, morbidity, and case incidence and the status of influenza vaccination, which appears protective. The tendency of correlation is increasingly highlighted as the pandemic is evolving. In countries where influenza immunization is less common, there is a correlation between LRIs and influenza attributable to LRI incidence and COVID-19 severity, which is beneficial. ROC curve showed an area under the curve of 0.86 (CI 0.78 to 0.944, P < 0.0001) to predict COVID-19 mortality >150/million and a decreasing trend of influenza LRI episodes. To predict COVID-19 mortality of >200/million population, the odds ratio for influenza incidence/100,000 was −1.86 (CI −2.75 to −0.96, P < 0.0001). To predict the parameter Covid-19 mortality/influenza LRI episodes*1000>1000, the influenza parameter had an odd's ratio of −3.83 (CI −5.98 to −1.67), and an AUC of 0.94. Conclusion: Influenza (H1N1) vaccination can be used as an interim measure to mitigate the severity of COVID-19 in the general population. In appropriate high-risk circumstances, Streptococcus pneumonia vaccination would also be an adjunct strategy, especially in countries with a lower incidence of LRIs.
Collapse
|
132
|
ARID3a expression in human hematopoietic stem cells is associated with distinct gene patterns in aged individuals. IMMUNITY & AGEING 2020; 17:24. [PMID: 32905435 PMCID: PMC7469297 DOI: 10.1186/s12979-020-00198-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/25/2020] [Indexed: 01/28/2023]
Abstract
Background Immunologic aging leads to immune dysfunction, significantly reducing the quality of life of the elderly. Aged-related defects in early hematopoiesis result in reduced lymphoid cell development, functionally defective mature immune cells, and poor protective responses to vaccines and pathogens. Despite considerable progress understanding the underlying causes of decreased immunity in the elderly, the mechanisms by which these occur are still poorly understood. The DNA-binding protein ARID3a is expressed in a subset of human hematopoietic progenitors. Inhibition of ARID3a in bulk human cord blood CD34+ hematopoietic progenitors led to developmental skewing toward myeloid lineage at the expense of lymphoid lineage cells in vitro. Effects of ARID3a expression in adult-derived hematopoietic stem cells (HSCs) have not been analyzed, nor has ARID3a expression been assessed in relationship to age. We hypothesized that decreases in ARID3a could explain some of the defects observed in aging. Results Our data reveal decreased frequencies of ARID3a-expressing peripheral blood HSCs from aged healthy individuals compared with young donor HSCs. Inhibition of ARID3a in young donor-derived HSCs limits B lineage potential, suggesting a role for ARID3a in B lymphopoiesis in bone marrow-derived HSCs. Increasing ARID3a levels of HSCs from aged donors in vitro alters B lineage development and maturation. Finally, single cell analyses of ARID3a-expressing HSCs from young versus aged donors identify a number of differentially expressed genes in aged ARID3A-expressing cells versus young ARID3A-expressing HSCs, as well as between ARID3A-expressing and non-expressing cells in both young and aged donor HSCs. Conclusions These data suggest that ARID3a-expressing HSCs from aged individuals differ at both molecular and functional levels compared to ARID3a-expressing HSCs from young individuals.
Collapse
|
133
|
Rhodomyrtus tomentosa Leaf Extract and Rhodomyrtone Combat Streptococcus pneumoniae Biofilm and Inhibit Invasiveness to Human Lung Epithelial and Enhance Pneumococcal Phagocytosis by Macrophage. Curr Microbiol 2020; 77:3546-3554. [PMID: 32812080 DOI: 10.1007/s00284-020-02164-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022]
Abstract
Rhodomyrtus tomentosa leaf has been traditionally used to treat many infections. This plant species has been documented to possess a wide spectrum of pharmacological effects. This study aimed to determine the effects of Rhodomyrtus tomentosa leaf extract and its potent purified compound, rhodomyrtone, on Streptococcus pneumoniae virulence factors including biofilms, capsule formation, and invasiveness which play important roles in infections. Ethanol leaf extract and rhodomyrtone demonstrated excellent antibacterial activity against S. pneumoniae with minimal inhibitory concentration (MIC) ranging from 16-32 µg/ml and 0.125-1 µg/ml, respectively. The ability of the extract and rhodomyrtone to prevent biofilm formation and eradicate mature biofilms was assessed. The extract and rhodomyrtone at 1/8 × MIC significantly inhibited biofilm formation in all clinical isolates (P < 0.05). The viability of 8-day biofilm-grown cells significantly decreased following the treatment with the extract and rhodomyrtone at 16 × MIC. 40-90% reduction in the bacterial adhesion and invasion to A549 human alveolar epithelial cells was observed after challenging with the extract and rhodomyrtone, compared with the control within 60 min. Increase in 90-99% phagocytosis of the bacterial cells by RAW264.7 macrophage cell line was detected following the treatment with the extract and rhodomyrtone at 1/2 × MIC, compared with the control. The results suggested potential medicinal benefits of the extract and rhodomyrtone for the treatment of pneumococcal infections.
Collapse
|
134
|
Feng S, Xiong C, Wang G, Wang S, Jin G, Gu G. Exploration of Recombinant Fusion Proteins YAPO and YAPL as Carrier Proteins for Glycoconjugate Vaccine Design against Streptococcus pneumoniae Infection. ACS Infect Dis 2020; 6:2181-2191. [PMID: 32687317 DOI: 10.1021/acsinfecdis.0c00260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pneumolysin (Ply), pneumococcal surface protein A (PspA), and pneumococcal surface adhesin A (PsaA) are promising cell surface protein antigen targets for Streptococcus pneumoniae (Spn) vaccine development. Herein, we designed and recombined two fusion proteins, named YAPO and YAPL, which contained the main antigenic epitopes of Ply, PspA, and PsaA. In-depth immunological evaluations revealed that YAPO and YAPL had strong immunocompetence to be well-qualified potential carrier proteins. To verify this possibility, a serotype 3 Spn (ST3) CPS pentasaccharide was conjugated to each fusion protein to generate the resultant glycoconjugates. Immunological studies in mice revealed that, as compared with TT conjugate, YAPO and YAPL conjugates provoked robust T-cell dependent immune responses that could provide better recognition, in vitro efficient opsonophagocytosis, and in vivo effective protection against various serotypes of Spn. Collectively, YAPO and YAPL were identified as immunopotentiating carriers that could help convert immunologically inactive ST3 pentasaccharide into a T cell-dependent antigen and provide efficient and broad spectrum of immunoprotection coverage so as to formulate functional glycoconjugate vaccines against Spn infections.
Collapse
Affiliation(s)
- Shaojie Feng
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Chenghe Xiong
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Guirong Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Subo Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Guoxia Jin
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, 88 Wenhua Dong Lu, Jinan 250014, China
| | - Guofeng Gu
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| |
Collapse
|
135
|
Hifumi T, Fujishima S, Ubukata K, Hagiwara A, Abe T, Ogura H, Shiraishi A, Kushimoto S, Saitoh D, Mayumi T, Ikeda H, Ueyama M, Otomo Y, Okamoto K, Umemura Y, Kotani J, Sakamoto Y, Sasaki J, Shiino Y, Shiraishi SI, Takuma K, Tarui T, Tsuruta R, Nakada TA, Yamakawa K, Masuno T, Takeyama N, Yamashita N, Fujimi S, Gando S. Clinical characteristics of patients with severe sepsis and septic shock in relation to bacterial virulence of beta-hemolytic Streptococcus and Streptococcus pneumoniae. Acute Med Surg 2020; 7:e513. [PMID: 32489668 PMCID: PMC7262430 DOI: 10.1002/ams2.513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/16/2020] [Accepted: 04/12/2020] [Indexed: 12/29/2022] Open
Abstract
Aim Combined detailed analysis of patient characteristics and treatment as well as bacterial virulence factors, which all play a central role in the cause of infections leading to severe illness, has not been reported. We aimed to describe the patient characteristics (Charlson comorbidity index [CCI]), treatment (3‐h bundle), and outcomes in relation to bacterial virulence of Streptococcus pneumoniae and beta‐hemolytic Streptococcus (BHS). Methods This sepsis primary study is part of the larger Focused Outcomes Research in Emergency Care in Acute Respiratory Distress Syndrome, Sepsis and Trauma (FORECAST) study, a multicenter, prospective cohort study. We included patients diagnosed with S. pneumoniae and BHS sepsis and examined virulence, defining the high‐virulence factor as follows: S. pneumoniae serotype 3, 31, 11A, 35F, and 17F; Streptococcus pyogenes, emm 1; Streptococcus agalactiae, III; and Streptococcus dysgalactiae ssp. equisimilis, emm typing pattern stG 6792. Included patients were divided into high and normal categories based on the virulence factor. Results Of 1,184 sepsis patients enrolled in the Japanese Association for Acute Medicine’s FORECAST study, 62 were included in the current study (29 cases with S. pneumoniae sepsis and 33 with BHS). The CCI and completion of a 3‐h bundle did not differ between normal and high virulence groups. Risk of 28‐day mortality was significantly higher for high‐virulence compared to normal‐virulence when adjusted for CCI and completion of a 3‐h bundle (Cox proportional hazards regression analysis, hazard ratio 3.848; 95% confidence interval, 1.108–13.370; P = 0.034). Conclusion The risk of 28‐day mortality was significantly higher for patients with high‐virulence compared to normal‐virulence bacteria.
Collapse
Affiliation(s)
- Toru Hifumi
- Department of Emergency and Critical Care Medicine St. Luke's International Hospital Emergency Medical Center Tokyo Japan
| | - Seitaro Fujishima
- Center for General Medicine Education School of Medicine Keio University Tokyo Japan
| | - Kimiko Ubukata
- Center for General Medicine Education School of Medicine Keio University Tokyo Japan
| | - Akiyoshi Hagiwara
- Emergency Medicine Center Hospital of the National Center for Global Health and Medicine Tokyo Japan
| | - Toshikazu Abe
- Department of General Medicine Juntendo University Tokyo Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine Osaka University Graduate School of Medicine Suita Japan
| | | | - Shigeki Kushimoto
- Division of Emergency and Critical Care Medicine Tohoku University Graduate School of Medicine Sendai Japan
| | - Daizoh Saitoh
- Division of Traumatology Research Institute National Defense Medical College Saitama Japan
| | - Toshihiko Mayumi
- Department of Emergency Medicine School of Medicine University of Occupational and Environmental Health Kitakyushu Japan
| | - Hiroto Ikeda
- Department of Emergency Medicine Teikyo University School of Medicine Tokyo Japan
| | - Masashi Ueyama
- Department of Trauma Critical Care Medicine, and Burn Center Japan Community Healthcare Organization, Chukyo Hospital Nagoya Japan
| | - Yasuhiro Otomo
- Trauma and Acute Critical Care Medical Center Medical Hospital Tokyo Medical and Dental University Tokyo Japan
| | - Kohji Okamoto
- Department of Surgery Center for Gastroenterology and Liver Disease Kitakyushu City Yahata Hospital Kitakyushu Japan
| | - Yutaka Umemura
- Department of Traumatology and Acute Critical Medicine Osaka University Graduate School of Medicine Suita Japan
| | - Joji Kotani
- Department of Emergency, Disaster and Critical Care Medicine Hyogo College of Medicine Nishinomiya Japan
| | - Yuichiro Sakamoto
- Emergency and Critical Care Medicine Saga University Hospital Saga Japan
| | - Junichi Sasaki
- Department of Emergency and Critical Care Medicine Keio University School of Medicine Tokyo Japan
| | - Yasukazu Shiino
- Department of Acute Medicine Kawasaki Medical School Kurashiki Japan
| | - Shin-Ichiro Shiraishi
- Department of Emergency and Critical Care Medicine Aizu Chuo Hospital Fukushima Japan
| | - Kiyotsugu Takuma
- Emergency and Critical Care Center Kawasaki Municipal Kawasaki Hospital Kawasaki Japan
| | - Takehiko Tarui
- Department of Trauma and Critical Care Medicine Kyorin University School of Medicine Mitaka Japan
| | - Ryosuke Tsuruta
- Advanced Medical Emergency and Critical Care Center Yamaguchi University Hospital Ube Japan
| | - Taka-Aki Nakada
- Department of Emergency and Critical Care Medicine Chiba University Graduate School of Medicine Chiba Japan
| | - Kazuma Yamakawa
- Division of Trauma and Surgical Critical Care Osaka General Medical Center Osaka Japan
| | - Tomohiko Masuno
- Department of Emergency and Critical Care Medicine Nippon Medical School Tokyo Japan
| | - Naoshi Takeyama
- Advanced Critical Care Center Aichi Medical University Hospital Nagakute Japan
| | - Norio Yamashita
- Advanced Emergency Medical Service Center Kurume University Hospital Kurume Japan
| | - Satoshi Fujimi
- Division of Trauma and Surgical Critical Care Osaka General Medical Center Osaka Japan
| | - Satoshi Gando
- Division of Acute and Critical Care Medicine Hokkaido University Graduate School of Medicine Sapporo Japan
| | | |
Collapse
|
136
|
Structural insights into secretory immunoglobulin A and its interaction with a pneumococcal adhesin. Cell Res 2020; 30:602-609. [PMID: 32398862 DOI: 10.1038/s41422-020-0336-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/23/2020] [Indexed: 12/21/2022] Open
Abstract
Secretory Immunoglobulin A (SIgA) is the most abundant antibody at the mucosal surface. It possesses two additional subunits besides IgA: the joining chain (J-chain) and secretory component (SC). SC is the ectodomain of the polymeric immunoglobulin receptor (pIgR), which functions to transport IgA to the mucosa. How the J-chain and pIgR/SC facilitate the assembly and secretion of SIgA remains incompletely understood. Furthermore, during the infection of Streptococcus pneumoniae, the pneumococcal adhesin SpsA hijacks pIgR/SC and SIgA to gain entry to human cells and evade host defense. How SpsA targets pIgR/SC and SIgA also remains elusive. Here we report a cryo-electron microscopy structure of the Fc region of IgA1 (Fcα) in complex with the J-chain and SC (Fcα-J-SC), which reveals the organization principle of SIgA. We also present a structure of Fcα-J-SC complexed with SpsA, which uncovers the specific interactions between SpsA and human pIgR/SC. These results advance the molecular understanding of SIgA and shed light on S. pneumoniae pathogenesis.
Collapse
|
137
|
|
138
|
Isaiah S, Loots DT, Solomons R, van der Kuip M, Tutu Van Furth AM, Mason S. Overview of Brain-to-Gut Axis Exposed to Chronic CNS Bacterial Infection(s) and a Predictive Urinary Metabolic Profile of a Brain Infected by Mycobacterium tuberculosis. Front Neurosci 2020; 14:296. [PMID: 32372900 PMCID: PMC7186443 DOI: 10.3389/fnins.2020.00296] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
A new paradigm in neuroscience has recently emerged - the brain-gut axis (BGA). The contemporary focus in this paradigm has been gut → brain ("bottom-up"), in which the gut-microbiome, and its perturbations, affects one's psychological state-of-mind and behavior, and is pivotal in neurodegenerative disorders. The emerging brain → gut ("top-down") concept, the subject of this review, proposes that dysfunctional brain health can alter the gut-microbiome. Feedback of this alternative bidirectional highway subsequently aggravates the neurological pathology. This paradigm shift, however, focuses upon non-communicable neurological diseases (progressive neuroinflammation). What of infectious diseases, in which pathogenic bacteria penetrate the blood-brain barrier and interact with the brain, and what is this effect on the BGA in bacterial infection(s) that cause chronic neuroinflammation? Persistent immune activity in the CNS due to chronic neuroinflammation can lead to irreversible neurodegeneration and neuronal death. The properties of cerebrospinal fluid (CSF), such as immunological markers, are used to diagnose brain disorders. But what of metabolic markers for such purposes? If a BGA exists, then chronic CNS bacterial infection(s) should theoretically be reflected in the urine. The premise here is that chronic CNS bacterial infection(s) will affect the gut-microbiome and that perturbed metabolism in both the CNS and gut will release metabolites into the blood that are filtered (kidneys) and excreted in the urine. Here we assess the literature on the effects of chronic neuroinflammatory diseases on the gut-microbiome caused by bacterial infection(s) of the CNS, in the context of information attained via metabolomics-based studies of urine. Furthermore, we take a severe chronic neuroinflammatory infectious disease - tuberculous meningitis (TBM), caused by Mycobacterium tuberculosis, and examine three previously validated CSF immunological biomarkers - vascular endothelial growth factor, interferon-gamma and myeloperoxidase - in terms of the expected changes in normal brain metabolism. We then model the downstream metabolic effects expected, predicting pivotal altered metabolic pathways that would be reflected in the urinary profiles of TBM subjects. Our cascading metabolic model should be adjustable to account for other types of CNS bacterial infection(s) associated with chronic neuroinflammation, typically prevalent, and difficult to distinguish from TBM, in the resource-constrained settings of poor communities.
Collapse
Affiliation(s)
- Simon Isaiah
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Du Toit Loots
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Regan Solomons
- Department of Pediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Martijn van der Kuip
- Pediatric Infectious Diseases and Immunology, Amsterdam University Medical Center, Academic Medical Center, Emma Children’s Hospital, Amsterdam, Netherlands
| | - A. Marceline Tutu Van Furth
- Pediatric Infectious Diseases and Immunology, Amsterdam University Medical Center, Academic Medical Center, Emma Children’s Hospital, Amsterdam, Netherlands
| | - Shayne Mason
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
139
|
Ellwanger JH, Kaminski VDL, Rodrigues AG, Kulmann-Leal B, Chies JAB. CCR5 and CCR5Δ32 in bacterial and parasitic infections: Thinking chemokine receptors outside the HIV box. Int J Immunogenet 2020; 47:261-285. [PMID: 32212259 DOI: 10.1111/iji.12485] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022]
Abstract
The CCR5 molecule was reported in 1996 as the main HIV-1 co-receptor. In that same year, the CCR5Δ32 genetic variant was described as a strong protective factor against HIV-1 infection. These findings led to extensive research regarding the CCR5, culminating in critical scientific advances, such as the development of CCR5 inhibitors for the treatment of HIV infection. Recently, the research landscape surrounding CCR5 has begun to change. Different research groups have realized that, since CCR5 has such important effects in the chemokine system, it could also affect other different physiological systems. Therefore, the effect of reduced CCR5 expression due to the presence of the CCR5Δ32 variant began to be further studied. Several studies have investigated the role of CCR5 and the impacts of CCR5Δ32 on autoimmune and inflammatory diseases, various types of cancer, and viral diseases. However, the role of CCR5 in diseases caused by bacteria and parasites is still poorly understood. Therefore, the aim of this article is to review the role of CCR5 and the effects of CCR5Δ32 on bacterial (brucellosis, osteomyelitis, pneumonia, tuberculosis and infection by Chlamydia trachomatis) and parasitic infections (toxoplasmosis, leishmaniasis, Chagas disease and schistosomiasis). Basic information about each of these infections was also addressed. The neglected role of CCR5 in fungal disease and emerging studies regarding the action of CCR5 on regulatory T cells are briefly covered in this review. Considering the "renaissance of CCR5 research," this article is useful for updating researchers who develop studies involving CCR5 and CCR5Δ32 in different infectious diseases.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Valéria de Lima Kaminski
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Andressa Gonçalves Rodrigues
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Bruna Kulmann-Leal
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| |
Collapse
|
140
|
Crowe J, Lumb FE, Doonan J, Broussard M, Tarafdar A, Pineda MA, Landabaso C, Mulvey L, Hoskisson PA, Babayan SA, Selman C, Harnett W, Harnett MM. The parasitic worm product ES-62 promotes health- and life-span in a high calorie diet-accelerated mouse model of ageing. PLoS Pathog 2020; 16:e1008391. [PMID: 32163524 PMCID: PMC7108737 DOI: 10.1371/journal.ppat.1008391] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 03/31/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
Improvements in hygiene and health management have driven significant increases in human lifespan over the last 50 years. Frustratingly however, this extension of lifespan has not been matched by equivalent improvements in late-life health, not least due to the global pandemic in type-2 diabetes, obesity and cardiovascular disease, all ageing-associated conditions exacerbated and accelerated by widespread adoption of the high calorie Western diet (HCD). Recently, evidence has begun to emerge that parasitic worm infection might protect against such ageing-associated co-morbidities, as a serendipitous side-effect of their evolution of pro-survival, anti-inflammatory mechanisms. As a novel therapeutic strategy, we have therefore investigated the potential of ES-62, an anti-inflammatory secreted product of the filarial nematode Acanthocheilonema viteae, to improve healthspan (the period of life before diseases of ageing appear) by targeting the chronic inflammation that drives metabolic dysregulation underpinning ageing-induced ill-health. We administered ES-62 subcutaneously (at a dose of 1 μg/week) to C57BL/6J mice undergoing HCD-accelerated ageing throughout their lifespan, while subjecting the animals to analysis of 120 immunometabolic responses at various time-points. ES-62 improved a number of inflammatory parameters, but markedly, a range of pathophysiological, metabolic and microbiome parameters of ageing were also successfully targeted. Notably, ES-62-mediated promotion of healthspan in male and female HCD-mice was associated with different mechanisms and reflecting this, machine learning modelling identified sex-specific signatures predictive of ES-62 action against HCD-accelerated ageing. Remarkably, ES-62 substantially increased the median survival of male HCD-mice. This was not the case with female animals and unexpectedly, this difference between the two sexes could not be explained in terms of suppression of the chronic inflammation driving ageing, as ES-62 tended to be more effective in reducing this in female mice. Rather, the difference appeared to be associated with ES-62's additional ability to preferentially promote a healthier gut-metabolic tissue axis in male animals.
Collapse
Affiliation(s)
- Jenny Crowe
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Felicity E. Lumb
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - James Doonan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Margaux Broussard
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Anuradha Tarafdar
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Miguel A. Pineda
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Carmen Landabaso
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Lorna Mulvey
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Paul A. Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Simon A. Babayan
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Margaret M. Harnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
141
|
Vaccination Programs for Adults in Europe, 2019. Vaccines (Basel) 2020; 8:vaccines8010034. [PMID: 31968652 PMCID: PMC7157239 DOI: 10.3390/vaccines8010034] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 11/17/2022] Open
Abstract
Background: While all European countries implement vaccination programs for children, there are gaps in terms of vaccination programs for adults. Methods: We studied the 2019 vaccination policies for adults in 42 European countries. Results: Vaccination programs for adults were in place in all countries. However, there were considerable differences between countries in terms of number of vaccinations, target populations and frame of implementation (recommended or mandatory vaccinations). In particular the following vaccination policies were in place: influenza (42 countries), tetanus (31), diphtheria (30), pneumococcus (29), hepatitis B (20), pertussis (18), measles (14), human papilloma virus (14), meningococcus tetravalent A,C,W,Y (14), rubella (13), hepatitis A (11), mumps (11), poliomyelitis (10), herpes zoster (9), varicella (8), tick-born encephalitis (8), meningococcus B (6), rabies (6), Haemophilus influenzae type b (5), tuberculosis (3), typhoid fever (3), meningococcus C (2), and yellow fever (1). Seventeen countries implement mandatory vaccinations, mainly against diphtheria, tetanus and hepatitis B. Conclusions: There are significant differences in vaccination programs for adults in Europe. Routine vaccination programs for adults need to be strengthened. A consensus-based vaccination program is needed.
Collapse
|
142
|
Rogers LRK, de Los Campos G, Mias GI. Microarray Gene Expression Dataset Re-analysis Reveals Variability in Influenza Infection and Vaccination. Front Immunol 2019; 10:2616. [PMID: 31787983 PMCID: PMC6854009 DOI: 10.3389/fimmu.2019.02616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
Influenza, a communicable disease, affects thousands of people worldwide. Young children, elderly, immunocompromised individuals and pregnant women are at higher risk for being infected by the influenza virus. Our study aims to highlight differentially expressed genes in influenza disease compared to influenza vaccination, including variability due to age and sex. To accomplish our goals, we conducted a meta-analysis using publicly available microarray expression data. Our inclusion criteria included subjects with influenza, subjects who received the influenza vaccine and healthy controls. We curated 18 microarray datasets for a total of 3,481 samples (1,277 controls, 297 influenza infection, 1,907 influenza vaccination). We pre-processed the raw microarray expression data in R using packages available to pre-process Affymetrix and Illumina microarray platforms. We used a Box-Cox power transformation of the data prior to our down-stream analysis to identify differentially expressed genes. Statistical analyses were based on linear mixed effects model with all study factors and successive likelihood ratio tests (LRT) to identify differentially-expressed genes. We filtered LRT results by disease (Bonferroni adjusted p < 0.05) and used a two-tailed 10% quantile cutoff to identify biologically significant genes. Furthermore, we assessed age and sex effects on the disease genes by filtering for genes with a statistically significant (Bonferroni adjusted p < 0.05) interaction between disease and age, and disease and sex. We identified 4,889 statistically significant genes when we filtered the LRT results by disease factor, and gene enrichment analysis (gene ontology and pathways) included innate immune response, viral process, defense response to virus, Hematopoietic cell lineage and NF-kappa B signaling pathway. Our quantile filtered gene lists comprised of 978 genes each associated with influenza infection and vaccination. We also identified 907 and 48 genes with statistically significant (Bonferroni adjusted p < 0.05) disease-age and disease-sex interactions, respectively. Our meta-analysis approach highlights key gene signatures and their associated pathways for both influenza infection and vaccination. We also were able to identify genes with an age and sex effect. This gives potential for improving current vaccines and exploring genes that are expressed equally across ages when considering universal vaccinations for influenza.
Collapse
Affiliation(s)
- Lavida R K Rogers
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Gustavo de Los Campos
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States.,Department of Statistics and Probability, Michigan State University, East Lansing, MI, United States
| | - George I Mias
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States.,Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
143
|
Zhao W, Pan F, Wang B, Wang C, Sun Y, Zhang T, Shi Y, Zhang H. Epidemiology Characteristics of Streptococcus pneumoniae From Children With Pneumonia in Shanghai: A Retrospective Study. Front Cell Infect Microbiol 2019; 9:258. [PMID: 31380301 PMCID: PMC6657011 DOI: 10.3389/fcimb.2019.00258] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Streptococcus pneumoniae is the most common pathogen causing death in children under 5 years old. This retrospective surveillance aimed to analyze serotype distribution, drug resistance, virulence factors, and molecular characteristics of pneumonia isolates from children in Shanghai, China. Methods: A total of 287 clinical pneumococcal isolates were collected from January to December in 2018 and were divided into community-acquired pneumonia (CAP) and healthcare-associated pneumonia (HAP) two groups according to where someone contracts the infection. All isolates were serotyped by multiplex sequential PCR and antimicrobial susceptibility testing was performed using E-test or disk diffusion method. The molecular epidemiology was analyzed using multilocus sequence typing and seven housekeeping genes were sequenced to identified the sequence types (STs). In addition, we investigated the presence of virulence genes via PCR. Results: The most common serotypes were 19F, 6A, 19A, 23F, 14, and 6B, and the coverage rates of the 7-, 10- and 13-valent pneumococcal conjugate vaccines were 58.9, 58.9, and 80.5%, respectively. More PCV13/non-PCV7 serotypes and higher rate of penicillin non-susceptible S. pneumoniae were seen in HAP. Molecular epidemiological typing showed a high level of diversity and five international antibiotic-resistant clones were found, including Taiwan19F-14, Spain23F-1, Spain6B-2, Taiwan23F-15 and Sweden15A-25. No significant difference was observed in the presence of virulence genes among the isolates obtained from CAP and HAP. All of the S. pneumoniae isolates carried lytA, ply, psaA, pavA, spxB, htrA, and clpP, and the carriage rate of nanA and piaA were 96.2 and 99.0%. Conversely, cps2A, cbpA, and pspA were present in 33.8-44.3% of the isolates. Conclusions: Serotype changes and emerging multidrug-resistant international clones were found in current study. lytA, ply, psaA, pavA, spxB, htrA, and clpP may be good protein vaccine candidates. Long-term high-quality surveillance should be conducted to assess impact and effectiveness brought by vaccines, and provide a foundation for prevention strategies and vaccine policies.
Collapse
Affiliation(s)
- Wantong Zhao
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Fen Pan
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Bingjie Wang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Chun Wang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yan Sun
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Tiandong Zhang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yingying Shi
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
144
|
Feng S, Chen T, Lei G, Hou F, Jiang J, Huang Q, Peng Y, Ye C, Hu DL, Fang R. Absent in melanoma 2 inflammasome is required for host defence against Streptococcus pneumoniae infection. Innate Immun 2019; 25:412-419. [PMID: 31266383 PMCID: PMC6900643 DOI: 10.1177/1753425919860252] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Streptococcus pneumoniae, a leading cause of invasive
pneumococcal disease, is responsible for high mortality and morbidity worldwide.
A previous study showed that the NLR family pyrin domain containing 3 (NLRP3)
and absent in melanoma 2 (AIM2) inflammasomes are essential for caspase-1
activation and IL-1β production in the host response to S.
pneumoniae infection. The function of NLRP3 in host innate immunity
to S. pneumoniae was studied in vivo and
in vitro. However, the role of AIM2 in host defence against
S. pneumoniae remains unclear. Here, we show that
AIM2-deficient (AIM2–/–) mice display increased susceptibility to
intra-nasal infection with S. pneumoniae in comparison to wild
type mice and that this susceptibility was associated with defective IL-1β
production. Macrophages from AIM2–/– mice infected with S.
pneumoniae showed impaired secretion of IL-1β as well as activation
of the inflammasome, as determined by the oligomerisation of
apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1
activation. Taken together, these results indicate that the AIM2 inflammasome is
essential for caspase-1-dependent cytokine IL-1β production and eventual
protection from pneumococcal infection in mice.
Collapse
Affiliation(s)
- Siwei Feng
- 1 College of Animal Science and Technology, Southwest University, PR China
| | - Tingting Chen
- 1 College of Animal Science and Technology, Southwest University, PR China
| | - Guihua Lei
- 1 College of Animal Science and Technology, Southwest University, PR China
| | - Fengqing Hou
- 1 College of Animal Science and Technology, Southwest University, PR China
| | - Jiali Jiang
- 1 College of Animal Science and Technology, Southwest University, PR China
| | - Qingyuan Huang
- 1 College of Animal Science and Technology, Southwest University, PR China
| | - Yuanyi Peng
- 1 College of Animal Science and Technology, Southwest University, PR China
| | - Chao Ye
- 1 College of Animal Science and Technology, Southwest University, PR China
| | - Dong-Liang Hu
- 1 College of Animal Science and Technology, Southwest University, PR China.,2 Department of Zoonoses, Kitasato University School of Veterinary Medicine, Japan
| | - Rendong Fang
- 1 College of Animal Science and Technology, Southwest University, PR China
| |
Collapse
|
145
|
Miyachiro MM, Granato D, Trindade DM, Ebel C, Paes Leme AF, Dessen A. Complex Formation between Mur Enzymes from Streptococcus pneumoniae. Biochemistry 2019; 58:3314-3324. [DOI: 10.1021/acs.biochem.9b00277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Mayara M. Miyachiro
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, São Paulo, Brazil
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France
| | - Daniela Granato
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, São Paulo, Brazil
| | - Daniel Maragno Trindade
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, São Paulo, Brazil
| | - Christine Ebel
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France
| | | | - Andréa Dessen
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, São Paulo, Brazil
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France
| |
Collapse
|
146
|
Sader HS, Mendes RE, Le J, Denys G, Flamm RK, Jones RN. Antimicrobial Susceptibility of Streptococcus pneumoniae from North America, Europe, Latin America, and the Asia-Pacific Region: Results From 20 Years of the SENTRY Antimicrobial Surveillance Program (1997-2016). Open Forum Infect Dis 2019; 6:S14-S23. [PMID: 30895211 PMCID: PMC6419902 DOI: 10.1093/ofid/ofy263] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background The SENTRY Antimicrobial Surveillance Program monitors the frequency of occurrence and antimicrobial susceptibility of organisms from various infection types worldwide. In this investigation, we evaluated the antimicrobial susceptibility of Streptococcus pneumoniae isolates collected worldwide over 20 years (1997–2016). Methods A total of 65 993 isolates were consecutively collected (1 per infection episode) from North America (NA; n = 34 626; 2 nations), Europe (EUR; n = 19 123; 23 nations), the Asia-Pacific region (APAC; n = 7111; 10 nations), and Latin America (LATAM; n = 5133; 7 nations) and tested for susceptibility using reference broth microdilution methods. Resistant subgroups included multidrug-resistant (MDR; nonsusceptible to ≥3 classes of agents) and extensively drug-resistant (XDR; nonsusceptible to ≥5 classes). Results The isolates were collected primarily from respiratory tract infections (77.3%), and 25.4% were from pediatric patients. Penicillin susceptibility (≤0.06 mg/L) rates varied from 70.7% in EUR to 52.4% in APAC for all years combined. In NA, there was a slight improvement in susceptibility for the first few years of the program, from 66.5% in 1997–1998 to 69.4% in 1999–2000, followed by a decline until 2011–2012 (57.0%). Similar declines in penicillin susceptibility rates were observed in all regions, with the lowest rates of 67.3% in EUR (2011–2012), 41.6% in the APAC region (2007–2008), and 48.2% in LATAM (2013–2014). These declines were followed by improved susceptibility rates in all regions in later program years, with susceptibility rates of 55.6% to 71.8% in 2015–2016 (65.8% overall). Susceptibility rates to ceftriaxone, erythromycin, clindamycin, tetracycline, and trimethoprim-sulfamethoxazole followed a similar pattern, with a decrease in the first 12–14 years and a continued increase in the last 6–8 years of the program. MDR and XDR frequencies were highest in APAC (49.8% and 17.3% overall, respectively) and lowest in LATAM (10.8% and 1.9% overall, respectively). The most active agents for MDR/XDR isolates were ceftaroline (99.7%/99.1% susceptible), tigecycline (96.8%/95.9% susceptible), linezolid (100.0%/100.0% susceptible), and vancomycin (100.0%/100.0% susceptible). Conclusions S. pneumoniae susceptibility to many antibiotics increased in all regions in the last few years, and these increases may be related to PCV13 immunization, which was introduced in 2010.
Collapse
Affiliation(s)
| | | | - Jennifer Le
- Skaggs School of Pharmacy, University of California San Diego, San Diego, California
| | - Gerald Denys
- Indiana University School of Medicine, Indianapolis, Indiana
| | | | | |
Collapse
|
147
|
Huang J, Luo S, Huang M, Zhang T, Min Z, Liu C, Zhang Q, Yang J, Min X. Protection against fatal pneumonia through mucosal and subcutaneous immunization with the pneumococcal SP0148 protein. Microb Pathog 2019; 129:206-212. [PMID: 30772476 DOI: 10.1016/j.micpath.2019.02.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 12/14/2022]
Abstract
Streptococcus pneumoniae infection is associated with very high morbidity and mortality throughout the world. Vaccines are an effective measure for the reduction of S. pneumoniae infection. In particular, protein vaccines are attracting increasing attention because of their good immunogenicity and wide coverage of serotypes. Therefore, identifying effective protein vaccine targets is important for protein vaccine development. SP0148 is a promising protein vaccine target for S. pneumoniae and is capable of reducing S. pneumoniae colonization in the nasopharynx of mice through the IL-17A pathway. However, the protective effects of SP0148 in fatal pneumococcal infection have not been evaluated. This study used subcutaneous and nasal immunization routes to systematically evaluate the protective effects of the SP0148 protein in fatal pneumococcal infection. Subcutaneous and nasal mucosal immunization with recombinant SP0148 protein produced effective immune protection against infection with a lethal dose of S. pneumoniae and significantly prolonged survival time and increased the survival rate of mice. Furthermore, nasal immunization with SP0148 induced mouse splenocytes to secrete high levels of the cytokines IFN-γ and IL-17A. Both recombinant SP0148 protein and its antiserum inhibited the adhesion of S.pneumoniae D39 to A549 human lung epithelial cells in a dose-dependent manner. In summary, SP0148 induced mice to produce protective immune responses to fatal S. pneumoniae infection, and our results could contribute to the accumulating data on the use of SP0148 protein vaccines.
Collapse
Affiliation(s)
- Jian Huang
- Department of Laboratory Medicine, The First Affiliated Hospital, Zunyi Medical University, Zunyi, 563003, China
| | - Shilu Luo
- Department of Laboratory Medicine, The First Affiliated Hospital, Zunyi Medical University, Zunyi, 563003, China
| | - Meirong Huang
- Department of Blood Transfusion, The First Affiliated Hospital, Zunyi Medical University, Zunyi, 563003, China
| | - Tao Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital, Zunyi Medical University, Zunyi, 563003, China
| | - Zongsu Min
- Zunyi Maternal and Child Health Hospital, Zunyi, 563000, China
| | - Changjin Liu
- Department of Laboratory Medicine, The First Affiliated Hospital, Zunyi Medical University, Zunyi, 563003, China
| | - Qing Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital, Zunyi Medical University, Zunyi, 563003, China
| | - Jianru Yang
- Department of Laboratory Medicine, The First Affiliated Hospital, Zunyi Medical University, Zunyi, 563003, China
| | - Xun Min
- Department of Laboratory Medicine, The First Affiliated Hospital, Zunyi Medical University, Zunyi, 563003, China.
| |
Collapse
|
148
|
Milucky J, Carvalho MDG, Rouphael N, Bennett NM, Talbot HK, Harrison LH, Farley MM, Walston J, Pimenta F, Lessa FC. Streptococcus pneumoniae colonization after introduction of 13-valent pneumococcal conjugate vaccine for US adults 65 years of age and older, 2015-2016. Vaccine 2019; 37:1094-1100. [PMID: 30685247 PMCID: PMC6371770 DOI: 10.1016/j.vaccine.2018.12.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Vaccination of children with 13-valent pneumococcal conjugate vaccine (PCV13) led to declines in vaccine-type pneumococcal nasopharyngeal carriage among adults through indirect effects. In August 2014, PCV13 immunization of all U.S. adults ≥65 years of age was recommended. This study sought to define prevalence and serotype distribution of pneumococcal carriage among adults ≥65 years of age and to describe risk factors for colonization soon after introduction of PCV13 in adults. METHODS A cross-sectional survey of non-institutionalized U.S. adults ≥65 years of age was conducted in four states in 2015-2016. Demographic information, risk factors for disease, PCV13 vaccination history, and nasopharyngeal (NP) and oropharyngeal (OP) swabs were collected. NP and OP swabs were processed separately and pneumococcal isolates were serotyped by Quellung reaction. Antimicrobial susceptibility of pneumococcal isolates was performed. NP swabs also underwent real-time PCR for pneumococcal detection and serotyping. RESULTS Of 2989 participants, 45.3% (1354/2989) had been vaccinated with PCV13. Fifty-five (1.8%) carried pneumococcus (45 identified by culture and 10 by real-time PCR only) and PCV13 serotypes were found in eight (0.3%) participants. Almost half (22/45) of pneumococcal isolates were not susceptible to at least one of the antibiotics tested. Vaccine-type carriage among vaccinated and unvaccinated individuals was similar (0.2% vs. 0.1%, respectively). Respiratory symptoms were associated with higher odds of pneumococcal colonization (adjusted OR: 2.1; 95% CI = 1.1-3.8). CONCLUSIONS Pneumococcal carriage among non-institutionalized adults ≥65 years of age was very low. Less than 0.5% of both vaccinated and unvaccinated individuals in our study carried vaccine-type serotypes. Over a decade of PCV vaccination of children likely led to indirect effects in adults. However, given the low vaccine-type carriage rates we observed in an already high PCV13 adult coverage setting, it is difficult to attribute our findings to the direct versus indirect effects of PCV13 on adult carriage.
Collapse
Affiliation(s)
- Jennifer Milucky
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases, Atlanta, Georgia.
| | - Maria de Gloria Carvalho
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases, Atlanta, Georgia
| | - Nadine Rouphael
- Emory University School of Medicine, Department of Medicine, Atlanta, Georgia; Hope Clinic of the Emory Vaccine Center, Emory University, Decatur, Georgia
| | - Nancy M Bennett
- University of Rochester School of Medicine and Dentistry, Department of Medicine, Rochester, New York
| | - H Keipp Talbot
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lee H Harrison
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Monica M Farley
- Emory University School of Medicine, Department of Medicine, Atlanta, Georgia; Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Jeremy Walston
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine
| | - Fabiana Pimenta
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases, Atlanta, Georgia
| | - Fernanda C Lessa
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases, Atlanta, Georgia.
| |
Collapse
|
149
|
Shpagina LA, Kotova OS, Shpagin IS, Loktin EM, Rukavitsyna AA, Kuznetsova GV, Kamneva NV, Laletina MA. Efficacy of 13-valent pneumococcal conjugate vaccine in healthcare workers. TERAPEVT ARKH 2018. [DOI: 10.26442/terarkh201890114-61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aim. To establish the efficacy of 13-valent pneumococcal conjugate vaccine (PCV13) for healthcare workers protection from occupational acquired infection and impact of healthcare staff vaccination on the risk of transmission to patients. Materials and methods. Healthcare personnel (n=157 of whom 105 critical care department staff) and 1770 patients of that critical care department observed. Healthcare workers received PCV13. Infections caused by Str. pneumoniae, respiratory infections regardless of etiology, work absenteeism in healthcare workers during 12 month before and after vaccination assessed. In the same time monitoring of hospital-acquired infections in patients of critical care department performed. Statistical analysis was done using SPSS 24, relationships were assessed by rate ratio, Cox regression, logistic regression and Kaplan-Meier estimator. Results. Healthcare workers' vaccine coverage in critical care department was 97.2%. In healthcare personnel the rate of all pneumococcal infections, asymptomatic carriage of Str. pneumoniae and respiratory pneumococcal infections were decreased after vaccination by 2.1, 2.2 and 2.1 times accordingly. The rate of respiratory infections regardless of etiology was decreased by 30%, р
Collapse
|