101
|
Farhangi MA. Gut microbiota-dependent trimethylamine N-oxide and all-cause mortality: Findings from an updated systematic review and meta-analysis. Nutrition 2020; 78:110856. [DOI: 10.1016/j.nut.2020.110856] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/20/2020] [Accepted: 04/13/2020] [Indexed: 12/16/2022]
|
102
|
Glaucoma patients have an increased level of trimethylamine, a toxic product of gut bacteria, in the aqueous humor: a pilot study. Int Ophthalmol 2020; 41:341-347. [PMID: 32914277 PMCID: PMC7840632 DOI: 10.1007/s10792-020-01587-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/29/2020] [Indexed: 02/07/2023]
Abstract
Purpose Animal studies suggest that gut bacteria metabolites are involved in regulation of intraocular pressure or development of glaucoma. However, clinical data are lacking. Here, we wanted to compare level of trimethylamine (TMA), an uremic toxin produced by gut bacteria, along with betaine and trimethylamine N-oxide (TMAO), a substrate and a product of its metabolism, in the aqueous humor and in plasma of patients with glaucoma and their controls. Methods Twenty patients were selected for cataract phacoemulsification, and 20 patients selected for phacotrabeculectomy were enrolled in the study. Patients were matched with controls on systemic diseases and estimated glomerular filtration rate. Blood samples were collected in the preoperative suite, whereas aqueous humor samples were collected as the first step of both procedures. Subsequently, level of betaine, TMA and TMAO was analyzed by means of chromatography. Results In the aqueous humor, level of TMA, but not betaine or TMAO, was significantly higher in the phacotrabeculectomy group than in the phacoemulsification group. Plasma level of betaine, TMA and TMAO was similar between groups. In both groups, level of betaine and TMA, but not TMAO, was significantly higher in plasma than in the aqueous humor. Conclusion TMA, but not TMAO or betaine level, is increased in the aqueous humor of patients with glaucoma. TMA might play a role in pathogenesis of glaucoma; however, prospective studies are needed to confirm our findings.
Collapse
|
103
|
Sanchez-Morate E, Gimeno-Mallench L, Stromsnes K, Sanz-Ros J, Román-Domínguez A, Parejo-Pedrajas S, Inglés M, Olaso G, Gambini J, Mas-Bargues C. Relationship between Diet, Microbiota, and Healthy Aging. Biomedicines 2020; 8:E287. [PMID: 32823858 PMCID: PMC7460310 DOI: 10.3390/biomedicines8080287] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
Due to medical advances and lifestyle changes, population life expectancy has increased. For this reason, it is important to achieve healthy aging by reducing the risk factors causing damage and pathologies associated with age. Through nutrition, one of the pillars of health, we are able to modify these factors through modulation of the intestinal microbiota. The Mediterranean and Oriental diets are proof of this, as well as the components present in them, such as fiber and polyphenols. These generate beneficial effects on the body thanks, in part, to their interaction with intestinal bacteria. Likewise, the low consumption of products with high fat content favors the state of the microbiota, contributing to the maintenance of good health.
Collapse
Affiliation(s)
- Elisa Sanchez-Morate
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain; (E.S.-M.); (L.G.-M.); (K.S.); (J.S.-R.); (A.R.-D.); (S.P.-P.); (G.O.); (C.M.-B.)
| | - Lucia Gimeno-Mallench
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain; (E.S.-M.); (L.G.-M.); (K.S.); (J.S.-R.); (A.R.-D.); (S.P.-P.); (G.O.); (C.M.-B.)
- Department of Biomedical Sciences, Faculty of Health Sciences, Cardenal Herrera CEU University, 46115 Valencia, Spain
| | - Kristine Stromsnes
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain; (E.S.-M.); (L.G.-M.); (K.S.); (J.S.-R.); (A.R.-D.); (S.P.-P.); (G.O.); (C.M.-B.)
| | - Jorge Sanz-Ros
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain; (E.S.-M.); (L.G.-M.); (K.S.); (J.S.-R.); (A.R.-D.); (S.P.-P.); (G.O.); (C.M.-B.)
| | - Aurora Román-Domínguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain; (E.S.-M.); (L.G.-M.); (K.S.); (J.S.-R.); (A.R.-D.); (S.P.-P.); (G.O.); (C.M.-B.)
| | - Sergi Parejo-Pedrajas
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain; (E.S.-M.); (L.G.-M.); (K.S.); (J.S.-R.); (A.R.-D.); (S.P.-P.); (G.O.); (C.M.-B.)
| | - Marta Inglés
- Freshage Research Group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain;
| | - Gloria Olaso
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain; (E.S.-M.); (L.G.-M.); (K.S.); (J.S.-R.); (A.R.-D.); (S.P.-P.); (G.O.); (C.M.-B.)
| | - Juan Gambini
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain; (E.S.-M.); (L.G.-M.); (K.S.); (J.S.-R.); (A.R.-D.); (S.P.-P.); (G.O.); (C.M.-B.)
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010 Valencia, Spain; (E.S.-M.); (L.G.-M.); (K.S.); (J.S.-R.); (A.R.-D.); (S.P.-P.); (G.O.); (C.M.-B.)
| |
Collapse
|
104
|
Hsu CN, Chan JYH, Yu HR, Lee WC, Wu KLH, Chang-Chien GP, Lin S, Hou CY, Tain YL. Targeting on Gut Microbiota-Derived Metabolite Trimethylamine to Protect Adult Male Rat Offspring against Hypertension Programmed by Combined Maternal High-Fructose Intake and Dioxin Exposure. Int J Mol Sci 2020; 21:ijms21155488. [PMID: 32752013 PMCID: PMC7432895 DOI: 10.3390/ijms21155488] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota-dependent metabolites, in particular trimethylamine (TMA), are linked to hypertension. Maternal 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure or consumption of food high in fructose (HFR) can induce hypertension in adult offspring. We examined whether 3,3-maternal dimethyl-1-butanol (DMB, an inhibitor of TMA formation) therapy can protect adult offspring against hypertension arising from combined HFR and TCDD exposure. Pregnant Sprague-Dawley rats received regular chow or chow supplemented with fructose (60% diet by weight) throughout pregnancy and lactation. Additionally, the pregnant dams received TCDD (200 ng/kg BW orally) or a corn oil vehicle on days 14 and 21 of gestation, and days 7 and 14 after birth. Some mother rats received 1% DMB in their drinking water throughout pregnancy and lactation. Six groups of male offspring were studied (n = 8 for each group): regular chow (CV), high-fructose diet (HFR), regular diet+TCDD exposure (CT), HFR+TCDD exposure (HRT), high-fructose diet+DMB treatment (HRD), and HFR+TCDD+DMB treatment (HRTD). Our data showed that TCDD exacerbates HFR-induced elevation of blood pressure in male adult offspring, which was prevented by maternal DMB administration. We observed that different maternal insults induced distinct enterotypes in adult offspring. The beneficial effects of DMB are related to alterations of gut microbiota, the increase in nitric oxide (NO) bioavailability, the balance of the renin-angiotensin system, and antagonization of aryl hydrocarbon receptor (AHR) signaling. Our findings cast new light on the role of early intervention targeting of the gut microbiota-dependent metabolite TMA, which may allow us to prevent the development of hypertension programmed by maternal excessive fructose intake and environmental dioxin exposure.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Julie Y. H. Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (J.Y.H.C.); (K.L.H.W.)
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Wei-Chia Lee
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Kay L. H. Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (J.Y.H.C.); (K.L.H.W.)
| | - Guo-Ping Chang-Chien
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan; (G.-P.C.-C.); (S.L.)
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Sufan Lin
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan; (G.-P.C.-C.); (S.L.)
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - You-Lin Tain
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (J.Y.H.C.); (K.L.H.W.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Correspondence: ; Tel.: +886-975-056-995; Fax: +886-7733-8009
| |
Collapse
|
105
|
Chen L, Ishigami T, Doi H, Arakawa K, Tamura K. Gut microbiota and atherosclerosis: role of B cell for atherosclerosis focusing on the gut-immune-B2 cell axis. J Mol Med (Berl) 2020; 98:1235-1244. [PMID: 32737524 PMCID: PMC7447622 DOI: 10.1007/s00109-020-01936-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/13/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is the leading cause of cardiovascular mortality and morbidity worldwide and is described as a complex disease involving several different cell types and their molecular products. Recent studies have revealed that atherosclerosis arises from a systemic inflammatory process, including the accumulation and activities of various immune cells. However, the immune system is a complicated network made up of many cell types, hundreds of bioactive cytokines, and millions of different antigens, making it challenging to readily define the associated mechanism of atherosclerosis. Nevertheless, we previously reported a potential persistent inflammatory process underlying atherosclerosis development, centered on a pathological humoral immune response between commensal microbes and activated subpopulations of substantial B cells in the vicinity of the arterial adventitia. Accumulating evidence has indicated the importance of gut microbiota in atherosclerosis development. Commensal microbiota are considered important regulators of immunity and metabolism and also to be possible antigenic sources for atherosclerosis development. However, the interplay between gut microbiota and metabolism with regard to the modulation of atherosclerosis-associated immune responses remains poorly understood. Here, we review the mechanisms by which the gut microbiota may influence atherogenesis, with particular focus on humoral immunity and B cells, especially the gut-immune-B2 cell axis. Under high-fat and high-calorie conditions, signals driven by the intestinal microbiota via the TLR signaling pathway cause B2 cells in the spleen to become functionally active and activated B2 cells then modify responses such as antibody production (generation of active antibodies IgG and IgG3), thereby contributing to the development of atherosclerosis. On the other hand, intestinal microbiota also resulted in recruitment and ectopic activation of B2 cells via the TLR signaling pathway in perivascular adipose tissue (PVAT), and, subsequently, an increase in circulating IgG and IgG3 led to the enhanced disease development. This is a potential link between microbiota alterations and B cells in the context of atherosclerosis. ![]()
Collapse
Affiliation(s)
- Lin Chen
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan.,Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, Long Mian Avenue 109 Jiangning, Nanjing, Jiangsu, China
| | - Tomoaki Ishigami
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan.
| | - Hiroshi Doi
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
| | - Kentaro Arakawa
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
106
|
Kasper P, Martin A, Lang S, Kütting F, Goeser T, Demir M, Steffen HM. NAFLD and cardiovascular diseases: a clinical review. Clin Res Cardiol 2020; 110:921-937. [PMID: 32696080 PMCID: PMC8238775 DOI: 10.1007/s00392-020-01709-7] [Citation(s) in RCA: 337] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver DISEASE (NAFLD) is the most common chronic liver disease in Western countries and affects approximately 25% of the adult population. Since NAFLD is frequently associated with further metabolic comorbidities such as obesity, type 2 diabetes mellitus, or dyslipidemia, it is generally considered as the hepatic manifestation of the metabolic syndrome. In addition to its potential to cause liver-related morbidity and mortality, NAFLD is also associated with subclinical and clinical cardiovascular disease (CVD). Growing evidence indicates that patients with NAFLD are at substantial risk for the development of hypertension, coronary heart disease, cardiomyopathy, and cardiac arrhythmias, which clinically result in increased cardiovascular morbidity and mortality. The natural history of NAFLD is variable and the vast majority of patients will not progress from simple steatosis to fibrosis and end stage liver disease. However, patients with progressive forms of NAFLD, including non-alcoholic steatohepatitis (NASH) and/or advanced fibrosis, as well as NAFLD patients with concomitant types 2 diabetes are at highest risk for CVD. This review describes the underlying pathophysiological mechanisms linking NAFLD and CVD, discusses the role of NAFLD as a metabolic dysfunction associated cardiovascular risk factor, and focuses on common cardiovascular manifestations in NAFLD patients.
Collapse
Affiliation(s)
- Philipp Kasper
- Department of Gastroenterology and Hepatology, Faculty of Medicine, and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Anna Martin
- Department of Gastroenterology and Hepatology, Faculty of Medicine, and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Sonja Lang
- Department of Medicine, University of California, La Jolla, San Diego, USA
| | - Fabian Kütting
- Department of Gastroenterology and Hepatology, Faculty of Medicine, and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Tobias Goeser
- Department of Gastroenterology and Hepatology, Faculty of Medicine, and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Charité University Medicine, Campus Virchow Clinic, Berlin, Germany
| | - Hans-Michael Steffen
- Department of Gastroenterology and Hepatology, Faculty of Medicine, and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany. .,Hypertension Center, Faculty of Medicine, and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
107
|
Nutrition and Gastrointestinal Microbiota, Microbial-Derived Secondary Bile Acids, and Cardiovascular Disease. Curr Atheroscler Rep 2020; 22:47. [PMID: 32681421 DOI: 10.1007/s11883-020-00863-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The goal is to review the connection between gut microbiota and cardiovascular disease, with specific emphasis on bile acids, and the influence of diet in modulating this relationship. RECENT FINDINGS Bile acids exert a much broader range of biological functions than initially recognized, including regulation of cardiovascular function through direct and indirect mechanisms. There is a bi-directional relationship between gut microbiota modulation of bile acid-signaling properties, and their effects on gut microbiota composition. Evidence, primarily from rodent models and limited human trials, suggest that dietary modulation of the gut microbiome significantly impacts bile acid metabolism and subsequently host physiological response(s). Available evidence suggests that the link between diet, gut microbiota, and CVD risk is potentially mediated via bile acid effects on diverse metabolic pathways. However, further studies are needed to confirm/expand and translate these findings in a clinical setting.
Collapse
|
108
|
Luz PLD, Haas EA, Favarato D. Intestinal Microbiota and Cardiovascular Diseases. INTERNATIONAL JOURNAL OF CARDIOVASCULAR SCIENCES 2020. [DOI: 10.36660/ijcs.20200043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
109
|
Büttner P, Okun JG, Hauke J, Holzwirth E, Obradovic D, Hindricks G, Thiele H, Kornej J. Trimethylamine N-oxide in atrial fibrillation progression. IJC HEART & VASCULATURE 2020; 29:100554. [PMID: 32885030 PMCID: PMC7452421 DOI: 10.1016/j.ijcha.2020.100554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/12/2020] [Accepted: 05/31/2020] [Indexed: 02/03/2023]
Abstract
The human gut microbiome and its metabolite Trimethylamine N-oxide (TMAO) are sensitive to the human diet and are involved in the complex pathomechanisms that underpin diabetes, obesity, and cardiovascular diseases. A potential involvement of increased TMAO in atrial fibrillation (AF) manifestation and progression is not clear. We measured TMAO in peripheral blood of 45 AF patients and 20 non-AF individuals (matched for age, sex, BMI, prevalence of hypertension and diabetes). TMAO levels in AF (median [IQR] 3.5 µM [2.51–4.53]) were comparable with those in non-AF individuals (3.62 µM [2.49–5.46]) (p = 0.629). There was no association between TMAO and AF progression phenotypes (p = 0.588). In 35 AF patients, TMAO was additionally measured 12–18 months after AF catheter ablation. TMAO levels at baseline and follow-up were correlated (r = 0.481, p = 0.003), and TMAO was increased independent from the success (restoration of sinus rhythm) of the ablation procedure. The data of this pilot study indicate that TMAO is not generally higher in AF and is not associated with AF progression phenotypes. The observed TMAO increase 12–18 months after AF catheter ablation needs further investigation in a larger cohort.
Collapse
Affiliation(s)
- Petra Büttner
- Heart Center Leipzig at University Leipzig, Department of Cardiology, Leipzig 04289, Germany
| | - Jürgen G Okun
- University Children's Hospital Heidelberg, Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Heidelberg, Germany
| | - Jana Hauke
- University Children's Hospital Heidelberg, Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Heidelberg, Germany
| | - Erik Holzwirth
- Heart Center Leipzig at University Leipzig, Department of Cardiology, Leipzig 04289, Germany
| | - Danilo Obradovic
- Heart Center Leipzig at University Leipzig, Department of Cardiology, Leipzig 04289, Germany
| | - Gerhard Hindricks
- Heart Center Leipzig at University Leipzig, Department of Electrophysiology, Leipzig 04289, Germany
| | - Holger Thiele
- Heart Center Leipzig at University Leipzig, Department of Cardiology, Leipzig 04289, Germany
| | - Jelena Kornej
- Boston University, School of Medicine - Cardiovascular Medicine, Boston, USA
| |
Collapse
|
110
|
Piscitelli F, Silvestri C. Role of the Endocannabinoidome in Human and Mouse Atherosclerosis. Curr Pharm Des 2020; 25:3147-3164. [PMID: 31448709 DOI: 10.2174/1381612825666190826162735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022]
Abstract
The Endocannabinoid (eCB) system and its role in many physiological and pathological conditions is well described and accepted, and includes cardiovascular disorders. However, the eCB system has been expanded to an "-ome"; the endocannabinoidome (eCBome) that includes endocannabinoid-related mediators, their protein targets and metabolic enzymes, many of which significantly impact upon cardiometabolic health. These recent discoveries are here summarized with a special focus on their potential involvement in atherosclerosis. We described the role of classical components of the eCB system (eCBs, CB1 and CB2 receptors) and eCB-related lipids, their regulatory enzymes and molecular targets in atherosclerosis. Furthermore, since increasing evidence points to significant cross-talk between the eCBome and the gut microbiome and the gut microbiome and atherosclerosis, we explore the possibility that a gut microbiome - eCBome axis has potential implications in atherosclerosis.
Collapse
Affiliation(s)
- Fabiana Piscitelli
- Institute of Biomolecular Chemistry, National Council of Research, Pozzuoli (NA), Italy
| | - Cristoforo Silvestri
- Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), 2725 Chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada.,Department of Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| |
Collapse
|
111
|
Li H, Zhang X, Pan D, Liu Y, Yan X, Tang Y, Tao M, Gong L, Zhang T, Woods CR, Du Y, Gao R, Qin H. Dysbiosis characteristics of gut microbiota in cerebral infarction patients. Transl Neurosci 2020; 11:124-133. [PMID: 33312718 PMCID: PMC7706127 DOI: 10.1515/tnsci-2020-0117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The aim of this study is to investigate the dysbiosis characteristics of gut microbiota in patients with cerebral infarction (CI) and its clinical implications. METHODS Stool samples were collected from 79 CI patients and 98 healthy controls and subjected to 16S rRNA sequencing to identify stool microbes. Altered compositions and functions of gut microbiota in CI and its correlation with clinical features were investigated. Random forest and receiver operating characteristic analysis were used to develop a diagnostic model. RESULTS Microbiota diversity and structure between CI patients and healthy controls were overall similar. However, butyrate-producing bacteria (BPB) were significantly reduced in CI patients, while lactic acid bacteria (LAB) were increased. Genetically, BPB-related functional genes were reduced in CI patients, whereas LAB-related genes were enhanced. The interbacterial correlations among BPB in CI patients were less prominent than those in healthy controls. Clinically, BPB was negatively associated with the National Institutes of Health Stroke Scale (NIHSS), while LAB was positively correlated with NIHSS. Both BPB and LAB played leading roles in the diagnostic model based on 47 bacteria. CONCLUSIONS The abundance and functions of BPB in CI patients were significantly decreased, while LAB were increased. Both BPB and LAB displayed promising potential in the assessment and diagnosis of CI.
Collapse
Affiliation(s)
- Hao Li
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiaohui Zhang
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, 200072, China
| | - Dengdeng Pan
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yongqiang Liu
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xuebing Yan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Yihan Tang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Mingyang Tao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Li Gong
- Department of Neurology, Shanghai Tenth People's Hospital, Shanghai, 200072, China
| | - Ting Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, United States of America
| | - Christian Rutan Woods
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, United States of America
| | - Yong Du
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, United States of America
| | - Renyuan Gao
- Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, 200072, China
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Huanlong Qin
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, 200072, China
| |
Collapse
|
112
|
Deng Q, Li XX, Fang Y, Chen X, Xue J. Therapeutic Potential of Quercetin as an Antiatherosclerotic Agent in Atherosclerotic Cardiovascular Disease: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:5926381. [PMID: 32565865 PMCID: PMC7292974 DOI: 10.1155/2020/5926381] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/31/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is one of the diseases with the highest morbidity and mortality globally. It causes a huge burden on families and caregivers and high costs for medicine and surgical interventions. Given expensive surgeries and failures of most conventional treatments, medical community tries to find a more cost-effective cure. Thus, attentions have been primarily focused on food or herbs. Quercetin (Qu) extracted from food, a flavonoid component, develops potentials of alternative or complementary medicine in atherosclerosis. Due to the wide range of health benefits, researchers have considered to apply Qu as a natural compound in therapy. This review is aimed to identify the antiatherosclerosis functions of Qu in treating ASCVD such as anti-inflammatory, antioxidant properties, effects on endothelium-dependent vasodilation, and blood lipid-lowering.
Collapse
Affiliation(s)
- Qian Deng
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Xue Li
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanting Fang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Chen
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingui Xue
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
113
|
Sivamaruthi BS, Fern LA, Rashidah Pg Hj Ismail DSN, Chaiyasut C. The influence of probiotics on bile acids in diseases and aging. Biomed Pharmacother 2020; 128:110310. [PMID: 32504921 DOI: 10.1016/j.biopha.2020.110310] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Recent evidence indicates the use of probiotics in the prevention and treatment of diseases. Probiotics are capable of changing the gut microbiota composition and bile acid synthesis to elicit health benefits such as cholesterol-lowering, weight reduction, and improving insulin sensitivity. The aging population is prone to develop diseases because of their decreased physiological and biological systems. Probiotics are one of the promising supplements that may potentially counteract these detrimental effects. This review will discuss the influence of probiotics on bile acids in different populations-the elderly, obese individuals, and those with hypercholesterolemia, type 2 diabetes, hypertension, and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Lim Ai Fern
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link BE1410, Brunei
| | | | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
114
|
Watson AMD, Gould EAM, Moody SC, Sivakumaran P, Sourris KC, Chow BSM, Koïtka-Weber A, Allen TJ, Jandeleit-Dahm KAM, Cooper ME, Calkin AC. Disparate Effects of Diabetes and Hyperlipidemia on Experimental Kidney Disease. Front Physiol 2020; 11:518. [PMID: 32581831 PMCID: PMC7283908 DOI: 10.3389/fphys.2020.00518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/27/2020] [Indexed: 12/21/2022] Open
Abstract
It is well established that diabetes is the major cause of chronic kidney disease worldwide. Both hyperglycemia, and more recently, advanced glycation endproducts, have been shown to play critical roles in the development of kidney disease. Moreover, the renin-angiotensin system along with growth factors and cytokines have also been shown to contribute to the onset and progression of diabetic kidney disease; however, the role of lipids in this context is poorly characterized. The current study aimed to compare the effect of 20 weeks of streptozotocin-induced diabetes or western diet feeding on kidney disease in two different mouse strains, C57BL/6 mice and hyperlipidemic apolipoprotein (apo) E knockout (KO) mice. Mice were fed a chow diet (control), a western diet (21% fat, 0.15% cholesterol) or were induced with streptozotocin-diabetes (55 mg/kg/day for 5 days) then fed a chow diet and followed for 20 weeks. The induction of diabetes was associated with a 3-fold elevation in glycated hemoglobin and an increase in kidney to body weight ratio regardless of strain (p < 0.0001). ApoE deficiency significantly increased plasma cholesterol and triglyceride levels and feeding of a western diet exacerbated these effects. Despite this, urinary albumin excretion (UAE) was elevated in diabetic mice to a similar extent in both strains (p < 0.0001) but no effect was seen with a western diet in either strain. Diabetes was also associated with extracellular matrix accumulation in both strains, and western diet feeding to a lesser extent in apoE KO mice. Consistent with this, an increase in renal mRNA expression of the fibrotic marker, fibronectin, was observed in diabetic C57BL/6 mice (p < 0.0001). In summary, these studies demonstrate disparate effects of diabetes and hyperlipidemia on kidney injury, with features of the diabetic milieu other than lipids suggested to play a more prominent role in driving renal pathology.
Collapse
Affiliation(s)
- Anna M D Watson
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | - Sarah C Moody
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | - Karly C Sourris
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Bryna S M Chow
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | | | - Terri J Allen
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Karin A M Jandeleit-Dahm
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,German Diabetes Centre (DDZ), Leibniz Centre for Diabetes Research at Heinrich Heine, University Dusseldorf, Dusseldorf, Germany
| | - Mark E Cooper
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Anna C Calkin
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|
115
|
Ma J, Sheng L, Hong Y, Xi C, Gu Y, Zheng N, Li M, Chen L, Wu G, Li Y, Yan J, Han R, Li B, Qiu H, Zhong J, Jia W, Li H. Variations of Gut Microbiome Profile Under Different Storage Conditions and Preservation Periods: A Multi-Dimensional Evaluation. Front Microbiol 2020; 11:972. [PMID: 32536906 PMCID: PMC7267014 DOI: 10.3389/fmicb.2020.00972] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
Gut dysbiosis is heavily involved in the development of various human diseases. There are thousands of publications per year for investigating the role of gut microbiota in diseases. However, emerging evidence has indicated the frequent data inconsistency between different studies, which is largely overlooked. There are many factors that can cause data variation and inconsistency during the process of microbiota study, in particular, sample storage conditions and sequencing process. Here, we systemically evaluated the impacts of six fecal sample storage conditions (three non-commercial storage protocols, −80°C, −80°C with 70% ethanol (ET_−80°C), 4°C with 70% ethanol (ET_4°C), and three commercial storage reagents, OMNIgeneGUT OMR-200 (GT) and MGIEasy (MGIE) at room temperature, and Longsee at 4°C (LS) on gut microbiome profile based on 16S rRNA gene sequencing. In addition, we also investigated the impacts of storage periods (1 and 2 weeks, or 6 months) and sequencing platform on microbiome profile. The efficacy of storage conditions was evaluated by DNA yield and quality, α and β diversity, relative abundance of the dominant and functional bacteria associated with short-chain fatty acid (SCFA) production, and BAs metabolism. Our current study suggested that −80°C was acceptable for fecal sample storage, and the addition of 70% ethanol had some benefits in maintaining the microbial community structure. Meanwhile, we found that samples in ET_4°C and GT reagents were comparable, both of them introduced some biases in α or β diversity, and the relative abundance of functional bacteria. Samples stored in MGIE reagent resulted in the least variation, whereas the most obvious variations were introduced by LS reagents. In addition, our results indicated that variations caused by storage condition were larger than that of storage time and sequencing platform. Collectively, our study provided a multi-dimensional evaluation on the impacts of storage conditions, storage time periods, and sequencing platform on gut microbial profile.
Collapse
Affiliation(s)
- Junli Ma
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Sheng
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Hong
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chuchu Xi
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Gu
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ningning Zheng
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengci Li
- Shanghai Key Laboratory of Diabetes Mellitus, Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Linlin Chen
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gaosong Wu
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Li
- Department of Endocrinology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Juan Yan
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruiting Han
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bingbing Li
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huihui Qiu
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhong
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Wei Jia
- Shanghai Key Laboratory of Diabetes Mellitus, Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,University of Hawaii Cancer Center, University of Hawai'i at Manoa, Honolulu, HI, United States
| | - Houkai Li
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
116
|
Thomaz FS, Altemani F, Panchal SK, Worrall S, Dekker Nitert M. The influence of wasabi on the gut microbiota of high-carbohydrate, high-fat diet-induced hypertensive Wistar rats. J Hum Hypertens 2020; 35:170-180. [PMID: 32457512 DOI: 10.1038/s41371-020-0359-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/20/2022]
Abstract
The human gut microbiota plays a critical role in the regulation of adiposity, obesity and metabolic and cardiovascular disease. Wasabi is a pungent spice and its active component, allyl isothiocyanate, improves plasma triacylglycerol, cholesterol and high blood pressure in rodents, but it is unclear if this occurs through alterations to the composition of the microbiota. The aim of this study was to determine the effectiveness of Wasabi japonica stem and rhizome blend on ameliorating cardiovascular disease parameters including plasma sodium concentration, systolic blood pressure (SBP), plasma endothelin-1 and angiotensin II concentrations by altering the gut microbiota in a Wistar rat model of obesity and metabolic syndrome. Rats were randomized to receive a corn starch or high-carbohydrate/high-fat diet for 8 weeks before being allocated to supplementation with wasabi powder (5% (w/w) in food) or not for an additional 8 weeks. At the end of the trial, rats were grouped according to blood pressure status. Wasabi supplementation prevented the development of hypertension and was also associated with significantly increased abundance of Allobaculum, Sutterella, Uncl. S247, Uncl. Coriobacteriaceae and Bifidobacterium. Hypertension was positively correlated with higher abundance of Oscillospira, Uncl. Lachnospiraceae and Uncl. Clostridiales, Uncl. Bacteroidales and Butyricimonas. Oscillospira and Butyricimonas abundances were specifically positively correlated with systolic blood pressure. Overall, the improved host cardiovascular health in diet-induced obese rats supplemented with wasabi powder may involve changes to the gut microbiota composition.
Collapse
Affiliation(s)
- Fernanda S Thomaz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.,Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Faisal Altemani
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sunil K Panchal
- Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Simon Worrall
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Marloes Dekker Nitert
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
117
|
Chi ZC. Relationship between non-alcoholic fatty liver disease and cardiovascular disease. Shijie Huaren Xiaohua Zazhi 2020; 28:313-329. [DOI: 10.11569/wcjd.v28.i9.313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
With the in-depth study of non-alcoholic fatty liver disease (NAFLD), it has been found in recent years that NAFLD is closely related to cardiovascular disease (CVD). It has been proved that NAFLD is not only an important risk factor for CVD, but it is also an important mechanism of atherosclerosis, coronary heart disease, and hypertension in young people. This article reviews the recent progress in the understanding of the relationship between NAFLD and CVD, with an aim to improve the knowledge of CVD physicians on liver disease and provide reference for prevention and treatment of these conditions.
Collapse
Affiliation(s)
- Zhao-Chun Chi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China
| |
Collapse
|
118
|
Kolluru GK, Kevil CG. It's a "Gut Feeling": Association of Microbiota, Trimethylamine N-Oxide and Cardiovascular Outcomes. J Am Heart Assoc 2020; 9:e016553. [PMID: 32366196 PMCID: PMC7660890 DOI: 10.1161/jaha.120.016553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Gopi K Kolluru
- Department of Pathology and Translational Pathobiology Louisiana State University Health Sciences Center at Shreveport LA
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology Louisiana State University Health Sciences Center at Shreveport LA
| |
Collapse
|
119
|
Huo W, Feng Z, Hu S, Cui L, Qiao T, Dai L, Qi P, Zhang L, Liu Y, Li J. Effects of polysaccharides from wild morels on immune response and gut microbiota composition in non-treated and cyclophosphamide-treated mice. Food Funct 2020; 11:4291-4303. [PMID: 32356856 DOI: 10.1039/d0fo00597e] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polysaccharides isolated from mushrooms have been identified as potential prebiotics that could impact gut microbiota. In this study, a water-soluble polysaccharide (MP) extracted from wild morels was evaluated for its effects on the gut microbiota of non-treated and cyclophosphamide (CP)-treated mice. The results showed that MP restored the spleen weight and increased the counts of white blood cells and lymphocytes in the peripheral blood and spleen of the CP-treated mice. Mice treated with MP exhibited increased levels of short-chain fatty acid (SCFA)-producing bacteria, especially Lachnospiraceae, compared to normal mice, and increased levels of Bacteroidetes and SCFA-producing bacteria, especially Ruminococcaceae, compared to the CP-treated mice. Moreover, MP treatment increased the production of valeric acid and decreased the production of acetic acid in the non-treated mice and increased the production of acetic acid, propionic acid, butyric acid, and valeric acid in the CP-treated mice. These results show that MP is potentially good for health.
Collapse
Affiliation(s)
- Wenyan Huo
- Fungal Research Center, Shaanxi Provincial Institute of Microbiology, Xi'an 710043, Shaanxi, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Tsvetikova SA, Koshel EI. Microbiota and cancer: host cellular mechanisms activated by gut microbial metabolites. Int J Med Microbiol 2020; 310:151425. [PMID: 32423739 DOI: 10.1016/j.ijmm.2020.151425] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 03/25/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022] Open
|
121
|
Mok SWF, Wong VKW, Lo HH, de Seabra Rodrigues Dias IR, Leung ELH, Law BYK, Liu L. Natural products-based polypharmacological modulation of the peripheral immune system for the treatment of neuropsychiatric disorders. Pharmacol Ther 2020; 208:107480. [DOI: 10.1016/j.pharmthera.2020.107480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/31/2019] [Indexed: 02/06/2023]
|
122
|
Abstract
Atrial fibrillation has been identified to be associated with disordered gut microbiota. Notably, atrial fibrillation is a progressive disease and could be categorized as paroxysmal and persistent based on the duration of the episodes. The persistent atrial fibrillation patients are accompanied by higher risk of stroke and lower success rate of rhythm control. However, the microbial signatures of different categories of atrial fibrillation patients remain unknown. We sought to determine whether disordered gut microbiota occurs in the self-terminating PAF or intestinal flora develops dynamically during atrial fibrillation progression. We found that different types of atrial fibrillation show a limited degree of gut microbiota shift. Gut microbiota dysbiosis has already occurred in mild stages of atrial fibrillation, which might act as an early modulator of disease, and therefore may be regarded as a potential target to postpone atrial fibrillation progression. Dysbiotic gut microbiota (GM) and disordered metabolic patterns are known to be involved in the clinical expression of atrial fibrillation (AF). However, little evidence has been reported in characterizing the specific changes in fecal microbiota in paroxysmal AF (PAF) and persistent AF (psAF). To provide a comprehensive understanding of GM dysbiosis in AF types, we assessed the GM signatures of 30 PAF patients, 20 psAF patients, and 50 non-AF controls based on metagenomic and metabolomic analyses. Compared with control subjects, similar changes of GM were identified in PAF and psAF patients, with elevated microbial diversity and similar alteration in the microbiota composition. PAF and psAF patients shared the majority of differential taxa compared with non-AF controls. Moreover, the similarity was also illuminated in microbial function and associated metabolic alterations. Additionally, minor disparity was observed in PAF compared with psAF. Several distinctive taxa between PAF and psAF were correlated with certain metabolites and atrial diameter, which might play a role in the pathogenesis of atrial remodeling. Our findings characterized the presence of many common features in GM shared by PAF and psAF, which occurred at the self-terminating PAF. Preventative and therapeutic measures targeting GM for early intervention to postpone the progression of AF are highly warranted. IMPORTANCE Atrial fibrillation has been identified to be associated with disordered gut microbiota. Notably, atrial fibrillation is a progressive disease and could be categorized as paroxysmal and persistent based on the duration of the episodes. The persistent atrial fibrillation patients are accompanied by higher risk of stroke and lower success rate of rhythm control. However, the microbial signatures of different categories of atrial fibrillation patients remain unknown. We sought to determine whether disordered gut microbiota occurs in the self-terminating PAF or intestinal flora develops dynamically during atrial fibrillation progression. We found that different types of atrial fibrillation show a limited degree of gut microbiota shift. Gut microbiota dysbiosis has already occurred in mild stages of atrial fibrillation, which might act as an early modulator of disease, and therefore may be regarded as a potential target to postpone atrial fibrillation progression.
Collapse
|
123
|
Wu M, Yang S, Wang S, Cao Y, Zhao R, Li X, Xing Y, Liu L. Effect of Berberine on Atherosclerosis and Gut Microbiota Modulation and Their Correlation in High-Fat Diet-Fed ApoE-/- Mice. Front Pharmacol 2020; 11:223. [PMID: 32231564 PMCID: PMC7083141 DOI: 10.3389/fphar.2020.00223] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis and its associated cardiovascular diseases (CVDs) are serious threats to human health and have been reported to be associated with the gut microbiota. Recently, the role of berberine (BBR) in atherosclerosis and gut microbiota has begun to be appreciated. The purposes of this study were to observe the effects of high or low doses of BBR on atherosclerosis and gut microbiota modulation, and to explore their correlation in ApoE-/- mice fed a high-fat diet. A significant decrease in atherosclerotic lesions was observed after treatment with BBR, with the effect of the high dose being more obvious. Both BBR treatments significantly reduced total cholesterol, APOB100, and very low-density lipoprotein cholesterol levels but levels of high/low-density lipoprotein cholesterol and lipoprotein (a) were only reduced by high-dose BBR. Decreased pro-inflammatory cytokines tumor necrosis factor-alpha, interleukin (IL)-1β, IL-6 and increased anti-inflammatory IL-10 and adiponectin levels were observed in the high-dose BBR group, but no decrease in IL-6 or increase in IL-10 was evident using the low-dose of BBR. 16S rRNA sequencing showed that BBR significantly altered the community compositional structure of gut microbiota. Specifically, BBR enriched the abundance of Roseburia, Blautia, Allobaculum, Alistipes, and Turicibacter, and changed the abundance of Bilophila. These microbiota displayed good anti-inflammatory effects related to the production of short-chain fatty acids (SCFAs) and were related to glucolipid metabolism. Alistipes and Roseburia were significantly enriched in high-dose BBR group while Blautia and Allobaculum were more enriched in low-dose, and Turicibacter was enriched in both BBR doses. Metagenomic analysis further showed an elevated potential for lipid and glycan metabolism and synthesis of SCFAs, as well as reduced potential of TMAO production after BBR treatment. The findings demonstrate that both high and low-dose BBR can improve serum lipid and systemic inflammation levels, and alleviate atherosclerosis induced by high-fat diet in ApoE-/- mice. The effects are more pronounced for the high dose. This anti-atherosclerotic effect of BBR may be partly attributed to changes in composition and functions of gut microbiota which may be associated with anti-inflammatory and metabolism of glucose and lipid. Notably, gut microbiota alterations showed different sensitivity to BBR dose.
Collapse
Affiliation(s)
- Min Wu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Songzi Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Cao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Zhao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Xinye Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Yanwei Xing
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
124
|
Teichman EM, O'Riordan KJ, Gahan CGM, Dinan TG, Cryan JF. When Rhythms Meet the Blues: Circadian Interactions with the Microbiota-Gut-Brain Axis. Cell Metab 2020; 31:448-471. [PMID: 32130879 DOI: 10.1016/j.cmet.2020.02.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/18/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022]
Abstract
The microbiota-gut-brain axis encompasses a bidirectional mode of communication between the microorganisms residing in our gut, and our brain function and behavior. The composition of the gut microbiota is subject to diurnal variation and is entrained by host circadian rhythms. In turn, a diverse microbiota is essential for optimal regulation of host circadian pathways. Disruption of the cyclical nature of this microbe-host interaction profoundly influences disease pathology and severity. This review aims to summarize current knowledge on this bidirectional relationship. Indeed, the past few years have revealed promising data regarding the relationship between the microbiota-gut-brain axis and circadian rhythms and how they act in concert to influence disease, but further research needs to be done to examine how they coalesce to modulate severity of, and risk for, certain diseases. Moreover, there is a need for a greater understanding of the molecular mechanisms underlying the close relationship between circadian-microbiome-brain interactions.
Collapse
Affiliation(s)
| | | | - Cormac G M Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; School of Microbiology, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
125
|
Lechner K, von Schacky C, McKenzie AL, Worm N, Nixdorff U, Lechner B, Kränkel N, Halle M, Krauss RM, Scherr J. Lifestyle factors and high-risk atherosclerosis: Pathways and mechanisms beyond traditional risk factors. Eur J Prev Cardiol 2020; 27:394-406. [PMID: 31408370 PMCID: PMC7065445 DOI: 10.1177/2047487319869400] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/23/2019] [Indexed: 12/21/2022]
Abstract
Despite major efforts to reduce atherosclerotic cardiovascular disease (ASCVD) burden with conventional risk factor control, significant residual risk remains. Recent evidence on non-traditional determinants of cardiometabolic health has advanced our understanding of lifestyle-disease interactions. Chronic exposure to environmental stressors like poor diet quality, sedentarism, ambient air pollution and noise, sleep deprivation and psychosocial stress affect numerous traditional and non-traditional intermediary pathways related to ASCVD. These include body composition, cardiorespiratory fitness, muscle strength and functionality and the intestinal microbiome, which are increasingly recognized as major determinants of cardiovascular health. Evidence points to partially overlapping mechanisms, including effects on inflammatory and nutrient sensing pathways, endocrine signalling, autonomic function and autophagy. Of particular relevance is the potential of low-risk lifestyle factors to impact on plaque vulnerability through altered adipose tissue and skeletal muscle phenotype and secretome. Collectively, low-risk lifestyle factors cause a set of phenotypic adaptations shifting tissue cross-talk from a proinflammatory milieu conducive for high-risk atherosclerosis to an anti-atherogenic milieu. The ketone body ß-hydroxybutyrate, through inhibition of the NLRP-3 inflammasome, is likely to be an intermediary for many of these observed benefits. Adhering to low-risk lifestyle factors adds to the prognostic value of optimal risk factor management, and benefit occurs even when the impact on conventional risk markers is discouragingly minimal or not present. The aims of this review are (a) to discuss novel lifestyle risk factors and their underlying biochemical principles and (b) to provide new perspectives on potentially more feasible recommendations to improve long-term adherence to low-risk lifestyle factors.
Collapse
Affiliation(s)
- Katharina Lechner
- Technical University of Munich, School of Medicine, Department of Prevention, Rehabilitation and Sports Medicine, Germany
| | - Clemens von Schacky
- Preventive Cardiology, Ludwig-Maximilians University, Munich, Germany
- Omegametrix, Martinsried, Germany
| | | | - Nicolai Worm
- German University for Prevention and Health Care Management, Saarbrücken, Germany
| | - Uwe Nixdorff
- European Prevention Centre, Medical Centre Düsseldorf (Grand Arc), Germany
| | - Benjamin Lechner
- Department of Internal Medicine IV, Ludwig-Maximilians University, Munich, Germany
| | - Nicolle Kränkel
- Charité – Universitätsmedizin Berlin, Klinik für Kardiologie, Campus Benjamin Steglitz, Berlin, Germany
| | - Martin Halle
- Technical University of Munich, School of Medicine, Department of Prevention, Rehabilitation and Sports Medicine, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Germany
| | | | - Johannes Scherr
- Technical University of Munich, School of Medicine, Department of Prevention, Rehabilitation and Sports Medicine, Germany
- University Centre for Prevention and Sports Medicine, Balgrist University Hospital, University of Zurich, Switzerland
| |
Collapse
|
126
|
Kwaifa IK, Bahari H, Yong YK, Noor SM. Endothelial Dysfunction in Obesity-Induced Inflammation: Molecular Mechanisms and Clinical Implications. Biomolecules 2020; 10:biom10020291. [PMID: 32069832 PMCID: PMC7072669 DOI: 10.3390/biom10020291] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/21/2022] Open
Abstract
Obesity is characterized by the excessive deposition of fat that may interfere with the normal metabolic process of the body. It is a chronic condition associated with various metabolic syndromes, whose prevalence is grossly increasing, and affects both children and adults. Accumulation of excessive macronutrients on the adipose tissues promotes the secretion and release of inflammatory mediators, including interleukin-6 (IL-6), interleukin 1β, tumor necrotic factor-α (TNF-α), leptin, and stimulation of monocyte chemoattractant protein-1 (MCP-1), which subsequently reduce the production of adiponectin thereby initiating a proinflammatory state. During obesity, adipose tissue synthesizes and releases a large number of hormones and cytokines that alter the metabolic processes, with a profound influence on endothelial dysfunction, a situation associated with the formation of atherosclerotic plaque. Endothelial cells respond to inflammation and stimulation of MCP-1, which is described as the activation of adhesion molecules leading to proliferation and transmigration of leukocytes, which facilitates their increase in atherogenic and thromboembolic potentials. Endothelial dysfunction forms the cornerstone of this discussion, as it has been considered as the initiator in the progression of cardiovascular diseases in obesity. Overexpression of proinflammatory cytokines with subsequent reduction of anti-inflammatory markers in obesity, is considered to be the link between obesity-induced inflammation and endothelial dysfunction. Inhibition of inflammatory mechanisms and management and control of obesity can assist in reducing the risks associated with cardiovascular complications.
Collapse
Affiliation(s)
- Ibrahim Kalle Kwaifa
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Selangor 43400, Malaysia;
- Department of Haematology, School of Medical Laboratory Sciences, College of Health Sciences, Usmanu Danfodiyo University (UDU), Sokoto, North-Western 2346, Nigeria
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Selangor 43400, Malaysia; (H.B.); (Y.K.Y.)
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Selangor 43400, Malaysia; (H.B.); (Y.K.Y.)
| | - Sabariah Md Noor
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Selangor 43400, Malaysia;
- Correspondence: ; Tel.: +60-193220798
| |
Collapse
|
127
|
Pieczynska MD, Yang Y, Petrykowski S, Horbanczuk OK, Atanasov AG, Horbanczuk JO. Gut Microbiota and Its Metabolites in Atherosclerosis Development. Molecules 2020; 25:molecules25030594. [PMID: 32013236 PMCID: PMC7037843 DOI: 10.3390/molecules25030594] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/22/2022] Open
Abstract
Gut microbiota metabolites have a great influence on host digestive function and body health itself. The effects of intestinal microbes on the host metabolism and nutrients absorption are mainly due to regulatory mechanisms related to serotonin, cytokines, and metabolites. Multiple studies have repeatedly reported that the gut microbiota plays a fundamental role in the absorption of bioactive compounds by converting dietary polyphenols into absorbable bioactive substances. Moreover, some intestinal metabolites derived from natural polyphenol products have more biological activities than their own fundamental biological functions. Bioactive like polyphenolic compounds, prebiotics and probiotics are the best known dietary strategies for regulating the composition of gut microbial populations or metabolic/immunological activities, which are called “three “p” for gut health”. Intestinal microbial metabolites have an indirect effect on atherosclerosis, by regulating lipid metabolism and inflammation. It has been found that the diversity of intestinal microbiota negatively correlates with the development of atherosclerosis. The fewer the variation and number of microbial species in the gut, the higher the risk of developing atherosclerosis. Therefore, the atherosclerosis can be prevented and treated from the perspective of improving the number and variability of gut microbiota. In here, we summarize the effects of gut metabolites of natural products on the pathological process of the atherosclerosis, since gut intestinal metabolites not only have an indirect effect on macrophage foaming in the vessel wall, but also have a direct effect on vascular endothelial cells.
Collapse
Affiliation(s)
- Magdalena D. Pieczynska
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A Street, 05-552 Jastrzebiec, Poland; (Y.Y.); (S.P.); (A.G.A.)
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A Street, 02-106 Warsaw, Poland
- Correspondence: (M.D.P.); (J.O.H.); Tel.: +48-22-736-70-00
| | - Yang Yang
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A Street, 05-552 Jastrzebiec, Poland; (Y.Y.); (S.P.); (A.G.A.)
- Institute of Clinical Chemistry, University Hospital Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - S. Petrykowski
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A Street, 05-552 Jastrzebiec, Poland; (Y.Y.); (S.P.); (A.G.A.)
| | - Olaf K. Horbanczuk
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), 159c Nowoursynowska, 02-776 Warsaw, Poland;
| | - Atanas G. Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A Street, 05-552 Jastrzebiec, Poland; (Y.Y.); (S.P.); (A.G.A.)
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Jaroslaw O. Horbanczuk
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A Street, 05-552 Jastrzebiec, Poland; (Y.Y.); (S.P.); (A.G.A.)
- Correspondence: (M.D.P.); (J.O.H.); Tel.: +48-22-736-70-00
| |
Collapse
|
128
|
Hou L, Zhang Y, Zheng D, Shi H, Zou C, Zhang H, Lu Z, Du H. Increasing trimethylamine N-oxide levels as a predictor of early neurological deterioration in patients with acute ischemic stroke. Neurol Res 2020; 42:153-158. [PMID: 31928326 DOI: 10.1080/01616412.2019.1710416] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background and aims: Trimethylamine N-oxide (TMAO), a pro-atherosclerotic intestinal microbiota metabolite, has mechanistic links to atherosclerosis development and cardiovascular diseases. In this study, we aimed to investigate whether serum TMAO levels could predict early neurological deterioration (END) after acute ischemic stroke.Methods: We prospectively recruited patients with first-ever ischemic stroke and hospitalized within 24 h of symptoms onset during Mar 2018 to Mar 2019. Plasma TMAO levels were quantified using stable isotope dilution high-performance liquid chromatography with tandem mass spectrometry after admission. END was defined as an increase in the total National Institutes of Health Stroke Scale by 2 or more points within 3 days.Results: Of the 362 patients included, END was diagnosed in 97 subjects (26.8%). The median TMAO concentrations were 4.8 μmol/L, with tertile levels as follows: first tertile (<3.9 μmol/L), second tertile (3.9-5.6 μmol/L), and third tertile (>5.6 μmol/L). Patients with END showed higher levels of TMAO (median 5.0 vs. 4.5 μmol/L, P = 0.005) at admission. In univariate logistic analysis, elevated plasma levels of TMAO [odd ratios for highest tertile vs. lowest tertile, 2.14; 95% confidence interval, 1.19-3.82] was a significant predictor of END in patients with ischemic stroke. This association remained significant after controlling for confounders in multivariate logistic analysis. Multiple-adjusted spline regression model further confirmed the dose-response relationship between TMAO levels and END (P < 0.001 for linearity).Conclusions: Our study indicated that increasing TMAO levels at admission might be associated with END after acute ischemic stroke.
Collapse
Affiliation(s)
- Le Hou
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yun Zhang
- Department of Neurology, Mianyang Central Hospital, Mianyang, China
| | - Dong Zheng
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Haishan Shi
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Cong Zou
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Hui Zhang
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Zhiwei Lu
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Hongcai Du
- Department of Neurology, Mianyang Central Hospital, Mianyang, China
| |
Collapse
|
129
|
Chiang JYL, Ferrell JM, Wu Y, Boehme S. Bile Acid and Cholesterol Metabolism in Atherosclerotic Cardiovascular Disease and Therapy. CARDIOLOGY PLUS 2020; 5:159-170. [PMID: 34350368 PMCID: PMC8330388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Dysregulation of lipid metabolism is a major factor contributing to atherosclerotic cardiovascular disease (ACVD), which is the number one cause of death in western countries. The liver plays a central role in maintaining whole body cholesterol homeostasis via catabolism of cholesterol to bile acids, as well as biliary cholesterol excretion. The liver synthesizes lipoproteins that transport dietary cholesterol and fats to muscle and adipose tissue, directs reverse cholesterol transport of excess cholesterol from extrahepatic tissues and macrophages to the liver to convert to bile acids, and thus, protects against metabolism-related nonalcoholic fatty liver disease (NAFLD) and ACVD. Liver fibrosis/nonalcoholic steatohepatitis increases the risk and prevalence of cardiovascular disease morbidity and mortality. Bile acids are signaling molecules and metabolic regulators that activate farnesoid X receptor and G protein-coupled bile acid receptor-1 to regulate lipid, glucose, and energy metabolism. The bidirectional regulation of bile acids and the gut microbiota determine the rate of bile acid synthesis, the bile acid pool size, and the composition of the circulating bile acid pool. The liver-intestine-heart axis regulates lipid metabolism, inflammation, and the pathogenesis of metabolic diseases such as ACVD, NAFLD, diabetes, and obesity. This review focuses on the roles of liver-to-intestine, liver-to-heart and intestine-to-heart axes in cholesterol, lipoprotein, and bile acid metabolism; signaling in heart health and ACVD; and drug therapies for atherosclerosis.
Collapse
Affiliation(s)
- John Y. L. Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Jessica M. Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Yue Wu
- Department of Cardiology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shannon Boehme
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
130
|
Man AWC, Li H, Xia N. Resveratrol and the Interaction between Gut Microbiota and Arterial Remodelling. Nutrients 2020; 12:nu12010119. [PMID: 31906281 PMCID: PMC7019510 DOI: 10.3390/nu12010119] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 12/15/2022] Open
Abstract
Arterial remodelling refers to the alteration in the structure of blood vessel that contributes to the progression of hypertension and other cardiovascular complications. Arterial remodelling is orchestrated by the crosstalk between the endothelium and vascular smooth muscle cells (VSMC). Vascular inflammation participates in arterial remodelling. Resveratrol is a natural polyphenol that possesses anti-oxidant and anti-inflammatory properties and has beneficial effects in both the endothelium and VSMC. Resveratrol has been studied for the protective effects in arterial remodelling and gut microbiota, respectively. Gut microbiota plays a critical role in the immune system and inflammatory processes. Gut microbiota may also regulate vascular remodelling in cardiovascular complications via affecting endothelium function and VSMC proliferation. Currently, there is new evidence showing that gut microbiota regulate the proliferation of VSMC and the formation of neointimal hyperplasia in response to injury. The change in population of the gut microbiota, as well as their metabolites (e.g., short-chain fatty acids) could critically contribute to VSMC proliferation, cell cycle progression, and migration. Recent studies have provided strong evidence that correlate the effects of resveratrol in arterial remodelling and gut microbiota. This review aims to summarize recent findings on the resveratrol effects on cardiovascular complications focusing on arterial remodelling and discuss the possible interactions of resveratrol and the gut microbiota that modulate arterial remodelling.
Collapse
Affiliation(s)
- Andy W C Man
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Ning Xia
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| |
Collapse
|
131
|
Georgescu D, Iurciuc MS, Ionita I, Dragan S, Muntean M, Ancusa OE, Reisz D, Ionita M, Lighezan D. Migraine without Aura and Subclinical Atherosclerosis in Young Females: Is Gut Microbiota to Blame? MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E786. [PMID: 31888137 PMCID: PMC6956152 DOI: 10.3390/medicina55120786] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022]
Abstract
Background and Objectives: Migraine with aura (MA) could be considered a risk factor for developing atherosclerosis and cardio-vascular events. However, less is known about the relation between migraine without aura (MWA) and atherosclerosis. Our study aimed to assess whether young female migraineurs, with alterations of gut microbiota could associate early atherosclerosis. Materials and Methods: We conducted an exploratory cross-sectional, pilot study concerning 105 consecutive young females having MWA, with recent normal brain scans, that were free of cardio-vascular risk factors, non-smokers, not on oral contraception, not pregnant, and without thyroid or parathyroid diseases, chronic organ failure, cancer, or on probiotic or antibiotic treatment. Consecutive to assessment of gut microbiota, patients were assigned to two groups: dysbiosis positive (n = 45) and dysbiosis negative (n = 60). All study participants underwent clinical examinations with an assessment of migraine severity, body mass index and carotid intima-media thickness (CIMT), as well as laboratory workups. Statistical analysis was performed using a chi-squared test (χ2), a two-tailed t-test and a nonparametric Spearman's correlation test. Results: The dysbiosis positive migraineurs showed a significant increase in CIMT along with several anthropometrical, biological and clinical particularities. Significant positive correlations between dysbiosis and CIMT, glycosylated hemoglobin, migraine severity and duration, tumor necrosis factor-alpha, and body mass index were found. Conclusions: Young female migraineurs with significant alterations of gut microbiota experienced early signs of atherosclerosis and displayed severe migraine disability, as well as multiple biological and clinical particularities.
Collapse
Affiliation(s)
- Doina Georgescu
- Department of Internal Medicine,“Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (I.I.); (M.M.); (O.E.A.); (M.I.)
| | - Mircea Stefan Iurciuc
- Department of Cardiology,“Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Ioana Ionita
- Department of Internal Medicine,“Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (I.I.); (M.M.); (O.E.A.); (M.I.)
| | - Simona Dragan
- Department of Cardiology,“Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Mihaela Muntean
- Department of Internal Medicine,“Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (I.I.); (M.M.); (O.E.A.); (M.I.)
| | - Oana Elena Ancusa
- Department of Internal Medicine,“Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (I.I.); (M.M.); (O.E.A.); (M.I.)
| | - Daniela Reisz
- Department of Neurology,“Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Mihai Ionita
- Department of Internal Medicine,“Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (I.I.); (M.M.); (O.E.A.); (M.I.)
| | - Daniel Lighezan
- Department of Internal Medicine,“Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (I.I.); (M.M.); (O.E.A.); (M.I.)
| |
Collapse
|
132
|
LncRNA MALAT1 Suppression Protects Endothelium against oxLDL-Induced Inflammation via Inhibiting Expression of MiR-181b Target Gene TOX. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8245810. [PMID: 31949884 PMCID: PMC6942911 DOI: 10.1155/2019/8245810] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022]
Abstract
Rare studies have been conducted to investigate the exact interactions between lung adenocarcinoma transcript 1 (MALAT1), thymocyte selection-associated high mobility group box (TOX), and miRNAs in the pathogenesis of atherosclerosis (AS). We aim to investigate the crosstalk between MALAT1 and TOX and evaluate whether the regulatory mechanism was associated with the miRNA network. AS tissues were collected to determine the level of MALAT1 expression in AS patients, together with determination of miR-181b expression. Cultured endothelial cells were utilized to analyze the expressions of MALAT1, miR-181b, and TOX in the presence of oxLDL. Luciferase activity assay was conducted to evaluate the potential target sites of miR-181b on MALAT1 and TOX. In this study, we demonstrated that MALAT1 was upregulated in patients with AS. MALAT1 silencing significantly downregulated the expression of the miR-181b target gene TOX via reversing the effect of miR181b. Importantly, positive modulation of miR181b and inhibition of MALAT1 and TOX significantly attenuated oxLDL-induced endothelial inflammation and oxidative stress. Moreover, the MAPK signal pathways in endothelial cells were also inhibited through regulation of above endogenous RNAs. In summary, MALAT1 suppression protects the endothelium from oxLDL-induced inflammation and oxidative stress in endothelial cells by upregulation of miR-181b and downregulation of TOX.
Collapse
|
133
|
Livshits G, Kalinkovich A. Inflammaging as a common ground for the development and maintenance of sarcopenia, obesity, cardiomyopathy and dysbiosis. Ageing Res Rev 2019; 56:100980. [PMID: 31726228 DOI: 10.1016/j.arr.2019.100980] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Sarcopenia, obesity and their coexistence, obese sarcopenia (OBSP) as well as atherosclerosis-related cardio-vascular diseases (ACVDs), including chronic heart failure (CHF), are among the greatest public health concerns in the ageing population. A clear age-dependent increased prevalence of sarcopenia and OBSP has been registered in CHF patients, suggesting mechanistic relationships. Development of OBSP could be mediated by a crosstalk between the visceral and subcutaneous adipose tissue (AT) and the skeletal muscle under conditions of low-grade local and systemic inflammation, inflammaging. The present review summarizes the emerging data supporting the idea that inflammaging may serve as a mutual mechanism governing the development of sarcopenia, OBSP and ACVDs. In support of this hypothesis, various immune cells release pro-inflammatory mediators in the skeletal muscle and myocardium. Subsequently, the endothelial structure is disrupted, and cellular processes, such as mitochondrial activity, mitophagy, and autophagy are impaired. Inflamed myocytes lose their contractile properties, which is characteristic of sarcopenia and CHF. Inflammation may increase the risk of ACVD events in a hyperlipidemia-independent manner. Significant reduction of ACVD event rates, without the lowering of plasma lipids, following a specific targeting of key pro-inflammatory cytokines confirms a key role of inflammation in ACVD pathogenesis. Gut dysbiosis, an imbalanced gut microbial community, is known to be deeply involved in the pathogenesis of age-associated sarcopenia and ACVDs by inducing and supporting inflammaging. Dysbiosis induces the production of trimethylamine-N-oxide (TMAO), which is implicated in atherosclerosis, thrombosis, metabolic syndrome, hypertension and poor CHF prognosis. In OBSP, AT dysfunction and inflammation induce, in concert with dysbiosis, lipotoxicity and other pathophysiological processes, thus exacerbating sarcopenia and CHF. Administration of specialized, inflammation pro-resolving mediators has been shown to ameliorate the inflammatory manifestations. Considering all these findings, we hypothesize that sarcopenia, OBSP, CHF and dysbiosis are inflammaging-oriented disorders, whereby inflammaging is common and most probably the causative mechanism driving their pathogenesis.
Collapse
Affiliation(s)
- Gregory Livshits
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel.; Adelson School of Medicine, Ariel University, Ariel, Israel..
| | - Alexander Kalinkovich
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
134
|
Tayyeb JZ, Popeijus HE, Mensink RP, Konings MC, Mulders KH, Plat J. Amoxicillin Modulates ApoA-I Transcription and Secretion, Predominantly via PPARα Transactivation Inhibition. Int J Mol Sci 2019; 20:ijms20235967. [PMID: 31783518 PMCID: PMC6928897 DOI: 10.3390/ijms20235967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 12/28/2022] Open
Abstract
In a recent human study, we observed that amoxicillin treatment decreased HDL-C concentration. We hypothesize that antibiotics lower the transcription and secretion of ApoA-I, the responsible protein for HDL production. HepG2 and Caco-2 cells were exposed to increasing dose of amoxicillin, penicillin, and streptomycin. Secreted ApoA-I protein and mRNA transcripts were analyzed using ELISA and qPCR, respectively. To unravel underlying mechanisms, KEAP1, CPT1, and CHOP mRNA expressions were determined as well as PPARα transactivation. In HepG2 and Caco-2, amoxicillin decreased ApoA-I transcription and secretion. Effects on ApoA-I expression were clearly there for amoxicillin while no effects were observed for penicillin or streptomycin. KEAP1, CPT1, and CHOP mRNA expressions were reduced by amoxicillin treatments. Moreover, a significant correlation between ApoA-I and CPT1 mRNA expressions was found. Furthermore, amoxicillin lowered PPARα transactivation. All together, these data suggest that inhibited PPARα transactivation is involved in the effects of amoxicillin on ApoA-I. In conclusion, the direct effect of amoxicillin in treated HepG2 and Caco-2 cells was a lower ApoA-I secretion and transcription. Based on evaluating alterations in KEAP1, CPT1, and CHOP mRNA expressions plus PPARα transactivation, we suggest that a reduced PPARα activation is a potential mechanism behind the observed amoxicillin effects on ApoA-I expression.
Collapse
Affiliation(s)
- Jehad Z. Tayyeb
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ET Maastricht, The Netherlands; (J.Z.T.); (R.P.M.); (J.P.)
- Department of Biochemistry, Faculty of Medicine, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Herman E. Popeijus
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ET Maastricht, The Netherlands; (J.Z.T.); (R.P.M.); (J.P.)
- Correspondence: ; Tel.: +31433881639
| | - Ronald P. Mensink
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ET Maastricht, The Netherlands; (J.Z.T.); (R.P.M.); (J.P.)
| | - Maurice C.J.M. Konings
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ET Maastricht, The Netherlands; (J.Z.T.); (R.P.M.); (J.P.)
| | - Kim H.R. Mulders
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ET Maastricht, The Netherlands; (J.Z.T.); (R.P.M.); (J.P.)
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ET Maastricht, The Netherlands; (J.Z.T.); (R.P.M.); (J.P.)
| |
Collapse
|
135
|
Yang S, Li X, Yang F, Zhao R, Pan X, Liang J, Tian L, Li X, Liu L, Xing Y, Wu M. Gut Microbiota-Dependent Marker TMAO in Promoting Cardiovascular Disease: Inflammation Mechanism, Clinical Prognostic, and Potential as a Therapeutic Target. Front Pharmacol 2019; 10:1360. [PMID: 31803054 PMCID: PMC6877687 DOI: 10.3389/fphar.2019.01360] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, especially in developed countries, and atherosclerosis (AS) is the common pathological basis of many cardiovascular diseases (CVDs) such as coronary heart disease (CHD). The role of the gut microbiota in AS has begun to be appreciated in recent years. Trimethylamine N-oxide (TMAO), an important gut microbe-dependent metabolite, is generated from dietary choline, betaine, and L-carnitine. Multiple studies have suggested a correlation between plasma TMAO levels and the risk of AS. However, the mechanism underlying this relationship is still unclear. In this review, we discuss the TMAO-involved mechanisms of atherosclerotic CVD from the perspective of inflammation, inflammation-related immunity, cholesterol metabolism, and atherothrombosis. We also summarize available clinical studies on the role of TMAO in predicting prognostic outcomes, including major adverse cardiovascular events (MACE), in patients presenting with AS. Finally, since TMAO may be a novel therapeutic target for AS, several therapeutic strategies including drugs, dietary, etc. to lower TMAO levels that are currently being explored are also discussed.
Collapse
Affiliation(s)
- Shengjie Yang
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinye Li
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Fan Yang
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Zhao
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Xiandu Pan
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Jiaqi Liang
- Department of Cardiovascular, Beijing Longfu Hospital, Beijing, China
| | - Li Tian
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoya Li
- Beijing University of Chinese Medicine, Beijing, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanwei Xing
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
136
|
Research Progress of Mechanisms and Drug Therapy For Atherosclerosis on Toll-Like Receptor Pathway. J Cardiovasc Pharmacol 2019; 74:379-388. [PMID: 31730559 DOI: 10.1097/fjc.0000000000000738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent reports have established atherosclerosis (AS) as a major factor in the pathogenetic process of cardiovascular diseases such as ischemic stroke and coronary heart disease. Although the possible pathogenesis of AS remains to be elucidated, a large number of investigations strongly suggest that the inhibition of toll-like receptors (TLRs) alleviates the severity of AS to some extent by suppressing vascular inflammation and the formation of atherosclerotic plaques. As pattern recognition receptors, TLRs occupy a vital position in innate immunity, mediating various signaling pathways in infective and sterile inflammation. This review summarizes the available data on the research progress of AS and the latest antiatherosclerotic drugs associated with TLR pathway.
Collapse
|
137
|
Gut DNA Virome Diversity and Its Association with Host Bacteria Regulate Inflammatory Phenotype and Neuronal Immunotoxicity in Experimental Gulf War Illness. Viruses 2019; 11:v11100968. [PMID: 31640184 PMCID: PMC6832151 DOI: 10.3390/v11100968] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023] Open
Abstract
Gulf War illness (GWI) is characterized by the persistence of inflammatory bowel disease, chronic fatigue, neuroinflammation, headache, cognitive impairment, and other medically unexplained conditions. Results using a murine model show that enteric viral populations especially bacteriophages were altered in GWI. The increased viral richness and alpha diversity correlated positively with gut bacterial dysbiosis and proinflammatory cytokines. Altered virome signature in GWI mice also had a concomitant weakening of intestinal epithelial tight junctions with a significant increase in Claudin-2 protein expression and decrease in ZO1 and Occludin mRNA expression. The altered virome signature in GWI, decreased tight junction protein level was followed by the presence an activation of innate immune responses such as increased Toll-like receptor (TLR) signaling pathways. The altered virome diversity had a positive correlation with serum IL-6, IL-1β, and IFN-γ, intestinal inflammation (IFN-γ), and decreased Brain-Derived Neurotrophic Factor (BDNF), a neurogenesis marker. The co-exposure of Gulf War chemical and antibiotic (for gut sterility) or Gulf War chemical and Ribavirin, an antiviral compound to suppress virus alteration in the gut showed significant improvement in epithelial tight junction protein, decreased intestinal-, systemic-, and neuroinflammation. These results showed that the observed enteric viral dysbiosis could activate enteric viral particle-induced innate immune response in GWI and could be a novel therapeutic target in GWI.
Collapse
|
138
|
Characteristics of Gut Microbiota in Patients with Hypertension and/or Hyperlipidemia: A Cross-Sectional Study on Rural Residents in Xinxiang County, Henan Province. Microorganisms 2019; 7:microorganisms7100399. [PMID: 31561625 PMCID: PMC6843550 DOI: 10.3390/microorganisms7100399] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/17/2022] Open
Abstract
Human gut microbiota can be affected by a variety of factors, including geography. This study aimed to clarify the regional specific characteristics of gut microbiota in rural residents of Xinxiang county, Henan province, with hypertension and hyperlipidemia and evaluate the association of specific gut microbiota with hypertension and hyperlipidemia clinical indices. To identify the gut microbes, 16S rRNA gene sequencing was used and a random forest disease classifier was constructed to discriminate between the gut microbiota in hypertension, hyperlipidemia, and the healthy control. Patients with hypertension and hyperlipidemia presented with marked gut microbiota dysbiosis compared to the healthy control. The gut microbiota related to hypertension and hyperlipidemia may consist of a large number of taxa, influencing each other in a complex metabolic network. Examining the top 35 genera in each group showed that Lactococcus, Alistipes, or Subdoligranulum abundances were positively correlated with systolic blood pressure (SBP) or diastolic blood pressure (DBP) in hypertensive patients with treatment-naive hypertension (n = 63). In hypertensive patients undergoing anti-hypertensive treatment (n = 104), the abundance of Megasphaera or Megamonas was positively correlated to SBP. In the hyperlipidemia group, some of the top 35 genera were significantly correlated to triglyceride, total cholesterol, and fasting blood glucose levels. This study analyzed the characteristics of the gut microbiota in patients with hypertension and/or hyperlipidemia, providing a theoretical basis for the prevention and control of hypertension and hyperlipidemia in this region.
Collapse
|
139
|
Cabrera-Rubio R, Patterson AM, Cotter PD, Beraza N. Cholestasis induced by bile duct ligation promotes changes in the intestinal microbiome in mice. Sci Rep 2019; 9:12324. [PMID: 31444478 PMCID: PMC6707139 DOI: 10.1038/s41598-019-48784-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/22/2019] [Indexed: 02/08/2023] Open
Abstract
Increasing evidence point to the relevance of intestinal disfunction and changes in the microbiome composition during chronic liver disease. More specifically, recent studies have highlighted that cholestatic diseases associate with a reduction in the microbiome diversity in patients. Still, the dynamics of the changes in the microbiome composition observed, as well as their implication in contributing to the pathogenesis of this disease remain largely undefined. Hence, experimental mouse models resembling the human pathogenesis are crucial to move forward our understanding on the mechanisms underpinning cholestatic disease and to enable the development of effective therapeutics. Our results show that the bile duct ligation (BDL) experimental model of cholestasis leads to rapid and significant changes in the microbiome diversity, with more than 100 OTUs being significantly different in faecal samples obtained from WT mice at 3 days and 7 days after BDL when compared to control animals. Changes in the microbial composition in mice after BDL included the enrichment of Akkermansia, Prevotella, Bacteroides and unclassified Ruminococcaceae in parallel with a drastic reduction of the presence of Faecalibacterium prausnitzii. In conclusion, our results support that bile duct ligation induces changes in the microbiome that partly resemble the gut microbial changes observed during human cholestatic disease.
Collapse
Affiliation(s)
- Raul Cabrera-Rubio
- Teagasc Food Research Centre, Moorepark, Fermoy, Co, Cork, Ireland.,APC Microbiome Institute, University College Cork, Co, Cork, Ireland
| | - Angela M Patterson
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute, Norwich Research Park, Norwich, UK
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co, Cork, Ireland.,APC Microbiome Institute, University College Cork, Co, Cork, Ireland
| | - Naiara Beraza
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute, Norwich Research Park, Norwich, UK.
| |
Collapse
|
140
|
Di Marzo V, Silvestri C. Lifestyle and Metabolic Syndrome: Contribution of the Endocannabinoidome. Nutrients 2019; 11:nu11081956. [PMID: 31434293 PMCID: PMC6722643 DOI: 10.3390/nu11081956] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Lifestyle is a well-known environmental factor that plays a major role in facilitating the development of metabolic syndrome or eventually exacerbating its consequences. Various lifestyle factors, especially changes in dietary habits, extreme temperatures, unusual light-dark cycles, substance abuse, and other stressful factors, are also established modifiers of the endocannabinoid system and its extended version, the endocannabinoidome. The endocannabinoidome is a complex lipid signaling system composed of a plethora (>100) of fatty acid-derived mediators and their receptors and anabolic and catabolic enzymes (>50 proteins) which are deeply involved in the control of energy metabolism and its pathological deviations. A strong link between the endocannabinoidome and another major player in metabolism and dysmetabolism, the gut microbiome, is also emerging. Here, we review several examples of how lifestyle modifications (westernized diets, lack or presence of certain nutritional factors, physical exercise, and the use of cannabis) can modulate the propensity to develop metabolic syndrome by modifying the crosstalk between the endocannabinoidome and the gut microbiome and, hence, how lifestyle interventions can provide new therapies against cardiometabolic risk by ensuring correct functioning of both these systems.
Collapse
Affiliation(s)
- Vincenzo Di Marzo
- École de nutrition, Université Laval, Québec, QC G1V 0A6, Canada
- Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC G1V 0A6, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC G1V 4G5, Canada
- Department de médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy
| | - Cristoforo Silvestri
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC G1V 0A6, Canada.
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC G1V 4G5, Canada.
- Department de médecine, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
141
|
Kröninger L, Steiniger F, Berger S, Kraus S, Welte CU, Deppenmeier U. Energy conservation in the gut microbeMethanomassiliicoccus luminyensisis based on membrane‐bound ferredoxin oxidation coupled to heterodisulfide reduction. FEBS J 2019; 286:3831-3843. [DOI: 10.1111/febs.14948] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/17/2019] [Accepted: 06/01/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Lena Kröninger
- Institute of Microbiology and Biotechnology University of Bonn Bonn Germany
| | - Fabian Steiniger
- Institute of Microbiology and Biotechnology University of Bonn Bonn Germany
| | - Stefanie Berger
- Department of Microbiology IWWR Radboud University Nijmegen The Netherlands
| | - Sebastian Kraus
- Institute of Microbiology and Biotechnology University of Bonn Bonn Germany
| | - Cornelia U. Welte
- Department of Microbiology IWWR Radboud University Nijmegen The Netherlands
| | - Uwe Deppenmeier
- Institute of Microbiology and Biotechnology University of Bonn Bonn Germany
| |
Collapse
|
142
|
Huang HM, Jiang X, Hao ML, Shan MJ, Qiu Y, Hu GF, Wang Q, Yu ZQ, Meng LB, Zou YY. Identification of biomarkers in macrophages of atherosclerosis by microarray analysis. Lipids Health Dis 2019; 18:107. [PMID: 31043156 PMCID: PMC6495566 DOI: 10.1186/s12944-019-1056-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/22/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Atherosclerotic cardiovascular disease (ASCVD) refers to a series of diseases caused by atherosclerosis (AS). It is one of the most important causes of death worldwide. According to the inflammatory response theory, macrophages play a critical role in AS. However, the potential targets associated with macrophages in the development of AS are still obscure. This study aimed to use bioinformatics tools for screening and identifying molecular targets in AS macrophages. METHODS Two expression profiling datasets (GSE7074 and GSE9874) were obtained from the Gene Expression Omnibus dataset, and differentially expressed genes (DEGs) between non-AS macrophages and AS macrophages were identified. Functional annotation of the DEGs was performed by analyzing the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. STRING and Cytoscape were employed for constructing a protein-protein interaction network and analyzing hub genes. RESULTS A total of 98 DEGs were distinguished between non-AS macrophages and AS macrophages. The functional variations in DEGs were mainly enriched in response to hypoxia, respiratory gaseous exchange, protein binding, and intracellular, ciliary tip, early endosome membrane, and Lys63-specific deubiquitinase activities. Three genes were identified as hub genes, including KDELR3, CD55, and DYNC2H1. CONCLUSION Hub genes and DEGs identified by using microarray techniques can be used as diagnostic and therapeutic biomarkers for AS.
Collapse
Affiliation(s)
- He-Ming Huang
- Geriatric Department, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, People's Republic of China
| | - Xin Jiang
- Geriatric Department, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, People's Republic of China
| | - Meng-Lei Hao
- Department of Geriatric Medicine, Qinghai University, Xining, Qinghai, 810016, People's Republic of China
| | - Meng-Jie Shan
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Yong Qiu
- Anesthesiology Department, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Dong Dan, Beijing, 100730, People's Republic of China
| | - Gai-Feng Hu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Dong Dan, Beijing, 100730, People's Republic of China
| | - Quan Wang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Dong Dan, Beijing, 100730, People's Republic of China
| | - Zi-Qing Yu
- Pneumology Department, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Dong Dan, Beijing, 100730, People's Republic of China
| | - Ling-Bing Meng
- Neurology Department, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Dong Dan, Beijing, 100730, People's Republic of China.
| | - Yun-Yun Zou
- The Fifth Ward of Ophthalmology Department, Shenzhen Eye Hospital, Shenzhen, 518040, People's Republic of China.
| |
Collapse
|
143
|
Kuzma J, Chmelař D, Hájek M, Lochmanová A, Čižnár I, Rozložník M, Klugar M. The role of intestinal microbiota in the pathogenesis of colorectal carcinoma. Folia Microbiol (Praha) 2019; 65:17-24. [PMID: 31001762 DOI: 10.1007/s12223-019-00706-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 04/03/2019] [Indexed: 12/12/2022]
Abstract
The symbiotic relationship between intestinal microbiota and the host is a major mechanism of prevention against the development of chronic and metabolic diseases. The intestinal microbiota provides several physiological functions of the organism from the creation of a natural functional barrier with a subsequent immunostimulatory activity up to affecting the energy metabolism of the host. Disruption of physiological intestinal microbiota is reported as one of the major etiological factors of initiation and progression of colorectal carcinoma (CRC). Chronic low-grade inflammation is associated with the development of CRC, through the production of inflammatory cytokines and reactive oxygen species. CRC occurs in association with high-protein and high-fat diets in combination with low-fiber intake. The problem of intestinal dysbiosis and oncological diseases is a multidisciplinary problem and it is necessary to focus on several fields of medicine such as public health, clinical pharmacology, and internal medicine. The aim of this review is describing the role of gut dysbiosis in pathogenesis of colorectal carcinoma.
Collapse
Affiliation(s)
- Jozef Kuzma
- Department of Biomedical Sciences, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00, Ostrava-Zábřeh, Ostrava, Czech Republic
| | - Dittmar Chmelař
- Department of Biomedical Sciences, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00, Ostrava-Zábřeh, Ostrava, Czech Republic
- Czech Anaerobic Bacteria Reference Laboratory, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Michal Hájek
- Department of Biomedical Sciences, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00, Ostrava-Zábřeh, Ostrava, Czech Republic.
- Centre of Hyperbaric Medicine, Ostrava City Hospital, Ostrava, Czech Republic.
| | - Alexandra Lochmanová
- Department of Biomedical Sciences, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00, Ostrava-Zábřeh, Ostrava, Czech Republic
- Department of Immunology and Alergology, Public Health Institute Ostrava, Ostrava, Czech Republic
| | - Ivan Čižnár
- Department of Biomedical Sciences, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00, Ostrava-Zábřeh, Ostrava, Czech Republic
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Miroslav Rozložník
- Department of Biomedical Sciences, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00, Ostrava-Zábřeh, Ostrava, Czech Republic
| | - Miloslav Klugar
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
144
|
Regulation of Nitric Oxide Production in the Developmental Programming of Hypertension and Kidney Disease. Int J Mol Sci 2019; 20:ijms20030681. [PMID: 30764498 PMCID: PMC6386843 DOI: 10.3390/ijms20030681] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/18/2019] [Accepted: 02/04/2019] [Indexed: 12/22/2022] Open
Abstract
Development of the kidney can be altered in response to adverse environments leading to renal programming and increased vulnerability to the development of hypertension and kidney disease in adulthood. By contrast, reprogramming is a strategy shifting therapeutic intervention from adulthood to early life to reverse the programming processes. Nitric oxide (NO) is a key mediator of renal physiology and blood pressure regulation. NO deficiency is a common mechanism underlying renal programming, while early-life NO-targeting interventions may serve as reprogramming strategies to prevent the development of hypertension and kidney disease. This review will first summarize the regulation of NO in the kidney. We also address human and animal data supporting the link between NO system and developmental programming of hypertension and kidney disease. This will be followed by the links between NO deficiency and the common mechanisms of renal programming, including the oxidative stress, renin–angiotensin system, nutrient-sensing signals, and sex differences. Recent data from animal studies have suggested that interventions targeting the NO pathway could be reprogramming strategies to prevent the development of hypertension and kidney disease. Further clinical studies are required to bridge the gap between animal models and clinical trials in order to develop ideal NO-targeting reprogramming strategies and to be able to have a lifelong impact, with profound savings in the global burden of hypertension and kidney disease.
Collapse
|
145
|
Hsu CN, Tain YL. The Double-Edged Sword Effects of Maternal Nutrition in the Developmental Programming of Hypertension. Nutrients 2018; 10:nu10121917. [PMID: 30518129 PMCID: PMC6316180 DOI: 10.3390/nu10121917] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/22/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023] Open
Abstract
Hypertension is a growing global epidemic. Developmental programming resulting in hypertension can begin in early life. Maternal nutrition status has important implications as a double-edged sword in the developmental programming of hypertension. Imbalanced maternal nutrition causes offspring's hypertension, while specific nutritional interventions during pregnancy and lactation may serve as reprogramming strategies to reverse programming processes and prevent the development of hypertension. In this review, we first summarize the human and animal data supporting the link between maternal nutrition and developmental programming of hypertension. This review also presents common mechanisms underlying nutritional programming-induced hypertension. This will be followed by studies documenting nutritional interventions as reprogramming strategies to protect against hypertension from developmental origins. The identification of ideal nutritional interventions for the prevention of hypertension development that begins early in life will have a lifelong impact, with profound savings in the global burden of hypertension.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| |
Collapse
|