101
|
Hu R, Dong Z, Zhang K, Pan G, Li C, Cui H. Preparation, Characterization and Diagnostic Valuation of Two Novel Anti-HPV16 E7 Oncoprotein Monoclonal Antibodies. Viruses 2020; 12:v12030333. [PMID: 32204370 PMCID: PMC7150828 DOI: 10.3390/v12030333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/15/2020] [Accepted: 03/15/2020] [Indexed: 12/12/2022] Open
Abstract
At present, the clinical detection method of human papillomavirus (HPV) is mainly based on the PCR method. However, this method can only be used to detect HPV DNA and HPV types, and cannot be used to accurately predict cervical cancer. HPV16 E7 is an oncoprotein selectively expressed in cervical cancers. In this study, we prepared an HPV16 E7-histidine (HIS) fusion oncoprotein by using a prokaryotic expression and gained several mouse anti-HPV16 E7-HIS fusion oncoprotein monoclonal antibodies (mAbs) by using hybridoma technology. Two mAbs, 69E2 (IgG2a) and 79A11 (IgM), were identified. Immunocytochemistry, immunofluorescence, immunohistochemistry, and Western blot were used to characterize the specificity of these mAbs. The sequences of the nucleotide bases and predicted amino acids of the 69E2 and 79A11 antibodies showed that they were novel antibodies. Indirect enzyme-linked immunosorbent assay (ELISA) with overlapping peptides, indirect competitive ELISA, and 3D structural modeling showed that mAbs 69E2 and 79A11 specifically bound to the three exposed peptides of the HPV16 E7 (HPV16 E749–66, HPV16 E773–85, and HPV16 E791–97). We used these two antibodies (79A11 as a capture antibody and 69E2 as a detection antibody) to establish a double-antibody sandwich ELISA based on a horseradish peroxidase (HRP)-labeled mAb and tetramethylbenzidine (TMB) detection system for quantitative detection of the HPV16 E7-HIS fusion oncoprotein, however, it was not ideal. Then we established a chemiluminescence immunoassay based on a labeled streptavidin-biotin (LSAB)-ELISA method and luminol detection system—this was sufficient for quantitative detection of the HPV16 E7-HIS fusion oncogenic protein in ng levels and was suitable for the detection of HPV16-positive cervical carcinoma tissues. Collectively, we obtained two novel mouse anti-HPV16 E7 oncoprotein mAbs and established an LSAB-lumino-dual-antibody sandwich ELISA method for the detection of the HPV16 E7-HIS fusion oncogenic protein, which might be a promising method for the diagnosis of HPV16-type cervical cancers in the early stage.
Collapse
Affiliation(s)
- Renjian Hu
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Biotechnology, Southwest University, Beibei, Chongqing 400716, China; (R.H.); (Z.D.); (K.Z.); (G.P.); (C.L.)
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Banan, Chongqing 400054, China
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Biotechnology, Southwest University, Beibei, Chongqing 400716, China; (R.H.); (Z.D.); (K.Z.); (G.P.); (C.L.)
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Biotechnology, Southwest University, Beibei, Chongqing 400716, China; (R.H.); (Z.D.); (K.Z.); (G.P.); (C.L.)
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
| | - Guangzhao Pan
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Biotechnology, Southwest University, Beibei, Chongqing 400716, China; (R.H.); (Z.D.); (K.Z.); (G.P.); (C.L.)
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
| | - Chongyang Li
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Biotechnology, Southwest University, Beibei, Chongqing 400716, China; (R.H.); (Z.D.); (K.Z.); (G.P.); (C.L.)
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Biotechnology, Southwest University, Beibei, Chongqing 400716, China; (R.H.); (Z.D.); (K.Z.); (G.P.); (C.L.)
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
- Correspondence: ; Tel.: +86-23-68251713
| |
Collapse
|
102
|
Đukić A, Lulić L, Thomas M, Skelin J, Bennett Saidu NE, Grce M, Banks L, Tomaić V. HPV Oncoproteins and the Ubiquitin Proteasome System: A Signature of Malignancy? Pathogens 2020; 9:pathogens9020133. [PMID: 32085533 PMCID: PMC7168213 DOI: 10.3390/pathogens9020133] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/22/2022] Open
Abstract
Human papillomavirus (HPV) E6 and E7 oncoproteins are critical for development and maintenance of the malignant phenotype in HPV-induced cancers. These two viral oncoproteins interfere with a plethora of cellular pathways, including the regulation of cell cycle and the control of apoptosis, which are critical in maintaining normal cellular functions. E6 and E7 bind directly with certain components of the Ubiquitin Proteasome System (UPS), enabling them to manipulate a number of important cellular pathways. These activities are the means by which HPV establishes an environment supporting the normal viral life cycle, however in some instances they can also lead to the development of malignancy. In this review, we have discussed how E6 and E7 oncoproteins from alpha and beta HPV types interact with the components of the UPS, and how this interplay contributes to the development of cancer.
Collapse
Affiliation(s)
- Anamaria Đukić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Lucija Lulić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Miranda Thomas
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149 Trieste, Italy; (M.T.); (L.B.)
| | - Josipa Skelin
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Nathaniel Edward Bennett Saidu
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Magdalena Grce
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149 Trieste, Italy; (M.T.); (L.B.)
| | - Vjekoslav Tomaić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
- Correspondence: ; Tel.: +385-1-4561110; Fax: +385-1-4561010
| |
Collapse
|
103
|
Lu X, Zhou Y, Meng J, Jiang L, Gao J, Fan X, Chen Y, Cheng Y, Wang Y, Zhang B, Yan H, Yan F. Epigenetic age acceleration of cervical squamous cell carcinoma converged to human papillomavirus 16/18 expression, immunoactivation, and favourable prognosis. Clin Epigenetics 2020; 12:23. [PMID: 32041662 PMCID: PMC7011257 DOI: 10.1186/s13148-020-0822-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/31/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Ageing-associated molecular changes have been assumed to trigger malignant transformations and the epigenetic clock, and the DNA methylation age has been shown to be highly correlated with chronological age. However, the associations between the epigenetic clock and cervical squamous cell carcinoma (CSCC) prognosis, other molecular characteristics, and clinicopathological features have not been systematically investigated. To this end, we computed the DNA methylation (DNAm) age of 252 CSCC patients and 200 normal samples from TCGA and three external cohorts by using the Horvath clock model. We characterized the differences in human papillomavirus (HPV) 16/18 expression, pathway activity, genomic alteration, and chemosensitivity between two DNAm age subgroups. We then used Cox proportional hazards regression and restricted cubic spline (RCS) analysis to assess the prognostic value of epigenetic acceleration. RESULTS DNAm age was significantly associated with chronological age, but it was differentiated between tumour and normal tissue (P < 0.001). Two DNAm age groups, i.e. DNAmAge-ACC and DNAmAge-DEC, were identified; the former had high expression of the E6/E7 oncoproteins of HPV16/18 (P < 0.05), an immunoactive phenotype (all FDRs < 0.05 in enrichment analysis), CpG island hypermethylation (P < 0.001), and lower mutation load (P = 0.011), including for TP53 (P = 0.002). When adjusted for chronological age and tumour stage, every 10-year increase in DNAm age was associated with a 12% decrease in fatality (HR 0.88, 95% CI 0.78-0.99, P = 0.03); DNAmAge-ACC had a 41% lower mortality risk and 47% lower progression rate than DNAmAge-DEC and was more likely to benefit from chemotherapy. RCS revealed a positive non-linear association between DNAm age and both mortality and progression risk (both, P < 0.05). CONCLUSIONS DNAm age is an independent predictor of CSCC prognosis. Better prognosis, overexpression of HPV E6/E7 oncoproteins, and higher enrichment of immune signatures were observed in DNAmAge-ACC tumours.
Collapse
Affiliation(s)
- Xiaofan Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yujie Zhou
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, People's Republic of China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University; Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Department of Urology, University of Rochester Medical Center, Rochester, NY, USA
| | - Liyun Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jun Gao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiaole Fan
- School of Medicine, Nantong University, Nantong, People's Republic of China
| | - Yanfeng Chen
- School of Medicine, Nantong University, Nantong, People's Republic of China
| | - Yu Cheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yang Wang
- Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Bing Zhang
- Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Hangyu Yan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China.
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China.
| | - Fangrong Yan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China.
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China.
| |
Collapse
|
104
|
Piñeiro-Ramil M, Sanjurjo-Rodríguez C, Castro-Viñuelas R, Rodríguez-Fernández S, Fuentes-Boquete I, Blanco F, Díaz-Prado S. Usefulness of Mesenchymal Cell Lines for Bone and Cartilage Regeneration Research. Int J Mol Sci 2019; 20:E6286. [PMID: 31847077 PMCID: PMC6940884 DOI: 10.3390/ijms20246286] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022] Open
Abstract
The unavailability of sufficient numbers of human primary cells is a major roadblock for in vitro repair of bone and/or cartilage, and for performing disease modelling experiments. Immortalized mesenchymal stromal cells (iMSCs) may be employed as a research tool for avoiding these problems. The purpose of this review was to revise the available literature on the characteristics of the iMSC lines, paying special attention to the maintenance of the phenotype of the primary cells from which they were derived, and whether they are effectively useful for in vitro disease modeling and cell therapy purposes. This review was performed by searching on Web of Science, Scopus, and PubMed databases from 1 January 2015 to 30 September 2019. The keywords used were ALL = (mesenchymal AND ("cell line" OR immortal*) AND (cartilage OR chondrogenesis OR bone OR osteogenesis) AND human). Only original research studies in which a human iMSC line was employed for osteogenesis or chondrogenesis experiments were included. After describing the success of the immortalization protocol, we focused on the iMSCs maintenance of the parental phenotype and multipotency. According to the literature revised, it seems that the maintenance of these characteristics is not guaranteed by immortalization, and that careful selection and validation of clones with particular characteristics is necessary for taking advantage of the full potential of iMSC to be employed in bone and cartilage-related research.
Collapse
Affiliation(s)
- M. Piñeiro-Ramil
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Departamento de Fisioterapia, Medicina e Ciencias Biomédicas, Facultade de Ciencias da Saúde, Universidade da Coruña (UDC), Campus de A Coruña, 15006 A Coruña, Spain; (C.S.-R.); (R.C.-V.); (S.R.-F.)
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), 15006 A Coruña, Spain
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Centro de Investigacións Científicas Avanzadas (CICA), Agrupación Estratéxica entre o CICA e o Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15071 A Coruña, Spain
| | - C. Sanjurjo-Rodríguez
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Departamento de Fisioterapia, Medicina e Ciencias Biomédicas, Facultade de Ciencias da Saúde, Universidade da Coruña (UDC), Campus de A Coruña, 15006 A Coruña, Spain; (C.S.-R.); (R.C.-V.); (S.R.-F.)
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), 15006 A Coruña, Spain
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Centro de Investigacións Científicas Avanzadas (CICA), Agrupación Estratéxica entre o CICA e o Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15071 A Coruña, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain;
| | - R. Castro-Viñuelas
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Departamento de Fisioterapia, Medicina e Ciencias Biomédicas, Facultade de Ciencias da Saúde, Universidade da Coruña (UDC), Campus de A Coruña, 15006 A Coruña, Spain; (C.S.-R.); (R.C.-V.); (S.R.-F.)
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), 15006 A Coruña, Spain
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Centro de Investigacións Científicas Avanzadas (CICA), Agrupación Estratéxica entre o CICA e o Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15071 A Coruña, Spain
| | - S. Rodríguez-Fernández
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Departamento de Fisioterapia, Medicina e Ciencias Biomédicas, Facultade de Ciencias da Saúde, Universidade da Coruña (UDC), Campus de A Coruña, 15006 A Coruña, Spain; (C.S.-R.); (R.C.-V.); (S.R.-F.)
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), 15006 A Coruña, Spain
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Centro de Investigacións Científicas Avanzadas (CICA), Agrupación Estratéxica entre o CICA e o Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15071 A Coruña, Spain
| | - I.M. Fuentes-Boquete
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Departamento de Fisioterapia, Medicina e Ciencias Biomédicas, Facultade de Ciencias da Saúde, Universidade da Coruña (UDC), Campus de A Coruña, 15006 A Coruña, Spain; (C.S.-R.); (R.C.-V.); (S.R.-F.)
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), 15006 A Coruña, Spain
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Centro de Investigacións Científicas Avanzadas (CICA), Agrupación Estratéxica entre o CICA e o Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15071 A Coruña, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain;
| | - F.J. Blanco
- Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain;
- Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
| | - S.M. Díaz-Prado
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Departamento de Fisioterapia, Medicina e Ciencias Biomédicas, Facultade de Ciencias da Saúde, Universidade da Coruña (UDC), Campus de A Coruña, 15006 A Coruña, Spain; (C.S.-R.); (R.C.-V.); (S.R.-F.)
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), 15006 A Coruña, Spain
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Centro de Investigacións Científicas Avanzadas (CICA), Agrupación Estratéxica entre o CICA e o Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15071 A Coruña, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain;
| |
Collapse
|
105
|
PDZ Domain-Containing Protein NHERF-2 Is a Novel Target of Human Papillomavirus 16 (HPV-16) and HPV-18. J Virol 2019; 94:JVI.00663-19. [PMID: 31597772 DOI: 10.1128/jvi.00663-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/11/2019] [Indexed: 01/02/2023] Open
Abstract
Cancer-causing human papillomavirus (HPV) E6 oncoproteins have a class I PDZ-binding motif (PBM) on their C termini, which play critical roles that are related to the HPV life cycle and HPV-induced malignancies. E6 oncoproteins use these PBMs to interact with, to target for proteasome-mediated degradation, a plethora of cellular substrates that contain PDZ domains and that are involved in the regulation of various cellular pathways. In this study, we show that both HPV-16 and HPV-18 E6 oncoproteins can interact with Na+/H+ exchange regulatory factor 2 (NHERF-2), a PDZ domain-containing protein, which among other cellular functions also behaves as a tumor suppressor regulating endothelial proliferation. The interaction between the E6 oncoproteins and NHERF-2 is PBM dependent and results in proteasome-mediated degradation of NHERF-2. We further confirmed this effect in cells derived from HPV-16- and HPV-18-positive cervical tumors, where we show that NHERF-2 protein turnover is increased in the presence of E6. Finally, our data indicate that E6-mediated NHERF-2 degradation results in p27 downregulation and cyclin D1 upregulation, leading to accelerated cellular proliferation. To our knowledge, this is the first report to demonstrate that E6 oncoproteins can stimulate cell proliferation by indirectly regulating p27 through targeting a PDZ domain-containing protein.IMPORTANCE This study links HPV-16 and HPV-18 E6 oncoproteins to the modulation of cellular proliferation. The PDZ domain-containing protein NHERF-2 is a tumor suppressor that has been shown to regulate endothelial proliferation; here, we demonstrate that NHERF-2 is targeted by HPV E6 for proteasome-mediated degradation. Interestingly, this indirectly affects p27, cyclin D1, and CDK4 protein levels and, consequently, affects cell proliferation. Hence, this study provides information that will improve our understanding of the molecular basis for HPV E6 function, and it also highlights the importance of the PDZ domain-containing protein NHERF-2 and its tumor-suppressive role in regulating cell proliferation.
Collapse
|
106
|
Vonsky M, Shabaeva M, Runov A, Lebedeva N, Chowdhury S, Palefsky JM, Isaguliants M. Carcinogenesis Associated with Human Papillomavirus Infection. Mechanisms and Potential for Immunotherapy. BIOCHEMISTRY (MOSCOW) 2019; 84:782-799. [PMID: 31509729 DOI: 10.1134/s0006297919070095] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human papillomavirus (HPV) infection is responsible for approximately 5% of all cancers and is associated with 30% of all pathogen-related cancers. Cervical cancer is the third most common cancer in women worldwide; about 70% of cervical cancer cases are caused by the high-risk HPVs (HR HPVs) of genotypes 16 and 18. HPV infection occurs mainly through sexual contact; however, viral transmission via horizontal and vertical pathways is also possible. After HPV infection of basal keratinocytes or ecto-endocervical transition zone cells, viral DNA persists in the episomal form. In most cases, infected cells are eliminated by the immune system. Occasionally, elimination fails, and HPV infection becomes chronic. Replication of HPVs in dividing epithelial cells is accompanied by increased expression of the E6 and E7 oncoproteins. These oncoproteins are responsible for genomic instability, disruption of the cell cycle, cell proliferation, immortalization, and malignant transformation of HPV-infected cells. Besides, E6 and E7 oncoproteins induce immunosuppression, preventing the detection of HPV-infected and transformed cells by the immune system. HPV integration into the genome of the host cell leads to the upregulation of E6 and E7 expression and contributes to HPV-associated malignization. Prophylactic HPV vaccines can prevent over 80% of HPV-associated anogenital cancers. The vaccine elicits immune response that prevents initial infection with a given HPV type but does not eliminate persistent virus once infection has occurred and does not prevent development of the HPV-associated neoplasias, which necessitates the development of therapeutic vaccines to treat chronic HPV infections and HPV-associated malignancies.
Collapse
Affiliation(s)
- M Vonsky
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia. .,Almazov National Medical Research Center, St. Petersburg, 197341, Russia
| | - M Shabaeva
- Pavlov First St. Petersburg State Medical University, St. Petersburg, 197022, Russia.
| | - A Runov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia.,Almazov National Medical Research Center, St. Petersburg, 197341, Russia.,Gamaleya Federal Research Center for Epidemiology and Microbiology, Moscow, 123098, Russia
| | - N Lebedeva
- Gamaleya Federal Research Center for Epidemiology and Microbiology, Moscow, 123098, Russia. .,Moscow Regional Center of AIDS and Infectious Diseases Prevention and Treatment, Moscow, 129110, Russia
| | - S Chowdhury
- University of California, San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - J M Palefsky
- University of California, San Francisco School of Medicine, San Francisco, CA 94143, USA.
| | - M Isaguliants
- Gamaleya Federal Research Center for Epidemiology and Microbiology, Moscow, 123098, Russia. .,Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences, Moscow, 108819, Russia.,Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, SE-171 77, Sweden.,Riga Stradins University, Department of Pathology, Riga, LV-1007, Latvia
| |
Collapse
|
107
|
β-HPV 8E6 Attenuates ATM and ATR Signaling in Response to UV Damage. Pathogens 2019; 8:pathogens8040267. [PMID: 31779191 PMCID: PMC6963835 DOI: 10.3390/pathogens8040267] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
Given the high prevalence of cutaneous genus beta human papillomavirus (β-HPV) infections, it is important to understand how they manipulate their host cells. This is particularly true for cellular responses to UV damage, since our skin is continually exposed to UV. The E6 protein from β-genus HPV (β-HPV E6) decreases the abundance of two essential UV-repair kinases (ATM and ATR). Although β-HPV E6 reduces their availability, the impact on downstream signaling events is unclear. We demonstrate that β-HPV E6 decreases ATM and ATR activation. This inhibition extended to XPA, an ATR target necessary for UV repair, lowering both its phosphorylation and accumulation. β-HPV E6 also hindered POLη accumulation and foci formation, critical steps in translesion synthesis. ATM’s phosphorylation of BRCA1 is also attenuated by β-HPV E6. While there was a striking decrease in phosphorylation of direct ATM/ATR targets, events further down the cascade were not reduced. In summary, despite being incomplete, β-HPV 8E6’s hindrance of ATM/ATR has functional consequences.
Collapse
|
108
|
Poropatich K, Paunesku T, Zander A, Wray B, Schipma M, Dalal P, Agulnik M, Chen S, Lai B, Antipova O, Maxey E, Brown K, Wanzer MB, Gursel D, Fan H, Rademaker A, Woloschak GE, Mittal BB. Elemental Zn and its Binding Protein Zinc-α2-Glycoprotein are Elevated in HPV-Positive Oropharyngeal Squamous Cell Carcinoma. Sci Rep 2019; 9:16965. [PMID: 31740720 PMCID: PMC6861298 DOI: 10.1038/s41598-019-53268-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 10/27/2019] [Indexed: 12/20/2022] Open
Abstract
Human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC) is biologically distinct from HPV-negative HNSCC. Outside of HPV-status, few tumor-intrinsic variables have been identified that correlate to improved survival. As part of exploratory analysis into the trace elemental composition of oropharyngeal squamous cell carcinoma (OPSCC), we performed elemental quanitification by X-ray fluorescence microscopy (XFM) on a small cohort (n = 32) of patients with HPV-positive and -negative OPSCC and identified in HPV-positive cases increased zinc (Zn) concentrations in tumor tissue relative to normal tissue. Subsequent immunohistochemistry of six Zn-binding proteins—zinc-α2-glycoprotein (AZGP1), Lipocalin-1, Albumin, S100A7, S100A8 and S100A9—revealed that only AZGP1 expression significantly correlated to HPV-status (p < 0.001) and was also increased in tumor relative to normal tissue from HPV-positive OPSCC tumor samples. AZGP1 protein expression in our cohort significantly correlated to a prolonged recurrence-free survival (p = 0.029), similar to HNSCC cases from the TCGA (n = 499), where highest AZGP1 mRNA levels correlated to improved overall survival (p = 0.023). By showing for the first time that HPV-positive OPSCC patients have increased intratumoral Zn levels and AZGP1 expression, we identify possible positive prognostic biomarkers in HNSCC as well as possible mechanisms of increased sensitivity to chemoradiation in HPV-positive OPSCC.
Collapse
Affiliation(s)
- Kate Poropatich
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Tatjana Paunesku
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alia Zander
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Brian Wray
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Matthew Schipma
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Prarthana Dalal
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Mark Agulnik
- Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Si Chen
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Barry Lai
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Olga Antipova
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Evan Maxey
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Koshonna Brown
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael Beau Wanzer
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Demirkan Gursel
- Northwestern University Pathology Core Facility, Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hanli Fan
- Northwestern University Pathology Core Facility, Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alfred Rademaker
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gayle E Woloschak
- Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bharat B Mittal
- Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
109
|
Tiwari D, Ray Das C, Sultana R, Kakoti S, Aasif Khan M, Dongre A, Husain SA, Bose PD, Bose S. Impact of modulation of telomerase and cancer stem-cell marker OCT4 axis in cervical cancer pathogenesis with underlying HPV16 infection. J Cell Biochem 2019; 121:2782-2791. [PMID: 31692038 DOI: 10.1002/jcb.29501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/10/2019] [Indexed: 01/18/2023]
Abstract
Lacunae exist in the molecular event(s) specificity associated with cervical cancer (CaCx) pathogenesis. The present study aimed to evaluate the significance of telomerase-cervical cancer stem cells (CSCs) modulation in CaCx pathogenesis with underlying HPV16 infection. The study included HPV16 positive cases only (N = 65) of the total enrolled cases from Northeast India. The analysis of viral load and the differential messenger RNA expression of E6, E7, hTERT, hTR, and cancer stem-cell markers was studied by real-time polymerase chain reaction. Further the protein and colocalization study for E6, hTERT, and oct4 was performed by immunofluorescence. The real-time polymerase chain reaction based analysis showed an upregulation of HPV16 viral oncoprotein E6 and E7, and telomerase component hTERT and hTR expression and their correlation in CaCx susceptibility and severity. The hTERT expression correlated with viral load; while the E6 and telomerase protein expression colocalized in the nucleus. The CSCs marker octamer-binding transcription factor 4 (OCT4) was significantly upregulated in CaCx cases, was associated with CaCx susceptibility and severity, and colocalized with E6 expression in the nucleus as revealed from the immunofluorescence studies. To conclude, the telomerase-OCT4 axis modulation holds key in HPV16 CaCx pathogenesis mediated by HPV16 E6 viral oncoprotein expression, and underlines its potential for therapeutic targeting.
Collapse
Affiliation(s)
- Diptika Tiwari
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, Assam, India.,Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
| | - Chandana Ray Das
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India.,Department of Obstetrics & Gynaecology, Gauhati Medical College and Hospital, Guwahati, Assam, India
| | - Rizwana Sultana
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
| | - Shantipriya Kakoti
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
| | | | - Anita Dongre
- Department of Biosciences, Jamia Millia Islamia, New Delhi, Assam, India
| | - Syed Akhtar Husain
- Department of Biosciences, Jamia Millia Islamia, New Delhi, Assam, India
| | - Purabi Deka Bose
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, Assam, India
| | - Sujoy Bose
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| |
Collapse
|
110
|
Willemsen A, Félez-Sánchez M, Bravo IG. Genome Plasticity in Papillomaviruses and De Novo Emergence of E5 Oncogenes. Genome Biol Evol 2019; 11:1602-1617. [PMID: 31076746 PMCID: PMC6557308 DOI: 10.1093/gbe/evz095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
The clinical presentations of papillomavirus (PV) infections come in many different flavors. While most PVs are part of a healthy skin microbiota and are not associated to physical lesions, other PVs cause benign lesions, and only a handful of PVs are associated to malignant transformations linked to the specific activities of the E5, E6, and E7 oncogenes. The functions and origin of E5 remain to be elucidated. These E5 open reading frames (ORFs) are present in the genomes of a few polyphyletic PV lineages, located between the early and the late viral gene cassettes. We have computationally assessed whether these E5 ORFs have a common origin and whether they display the properties of a genuine gene. Our results suggest that during the evolution of Papillomaviridae, at least four events lead to the presence of a long noncoding DNA stretch between the E2 and the L2 genes. In three of these events, the novel regions evolved coding capacity, becoming the extant E5 ORFs. We then focused on the evolution of the E5 genes in AlphaPVs infecting primates. The sharp match between the type of E5 protein encoded in AlphaPVs and the infection phenotype (cutaneous warts, genital warts, or anogenital cancers) supports the role of E5 in the differential oncogenic potential of these PVs. In our analyses, the best-supported scenario is that the five types of extant E5 proteins within the AlphaPV genomes may not have a common ancestor. However, the chemical similarities between E5s regarding amino acid composition prevent us from confidently rejecting the model of a common origin. Our evolutionary interpretation is that an originally noncoding region entered the genome of the ancestral AlphaPVs. This genetic novelty allowed to explore novel transcription potential, triggering an adaptive radiation that yielded three main viral lineages encoding for different E5 proteins, displaying distinct infection phenotypes. Overall, our results provide an evolutionary scenario for the de novo emergence of viral genes and illustrate the impact of such genotypic novelty in the phenotypic diversity of the viral infections.
Collapse
Affiliation(s)
- Anouk Willemsen
- Laboratory MIVEGEC (UMR CNRS IRD Uni Montpellier), Centre National de la Recherche Scientique (CNRS), Montpellier, France
| | - Marta Félez-Sánchez
- Infections and Cancer Laboratory, Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Ignacio G Bravo
- Laboratory MIVEGEC (UMR CNRS IRD Uni Montpellier), Centre National de la Recherche Scientique (CNRS), Montpellier, France
| |
Collapse
|
111
|
Tumban E. A Current Update on Human Papillomavirus-Associated Head and Neck Cancers. Viruses 2019; 11:v11100922. [PMID: 31600915 PMCID: PMC6833051 DOI: 10.3390/v11100922] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023] Open
Abstract
Human papillomavirus (HPV) infection is the cause of a growing percentage of head and neck cancers (HNC); primarily, a subset of oral squamous cell carcinoma, oropharyngeal squamous cell carcinoma, and laryngeal squamous cell carcinoma. The majority of HPV-associated head and neck cancers (HPV + HNC) are caused by HPV16; additionally, co-factors such as smoking and immunosuppression contribute to the progression of HPV + HNC by interfering with tumor suppressor miRNA and impairing mediators of the immune system. This review summarizes current studies on HPV + HNC, ranging from potential modes of oral transmission of HPV (sexual, self-inoculation, vertical and horizontal transmissions), discrepancy in the distribution of HPV + HNC between anatomical sites in the head and neck region, and to studies showing that HPV vaccines have the potential to protect against oral HPV infection (especially against the HPV types included in the vaccines). The review concludes with a discussion of major challenges in the field and prospects for the future: challenges in diagnosing HPV + HNC at early stages of the disease, measures to reduce discrepancy in the prevalence of HPV + HNC cases between anatomical sites, and suggestions to assess whether fomites/breast milk can transmit HPV to the oral cavity.
Collapse
Affiliation(s)
- Ebenezer Tumban
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr, Houghton, MI 49931, USA.
| |
Collapse
|
112
|
Cervical cancer and HPV infection: ongoing therapeutic research to counteract the action of E6 and E7 oncoproteins. Drug Discov Today 2019; 24:2044-2057. [DOI: 10.1016/j.drudis.2019.07.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 07/09/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022]
|
113
|
DuShane JK, Maginnis MS. Human DNA Virus Exploitation of the MAPK-ERK Cascade. Int J Mol Sci 2019; 20:ijms20143427. [PMID: 31336840 PMCID: PMC6679023 DOI: 10.3390/ijms20143427] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/19/2022] Open
Abstract
The extracellular signal-regulated kinases (ERKs) comprise a particular branch of the mitogen-activated protein kinase cascades (MAPK) that transmits extracellular signals into the intracellular environment to trigger cellular growth responses. Similar to other MAPK cascades, the MAPK-ERK pathway signals through three core kinases—Raf, MAPK/ERK kinase (MEK), and ERK—which drive the signaling mechanisms responsible for the induction of cellular responses from extracellular stimuli including differentiation, proliferation, and cellular survival. However, pathogens like DNA viruses alter MAPK-ERK signaling in order to access DNA replication machineries, induce a proliferative state in the cell, or even prevent cell death mechanisms in response to pathogen recognition. Differential utilization of this pathway by multiple DNA viruses highlights the dynamic nature of the MAPK-ERK pathway within the cell and the importance of its function in regulating a wide variety of cellular fates that ultimately influence viral infection and, in some cases, result in tumorigenesis.
Collapse
Affiliation(s)
- Jeanne K DuShane
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04401, USA
| | - Melissa S Maginnis
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04401, USA.
- Graduate School in Biomedical Sciences and Engineering, The University of Maine, Orono, ME 04401, USA.
| |
Collapse
|
114
|
Banerjee S, Karunagaran D. An integrated approach for mining precise RNA-based cervical cancer staging biomarkers. Gene 2019; 712:143961. [PMID: 31279709 DOI: 10.1016/j.gene.2019.143961] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023]
Abstract
Since international federation of gynecology and obstetrics (FIGO) staging is mainly based on clinical assessment, an integrated approach for mining RNA based biomarkers for understanding the molecular deregulation of signaling pathways and RNAs in cervical cancer was proposed in this study. Publicly available data were mined for identifying significant RNAs after patient staging. Significant miRNA families were identified from mRNA-miRNA and lncRNA-miRNA interaction network analyses followed by stage specific mRNA-miRNA-lncRNA association network generation. Integrated bioinformatic analyses of selected mRNAs and lncRNAs were performed. Results suggest that HBA1, HBA2, HBB, SLC2A1, CXCL10 (stage I), PKIA (stage III) and S100A7 (stage IV) were important. miRNA family enrichment of interacting miRNA partners of selected RNAs indicated the enrichment of let-7 family. Assembly of collagen fibrils and other multimeric structures_Homosapiens_R-HSA-2022090 in pathway analysis and progesterone_CTD_00006624 in DSigDB analysis were the most significant and SLC2A1, hsa-miR-188-3p, hsa-miR-378a-3p and hsa-miR-150-5p were selected as survival markers.
Collapse
Affiliation(s)
- Satarupa Banerjee
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai 600036, India
| | - Devarajan Karunagaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai 600036, India.
| |
Collapse
|
115
|
Widjaja VN. Awareness, Knowledge and Attitudes of Human Papillomavirus (HPV) among Private University Students- Malaysia Perspective. Asian Pac J Cancer Prev 2019; 20:2045-2050. [PMID: 31350964 PMCID: PMC6745202 DOI: 10.31557/apjcp.2019.20.7.2045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 06/28/2019] [Indexed: 11/25/2022] Open
Abstract
Objective: Assess and analyse the awareness, knowledge, and attitudes of university students regarding HPV and its vaccine. Methods: A cross-sectional study was designed with questionnaire serving as the research instrument. A total of 425 university students were recruited voluntarily. Thirteen assessable questions were analysed to reveal the mean total knowledge score of HPV and its vaccine. Both descriptive and statistical approach were employed to analyse the research outcomes. Results: Students were moderately aware as 59.8% and 49.6% have heard about HPV and its vaccine, respectively. The mean total knowledge score was 5.26 ± 3.10 out of 13 which was found to be moderately knowledgeable. Female (N= 235) have a significantly higher mean knowledge score in comparison to male (N= 190) at 5.58 ± 2.80 versus 4.87 ± 3.40, respectively (p<0.05), likely due to the disease profiles favouring female. As hypothesised, health-related school students (N= 171) outperformed other schools (N= 254) at 7.00 ± 2.95 versus 4.10 ± 2.62, respectively (p<0.001). In general, the score depends on participant’s gender and educational background (χ2= 25.426, p<0.01 and χ2= 105.337, p<0.001, respectively). Despite low vaccination uptakes (28.5%), students accept the vaccine following physician’s recommendation and reject due to its cost. A positive attitude was seen as majority (88.7%) wished to know more about HPV. Conclusion: Moderation in awareness, knowledge and attitudes reflect the lifestyle of an urbanised population where information is accessible. Healthcare professionals, media campaign, and educational talk refinement are therefore essential in controlling the disease by spreading awareness.
Collapse
|
116
|
Chatterjee K, Mukherjee S, Vanmanen J, Banerjee P, Fata JE. Dietary Polyphenols, Resveratrol and Pterostilbene Exhibit Antitumor Activity on an HPV E6-Positive Cervical Cancer Model: An in vitro and in vivo Analysis. Front Oncol 2019; 9:352. [PMID: 31143704 PMCID: PMC6521745 DOI: 10.3389/fonc.2019.00352] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
Human papilloma virus (HPV)-induced cervical cancer is one of the most frequent cancers in women residing in underdeveloped countries. Natural compounds like polyphenols continue to be of scientific interest as non-toxic effective alternative treatments. Our previous work showed the efficacy of two polyphenols, resveratrol, and pterostilbene on human HeLa cells. Here we explored the in vitro anti-cancer activity and in vivo anti-tumor potential of these two structurally similar compounds on HPV oncogene E6 and E7 positive murine TC1 cells. In vitro analysis confirmed the cytotoxic potential of both resveratrol and pterostilbene compounds with each having a low IC50 value and each showing the ability to downregulate viral oncogene E6. Further in vivo studies on TC1 tumors developing in mice indicated that treatment with either resveratrol or pterostilbene can significantly inhibit tumor development, with both compounds capable of downregulating E6 and VEGF tumor protein levels. Interestingly, the decrease in tumor size in pterostilbene was associated with tumor cell apoptosis, as indicated by an upregulation of activated caspase-3 whereas in resveratrol-treated mice it was accompanied by arrest of cell cycle, as indicated by a downregulation of PCNA. Thus, resveratrol and pterostilbene can serve as potential antineoplastic agents against HPV E6+ tumors and may suppress tumor growth via two different mechanisms.
Collapse
Affiliation(s)
- Kaushiki Chatterjee
- Doctoral Program in Biology, CUNY Graduate Center, New York, NY, United States
- Department of Biology, College of Staten Island, New York, NY, United States
| | - Sumit Mukherjee
- Doctoral Program in Biochemistry, CUNY Graduate Center, New York, NY, United States
- Department of Chemistry & The Center for Developmental Neuroscience, City University of New York at The College of Staten Island, New York, NY, United States
| | - Jonathan Vanmanen
- Department of Biology, College of Staten Island, New York, NY, United States
| | - Probal Banerjee
- Doctoral Program in Biology, CUNY Graduate Center, New York, NY, United States
- Doctoral Program in Biochemistry, CUNY Graduate Center, New York, NY, United States
- Department of Chemistry & The Center for Developmental Neuroscience, City University of New York at The College of Staten Island, New York, NY, United States
| | - Jimmie E. Fata
- Doctoral Program in Biology, CUNY Graduate Center, New York, NY, United States
- Department of Biology, College of Staten Island, New York, NY, United States
- Doctoral Program in Biochemistry, CUNY Graduate Center, New York, NY, United States
| |
Collapse
|
117
|
Lu X, Jiang L, Zhang L, Zhu Y, Hu W, Wang J, Ruan X, Xu Z, Meng X, Gao J, Su X, Yan F. Immune Signature-Based Subtypes of Cervical Squamous Cell Carcinoma Tightly Associated with Human Papillomavirus Type 16 Expression, Molecular Features, and Clinical Outcome. Neoplasia 2019; 21:591-601. [PMID: 31055200 PMCID: PMC6658934 DOI: 10.1016/j.neo.2019.04.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023] Open
Abstract
Substantial heterogeneity exists within cervical cancer that is generally infected by human papillomavirus (HPV). However, the most common histological subtype of cervical cancer, cervical squamous cell carcinoma (CSCC), is poorly characterized regarding the association between its heterogeneity and HPV oncoprotein expression. We filtered out 138 CSCC samples with infection of HPV16 only as the first step; then we compressed HPV16 E6/E7 expression as HPVpca and correlated HPVpca with the immunological profiling of CSCC based on supervised clustering to discover subtypes and to characterize the differences between subgroups in terms of the HPVpca level, pathway activity, epigenetic dysregulation, somatic mutation frequencies, and likelihood of responding to chemo/immunotherapies. Supervised clustering of immune signatures revealed two HPV16 subtypes (namely, HPV16-IMM and HPV16-KRT) that correlated with HPVpca and clinical outcomes. HPV16-KRT is characterized by elevated expression of genes in keratinization, biological oxidation, and Wnt signaling, whereas HPV16-IMM has a strong immune response and mesenchymal features. HPV16-IMM exhibited much more epigenetic silencing and significant mutation at FBXW7, while MUC4 and PIK3CA were mutated frequently for HPV16-KRT. We also imputed that HPV16-IMM is much more sensitive to chemo/immunotherapy than is HPV16-KRT. Our characterization tightly links the expression of HPV16 E6/E7 with biological and clinical outcomes of CSCC, providing valuable molecular-level information that points to decoding heterogeneity. Together, these results shed light on stratifications of CSCC infected by HPV16 and shall help to guide personalized management and treatment of patients.
Collapse
Affiliation(s)
- Xiaofan Lu
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China
| | - Liyun Jiang
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China
| | - Liya Zhang
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China
| | - Yue Zhu
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China
| | - Wenjun Hu
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China
| | - Jiashuo Wang
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China
| | - Xinjia Ruan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China
| | - Zhengbao Xu
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China
| | - Xiaowei Meng
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China
| | - Jun Gao
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China
| | - Xiaoping Su
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Fangrong Yan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China.
| |
Collapse
|
118
|
Canuti M, Munro HJ, Robertson GJ, Kroyer ANK, Roul S, Ojkic D, Whitney HG, Lang AS. New Insight Into Avian Papillomavirus Ecology and Evolution From Characterization of Novel Wild Bird Papillomaviruses. Front Microbiol 2019; 10:701. [PMID: 31031718 PMCID: PMC6473165 DOI: 10.3389/fmicb.2019.00701] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/20/2019] [Indexed: 11/24/2022] Open
Abstract
Viruses in the family Papillomaviridae have circular dsDNA genomes of approximately 5.7–8.6 kb that are packaged within non-enveloped, icosahedral capsids. The known papillomavirus (PV) representatives infect vertebrates, and there are currently more than 130 recognized PV species in more than 50 genera. We identified 12 novel avian papillomavirus (APV) types in wild birds that could represent five distinct species and two genera. Viruses were detected in paired oropharyngeal/cloacal swabs collected from six bird species, increasing the number of avian species known to harbor PVs by 40%. A new duck PV (DuPV-3) was found in mallard and American black duck (27.6% estimated prevalence) that was monophyletic with other known DuPVs. A single viral type was identified in Atlantic puffin (PuPV-1, 9.8% estimated prevalence), while a higher genetic diversity was found in other Charadriiformes. Specifically, three types [gull PV-1 (GuPV-1), -2, and -3] were identified in two gull species (estimated prevalence of 17% and 2.6% in American herring and great black-backed gull, respectively), and seven types [kittiwake PV-1 (KiPV-1) through -7] were found in black-legged kittiwake (81.3% estimated prevalence). Significantly higher DuPV-3 circulation was observed in spring compared to fall and in adults compared to juveniles. The studied host species’ tendencies to be in crowded environments likely affect infection rates and their migratory behaviors could explain the high viral diversity, illustrating how host behavior can influence viral ecology and distribution. For DuPV-3, GuPV-1, PuPV-1, and KiPV-2, we obtained the complete genomic sequences, which showed the same organization as other known APVs. Phylogenetic analyses showed evidence for virus–host co-divergence at the host taxonomic levels of family, order, and inter-order, but we also observed that host-specificity constraints are relaxed among highly related hosts as we found cross-species transmission within ducks and within gulls. Furthermore, the phylogeny of viruses infecting the Charadriiformes did not match the host phylogeny and gull viruses formed distinct monophyletic clades with kittiwake viruses, possibly reflecting past host-switching events. Considering the vast PV genotype diversity in other hosts and the large number of bird species, many more APVs likely remain to be discovered.
Collapse
Affiliation(s)
- Marta Canuti
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Hannah J Munro
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Gregory J Robertson
- Wildlife Research Division, Environment and Climate Change Canada, Mount Pearl, NL, Canada
| | - Ashley N K Kroyer
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sheena Roul
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Davor Ojkic
- Animal Health Laboratory, University of Guelph, Guelph, ON, Canada
| | - Hugh G Whitney
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
119
|
Wang HF, Wang SS, Tang YJ, Chen Y, Zheng M, Tang YL, Liang XH. The Double-Edged Sword-How Human Papillomaviruses Interact With Immunity in Head and Neck Cancer. Front Immunol 2019; 10:653. [PMID: 31001266 PMCID: PMC6454067 DOI: 10.3389/fimmu.2019.00653] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/11/2019] [Indexed: 02/05/2023] Open
Abstract
Patients with human papilloma virus (HPV)-associated head and neck squamous cell carcinoma (HNSCC) have remarkably better prognosis, which differs from HPV-negative oropharyngeal squamous cell carcinoma (OPSCC) with respect to clinical, genomic, molecular, and immunological aspects, especially having the characteristics of high levels of immune cell infiltration and high degrees of immunosuppression. This review will summarize immune evasion mechanisms in HPV-positive HNSCC, analyze the host various immune responses to HPV and abundant numbers of infiltrating immune cell, and discuss the differences between HPV-positive HNSCC with cervical cancer. A deeper understanding of the immune landscape will help new concepts to emerge in immune-checkpoint oncology, which might be a valuable add-on to established concepts.
Collapse
Affiliation(s)
- Hao-Fan Wang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Sha-Sha Wang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Yu Chen
- State Key Laboratory of Oral Diseases, Department of Oral Pathology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Min Zheng
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, Department of Oral Pathology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| |
Collapse
|
120
|
Kuguyo O, Tsikai N, Thomford NE, Magwali T, Madziyire MG, Nhachi CFB, Matimba A, Dandara C. Genetic Susceptibility for Cervical Cancer in African Populations: What Are the Host Genetic Drivers? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 22:468-483. [PMID: 30004844 DOI: 10.1089/omi.2018.0075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human papillomavirus (HPV) is an essential but not a sufficient cervical cancer etiological factor. Cancer promoters, such as host genetic mutations, significantly modulate therapeutic responses and susceptibility. In cervical cancer, of interest have been viral clearing genes and HPV oncoprotein targets, for which conflicting data have been reported among different populations. This expert analysis evaluates cervical cancer genetic susceptibility biomarkers studied in African populations. Notably, the past decade has seen Africa as a hotbed of biomarker and precision medicine innovations, thus potentially informing worldwide biomarker development strategies. We conducted a critical literature search in PubMed/MEDLINE, Google Scholar, and Scopus databases for case-control studies reporting on cervical cancer genetic polymorphisms among Africans. We found that seven African countries conducted cervical cancer molecular epidemiology studies in one of Casp8, p53, CCR2, FASL, HLA, IL10, TGF-beta, and TNF-alpha genes. This analysis reveals a remarkable gap in cervical cancer molecular epidemiology among Africans, whereas cervical cancer continues to disproportionately have an impact on African populations. Genome-wide association, whole exome- and whole-genome sequencing studies confirmed the contribution of candidate genes in cervical cancer. With such advances and omics technologies, the role of genetic susceptibility biomarkers can be exploited to develop novel interventions to improve current screening, diagnostic and prognostic methods worldwide. Exploring these genetic variations is crucial because African populations are genetically diverse and some variants or their combined effects are yet to be discovered and translated into tangible clinical applications. Thus, translational medicine and flourishing system sciences in Africa warrant further emphasis in the coming decade.
Collapse
Affiliation(s)
- Oppah Kuguyo
- 1 Department of Clinical Pharmacology, College of Health Sciences, University of Zimbabwe , Harare, Zimbabwe
| | - Nomsa Tsikai
- 2 Chemotherapy and Radiotherapy Center, Parirenyatwa Group of Hospitals , Harare, Zimbabwe
| | - Nicholas E Thomford
- 3 Pharmacogenetics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| | - Thulani Magwali
- 4 Department of Obstetrics and Gynecology, College of Health Sciences, University of Zimbabwe , Harare, Zimbabwe
| | - Mugove G Madziyire
- 4 Department of Obstetrics and Gynecology, College of Health Sciences, University of Zimbabwe , Harare, Zimbabwe
| | - Charles F B Nhachi
- 1 Department of Clinical Pharmacology, College of Health Sciences, University of Zimbabwe , Harare, Zimbabwe
| | - Alice Matimba
- 1 Department of Clinical Pharmacology, College of Health Sciences, University of Zimbabwe , Harare, Zimbabwe
| | - Collet Dandara
- 3 Pharmacogenetics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| |
Collapse
|
121
|
Mahmoodi P, Fani M, Rezayi M, Avan A, Pasdar Z, Karimi E, Amiri IS, Ghayour-Mobarhan M. Early detection of cervical cancer based on high-risk HPV DNA-based genosensors: A systematic review. Biofactors 2019; 45:101-117. [PMID: 30496635 DOI: 10.1002/biof.1465] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/15/2018] [Accepted: 09/23/2018] [Indexed: 12/22/2022]
Abstract
Human papillomavirus type (HPV) is a common cause of sexually transmitted disease (STD) in humans. HPV types 16 and 18 as the highest risk types are related with gynecologic malignancy and cervical cancer (CC) among women worldwide. Recently, considerable development of genosensors, which allows dynamic monitoring of hybridization events for HPV-16 and 18, has been a topic of focus by many researchers. In this systematic review, we highlight the route of development of DNA-based genosensory detection methods for diagnosis of high risk of HPV precancer. Biosensor detection methods of HPV-16 and 18 was investigated from 1994 to 2018 using several databases including PubMed, Cochrane Library, Scopus, Google Scholar, SID, and Scientific Information Database. Manual search of references of retrieved articles were also performed. A total of 50 studies were reviewed. By analyzing the most recent developed electrochemical biosensors for the identification of HPV, we observed that the sensor platform fabricated by Wang et al. holds the lowest detection limit reported in the literature for the DNA of HPV-16. Up to this date, optical, electrochemical, and piezoelectric systems are the main transducers used in the development of biosensors. Among the most sensitive techniques available to study the biorecognition activity of the sensors, we highlight the biosensors based fluorescent, EIS, and QCM. The current systematic review focuses on the sensory diagnostic methods that are being used to detect HPV-16 and 18 worldwide. Special emphasis is given on the sensory techniques that can diagnosis the individuals with CC. © 2018 BioFactors, 45(2):101-117, 2019.
Collapse
Affiliation(s)
- Pegah Mahmoodi
- Department of Biology, Faculty of Science, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mona Fani
- Virology Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Rezayi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Pasdar
- Medical School, University of Aberdeen, Aberdeen, UK
| | - Ehsan Karimi
- Department of Biology, Faculty of Science, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Iraj S Amiri
- Computational Optics Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Majid Ghayour-Mobarhan
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
122
|
Crawford T, Fletcher N, Veitch M, Gonzalez Cruz JL, Pett N, Brereton I, Wells JW, Mobli M, Tesiram Y. Bacillus anthracis Protective Antigen Shows High Specificity for a UV Induced Mouse Model of Cutaneous Squamous Cell Carcinoma. Front Med (Lausanne) 2019; 6:22. [PMID: 30809524 PMCID: PMC6379334 DOI: 10.3389/fmed.2019.00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 01/24/2019] [Indexed: 11/13/2022] Open
Abstract
Squamous cell carcinoma (SCC) accounts for the majority of non-melanoma skin cancer related deaths, particularly in immunosuppressed persons. Identification of biomarkers that could be used to identify or treat SCC would be of significant benefit. The anthrax toxin receptors, Tumor Endothelial Marker 8 (TEM8) and Capillary Morphogenesis Gene 2 (CMG2), are endothelial receptors involved in extracellular matrix homeostasis and angiogenesis that are selectively upregulated on numerous tumors. One method of targeting these receptors is Protective Antigen (PA), a protein produced by B. anthracis that mediates binding and translocation of anthrax toxins into cells. PA targeted toxins have been demonstrated to selectively inhibit tumor growth and angiogenesis, but tumor selectivity of PA is currently unknown. In this work fluorescently labeled PA was shown to maintain receptor dependent binding and internalization in vitro. Utilizing a human papillomavirus transgenic mouse model that develops cutaneous SCC in response to ultraviolet irradiation we identified tumor uptake of PA in vivo. The intravenously administered PA resulted in tumor specific localization, with exclusive tumor detection 24 h post injection. Ex vivo analysis identified significantly higher fluorescence in the tumor compared to adjacent healthy tissue and major clearance organs, demonstrating low non-specific uptake and rapid clearance. While both TEM8 and CMG2 were observed to be overexpressed in SCC tumor sections compared to control skin, the intravenously administered PA was primarily co-localized with TEM8. These results suggest that PA could be systemically administered for rapid identification of cutaneous SCC, with potential for further therapeutic development.
Collapse
Affiliation(s)
- Theo Crawford
- Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD, Australia
| | - Nicholas Fletcher
- Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD, Australia.,Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council (ARC) Centre of Excellence in Convergent BioNano Science and Technology, Queensland Node, The University of Queensland, Brisbane, QLD, Australia
| | - Margaret Veitch
- Faculty of Medicine, Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Jazmina L Gonzalez Cruz
- Faculty of Medicine, Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Nicola Pett
- Faculty of Medicine, Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Ian Brereton
- Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD, Australia
| | - James W Wells
- Faculty of Medicine, Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Mehdi Mobli
- Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD, Australia
| | - Yasvir Tesiram
- Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
123
|
León-Ordóñez K, Abad-Sojos S. Prevention of cervical cancer development through early detection of HPV using novelty molecular applications. BIONATURA 2019. [DOI: 10.21931/rb/cs/2019.02.01.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human Papillomavirus (HPV) is the predominant cause of cervical cancer worldwide. The infections with HPVs 16 and 18 have a high oncogenic risk for cancer development. Besides, the genes E6 and E7 encode viral oncoproteins associated with infection. New molecular techniques for HPV detection, show important advantages such as high sensitivity, recognition capacity, reliability, among others. These techniques allow the standardization of new protocols associated with the detection in a variety of substances and samples. The stretch relationship between the virus and the disease open a new field to study early detection of the HPV infection. Additionally, less concentration of the sample is needed. Considering the significance of the detection, the present paper explains five novelty molecular applications for the prevention cervical cancer and early detection of HPV such as RNA in situ Hybridization for the detection of HPV E6/E7, genosensors, electrochemical DNA biosensor, PCR-based urine assay and a semen assay for detection of HPV. All the methods related to DNA samples could be used for both genders, there are more acceptable and easy to collect.
Collapse
|
124
|
Heyman B, Yang Y. Chimeric Antigen Receptor T Cell Therapy for Solid Tumors: Current Status, Obstacles and Future Strategies. Cancers (Basel) 2019; 11:cancers11020191. [PMID: 30736355 PMCID: PMC6407020 DOI: 10.3390/cancers11020191] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/28/2019] [Accepted: 02/02/2019] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor T cells (CAR T Cells) have led to dramatic improvements in the survival of cancer patients, most notably those with hematologic malignancies. Early phase clinical trials in patients with solid tumors have demonstrated them to be feasible, but unfortunately has yielded limited efficacy for various cancer types. In this article we will review the background on CAR T cells for the treatment of solid tumors, focusing on the unique obstacles that solid tumors present for the development of adoptive T cell therapy, and the novel approaches currently under development to overcome these hurdles.
Collapse
Affiliation(s)
- Benjamin Heyman
- Division of Regenerative Medicine, Department of Medicine, UC San Diego, La Jolla, CA 92093, USA.
| | - Yiping Yang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Department of Immunology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
125
|
Tiedemann D, Jakobsen KK, von Buchwald C, Grønhøj C. Systematic review on location and timing of distant progression in human papillomavirus-positive and human papillomavirus-negative oropharyngeal squamous cell carcinomas. Head Neck 2018; 41:793-798. [DOI: 10.1002/hed.25458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/31/2018] [Accepted: 08/27/2018] [Indexed: 01/23/2023] Open
Affiliation(s)
- Daniel Tiedemann
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology; University Hospital Rigshospitalet; Copenhagen Denmark
| | - Kathrine Kronberg Jakobsen
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology; University Hospital Rigshospitalet; Copenhagen Denmark
| | - Christian von Buchwald
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology; University Hospital Rigshospitalet; Copenhagen Denmark
| | - Christian Grønhøj
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology; University Hospital Rigshospitalet; Copenhagen Denmark
| |
Collapse
|
126
|
Abstract
Immunosuppression is essential to prevent graft rejection. However, immunosuppression impairs the ability of the host immune system to control viral infection and decreases tumor immunosurveillance. Therefore, immunosuppression after organ transplantation is a major risk factor for posttransplantation cancer. Notably, recent reports suggest that immunosuppressive agents can activate tumorigenic pathways independent of the involvement of the host immune system. In this review, we focus on cell-intrinsic tumorigenic pathways directly activated by immunosuppressive agents and discuss the much-described infection- and immune-mediated mechanisms of cancer development in organ transplant recipients.
Collapse
Affiliation(s)
- Murugabaskar Balan
- Division of Nephrology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Samik Chakraborty
- Division of Nephrology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Soumitro Pal
- Division of Nephrology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
127
|
Abstract
Although some members of the viral family Papillomaviridae cause benign skin warts (papillomas), many human papillomavirus (HPV) infections are not associated with visible symptoms. For example, most healthy adults chronically shed Gammapapillomavirus (Gamma) virions from apparently healthy skin surfaces. To further explore the diversity of papillomaviruses, we performed viromic surveys on immunodeficient individuals suffering from florid skin warts. Our results nearly double the number of known Gamma HPV types and suggest that WHIM syndrome patients are uniquely susceptible to Gamma HPV-associated skin warts. Preliminary results suggest that treatment with the drug plerixafor may promote resolution of the unusual Gamma HPV skin warts observed in WHIM patients. Several immunodeficiencies are associated with high susceptibility to persistent and progressive human papillomavirus (HPV) infection leading to a wide range of cutaneous and mucosal lesions. However, the HPV types most commonly associated with such clinical manifestations in these patients have not been systematically defined. Here, we used virion enrichment, rolling circle amplification, and deep sequencing to identify circular DNA viruses present in skin swabs and/or wart biopsy samples from 48 patients with rare genetic immunodeficiencies, including patients with warts, hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome, or epidermodysplasia verruciformis (EV). Their profiles were compared with the profiles of swabs from 14 healthy adults and warts from 6 immunologically normal children. Individual patients were typically infected with multiple HPV types; up to 26 different types were isolated from a single patient (multiple anatomical sites, one time point). Among these, we identified the complete genomes of 83 previously unknown HPV types and 35 incomplete genomes representing possible additional new types. HPV types in the genus Gammapapillomavirus were common in WHIM patients, whereas EV patients mainly shed HPVs from the genus Betapapillomavirus. Preliminary evidence based on three WHIM patients treated with plerixafor, a leukocyte mobilizing agent, suggest that longer-term therapy may correlate with decreased HPV diversity and increased predominance of HPV types associated with childhood skin warts. IMPORTANCE Although some members of the viral family Papillomaviridae cause benign skin warts (papillomas), many human papillomavirus (HPV) infections are not associated with visible symptoms. For example, most healthy adults chronically shed Gammapapillomavirus (Gamma) virions from apparently healthy skin surfaces. To further explore the diversity of papillomaviruses, we performed viromic surveys on immunodeficient individuals suffering from florid skin warts. Our results nearly double the number of known Gamma HPV types and suggest that WHIM syndrome patients are uniquely susceptible to Gamma HPV-associated skin warts. Preliminary results suggest that treatment with the drug plerixafor may promote resolution of the unusual Gamma HPV skin warts observed in WHIM patients.
Collapse
|
128
|
Ramezani A, Nikravesh H, Faghihloo E. The roles of FOX proteins in virus-associated cancers. J Cell Physiol 2018; 234:3347-3361. [PMID: 30362516 DOI: 10.1002/jcp.27295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022]
Abstract
Forkhead box (FOX) proteins play a crucial role in regulating the expression of genes involved in multiple biological processes, such as metabolism, development, differentiation, proliferation, apoptosis, migration, invasion, and longevity. Deregulation of FOX proteins is commonly associated with cancer initiation, progression, and chemotherapeutic drug resistance in many human tumors. FOX proteins deregulate through genetic events and the perturbation of posttranslational modification. The purpose of the present review is to describe the deregulation of FOX proteins by oncoviruses. Oncoviruses utilize various mechanisms to deregulate FOX proteins, including alterations in posttranslational modifications, cellular localization independently of posttranslational modifications, virus-encoded miRNAs, activation or suppression of a series of cell signaling pathways. This deregulation can affect proliferation, metastasis, chemotherapy resistance, and immunosuppression in virus-induced cancers and help to chronic viral infection, development of gluconeogenic responses, and inflammation. Since the PI3K/Akt/mTOR signaling pathway is the upstream FOXO, suppressing it can cause FOXO function to return, and this can be one of the reasons for patients to recover from the infection of the viruses used to treat these inhibitors. Hence, FOX proteins could serve as prognosis markers and target therapy specifically in cancers caused by oncoviruses.
Collapse
Affiliation(s)
- Ali Ramezani
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hojatolla Nikravesh
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
129
|
Pańczyszyn A, Boniewska-Bernacka E, Głąb G. Telomeres and Telomerase During Human Papillomavirus-Induced Carcinogenesis. Mol Diagn Ther 2018; 22:421-430. [PMID: 29777397 PMCID: PMC6061425 DOI: 10.1007/s40291-018-0336-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human papillomaviruses (HPVs) belong to a small spherical virus family and are transmitted through direct contact, most often through sexual behavior. More than 200 types of HPV are known, a dozen or so of which are classified as high-risk viruses (HR HPV) and may contribute to the development of cervical cancer. HPV is a small virus with a capsid composed of L1 and L2 proteins, which are crucial for entry to the cell. The infection begins at the basal cell layer and progresses to involve cells from higher layers of the cervical epithelium. E6 and E7 viral proteins are involved in the process of carcinogenesis. They interact with suppressors of oncogenesis, including p53 and Rb proteins. This leads to DNA replication and intensive cell divisions. The persistent HR HPV infection leads to the development of dysplasia and these changes may progress to invasive cancer. During the initial stage of carcinogenesis, telomeres shorten until telomerase activates. The activation of telomerase, the enzyme necessary to extend chromosome ends (telomeres) is the key step in cell immortalization. Analyzing the expression level of hTERT and hTERC genes encoding telomerase and telomere length measurement may constitute new markers of the early carcinogenesis.
Collapse
Affiliation(s)
- Anna Pańczyszyn
- Department of Biotechnology and Molecular Biology, University of Opole, ul. Kominka 6, 45-035, Opole, Poland.
| | - Ewa Boniewska-Bernacka
- Department of Biotechnology and Molecular Biology, University of Opole, ul. Kominka 6, 45-035, Opole, Poland
| | - Grzegorz Głąb
- Public Higher Medical Professional School in Opole, Opole, Poland
| |
Collapse
|
130
|
The Myb-related protein MYPOP is a novel intrinsic host restriction factor of oncogenic human papillomaviruses. Oncogene 2018; 37:6275-6284. [PMID: 30018400 PMCID: PMC6265261 DOI: 10.1038/s41388-018-0398-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 11/08/2022]
Abstract
The skin represents a physical and chemical barrier against invading pathogens, which is additionally supported by restriction factors that provide intrinsic cellular immunity. These factors detect viruses to block their replication cycle. Here, we uncover the Myb-related transcription factor, partner of profilin (MYPOP) as a novel antiviral protein. It is highly expressed in the epithelium and binds to the minor capsid protein L2 and the DNA of human papillomaviruses (HPV), which are the primary causative agents of cervical cancer and other tumors. The early promoter activity and early gene expression of the oncogenic HPV types 16 and 18 is potently silenced by MYPOP. Cellular MYPOP-depletion relieves the restriction of HPV16 infection, demonstrating that MYPOP acts as a restriction factor. Interestingly, we found that MYPOP protein levels are significantly reduced in diverse HPV-transformed cell lines and in HPV-induced cervical cancer. Decades ago it became clear that the early oncoproteins E6 and E7 cooperate to immortalize keratinocytes by promoting degradation of tumor suppressor proteins. Our findings suggest that E7 stimulates MYPOP degradation. Moreover, overexpression of MYPOP blocks colony formation of HPV and non-virally transformed keratinocytes, suggesting that MYPOP exhibits tumor suppressor properties.
Collapse
|
131
|
Khanizadeh S, Hasanvand B, Esmaeil Lashgarian H, Almasian M, Goudarzi G. Interaction of viral oncogenic proteins with the Wnt signaling pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:651-659. [PMID: 30140402 PMCID: PMC6098952 DOI: 10.22038/ijbms.2018.28903.6982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/08/2018] [Indexed: 12/13/2022]
Abstract
It is estimated that up to 20% of all types of human cancers worldwide are attributed to viruses. The genome of oncogenic viruses carries genes that have protein products that act as oncoproteins in cell proliferation and transformation. The modulation of cell cycle control mechanisms, cellular regulatory and signaling pathways by oncogenic viruses, plays an important role in viral carcinogenesis. Different signaling pathways play a part in the carcinogenesis that occurs in a cell. Among these pathways, the Wnt signaling pathway plays a predominant role in carcinogenesis and is known as a central cellular pathway in the development of tumors. There are three Wnt signaling pathways that are well identified, including the canonical or Wnt/β-catenin dependent pathway, the noncanonical or β-catenin-independent planar cell polarity (PCP) pathway, and the noncanonical Wnt/Ca2+ pathway. Most of the oncogenic viruses modulate the canonical Wnt signaling pathway. This review discusses the interaction between proteins of several human oncogenic viruses with the Wnt signaling pathway.
Collapse
Affiliation(s)
- Sayyad Khanizadeh
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Banafsheh Hasanvand
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Mohammad Almasian
- Department of English Language, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Gholamreza Goudarzi
- Department of Microbiology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
132
|
Wang Q, Qin Q, Song R, Zhao C, Liu H, Yang Y, Gu S, Zhou D, He J. NHERF1 inhibits beta-catenin-mediated proliferation of cervical cancer cells through suppression of alpha-actinin-4 expression. Cell Death Dis 2018; 9:668. [PMID: 29867145 PMCID: PMC5986762 DOI: 10.1038/s41419-018-0711-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/09/2018] [Accepted: 05/10/2018] [Indexed: 01/15/2023]
Abstract
Cervical cancer is one of the most lethal types of cancer in female. Aberrant activation of Wnt/β-catenin signaling pathway has been found to be involved in cervical cancer development and progression, whereas the underlying molecular mechanisms remain poorly understood. The present study showed that NHERF1 was a novel gene associated with both cell proliferation and Wnt signaling pathway in cervical cancer by analysis of differential gene expression and gene cluster for the cervical cancer specimens from GEO data sets. It was further demonstrated in cellular study that NHERF1 inhibition of cervical cancer cell proliferation through Wnt/β-catenin signaling was dependent on α-actinin-4 (ACTN4) expression. A negative association between NHERF1 expression and levels of ACTN4 and β-catenin was found in mouse xenograft model and cervical cancer specimens. Low levels of NHERF1 in cervical cancer specimens were found to associate with activation of cell proliferation and Wnt/β-catenin signaling by gene set enrichment analysis, and also were an independent predictive factor for worse prognosis of cervical cancer patients by Cox regression analysis. These findings demonstrate that NHERF1 inhibits Wnt signaling-mediated proliferation of cervical cancer via suppression of ACTN4, and NHERF1 downregulation may contribute to the progression of cervical cancer. These findings may also shed some lights for understanding the underlying mechanisms of cisplatin resistance and worse prognosis of HPV-inactive cervical cancer patients.
Collapse
Affiliation(s)
- Qiqi Wang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Qiong Qin
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Tumor Invasion and Metastasis, Beijing, China
| | - Ran Song
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Tumor Invasion and Metastasis, Beijing, China
| | - Chunjuan Zhao
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Hua Liu
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Tumor Invasion and Metastasis, Beijing, China
| | - Ying Yang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China.,Core Facilities Center, Capital Medical University, Beijing, China
| | - Siyu Gu
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Deshan Zhou
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Beijing, China.,Department of Histology and Embryology, Capital Medical University, Beijing, China
| | - Junqi He
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China. .,Beijing Key Laboratory for Tumor Invasion and Metastasis, Beijing, China.
| |
Collapse
|
133
|
Szalmás A. Commentary: Induction of Dormancy in Hypoxic Human Papillomavirus-Positive Cancer Cells. Front Oncol 2018; 8:77. [PMID: 29637045 PMCID: PMC5881186 DOI: 10.3389/fonc.2018.00077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/07/2018] [Indexed: 12/30/2022] Open
Affiliation(s)
- Anita Szalmás
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
134
|
Olivero C, Lanfredini S, Borgogna C, Gariglio M, Patel GK. HPV-Induced Field Cancerisation: Transformation of Adult Tissue Stem Cell Into Cancer Stem Cell. Front Microbiol 2018; 9:546. [PMID: 29632522 PMCID: PMC5879094 DOI: 10.3389/fmicb.2018.00546] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/09/2018] [Indexed: 11/24/2022] Open
Abstract
Field cancerisation was originally described as a basis for multiple head and neck squamous cell carcinoma (HNSCC) and is a pre-malignant phenomenon that is frequently attributable to oncogenic human papillomavirus (HPV) infection. Our work on β-HPV-induced cutaneous squamous cell carcinomas identified a novel Lrig1+ hair follicle junctional zone keratinocyte stem cell population as the basis for field cancerisation. Herein, we describe the ability for HPV to infect adult tissue stem cells in order to establish persistent infection and induce their proliferation and displacement resulting in field cancerisation. By review of the HPV literature, we reveal how this mechanism is conserved as the basis of field cancerisation across many tissues. New insights have identified the capacity for HPV early region genes to dysregulate adult tissue stem cell self-renewal pathways ensuring that the expanded population preserve its stem cell characteristics beyond the stem cell niche. HPV-infected cells acquire additional transforming mutations that can give rise to intraepithelial neoplasia (IEN), from environmental factors such as sunlight or tobacco induced mutations in skin and oral cavity, respectively. With establishment of IEN, HPV viral replication is sacrificed with loss of the episome, and the tissue is predisposed to multiple cancer stem cell-driven carcinomas.
Collapse
Affiliation(s)
- Carlotta Olivero
- Virology Unit, Department of Translational Medicine, Novara Medical School, University of Eastern Piedmont, Novara, Italy.,European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Simone Lanfredini
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Cinzia Borgogna
- Virology Unit, Department of Translational Medicine, Novara Medical School, University of Eastern Piedmont, Novara, Italy
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Novara Medical School, University of Eastern Piedmont, Novara, Italy
| | - Girish K Patel
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
135
|
Mutational signatures and chromosome alteration profiles of squamous cell carcinomas of the vulva. Exp Mol Med 2018; 50:e442. [PMID: 29422544 PMCID: PMC5903820 DOI: 10.1038/emm.2017.265] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 12/30/2022] Open
Abstract
Vulvar squamous cell carcinoma (SCC) consists of two different etiologic categories: human papilloma virus (HPV)-associated (HPV (+)) and HPV-non-associated (HPV (−)). There have been no genome-wide studies on the genetic alterations of vulvar SCCs or on the differences between HPV (+) and HPV (−) vulvar SCCs. In this study, we performed whole-exome sequencing and copy number profiling of 6 HPV (+) and 9 HPV (−) vulvar SCCs and found known mutations (TP53, CDKN2A and HRAS) and copy number alterations (CNAs) (7p and 8q gains and 2q loss) in HPV (−) SCCs. In HPV (+), we found novel mutations in PIK3CA, BRCA2 and FBXW7 that had not been reported in vulvar SCCs. HPV (−) SCCs exhibited more mutational loads (numbers of nonsilent mutations and driver mutations) than HPV (+) SCCs, but the CNA loads and mutation signatures between HPV (+) and HPV (−) SCCs did not differ. Of note, 40% and 40% of the 15 vulvar SCCs harbored PIK3CA and FAT1 alterations, respectively. In addition, we found that the SCCs harbored kataegis (a localized hypermutation) in 2 HPV (+) SCCs and copy-neutral losses of heterozygosity in 4 (one HPV (+) and 3 HPV (−)) SCCs. Our data indicate that HPV (+) and HPV (−) vulvar SCCs may have different mutation and CNA profiles but that there are genomic features common to SCCs. Our data provide useful information for both HPV (+) and HPV (−) vulvar SCCs and may aid in the development of clinical treatment strategies.
Collapse
|
136
|
Cavallari I, Scattolin G, Silic-Benussi M, Raimondi V, D'Agostino DM, Ciminale V. Mitochondrial Proteins Coded by Human Tumor Viruses. Front Microbiol 2018; 9:81. [PMID: 29467726 PMCID: PMC5808139 DOI: 10.3389/fmicb.2018.00081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/12/2018] [Indexed: 12/26/2022] Open
Abstract
Viruses must exploit the cellular biosynthetic machinery and evade cellular defense systems to complete their life cycles. Due to their crucial roles in cellular bioenergetics, apoptosis, innate immunity and redox balance, mitochondria are important functional targets of many viruses, including tumor viruses. The present review describes the interactions between mitochondria and proteins coded by the human tumor viruses human T-cell leukemia virus type 1, Epstein-Barr virus, Kaposi's sarcoma-associated herpesvirus, human hepatitis viruses B and C, and human papillomavirus, and highlights how these interactions contribute to viral replication, persistence and transformation.
Collapse
Affiliation(s)
| | - Gloria Scattolin
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | | | | | | | - Vincenzo Ciminale
- Veneto Institute of Oncology IOV-IRRCS, Padova, Italy.,Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| |
Collapse
|
137
|
Eldakhakhny S, Zhou Q, Crosbie EJ, Sayan BS. Human papillomavirus E7 induces p63 expression to modulate DNA damage response. Cell Death Dis 2018; 9:127. [PMID: 29374145 PMCID: PMC5833683 DOI: 10.1038/s41419-017-0149-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/19/2022]
Abstract
Cervical cancer is the third most common malignancy diagnosed in women worldwide. The major aetiological factor underlying the malignant transformation of cervical cells is the persistent infection with high-risk human papillomaviruses (HR-HPV), with more than 99% of cases expressing viral sequences. Here, we report a previously unknown mechanism driven by high-risk human papillomavirus E7 protein to modulate response to DNA damage in cervical cancer cells. Our data shows that HR-HPV E7 oncoprotein induces the transcription of the p53-family member p63, which modulates DNA damage response pathways, to facilitate repair of DNA damage. Based on our findings, we proposed a model, where HR-HPV could interfere with the sensitivity of transformed cells to radiation therapy by modulating DNA damage repair efficiency. Importantly, we have shown for the first time a critical role for p63 in response to DNA damage in cervical cancer cells.
Collapse
Affiliation(s)
- Sahar Eldakhakhny
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4QL, UK
| | - Qing Zhou
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4QL, UK
| | - Emma J Crosbie
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4QL, UK
| | - Berna S Sayan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4QL, UK.
| |
Collapse
|
138
|
Pierini S, Perales-Linares R, Uribe-Herranz M, Pol JG, Zitvogel L, Kroemer G, Facciabene A, Galluzzi L. Trial watch: DNA-based vaccines for oncological indications. Oncoimmunology 2017; 6:e1398878. [PMID: 29209575 DOI: 10.1080/2162402x.2017.1398878] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/16/2022] Open
Abstract
DNA-based vaccination is a promising approach to cancer immunotherapy. DNA-based vaccines specific for tumor-associated antigens (TAAs) are indeed relatively simple to produce, cost-efficient and well tolerated. However, the clinical efficacy of DNA-based vaccines for cancer therapy is considerably limited by central and peripheral tolerance. During the past decade, considerable efforts have been devoted to the development and characterization of novel DNA-based vaccines that would circumvent this obstacle. In this setting, particular attention has been dedicated to the route of administration, expression of modified TAAs, co-expression of immunostimulatory molecules, and co-delivery of immune checkpoint blockers. Here, we review preclinical and clinical progress on DNA-based vaccines for cancer therapy.
Collapse
Affiliation(s)
- Stefano Pierini
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Renzo Perales-Linares
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mireia Uribe-Herranz
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan G Pol
- Université Paris Descartes/Paris V, France.,Université Pierre et Marie Curie/Paris VI, Paris.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, France.,Université Pierre et Marie Curie/Paris VI, Paris.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP; Paris, France
| | - Andrea Facciabene
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
139
|
Wendel SO, Wallace NA. Loss of Genome Fidelity: Beta HPVs and the DNA Damage Response. Front Microbiol 2017; 8:2250. [PMID: 29187845 PMCID: PMC5694782 DOI: 10.3389/fmicb.2017.02250] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/31/2017] [Indexed: 12/28/2022] Open
Abstract
While the role of genus alpha human papillomaviruses in the tumorigenesis and tumor maintenance of anogenital and oropharyngeal cancers is well-established, the role of genus beta human papilloviruses (β-HPVs) in non-melanoma skin cancers (NMSCs) is less certain. Persistent β-HPV infections cause NMSCs in sun-exposed skin of people with a rare genetic disorder, epidermodysplasia verruciformis. However, β-HPV infections in people without epidermodysplasia verruciformis are typically transient. Further, β-HPV gene expression is not necessary for tumor maintenance in the general population as on average there is fewer than one copy of the β-HPV genome per cell in NMSC tumor biopsies. Cell culture, epidemiological, and mouse model experiments support a role for β-HPV infections in the initiation of NMSCs through a "hit and run" mechanism. The virus is hypothesized to act as a cofactor, augmenting the genome destabilizing effects of UV. Supporting this idea, two β-HPV proteins (β-HPV E6 and E7) disrupt the cellular response to UV exposure and other genome destabilizing events by abrogating DNA repair and deregulating cell cycle progression. The aberrant damage response increases the likelihood of oncogenic mutations capable of driving tumorigenesis independent of a sustained β-HPV infection or continued viral protein expression. This review summarizes what is currently known about the deleterious effects of β-HPV on genome maintenance in the context of the virus's putative role in NMSC initiation.
Collapse
|
140
|
Fournier C, Martin F, Zitvogel L, Kroemer G, Galluzzi L, Apetoh L. Trial Watch: Adoptively transferred cells for anticancer immunotherapy. Oncoimmunology 2017; 6:e1363139. [PMID: 29147628 DOI: 10.1080/2162402x.2017.1363139] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 07/29/2017] [Accepted: 07/30/2017] [Indexed: 12/22/2022] Open
Abstract
Immunotherapies aimed at strengthening immune effector responses against malignant cells are growing at exponential rates. Alongside, the impressive benefits obtained by patients with advanced melanoma who received adoptively transferred tumor-infiltrating lymphocytes (TILs) have encouraged the scientific community to pursue adoptive cell transfer (ACT)-based immunotherapy. ACT involves autologous or allogenic effector lymphocytes that are generally obtained from the peripheral blood or resected tumors, expanded and activated ex vivo, and administered to lymphodepleted patients. ACT may be optionally associated with chemo- and/or immunotherapeutics, with the overall aim of enhancing the proliferation, persistence and functionality of infused cells, as well as to ensure their evolution in an immunological permissive local and systemic microenvironment. In addition, isolated lymphocytes can be genetically engineered to endow them with the ability to target a specific tumor-associated antigen (TAA), to increase their lifespan, and/or to reduce their potential toxicity. The infusion of chimeric antigen receptor (CAR)-expressing cytotoxic T lymphocytes redirected against CD19 has shown promising clinical efficacy in patients with B-cell malignancies. Accordingly, the US Food and Drug Administration (FDA) has recently granted 'breakthrough therapy' designation to a CAR-based T-cell therapy (CTL019) for patients with B-cell malignancies. Considerable efforts are now being devoted to the development of efficient ACT-based immunotherapies for non-hematological neoplasms. In this Trial Watch, we summarize recent clinical advances on the use of ACT for oncological indications.
Collapse
Affiliation(s)
- Carole Fournier
- INSERM, U1231, Dijon, France.,Faculté de Médecine, Université de Bourgogne Franche Comté, Dijon, France
| | - François Martin
- INSERM, U1231, Dijon, France.,Faculté de Médecine, Université de Bourgogne Franche Comté, Dijon, France
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, U1015, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, France.,Université Pierre et Marie Curie/Paris VI, Paris.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP; Paris, France
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lionel Apetoh
- INSERM, U1231, Dijon, France.,Faculté de Médecine, Université de Bourgogne Franche Comté, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| |
Collapse
|
141
|
Inducement of apoptosis by cucurbitacin E, a tetracyclic triterpenes, through death receptor 5 in human cervical cancer cell lines. Cell Death Discov 2017; 3:17014. [PMID: 28487767 PMCID: PMC5402524 DOI: 10.1038/cddiscovery.2017.14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/11/2017] [Accepted: 01/22/2017] [Indexed: 12/19/2022] Open
Abstract
Cervical cancer is the most common malignancy in women, for which conization or hysterectomy are the main therapy. Curcubitacin E (Cu E) is a natural compound-based drug which from the Guadi (climbing stem of Cucumic melo L). Previously shown to be an anti-tumor as well as a potent chemopreventive agent against several types of tumors. The present study, investigated anti-proliferation and apoptosis induced by Cu E in cervical cancer cell lines (HeLa and Ca Ski). The results indicate that the cytotoxicity is associated with accumulation in apoptosis but not necrosis. Cu E produced apoptosis as well as the up-regulation the expression of death receptor 5 (DR5). In addition, the DR5 gene activation in apoptosis, both effects increased proportionally with the dose of Cu E; however, mitosis delay was also dependant on the amount of Cu E treatment in the cancer cells. These results indicate that Cu E may delay cancer cell growth by apoptosis via upregulation of DR5 gene expression.
Collapse
|
142
|
Depuydt CE, Beert J, Bosmans E, Salembier G. Human Papillomavirus (HPV) virion induced cancer and subfertility, two sides of the same coin. Facts Views Vis Obgyn 2016; 8:211-222. [PMID: 28210481 PMCID: PMC5303699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the natural history of HPV infections, the HPV virions can induce two different pathways, namely the infec- tious virion producing pathway and the clonal transforming pathway. An overview is given of the burden that is associated with HPV infections that can both lead to cervical cancer and/or temporal subfertility. That HPV infections cause serious global health burden due to HPV-associated cancers is common knowledge, but that it is also responsible for a substantial part of idiopathic subfertility is greatly underestimated. The bulk of the detected HPV DNA whether in men or women is however infectious from origin. Because the dissociation between HPV viruses and HPV virions or infection and disease remains difficult for clinicians as well as for HPV detection, we propose a review of the different effects caused by the two different HPV virion induced pathways, and highlight the mechanisms that are responsible for causing transient subfertility and cancer.
Collapse
Affiliation(s)
- CE Depuydt
- Department of Clinical and Molecular Pathology, AML, Sonic Healthcare, Antwerp, Belgium
| | - J Beert
- Department of Clinical and Molecular Pathology, AML, Sonic Healthcare, Antwerp, Belgium,Intermediate structure human body material, AML, Sonic Healthcare, Antwerp, Belgium
| | - E Bosmans
- Department of Clinical and Molecular Pathology, AML, Sonic Healthcare, Antwerp, Belgium
| | - G Salembier
- Department of Clinical and Molecular Pathology, AML, Sonic Healthcare, Antwerp, Belgium
| |
Collapse
|