101
|
Wang Y, Zhao R, Jiao X, Wu L, Wei Y, Shi F, Zhong J, Xiong L. Small Extracellular Vesicles: Functions and Potential Clinical Applications as Cancer Biomarkers. Life (Basel) 2021; 11:life11101044. [PMID: 34685415 PMCID: PMC8541078 DOI: 10.3390/life11101044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/09/2022] Open
Abstract
Cancer, as the second leading cause of death worldwide, is a major public health concern that imposes a heavy social and economic burden. Effective approaches for either diagnosis or therapy of most cancers are still lacking. Dynamic monitoring and personalized therapy are the main directions for cancer research. Cancer-derived extracellular vesicles (EVs) are potential disease biomarkers. Cancer EVs, including small EVs (sEVs), contain unique biomolecules (protein, nucleic acid, and lipids) at various stages of carcinogenesis. In this review, we discuss the biogenesis of sEVs, and their functions in cancer, revealing the potential applications of sEVs as cancer biomarkers.
Collapse
Affiliation(s)
- Yi Wang
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Ruichen Zhao
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Xueqiao Jiao
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Longyuan Wu
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Yuxuan Wei
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Fuxiu Shi
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Junpei Zhong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Lixia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
- Correspondence: ; Tel.: +86-791-8636-0556
| |
Collapse
|
102
|
Ahn HR, Baek GO, Yoon MG, Son JA, You D, Yoon JH, Cho HJ, Kim SS, Cheong JY, Eun JW. HMBS is the most suitable reference gene for RT-qPCR in human HCC tissues and blood samples. Oncol Lett 2021; 22:791. [PMID: 34584568 PMCID: PMC8461756 DOI: 10.3892/ol.2021.13052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
Reverse transcription-quantitative (RT-q) PCR is the most feasible and useful technique for identifying and evaluating cancer biomarkers; however, the method requires suitable reference genes for gene expression analysis. The aim of the present study was to identify the most suitable reference gene for the normalization of relative gene expression in human hepatocellular carcinoma (HCC) tissue and blood samples. First, 14 candidate reference genes were selected through a systematic literature search. The expression levels of these genes (ACTB, B2M, GAPDH, GUSB, HMBS, HPRT1, PGK1, PPIA, RPLP0, RPL13A, SDHA, TBP, TFRC and YWHAZ) were evaluated using human multistage HCC transcriptome data (dataset GSE114564), which included normal liver (n=15), chronic hepatitis (n=20), liver cirrhosis (n=10), and early (n=18) and advanced HCC (n=45). From the 14 selected genes, five genes, whose expression levels were stable in all liver disease statuses (ACTB, GAPDH, HMBS, PPIA and RPLP0), were further assessed using RT-qPCR in 40 tissues (20 paired healthy tissues and 20 tissues from patients with HCC) and 40 blood samples (20 healthy controls and 20 samples from patients with HCC). BestKeeper statistical algorithms were used to identify the most stable reference genes, of which HMBS was found to be the most stable in both HCC tissues and blood samples. Therefore, the results of the present study suggest HMBS as a promising reference gene for the normalization of relative RT-qPCR techniques in HCC-related studies.
Collapse
Affiliation(s)
- Hye Ri Ahn
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Geum Ok Baek
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Moon Gyeong Yoon
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Ju A Son
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Donglim You
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyo Jung Cho
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Soon Sun Kim
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Jae Yeon Cheong
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Jung Woo Eun
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
103
|
Zhao Z, Yang S, Zhou A, Li X, Fang R, Zhang S, Zhao G, Li P. Small Extracellular Vesicles in the Development, Diagnosis, and Possible Therapeutic Application of Esophageal Squamous Cell Carcinoma. Front Oncol 2021; 11:732702. [PMID: 34527593 PMCID: PMC8435888 DOI: 10.3389/fonc.2021.732702] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) persists among the most lethal and broad-spreading malignancies in China. The exosome is a kind of extracellular vesicle (EV) from about 30 to 200 nm in diameter, contributing to the transfer of specific functional molecules, such as metabolites, proteins, lipids, and nucleic acids. The paramount role of exosomes in the formation and development of ESCC, which relies on promoting intercellular communication in the tumor microenvironment (TME), is manifested with immense amounts. Tumor-derived exosomes (TDEs) participate in most hallmarks of ESCC, including tumorigenesis, invasion, angiogenesis, immunologic escape, metastasis, radioresistance, and chemoresistance. Published reports have delineated that exosome-encapsulated cargos like miRNAs may have utility in the diagnosis, as prognostic biomarkers, and in the treatment of ESCC. This review summarizes the function of exosomes in the neoplasia, progression, and metastasis of ESCC, which improves our understanding of the etiology and pathogenesis of ESCC, and presents a promising target for early diagnostics in ESCC. However, recent studies of exosomes in the treatment of ESCC are sparse. Thus, we introduce the advances in exosome-based methods and indicate the possible applications for ESCC therapy in the future.
Collapse
Affiliation(s)
- Zheng Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shuyue Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Anni Zhou
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiao Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Rui Fang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guiping Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
104
|
Zhou M, Li C, Wang B, Huang L. Rapid and sensitive leukemia-derived exosome quantification via nicking endonuclease-assisted target recycling. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4001-4007. [PMID: 34528938 DOI: 10.1039/d1ay00854d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exosomes as fluid biomarkers hold great promise for noninvasive cancer diagnosis. However, a method for the rapid and convenient detection of exosomes is still a challenge because current analysis processes involve multiple steps and yield low sensitivity. Here, we developed a wash-free fluorescent biosensor for the rapid and sensitive quantification of exosomes by combining aptamer and nicking endonuclease (Nb·BbvCI). In this system, an aptamer-trigger complex was used as the recognition element; the trigger probe could be released, and it hybridized with gold nanoparticles (GNPs)-DNA-FAM conjugates, thereby resulting in Nb·BbvCI-assisted target recycling. As a result, our method allowed the quantification of exosomes with lower analysis time by using a cocktail containing an aptamer-trigger complex, Nb·BbvCI, and GNPs-DNA-FAM. A high sensitivity with a limit of detection (LOD) of 1.0 × 104 particles per μL could be achieved. Besides, this biosensor exhibited potential application for the quantification of exosomes in human plasma, facilitating the development of exosome-based noninvasive cancer diagnosis.
Collapse
Affiliation(s)
- Mengyang Zhou
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Chao Li
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Baolong Wang
- The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Hefei, Anhui 230001, China
| | - Lin Huang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
105
|
Liu H, Kumar R, Zhong C, Gorji S, Paniushkina L, Masood R, Wittel UA, Fuchs H, Nazarenko I, Hirtz M. Rapid Capture of Cancer Extracellular Vesicles by Lipid Patch Microarrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008493. [PMID: 34309083 PMCID: PMC11468818 DOI: 10.1002/adma.202008493] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Extracellular vesicles (EVs) contain various bioactive molecules such as DNA, RNA, and proteins, and play a key role in the regulation of cancer progression. Furthermore, cancer-associated EVs carry specific biomarkers and can be used in liquid biopsy for cancer detection. However, it is still technically challenging and time consuming to detect or isolate cancer-associated EVs from complex biofluids (e.g., blood). Here, a novel EV-capture strategy based on dip-pen nanolithography generated microarrays of supported lipid membranes is presented. These arrays carry specific antibodies recognizing EV- and cancer-specific surface biomarkers, enabling highly selective and efficient capture. Importantly, it is shown that the nucleic acid cargo of captured EVs is retained on the lipid array, providing the potential for downstream analysis. Finally, the feasibility of EV capture from patient sera is demonstrated. The demonstrated platform offers rapid capture, high specificity, and sensitivity, with only a small need in analyte volume and without additional purification steps. The platform is applied in context of cancer-associated EVs, but it can easily be adapted to other diagnostic EV targets by use of corresponding antibodies.
Collapse
Affiliation(s)
- Hui‐Yu Liu
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Ravi Kumar
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Chunting Zhong
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Saleh Gorji
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
- Joint Research Laboratory Nanomaterials (KIT and TUD) at Technische Universität Darmstadt (TUD)Jovanka‐Bontschits‐Str. 264287DarmstadtGermany
| | - Liliia Paniushkina
- Institute for Infection Prevention and Hospital EpidemiologyMedical CentreFaculty of MedicineUniversity of FreiburgBreisacher Straße 115 B79106FreiburgGermany
| | - Ramsha Masood
- Institute for Infection Prevention and Hospital EpidemiologyMedical CentreFaculty of MedicineUniversity of FreiburgBreisacher Straße 115 B79106FreiburgGermany
| | - Uwe A. Wittel
- Department of General and Visceral SurgeryCentre of SurgeryMedical CentreFaculty of MedicineUniversity of FreiburgBreisacher Str. 8679110FreiburgGermany
| | - Harald Fuchs
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
- Physikalisches Institut & Center for Nanotechnology (CeNTech)Westfälische Wilhelms‐UniversitätWilhelm‐Klemm‐Straße 1048149MünsterGermany
| | - Irina Nazarenko
- Institute for Infection Prevention and Hospital EpidemiologyMedical CentreFaculty of MedicineUniversity of FreiburgBreisacher Straße 115 B79106FreiburgGermany
- German Cancer Consortium (DKTK)Partner Site Freiburg and German Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Michael Hirtz
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| |
Collapse
|
106
|
Thakur A, Ke X, Chen YW, Motallebnejad P, Zhang K, Lian Q, Chen HJ. The mini player with diverse functions: extracellular vesicles in cell biology, disease, and therapeutics. Protein Cell 2021; 13:631-654. [PMID: 34374936 PMCID: PMC9233731 DOI: 10.1007/s13238-021-00863-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/08/2021] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicles (EVs) are tiny biological nanovesicles ranging from approximately 30-1000 nm in diameter that are released into the extracellular matrix of most cell types and in biofluids. The classification of EVs includes exosomes, microvesicles, and apoptotic bodies, dependent on various factors such as size, markers, and biogenesis pathways. The transition of EV relevance from that of being assumed as a trash bag to be a key player in critical physiological and pathological conditions has been revolutionary in many ways. EVs have been recently revealed to play a crucial role in stem cell biology and cancer progression via intercellular communication, contributing to organ development and the progression of cancer. This review focuses on the significant research progress made so far in the role of the crosstalk between EVs and stem cells and their niche, and cellular communication among different germ layers in developmental biology. In addition, it discusses the role of EVs in cancer progression and their application as therapeutic agents or drug delivery vehicles. All such discoveries have been facilitated by tremendous technological advancements in EV-associated research, especially the microfluidics systems. Their pros and cons in the context of characterization of EVs are also extensively discussed in this review. This review also deliberates the role of EVs in normal cell processes and disease conditions, and their application as a diagnostic and therapeutic tool. Finally, we propose future perspectives for EV-related research in stem cell and cancer biology.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA.,The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Xiaoshan Ke
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA.,The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Ya-Wen Chen
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, 90089, USA.,Department of Stem Cell Biology and Regenerative Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Pedram Motallebnejad
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA.,The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Kui Zhang
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA.,The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Qizhou Lian
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,Prenatal Diagnostic Center and Cord Blood Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China. .,HKUMed Laboratory of Cellular Therapeutics, the University of Hong Kong, Pok Fu Lam, Hong Kong.
| | - Huanhuan Joyce Chen
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA. .,The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
107
|
Hu C, Zhang Y, Zhang M, Li T, Zheng X, Guo Q, Zhang X. Exosomal Cripto-1 Serves as a Potential Biomarker for Perihilar Cholangiocarcinoma. Front Oncol 2021; 11:730615. [PMID: 34434900 PMCID: PMC8380828 DOI: 10.3389/fonc.2021.730615] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Perihilar cholangiocarcinoma (PHCCA) has a poor prognosis, mainly due to diagnosis at an advanced stage. Cripto-1 functions as an oncogene and is highly expressed in several human cancers, however, its clinical application in PHCCA is poorly understood. Herein, we identified that Cripto-1 was released by PHCCA cells via exosomes in vitro and in vivo. Furthermore, an ELISA method was developed to detect exosomal Cripto-1 in the serum of 115 PHCCA patients, 47 cholangitis patients and 65 healthy controls, and it was found that exosomal Cripto-1 was increased in PHCCA patients and associated with metastasis. Compared with traditional serum tumor markers, CA19-9 and CEA, exosomal Cripto-1 demonstrated a larger area under ROC curve for PHCCA diagnosis. The cutoff value of exosomal Cripto-1 was 0.82, achieving a sensitivity of 79.1% and a specificity of 87.5%. As expected, exosomal Cripto-1 levels in immunohistochemically Cripto-1-high cases were significantly elevated compared to in Cripto-1-low cases. When measured 1-week postoperatively, Cripto-1 levels decreased on average from 1.25(0.96-3.26) to 0.85(0.62-1.82). Immunohistochemistry analysis showed Cripto-1 expression was negatively correlated with E-cadherin and was an independent prognostic biomarker for poor survival in PHCCA patients. In conclusion, exosomal Cripto-1 in sera can reflect its expression in the tissue of PHCAA patients and has the potential be a non-invasive biomarker for diagnosis and prognosis of PHCCA.
Collapse
Affiliation(s)
- Chunxiao Hu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yanli Zhang
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan, China
| | - Mengjiao Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Tingting Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Zheng
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan, China
| | - Qining Guo
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
108
|
Luo B, Li G, Li Z, He J, Zhou J, Wu L, Lan F, Wu Y. Construction of a magnetic covalent organic framework with synergistic affinity strategy for enhanced glycopeptide enrichment. J Mater Chem B 2021; 9:6377-6386. [PMID: 34296732 DOI: 10.1039/d1tb01168e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Considering the inherent properties of glycopeptides, such as glycan structure, size, and hydrophilicity, affinity materials possessing suitable functional molecule-glycan interactions, matched channels with size exclusion, and surfaces with hydrophilic interactions are preferred for glycopeptide separation in biological samples. Here, a novel boronic-acid-functionalized magnetic covalent organic framework was prepared through epitaxial growth and multi-ligand strategies. The multi-ligand strategy was firstly employed to prepare functionalized magnetic covalent organic framework without any post-functionalization protocol. Notably, the proposed strategy was found to be time saving, robust, and reproducible. The versatile magnetic covalent organic framework nanocomposite was endowed with phenylboronic acid functional molecules, strong hydrophilic features, mesoporous channels, fast magnetic responsiveness, and a large surface area. Benefitting from multiple affinity interactions, namely, synergistic reversible covalent interactions and hydrophilic affinity interactions, the nanocomposite presented extremely high performance in the recognition of intact N-glycopeptides. The inherent properties endowed the nanocomposite with excellent enrichment performance for N-glycopeptides: excellent selectivity (1 : 2000, IgG/BSA, m/m), an ultralow detection limit (0.05 fmol μL-1), and a good size-exclusion effect (1 : 500, IgG digests/BSA, m/m). More excitingly, a total of 1921 unique intact glycopeptides assigned to 1154 glycoproteins were identified from rat liver tissue; this performance is superior to that of commercial products. Additionally, the nanocomposite was successfully applied to enrich intact glycopeptides of exosomes extracted from healthy individuals and renal failure patients, providing a novel concept for the design of materials using a synergistic affinity strategy for sample preparation in glycoproteomics.
Collapse
Affiliation(s)
- Bin Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Vinduska V, Gallops CE, O’Connor R, Wang Y, Huang X. Exosomal Surface Protein Detection with Quantum Dots and Immunomagnetic Capture for Cancer Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1853. [PMID: 34361239 PMCID: PMC8308325 DOI: 10.3390/nano11071853] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 12/29/2022]
Abstract
Exosomes carry molecular contents reflective of parental cells and thereby hold great potential as a source of biomarkers for non-invasive cancer detection and monitoring. However, simple and rapid exosomal molecular detection remains challenging. Here, we report a facile method for exosome surface protein detection using quantum dot coupled with immunomagnetic capture and enrichment. In this method, exosomes were captured by magnetic beads based on CD81 protein expression. Surface protein markers of interest were recognized by primary antibody and then detected by secondary antibody-conjugated quantum dot with fluorescent spectroscopy. Validated by ELISA, our method can specifically detect different surface markers on exosomes from different cancer cell lines and differentiate cancer exosomes from normal exosomes. The clinical potential was demonstrated with pilot plasma samples using HER2-positive breast cancer as the disease model. The results show that exosomes from HER2-positive breast cancer patients exhibited a five times higher level of HER2 expression than healthy controls. Exosomal HER2 showed strong diagnostic power for HER2-positive patients, with the area under the curve of 0.969. This quantum dot-based exosome method is rapid (less than 5 h) and only requires microliters of diluted plasma without pre-purification, practical for routine use for basic vesicle research, and clinical applications.
Collapse
Affiliation(s)
| | | | | | | | - Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA; (V.V.); (C.E.G.); (R.O.); (Y.W.)
| |
Collapse
|
110
|
Luo B, Yan S, Zhang H, Zhou J, Lan F, Ying B, Wu Y. Metal-Organic Framework-Derived Hollow and Hierarchical Porous Multivariate Metal-Oxide Microspheres for Efficient Phosphoproteomics Analysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34762-34772. [PMID: 34256568 DOI: 10.1021/acsami.1c10795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pre-enrichment of the biological samples is a crucial step in phosphoproteomics research. At present, metal-oxide affinity chromatography (MOAC) is one of the most recognized enrichment strategy. Therefore, the design and preparation of a MOAC-based affinity material with better enrichment properties will be of great significance for the phosphoproteomics study. In this work, we obtained a novel multivariate metal-oxide microsphere (NiFe2O4@C@TiO2) with a hollow and hierarchical porous structure through pyrolysis of TiO2-modified Fe/Ni-based metal-organic frameworks (MOFs). After pyrolysis, the carbon matrix derived from the MOFs provided support and porous properties. Meanwhile, multivariate metal oxides endowed the microspheres with an excellent magnetic response property and superior enrichment performance for phosphorylated biomolecules. The unique hollow and hierarchical porous structure greatly enhanced the diffusion of phosphorylated biomolecules. Therefore, the microspheres exhibited excellent enrichment performance for phosphorylated biomolecules: a large adsorption capacity (124 μmol g-1), excellent selectivity (α-casein/BSA, 1:5000, m/m), perfect size-exclusion performance (α-casein digests/α-casein/BSA, 1:500:500), and extremely low detection limit (2 fmol). Furthermore, the microspheres showed excellent enrichment performance in a series of real biological samples, such as nonfat milk, serum, saliva, rat brain tissue, and plasma exosomes of patients with esophageal cancer, which further demonstrated its huge application potential in MS-based phosphoproteomics research.
Collapse
Affiliation(s)
- Bin Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Shuang Yan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Huinan Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Fang Lan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
111
|
Cho HJ, Baek GO, Yoon MG, Ahn HR, Son JA, Kim SS, Cheong JY, Eun JW. Overexpressed Proteins in HCC Cell-Derived Exosomes, CCT8, and Cofilin-1 Are Potential Biomarkers for Patients with HCC. Diagnostics (Basel) 2021; 11:diagnostics11071221. [PMID: 34359304 PMCID: PMC8307801 DOI: 10.3390/diagnostics11071221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/02/2021] [Indexed: 01/11/2023] Open
Abstract
Protein markers of hepatocellular carcinoma (HCC)-derived exosomes (HEX) have not yet been fully evaluated. Here, we identified novel protein contents of HEX and their clinical significance as biomarkers. Exosomes were isolated from human HCC cell lines and an immortalized normal hepatocyte cell line. Proteomic analyses revealed 15 markedly overexpressed proteins in HEX. The clinical relevance of the 15 proteins was analyzed in public RNA-sequencing datasets, and 6 proteins were selected as candidate of potential biomarkers. Serum CCT8 and CFL1 were markedly overexpressed in test cohort (n = 8). In the validation cohort (n = 224), the area under the curve (AUC) of serum CCT8 and CFL1 for HCC diagnosis was calculated as 0.698 and 0.677, respectively, whereas that of serum alpha-fetoprotein (AFP) was 0.628. The combination of three serum markers (CCT8, CFL1, and AFP) demonstrated the highest AUC for HCC diagnosis. (AUC = 0.838, 95% confidence interval = 0.773–0.876) Furthermore, higher serum CCT8 and CFL1 concentrations were significantly associated with the presence of vascular invasion, advanced tumor stage, poor disease-free survival, and poor overall survival. Cofilin-1 and CCT8, enriched proteins in HEX, were identified as potential diagnostic and prognostic serum biomarkers for HCC patients.
Collapse
Affiliation(s)
- Hyo Jung Cho
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Korea; (H.J.C.); (G.O.B.); (M.G.Y.); (H.R.A.); (J.A.S.); (S.S.K.)
| | - Geum Ok Baek
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Korea; (H.J.C.); (G.O.B.); (M.G.Y.); (H.R.A.); (J.A.S.); (S.S.K.)
| | - Moon Gyeong Yoon
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Korea; (H.J.C.); (G.O.B.); (M.G.Y.); (H.R.A.); (J.A.S.); (S.S.K.)
| | - Hye Ri Ahn
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Korea; (H.J.C.); (G.O.B.); (M.G.Y.); (H.R.A.); (J.A.S.); (S.S.K.)
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea
| | - Ju A Son
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Korea; (H.J.C.); (G.O.B.); (M.G.Y.); (H.R.A.); (J.A.S.); (S.S.K.)
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea
| | - Soon Sun Kim
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Korea; (H.J.C.); (G.O.B.); (M.G.Y.); (H.R.A.); (J.A.S.); (S.S.K.)
| | - Jae Youn Cheong
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Korea; (H.J.C.); (G.O.B.); (M.G.Y.); (H.R.A.); (J.A.S.); (S.S.K.)
- Correspondence: (J.Y.C.); (J.W.E.); Tel.: +82-31-219-5119 (J.Y.C.); +82-31-219-4681 (J.W.E.)
| | - Jung Woo Eun
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Korea; (H.J.C.); (G.O.B.); (M.G.Y.); (H.R.A.); (J.A.S.); (S.S.K.)
- Correspondence: (J.Y.C.); (J.W.E.); Tel.: +82-31-219-5119 (J.Y.C.); +82-31-219-4681 (J.W.E.)
| |
Collapse
|
112
|
Animesh S, Singh YD. A Comprehensive Study on Aptasensors For Cancer Diagnosis. Curr Pharm Biotechnol 2021; 22:1069-1084. [PMID: 32957883 DOI: 10.2174/1389201021999200918152721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/23/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022]
Abstract
Cancer is the most devastating disease in the present scenario, killing millions of people every year. Early detection, accurate diagnosis, and timely treatment are considered to be the most effective ways to control this disease. Rapid and efficient detection of cancer at their earliest stage is one of the most significant challenges in cancer detection and cure. Numerous diagnostic modules have been developed to detect cancer cells early. As nucleic acid equivalent to antibodies, aptamers emerge as a new class of molecular probes that can identify cancer-related biomarkers or circulating rare cancer/ tumor cells with very high specificity and sensitivity. The amalgamation of aptamers with the biosensing platforms gave birth to "Aptasensors." The advent of highly sensitive aptasensors has opened up many new promising point-of-care diagnostics for cancer. This comprehensive review focuses on the newly developed aptasensors for cancer diagnostics.
Collapse
Affiliation(s)
- Sambhavi Animesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Yengkhom D Singh
- Department of Post-Harvest Technology, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| |
Collapse
|
113
|
Verdi J, Ketabchi N, Noorbakhsh N, Saleh M, Ebrahimi-Barough S, Seyhoun I, Kavianpour M. Development and Clinical Application of Tumor-derived Exosomes in Patients with Cancer. Curr Stem Cell Res Ther 2021; 17:91-102. [PMID: 34161212 DOI: 10.2174/1574888x16666210622123942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/16/2020] [Accepted: 03/11/2021] [Indexed: 11/22/2022]
Abstract
A tumor is an abnormal growth of cells within a tissue that can lead to death due to late diagnosis, poor prognosis, drug resistance, and finally enhanced metastasis formation. Exosomes are nanovesicles that have been derived from all the different cell types. These vesicles can transfer various molecules, including the distinct form of nucleic acids (mRNA, miRNA, and circRNA) and proteins. Tumor-derived exosomes (TEXs) have exceptionally important roles through multiple molecular and cellular pathways like progression, tumorigenesis, drug resistance, and as well as metastasis. TEXs are detectable in all body fluids, such as serum and urine, a convenient and non-invasive way to access these nano-sized vesicles. TEXs lead to the symptom expression of genetic aberrations in the tumor cell population, making them an accurate and sensitive biomarker for the diagnosis and prognosis of tumors. On the other hand, TEXs contain major histocompatibility complexes (MHCs) and play important dual roles in regulating tumor immune responses; they can mediate both immune activation and suppression through tumor-associated immunity. Despite numerous scientific studies, there are still many technical barriers to distinguish TEXs from non-tumor-derived exosomes. Removing exosomes lead to a wide difference in outcomes inside a patient's body. Hence, controversial pieces of evidence have demonstrated the vital role of TEXs as hopeful biomarkers for the early detection of cancers, evaluation of therapeutic effects, and monitoring of the patient.
Collapse
Affiliation(s)
- Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Ketabchi
- Department of Medical Laboratory Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Negar Noorbakhsh
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mahshid Saleh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iman Seyhoun
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Kavianpour
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
114
|
Bordanaba-Florit G, Royo F, Kruglik SG, Falcón-Pérez JM. Using single-vesicle technologies to unravel the heterogeneity of extracellular vesicles. Nat Protoc 2021; 16:3163-3185. [PMID: 34135505 DOI: 10.1038/s41596-021-00551-z] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are heterogeneous lipid containers with a complex molecular cargo comprising several populations with unique roles in biological processes. These vesicles are closely associated with specific physiological features, which makes them invaluable in the detection and monitoring of various diseases. EVs play a key role in pathophysiological processes by actively triggering genetic or metabolic responses. However, the heterogeneity of their structure and composition hinders their application in medical diagnosis and therapies. This diversity makes it difficult to establish their exact physiological roles, and the functions and composition of different EV (sub)populations. Ensemble averaging approaches currently employed for EV characterization, such as western blotting or 'omics' technologies, tend to obscure rather than reveal these heterogeneities. Recent developments in single-vesicle analysis have made it possible to overcome these limitations and have facilitated the development of practical clinical applications. In this review, we discuss the benefits and challenges inherent to the current methods for the analysis of single vesicles and review the contribution of these approaches to the understanding of EV biology. We describe the contributions of these recent technological advances to the characterization and phenotyping of EVs, examination of the role of EVs in cell-to-cell communication pathways and the identification and validation of EVs as disease biomarkers. Finally, we discuss the potential of innovative single-vesicle imaging and analysis methodologies using microfluidic devices, which promise to deliver rapid and effective basic and practical applications for minimally invasive prognosis systems.
Collapse
Affiliation(s)
- Guillermo Bordanaba-Florit
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
| | - Félix Royo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Madrid, Spain
| | - Sergei G Kruglik
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, Paris, France
| | - Juan M Falcón-Pérez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Madrid, Spain. .,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
115
|
Jiang Y, Andronico LA, Jung SR, Chen H, Fujimoto B, Vojtech L, Chiu DT. High-Throughput Counting and Superresolution Mapping of Tetraspanins on Exosomes Using a Single-Molecule Sensitive Flow Technique and Transistor-like Semiconducting Polymer Dots. Angew Chem Int Ed Engl 2021; 60:13470-13475. [PMID: 33797851 PMCID: PMC8215978 DOI: 10.1002/anie.202103282] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/31/2021] [Indexed: 12/22/2022]
Abstract
A method for high-throughput counting and superresolution mapping of surface proteins on exosomes is described. The method combines a single-molecule sensitive flow technique and an adaptive superresolution imaging method. Exosomes stained with membrane dye and dye-conjugated antibodies were analyzed using a microfluidic platform at a flow rate of 100 exosome s-1 to determine size and protein copy number. Superresolution mapping was performed with exosomes labeled with novel transistor-like, semiconducting polymer dots (Pdots), which exhibit spontaneous blinking with <5 nm localization error and a broad range of optical-adjustable duty cycles. Based on the copy numbers extracted from the flow analysis, the switch-on frequency of the Pdots were finely adjusted so that structures of hundreds of exosomes were obtained within five minutes. The high throughput and high sensitivity of this method offer clear advantages for characterization of exosomes and similar biological vesicles.
Collapse
Affiliation(s)
- Yifei Jiang
- Department of Chemistry and Bioengineering, University of Washington, Seattle, Washington, 98195, USA
| | - Luca A Andronico
- Department of Chemistry and Bioengineering, University of Washington, Seattle, Washington, 98195, USA
| | - Seung-Ryoung Jung
- Department of Chemistry and Bioengineering, University of Washington, Seattle, Washington, 98195, USA
| | - Haobin Chen
- Department of Chemistry and Bioengineering, University of Washington, Seattle, Washington, 98195, USA
| | - Bryant Fujimoto
- Department of Chemistry and Bioengineering, University of Washington, Seattle, Washington, 98195, USA
| | - Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, 98195, USA
| | - Daniel T Chiu
- Department of Chemistry and Bioengineering, University of Washington, Seattle, Washington, 98195, USA
| |
Collapse
|
116
|
Strømme O, Heck KA, Brede G, Lindholm HT, Otterlei M, Arum CJ. Differentially Expressed Extracellular Vesicle-Contained microRNAs before and after Transurethral Resection of Bladder Tumors. Curr Issues Mol Biol 2021; 43:286-300. [PMID: 34199766 PMCID: PMC8929081 DOI: 10.3390/cimb43010024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Bladder cancer (BC) is currently diagnosed and monitored by cystoscopy, a costly and invasive procedure. Potential biomarkers in urine, blood, and, more recently, extracellular vesicles (EVs), have been explored as non-invasive alternatives for diagnosis and surveillance of BC. EVs are nanovesicles secreted by most cell types containing diverse molecular cargo, including different types of small RNAs, such as microRNA (miRNA). In this study, we performed next-generation sequencing of EV-contained miRNA isolated from urine and serum of 41 patients with non-muscle invasive BC (27 stage Ta, 14 stage T1) and 15 non-cancer patients (NCP) with benign cystoscopy findings. MiRNA sequencing was also performed on serum supernatant samples for T1 patients. To identify potential BC-specific biomarkers, expression levels of miRNA in presurgery samples were compared to those at postsurgery check-ups, and to NCPs. Results showed that two miRNAs, urinary EV-contained miR-451a and miR-486-5p, were significantly upregulated in presurgery samples from T1 patients compared to postsurgery check-up samples. This was confirmed in a replica EV/RNA isolation and sequencing run of 10 T1 patients from the primary run; however, analyses revealed no differential expression of miRNAs in serum EVs, serum supernatant, or when comparing BC patients to NCPs. This is the first study to investigate EV-containing miRNA sequencing in pre- and postsurgery BC patient samples and our findings suggest that urinary EV-contained miR-451a and miR-486-5p may be potential biomarkers for recurrence-free survival of BC patients with stage T1 disease.
Collapse
Affiliation(s)
- Olaf Strømme
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (K.A.H.); (G.B.); (M.O.); (C.-J.A.)
- Correspondence:
| | - Kathleen A. Heck
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (K.A.H.); (G.B.); (M.O.); (C.-J.A.)
| | - Gaute Brede
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (K.A.H.); (G.B.); (M.O.); (C.-J.A.)
| | - Håvard T. Lindholm
- CEMIR—Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway;
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (K.A.H.); (G.B.); (M.O.); (C.-J.A.)
| | - Carl-Jørgen Arum
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (K.A.H.); (G.B.); (M.O.); (C.-J.A.)
- Department of Urology, St. Olav’s University Hospital, 7030 Trondheim, Norway
| |
Collapse
|
117
|
Wu L, Ding Y, Han S, Wang Y. Role of Exosomes in the Exchange of Spermatozoa after Leaving the Seminiferous Tubule: A Review. Curr Drug Metab 2021; 21:330-338. [PMID: 32433001 DOI: 10.2174/1389200221666200520091511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/05/2020] [Accepted: 01/15/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Exosomes are extracellular vesicles (EVs) released from cells upon fusion of an intermediate endocytic compartment with the plasma membrane. They refer to the intraluminal vesicles released from the fusion of multivesicular bodies with the plasma membrane. The contents and number of exosomes are related to diseases such as metabolic diseases, cancer and inflammatory diseases. Exosomes have been used in neurological research as a drug delivery tool and also as biomarkers for diseases. Recently, exosomes were observed in the seminal plasma of the one who is asthenozoospermia, which can affect sperm motility and capacitation. OBJECTIVE The main objective of this review is to deeply discuss the role of exosomes in spermatozoa after leaving the seminiferous tubule. METHODS We conducted an extensive search of the literature available on relationships between exosomes and exosomes in spermatozoa on the bibliographic database. CONCLUSION This review thoroughly discussed the role that exosomes play in the exchange of spermatozoa after leaving the seminiferous tubule and its potential as a drug delivery tool and biomarkers for diseases as well.
Collapse
Affiliation(s)
- Luming Wu
- Gansu Key Laboratory of Reproductive Medicine and Embryo,The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuan Ding
- Gansu Key Laboratory of Reproductive Medicine and Embryo,The First Hospital of Lanzhou University, Lanzhou, China
| | - Shiqiang Han
- Linxia Hui Autonomous Prefecture Maternity and Childcare Hospital, Linxia, China
| | - Yiqing Wang
- Gansu Key Laboratory of Reproductive Medicine and Embryo,The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
118
|
Jiang Y, Andronico LA, Jung S, Chen H, Fujimoto B, Vojtech L, Chiu DT. High‐Throughput Counting and Superresolution Mapping of Tetraspanins on Exosomes Using a Single‐Molecule Sensitive Flow Technique and Transistor‐like Semiconducting Polymer Dots. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yifei Jiang
- Department of Chemistry and Bioengineering University of Washington Seattle Washington 98195 USA
| | - Luca A. Andronico
- Department of Chemistry and Bioengineering University of Washington Seattle Washington 98195 USA
| | - Seung‐Ryoung Jung
- Department of Chemistry and Bioengineering University of Washington Seattle Washington 98195 USA
| | - Haobin Chen
- Department of Chemistry and Bioengineering University of Washington Seattle Washington 98195 USA
| | - Bryant Fujimoto
- Department of Chemistry and Bioengineering University of Washington Seattle Washington 98195 USA
| | - Lucia Vojtech
- Department of Obstetrics and Gynecology University of Washington Seattle Washington 98195 USA
| | - Daniel T. Chiu
- Department of Chemistry and Bioengineering University of Washington Seattle Washington 98195 USA
| |
Collapse
|
119
|
Hardwick J, Taylor J, Mehta M, Satija S, Paudel KR, Hansbro PM, Chellappan DK, Bebawy M, Dua K. Targeting Cancer using Curcumin Encapsulated Vesicular Drug Delivery Systems. Curr Pharm Des 2021; 27:2-14. [PMID: 32723255 DOI: 10.2174/1381612826666200728151610] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/21/2020] [Indexed: 11/22/2022]
Abstract
Curcumin is a major curcuminoid present in turmeric. The compound is attributed to various therapeutic properties, which include anti-oxidant, anti-inflammatory, anti-bacterial, anti-malarial, and neuroprotection. Due to its therapeutic potential, curcumin has been employed for centuries in treating different ailments. Curcumin has been investigated lately as a novel therapeutic agent in the treatment of cancer. However, the mechanisms by which curcumin exerts its cytotoxic effects on malignant cells are still not fully understood. One of the main limiting factors in the clinical use of curcumin is its poor bioavailability and rapid elimination. Advancements in drug delivery systems such as nanoparticle-based vesicular drug delivery platforms have improved several parameters, namely, drug bioavailability, solubility, stability, and controlled release properties. The use of curcumin-encapsulated niosomes to improve the physical and pharmacokinetic properties of curcumin is one such approach. This review provides an up-to-date summary of nanoparticle-based vesicular drug carriers and their therapeutic applications. Specifically, we focus on niosomes as novel drug delivery formulations and their potential in improving the delivery of challenging small molecules, including curcumin. Overall, the applications of such carriers will provide a new direction for novel pharmaceutical drug delivery, as well as for biotechnology, nutraceutical, and functional food industries.
Collapse
Affiliation(s)
- Joel Hardwick
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Jack Taylor
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Keshav R Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
120
|
Shan Z, Wang H, Zhang Y, Min W. The Role of Tumor-Derived Exosomes in the Abscopal Effect and Immunotherapy. Life (Basel) 2021; 11:life11050381. [PMID: 33922480 PMCID: PMC8145657 DOI: 10.3390/life11050381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 01/08/2023] Open
Abstract
Exosomes are microvesicles that can be secreted by various cells and carry a variety of contents; thus, they play multiple biological functions. For instance, the tumor-derived exosomes (TEXs) have been proven to have the effect of immunostimulatory in addition to immunosuppression, making TEXs attractive in clinical immunotherapy and targeted therapy for cancer patients. In addition, TEXs as biomarkers have important clinical diagnostic and prognostic value. Recently, TEXs have been recognized to play important roles in the abscopal effect (AbE), a newly discovered mechanism by which the distant tumors are effectively targeted and repressed during immunotherapy and radiotherapy. Therefore, TEXs has demonstrated great clinical potential in the diagnosis, prognosis and treatment of cancer patients in the future. This review summarizes and discusses the role of TEXs in clinical therapy and their role in AbE in recent studies.
Collapse
Affiliation(s)
- Zechen Shan
- Academy of Queen Mary, Nanchang University, Nanchang 330000, China; (Z.S.); (Y.Z.)
| | - Hongmei Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330000, China
- Correspondence: (H.W.); (W.M.)
| | - Yujuan Zhang
- Academy of Queen Mary, Nanchang University, Nanchang 330000, China; (Z.S.); (Y.Z.)
- School of Basic Medical Sciences, Nanchang University, Nanchang 330000, China
| | - Weiping Min
- Academy of Queen Mary, Nanchang University, Nanchang 330000, China; (Z.S.); (Y.Z.)
- School of Basic Medical Sciences, Nanchang University, Nanchang 330000, China
- Department of Surgery, Pathology and Oncology, University of Western Ontario, London, ON N6A 5A5, Canada
- Correspondence: (H.W.); (W.M.)
| |
Collapse
|
121
|
Lee ES, Cha BS, Kim S, Park KS. Synthesis of Exosome-Based Fluorescent Gold Nanoclusters for Cellular Imaging Applications. Int J Mol Sci 2021; 22:ijms22094433. [PMID: 33922681 PMCID: PMC8122875 DOI: 10.3390/ijms22094433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 12/24/2022] Open
Abstract
In recent years, fluorescent metal nanoclusters have been used to develop bioimaging and sensing technology. Notably, protein-templated fluorescent gold nanoclusters (AuNCs) are attracting interest due to their excellent fluorescence properties and biocompatibility. Herein, we used an exosome template to synthesize AuNCs in an eco-friendly manner that required neither harsh conditions nor toxic chemicals. Specifically, we used a neutral (pH 7) and alkaline (pH 11.5) pH to synthesize two different exosome-based AuNCs (exo-AuNCs) with independent blue and red emission. Using field-emission scanning electron microscopy, energy dispersive X-ray microanalysis, nanoparticle tracking analysis, and X-ray photoelectron spectroscopy, we demonstrated that AuNCs were successfully formed in the exosomes. Red-emitting exo-AuNCs were found to have a larger Stokes shift and a stronger fluorescence intensity than the blue-emitting exo-AuNCs. Both exo-AuNCs were compatible with MCF-7 (human breast cancer), HeLa (human cervical cancer), and HT29 (human colon cancer) cells, although blue-emitting exo-AuNCs were cytotoxic at high concentrations (≥5 mg/mL). Red-emitting exo-AuNCs successfully stained the nucleus and were compatible with membrane-staining dyes. This is the first study to use exosomes to synthesize fluorescent nanomaterials for cellular imaging applications. As exosomes are naturally produced via secretion from almost all types of cell, the proposed method could serve as a strategy for low-cost production of versatile nanomaterials.
Collapse
|
122
|
Exosomes derived from miR-1228 overexpressing bone marrow-mesenchymal stem cells promote growth of gastric cancer cells. Aging (Albany NY) 2021; 13:11808-11821. [PMID: 33883305 PMCID: PMC8109060 DOI: 10.18632/aging.202878] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/27/2020] [Indexed: 01/23/2023]
Abstract
There has been increasing evidence that microRNAs (miRNAs) are related to glioma progression, and that genetically engineered mesenchymal stem cells (MSCs) can inhibit the growth of gliomas. However, the underlying mechanism of bone marrow-MSCs (BM--MSCs) and miRs in gastric cancer still remains unclear. Patients with gastric cancer treated in Shijiazhuang First Hospital as well as healthy individuals undergoing physical examinations were recruited to measure the expression of exosomal miR-1228. Receiver operating characteristic (ROC) curves were plotted and the patients were followed up. BM--MSCs from healthy subjects were collected and exosomes were extracted. The MSC cells were transfected with lentiviral vectors carrying miR-1228 and MMP-14 over-expression sequences and scramble sequence, followed by exosome extraction. The exosomes were co-cultured with SGC-7901 and MGC-823 cells to detect cell proliferation, invasion, apoptosis and migration. The correlation between miR-1228 and MMP-14 was determined by dual-luciferase reporter assay. miR-1228 was highly expressed in serum exosomes of patients with gastric cancer with a area under ROC curve (AUC) of 0.865. The exosomes derived from BM-MSCs are expected to be efficient nanocarriers. Up-regulation of miR-1228 can down-regulate the expression of MMP-14 and effectively hinders the development and progression of gastric cancer.
Collapse
|
123
|
Zhang J, Nguyen LTH, Hickey R, Walters N, Wang X, Kwak KJ, Lee LJ, Palmer AF, Reátegui E. Immunomagnetic sequential ultrafiltration (iSUF) platform for enrichment and purification of extracellular vesicles from biofluids. Sci Rep 2021; 11:8034. [PMID: 33850163 PMCID: PMC8044115 DOI: 10.1038/s41598-021-86910-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) derived from tumor cells have the potential to provide a much-needed source of non-invasive molecular biomarkers for liquid biopsies. However, current methods for EV isolation have limited specificity towards tumor-derived EVs that limit their clinical use. Here, we present an approach called immunomagnetic sequential ultrafiltration (iSUF) that consists of sequential stages of purification and enrichment of EVs in approximately 2 h. In iSUF, EVs present in different volumes of biofluids (0.5-100 mL) can be significantly enriched (up to 1000 times), with up to 99% removal of contaminating proteins (e.g., albumin). The EV recovery rate by iSUF for cell culture media (CCM), serum, and urine corresponded to 98.0% ± 3.6%, 96.0% ± 2.0% and 94.0% ± 1.9%, respectively (p > 0.05). The final step of iSUF enables the separation of tumor-specific EVs by incorporating immunomagnetic beads to target EV subpopulations. Serum from a cohort of clinical samples from metastatic breast cancer (BC) patients and healthy donors were processed by the iSUF platform and the isolated EVs from patients showed significantly higher expression levels of BC biomarkers (i.e., HER2, CD24, and miR21).
Collapse
Affiliation(s)
- Jingjing Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Luong T H Nguyen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Richard Hickey
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Nicole Walters
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Xinyu Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Kwang Joo Kwak
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - L James Lee
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Eduardo Reátegui
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA.
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
124
|
Muthu S, Bapat A, Jain R, Jeyaraman N, Jeyaraman M. Exosomal therapy-a new frontier in regenerative medicine. Stem Cell Investig 2021; 8:7. [PMID: 33969112 PMCID: PMC8100822 DOI: 10.21037/sci-2020-037] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/16/2021] [Indexed: 02/05/2023]
Abstract
The recent advances in translational and nanomedicine have paved the way for developing the targeted drug delivery system at a greater pace among global researchers. On par with these technologies, exosomes act as a potential portal for cell-free drug delivery systems as these are bestowed with the native characteristics of the parent cell of origin. Exosomes, called extracellular vesicles (EcVs), are present in almost all cells, tissues, and body fluids. They help in intercellular signaling and maintains tissue homeostasis in the disease pathobiology. Researchers have characterized 9,769 proteins, 2,838 miRNAs, 3,408 mRNAs, and 1,116 lipids being present in exosomal cargo. The separation of exosomes from cells, tissues, and body fluids follow different patterned kinetics. Exosomes interact with the recipient cells through their surface receptor molecules and ligands and internalize within recipient cells through micropinocytosis and phagocytosis. Advancing technologies in regenerative medicine have facilitated the researchers to isolate exosomes from mesenchymal stem cells (MSCs) as these cells are blessed with supreme regenerative potentiality in targeting a disease. Exosomal cargo is a key player in establishing the diagnosis and executing therapeutic role whilst regulating a disease process. Various in vitro studies have exhibited the safety, efficacy, and therapeutic potentiality of exosomes in various cancers, neurodegenerative, cardiovascular, and orthopedic diseases. This article throws light on the composition, therapeutic role, and regulatory potentials of exosomes with the widening of the horizon in the field of regenerative medicine.
Collapse
Affiliation(s)
- Sathish Muthu
- Department of Orthopaedics, Government Hospital, Velayuthampalayam, Karur, Tamil Nadu, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Indian Stem Cell Study Group (ISCSG), Lucknow, Uttar Pradesh, India
| | - Asawari Bapat
- Director of Quality and Regulatory Affairs, Infohealth FZE, Dubai, United Arab Emirates
| | - Rashmi Jain
- Indian Stem Cell Study Group (ISCSG), Lucknow, Uttar Pradesh, India
- School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Naveen Jeyaraman
- Indian Stem Cell Study Group (ISCSG), Lucknow, Uttar Pradesh, India
- Department of Orthopaedics, Kasturba Medical College, MAHE University, Manipal, Karnataka, India
| | - Madhan Jeyaraman
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Indian Stem Cell Study Group (ISCSG), Lucknow, Uttar Pradesh, India
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
125
|
Vitorino R, Ferreira R, Guedes S, Amado F, Thongboonkerd V. What can urinary exosomes tell us? Cell Mol Life Sci 2021; 78:3265-3283. [PMID: 33507324 PMCID: PMC11072730 DOI: 10.1007/s00018-020-03739-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/06/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Exosomes are involved in a wide variety of biochemical processes in human body homeostasis. Exosomes also provide important information regarding communications among several organ systems. Additionally, they can serve as molecular vehicles to deliver drugs. Therefore, exosomes have received wide attention in current biomedical research for unraveling pathogenic mechanisms of diseases, searching for novel biomarkers, and discovering new drugs. This paper reviews and discusses the significance of urinary exosomes for a better understanding of human disease pathophysiology and their potential use as therapeutic targets. Isolation methods of exosomes and the latest technological advances are also discussed. Furthermore, novel urinary exosomal biomarkers are highlighted with special emphasis on their clinical applicability (particularly sensitivity, specificity, reliability, and other aspects). Finally, future trends for this field are analyzed and our perspectives are provided.
Collapse
Affiliation(s)
- Rui Vitorino
- Departamento de Cirurgia e Fisiologia, UnIC, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.
- Department of Medical Sciences, iBiMED, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Rita Ferreira
- Department of Chemistry, LAQV-REQUIMTE, Aveiro, Portugal
| | - Sofia Guedes
- Department of Chemistry, LAQV-REQUIMTE, Aveiro, Portugal
| | | | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor, SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
126
|
Chiodi E, Marn AM, Geib MT, Ünlü MS. The Role of Surface Chemistry in the Efficacy of Protein and DNA Microarrays for Label-Free Detection: An Overview. Polymers (Basel) 2021; 13:1026. [PMID: 33810267 PMCID: PMC8036480 DOI: 10.3390/polym13071026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 01/04/2023] Open
Abstract
The importance of microarrays in diagnostics and medicine has drastically increased in the last few years. Nevertheless, the efficiency of a microarray-based assay intrinsically depends on the density and functionality of the biorecognition elements immobilized onto each sensor spot. Recently, researchers have put effort into developing new functionalization strategies and technologies which provide efficient immobilization and stability of any sort of molecule. Here, we present an overview of the most widely used methods of surface functionalization of microarray substrates, as well as the most recent advances in the field, and compare their performance in terms of optimal immobilization of the bioreceptor molecules. We focus on label-free microarrays and, in particular, we aim to describe the impact of surface chemistry on two types of microarray-based sensors: microarrays for single particle imaging and for label-free measurements of binding kinetics. Both protein and DNA microarrays are taken into consideration, and the effect of different polymeric coatings on the molecules' functionalities is critically analyzed.
Collapse
Affiliation(s)
- Elisa Chiodi
- Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (A.M.M.); (M.T.G.); (M.S.Ü.)
| | - Allison M. Marn
- Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (A.M.M.); (M.T.G.); (M.S.Ü.)
| | - Matthew T. Geib
- Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (A.M.M.); (M.T.G.); (M.S.Ü.)
| | - M. Selim Ünlü
- Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (A.M.M.); (M.T.G.); (M.S.Ü.)
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
127
|
Kim HM, Oh C, An J, Baek S, Bock S, Kim J, Jung HS, Song H, Kim JW, Jo A, Kim DE, Rho WY, Jang JY, Cheon GJ, Im HJ, Jun BH. Multi-Quantum Dots-Embedded Silica-Encapsulated Nanoparticle-Based Lateral Flow Assay for Highly Sensitive Exosome Detection. NANOMATERIALS 2021; 11:nano11030768. [PMID: 33803623 PMCID: PMC8002883 DOI: 10.3390/nano11030768] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022]
Abstract
Exosomes are attracting attention as new biomarkers for monitoring the diagnosis and prognosis of certain diseases. Colorimetric-based lateral-flow assays have been previously used to detect exosomes, but these have the disadvantage of a high limit of detection. Here, we introduce a new technique to improve exosome detection. In our approach, highly bright multi-quantum dots embedded in silica-encapsulated nanoparticles (M–QD–SNs), which have uniform size and are brighter than single quantum dots, were applied to the lateral flow immunoassay method to sensitively detect exosomes. Anti-CD63 antibodies were introduced on the surface of the M–QD–SNs, and a lateral flow immunoassay with the M–QD–SNs was conducted to detect human foreskin fibroblast (HFF) exosomes. Exosome samples included a wide range of concentrations from 100 to 1000 exosomes/µL, and the detection limit of our newly designed system was 117.94 exosome/μL, which was 11 times lower than the previously reported limits. Additionally, exosomes were selectively detected relative to the negative controls, liposomes, and newborn calf serum, confirming that this method prevented non-specific binding. Thus, our study demonstrates that highly sensitive and quantitative exosome detection can be conducted quickly and accurately by using lateral immunochromatographic analysis with M–QD–SNs.
Collapse
Affiliation(s)
- Hyung-Mo Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.-M.K.); (J.A.); (S.B.); (J.K.); (A.J.); (D.-E.K.)
| | - Chiwoo Oh
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Korea; (C.O.); (S.B.)
| | - Jaehyun An
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.-M.K.); (J.A.); (S.B.); (J.K.); (A.J.); (D.-E.K.)
| | - Seungki Baek
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Korea; (C.O.); (S.B.)
| | - Sungje Bock
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.-M.K.); (J.A.); (S.B.); (J.K.); (A.J.); (D.-E.K.)
| | - Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.-M.K.); (J.A.); (S.B.); (J.K.); (A.J.); (D.-E.K.)
| | | | - Hobeom Song
- BioSquare Inc., Seongnam 13209, Korea; (H.S.); (J.-W.K.)
| | - Jung-Won Kim
- BioSquare Inc., Seongnam 13209, Korea; (H.S.); (J.-W.K.)
| | - Ahla Jo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.-M.K.); (J.A.); (S.B.); (J.K.); (A.J.); (D.-E.K.)
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.-M.K.); (J.A.); (S.B.); (J.K.); (A.J.); (D.-E.K.)
| | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Korea;
| | - Jin-Young Jang
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Korea
- Correspondence: (G.J.C.); (H.-J.I.); (B.-H.J.); Tel.: +82-2-2072-3386 (G.J.C.); +82-31-888-9187 (H.-J.I.); +82-2-450-0521 (B.-H.J.)
| | - Hyung-Jun Im
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Korea; (C.O.); (S.B.)
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Korea
- Correspondence: (G.J.C.); (H.-J.I.); (B.-H.J.); Tel.: +82-2-2072-3386 (G.J.C.); +82-31-888-9187 (H.-J.I.); +82-2-450-0521 (B.-H.J.)
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.-M.K.); (J.A.); (S.B.); (J.K.); (A.J.); (D.-E.K.)
- Correspondence: (G.J.C.); (H.-J.I.); (B.-H.J.); Tel.: +82-2-2072-3386 (G.J.C.); +82-31-888-9187 (H.-J.I.); +82-2-450-0521 (B.-H.J.)
| |
Collapse
|
128
|
Serum Extracellular Vesicle-Derived miRNAs in Patients with Non-Small Cell Lung Cancer-Search for Non-Invasive Diagnostic Biomarkers. Diagnostics (Basel) 2021; 11:diagnostics11030425. [PMID: 33802346 PMCID: PMC7998231 DOI: 10.3390/diagnostics11030425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
The aim of the study was a search for diagnostic and/or prognostic biomarkers in patients with non-small cell lung cancer (NSCLC) patients, based on circulating microRNAs (miRs: miR-23a, miR-361, miR-1228 and miR-let7i) in extracellular vesicles (EVs). Serum EVs were isolated from NSCLC patients (n = 31) and control subjects (n = 21). RNA was isolated from EVs and reverse transcription reaction was performed. Relative levels of miR-23a, miR-361, miR-1228 and miR-let7i were assessed in real-time qPCR using TaqMan probes. Analysis was based on the 2-ΔΔCT method. Statistically significant lower levels of miR-23a and miR-let7i were observed among NSCLC patients vs. control group: miR-23a, 0.054 vs. 0.107; miR-let7i, 0.193 vs. 0.369 (p = 0.003, p = 0.005, respectively). A receiver operating characteristic (ROC) curve analysis demonstrated the diagnostic potential of each individual serum EV-derived miRNA with an area under the curve AUC = 0.744 for miR-23a (p = 0.0003), 0.733 for miR-let7i (p = 0.0007). The decreased level of miR-23a in patients correlated with metastasis to lymph nodes and with AJCC tumor staging system. The results demonstrate that miR-23a and miR-let7i may prove clinically useful as significant, non-invasive markers in NSCLC diagnosis. Additionally, changing profile level of miR-23a that correlates with cancer development may be considered as an NSCLC progression marker.
Collapse
|
129
|
Gurunathan S, Kang MH, Kim JH. A Comprehensive Review on Factors Influences Biogenesis, Functions, Therapeutic and Clinical Implications of Exosomes. Int J Nanomedicine 2021; 16:1281-1312. [PMID: 33628021 PMCID: PMC7898217 DOI: 10.2147/ijn.s291956] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/16/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nanoscale-sized membrane vesicles secreted by almost all cell types into the extracellular environment upon fusion of multivesicular bodies and plasma membrane. Biogenesis of exosomes is a protein quality control mechanism, and once released, exosomes transmit signals to other cells. The applications of exosomes have increased immensely in biomedical fields owing to their cell-specific cargos that facilitate intercellular communications with neighboring cells through the transfer of biologically active compounds. The diverse constituents of exosomes reflect their cell of origin and their detection in biological fluids represents a diagnostic marker for various diseases. Exosome research is expanding rapidly due to the potential for clinical application to therapeutics and diagnosis. However, several aspects of exosome biology remain elusive. To discover the use of exosomes in the biomedical applications, we must better understand the basic molecular mechanisms underlying their biogenesis and function. In this comprehensive review, we describe factors involved in exosomes biogenesis and the role of exosomes in intercellular signaling and cell-cell communications, immune responses, cellular homeostasis, autophagy, and infectious diseases. In addition, we discuss the role of exosomes as diagnostic markers, and their therapeutic and clinical implications. Furthermore, we addressed the challenges and outstanding developments in exosome research, and discuss future perspectives.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| |
Collapse
|
130
|
Kappel AD, Bernstock JD, Ditoro DF, Lu Y. Radiation-induced intracranial osteosarcoma of the anterior skull base after treatment of esthesioneuroblastoma. BMJ Case Rep 2021; 14:14/1/e238928. [PMID: 33462035 PMCID: PMC7813314 DOI: 10.1136/bcr-2020-238928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Esthesioneuroblastoma (ENB) is an uncommon sinonasal cancer of the olfactory neuroepithelium that is typically treated with surgical resection followed by radiation therapy. Radiation-induced intracranial osteosarcoma of the skull base is a rare but devastating long-term complication of radiation therapy in this region. Here, we present a case of an 82-year-old patient who developed radiation-induced osteosarcoma of the anterior skull base and paranasal sinuses 10 years after radiation therapy following resection of an ENB. Older patients may be at risk of developing this complication earlier and with a worse prognosis relative to younger patients. Treating physicians/surgeons should be aware of this devastating complication. Patients who are treated with high-dose radiation therapy in this region should be followed for many years.
Collapse
Affiliation(s)
- Ari D Kappel
- Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA,Neurosurgery, Harvard Medical School, Boston, MA, USA
| | - Joshua D Bernstock
- Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA,Neurosurgery, Harvard Medical School, Boston, MA, USA
| | - Daniel Francis Ditoro
- Pathology, Brigham and Women's Hospital, Boston, MA, USA,Pathology, Harvard Medical School, Boston, MA, USA
| | - Yi Lu
- Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA,Neurosurgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
131
|
Yang HC, Rhee WJ. Single Step In Situ Detection of Surface Protein and MicroRNA in Clustered Extracellular Vesicles Using Flow Cytometry. J Clin Med 2021; 10:jcm10020319. [PMID: 33477255 PMCID: PMC7831033 DOI: 10.3390/jcm10020319] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/21/2022] Open
Abstract
Because cancers are heterogeneous, it is evident that multiplexed detection is required to achieve disease diagnosis with high accuracy and specificity. Extracellular vesicles (EVs) have been a subject of great interest as sources of novel biomarkers for cancer liquid biopsy. However, EVs are nano-sized particles that are difficult to handle; thus, it is necessary to develop a method that enables efficient and straightforward EV biomarker detection. In the present study, we developed a method for single step in situ detection of EV surface proteins and inner miRNAs simultaneously using a flow cytometer. CD63 antibody and molecular beacon-21 were investigated for multiplexed biomarker detection in normal and cancer EVs. A phospholipid-polymer-phospholipid conjugate was introduced to induce clustering of the EVs analyzed using nanoparticle tracking analysis, which enhanced the detection signals. As a result, the method could detect and distinguish cancer cell-derived EVs using a flow cytometer. Thus, single step in situ detection of multiple EV biomarkers using a flow cytometer can be applied as a simple, labor- and time-saving, non-invasive liquid biopsy for the diagnosis of various diseases, including cancer.
Collapse
Affiliation(s)
- Hee Cheol Yang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Korea;
| | - Won Jong Rhee
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Korea;
- Division of Bioengineering, Incheon National University, Incheon 22012, Korea
- Correspondence: ; Tel.: +82-32-835-8299
| |
Collapse
|
132
|
Radi AE, Abd-Ellatief MR. Electrochemical Aptasensors: Current Status and Future Perspectives. Diagnostics (Basel) 2021; 11:104. [PMID: 33440751 PMCID: PMC7828092 DOI: 10.3390/diagnostics11010104] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
This article reviews the progress of diversity of electrochemical aptasensor for target analytes detection. The immobilization strategies of aptamers on an electrode surface are addressed. The aptasensors are also introduced in compliance with the assay platforms. Many electrochemical aptasensors are nearly identical to conventional immunochemical approaches, sandwich and competition assays using electroactive signaling moieties. Others are "signal-on" and "sign-off" aptasensors credited to the target binding-induced conformational change of aptamers. Label-free aptasensors are also highlighted. Furthermore, the aptasensors applied for clinically important biomarkers are emphasized.
Collapse
Affiliation(s)
- Abd-Elgawad Radi
- Department of Chemistry, Faculty of Science, Damietta University, Damietta 34517, Egypt;
| | | |
Collapse
|
133
|
Xue F, Chen Y, Wen Y, Abhange K, Zhang W, Cheng G, Quinn Z, Mao W, Wan Y. Isolation of extracellular vesicles with multivalent aptamers. Analyst 2021; 146:253-261. [PMID: 33107503 DOI: 10.1039/d0an01420f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are lipid-enclosed submicron-sized vesicles that are secreted by all eukaryotic cells. EVs can selectively encapsulate tissue-specific small molecules from parent cells and efficiently deliver them to recipient cells. As signal mediators of intercellular communication, the molecules packaged in EVs play critical roles in the pathophysiology of diseases. In relevant clinical translation, EV contents have been used for cancer diagnosis and treatment monitoring. To further promote EV-based cancer liquid biopsy toward large-scale clinical implementation, the efficient and specific isolation of pure tumor-derived EVs from body fluids is a prerequisite. However, the existing EV isolation methods are unable to address certain technical challenges, such as lengthy procedures, low throughput, low specificity, heavy protein contamination, etc., and thus, new approaches for EV isolation are required. Here, we report a multivalent, long single-stranded aptamer with repeated units for EV enrichment and retrieval. After short incubation of biotin-labeled multivalent aptamers (MAs) with the samples, EVs can be quickly secured by MAs, anchored onto streptavidin-coated microspheres, and further retrieved via digestion of the DNA aptamer. Approximately 45% of EVs can be isolated from the spiked samples in 40 min with a depletion of 84.7% of albumin contamination. In addition, 93.1% of the isolated EVs can be retrieved via DNase-mediated aptamer degradation in 10 min for downstream molecular analyses. Our findings suggest that MAs can efficiently and specifically isolate EVs derived from malignant lymphocytes, and this simple method could facilitate the EV-centered study of acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Fei Xue
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Horseradish peroxidase-encapsulated DNA nanoflowers: An innovative signal-generation tag for colorimetric biosensor. Talanta 2021; 221:121600. [DOI: 10.1016/j.talanta.2020.121600] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/22/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
|
135
|
Alves dos Santos K, Clemente dos Santos IC, Santos Silva C, Gomes Ribeiro H, de Farias Domingos I, Nogueira Silbiger V. Circulating Exosomal miRNAs as Biomarkers for the Diagnosis and Prognosis of Colorectal Cancer. Int J Mol Sci 2020; 22:ijms22010346. [PMID: 33396209 PMCID: PMC7795745 DOI: 10.3390/ijms22010346] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors in the gastrointestinal tract. It is a multifactorial disease that involves environmental factors, genetic factors, and lifestyle factors. Due to the absence of specific and sensitive biomarkers, CRC patients are usually diagnosed at an advanced stage and consequently suffer from a low 5-year overall survival rate. Despite improvements in surgical resection and adjuvant chemotherapy, the prognosis of patients with CRC remains unfavorable due to local and distant metastases. Several studies have shown that small noncoding RNAs, such as microRNAs packed in exosomes, are potential biomarkers in various types of cancers, including CRC, and that they can be detected in a stable form in both serum and plasma. In this review, we report the potential of circulating exosomal miRNAs to act as biomarkers for the diagnosis and prognosis of CRC.
Collapse
Affiliation(s)
- Katiusse Alves dos Santos
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (K.A.d.S.); (I.C.C.d.S.); (I.d.F.D.)
- Bioanalysis and Molecular Biotechnology Laboratory, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (C.S.S.); (H.G.R.)
| | - Isabelle Cristina Clemente dos Santos
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (K.A.d.S.); (I.C.C.d.S.); (I.d.F.D.)
- Bioanalysis and Molecular Biotechnology Laboratory, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (C.S.S.); (H.G.R.)
| | - Carollyne Santos Silva
- Bioanalysis and Molecular Biotechnology Laboratory, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (C.S.S.); (H.G.R.)
| | - Hériks Gomes Ribeiro
- Bioanalysis and Molecular Biotechnology Laboratory, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (C.S.S.); (H.G.R.)
| | - Igor de Farias Domingos
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (K.A.d.S.); (I.C.C.d.S.); (I.d.F.D.)
- Department of Clinical and Toxicological, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil
| | - Vivian Nogueira Silbiger
- Bioanalysis and Molecular Biotechnology Laboratory, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (C.S.S.); (H.G.R.)
- Department of Clinical and Toxicological, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil
- Correspondence: ; Tel.: +55-84-99939-4224
| |
Collapse
|
136
|
Nam GH, Choi Y, Kim GB, Kim S, Kim SA, Kim IS. Emerging Prospects of Exosomes for Cancer Treatment: From Conventional Therapy to Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002440. [PMID: 33015883 DOI: 10.1002/adma.202002440] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/29/2020] [Indexed: 05/05/2023]
Abstract
Exosomes are a class of extracellular vesicles of around 100 nm in diameter that are secreted by most cells and contain various bioactive molecules reflecting their cellular origin and mediate intercellular communication. Studies of these exosomal features in tumor pathogenesis have led to the development of therapeutic and diagnostic approaches using exosomes for cancer therapy. Exosomes have many advantages for conveying therapeutic agents such as small interfering RNAs, microRNAs, membrane-associated proteins, and chemotherapeutic compounds; thus, they are considered a prime candidate as a delivery tool for cancer treatment. Since exosomes also provide an optimal microenvironment for the effective function of immunomodulatory factors, exosomes harboring bioactive molecules have been bioengineered as cancer immunotherapies that can effectively activate each stage of the cancer immunity cycle to successfully elicit cancer-specific immunity. This review discusses the advantages of exosomes for treating cancer and the challenges that must be overcome for their successful clinical development.
Collapse
Affiliation(s)
- Gi-Hoon Nam
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yoonjeong Choi
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Gi Beom Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seohyun Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seong A Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - In-San Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
137
|
Non-invasive prostate cancer screening using chemometric processing of macro and trace element concentration profiles in urine. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
138
|
Arianfar E, Shahgordi S, Memarian A. Natural Killer Cell Defects in Breast Cancer: A Key Pathway for Tumor Evasion. Int Rev Immunol 2020; 40:197-216. [PMID: 33258393 DOI: 10.1080/08830185.2020.1845670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As the most important innate immune component cancers invader, natural killer (NK) cells have a magnificent role in antitumor immunity without any prior sensitization. Different subsets of NK cells have distinct responses during tumor cell exposure, according to their phenotypes and environments. Their function is induced mainly by the activity of both inhibitory and activating receptors against cancerous cells. Since the immunosuppression in the tumor microenvironment of breast cancer patients has directly deteriorated the phenotype and disturbed the function of NK cells, recruiting compensatory mechanisms indicate promising outcomes for immunotherapeutic approaches. These evidences accentuate the importance of NK cell distinct features in protection against breast tumors. In this review, we discuss the several mechanisms involved in NK cells suppression which consequently promote tumor progression and disease recurrence in patients with breast cancer.
Collapse
Affiliation(s)
- Elaheh Arianfar
- Student Research Committee, Faculty of Medicine, Department of Immunology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sanaz Shahgordi
- Student Research Committee, Faculty of Medicine, Department of Immunology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Memarian
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran.,Immunology department, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
139
|
Ghantous CM, Kamareddine L, Farhat R, Zouein FA, Mondello S, Kobeissy F, Zeidan A. Advances in Cardiovascular Biomarker Discovery. Biomedicines 2020; 8:biomedicines8120552. [PMID: 33265898 PMCID: PMC7759775 DOI: 10.3390/biomedicines8120552] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are the leading causes of mortality worldwide. Among them, hypertension and its pathological complications pose a major risk for the development of other cardiovascular diseases, including heart failure and stroke. Identifying novel and early stage biomarkers of hypertension and other cardiovascular diseases is of paramount importance in predicting and preventing the major morbidity and mortality associated with these diseases. Biomarkers of such diseases or predisposition to their development are identified by changes in a specific indicator’s expression between healthy individuals and patients. These include changes in protein and microRNA (miRNA) levels. Protein profiling using mass spectrometry and miRNA screening utilizing microarray and sequencing have facilitated the discovery of proteins and miRNA as biomarker candidates. In this review, we summarized some of the different, promising early stage protein and miRNA biomarker candidates as well as the currently used biomarkers for hypertension and other cardiovascular diseases. Although a number of promising markers have been identified, it is unlikely that a single biomarker will unambiguously aid in the classification of these diseases. A multi-marker panel-strategy appears useful and promising for classifying and refining risk stratification among patients with cardiovascular disease.
Collapse
Affiliation(s)
- Crystal M. Ghantous
- Department of Nursing and Health Sciences, Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Keserwan 72, Lebanon;
| | - Layla Kamareddine
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
| | - Rima Farhat
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Fouad A. Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Stefania Mondello
- Oasi Research Institute-IRCCS, 94018 Troina, Italy;
- Department of Biomedical and Dental Sciences and Morpho-functional Imaging, University of Messina, 98125 Messina, Italy
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Asad Zeidan
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
- Department of Basic Medical Science, Faculty of Medicine, QU Health, Qatar University, Doha 2713, Qatar
- Correspondence: ; Tel.: +97-431-309-19
| |
Collapse
|
140
|
Extracellular vesicles on demand (EVOD) chip for screening and quantification of cancer-associated extracellular vesicles. Biosens Bioelectron 2020; 168:112535. [DOI: 10.1016/j.bios.2020.112535] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 12/25/2022]
|
141
|
Zhu Z, Wang H, Pang Y, Hu H, Zhang H, Wang W. Exosomal long non-coding RNA UCA1 functions as growth inhibitor in esophageal cancer. Aging (Albany NY) 2020; 12:20523–20539. [PMID: 33122449 PMCID: PMC7655204 DOI: 10.18632/aging.103911] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Esophageal cancer is a highly lethal and broad-spreading malignant tumor worldwide. Exosome-carrying lncRNAs play an essential role in the pathogenesis of various cancers. RESULTS The results revealed that the expression of UCA1 was decreased in esophageal cancer tissues and plasma exosomes. UCA1 was enriched in exosomes, and exosomal UCA1 was a promising biomarker for the diagnosis of esophageal cancer with 86.7% sensitivity and 70.2% specificity. Overexpression of UCA1 played anticancer roles in esophageal cancer cells through inhibiting cell proliferation, invasion and migration, and colony formation. Also, exosomal UCA1 was taken up by esophageal cancer cells and inhibited the progression of esophageal cancer in vitro and tumor growth in vivo. Furthermore, exosomal UCA1 could directly target miRNA-613 in esophageal cancer cells. CONCLUSIONS The results suggested that exosomal UCA1 inhibits tumorigenesis and progression of esophageal cancer in vitro and in vivo, and might be a promising biomarker for esophageal cancer. PATIENT AND METHODS In this study, we determined the expression of UCA1 in esophageal cancer tissues, plasma exosomes of patients with esophageal cancer. We determined the potential of exosomal UCA1 as a biomarker and its effect on the pathogenesis and progression of esophageal cancer in vitro and in vivo.
Collapse
Affiliation(s)
- Zijiang Zhu
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Huilin Wang
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Yao Pang
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Hongxia Hu
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Hongyi Zhang
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Wenhao Wang
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
142
|
Pan Y, Wang L, Deng Y, Wang M, Peng Y, Yang J, Li G. A simple and sensitive method for exosome detection based on steric hindrance-controlled signal amplification. Chem Commun (Camb) 2020; 56:13768-13771. [PMID: 33084644 DOI: 10.1039/d0cc06113a] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exosomes have been widely considered as excellent noninvasive or minimally invasive biomarkers; however, the currently available methods for exosome detection usually need sophisticated instruments, or the sensitivity cannot be satisfactory, since the size of exosomes is very large. Nevertheless, in this work, by making use of the steric hindrance of exosomes due to their large size, we have developed a simple and sensitive method for the detection of exosomes with great potential in clinical use.
Collapse
Affiliation(s)
- Yanhong Pan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
143
|
Molinski J, Tadimety A, Burklund A, Zhang JXJ. Scalable Signature-Based Molecular Diagnostics Through On-chip Biomarker Profiling Coupled with Machine Learning. Ann Biomed Eng 2020; 48:2377-2399. [PMID: 32816167 PMCID: PMC7785517 DOI: 10.1007/s10439-020-02593-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Molecular diagnostics have traditionally relied on discrete biological substances as diagnostic markers. In recent years however, advances in on-chip biomarker screening technologies and data analytics have enabled signature-based diagnostics. Such diagnostics aim to utilize unique combinations of multiple biomarkers or diagnostic 'fingerprints' rather than discrete analyte measurements. This approach has shown to improve both diagnostic accuracy and diagnostic specificity. In this review, signature-based diagnostics enabled by microfluidic and micro-/nano- technologies will be reviewed with a focus on device design and data analysis pipelines and methodologies. With increasing amounts of data available from microfluidic biomarker screening, isolation, and detection platforms, advanced data handling and analytics approaches can be employed. Thus, current data analysis approaches including machine learning and recent advances with image processing, along with potential future directions will be explored. Lastly, the needs and gaps in current literature will be elucidated to inform future efforts towards development of molecular diagnostics and biomarker screening technologies.
Collapse
Affiliation(s)
- John Molinski
- Thayer School of Engineering at Dartmouth, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - Amogha Tadimety
- Thayer School of Engineering at Dartmouth, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - Alison Burklund
- Thayer School of Engineering at Dartmouth, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - John X J Zhang
- Thayer School of Engineering at Dartmouth, 14 Engineering Drive, Hanover, NH, 03755, USA.
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA.
| |
Collapse
|
144
|
Extracellular Vesicles as Biomarkers in Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12102825. [PMID: 33007968 PMCID: PMC7600903 DOI: 10.3390/cancers12102825] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Extracellular vesicles (EVs) are small particles found throughout the body. EVs are released by living cells and contain cargo representing the cell of origin. In recent years, EVs have gained attention in cancer research. Since the cargo found inside EVs can be traced back to the cell of origin, EVs shed from cancer cells, in particular, may be used to better describe and characterize a patient’s tumor. EVs have been found and isolated from a variety of bodily fluids, including blood, saliva, and amniotic fluid, and therefore offer a non-invasive way of also diagnosing and monitoring patients before, during, and after cancer immunotherapy. The aim of this review article was to summarize some of the recent work conducted in this field and the challenges we face moving forward in utilizing EVs for cancer diagnostic and therapeutic purposes in cancer immunotherapy in the clinical setting. Abstract Extracellular vesicles (EVs), including exosomes and microvesicles, are membrane-bound vesicles secreted by most cell types during both physiologic conditions as well in response to cellular stress. EVs play an important role in intercellular communication and are emerging as key players in tumor immunology. Tumor-derived EVs (TDEs) harbor a diverse array of tumor neoantigens and contain unique molecular signature that is reflective of tumor’s underlying genetic complexity. As such they offer a glimpse into the immune tumor microenvironment (TME) and have the potential to be a novel, minimally invasive biomarker for cancer immunotherapy. Immune checkpoint inhibitors (ICI), such as anti- programmed death-1(PD-1) and its ligand (PD-L1) antibodies, have revolutionized the treatment of a wide variety of solid tumors including head and neck squamous cell carcinoma, urothelial carcinoma, melanoma, non-small cell lung cancer, and others. Typically, an invasive tissue biopsy is required both for histologic diagnosis and next-generation sequencing efforts; the latter have become more widespread in daily clinical practice. There is an unmet need for noninvasive or minimally invasive (e.g., plasma-based) biomarkers both for diagnosis and treatment monitoring. Targeted analysis of EVs in biospecimens, such as plasma and saliva could serve this purpose by potentially obviating the need for tissue sample. In this review, we describe the current challenges of biomarkers in cancer immunotherapy as well as the mechanistic role of TDEs in modulating antitumor immune response.
Collapse
|
145
|
Bagheri Hashkavayi A, Cha BS, Lee ES, Kim S, Park KS. Advances in Exosome Analysis Methods with an Emphasis on Electrochemistry. Anal Chem 2020; 92:12733-12740. [PMID: 32902258 DOI: 10.1021/acs.analchem.0c02745] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exosomes, small extracellular vesicles, are released by various cell types. They are found in bodily fluids, including blood, urine, serum, and saliva, and play essential roles in intercellular communication. Exosomes contain various biomarkers, such as nucleic acids and proteins, that reflect the status of their parent cells. Since they influence tumorigenesis and metastasis in cancer patients, exosomes are excellent noninvasive potential indicators for early cancer detection. Aptamers with specific binding properties have distinct advantages over antibodies, making them effective versatile bioreceptors for the detection of exosome biomarkers. Here, we review various aptamer-based exosome detection approaches based on signaling methods, such as fluorescence, colorimetry, and chemiluminescence, focusing on electrochemical strategies that are easier, cost-effective, and more sensitive than others. Further, we discuss the clinical applications of electrochemical exosome analysis strategies as well as future research directions in this field.
Collapse
Affiliation(s)
- Ayemeh Bagheri Hashkavayi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Byung Seok Cha
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Eun Sung Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Seokjoon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
146
|
Morris AH, Orbach SM, Bushnell GG, Oakes RS, Jeruss JS, Shea LD. Engineered Niches to Analyze Mechanisms of Metastasis and Guide Precision Medicine. Cancer Res 2020; 80:3786-3794. [PMID: 32409307 PMCID: PMC7501202 DOI: 10.1158/0008-5472.can-20-0079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/04/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022]
Abstract
Cancer metastasis poses a challenging problem both clinically and scientifically, as the stochastic nature of metastatic lesion formation introduces complexity for both early detection and the study of metastasis in preclinical models. Engineered metastatic niches represent an emerging approach to address this stochasticity by creating bioengineered sites where cancer can preferentially metastasize. As the engineered niche captures the earliest metastatic cells at a nonvital location, both noninvasive and biopsy-based monitoring of these sites can be performed routinely to detect metastasis early and monitor alterations in the forming metastatic niche. The engineered metastatic niche also provides a new platform technology that serves as a tunable site to molecularly dissect metastatic disease mechanisms. Ultimately, linking the engineered niches with advances in sensor development and synthetic biology can provide enabling tools for preclinical cancer models and fosters the potential to impact the future of clinical cancer care.
Collapse
Affiliation(s)
- Aaron H Morris
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Sophia M Orbach
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Grace G Bushnell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Internal Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Robert S Oakes
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Jacqueline S Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
147
|
Logozzi M, Mizzoni D, Di Raimo R, Fais S. Exosomes: A Source for New and Old Biomarkers in Cancer. Cancers (Basel) 2020; 12:E2566. [PMID: 32916840 PMCID: PMC7565506 DOI: 10.3390/cancers12092566] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
Clinical oncology needs reliable tumor biomarkers to allow a follow-up of tumor patients who do not necessarily need invasive approaches. To date, the existing biomarkers are not sufficiently reliable, and many of them have generated more problems than facilitating the commitment of clinical oncologists. Over the last decades, a broad family of extracellular vesicles, with size ranging between micro to nano, has been raised as a new hope for potential sources of new tumor biomarkers. However, while knowledge in the field is increasing, we do not currently have definitive information allowing a clinical use of extracellular vesicles in cancer clinics. Recent evidence provides new perspective in clinical oncology, based on data showing that circulating nanovesicles called exosomes may represent a valuable source of tumor biomarkers. In this review, we discuss the existing clinical data supporting a key role of exosomes as a source of tumor biomarkers, including proteins and miRNAs, but also discuss the importance of the expression of known tumor biomarkers when expressed on exosomes.
Collapse
Affiliation(s)
| | | | | | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.L.); (D.M.); (R.D.R.)
| |
Collapse
|
148
|
Nemati Z, Zamani Kouhpanji MR, Zhou F, Das R, Makielski K, Um J, Phan MH, Muela A, Fdez-Gubieda ML, Franklin RR, Stadler BJH, Modiano JF, Alonso J. Isolation of Cancer-Derived Exosomes Using a Variety of Magnetic Nanostructures: From Fe 3O 4 Nanoparticles to Ni Nanowires. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1662. [PMID: 32854239 PMCID: PMC7558559 DOI: 10.3390/nano10091662] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
Isolating and analyzing tumor-derived exosomes (TEX) can provide important information about the state of a tumor, facilitating early diagnosis and prognosis. Since current isolation methods are mostly laborious and expensive, we propose herein a fast and cost-effective method based on a magnetic nanoplatform to isolate TEX. In this work, we have tested our method using three magnetic nanostructures: (i) Ni magnetic nanowires (MNWs) (1500 × 40 nm), (ii) Fe3O4 nanorods (NRs) (41 × 7 nm), and (iii) Fe3O4 cube-octahedral magnetosomes (MGs) (45 nm) obtained from magnetotactic bacteria. The magnetic response of these nanostructures has been characterized, and we have followed their internalization inside canine osteosarcoma OSCA-8 cells. An overall depiction has been obtained using a combination of Fluorescence and Scanning Electron Microscopies. In addition, Transmission Electron Microscopy images have shown that the nanostructures, with different signs of degradation, ended up being incorporated in endosomal compartments inside the cells. Small intra-endosomal vesicles that could be precursors for TEX have also been identified. Finally, TEX have been isolated using our magnetic isolation method and analyzed with a Nanoparticle tracking analyzer (NanoSight). We observed that the amount and purity of TEX isolated magnetically with MNWs was higher than with NRs and MGs, and they were close to the results obtained using conventional non-magnetic isolation methods.
Collapse
Affiliation(s)
- Zohreh Nemati
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.R.Z.K.); (J.U.); (R.R.F.); (B.J.H.S.)
- Animal Cancer Care and Research Program, University of Minnesota, Saint Paul, MN 55108, USA; (K.M.); (J.F.M.)
- Masonic Cancer Research Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mohammad Reza Zamani Kouhpanji
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.R.Z.K.); (J.U.); (R.R.F.); (B.J.H.S.)
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Fang Zhou
- Shepherd Labs, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Raja Das
- Faculty of Materials Science and Engineering and Phenikaa Institute for Advanced Study (PIAS), Phenikaa University, Hanoi 10000, Vietnam;
- Phenikaa Research and Technology Institute (PRATI), A & A Green Phoenix Group, 167 Hoang Ngan, Hanoi 10000, Vietnam
| | - Kelly Makielski
- Animal Cancer Care and Research Program, University of Minnesota, Saint Paul, MN 55108, USA; (K.M.); (J.F.M.)
- Masonic Cancer Research Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| | - Joseph Um
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.R.Z.K.); (J.U.); (R.R.F.); (B.J.H.S.)
| | - Manh-Huong Phan
- Department of Physics, University of South Florida, Tampa, FL 33620, USA;
| | - Alicia Muela
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (A.M.); (M.L.F.-G.)
- Department of Immunology, Microbiology, and Parasitology, University of Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Mᵃ Luisa Fdez-Gubieda
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (A.M.); (M.L.F.-G.)
- Department of Electricity and Electronics, University of Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Rhonda R. Franklin
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.R.Z.K.); (J.U.); (R.R.F.); (B.J.H.S.)
| | - Bethanie J. H. Stadler
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.R.Z.K.); (J.U.); (R.R.F.); (B.J.H.S.)
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jaime F. Modiano
- Animal Cancer Care and Research Program, University of Minnesota, Saint Paul, MN 55108, USA; (K.M.); (J.F.M.)
- Masonic Cancer Research Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Javier Alonso
- Department CITIMAC, University of Cantabria (UC), 39005 Santander, Spain
| |
Collapse
|
149
|
Koul S, Schaal VL, Chand S, Pittenger ST, Nanoth Vellichirammal N, Kumar V, Guda C, Bevins RA, Yelamanchili SV, Pendyala G. Role of Brain Derived Extracellular Vesicles in Decoding Sex Differences Associated with Nicotine Self-Administration. Cells 2020; 9:cells9081883. [PMID: 32796722 PMCID: PMC7464419 DOI: 10.3390/cells9081883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Smoking remains a significant health and economic concern in the United States. Furthermore, the emerging pattern of nicotine intake between sexes further adds a layer of complexity. Nicotine is a potent psychostimulant with a high addiction liability that can significantly alter brain function. However, the neurobiological mechanisms underlying nicotine’s impact on brain function and behavior remain unclear. Elucidation of these mechanisms is of high clinical importance and may lead to improved therapeutics for smoking cessation. To fill in this critical knowledge gap, our current study focused on identifying sex-specific brain-derived extracellular vesicles (BDEV) signatures in male and female rats post nicotine self-administration. Extracellular vesicles (EVs) are comprised of phospholipid nanovesicles such as apoptotic bodies, microvesicles (MVs), and exosomes based on their origin or size. EVs are garnering significant attention as molecules involved in cell–cell communication and thus regulating the pathophysiology of several diseases. Interestingly, females post nicotine self-administration, showed larger BDEV sizes, along with impaired EV biogenesis compared to males. Next, using quantitative mass spectrometry-based proteomics, we identified BDEV signatures, including distinct molecular pathways, impacted between males and females. In summary, this study has identified sex-specific changes in BDEV biogenesis, protein cargo signatures, and molecular pathways associated with long-term nicotine self-administration.
Collapse
Affiliation(s)
- Sneh Koul
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.K.); (V.L.S.); (S.C.); (S.V.Y.)
| | - Victoria L. Schaal
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.K.); (V.L.S.); (S.C.); (S.V.Y.)
| | - Subhash Chand
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.K.); (V.L.S.); (S.C.); (S.V.Y.)
| | - Steven T. Pittenger
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (S.T.P.); (R.A.B.)
| | - Neetha Nanoth Vellichirammal
- Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (N.N.V.); (C.G.)
| | - Vikas Kumar
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Chittibabu Guda
- Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (N.N.V.); (C.G.)
| | - Rick A. Bevins
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (S.T.P.); (R.A.B.)
| | - Sowmya V. Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.K.); (V.L.S.); (S.C.); (S.V.Y.)
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.K.); (V.L.S.); (S.C.); (S.V.Y.)
- Correspondence: ; Tel.: +1-402-559-8690
| |
Collapse
|
150
|
Risha Y, Minic Z, Ghobadloo SM, Berezovski MV. The proteomic analysis of breast cell line exosomes reveals disease patterns and potential biomarkers. Sci Rep 2020; 10:13572. [PMID: 32782317 PMCID: PMC7419295 DOI: 10.1038/s41598-020-70393-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer cells release small extracellular vesicles, exosomes, that have been shown to contribute to various aspects of cancer development and progression. Differential analysis of exosomal proteomes from cancerous and non-tumorigenic breast cell lines can provide valuable information related to breast cancer progression and metastasis. Moreover, such a comparison can be explored to find potentially new protein biomarkers for early disease detection. In this study, exosomal proteomes of MDA-MB-231, a metastatic breast cancer cell line, and MCF-10A, a non-cancerous epithelial breast cell line, were identified by nano-liquid chromatography coupled to tandem mass spectrometry. We also tested three exosomes isolation methods (ExoQuick, Ultracentrifugation (UC), and Ultrafiltration–Ultracentrifugation) and detergents (n-dodecyl β-d-maltoside, Triton X-100, and Digitonin) for solubilization of exosomal proteins and enhanced detection by mass spectrometry. A total of 1,107 exosomal proteins were identified in both cell lines, 726 of which were unique to the MDA-MB-231 breast cancer cell line. Among them, 87 proteins were predicted to be relevant to breast cancer and 16 proteins to cancer metastasis. Three exosomal membrane/surface proteins, glucose transporter 1 (GLUT-1), glypican 1 (GPC-1), and disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), were identified as potential breast cancer biomarkers and validated with Western blotting and high-resolution flow cytometry. We demonstrated that exosomes are a rich source of breast cancer-related proteins and surface biomarkers that may be used for disease diagnosis and prognosis.
Collapse
Affiliation(s)
- Yousef Risha
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Zoran Minic
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, Canada
| | - Shahrokh M Ghobadloo
- Cellular Imaging and Cytometry Facility, Faculty of Science, University of Ottawa, Ottawa, Canada
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada. .,John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, Canada. .,Cellular Imaging and Cytometry Facility, Faculty of Science, University of Ottawa, Ottawa, Canada.
| |
Collapse
|