1551
|
Torres GA, Gimenes MA, Rosa Jr. VED, Quecini V. Identifying water stress-response mechanisms in citrus by in silico transcriptome analysis. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000500018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
1552
|
Musyimi D, Netondo G, Ouma G. Effects of Salinity on Growth and Photosynthesis of Avocado Seedlings. ACTA ACUST UNITED AC 2006. [DOI: 10.3923/ijb.2007.78.84] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
1553
|
Lacerda CF, Assis Júnior JO, Lemos Filho LCA, Oliveira TSD, Guimarães FV, Gomes-Filho E, Prisco JT, Bezerra MA. Morpho-physiological responses of cowpea leaves to salt stress. ACTA ACUST UNITED AC 2006. [DOI: 10.1590/s1677-04202006000400003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of salt stress of known intensity and duration on morpho-physiological changes in leaves of different ages from cowpea [Vigna unguiculata (L.) Walp.] plants was studied, aiming for a better understanding of the acclimation process of the whole-plant. Seeds were sown in vermiculite and seedlings were transferred to plastic trays containing aerated nutrient solution, and kept in a greenhouse. When the first trifoliate leaf emerged the seedlings were transplanted into 3 L plastic pots containing aerated nutrient solution. Salt additions started 5 d later, and the salt-treated plants received 25 mmol L-1 per day until reaching a final concentration of 75 mmol L-1. During the experimental period primary leaves and the 1st, 2nd, and 3rd trifoliate leaves were used for measurements of net photosynthesis, leaf area, leaf succulence, specific leaf mass, ions and chlorophyll concentrations. Growth analysis of the whole-plant was performed at the end of the experimental period. Salinity did not affect net photosynthesis, but reduced dry mass production and the number of lateral branches. Leaf concentrations of Na+, Cl-, K+ and P increased in salt-stressed plants, but these responses were dependent upon stress duration and leaf age. The higher concentration of potentially toxic ions (Na+ and Cl-) in older leaves could contribute to the reduced ion accumulation in growing tissues, but the tendency of K and P accumulation in leaves appeared to be the result of reduced re-translocation, i.e., not related to plant acclimation. Salinity also increased the source/sink ratio, leaf succulence, specific leaf mass, and chlorophyll accumulation per unit of leaf area, suggesting that the observed changes could be part of an integrated mechanism of whole-plant acclimation to salt stress.
Collapse
|
1554
|
Debouba M, Gouia H, Suzuki A, Ghorbel MH. NaCl stress effects on enzymes involved in nitrogen assimilation pathway in tomato "Lycopersicon esculentum" seedlings. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:1247-58. [PMID: 17126728 DOI: 10.1016/j.jplph.2005.09.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Accepted: 09/15/2005] [Indexed: 05/03/2023]
Abstract
Tomato plants (Lycopersicon esculentum Mill, cv. Chibli F1) grown for 10 days on control medium were exposed to differing concentrations of NaCl (0, 25, 50, and 100mM). Increasing salinity led to a decrease of dry weight (DW) production and protein contents in the leaves and roots. Conversely, the root to shoot (R/S) DW ratio was increased by salinity. Na(+) and Cl(-) accumulation were correlated with a decline of K(+) and NO(3)(-) in the leaves and roots. Under salinity, the activities of nitrate reductase (NR, EC 1.6.6.1) and glutamine synthetase (GS, EC 6.3.1.2) were repressed in the leaves, while they were enhanced in the roots. Nitrite reductase (NiR, EC 1.7.7.1) activity was decreased in both the leaves and roots. Deaminating activity of glutamate dehydrogenase (GDH, EC 1.4.1.2) was inhibited, whereas the aminating function was significantly stimulated by salinity in the leaves and roots. At a high salt concentration, the nicotinamide adenine dinucleotide reduced (NADH)-GDH activity was stimulated concomitantly with the increasing NH(4)(+) contents and proteolysis activity in the leaves and roots. With respect to salt stress, the distinct sensitivity of the enzymes involved in nitrogen assimilation is discussed.
Collapse
Affiliation(s)
- Mohamed Debouba
- Unité de Recherche 09-20: Nutrition, Métabolisme Azoté et Protéines de Stress, Faculté des Sciences de Tunis Département de Biologie, Université Tunis El Manar, Tunis 1060, Tunisie
| | | | | | | |
Collapse
|
1555
|
Radić S, Radić-Stojković M, Pevalek-Kozlina B. Influence of NaCl and mannitol on peroxidase activity and lipid peroxidation in Centaurea ragusina L. roots and shoots. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:1284-92. [PMID: 17126732 DOI: 10.1016/j.jplph.2005.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 08/03/2005] [Accepted: 08/08/2005] [Indexed: 05/12/2023]
Abstract
Centaurea ragusina L. is a Croatian endemic plant species growing on cliffs above the Adriatic Sea, but there is no information about its physiological behavior or stress tolerance. To investigate the response of C. ragusina plants to salinity and drought, we have analysed soluble peroxidase (POD; EC 1.11.1.7) activity, anionic isoperoxidase pattern, levels of malondialdehyde (MDA) and hydrogen peroxide in C. ragusina plants exposed to these stresses. Rooted plantlets grown on MS 1/2 nutrient medium supplemented with mannitol (300 mM) and different concentrations of NaCl (150, 300, 450 or 600 mM) were harvested after 5, 10 and 15 days. Both osmotic treatments significantly increased MDA and hydrogen peroxide contents in C. ragusina shoots after 10 days of stress, while in roots these parameters showed no significant difference compared to control in overall. POD activity of salt-stressed plants changed with respect to different saline treatments and plant organs - in shoots enzymatic activity markedly increased in response to lower saline treatments, especially 300 mM NaCl; otherwise it was similar as in control plants while in roots of plants grown under 450 and 600 mM NaCl it significantly decreased. Drought increased POD activity of both shoots and roots especially after 10 days of experiment. Generally, change in the POD isoenzyme pattern of treated plants was in accordance with the activity change in time. Several POD isoforms (P3, P4 and P9) were specifically induced by salinity and drought.
Collapse
Affiliation(s)
- Sandra Radić
- Department of Botany, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000, Zagreb.
| | | | | |
Collapse
|
1556
|
Hu YC, Shao HB, Chu LY, Gang W. Relationship between water use efficiency (WUE) and production of different wheat genotypes at soil water deficit. Colloids Surf B Biointerfaces 2006; 53:271-7. [PMID: 17097278 DOI: 10.1016/j.colsurfb.2006.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 09/13/2006] [Accepted: 10/01/2006] [Indexed: 10/24/2022]
Abstract
Through 2-year field experiments, 7 wheat genotypes were better in their field yield. These 7 wheat genotypes and other 3 wheat species, which are being popularized on a large scale in different locations of China, were selected as experimental materials for the sake of measuring their difference in WUE and production and comparing their relationship at soil water deficits, future more, providing better drought resistance lines and theoretical guide for wheat production and practices and exploring anti-drought physiological mechanisms of different wheat genotypes. Under the condition of 3 soil-water-stress treatments (75% field capacity (FC), 55% FC, 45% FC, named level 1, level 2 and level 3, respectively), pot experiments for them were conducted and the related data were collected from their life circle. The main results were as followed: (1) according to the selected soil stress levels, water use efficiency (WUE) of 10 different wheat genotypes was divided into two groups (A and B); group A included genotypes 2, 3, 4, 5, 6, 7, 8, whose WUE decreased basically from level 1 to level 3 and reached individual peak of WUE at level 1; Group 2 included genotypes 1, 9, 10, whose WUE reached their individual peak at level 2; (2) based on total water consumption through all life circle, genotypes 1, 4, 8, 9 had lower water consumption (TWC) at level 1, genotypes 2, 3, 5, 6, 7 lower TWC at level 2, genotype 10 lower TWC at level 3; (3) at level 1, genotypes 2, 3, 4, 5, 6, 7, 8 had higher grain weight of single spike (GWSS), genotypes 1, 9, 10 better GWSS at level 2, which was in good line with individual WUE of different wheat genotypes; (4) by analyzing the indexes related to examining cultivars, it was found that genotypes 1, 2, 3, 4, 5, 6, 9, 10 had longer plant length (PL), spike length (SL), bigger grain number (GN) except genotypes 7 and 8 at level 1, RL was in better line with genotypes 1, 2, 3, 8, 9, 10, but not in the other genotypes at level 1.
Collapse
Affiliation(s)
- Ya-Chen Hu
- Teaching Affairs Department, Jilin Normal University, Siping 13600, Jilin, People's Republic of China
| | | | | | | |
Collapse
|
1557
|
Cramer GR, Ergül A, Grimplet J, Tillett RL, Tattersall EAR, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC. Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 2006; 7:111-34. [PMID: 17136344 DOI: 10.1007/s10142-006-0039-y] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 09/30/2006] [Accepted: 09/30/2006] [Indexed: 10/23/2022]
Abstract
Grapes are grown in semiarid environments, where drought and salinity are common problems. Microarray transcript profiling, quantitative reverse transcription-PCR, and metabolite profiling were used to define genes and metabolic pathways in Vitis vinifera cv. Cabernet Sauvignon with shared and divergent responses to a gradually applied and long-term (16 days) water-deficit stress and equivalent salinity stress. In this first-of-a-kind study, distinct differences between water deficit and salinity were revealed. Water deficit caused more rapid and greater inhibition of shoot growth than did salinity at equivalent stem water potentials. One of the earliest responses to water deficit was an increase in the transcript abundance of RuBisCo activase (day 4), but this increase occurred much later in salt-stressed plants (day 12). As water deficit progressed, a greater number of affected transcripts were involved in metabolism, transport, and the biogenesis of cellular components than did salinity. Salinity affected a higher percentage of transcripts involved in transcription, protein synthesis, and protein fate than did water deficit. Metabolite profiling revealed that there were higher concentrations of glucose, malate, and proline in water-deficit-treated plants as compared to salinized plants. The metabolite differences were linked to differences in transcript abundance of many genes involved in energy metabolism and nitrogen assimilation, particularly photosynthesis, gluconeogenesis, and photorespiration. Water-deficit-treated plants appear to have a higher demand than salinized plants to adjust osmotically, detoxify free radicals (reactive oxygen species), and cope with photoinhibition.
Collapse
Affiliation(s)
- Grant R Cramer
- Department of Biochemistry and Molecular Biology, MS200, University of Nevada, Reno, NV, 89557-0014, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1558
|
Bandou E, Lebailly F, Muller F, Dulormne M, Toribio A, Chabrol J, Courtecuisse R, Plenchette C, Prin Y, Duponnois R, Thiao M, Sylla S, Dreyfus B, Bâ AM. The ectomycorrhizal fungus Scleroderma bermudense alleviates salt stress in seagrape (Coccoloba uvifera L.) seedlings. MYCORRHIZA 2006; 16:559-565. [PMID: 17033816 DOI: 10.1007/s00572-006-0073-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 08/03/2006] [Indexed: 05/12/2023]
Abstract
The purpose of this study was to test the capacity of the ectomycorrhizal (ECM) fungus, Scleroderma bermudense, to alleviate saline stress in seagrape (Coccoloba uvifera L.) seedlings. Plants were grown over a range (0, 200, 350 and 500 mM) of NaCl levels for 12 weeks, after 4 weeks of non-saline pre-treatment under greenhouse conditions. Growth and mineral nutrition of the seagrape seedlings were stimulated by S. bermudense regardless of salt stress. Although ECM colonization was reduced with increasing NaCl levels, ECM dependency of seagrape seedlings increased. Tissues of ECM plants had significantly increased concentrations of P and K but lower Na and Cl concentrations than those of non-ECM plants. Higher K concentrations in the leaves of ECM plants suggested a higher osmoregulating capacity of these plants. Moreover, the water status of ECM plants was improved despite their higher evaporative leaf surface. The results suggest that the reduction in Na and Cl uptake together with a concomitant increase in P and K absorption and a higher water status in ECM plants may be important salt-alleviating mechanisms for seagrape seedlings growing in saline soils.
Collapse
Affiliation(s)
- E Bandou
- Laboratoire de biologie et physiologie végétales, Faculté des sciences exactes et naturelles, Université des Antilles et de la Guyane, BP. 592, 97159, Pointe-à-Pitre, Guadeloupe, France
- Laboratoire de mycologie-flore pathogène du sol, Unité de recherches en productions végétales, Domaine de Duclos, 97170 Petit-Bourg, INRA centre Antilles-Guyane, Guadeloupe, France
| | - F Lebailly
- Laboratoire de biologie et physiologie végétales, Faculté des sciences exactes et naturelles, Université des Antilles et de la Guyane, BP. 592, 97159, Pointe-à-Pitre, Guadeloupe, France
| | - F Muller
- Laboratoire de biologie et physiologie végétales, Faculté des sciences exactes et naturelles, Université des Antilles et de la Guyane, BP. 592, 97159, Pointe-à-Pitre, Guadeloupe, France
| | - M Dulormne
- Laboratoire de biologie et physiologie végétales, Faculté des sciences exactes et naturelles, Université des Antilles et de la Guyane, BP. 592, 97159, Pointe-à-Pitre, Guadeloupe, France
| | - A Toribio
- Laboratoire de mycologie-flore pathogène du sol, Unité de recherches en productions végétales, Domaine de Duclos, 97170 Petit-Bourg, INRA centre Antilles-Guyane, Guadeloupe, France
| | - J Chabrol
- Laboratoire de biologie et physiologie végétales, Faculté des sciences exactes et naturelles, Université des Antilles et de la Guyane, BP. 592, 97159, Pointe-à-Pitre, Guadeloupe, France
| | - R Courtecuisse
- Département de botanique, Faculté des sciences pharmaceutiques et biologiques, Université de Lille, BP. 83, F-59006, Lille Cedex, France
| | - C Plenchette
- INRA, UMR BGA, 17 rue Sully, 21065, Dijon, France
| | - Y Prin
- Laboratoire des symbioses tropicales et méditerranéennes,UMR 113 IRD/INRA/AGRO-M/CIRAD/UM2, TA10/J, Campus international de Baillarguet, 34398, Montpellier cedex, France
| | - R Duponnois
- Laboratoire des symbioses tropicales et méditerranéennes,UMR 113 IRD/INRA/AGRO-M/CIRAD/UM2, TA10/J, Campus international de Baillarguet, 34398, Montpellier cedex, France
- Laboratoire commun de microbiologie IRD/ISRA/UCAD, BP. 1386, CP 18524, Dakar, Sénégal
| | - M Thiao
- Laboratoire commun de microbiologie IRD/ISRA/UCAD, BP. 1386, CP 18524, Dakar, Sénégal
| | - S Sylla
- Laboratoire commun de microbiologie IRD/ISRA/UCAD, BP. 1386, CP 18524, Dakar, Sénégal
| | - B Dreyfus
- Laboratoire des symbioses tropicales et méditerranéennes,UMR 113 IRD/INRA/AGRO-M/CIRAD/UM2, TA10/J, Campus international de Baillarguet, 34398, Montpellier cedex, France
| | - A M Bâ
- Laboratoire de biologie et physiologie végétales, Faculté des sciences exactes et naturelles, Université des Antilles et de la Guyane, BP. 592, 97159, Pointe-à-Pitre, Guadeloupe, France.
- Laboratoire des symbioses tropicales et méditerranéennes,UMR 113 IRD/INRA/AGRO-M/CIRAD/UM2, TA10/J, Campus international de Baillarguet, 34398, Montpellier cedex, France.
| |
Collapse
|
1559
|
Hong-Bo S, Xiao-Yan C, Li-Ye C, Xi-Ning Z, Gang W, Yong-Bing Y, Chang-Xing Z, Zan-Min H. Investigation on the relationship of proline with wheat anti-drought under soil water deficits. Colloids Surf B Biointerfaces 2006; 53:113-9. [PMID: 16979325 DOI: 10.1016/j.colsurfb.2006.08.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2006] [Revised: 07/12/2006] [Accepted: 08/10/2006] [Indexed: 11/28/2022]
Abstract
Proline (content) is closely with plant anti-drought, especially under soil water deficits. Many reports from crops and other plants have proved this. Wheat is the second important crop on the globe, whose research in this aspect of importance for food quality, safety, and yield in field. The related difference in physiological indicators and proline content for different soil water treatments among wheat with different genotypes is not clear, which has limited deep study of wheat anti-drought molecular biology and related anti-drought biotechnological breeding. Our current study was focused on the physiological relationship of proline and different genotype wheat anti-drought under soil water deficits. Main results showed that different wheat genotype had different soil water stress threshold. Pro content had closed relationship with soil water stress threshold and wheat anti-drought. Developmental course also impacted Pro content for different wheat genotypes.
Collapse
Affiliation(s)
- Shao Hong-Bo
- Key Laboratory of Molecular Biology, Bio-informatics College, Chongqing University of Posts & Telecommunications, Chongqing 400065, China.
| | | | | | | | | | | | | | | |
Collapse
|
1560
|
Swindell WR. The association among gene expression responses to nine abiotic stress treatments in Arabidopsis thaliana. Genetics 2006; 174:1811-24. [PMID: 17028338 PMCID: PMC1698639 DOI: 10.1534/genetics.106.061374] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The identification and analysis of genes exhibiting large expression responses to several different types of stress may provide insights into the functional basis of multiple stress tolerance in plant species. This study considered whole-genome transcriptional profiles from Arabidopsis thaliana root and shoot organs under nine abiotic stress conditions (cold, osmotic stress, salt, drought, genotoxic stress, ultraviolet light, oxidative stress, wounding, and high temperature) and at six different time points of stress exposure (0.5, 1, 3, 6, 12, and 24 hr). In roots, genomewide correlations between transcriptional responses to different stress treatments peaked following 1 hr of stress exposure, while in shoots, correlations tended to increase following 6 hr of stress exposure. The generality of stress responses at the transcriptional level was therefore time and organ dependent. A total of 67 genes were identified as exhibiting a statistically significant pattern of gene expression characterized by large transcriptional responses to all nine stress treatments. Most genes were identified from early to middle (1-6 hr) time points of stress exposure. Analysis of this gene set indicated that cell rescue/defense/virulence, energy, and metabolism functional classes were overrepresented, providing novel insight into the functional basis of multiple stress tolerance in Arabidopsis.
Collapse
Affiliation(s)
- William R Swindell
- Department of Probability and Statistics, Michigan State University, East Lansing, Michigan 48824, USA.
| |
Collapse
|
1561
|
Naranjo MA, Forment J, Roldán M, Serrano R, Vicente O. Overexpression of Arabidopsis thaliana LTL1, a salt-induced gene encoding a GDSL-motif lipase, increases salt tolerance in yeast and transgenic plants. PLANT, CELL & ENVIRONMENT 2006; 29:1890-900. [PMID: 16930315 DOI: 10.1111/j.1365-3040.2006.01565.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Genes involved in the mechanisms of plant responses to salt stress may be used as biotechnological tools for the genetic improvement of salt tolerance in crop plants. This would help alleviate the increasing problem of salinization of lands cultivated under irrigation in arid and semi-arid regions. We have isolated a novel halotolerance gene from Arabidopsis thaliana, A. thaliana Li-tolerant lipase 1 (AtLTL1), on the basis of the phenotype of tolerance to LiCl conferred by its expression in yeast. AtLTL1 encodes a putative lipase of the GDSL-motif family, which includes bacterial and a very large number of plant proteins. In Arabidopsis, AtLTL1 expression is rapidly induced by LiCl or NaCl, but not by other abiotic stresses. Overexpression of AtLTL1 increases salt tolerance in transgenic Arabidopsis plants, compared to non-transformed controls, allowing germination of seeds in the presence of toxic concentrations of LiCl and NaCl, and stimulating vegetative growth, flowering and seed set in the presence of NaCl. These results clearly point to a role of AtLTL1 in the mechanisms of salt tolerance. In addition, we show that AtLTL1 expression is also activated, although only transiently, by salicylic acid (SA), suggesting that the lipase could also be involved in defence reactions against pathogens.
Collapse
Affiliation(s)
- Miguel Angel Naranjo
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | | | | | | | | |
Collapse
|
1562
|
Zhang Y, Wang Z, Zhang L, Cao Y, Huang D, Tang K. Molecular cloning and stress-dependent regulation of potassium channel gene in Chinese cabbage (Brassica rapa ssp. Pekinensis). JOURNAL OF PLANT PHYSIOLOGY 2006; 163:968-78. [PMID: 16949960 DOI: 10.1016/j.jplph.2005.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 09/22/2005] [Indexed: 05/11/2023]
Abstract
Potassium channels are important for many physiological functions in plants, one of which is to regulate plant adaption to stress conditions. In this study, KCT2, the gene encoding a membrane-bound protein potassium channel (GenBank accession number: ), was isolated from Chinese cabbage (Brassica rapa ssp. Pekinensis) by RACE-PCR technique. Bioinformatics methods were performed for the gene structure and molecular similarity analysis. The KCT2 expression patterns under various stress conditions were studied by semi-quantitative RT-PCR. DNA gel blot was used to analyze genomic organization. The putative KCT2 was found to contain five membrane-spanning segments, a pore-forming domain (P-domain) between the last two transmembrane spans, a TxxTxGYGD motif in the P-domain and a putative cyclic nucleotide-binding-like domain within a long C-terminal region. KCT2 is closest to KAT2 in Arabidopsis. KCT2 could be a one-copy gene with different isoforms or belong to a small gene family with four or five members. KCT2 was expressed more strongly in leaves than in shoots and roots. KCT2 transcription products were up-regulated by a 4-h-incubation in abscisic acid (ABA) and various stress treatment including cold stress (4 degrees C) for 24 h, drought stress for 1h, and salt stress for 12 h. KCT2 transcription was not affected by anoxia stress for 8h and was down-regulated with cold stress for 48 h. KCT2 was cloned for the first time from the genus Brassica. Expression analysis indicated that in the early stage of plant adaption to stress conditions KCT2 is up-regulated, which results in a stimulation of potassium transport.
Collapse
Affiliation(s)
- Yidong Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
1563
|
del Martínez-Ballesta MC, Silva C, López-Berenguer C, Cabañero FJ, Carvajal M. Plant aquaporins: new perspectives on water and nutrient uptake in saline environment. PLANT BIOLOGY (STUTTGART, GERMANY) 2006; 8:535-46. [PMID: 16865658 DOI: 10.1055/s-2006-924172] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The mechanisms of salt stress and tolerance have been targets for genetic engineering, focusing on ion transport and compartmentation, synthesis of compatible solutes (osmolytes and osmoprotectants) and oxidative protection. In this review, we consider the integrated response to salinity with respect to water uptake, involving aquaporin functionality. Therefore, we have concentrated on how salinity can be alleviated, in part, if a perfect knowledge of water uptake and transport for each particular crop and set of conditions is available.
Collapse
Affiliation(s)
- M C del Martínez-Ballesta
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura - CSIC, Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| | | | | | | | | |
Collapse
|
1564
|
Clement M, Boncompagni E, de Almeida-Engler J, Herouart D. Isolation of a novel nodulin: a molecular marker of osmotic stress in Glycine max/Bradyrhizobium japonicum nodule. PLANT, CELL & ENVIRONMENT 2006; 29:1841-52. [PMID: 16913873 DOI: 10.1111/j.1365-3040.2006.01558.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Symbiotic N(2) fixation of legume crops is highly sensitive to drought, which results in a dramatic drop of N accumulation and yield. The symbiosis between soybean (Glycine max) and Bradyrhizobium japonicum, because of its extreme sensitivity to drought, was chosen as a model to analyse the response to drought stress at a molecular level. The mRNA differential display technique was performed to isolate cDNA markers differentially expressed in well-watered [100% of N(2) fixation capacity (NFC)] and drought-stressed nodules (40% NFC). One gene noted, G93, appeared strongly down-regulated by drought and fully recovered after rehydration. In situ hybridization showed that G93 transcripts were localized in N(2)-fixing cells of mature nodules, indicating that G93 could be considered as a late nodulin. However, G93 expression was not directly correlated to N(2) fixation but mainly responded to osmotic stress. Other stresses that lead to decrease of N(2) fixation did not affect G93 expression. Sequence analyses showed that G93 presented a strong homology with two soybean expressed sequence tags (ESTs) and with the ZR1 protein of Medicago sativa. Putative roles of this nodulin in adaptation of soybean nodule to osmotic stress are proposed.
Collapse
Affiliation(s)
- Mathilde Clement
- Unité Mixte de Recherche (UMR) 'Interactions Plantes Microorganimes et Santé Végétale' INRA1064-CNRS 6192-Université de Nice-Sophia Antipolis, Institut Sophia Agrobiotech, 400 Routes des Chappes, 06903 Sophia-Antipolis Cedex, France
| | | | | | | |
Collapse
|
1565
|
Scholl MA, Cozzarelli IM, Christenson SC. Recharge processes drive sulfate reduction in an alluvial aquifer contaminated with landfill leachate. JOURNAL OF CONTAMINANT HYDROLOGY 2006; 86:239-61. [PMID: 16677736 DOI: 10.1016/j.jconhyd.2006.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 12/23/2005] [Accepted: 03/16/2006] [Indexed: 05/09/2023]
Abstract
Natural attenuation of contaminants in groundwater depends on an adequate supply of electron acceptors to stimulate biodegradation. In an alluvial aquifer contaminated with leachate from an unlined municipal landfill, the mechanism of recharge infiltration was investigated as a source of electron acceptors. Water samples were collected monthly at closely spaced intervals in the top 2 m of the saturated zone from a leachate-contaminated well and an uncontaminated well, and analyzed for delta(18)O, delta(2)H, non-volatile dissolved organic carbon (NVDOC), SO(4)(2-), NO(3)(-) and Cl(-). Monthly recharge amounts were quantified using the offset of the delta(18)O or delta(2)H from the local meteoric water line as a parameter to distinguish water types, as evaporation and methanogenesis caused isotopic enrichment in waters from different sources. Presence of dissolved SO(4)(2-) in the top 1 to 2 m of the saturated zone was associated with recharge; SO(4)(2-) averaged 2.2 mM, with maximum concentrations of 15 mM. Nitrate was observed near the water table at the contaminated site at concentrations up to 4.6 mM. Temporal monitoring of delta(2)H and SO(4)(2-) showed that vertical transport of recharge carried SO(4)(2-) to depths up to 1.75 m below the water table, supplying an additional electron acceptor to the predominantly methanogenic leachate plume. Measurements of delta(34)S in SO(4)(2-) indicated both SO(4)(2-) reduction and sulfide oxidation were occurring in the aquifer. Depth-integrated net SO(4)(2-) reduction rates, calculated using the natural Cl(-) gradient as a conservative tracer, ranged from 7.5x10(-3) to 0.61 mM.d(-1) (over various depth intervals from 0.45 to 1.75 m). Sulfate reduction occurred at both the contaminated and uncontaminated sites; however, median SO(4)(2-) reduction rates were higher at the contaminated site. Although estimated SO(4)(2-) reduction rates are relatively high, significant decreases in NVDOC were not observed at the contaminated site. Organic compounds more labile than the leachate NVDOC may be present in the root zone, and SO(4)(2-) reduction may be coupled to methane oxidation. The results show that sulfur (and possibly nitrogen) redox processes within the top 2 m of the aquifer are directly related to recharge timing and seasonal water level changes in the aquifer. The results suggest that SO(4)(2-) reduction associated with the infiltration of recharge may be a significant factor affecting natural attenuation of contaminants in alluvial aquifers.
Collapse
Affiliation(s)
- Martha A Scholl
- U.S. Geological Survey, 431 National Center, Reston, VA 20192, USA.
| | | | | |
Collapse
|
1566
|
Jithesh MN, Prashanth SR, Sivaprakash KR, Parida A. Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stresses in the highly salt tolerant grey mangrove, Avicennia marina (Forsk.) Vierh. by mRNA analysis. PLANT CELL REPORTS 2006; 25:865-76. [PMID: 16534598 DOI: 10.1007/s00299-006-0127-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 01/13/2006] [Accepted: 01/17/2006] [Indexed: 05/07/2023]
Abstract
Plant photosynthesis results in the production of molecular oxygen. An inevitable consequence of this normal process is the production of reactive oxygen species (ROS) by the transfer of electrons to molecular oxygen. Plants are adequately protected by the presence of multiple antioxidative enzymes in different organelles of the plant such as chloroplasts, cytosol, mitochondria and peroxisomes. Under high light and CO(2) limiting conditions caused by environmental stress like salinity, these antioxidative enzymes play an important role in scavenging toxic radicals. To investigate the functions of antioxidative enzymes in a mangrove plant, we isolated three cDNAs encoding cytosolic Cu-Zn SOD (Sod1), catalase (Cat1) and ferritin (Fer1) from Avicennia marina cDNA library. Sod1, Cat1 and Fer1 cDNA encoded full-length proteins with 152, 492 and 261 amino acids respectively. We studied the expression of these antioxidant genes in response to salt, iron, hydrogen peroxide, mannitol and light stress by mRNA expression analysis. Cat1, Fer1 showed short-term induction while Sod1 transcript was found to be unaltered in response to NaCl stress. A decrease in mRNA levels was observed for Sod1, Cat1 while Fer1 mRNA levels remained unaltered with osmotic stress treatment. Sod1, Cat1 and Fer1 mRNA levels were induced by iron, light stress and by direct H(2)O(2) stress treatment, thus confirming their role in oxidative stress response.
Collapse
Affiliation(s)
- M N Jithesh
- M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Taramani, Chennai, 600113, India
| | | | | | | |
Collapse
|
1567
|
Shao HB, Guo QJ, Chu LY, Zhao XN, Su ZL, Hu YC, Cheng JF. Understanding molecular mechanism of higher plant plasticity under abiotic stress. Colloids Surf B Biointerfaces 2006; 54:37-45. [PMID: 16914294 DOI: 10.1016/j.colsurfb.2006.07.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 07/02/2006] [Accepted: 07/07/2006] [Indexed: 01/08/2023]
Abstract
Higher plants play the most important role in keeping a stable environment on the earth, which regulate global circumstances in many ways in terms of different levels (molecular, individual, community, and so on), but the nature of the mechanism is gene expression and control temporally and spatially at the molecular level. In persistently changing environment, there are many adverse stress conditions such as cold, drought, salinity and UV-B (280-320 mm), which influence plant growth and crop production greatly. Plants differ from animals in many aspects, but the important may be that plants are more easily influenced by environment than animals. Plants have a series of fine mechanisms for responding to environmental changes, which has been established during their long-period evolution and artificial domestication. These mechanisms are involved in many aspects of anatomy, physiology, biochemistry, genetics, development, evolution and molecular biology, in which the adaptive machinery related to molecular biology is the most important. The elucidation of it will extremely and purposefully promote the sustainable utilization of plant resources and make the best use of its current potential under different scales. This molecular mechanism at least include environmental signal recognition (input), signal transduction (many cascade biochemical reactions are involved in this process), signal output, signal responses and phenotype realization, which is a multi-dimensional network system and contain many levels of gene expression and regulation. We will focus on the molecular adaptive machinery of higher plant plasticity under abiotic stresses.
Collapse
Affiliation(s)
- Hong-Bo Shao
- Molecular Biology Laboratory, Bio-informatics College, Chongqing University of Posts & Telecom, Chongqing 400065, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
1568
|
Kant S, Kant P, Raveh E, Barak S. Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. PLANT, CELL & ENVIRONMENT 2006; 29:1220-34. [PMID: 17080945 DOI: 10.1111/j.1365-3040.2006.01502.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Salt-sensitive glycophytes and salt-tolerant halophytes employ common mechanisms to cope with salinity, and it is hypothesized that differences in salt tolerance arise because of changes in the regulation of a basic set of salt tolerance genes. We explored the expression of genes involved in two key salt tolerance mechanisms in Arabidopsis thaliana and the halophytic A. thaliana relative model system (ARMS), Thellungiella halophila. Salt overly sensitive 1 (SOS1) is a plasma membrane Na+/H+ antiporter that retrieves and loads Na+ ions from and into the xylem. Shoot SOS1 transcript was more strongly induced by salt in T. halophila while root SOS1 was constitutively higher in unstressed T. halophila. This is consistent with a lower salt-induced rise in T. halophila xylem sap Na+ concentration than in A. thaliana. Thellungiella halophila contained higher unstressed levels of the compatible osmolyte proline than A. thaliana, while under salt stress, T. halophila accumulated more proline mainly in shoots. Expression of the A. thaliana ortholog of proline dehydrogenase (PDH), involved in proline catabolism, was undetectable in T. halophila shoots. The PDH enzyme activity was lower and T. halophila seedlings were hypersensitive to exogenous proline, indicating repression of proline catabolism in T. halophila. Our results suggest that differential gene expression between glycophytes and halophytes contributes to the salt tolerance of halophytes.
Collapse
Affiliation(s)
- Surya Kant
- Albert Katz Department of Dryland Biotechnologies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel
| | | | | | | |
Collapse
|
1569
|
Askari H, Edqvist J, Hajheidari M, Kafi M, Salekdeh GH. Effects of salinity levels on proteome of Suaeda aegyptiaca leaves. Proteomics 2006; 6:2542-54. [PMID: 16612795 DOI: 10.1002/pmic.200500328] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Saline soils are the major problem of cultivated lands of Iran. Suaeda aegyptiaca is a salt-tolerant plant (halophytes) that grow naturally in salt-affected areas of Iran. We have employed proteomics to identify the mechanisms of salt responsiveness in leaves of S. aegyptiaca grown under different salt concentrations. Ten-day-old plants were treated with 0, 150, 300, 450, and 600 mM NaCl. After 30 days of treatment, leaf samples were collected and analyzed using 2-D-PAGE. Out of 700 protein spots reproducible detected within replications, 102 spots showed significant response to salt treatment compared to 0 mM NaCl. We analyzed expression pattern of salt-responsive proteins using a hierarchical and two nonhierarchical (Fuzzy ART and SOM) statistical methods and concluded that Fuzzy ART is the superior method. Forty proteins of 12 different expression groups were analyzed using LC/MS/MS. Of these, 27 protein spots were identified including proteins involved in oxidative stress tolerance, glycinebetain synthesis, cytoskeleton remodeling, photosynthesis, ATP production, protein degradation, cyanide detoxification, and chaperone activities. The expression pattern of these proteins and their possible roles in the adaptation of S. aegyptiaca to salinity is discussed.
Collapse
Affiliation(s)
- Hossein Askari
- Agricultural Biotechnology Research Institute of Iran, Karaj, Iran
| | | | | | | | | |
Collapse
|
1570
|
Koyro HW, Geissler N, Hussin S, Huchzermeyer B. Mechanisms Of Cash Crop Halophytes To Maintain Yields And Reclaim Saline Soils In Arid Areas. TASKS FOR VEGETATION SCIENCE 2006. [DOI: 10.1007/1-4020-4018-0_22] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
1571
|
Flagella Z, Trono D, Pompa M, Di Fonzo N, Pastore D. Seawater stress applied at germination affects mitochondrial function in durum wheat (Triticum durum) early seedlings. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:357-366. [PMID: 32689242 DOI: 10.1071/fp05244] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 02/02/2006] [Indexed: 06/11/2023]
Abstract
Seawater stress effects on mitochondrial ATP synthesis and membrane potential (ΔΨ) were investigated in germinating durum wheat seedlings under moderate (22% seawater osmolarity, -0.62 MPa) and severe (37% seawater osmolarity, -1.04 MPa) stress. To estimate the osmotic component of salt stress, mannitol solutions (0.25 and 0.42 m) iso-osmotic with the saline ones were used. Moderate stress intensity only delayed mean germination time (MGT), whereas higher seawater osmolarity reduced germination percentage as well. In contrast, Na+ and Cl- accumulation showed a sharp increase under moderate stress and only a small further increase under severe stress, which was more pronounced for Cl-. Only severe stress significantly damaged succinate-dependent oxidative phosphorylation, which may be related to the stress-induced alteration in inner mitochondrial membrane permeability, as indicated by changes in ΔΨ profiles. Proline-dependent oxidative phosphorylation, however, was inhibited under moderate stress. This suggests the occurrence of an adaptation mechanism leading to proline accumulation as an osmoprotectant. Moreover, both the osmotic and the toxic components of seawater stress were detrimental to oxidative phosphorylation. Damage to germination and MGT, in contrast, were mainly caused by osmotic stress. Therefore, mitochondrial function appears to be a more sensitive target of toxic stress than growth. In conclusion, the effects of seawater stress on mitochondrial ATP synthesis vary in relation to the substrate oxidised and stress level, inducing both adaptive responses and damage.
Collapse
Affiliation(s)
- Zina Flagella
- Dipartimento di Scienze Agroambientali, Chimica e Difesa Vegetale, Università di Foggia, Via Napoli, 25-71100 Foggia, Italy
| | - Daniela Trono
- Dipartimento di Scienze Agroambientali, Chimica e Difesa Vegetale, Università di Foggia, Via Napoli, 25-71100 Foggia, Italy
| | - Marianna Pompa
- Dipartimento di Scienze Agroambientali, Chimica e Difesa Vegetale, Università di Foggia, Via Napoli, 25-71100 Foggia, Italy
| | - Natale Di Fonzo
- Istituto Sperimentale per la Cerealicoltura C.R.A., SS 16Km 675-71100 Foggia, Italy
| | - Donato Pastore
- Dipartimento di Scienze Agroambientali, Chimica e Difesa Vegetale, Università di Foggia, Via Napoli, 25-71100 Foggia, Italy
| |
Collapse
|
1572
|
Horie T, Horie R, Chan WY, Leung HY, Schroeder JI. Calcium Regulation of Sodium Hypersensitivities of sos3 and athkt1 Mutants. ACTA ACUST UNITED AC 2006; 47:622-33. [PMID: 16540484 DOI: 10.1093/pcp/pcj029] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
T-DNA disruption mutations in the AtHKT1 gene have previously been shown to suppress the salt sensitivity of the sos3 mutant. However, both sos3 and athkt1 single mutants show sodium (Na+) hypersensitivity. In the present study we further analyzed the underlying mechanisms for these non-additive and counteracting Na+ sensitivities by characterizing athkt1-1 sos3 and athkt1-2 sos3 double mutant plants. Unexpectedly, mature double mutant plants grown in soil clearly showed an increased Na+ hypersensitivity compared with wild-type plants when plants were subjected to salinity stress. The salt sensitive phenotype of athkt1 sos3 double mutant plants was similar to that of athkt1 plants, which showed chlorosis in leaves and stems. The Na+ content in xylem sap samples of soil-grown athkt1 sos3 double and athkt1 single mutant plants showed dramatic Na+ overaccumulation in response to salinity stress. Salinity stress analyses using basic minimal nutrient medium and Murashige-Skoog (MS) medium revealed that athkt1 sos3 double mutant plants show a more athkt1 single mutant-like phenotype in the presence of 3 mM external Ca2+, but show a more sos3 single mutant-like phenotype in the presence of 1 mM external Ca2+. Taken together multiple analyses demonstrate that the external Ca2+ concentration strongly impacts the Na+ stress response of athkt1 sos3 double mutants. Furthermore, the presented findings show that SOS3 and AtHKT1 are physiologically distinct major determinants of salinity resistance such that sos3 more strongly causes Na+ overaccumulation in roots, whereas athkt1 causes an increase in Na+ levels in the xylem sap and shoots and a concomitant Na+ reduction in roots.
Collapse
Affiliation(s)
- Tomoaki Horie
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA
| | | | | | | | | |
Collapse
|
1573
|
Farooq S, Azam F. The use of cell membrane stability (CMS) technique to screen for salt tolerant wheat varieties. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:629-37. [PMID: 16545996 DOI: 10.1016/j.jplph.2005.06.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Accepted: 06/08/2005] [Indexed: 05/07/2023]
Abstract
Cell membrane stability (CMS) technique was used to screen salt tolerant (V1, V2), salt sensitive (V5) and two salt/water deficiency tolerant wheat genotypes (V3 and V4) using 100-250 mM NaCl salinity maintained in pots containing gravel and nutrient solution. The objectives were to study: (i) the reliability of CMS technique for screening wheat under high salinity, (ii) factors that impart stability and/or injury to the cell membrane, and (iii) the relationship of CMS with other physiological parameters affected by the salt stress. Generally, cellular injury increased with increasing salinity levels. In V5, it was the highest (74.2%) at 250 mM, probably due to combined effect of Na+ toxicity and low (54%) relative water content (RWC). In V1, RWC was similar to that in V5 but injury was comparatively low possibly due to low concentration of Na+. The difference between V1 and V2 was significant, either due to the highest concentration of K+ or the lowest reduction in RWC in V2. In V3 and V4, injury was the lowest at all salinity levels and was within the range of values observed earlier for drought tolerance. A significant negative correlation was detected between cellular injury and RWC for V1 and V5 but not for V3 and V4. Cellular injury also showed a significant positive correlation with Na+ and a negative correlation with K+ and grain yield (GY). It appeared that CMS technique is suitable for screening wheat under high salinity levels and for detecting differences that may arise due to cumulative effects of salinity and reduced water contents.
Collapse
Affiliation(s)
- Shafqat Farooq
- Nuclear Institute for Agriculture and Biology (NIAB), P. O. Box. No. 128, Jhang Road, Faisalabad, Pakistan.
| | | |
Collapse
|
1574
|
Mills AJ. The role of salinity and sodicity in the dieback of Acacia xanthophloea in Ngorongoro Caldera, Tanzania. Afr J Ecol 2006. [DOI: 10.1111/j.1365-2028.2006.00616.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
1575
|
Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:523-39. [PMID: 16441347 DOI: 10.1111/j.1365-313x.2005.02593.x] [Citation(s) in RCA: 743] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The abiotic stresses of drought, salinity and freezing are linked by the fact that they all decrease the availability of water to plant cells. This decreased availability of water is quantified as a decrease in water potential. Plants resist low water potential and related stresses by modifying water uptake and loss to avoid low water potential, accumulating solutes and modifying the properties of cell walls to avoid the dehydration induced by low water potential and using protective proteins and mechanisms to tolerate reduced water content by preventing or repairing cell damage. Salt stress also alters plant ion homeostasis, and under many conditions this may be the predominant factor affecting plant performance. Our emphasis is on experiments that quantify resistance to realistic and reproducible low water potential (drought), salt and freezing stresses while being suitable for genetic studies where a large number of lines must be analyzed. Detailed protocols for the use of polyethylene glycol-infused agar plates to impose low water potential stress, assay of salt tolerance based on root elongation, quantification of freezing tolerance and the use of electrolyte leakage experiments to quantify cellular damage induced by freezing and low water potential are also presented.
Collapse
Affiliation(s)
- Paul E Verslues
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
1576
|
Moghaieb REA, Tanaka N, Saneoka H, Murooka Y, Ono H, Morikawa H, Nakamura A, Nguyen NT, Suwa R, Fujita K. Characterization of salt tolerance in ectoine-transformed tobacco plants (Nicotiana tabaccum): photosynthesis, osmotic adjustment, and nitrogen partitioning. PLANT, CELL & ENVIRONMENT 2006; 29:173-82. [PMID: 17080633 DOI: 10.1111/j.1365-3040.2005.01410.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) biosynthetic genes (ect. ABC) from Halomonas elongata were introduced to tobacco plants using an Agrobacterium-mediated gene delivery system. The genes for ectoine biosynthesis were integrated in a stable manner into the tobacco genome and the corresponding transcripts were expressed. The concentration of ectoine under salt-stress conditions was higher in the roots than in leaves. A close relationship was found between stomatal conductance and the amount of transported nitrogen, suggesting that water transport through the xylem in the stem and transpiration may be involved in nitrogen transport to leaves. The data indicate that the turgor values of the ectoine transgenic lines increased with increasing salt concentration. The data revealed two ways in which ectoine enhanced salinity tolerance of tobacco plants. First, ectoine improved the maintenance of root function so that water is taken up consistently and supplied to shoots under saline conditions. Second, ectoine enhanced the nitrogen supply to leaves by increasing transpiration and by protecting Rubisco proteins from deleterious effects of salt, thereby improving the rate of photosynthesis.
Collapse
Affiliation(s)
- R E A Moghaieb
- Department of Environmental Dynamics and Management, Graduate School of Biosphere Sciences, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1577
|
Andjelkovic V, Thompson R. Changes in gene expression in maize kernel in response to water and salt stress. PLANT CELL REPORTS 2006; 25:71-9. [PMID: 16362303 DOI: 10.1007/s00299-005-0037-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2004] [Revised: 06/27/2005] [Accepted: 07/09/2005] [Indexed: 05/05/2023]
Abstract
Increasing pressure on limited water resources for agriculture, together with the global temperature increase, highlight the importance of breeding for drought-tolerant cultivars. A better understanding of the molecular nature of drought stress can be expected through the use of genomics approaches. Here, a macroarray of approximately 2500 maize cDNAs was used for determining transcript changes during water- and salt-stress treatments of developing kernels at 15 days after pollination. Normalization of relative transcript abundances was carried out using a human nebulin control sequence. The proportions of transcripts that changed significantly in abundance upon treatment (>2-fold compared to the control) were determined; 1.5% of the sequences examined were up-regulated by high salinity and 1% by water stress. Both stresses induced 0.8% of the sequences. These include genes involved in various stress responses: abiotic, wounding and pathogen attack (abscisic acid response binding factor, glycine and proline-rich proteins, pathogenesis-related proteins, etc.). The proportion of down-regulated genes was higher than that for up-regulated genes for water stress (3.2%) and lower for salt stress (0.7%), although only eight genes, predominantly involved in energy generation, were down-regulated in both stress conditions. Co-expression of genes of unknown function under defined conditions may help in elucidating their roles in coordinating stress responses.
Collapse
Affiliation(s)
- Violeta Andjelkovic
- Max Planck Institute for Plant Breeding Research, Carl von Linne Weg 10, 50829 Cologne, Germany.
| | | |
Collapse
|
1578
|
Walia H, Wilson C, Wahid A, Condamine P, Cui X, Close TJ. Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Funct Integr Genomics 2006; 6:143-56. [PMID: 16450154 DOI: 10.1007/s10142-005-0013-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 09/25/2005] [Accepted: 09/25/2005] [Indexed: 01/04/2023]
Abstract
Barley (Hordeum vulgare L.) is a salt-tolerant crop species with considerable economic importance in salinity-affected arid and semiarid regions of the world. In this work, barley cultivar Morex was used for transcriptional profiling during salinity stress using a microarray containing approximately 22,750 probe sets. The experiment was designed to target the early responses of genes to a salinity stress at seedling stage. We found a comparable number of probe sets up-regulated and down-regulated in response to salinity. The differentially expressed genes were broadly characterized using gene ontology and through expression-based hierarchical clustering to identify interesting features in the data. A prominent feature of the response to salinity was the induction of genes involved in jasmonic acid biosynthesis and genes known to respond to jasmonic acid treatment. A large number of abiotic stress (heat, drought, and low temperature) related genes were also found to be responsive to salinity stress. Our results also indicate osmoprotection to be an early response of barley under salinity stress. Additionally, we compared the results of our studies with two other reports characterizing gene expression of barley under salinity stress and found very few genes in common.
Collapse
Affiliation(s)
- Harkamal Walia
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | | | | | | | | | | |
Collapse
|
1579
|
Hongbo S, Zongsuo L, Mingan S. Osmotic regulation of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits. Colloids Surf B Biointerfaces 2006; 47:132-9. [PMID: 16413760 DOI: 10.1016/j.colsurfb.2005.11.028] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 10/14/2005] [Accepted: 11/23/2005] [Indexed: 11/17/2022]
Abstract
Drought is a worldwide problem, seriously influencing plant (crop) productivity. Wheat is a stable food for 35% of the world population, moreover about 60% of land area on the globe belongs to arid and semi-arid zone. Wheat drought resistance is a multi-gene-controlling quantitative character and wheat final production in field is realized mainly by physiological regulation under the condition of multi-environmental factor interaction. Exploring drought resistance physiological mechanisms for different wheat genotypes is of importance to finding new drought resistance gene resources and conventional breeding and the basis for wheat drought resistance biotechnological breeding and platform. Osmotic adjustment regulation is the main component for physiological machinery of wheat drought resistance. By pot-cultivating experiments, investigation of osmotic adjustment comparison for 10 wheat genotypes at soil water deficits (75% FC, 55% FC, 45% FC, respectively), was conducted. The main results were as followed: (1) K(+) content in 10 wheat genotypes at three levels of soil water stress and at the same soil water deficit was very different. Five of these 10 wheat genotypes had higher K K(+) content under the condition of 75% FC. (2) Five of these 10 wheat genotypes possessed greater soluble sugar content at 55% FC soil water level. (3) Proline (Pro) content in five wheat genotypes was higher at 75% FC. (4) Five of these 10 wheat genotypes had lower malondialdehyde (MDA) content at 45% FC at seedling stage. Osmotic adjustment of wheat different genotypes was discussed in terms of different content of osmotic solutes.
Collapse
Affiliation(s)
- Shao Hongbo
- Biological Science Laboratory, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China.
| | | | | |
Collapse
|
1580
|
Krauss S, Schnitzler WH, Grassmann J, Woitke M. The influence of different electrical conductivity values in a simplified recirculating soilless system on inner and outer fruit quality characteristics of tomato. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:441-8. [PMID: 16417302 DOI: 10.1021/jf051930a] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Irrigation with saline water affects tomato fruit quality. While total fruit yield decreases with salinity, inner quality characterized by taste and health-promoting compounds can be improved. For a detailed description of this relationship, the influence of three different salt levels [electrical conductivity (EC) 3, 6.5, and 10] in hydroponically grown tomatoes was investigated. Rising salinity levels in the nutrient solution significantly increased vitamin C, lycopene, and beta-carotene in fresh fruits up to 35%. The phenol concentration was tendentiously enhanced, and the antioxidative capacity of phenols and carotenoids increased on a fresh weight basis. Additionally, the higher EC values caused an increase of total soluble solids and organic acids, parameters determining the taste of tomatoes. Total fruit yield, single fruit weight, and firmness significantly decreased with rising EC levels. Regression analyses revealed significant correlations between the EC level and the dependent variables single fruit weight, total soluble solids, titrable acids, lycopene, and antioxidative capacities of carotenoids and phenols, whereas vitamin C and phenols correlated best with truss number, and beta-carotene correlated best with temperature. Only pressure firmness showed no correlation with any of the measured parameters. As all desirable characteristics in the freshly produced tomato increased when exposed to salinity, salinity itself constitutes an alternative method of quality improvement. Moreover, it can compensate for the loss of yield by the higher inner quality due to changing demands by the market and the consumer. This investigation is to our knowledge the first comprehensive overview regarding parameters of outer quality (yield and firmness), taste (total soluble solids and acids), nutritional value (vitamin C, carotenoids, and phenolics), as well as antioxidative capacity in tomatoes grown under saline conditions.
Collapse
Affiliation(s)
- Sandra Krauss
- Institute of Vegetable Science, Life Science Center Weihenstephan, TUM, Dürnast 2, 85350 Freising, Germany.
| | | | | | | |
Collapse
|
1581
|
Matsumoto K, Chun JP, Tamura F, Kamamoto Y, Tanabe K. Salt Tolerance in Pyrus Species is Linked to Levels of Na and Cl Translocation from Roots to Leaves. ACTA ACUST UNITED AC 2006. [DOI: 10.2503/jjshs.75.385] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
1582
|
Tattini M, Remorini D, Pinelli P, Agati G, Saracini E, Traversi ML, Massai R. Morpho-anatomical, physiological and biochemical adjustments in response to root zone salinity stress and high solar radiation in two Mediterranean evergreen shrubs, Myrtus communis and Pistacia lentiscus. THE NEW PHYTOLOGIST 2006; 170:779-94. [PMID: 16684238 DOI: 10.1111/j.1469-8137.2006.01723.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Salt- and light-induced changes in morpho-anatomical, physiological and biochemical traits were analysed in Myrtus communis and Pistacia lentiscus with a view to explaining their ecological distribution in the Mediterranean basin. In plants exposed to 20 or 100% solar radiation and supplied with 0 or 200 mm NaCl, measurements were conducted for ionic and water relations and photosynthetic performance, leaf morpho-anatomical and optical properties and tissue-specific accumulation of tannins and flavonoids. Net carbon gain and photosystem II (PSII) efficiency decreased less in P. lentiscus than in M. communis when exposed to salinity stress, the former having a superior ability to use Na(+) and Cl(-) for osmotic adjustment. Morpho-anatomical traits also allowed P. lentiscus to protect sensitive targets in the leaf from the combined action of salinity stress and high solar radiation to a greater degree than M. communis. Salt and light-induced increases in carbon allocated to polyphenols, particularly to flavonoids, were greater in M. communis than in P. lentiscus, and appeared to be related to leaf oxidative damage. Our data may conclusively explain the negligible distribution of M. communis in open Mediterranean areas suffering from salinity stress, and suggest a key antioxidant function of flavonoids in response to different stressful conditions.
Collapse
Affiliation(s)
- Massimiliano Tattini
- Istituto per la Valorizzazione del Legno e delle Specie Arboree, IVALSA, Consiglio Nazionale delle Ricerche, Via Madonna del Piano, Sesto F.no, I-50019 Firenze, Italy.
| | | | | | | | | | | | | |
Collapse
|
1583
|
Rodriguez D, Nuttall J, Sadras VO, van Rees H, Armstrong R. Impact of subsoil constraints on wheat yield and gross margin on fine-textured soils of the southern Victorian Mallee. ACTA ACUST UNITED AC 2006. [DOI: 10.1071/ar04133] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The APSIM-Wheat module was used to investigate our present capacity to simulate wheat yields in a semi-arid region of eastern Australia (the Victorian Mallee), where hostile subsoils associated with salinity, sodicity, and boron toxicity are known to limit grain yield. In this study we tested whether the effects of subsoil constraints on wheat growth and production could be modelled with APSIM-Wheat by assuming that either: (a) root exploration within a particular soil layer was reduced by the presence of toxic concentrations of salts, or (b) soil water uptake from a particular soil layer was reduced by high concentration of salts through osmotic effects. After evaluating the improved predictive capacity of the model we applied it to study the interactions between subsoil constraints and seasonal conditions, and to estimate the economic effect that subsoil constraints have on wheat farming in the Victorian Mallee under different climatic scenarios. Although the soils had high levels of salinity, sodicity, and boron, the observed variability in root abundance at different soil layers was mainly related to soil salinity. We concluded that: (i) whether the effect of subsoil limitations on growth and yield of wheat in the Victorian Mallee is driven by toxic, osmotic, or both effects acting simultaneously still requires further research, (ii) at present, the performance of APSIM-Wheat in the region can be improved either by assuming increased values of lower limit for soil water extraction, or by modifying the pattern of root exploration in the soil profile, both as a function of soil salinity. The effect of subsoil constraints on wheat yield and gross margin can be expected to be higher during drier than wetter seasons. In this region the interaction between climate and soil properties makes rainfall information alone, of little use for risk management and farm planning when not integrated with cropping systems models.
Collapse
|
1584
|
Song J, Ding X, Feng G, Zhang F. Nutritional and osmotic roles of nitrate in a euhalophyte and a xerophyte in saline conditions. THE NEW PHYTOLOGIST 2006; 171:357-66. [PMID: 16866942 DOI: 10.1111/j.1469-8137.2006.01748.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The effects of salinity and nitrogen (N) on growth and the role of NO3- in osmotic adjustment in the leaf-succulent euhalophyte Suaeda physophora and the stem-succulent xerophyte Haloxylon persicum were evaluated. Seedlings were exposed to 1 or 300 mm NaCl in 0.05, 1 or 10 mm NO3- -N treatments for 24 d. At 10 mm NO3-, 300 mm NaCl had no adverse effect on the concentration of NO3-, the content of organic N, and the estimated contribution of NO3- to osmotic potential in leaves of S. physophora, but markedly reduced these in stems of H. persicum. At 300 mm NaCl, more NO3- but less Cl- and Na+ were involved in osmotic adjustment in leaves of S. physophora compared with that in stems of H. persicum. The contribution of NO3- to osmotic potential was much higher in S. physophora, but lower in H. persicum, than that of amino acids at 300 mm NaCl. The nutritional and osmotic roles of NO3- -N seem to be more important in the euhalophyte S. physophora than in the xerophyte H. persicum under saline conditions. These characteristics may determine the natural distributions of the two species in saline or arid environments.
Collapse
Affiliation(s)
- Jie Song
- College of Resource and Environmental Science, China Agricultural University, Beijing 100094 China
| | | | | | | |
Collapse
|
1585
|
Rengasamy P. World salinization with emphasis on Australia. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:1017-23. [PMID: 16510516 DOI: 10.1093/jxb/erj108] [Citation(s) in RCA: 392] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Salinization is the accumulation of water-soluble salts in the soil solum or regolith to a level that impacts on agricultural production, environmental health, and economic welfare. Salt-affected soils occur in more than 100 countries of the world with a variety of extents, nature, and properties. No climatic zone in the world is free from salinization, although the general perception is focused on arid and semi-arid regions. Salinization is a complex process involving the movement of salts and water in soils during seasonal cycles and interactions with groundwater. While rainfall, aeolian deposits, mineral weathering, and stored salts are the sources of salts, surface and groundwaters can redistribute the accumulated salts and may also provide additional sources. Sodium salts dominate in many saline soils of the world, but salts of other cations such as calcium, magnesium, and iron are also found in specific locations. Different types of salinization with a prevalence of sodium salts affect about 30% of the land area in Australia. While more attention is given to groundwater-associated salinity and irrigation salinity, which affects about 16% of the agricultural area, recent investigations suggest that 67% of the agricultural area has a potential for "transient salinity", a type of non-groundwater-associated salinity. Agricultural soils in Australia, being predominantly sodic, accumulate salts under seasonal fluctuations and have multiple subsoil constraints such as alkalinity, acidity, sodicity, and toxic ions. This paper examines soil processes that dictate the exact edaphic environment upon which root functions depend and can help in research on plant improvement.
Collapse
Affiliation(s)
- Pichu Rengasamy
- Soil and Land Systems, School of Earth and Environmental Sciences, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA 5064, Australia.
| |
Collapse
|
1586
|
Cuartero J, Bolarín MC, Asíns MJ, Moreno V. Increasing salt tolerance in the tomato. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:1045-58. [PMID: 16520333 DOI: 10.1093/jxb/erj102] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In this paper, a number of strategies to overcome the deleterious effects of salinity on plants will be reviewed; these strategies include using molecular markers and genetic transformation as tools to develop salinity-tolerant genotypes, and some cultural techniques. For more than 12 years, QTL analysis has been attempted in order to understand the genetics of salt tolerance and to deal with component traits in breeding programmes. Despite innovations like better marker systems and improved genetic mapping strategies, the success of marker-assisted selection has been very limited because, in part, of inadequate experimental design. Since salinity is variable in time and space, experimental design must allow the study of genotype x environment interaction. Genetic transformation could become a powerful tool in plant breeding, but the growing knowledge from plant physiology must be integrated with molecular breeding techniques. It has been shown that the expression of several transgenes promotes a higher level of salt tolerance in some species. Despite this promising result, the development of a salt-tolerant cultivar by way of transgenesis has still not been achieved. Future directions in order to overcome the present limitations are proposed. Three cultural techniques have proved useful in tomato to overcome, in part, the effects of salinity: treatment of seedlings with drought or NaCl ameliorates the adaptation of adult plants to salinity; mist applied to tomato plants grown in Mediterranean conditions improves vegetative growth and yield in saline conditions; and grafting tomato cultivars onto appropriate rootstocks could reduce the effects of salinity.
Collapse
Affiliation(s)
- J Cuartero
- Estacion Experimental La Mayora, CSIC, E-29750 Algarrobo-Costa, Málaga, Spain.
| | | | | | | |
Collapse
|
1587
|
Matsumoto K, Tamura F, Chun JP, Tanabe K. Native Mediterranean Pyrus Rootstock, P. amygdaliformis and P. elaeagrifolia, Present Higher Tolerance to Salinity Stress Compared with Asian Natives. ACTA ACUST UNITED AC 2006. [DOI: 10.2503/jjshs.75.450] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
1588
|
Fricke W, Akhiyarova G, Wei W, Alexandersson E, Miller A, Kjellbom PO, Richardson A, Wojciechowski T, Schreiber L, Veselov D, Kudoyarova G, Volkov V. The short-term growth response to salt of the developing barley leaf. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:1079-95. [PMID: 16513814 DOI: 10.1093/jxb/erj095] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Recent results concerning the short-term growth response to salinity of the developing barley leaf are reviewed. Plants were grown hydroponically and the growth response of leaf 3 was studied between 10 min and 5 d following addition of 100 mM NaCl to the root medium. The aim of the experiments was to relate changes in variables that are likely to affect cell elongation to changes in leaf growth. Changes in hormone content (ABA, cytokinins), water and solute relationships (osmolality, turgor, water potential, solute concentrations), gene expression (water channel), cuticle deposition, membrane potential, and transpiration were followed, while leaf elongation velocity was monitored. Leaf elongation decreased close to zero within seconds following addition of NaCl. Between 20 and 30 min after exposure to salt, elongation velocity recovered rather abruptly, to about 46% of the pre-stress level, and remained at the reduced rate for the following 5 d, when it reached about 70% of the level in non-stressed plants. Biophysical and physiological analyses led to three major conclusions. (i) The immediate reduction and sudden recovery in elongation velocity is due to changes in the water potential gradient between leaf xylem and peripheral elongating cells. Changes in transpiration, ABA and cytokinin content, water channel expression, and plasma membrane potential are involved in this response. (ii) Significant solute accumulation, which aids growth recovery, is detectable from 1 h onwards; growing and non-growing leaf regions and mesophyll and epidermis differ in their solute response. (iii) Cuticular wax density is not affected by short-term exposure to salt; transpirational changes are due to stomatal control.
Collapse
Affiliation(s)
- Wieland Fricke
- Division of Biological Sciences, University of Paisley, Paisley PA1 2BE, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1589
|
Munns R, James RA, Läuchli A. Approaches to increasing the salt tolerance of wheat and other cereals. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:1025-43. [PMID: 16510517 DOI: 10.1093/jxb/erj100] [Citation(s) in RCA: 507] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This review describes physiological mechanisms and selectable indicators of gene action, with the aim of promoting new screening methods to identify genetic variation for increasing the salt tolerance of cereal crops. Physiological mechanisms that underlie traits for salt tolerance could be used to identify new genetic sources of salt tolerance. Important mechanisms of tolerance involve Na+ exclusion from the transpiration stream, sequestration of Na+ and Cl- in the vacuoles of root and leaf cells, and other processes that promote fast growth despite the osmotic stress of the salt outside the roots. Screening methods for these traits are discussed in relation to their use in breeding, particularly with respect to wheat. Precise phenotyping is the key to finding and introducing new genes for salt tolerance into crop plants.
Collapse
Affiliation(s)
- Rana Munns
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT, Australia.
| | | | | |
Collapse
|
1590
|
Karrenberg S, Edelist C, Lexer C, Rieseberg L. Response to salinity in the homoploid hybrid species Helianthus paradoxus and its progenitors H. annuus and H. petiolaris. THE NEW PHYTOLOGIST 2006; 170:615-29. [PMID: 16626481 PMCID: PMC2562702 DOI: 10.1111/j.1469-8137.2006.01687.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
To contribute to the understanding of ecological differentiation in speciation, we compared salinity responses of the halophytic diploid hybrid species Helianthus paradoxus and its glycophytic progenitors Helianthus annuus and Helianthus petiolaris. Plants of three populations of each species were subjected to a control (nonsaline) and three salinity treatments, including one simulating the ion composition in the habitat of H. paradoxus. Relative to the control, saline treatments led to a 17% biomass increase in H. paradoxus while its progenitors suffered 19-33% productivity reductions and only in H. paradoxus, leaf contents of potassium, calcium, and magnesium were strongly reduced. Under all treatments, H. paradoxus allocated more resources to roots, was more succulent, and had higher leaf contents of sodium (> 200 mmol l(-1) tissue water) and sulfur than its progenitor species. These results suggest that salt tolerance and thus speciation of H. paradoxus is related to sodium replacing potassium, calcium and magnesium as vacuolar osmotica. The evolutionary and genetic mechanisms likely to be involved are discussed.
Collapse
Affiliation(s)
- Sophie Karrenberg
- Plant Ecological Genetics, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland.
| | | | | | | |
Collapse
|
1591
|
Chinnusamy V, Zhu J, Zhu JK. Salt stress signaling and mechanisms of plant salt tolerance. GENETIC ENGINEERING 2006; 27:141-77. [PMID: 16382876 DOI: 10.1007/0-387-25856-6_9] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Viswanathan Chinnusamy
- Water Technology Centre, Indian Agricultural Research Institute, New Delhi 110012, India
| | | | | |
Collapse
|
1592
|
. HB, . JKH, . CWS. Shoot and Root Characteristics of Converted Race Stocks Accessions of upland Cotton (Gossypium hirsutum L.) Grown under Salt Stress Conditions. ACTA ACUST UNITED AC 2005. [DOI: 10.3923/ajpp.2006.99.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
1593
|
Triky-Dotan S, Yermiyahu U, Katan J, Gamliel A. Development of crown and root rot disease of tomato under irrigation with saline water. PHYTOPATHOLOGY 2005; 95:1438-44. [PMID: 18943555 DOI: 10.1094/phyto-95-1438] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
ABSTRACT We studied the effect of water salinity on the incidence and severity of crown and root rot disease of tomato, as well as on the pathogen and on the plant's response to the pathogen. Irrigation with saline water significantly increased disease severity in tomato transplants inoculated with Fusarium oxysporum f. sp. radicis-lycopersici, and mineral fertilization further increased it. In one field experiment, disease incidence in plots irrigated with saline water (electrical conductivity [EC] = 3.2 +/- 0.1 dS m(-1)) and in those irrigated with fresh water (EC = 0.4 +/- 0.1 dS m(-1)) was 75 and 38%, respectively. Disease onset was earlier and yield was lower in plots irrigated with saline water. In a second field experiment, final disease incidence 250 days after planting, was 12% in plants which had been irrigated with saline water (EC = 4.6 +/- 0.1 dS m(-1)) and 4% in those irrigated with fresh water (EC = 1.2 +/- 0.1 dS m(-1)). Irrigation of tomato transplants with 20 mM NaCl did not inhibit plant development, but partial inhibition was observed at higher NaCl concentrations. Growth of the pathogen in culture or survival of conidia added to soil were not affected by saline water. Plants which were preirrigated with saline water were more severely diseased than those preirrigated with tap water. It was concluded that disease increases effected by saline water are associated with the latter's effect on plant response.
Collapse
|
1594
|
Mitsuya S, Taniguchi M, Miyake H, Takabe T. Disruption of RCI2A leads to over-accumulation of Na+ and increased salt sensitivity in Arabidopsis thaliana plants. PLANTA 2005; 222:1001-9. [PMID: 16034593 DOI: 10.1007/s00425-005-0043-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 05/31/2005] [Indexed: 05/03/2023]
Abstract
For plant salt tolerance, it is important to regulate the uptake and accumulation of Na+ ions. The yeast pmp3 mutant which lacks PMP3 gene accumulates excess Na+ ions in the cell and shows increased Na+ sensitivity. Although the function of PMP3 is not fully understood, it is proposed that PMP3 contributes to the restriction of Na+ uptake and consequently salt tolerance in yeasts. In this paper, we have investigated whether the lack of RCI2A gene, homologous to PMP3 gene, causes a salt sensitive phenotype in Arabidopsis (Arabidopsis thaliana (L.) Heynh.) plants; and to thereby indicate the physiological role of RCI2A in higher plants. Two T-DNA insertional mutants of RCI2A were identified. Although the growth of rci2a mutants was comparable with that of wild type under normal conditions, high NaCl treatment caused increased accumulation of Na+ and more reduction of the growth of roots and shoots of rci2a mutants than that of wild type. Undifferentiated callus cultures regenerated from rci2a mutants also accumulated more Na+ than that from wild type under high NaCl treatment. Furthermore, when wild-type and rci2a plants were treated with NaCl, NaNO3, Na2SO4, KCl, KNO3, K2SO4 or LiCl, the rci2a mutants showed more reduction of shoot growth than wild type. Under treatments of tetramethylammonium chloride, CaCl2, MgCl2, mannitol or sorbitol, the growth reduction was comparable between wild-type and rci2a plants. These results suggested that RCI2A plays a role directly or indirectly for avoiding over-accumulation of excess Na+ and K+ ions in plants, and contributes to salt tolerance.
Collapse
Affiliation(s)
- Shiro Mitsuya
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | | | | | | |
Collapse
|
1595
|
HongBo S, ZongSuo L, MingAn S. Changes of anti-oxidative enzymes and MDA content under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at maturation stage. Colloids Surf B Biointerfaces 2005; 45:7-13. [PMID: 16102947 DOI: 10.1016/j.colsurfb.2005.06.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 06/21/2005] [Indexed: 11/18/2022]
Abstract
Drought is a world-spread problem seriously influencing grain production and quality, the loss of which is the total for other natural disasters, with increasing global climate change making the situation more serious. Wheat is the staple food for more than 35% of world population, so wheat anti-drought physiology study is of importance to wheat production and biological breeding for the sake of coping with abiotic and biotic conditions. Much research is involved in this hot topic, but the pace of progress is not so large because of drought resistance being a multiple-gene-control quantitative character and wheat genome being larger (16,000Mb). On the other hand, stress adaptive mechanisms are quite different, with stress degree, time course, materials, soil quality status and experimental plots, thus increasing the complexity of the issue in question. Additionally, a little study is related to the whole life circle of wheat, which cannot provide a comprehensive understanding of its anti-drought machinery. We selected 10 kinds of wheat genotypes as materials, which have potential to be applied in practice, and measured change of relative physiological indices through wheat whole growing-developmental circle (i.e. seedling, tillering and maturing). Here, we reported the anti-oxidative results of maturation stage (the results of seedling and tillering stage have been published) in terms of activities of POD, SOD, CAT and MDA content as follows: (1) 10 wheat genotypes can be grouped into three kinds (A-C, respectively) according to their changing trend of the measured indices; (2) A group performed better resistance drought under the condition of treatment level 1 (appropriate level), whose activities of anti-oxidative enzymes (POD, SOD, CAT) were higher and MDA lower; (3) B group exhibited stronger anti-drought under treatment level 2 (light-stress level), whose activities of anti-oxidative enzymes were higher and MDA lower; (4) C group expressed anti-drought to some extent under treatment level 3 (serious-stress level), whose activities of anti-oxidative enzymes were stronger, MDA lower; (5) these results demonstrated that different wheat genotypes have different physiological mechanisms to adapt themselves to changing drought stress, whose molecular basis is discrete gene expression profiling (transcriptom); (6) our results also showed that the concept and method accepted and adopted by most researchers [T.C. Hsiao, Plant response to water stress, Ann. Rev. Plant Physiol. 24 (1973) 519-570], that 75% FC is a proper supply for higher plants, was doubted, because this level could not reflect the true suitable level of different wheat genotypes. The study in this respect is the key to wheat anti-drought and biological-saving water agriculture; (7) our research can provide insights into physiological mechanisms of crop anti-drought and direct practical materials for wheat anti-drought breeding; (8) the physiological study of wheat is more urgent up-to-date and molecular aspects are needed, but cannot substitute this important part. The combination of both is an important strategy and a key and (9) POD, SOD and CAT activities and MDA content of different wheat genotypes had quite different changing trend at different stages and under different soil water stress conditions, which was linked with their origin of cultivation and individual soil water threshold.
Collapse
Affiliation(s)
- Shao HongBo
- Molecular Biology Laboratory, Bioinformatics College, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China.
| | | | | |
Collapse
|
1596
|
Vera-Estrella R, Barkla BJ, García-Ramírez L, Pantoja O. Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance. PLANT PHYSIOLOGY 2005; 139:1507-17. [PMID: 16244148 PMCID: PMC1283785 DOI: 10.1104/pp.105.067850] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 08/01/2005] [Accepted: 08/04/2005] [Indexed: 05/05/2023]
Abstract
Salinity is considered one of the major limiting factors for plant growth and agricultural productivity. We are using salt cress (Thellungiella halophila) to identify biochemical mechanisms that enable plants to grow in saline conditions. Under salt stress, the major site of Na+ accumulation occurred in old leaves, followed by young leaves and taproots, with the least accumulation occurring in lateral roots. Salt treatment increased both the H+ transport and hydrolytic activity of salt cress tonoplast (TP) and plasma membrane (PM) H(+)-ATPases from leaves and roots. TP Na(+)/H+ exchange was greatly stimulated by growth of the plants in NaCl, both in leaves and roots. Expression of the PM H(+)-ATPase isoform AHA3, the Na+ transporter HKT1, and the Na(+)/H+ exchanger SOS1 were examined in PMs isolated from control and salt-treated salt cress roots and leaves. An increased expression of SOS1, but no changes in levels of AHA3 and HKT1, was observed. NHX1 was only detected in PM fractions of roots, and a salt-induced increase in protein expression was observed. Analysis of the levels of expression of vacuolar H(+)-translocating ATPase subunits showed no major changes in protein expression of subunits VHA-A or VHA-B with salt treatment; however, VHA-E showed an increased expression in leaf tissue, but not in roots, when the plants were treated with NaCl. Salt cress plants were able to distribute and store Na+ by a very strict control of ion movement across both the TP and PM.
Collapse
Affiliation(s)
- Rosario Vera-Estrella
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62250, Mexico.
| | | | | | | |
Collapse
|
1597
|
Denby K, Gehring C. Engineering drought and salinity tolerance in plants: lessons from genome-wide expression profiling in Arabidopsis. Trends Biotechnol 2005; 23:547-52. [PMID: 16165235 DOI: 10.1016/j.tibtech.2005.09.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 05/20/2005] [Accepted: 09/01/2005] [Indexed: 11/26/2022]
Abstract
World food security is increasingly dependent on continuous crop improvement and, in particular, the development of crops with increased drought and salinity tolerance. The completed genomic sequence of the model plant Arabidopsis thaliana and the development of whole-genome microarrays, together with increasing repositories of publicly available data and data analysis tools, have opened new avenues to genome-wide systemic analysis of plant stress responses. Here we outline examples of how this full-genome expression profiling can contribute to our understanding of complex stress responses and the identification and evaluation of novel transgenes that could hold the key to the development of commercially viable and sustainable crop plants.
Collapse
Affiliation(s)
- Katherine Denby
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag Rondebosch 7701, South Africa
| | | |
Collapse
|
1598
|
Zhu C, Schraut D, Hartung W, Schäffner AR. Differential responses of maize MIP genes to salt stress and ABA. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:2971-81. [PMID: 16216844 DOI: 10.1093/jxb/eri294] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Salt stress is known to reduce root hydraulic conductivity and growth. To examine a concomitant regulation of aquaporins, the expression of the maize MIP gene family in response to NaCl was analysed by DNA array hybridization. Plants responded differentially to 100 versus 200 mM NaCl treatments. Leaf water content was reduced rapidly and persistently after the application of 200 mM NaCl in contrast to 100 mM NaCl. Endogenous ABA strongly accumulated in roots after 2 h; it remained at a highly elevated level for 48 h after the addition of 200 mM NaCl, but rapidly declined in plants treated with 100 mM NaCl, indicating an early recovery from water deficit. Interestingly, 2 h after the addition of 100 mM NaCl, when maize regained the osmotic potential allowing water uptake, three highly expressed, specific isoforms ZmPIP1;1, ZmPIP1;5, and ZmPIP2;4 were transiently induced. They were preferentially transcribed in the outer root tissue suggesting a role in cellular water transport. None of the ZmTIP genes was altered. By contrast, after the addition of 200 mM NaCl these responses were missing. Instead, multiple ZmPIP and ZmTIP genes were repressed by 200 mM NaCl after 24 h. After 48 h, deregulations were overridden in both cases indicating homeostasis. ABA (1 muM) exogenously applied to the roots transiently induced ZmPIP2;4 similar to 100 mM NaCl as well as ZmPIP1;2. Thus, the early induction of ZmPIP2;4 by NaCl may be mediated by ABA. Previously, an increase in root hydraulic conductivity had been observed upon ABA application. By contrast, 100 muM ABA led to a complete, possibly non-specific repression of all detected ZmPIP and ZmTIP genes after 24 h.
Collapse
Affiliation(s)
- Chuanfeng Zhu
- Insitute of Biochemical Plant Pathology, GSF-National Research Center for Environment and Health, D-85764 Neuherberg, Germany
| | | | | | | |
Collapse
|
1599
|
Hongbo S, Zongsuo L, Mingan S, Shimeng S, Zanmin H. Investigation on dynamic changes of photosynthetic characteristics of 10 wheat (Triticum aestivum L.) genotypes during two vegetative-growth stages at water deficits. Colloids Surf B Biointerfaces 2005; 43:221-7. [PMID: 15975772 DOI: 10.1016/j.colsurfb.2005.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 05/01/2005] [Indexed: 11/16/2022]
Abstract
Drought is a worldwide problem, seriously influencing plant (crop) productivity. Wheat is a stable food for 35% of the world population, and moreover, about 60% of land area on the globe belongs to arid and semiarid zone. Wheat drought resistance is a multi-gene controlling quantitative character and wheat final production in field is realized mainly by physiological regulation under the condition of multi-environmental factor interaction. Exploring drought resistance physiological mechanisms for different wheat genotypes is of importance to finding new drought resistance gene resources and conventional breeding, and the basis for wheat drought resistance biotechnological breeding and platform. Photosynthesis is the main component for physiological machinery of wheat assimilates conversion and wheat production. Investigation on photosynthetic characteristics of different wheat genotypes at soil water deficits also has other implications for refine physiological regulation of photosynthesis in fields and field management of crops in arid and semiarid areas. By pot-cultivating experiments, investigation of photosynthesis for 10 wheat genotypes at seedling stage and tillering stage at soil water deficits (75%FC, 55%FC and 45%FC, respectively) was conducted. The main results were as followed: developmental stages influenced wheat photosynthesis greatly and tillering stage played more roles; there were significant difference in the main photosynthetic parameters, photosynthesis rate (Photo), stomatal conductance (Cond) and transpiration rate (Tr), among 10 wheat genotypes; general photosynthesis and drought resistance in different wheat genotypes was related much to their domesticated origin soil water environment and selected generations and there was a photosynthetic threshold effect in terms of different wheat genotypes at soil water deficits.
Collapse
Affiliation(s)
- Shao Hongbo
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Center of Soil and Water Conservation and Eco-environmental Research, The Chinese Academy of Sciences, Yangling 712100, PR China.
| | | | | | | | | |
Collapse
|
1600
|
Siddiq A, . FA, . MM, . AF. Antioxidant Activity of Different Solvent Extracts of Moringa oleifera Leaves under Accelerated Storage of Sunflower Oil. ACTA ACUST UNITED AC 2005. [DOI: 10.3923/ajps.2005.630.635] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|