1551
|
Jakobs TC, Libby RT, Ben Y, John SWM, Masland RH. Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. ACTA ACUST UNITED AC 2006; 171:313-25. [PMID: 16247030 PMCID: PMC2171185 DOI: 10.1083/jcb.200506099] [Citation(s) in RCA: 310] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Using a variety of double and triple labeling techniques, we have reevaluated the death of retinal neurons in a mouse model of hereditary glaucoma. Cell-specific markers and total neuron counts revealed no cell loss in any retinal neurons other than the ganglion cells. Within the limits of our ability to define cell types, no group of ganglion cells was especially vulnerable or resistant to degeneration. Retrograde labeling and neurofilament staining showed that axonal atrophy, dendritic remodeling, and somal shrinkage (at least of the largest cell types) precedes ganglion cell death in this glaucoma model. Regions of cell death or survival radiated from the optic nerve head in fan-shaped sectors. Collectively, the data suggest axon damage at the optic nerve head as an early lesion, and damage to axon bundles would cause this pattern of degeneration. However, the architecture of the mouse eye seems to preclude a commonly postulated source of mechanical damage within the nerve head.
Collapse
Affiliation(s)
- Tatjana C Jakobs
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02114
| | | | | | | | | |
Collapse
|
1552
|
Helfrich-Förster C. The circadian system of Drosophila melanogaster and its light input pathways. ZOOLOGY 2006; 105:297-312. [PMID: 16351879 DOI: 10.1078/0944-2006-00074] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The fruit fly Drosophila melanogaster has been a grateful object for circadian rhythm researchers over several decades. Behavioral, genetic, and molecular studies in the little fly have aided in understanding the bases of circadian time keeping and rhythmic behaviors not only in Drosophila, but also in other organisms, including mammals. This review summarizes our present knowledge about the fruit fly's circadian system at the molecular and neurobiological level, with special emphasis on its entrainment by environmental light-dark cycles. The results obtained for Drosophila are discussed with respect to parallel findings in mammals.
Collapse
|
1553
|
Refinetti R. Variability of diurnality in laboratory rodents. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 192:701-14. [PMID: 16421752 DOI: 10.1007/s00359-006-0093-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2005] [Revised: 12/01/2005] [Accepted: 12/29/2005] [Indexed: 11/30/2022]
Abstract
The locomotor activity rhythms of domestic mice, laboratory rats, Syrian hamsters, Siberian hamsters, Mongolian gerbils, degus, and Nile grass rats were compared. Running-wheel activity was monitored under a light-dark cycle with 12 h of light and 12 h of darkness per day. Nile grass rats were found to be reliably diurnal, whereas laboratory rats, Siberian hamsters, domestic mice, and Syrian hamsters were reliably nocturnal. Both diurnal and nocturnal subgroups were observed in Mongolian gerbils and degus. A downward gradient of diurnality was observed from Mongolian gerbils classified as diurnal, degus classified as diurnal, gerbils classified as nocturnal, and degus classified as nocturnal. Nocturnal degus remained nocturnal when tested with an infrared motion detector without running wheels. Thus, although the diurnal-nocturnal dichotomy could be applied to some of the species, it was not appropriate for others. The dichotomy may reflect researchers' needs for systematization more than a natural distinction between species. Through mechanisms as yet poorly understood, the balance between entraining and masking processes seems to generate a gradient of temporal niches that runs from predominantly diurnal species to predominantly nocturnal species with many chronotypes in between, including species that exhibit wide intra-species gradients of temporal niche.
Collapse
Affiliation(s)
- R Refinetti
- Circadian Rhythm Laboratory, University of South Carolina, 807 Hampton Street, Walterboro, SC 29488, USA.
| |
Collapse
|
1554
|
Hannibal J. Roles of PACAP‐Containing Retinal Ganglion Cells in Circadian Timing. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 251:1-39. [PMID: 16939776 DOI: 10.1016/s0074-7696(06)51001-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The brain's biological clock located in the suprachiasmatic nucleus (SCN) generates circadian rhythms in physiology and behavior. The clock-driven rhythms need daily adjustment (entrainment) to be synchronized with the astronomical day of 24 h. The most important stimulus for entrainment of the clock is the light-dark (LD) cycle. In this review functional elements of the light entrainment pathway will be considered with special focus on the neurotransmitter pituitary adenylate cyclase-activating polypeptide (PACAP), which is found exclusively in the monosynaptic neuronal pathway mediating light information to the SCN, the retinohypothalamic tract (RHT). The retinal ganglion cells of the RHT are intrinsically photosensitive due to the expression of melanopsin and seem to constitute a non-image forming photosensitive system in the mammalian eye regulating circadian timing, masking behavior, light-regulated melatonin secretion, and the pupillary light reflex. Evidence from in vitro and in vivo studies and studies of mice lacking PACAP and the specific PACAP receptor (PAC1) indicate that PACAP and glutamate are neurotransmitters in the RHT which in a clock and concentration-dependent manner interact during light entrainment of the clock.
Collapse
Affiliation(s)
- Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Denmark
| |
Collapse
|
1555
|
Vallone D, Lahiri K, Dickmeis T, Foulkes NS. Start the clock! Circadian rhythms and development. Dev Dyn 2006; 236:142-55. [PMID: 17075872 DOI: 10.1002/dvdy.20998] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The contribution of timing cues from the environment to the coordination of early developmental processes is poorly understood. The day-night cycle represents one of the most important, regular environmental changes that animals are exposed to. A key adaptation that allows animals to anticipate daily environmental changes is the circadian clock. In this review, we aim to address when a light-regulated circadian clock first emerges during development and what its functions are at this early stage. In particular, do circadian clocks regulate early developmental processes? We will focus on results obtained with Drosophila and vertebrates, where both circadian clock and developmental control mechanisms have been intensively studied.
Collapse
Affiliation(s)
- Daniela Vallone
- Independent Research Group, Max Planck Institut für Entwicklungsbiologie, Tübingen, Germany
| | | | | | | |
Collapse
|
1556
|
Functional Anatomy of the Mammalian Retina. Retina 2006. [DOI: 10.1016/b978-0-323-02598-0.50010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
1557
|
Abstract
Research over the past two decades in mammals, especially primates, has greatly improved our understanding of the afferent and efferent connections of two retinorecipient pretectal nuclei, the nucleus of the optic tract (NOT) and the pretectal olivary nucleus (PON). Functional studies of these two nuclei have further elucidated some of the roles that they play both in oculomotor control and in relaying oculomotor-related signals to visual relay nuclei. Therefore, following a brief overview of the anatomy and retinal projections to the entire mammalian pretectum, the connections and potential roles of the NOT and the PON are considered in detail. Data on the specific connections of the NOT are combined with data from single-unit recording, microstimulation, and lesion studies to show that this nucleus plays critical roles in optokinetic nystagmus, short-latency ocular following, smooth pursuit eye movements, and adaptation of the gain of the horizontal vestibulo-ocular reflex. Comparable data for the PON show that this nucleus plays critical roles in the pupillary light reflex, light-evoked blinks, rapid eye movement sleep triggering, and modulating subcortical nuclei involved in circadian rhythms.
Collapse
Affiliation(s)
- Paul D R Gamlin
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
1558
|
Kumbalasiri T, Provencio I. Melanopsin and other novel mammalian opsins. Exp Eye Res 2005; 81:368-75. [PMID: 16005867 DOI: 10.1016/j.exer.2005.05.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2005] [Revised: 04/12/2005] [Accepted: 05/19/2005] [Indexed: 12/14/2022]
Abstract
Within the past decade, several non-canonical opsins have been identified in mammals. These include RGR, peropsin, melanopsin, encephalopsin, and neuropsin. Although all are expressed in the eye, it is likely that they serve to mediate non-visual effects of light on physiology. Some of these opsins, however, may play an indirect role in vision by generating appropriate retinoid chromophores for the rod and cone visual pigments or by regulating the sensitivity of the visual system. Here, we survey the current state of knowledge regarding these opsins.
Collapse
Affiliation(s)
- Tida Kumbalasiri
- Graduate Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814-4712, USA
| | | |
Collapse
|
1559
|
Rea MS, Figueiro MG, Bullough JD, Bierman A. A model of phototransduction by the human circadian system. ACTA ACUST UNITED AC 2005; 50:213-28. [PMID: 16216333 DOI: 10.1016/j.brainresrev.2005.07.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 03/07/2005] [Accepted: 07/11/2005] [Indexed: 11/30/2022]
Abstract
The absolute and spectral sensitivities to light by the human circadian system, measured through melatonin suppression or phase shifting response, are beginning to emerge after a quarter century of active research. The present paper outlines a hypothesized model of human circadian phototransduction that is consistent with the known neuroanatomy and physiology of the human visual and circadian systems. Spectral opponency is fundamental to the model, providing a parsimonious explanation of some recently published data. The proposed model offers a framework for hypothesis testing and subsequent discussion of the practical aspects of architectural lighting with respect to light and health.
Collapse
Affiliation(s)
- Mark S Rea
- Lighting Research Center, Rensselaer Polytechnic Institute, 21 Union Street, Troy, NY 12180, USA.
| | | | | | | |
Collapse
|
1560
|
Abstract
Circadian clocks control the daily life of most light-sensitive organisms - from cyanobacteria to humans. Molecular processes generate cellular rhythmicity, and cellular clocks in animals coordinate rhythms through interaction (known as coupling). This hierarchy of clocks generates a complex, approximately 24-hour temporal programme that is synchronized with the rotation of the Earth. The circadian system ensures anticipation and adaptation to daily environmental changes, and functions on different levels - from gene expression to behaviour. Circadian research is a remarkable example of interdisciplinarity, unravelling the complex mechanisms that underlie a ubiquitous biological programme. Insights from this research will help to optimize medical diagnostics and therapy, as well as adjust social and biological timing on the individual level.
Collapse
Affiliation(s)
- Till Roenneberg
- Centre for Chronobiology, Institute of Medical Psychology, Medical Faculty, University of Munich, Goethestrasse 31, D-80336 Munich, Germany.
| | | |
Collapse
|
1561
|
Abstract
Light profoundly impacts human consciousness through the stimulation of the visual system and powerfully regulates the human circadian system, which, in turn, has a broad regulatory impact on virtually all tissues in the body. For more than 25 years, the techniques of action spectroscopy have yielded insights into the wavelength sensitivity of circadian input in humans and other mammalian species. The seminal discovery of melanopsin, the photopigment in intrinsically photosensitive retinal ganglion cells, has provided a significant turning point for understanding human circadian phototransduction. Action spectra in humans show that the peak wavelength sensitivity for this newly discovered sensory system is within the blue portion of the spectrum. This is fundamentally different from the three-cone photopic visual system, as well as the individual rod and cone photoreceptor peaks. Studies on rodents, nonhuman primates, and humans indicate that despite having a different wavelength fingerprint, these classic visual photoreceptors still provide an element of input to the circadian system. These findings open the door to innovations in light therapy for circadian and affective disorders, as well as possible architectural light applications.
Collapse
Affiliation(s)
- George C Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
1562
|
Tomonari S, Takagi A, Akamatsu S, Noji S, Ohuchi H. A non-canonical photopigment, melanopsin, is expressed in the differentiating ganglion, horizontal, and bipolar cells of the chicken retina. Dev Dyn 2005; 234:783-90. [PMID: 16217736 DOI: 10.1002/dvdy.20600] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Vertebrate melanopsin is a photopigment in the eye, required for photoentrainment. Melanopsin is more closely related to opsin proteins found in invertebrates, than to the other photo-pigments. Although the invertebrate melanopsin-like protein is localized in rhabdomeric photoreceptors in the invertebrate eye, it has been shown to be expressed in a subset of retinal ganglion cells in the mouse and in horizontal cells in the frog, indicating its diversified expression pattern in vertebrates. Here we show that two types of melanopsin transcripts are expressed in the developing chicken retina. Melanopsin is firstly expressed by a small subset of ganglion cells, and then prominently expressed by horizontal cells and later by bipolar cells in the developing chicken retina. This suggests that a subset of ganglion, horizontal, and bipolar cells in the chicken retina may have rhabdomeric properties in their origins.
Collapse
Affiliation(s)
- Sayuri Tomonari
- Department of Biological Science and Technology, Faculty of Engineering, University of Tokushima, Tokushima, Japan
| | | | | | | | | |
Collapse
|
1563
|
Abstract
Mammals are functionally blind at birth because responses to rod and cone photoreceptor activation are immature. Recent studies show that the newborn retina is nevertheless sensitive to light. Indeed, intrinsically photosensitive retinal ganglion cells are present from birth and already make functional connections with the suprachiasmatic nucleus, the site of the central circadian clock.
Collapse
Affiliation(s)
- Evelyne Sernagor
- School of Neurology, Neurobiology and Psychiatry, Newcastle University Medical Sciences, Newcastle upon Tyne, UK.
| |
Collapse
|
1564
|
Kashani AA. Sleep disturbances. Ophthalmology 2005; 112:1847-8; author reply 1848-9. [PMID: 16199275 DOI: 10.1016/j.ophtha.2005.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 03/29/2005] [Indexed: 11/30/2022] Open
|
1565
|
Allen GC, West JR, Chen WJA, Earnest DJ. Neonatal alcohol exposure permanently disrupts the circadian properties and photic entrainment of the activity rhythm in adult rats. Alcohol Clin Exp Res 2005; 29:1845-52. [PMID: 16269914 PMCID: PMC2728500 DOI: 10.1097/01.alc.0000183014.12359.9f] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Alcohol exposure during the period of rapid brain development produces structural damage in different brain regions, including the suprachiasmatic nucleus (SCN), that may have permanent neurobehavioral consequences. Thus, this study examined the long-term effects of neonatal alcohol exposure on circadian behavioral activity in adult rats. METHODS Artificially reared Sprague-Dawley rat pups were exposed to alcohol (EtOH; 4.5 g/kg/day) or isocaloric milk formula (gastrostomy control; GC) on postnatal days 4-9. At 2 months of age, rats from the EtOH, GC, and suckle control (SC) groups were housed individually, and properties of the circadian rhythm in wheel-running behavior were continuously analyzed during exposure to a 12-hr light:12-hr dark photoperiod (LD 12:12) or constant darkness (DD). RESULTS Neonatal alcohol exposure had distinctive effects on the rhythmic properties and quantitative parameters of adult wheel-running behavior. EtOH-treated animals were distinguished by unstable and altered entrainment to LD 12:12 such that their daily onsets of activity were highly variable and occurred at earlier times relative to control animals. In DD, circadian regulation of wheel-running behavior was altered by neonatal alcohol exposure such that the free-running period of the activity rhythm was shorter in EtOH-exposed rats than in control animals. Total amount of daily wheel-running activity in EtOH-treated rats was greater than that observed in the SC group. In addition, the circadian activity patterns of EtOH-exposed rats were fragmented such that the duration of the active phase and the number of activity bouts per day were increased. CONCLUSIONS These data indicate that neonatal alcohol exposure produces permanent changes in the circadian regulation of the rat activity rhythm and its entrainment to LD cycles. These long-term alterations in circadian behavior, along with the developmental alcohol-induced changes in SCN endogenous rhythmicity, may have important implications in clinical sleep-wake disturbances observed in neonates, children, and adults exposed to alcohol in utero.
Collapse
Affiliation(s)
- Gregg C Allen
- Texas A and M University System Health Science Center, College of Medicine, Department of Human Anatomy and Medical Neurobiology, College Station, Texas 77843-1114, USA
| | | | | | | |
Collapse
|
1566
|
Affiliation(s)
- Solomon H Snyder
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA.
| |
Collapse
|
1567
|
Allen GC, Farnell YZ, Maeng JU, West JR, Chen WJA, Earnest DJ. Long-term effects of neonatal alcohol exposure on photic reentrainment and phase-shifting responses of the activity rhythm in adult rats. Alcohol 2005; 37:79-88. [PMID: 16584971 PMCID: PMC2695981 DOI: 10.1016/j.alcohol.2005.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 11/08/2005] [Accepted: 11/18/2005] [Indexed: 11/24/2022]
Abstract
In rats, neonatal alcohol (EtOH) exposure coinciding with the period of rapid brain growth produces structural damage in some brain regions that often persists into adulthood and thus may have long-term consequences in the neural regulation of behavior. Because recent findings indicate that the circadian clock located in the rat suprachiasmatic nucleus is vulnerable to alcohol-induced insults during development, the present study examined the long-term effects of neonatal alcohol exposure on the photic regulation of circadian behavior in adult rats. Rat pups were exposed to alcohol (3.0, 4.5, or 6.0 g x kg(-1) x day(-1)) or isocaloric milk formula on postnatal days 4-9 using artificial-rearing methods. At 2 months of age, animals were housed individually and circadian wheel-running behavior was continuously analyzed to determine the effects of neonatal alcohol treatment on the rate of reentrainment to a 6-h advance in the 12-h light:12-h dark photoperiod and the phase-shifting properties of free-running rhythms in response to discrete light pulses on a background of constant darkness. For all doses, neonatal alcohol exposure had a significant effect in reducing the time for reentrainment such that EtOH-treated rats required four to five fewer days than control animals for stable realignment of the activity rhythm to the shifted light-dark cycle. Coupled with the accelerated rate of reentrainment, the amplitude of light-evoked phase delays at circadian time 14 and advances at circadian time 22 in the 4.5 and 6.0 g x kg(-1) x day(-1) EtOH groups was almost twofold greater than that observed in control animals. The present observations indicate that the mechanisms by which photic signals regulate circadian behavior are permanently altered following alcohol exposure during the period of rapid brain development. These long-term alterations in the photic regulation of circadian rhythms may account, at least partially, for some neurobehavioral consequences of prenatal alcohol exposure in humans such as depression.
Collapse
Affiliation(s)
- Gregg C Allen
- Department of Human Anatomy and Medical Neurobiology, The Texas A&M University System Health Science Center, College of Medicine, 228 Reynolds Medical Building, College Station, TX 77843-1114, USA
| | | | | | | | | | | |
Collapse
|
1568
|
Abstract
Diverse animals can detect magnetic fields but little is known about how they do so. Three main hypotheses of magnetic field perception have been proposed. Electrosensitive marine fish might detect the Earth's field through electromagnetic induction, but direct evidence that induction underlies magnetoreception in such fish has not been obtained. Studies in other animals have provided evidence that is consistent with two other mechanisms: biogenic magnetite and chemical reactions that are modulated by weak magnetic fields. Despite recent advances, however, magnetoreceptors have not been identified with certainty in any animal, and the mode of transduction for the magnetic sense remains unknown.
Collapse
Affiliation(s)
- Sönke Johnsen
- Department of Biology, Duke University, Durham, North Carolina 27708, USA.
| | | |
Collapse
|
1569
|
Fu Y, Liao HW, Do MTH, Yau KW. Non-image-forming ocular photoreception in vertebrates. Curr Opin Neurobiol 2005; 15:415-22. [PMID: 16023851 PMCID: PMC2885887 DOI: 10.1016/j.conb.2005.06.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Accepted: 06/30/2005] [Indexed: 11/23/2022]
Abstract
It has been accepted for a hundred years or more that rods and cones are the only photoreceptive cells in the retina. The light signals generated in rods and cones, after processing by downstream retinal neurons (bipolar, horizontal, amacrine and ganglion cells), are transmitted to the brain via the axons of the ganglion cells for further analysis. In the past few years, however, convincing evidence has rapidly emerged indicating that a small subset of retinal ganglion cells in mammals is also intrinsically photosensitive. Melanopsin is the signaling photopigment in these cells. The main function of the inner-retina photoreceptors is to generate and transmit non-image-forming visual information, although some role in conventional vision (image detection) is also possible.
Collapse
Affiliation(s)
- Yingbin Fu
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
1570
|
Silva MMA, Albuquerque AM, Araujo JF. Light-dark cycle synchronization of circadian rhythm in blind primates. J Circadian Rhythms 2005; 3:10. [PMID: 16144547 PMCID: PMC1208936 DOI: 10.1186/1740-3391-3-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Accepted: 09/06/2005] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Recently, several papers have shown that a small subset of retinal ganglion cells (RGCs), which project to the suprachiasmatic nucleus (SCN) and contain a new photopigment called melanopsin, are the photoreceptors involved in light-dark entrainment in rodents. In our primate colony, we found a couple of common marmosets (Callithrix jacchus) that had developed progressive and spontaneous visual deficiency, most likely because of retinal degeneration of cones and/or rods. In this study, we evaluated the photoresponsiveness of the circadian system of these blind marmosets. METHODS Two blind and two normal marmosets were kept in cages with a controlled light-dark cycle (LD) to study photoentrainment, masking, and phase response to a dark pulse. RESULTS Blind marmosets were entrained with the new LD cycle when light onsets were delayed and advanced by 6 hours. In constant light conditions, blind marmosets free-ran with a period of 23.2 hours, while normal animals free-ran with a period of 23.6 hours. All marmosets responded to dark pulses in the early subjective day with phase delays and with phase advances in the late subjective day. CONCLUSION Our results demonstrate that light can synchronize circadian rhythms of blind marmosets and consequently, that this species could be a good primate model for circadian photoreception studies.
Collapse
Affiliation(s)
- Mayara MA Silva
- Laboratório de Cronobiologia, Departamento de Fisiologia, CB/UFRN, Natal, Brazil
| | - Alex M Albuquerque
- Laboratório de Cronobiologia, Departamento de Fisiologia, CB/UFRN, Natal, Brazil
| | - John F Araujo
- Laboratório de Cronobiologia, Departamento de Fisiologia, CB/UFRN, Natal, Brazil
| |
Collapse
|
1571
|
Kong JH, Fish DR, Rockhill RL, Masland RH. Diversity of ganglion cells in the mouse retina: Unsupervised morphological classification and its limits. J Comp Neurol 2005; 489:293-310. [PMID: 16025455 DOI: 10.1002/cne.20631] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The dendritic structures of retinal ganglion cells in the mouse retina were visualized by particle-mediated transfer of DiI, microinjection of Lucifer yellow, or visualization of green fluorescent protein expressed in a transgenic strain. The cells were imaged in three dimensions and the morphologies of a series of 219 cells were analyzed quantitatively. A total of 26 parameters were studied and automated cluster analysis was carried out using the k-means methods. An effective clustering, judged by silhouette analysis, was achieved using three parameters: level of stratification, extent of the dendritic field, and density of branching. An 11-cluster solution is illustrated. The cells within each cluster are visibly similar along morphological dimensions other than those used statistically to form the clusters. They could often be matched to ganglion cell types defined by previous studies. For reasons that are discussed, however, this classification must remain provisional. Some steps toward more definitive methods of unsupervised classification are pointed out.
Collapse
Affiliation(s)
- Jee-Hyun Kong
- Howard Hughes Medical Institute, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
1572
|
Brzezinski JA, Brown NL, Tanikawa A, Bush RA, Sieving PA, Vitaterna MH, Takahashi JS, Glaser T. Loss of circadian photoentrainment and abnormal retinal electrophysiology in Math5 mutant mice. Invest Ophthalmol Vis Sci 2005; 46:2540-51. [PMID: 15980246 PMCID: PMC1570190 DOI: 10.1167/iovs.04-1123] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine how the absence of retinal ganglion cells (RGCs) in Math5 (Atoh7) mutant mice affects circadian behavior and retinal function. METHODS The wheel-running behavior of wild-type and Math5 mutant mice was measured under various light-dark cycle conditions. To evaluate retinal input to the suprachiasmatic nuclei (SCN) anatomically, the retinohypothalamic tracts were labeled in vivo. To assess changes in retinal function, corneal flash electroretinograms (ERGs) from mutant and wild-type mice were compared under dark- and light-adapted conditions. Alterations in retinal neuron populations were evaluated quantitatively and with cell-type-specific markers. RESULTS The Math5-null mice did not entrain to light and exhibited free-running circadian behavior with a mean period (23.6 +/- 0.15 hours) that was indistinguishable from that of wild-type mice (23.4 +/- 0.19 hours). The SCN showed no anterograde labeling with a horseradish peroxidase-conjugated cholera toxin B (CT-HRP) tracer. ERGs recorded from mutant mice had diminished scotopic a- and b-wave and photopic b-wave amplitudes. The scotopic b-wave was more severely affected than the a-wave. The oscillatory potentials (OPs) and scotopic threshold response (STR) were also reduced. Consistent with these ERG findings, a pan-specific reduction in the number of bipolar cells and a smaller relative decrease in the number of rods in mutant mice were observed. CONCLUSIONS Math5-null mice are clock-blind and have no RGC projections to the SCN. RGCs are thus essential for photoentrainment in mice, but are not necessary for the development or intrinsic function of the SCN clock. RGCs are not required to generate any of the major ERG waveforms in mice, including the STR, which is produced by ganglion cells in some other species. The diminished amplitude of b-wave, OPs, and STR components in Math5 mutants is most likely caused by the decreased abundance of retinal interneurons.
Collapse
Affiliation(s)
- Joseph A. Brzezinski
- From the Departments of Human Genetics and
- Internal Medicine, University of Michigan, Ann Arbor, Michigan; the
| | - Nadean L. Brown
- Divisions of Developmental Biology and
- Ophthalmology, Children’s Hospital Research Foundation, Department of Pediatrics, University of Cincinnati Medical School, Cincinnati, Ohio
| | - Atsuhiro Tanikawa
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland
| | - Ronald A. Bush
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland
| | - Paul A. Sieving
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland
- National Eye Institute, Bethesda, Maryland
| | - Martha H. Vitaterna
- Center for Functional Genomics, Northwestern University, Evanston, Illinois; and the
| | - Joseph S. Takahashi
- Center for Functional Genomics, Northwestern University, Evanston, Illinois; and the
- Department of Neurobiology and Physiology, Howard Hughes Medical Institute, Northwestern University, Evanston, Illinois
| | - Tom Glaser
- From the Departments of Human Genetics and
- Internal Medicine, University of Michigan, Ann Arbor, Michigan; the
- Corresponding author: Tom Glaser, Departments of Internal Medicine and Human Genetics, The University of Michigan, 1150 W. Medical Center Drive, 4520 MSRB I Box 0651, Ann Arbor, MI 48109;
| |
Collapse
|
1573
|
Yasukouchi A. A physio-anthropological approach in evaluation of human adaptability to living environment: in the case of artificial light environment. ACTA ACUST UNITED AC 2005; 24:307-12. [PMID: 16079572 DOI: 10.2114/jpa.24.307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Attention has been focused on human adaptability to human-adopted artificially modern and comfortable environments which may not always match the adaptability by the physiological state of humans. This discrepancy was found to induce a slight tension in the human body on evaluation with a physio-anthropological approach. Although a standard methodological approach has yet to be established, the present study attempted to evaluate human adaptability to artificial light environment, based on evaluations from three major possible perspectives: a) central nervous system, b) autonomic nervous system and c) biological rhythm. In order to detect the slight tension, human volunteers were exposed to an artificial light environment, and the appropriate physiological parameters were then examined from photic signal pathways in a brain. The findings revealed that a higher color temperature of fluorescent lamps induced a slight tension, although many other factors remained to be elucidated.
Collapse
Affiliation(s)
- Akira Yasukouchi
- Department of Physiological Anthropology, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
1574
|
Fu Y, Zhong H, Wang MHH, Luo DG, Liao HW, Maeda H, Hattar S, Frishman LJ, Yau KW. Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin. Proc Natl Acad Sci U S A 2005; 102:10339-44. [PMID: 16014418 PMCID: PMC1177370 DOI: 10.1073/pnas.0501866102] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In mammals, intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate non-image-forming visual functions such as pupillary light reflex (PLR) and circadian photoentrainment. This photosensitivity requires melanopsin, an invertebrate opsin-like protein expressed by the ipRGCs. The precise role of melanopsin remains uncertain. One suggestion has been that melanopsin may be a photoisomerase, serving to regenerate an unidentified pigment in ipRGCs. This possibility was echoed by a recent report that melanopsin is expressed also in the mouse retinal pigment epithelium (RPE), a key center for regeneration of rod and cone pigments. To address this question, we studied mice lacking RPE65, a protein essential for the regeneration of rod and cone pigments. Rpe65-/- ipRGCs were approximately 20- to 40-fold less photosensitive than normal at both single-cell and behavioral (PLR) levels but were rescued by exogenous 9-cis-retinal (an 11-cis-retinal analog), indicating the requirement of a vitamin A-based chromophore for ipRGC photosensitivity. In contrast, 9-cis-retinal was unable to restore intrinsic photosensitivity to melanopsin-ablated ipRGCs, arguing against melanopsin functioning merely in photopigment regeneration. Interestingly, exogenous all-trans-retinal was also able to rescue the low sensitivity of rpe65-/- ipRGCs, suggesting that melanopsin could be a bistable pigment. Finally, we detected no melanopsin in the RPE and no changes in rod and cone sensitivities due to melanopsin ablation. Together, these results strongly suggest that melanopsin is the photopigment in the ipRGCs.
Collapse
Affiliation(s)
- Yingbin Fu
- Departments of Neuroscience and Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | | | | | | | | | | | | | |
Collapse
|
1575
|
Scheer FAJL, Pirovano C, Van Someren EJW, Buijs RM. Environmental light and suprachiasmatic nucleus interact in the regulation of body temperature. Neuroscience 2005; 132:465-77. [PMID: 15802197 DOI: 10.1016/j.neuroscience.2004.12.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2004] [Indexed: 11/28/2022]
Abstract
The mammalian biological clock, located in the suprachiasmatic nucleus (SCN), is crucial for circadian rhythms in physiology and behavior. However, equivocal findings have been reported on its role in the circadian regulation of body temperature. The goal of the present studies was to investigate the interaction between the SCN and environmental light in the regulation of body temperature. All recordings were performed by telemetry in free moving male Wistar rats. Firstly, we demonstrated an endogenous circadian rhythm in body temperature independent of locomotor activity. This rhythm was abolished by stereotactic lesioning of the SCN. Secondly, we demonstrated a circadian phase-dependent suppressive effect of light ('negative masking') on body temperature. Light suppressed body temperature more at the end of the subjective night (circadian time [CT] 22) than in the middle (CT 6) and at the end (CT 10) of the subjective day. This circadian-phase dependent suppression was not demonstrated in SCN-lesioned animals. Surprisingly, after half a year of recovery from lesioning of the SCN, light regained its suppressing action on body temperature, resulting in a daily body temperature rhythm only under light-dark conditions. In contrast to body temperature, light could not substantially mimic a daytime inhibitory SCN-output in the regulation of heart rate and locomotor activity. The present results suggest that, after lesioning of the SCN as main relay station for the immediate body temperature-inhibition by light, secondary relay nuclei can fully take over this function of the SCN. These findings provide a possible explanation for the controversy in literature over the question whether the SCN is required for the diurnal rhythm in body temperature. Furthermore, they show that light may have an acute effect on behavior and physiology of the organism via the SCN, which extends beyond the generally acknowledged effect on melatonin secretion.
Collapse
Affiliation(s)
- F A J L Scheer
- Department of Hypothalamic Integration Mechanisms, Netherlands Institute for Brain Research, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
1576
|
Sekaran S, Lupi D, Jones SL, Sheely CJ, Hattar S, Yau KW, Lucas RJ, Foster RG, Hankins MW. Melanopsin-dependent photoreception provides earliest light detection in the mammalian retina. Curr Biol 2005; 15:1099-107. [PMID: 15964274 PMCID: PMC4316668 DOI: 10.1016/j.cub.2005.05.053] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 05/17/2005] [Accepted: 05/18/2005] [Indexed: 01/22/2023]
Abstract
BACKGROUND The visual system is now known to be composed of image-forming and non-image-forming pathways. Photoreception for the image-forming pathway begins at the rods and cones, whereas that for the non-image-forming pathway also involves intrinsically photosensitive retinal ganglion cells (ipRGCs), which express the photopigment melanopsin. In the mouse retina, the rod and cone photoreceptors become light responsive from postnatal day 10 (P10); however, the development of photosensitivity of the ipRGCs remains largely unexplored. RESULTS Here, we provide direct physiological evidence that the ipRGCs are light responsive from birth (P0) and that this photosensitivity requires melanopsin expression. Interestingly, the number of ipRGCs at P0 is over five times that in the adult retina, reflecting an initial overproduction of melanopsin-expressing cells during development. Even at P0, the ipRGCs form functional connections with the suprachiasmatic nucleus, as assessed by light-induced Fos expression. CONCLUSIONS The findings suggest that the non-image-forming pathway is functional long before the mainstream image-forming pathway during development.
Collapse
Affiliation(s)
- S Sekaran
- Department of Visual Neuroscience, Division of Neuroscience and Mental Health, Imperial College London, Charing Cross Hospital Campus, London, W6 8RF, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
1577
|
Abstract
BACKGROUND Sleep-associated disorders of the eye are increasingly recognized. Disordered sleep has also been found in some blind patients. METHODS Review of the current state of knowledge of sleep-related eye disorders and blindness-related sleep disorders. RESULTS Incomplete eyelid closure during sleep (lagophthalmos) may be physiological but in some patients can cause significant symptoms. Nocturnal lagophthalmos may be a limiting factor in the surgical repair of some eyelid and orbital disorders. Normal eyelid closure has also been linked to the development of a number of ocular surface disorders. Sleep disorders are common, and obstructive sleep apnoea (OSA) the commonest. OSA is associated with a number of serious systemic diseases and also several eye disorders including floppy eyelid syndrome, optic neuropathy, glaucoma, anterior ischaemic optic neuropathy and papilloedema secondary to raised intracranial pressure. Treatment of OSA may help floppy eyelid syndrome, halt progression of associated glaucoma, and reduce intracranial pressure in patients with associated papilloedema. The diagnosis of OSA can only be made with formal sleep studies, but asking a small number of appropriate questions will help screen those patients who should be referred for sleep studies. Some blind patients have disordered sleep patterns due to disruption of the retinal input into the hypothalamic-pineal melatonin secreting apparatus. This can be alleviated by oral administration of melatonin. CONCLUSIONS Ophthalmologists should be aware of sleep-associated eye disorders and refer appropriate patients for formal sleep studies. Sleep abnormalities in blind patients should be enquired about and patients offered assessment and treatment by a sleep physician.
Collapse
Affiliation(s)
- Alan A McNab
- Orbital Plastic and Lacrimal Clinic, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.
| |
Collapse
|
1578
|
Semo M, Muñoz Llamosas M, Foster RG, Jeffery G. Melanopsin (Opn4) positive cells in the cat retina are randomly distributed across the ganglion cell layer. Vis Neurosci 2005; 22:111-6. [PMID: 15842746 DOI: 10.1017/s0952523805001069] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Indexed: 11/06/2022]
Abstract
A rare type of rodent retinal ganglion cell expresses melanopsin (Opn4), the majority of which project to the suprachiasmatic nuclei. Many of these cells are directly light sensitive and appear to regulate the circadian system in the absence of rod and cone photoreceptors. However, the rodent retina contains no overt regions of specialization, and the different ganglion cell types are hard to distinguish. Consequently, attempts to distinguish the distribution of melanopsin ganglion cells in relation to regions of retinal specialization or subtype have proved problematic. Retinal cells with a common function tend to be regularly distributed. In this study, we isolate cat melanopsin and label melanopsin expressing cells using in situ hybridization. The labelled cells were all confined to the ganglion cell layer, their density was low, and their distribution was random. Melanopsin containing cells showed no clear center-to-periphery gradient in their distribution and were comprised of a relatively uniform cellular population.
Collapse
Affiliation(s)
- Ma'ayan Semo
- Department of Integrative and Molecular Neuroscience, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, Imperial College London, Charing Cross Hospital, London, UK
| | | | | | | |
Collapse
|
1579
|
Buchanan GF, Gillette MU. New light on an old paradox: site-dependent effects of carbachol on circadian rhythms. Exp Neurol 2005; 193:489-96. [PMID: 15869951 DOI: 10.1016/j.expneurol.2005.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 12/30/2004] [Accepted: 01/13/2005] [Indexed: 10/25/2022]
Abstract
Acetylcholine (ACh) was the first neurotransmitter identified as a regulator of mammalian circadian rhythms. When injected in vivo, cholinergics induced biphasic clock resetting at night, similar to nocturnal light exposure. However, the retinohypothalamic tract connecting the eye to the suprachiasmatic nucleus (SCN) uses glutamate (GLU) to transmit light signals. We here resolve this long-standing paradox. Whereas injection of the cholinergic agonist, carbachol, into the mouse ventricular system in vivo induced light-like effects, direct application to the SCN in vitro or in vivo induced a distinct response pattern: phase advance of circadian rhythms throughout the nighttime. These results indicate that a new regulatory pathway, involving an extra-SCN cholinergic synapse accessible via ventricular injection, mediates the light-like cholinergic clock resetting reported previously.
Collapse
Affiliation(s)
- Gordon F Buchanan
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
1580
|
Abstract
More than a century after the introduction of incandescent lighting and half a century after the introduction of fluorescent lighting, solid-state light sources are revolutionizing an increasing number of applications. Whereas the efficiency of conventional incandescent and fluorescent lights is limited by fundamental factors that cannot be overcome, the efficiency of solid-state sources is limited only by human creativity and imagination. The high efficiency of solid-state sources already provides energy savings and environmental benefits in a number of applications. However, solid-state sources also offer controllability of their spectral power distribution, spatial distribution, color temperature, temporal modulation, and polarization properties. Such "smart" light sources can adjust to specific environments and requirements, a property that could result in tremendous benefits in lighting, automobiles, transportation, communication, imaging, agriculture, and medicine.
Collapse
Affiliation(s)
- E Fred Schubert
- Department of Electrical, Computer, and Systems Engineering and Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | |
Collapse
|
1581
|
Abstract
Recent studies have demonstrated that melanopsin is a key photopigment in the mammalian circadian system. This novel opsin is exclusively expressed in retinal ganglion cells that are intrinsically sensitive to light, perhaps responding via a melanopsin-based signaling pathway. Previous investigations using transgenic mice have also demonstrated that ablation of the classical photoreceptors and of melanopsin prevents entrainment of several circadian rhythms, thus demonstrating that these photoreceptors are necessary and sufficient for circadian photoreception. In this study, we investigated the effect of photoreceptor degeneration on melanopsin mRNA regulation in RCS/N-rdy rats (Royal College of Surgeons rats with a defect in the retinal dystrophy gene). We used animals at postnatal day 21 (P21), P33, P45, and P60. At P60 degeneration of the retina in RCS/N-rdy has advanced to the point where the majority of the photoreceptors have degenerated. Our data indicate that melanopsin mRNA levels were rhythmic in light/dark cycle and in constant darkness in congenic controls (RCS/N-rdy+) and in RCS/N-rdy at P21 (i.e., before the degeneration of the photoreceptors). On the other hand, in RCS/N-rdy at P60, melanopsin mRNA levels were greatly reduced (<90%) and not rhythmic. Photoreceptor degeneration did not affect the expression of pituitary adenylate cyclase-activating polypeptide mRNA (a marker for melanopsin-containing ganglion cells). Our results suggest that classical photoreceptors (rods and cones) regulate the expression of melanopsin mRNA in the rat. Because RCS/N-rdy rats are a model for studies on retinitis pigmentosa in human, our data may provide an important insight on melanopsin function in patients affected by retinitis pigmentosa.
Collapse
Affiliation(s)
- Katsuhiko Sakamoto
- Neuroscience Institute and National Science Foundation Center for Behavioral Neuroscience, Morehouse School of Medicine, Atlanta, Georgia 30310-1495, USA
| | | | | |
Collapse
|
1582
|
Abstract
OBJECTIVE Bright light treatment is an established treatment for Seasonal Affective Disorder, but in non-seasonal depression research results have been contrasting. METHOD This study was designed as a 5-week controlled, double-blind, parallel trial in out-patients with a diagnosis (DSM-IV) of non-seasonal major depression, randomized to either active treatment (white light, 10 000 lux, 1 h daily) or placebo treatment (red light, 50 lux, 30 min daily) and concomitant treatment with sertraline in both groups. RESULTS One hundred and two patients were included in the study. Analyses showed that on all used scales the reduction in depression scores was larger in the bright light group than in the dim light group, and this reached statistical significance on all observer rating scales and on the SCL-90R self-assessment scale. The HAM-D6 was the most sensitive scale to measure improvement at endpoint. CONCLUSION The study results support the use of bright light as an adjunct treatment to antidepressants in non-seasonal depression.
Collapse
Affiliation(s)
- K Martiny
- Psychiatric Research Unit, Frederiksborg General Hospital, Hilleroed, Denmark.
| |
Collapse
|
1583
|
Bullough JD, Figueiro MG, Possidente BP, Parsons RH, Rea MS. Additivity in murine circadian phototransduction. Zoolog Sci 2005; 22:223-7. [PMID: 15738642 DOI: 10.2108/zsj.22.223] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Additivity in the circadian phototransduction system of the mouse has not been tested directly. Because of this, accurate prediction of circadian phase shifts elicited by polychromatic light stimuli cannot be derived from the results of studies using monochromatic light stimuli. This limitation also makes it impossible to deduce the relative contributions of the photoreceptive mechanisms (rods, cones and melanopsin-containing retinal ganglion cells) underlying circadian phototransduction in the mouse. Using nearly monochromatic light stimuli of different spectral composition, and combinations thereof, we demonstrated that murine circadian phototransduction exhibits additivity. Based on the locomotor activity phase shifts elicited by these stimuli, we developed the first quantitative assessment of the relative contributions of conventional and novel photoreceptive mechanisms for circadian functioning in the mouse.
Collapse
Affiliation(s)
- John D Bullough
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | | | | | | | | |
Collapse
|
1584
|
Fucci RL, Gardner J, Hanifin JP, Jasser S, Byrne B, Gerner E, Rollag M, Brainard GC. Toward optimizing lighting as a countermeasure to sleep and circadian disruption in space flight. ACTA ASTRONAUTICA 2005; 56:1017-1024. [PMID: 15838948 DOI: 10.1016/j.actaastro.2005.01.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Light is being used as a pre-launch countermeasure to circadian and sleep disruption in astronauts. The effect of light on the circadian system is readily monitored by measurement of plasma melatonin. Our group has established an action spectrum for human melatonin regulation and determined the region of 446-477 nm to be the most potent for suppressing plasma melatonin. The aim of this study was to compare the efficacy of 460 and 555 nm for suppressing melatonin using a within-subjects design. Subjects (N=12) were exposed to equal photon densities (7.18 x 10(12) photons/cm2/s) at 460 and 555 nm. Melatonin suppression was significantly stronger at 460 nm (p<0.02). An extension to the action spectrum showed that 420 nm light at 16 and 32 microW/cm2 significantly suppressed melatonin (p<0.04 and p<0.002). These studies will help optimize lighting countermeasures to circadian and sleep disruption during spaceflight.
Collapse
Affiliation(s)
- Robert L Fucci
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | | | | | |
Collapse
|
1585
|
Stiller JW, Postolache TT. Sleep-wake and Other Biological Rhythms: Functional Neuroanatomy. Clin Sports Med 2005; 24:205-35, vii. [DOI: 10.1016/j.csm.2004.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
1586
|
Li P, Temple S, Gao Y, Haimberger TJ, Hawryshyn CW, Li L. Circadian rhythms of behavioral cone sensitivity and long wavelength opsin mRNA expression: a correlation study in zebrafish. ACTA ACUST UNITED AC 2005; 208:497-504. [PMID: 15671338 DOI: 10.1242/jeb.01424] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Using a behavioral assay based on visually mediated escape responses, we measured long-wavelength-sensitive red cone (LC) sensitivities in zebrafish. In a 24 h period, the zebrafish were least sensitive to red light in the early morning and most sensitive in the late afternoon. To investigate if the fluctuation of behavioral cone sensitivity correlates with opsin gene expression, we measured LC opsin mRNA expression at different times in the day and night under different lighting conditions. Under a normal light-dark cycle, the expression of LC opsin mRNA determined by real-time RT-PCR was low in the early morning and high in the late afternoon, similar to the fluctuation of behavioral cone sensitivity. This rhythm of LC opsin mRNA expression, however, dampened out gradually in constant conditions. After 24 h of constant light (LL), the expression of LC opsin mRNA dropped to levels similar to those determined in the early morning in control animals. By contrast, when the zebrafish were kept in constant dark (DD), the expression of LC opsin mRNA increased, to levels about 30-fold higher than the expression in the early morning in control animals. This day-night fluctuation in LC opsin mRNA expression was correlated to changes in opsin density in the outer segment of cone photoreceptor cells. Microspectrophotometry (MSP) measurements found significant differences in red cone outer segment optical density with a rhythm following the behavioral sensitivity. Furthermore, dopamine modulated the circadian rhythms in expression of LC opsin mRNA. Administration of dopamine increased LC opsin mRNA expression, but only in the early morning.
Collapse
Affiliation(s)
- Ping Li
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| | | | | | | | | | | |
Collapse
|
1587
|
Regulation of prokineticin 2 expression by light and the circadian clock. BMC Neurosci 2005; 6:17. [PMID: 15762991 PMCID: PMC555564 DOI: 10.1186/1471-2202-6-17] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Accepted: 03/11/2005] [Indexed: 11/10/2022] Open
Abstract
Background The suprachiasmatic nucleus (SCN) contains the master circadian clock that regulates daily rhythms of many physiological and behavioural processes in mammals. Previously we have shown that prokineticin 2 (PK2) is a clock-controlled gene that may function as a critical SCN output molecule responsible for circadian locomotor rhythms. As light is the principal zeitgeber that entrains the circadian oscillator, and PK2 expression is responsive to nocturnal light pulses, we further investigated the effects of light on the molecular rhythm of PK2 in the SCN. In particular, we examined how PK2 responds to shifts of light/dark cycles and changes in photoperiod. We also investigated which photoreceptors are responsible for the light-induced PK2 expression in the SCN. To determine whether light requires an intact functional circadian pacemaker to regulate PK2, we examined PK2 expression in cryptochrome1,2-deficient (Cry1-/-Cry2-/-) mice that lack functional circadian clock under normal light/dark cycles and constant darkness. Results Upon abrupt shifts of the light/dark cycle, PK2 expression exhibits transients in response to phase advances but rapidly entrains to phase delays. Photoperiod studies indicate that PK2 responds differentially to changes in light period. Although the phase of PK2 expression expands as the light period increases, decreasing light period does not further condense the phase of PK2 expression. Genetic knockout studies revealed that functional melanopsin and rod-cone photoreceptive systems are required for the light-inducibility of PK2. In Cry1-/-Cry2-/- mice that lack a functional circadian clock, a low amplitude PK2 rhythm is detected under light/dark conditions, but not in constant darkness. This suggests that light can directly regulate PK2 expression in the SCN. Conclusion These data demonstrate that the molecular rhythm of PK2 in the SCN is regulated by both the circadian clock and light. PK2 is predominantly controlled by the endogenous circadian clock, while light plays a modulatory role. The Cry1-/-Cry2-/- mice studies reveal a light-driven PK2 rhythm, indicating that light can induce PK2 expression independent of the circadian oscillator. The light inducibility of PK2 suggests that in addition to its role in clock-driven rhythms of locomotor behaviour, PK2 may also participate in the photic entrainment of circadian locomotor rhythms.
Collapse
|
1588
|
Sprouse J. Pharmacological modulation of circadian rhythms: a new drug target in psychotherapeutics. Expert Opin Ther Targets 2005; 8:25-38. [PMID: 14996616 DOI: 10.1517/14728222.8.1.25] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Daily variation in an organism's physiology and behaviour is regulated by the synchrony that is achieved between the internal timing mechanisms - the circadian rhythms of the biological clock - and the prevailing environmental cues. Proper synchrony constitutes an adaptive response; improper or lost synchrony may well yield maladaptation and, in the case of humans, a psychiatric disorder. On a basic level, the circadian system is comprised of three parts: a central oscillator, its various neuronal inputs and its outputs. For all three of these parts, the dissemination of new information is moving at an unprecedented pace, and the number of molecular targets for the opportunistic pharmacologist is growing in step. Monoamines, neuropeptides, kinases - sorting through all these, much less developing one into a drug discovery programme, may be the biggest challenge. However, the potential benefits in targeting a basic flaw in a fundamental biological system may be enormous.
Collapse
Affiliation(s)
- Jeffrey Sprouse
- Pfizer Global Research & Development, Groton, CT 06340, USA.
| |
Collapse
|
1589
|
Hermann R, Poppe L, Pilbák S, Boden C, Maurer J, Weber S, Lerchl A. Predicted 3D-structure of melanopsin, the non-rod, non-cone photopigment of the mammalian circadian clock, from Djungarian hamsters (Phodopus sungorus). Neurosci Lett 2005; 376:76-80. [PMID: 15698924 DOI: 10.1016/j.neulet.2004.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 10/18/2004] [Accepted: 11/11/2004] [Indexed: 12/22/2022]
Abstract
Melanopsin is the photopigment of the retinal ganglion cells, which are involved in the synchronization of the biological clock in the suprachiasmatic nucleus (SCN) of mammals with the exogenous photoperiod. So far, no information about the three-dimensional (3D) structure of melanopsin is available. Here we report the predicted structure based on the protein-coding region of the nucleotide sequence of the gene for melanopsin, originating from isolated mRNA from the eyes of Djungarian hamsters (Phodopus sungorus). The nucleotide sequence shares the largest homologies with melanopsin of mice and rats (each 89%) and humans (84%). Based on the amino-acid sequence, and in comparison with the known structure of bovine rhodopsin, the three-dimensional melanopsin protein structure was modeled by using automated homology modeling approaches that were subsequently refined. Melanopsin consists of highly conserved seven-transmembrane domains and a long cytoplasmatic tail with multiple putative phosphorylation sites. In the binding site of the chromophore, a 11-cis-retinal is likely to be bound to lysine at position 336 as Schiff's base. The modeling results may indicate different photoisomerization within the melanopsin molecule compared with bovine rhodopsin.
Collapse
Affiliation(s)
- Ralph Hermann
- Institute of Zoology II, University of Karlsruhe, Kaiserstr. 12, D-76131 Karlsruhe, Germany
| | | | | | | | | | | | | |
Collapse
|
1590
|
Panda S, Nayak SK, Campo B, Walker JR, Hogenesch JB, Jegla T. Illumination of the melanopsin signaling pathway. Science 2005; 307:600-4. [PMID: 15681390 DOI: 10.1126/science.1105121] [Citation(s) in RCA: 321] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In mammals, a small population of intrinsically photosensitive retinal ganglion cells (ipRGCs) plays a key role in the regulation of nonvisual photic responses, such as behavioral responses to light, pineal melatonin synthesis, pupillary light reflex, and sleep latency. These ipRGCs also express melanopsin (Opn4), a putative opsin-family photopigment that has been shown to play a role in mediating these nonvisual photic responses. Melanopsin is required for the function of this inner retinal pathway, but its precise role in generating photic responses has not yet been determined. We found that expression of melanopsin in Xenopus oocytes results in light-dependent activation of membrane currents through the Galpha(q)/Galpha(11) G protein pathway, with an action spectrum closely matching that of melanopsin-expressing ipRGCs and of behavioral responses to light in mice lacking rods and cones. When coexpressed with arrestins, melanopsin could use all-trans-retinaldehyde as a chromophore, which suggests that it may function as a bireactive opsin. We also found that melanopsin could activate the cation channel TRPC3, a mammalian homolog of the Drosophila phototransduction channels TRP and TRPL. Melanopsin therefore signals more like an invertebrate opsin than like a classical vertebrate rod-and-cone opsin.
Collapse
Affiliation(s)
- Satchidananda Panda
- Genomics Institute of Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121, USA.
| | | | | | | | | | | |
Collapse
|
1591
|
Holthues H, Engel L, Spessert R, Vollrath L. Circadian gene expression patterns of melanopsin and pinopsin in the chick pineal gland. Biochem Biophys Res Commun 2005; 326:160-5. [PMID: 15567166 DOI: 10.1016/j.bbrc.2004.11.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Indexed: 11/20/2022]
Abstract
The directly light-sensitive chick pineal gland contains at least two photopigments. Pinopsin seems to mediate the acute inhibitory effect of light on melatonin synthesis, whereas melanopsin may act by phase-shifting the intrapineal circadian clock. In the present study we have investigated, by means of quantitative RT-PCR, the daily rhythm of photopigment gene expression as monitored by mRNA levels. Under a 12-h light/12-h dark cycle, the mRNA levels of both pigments were 5-fold higher in the transitional phase from light to dark than at night, both in vivo and in vitro. Under constant darkness in vivo and in vitro, the peak of pinopsin mRNA levels was attenuated, whereas that of melanopsin was not. Thus, whereas the daily rhythm of pinopsin gene expression is dually regulated by light plus the intrapineal circadian oscillator, that of melanopsin appears to depend solely on the oscillator.
Collapse
Affiliation(s)
- Heike Holthues
- Department of Anatomy, Johannes Gutenberg University, 55099 Mainz, Germany.
| | | | | | | |
Collapse
|
1592
|
Dacey DM, Liao HW, Peterson BB, Robinson FR, Smith VC, Pokorny J, Yau KW, Gamlin PD. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 2005; 433:749-54. [PMID: 15716953 DOI: 10.1038/nature03387] [Citation(s) in RCA: 851] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 01/21/2005] [Indexed: 11/09/2022]
Abstract
Human vision starts with the activation of rod photoreceptors in dim light and short (S)-, medium (M)-, and long (L)- wavelength-sensitive cone photoreceptors in daylight. Recently a parallel, non-rod, non-cone photoreceptive pathway, arising from a population of retinal ganglion cells, was discovered in nocturnal rodents. These ganglion cells express the putative photopigment melanopsin and by signalling gross changes in light intensity serve the subconscious, 'non-image-forming' functions of circadian photoentrainment and pupil constriction. Here we show an anatomically distinct population of 'giant', melanopsin-expressing ganglion cells in the primate retina that, in addition to being intrinsically photosensitive, are strongly activated by rods and cones, and display a rare, S-Off, (L + M)-On type of colour-opponent receptive field. The intrinsic, rod and (L + M) cone-derived light responses combine in these giant cells to signal irradiance over the full dynamic range of human vision. In accordance with cone-based colour opponency, the giant cells project to the lateral geniculate nucleus, the thalamic relay to primary visual cortex. Thus, in the diurnal trichromatic primate, 'non-image-forming' and conventional 'image-forming' retinal pathways are merged, and the melanopsin-based signal might contribute to conscious visual perception.
Collapse
Affiliation(s)
- Dennis M Dacey
- University of Washington, Dept of Biological Structure and the Washington National Primate Research Center, Seattle, Washington 98195-7420, USA.
| | | | | | | | | | | | | | | |
Collapse
|
1593
|
Melyan Z, Tarttelin EE, Bellingham J, Lucas RJ, Hankins MW. Addition of human melanopsin renders mammalian cells photoresponsive. Nature 2005; 433:741-5. [PMID: 15674244 DOI: 10.1038/nature03344] [Citation(s) in RCA: 273] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Accepted: 01/12/2005] [Indexed: 11/08/2022]
Abstract
A small number of mammalian retinal ganglion cells act as photoreceptors for regulating certain non-image forming photoresponses. These intrinsically photosensitive retinal ganglion cells express the putative photopigment melanopsin. Ablation of the melanopsin gene renders these cells insensitive to light; however, the precise role of melanopsin in supporting cellular photosensitivity is unconfirmed. Here we show that heterologous expression of human melanopsin in a mouse paraneuronal cell line (Neuro-2a) is sufficient to render these cells photoreceptive. Under such conditions, melanopsin acts as a sensory photopigment, coupled to a native ion channel via a G-protein signalling cascade, to drive physiological light detection. The melanopsin photoresponse relies on the presence of cis-isoforms of retinaldehyde and is selectively sensitive to short-wavelength light. We also present evidence to show that melanopsin functions as a bistable pigment in this system, having an intrinsic photoisomerase regeneration function that is chromatically shifted to longer wavelengths.
Collapse
Affiliation(s)
- Z Melyan
- Department of Visual Neuroscience, Division of Neuroscience and Psychological Medicine, Imperial College London, Charing Cross Hospital Campus, Fulham Palace Road, London W6 8RF, UK
| | | | | | | | | |
Collapse
|
1594
|
Qiu X, Kumbalasiri T, Carlson SM, Wong KY, Krishna V, Provencio I, Berson DM. Induction of photosensitivity by heterologous expression of melanopsin. Nature 2005; 433:745-9. [PMID: 15674243 DOI: 10.1038/nature03345] [Citation(s) in RCA: 297] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Accepted: 01/10/2005] [Indexed: 11/09/2022]
Abstract
Melanopsin has been proposed to be the photopigment of the intrinsically photosensitive retinal ganglion cells (ipRGCs); these photoreceptors of the mammalian eye drive circadian and pupillary adjustments through direct projections to the brain. Their action spectrum (lambda(max) approximately 480 nm) implicates an opsin and melanopsin is the only opsin known to exist in these cells. Melanopsin is required for ipRGC photosensitivity and for behavioural photoresponses that survive disrupted rod and cone function. Heterologously expressed melanopsin apparently binds retinaldehyde and mediates photic activation of G proteins. However, its amino-acid sequence differs from vertebrate photosensory opsins and some have suggested that melanopsin may be a photoisomerase, providing retinoid chromophore to an unidentified opsin. To determine whether melanopsin is a functional sensory photopigment, here we transiently expressed it in HEK293 cells that stably expressed TRPC3 channels. Light triggered a membrane depolarization in these cells and increased intracellular calcium. The light response resembled that of ipRGCs, with almost identical spectral sensitivity (lambda(max) approximately 479 nm). The phototransduction pathway included Gq or a related G protein, phospholipase C and TRPC3 channels. We conclude that mammalian melanopsin is a functional sensory photopigment, that it is the photopigment of ganglion-cell photoreceptors, and that these photoreceptors may use an invertebrate-like phototransduction cascade.
Collapse
Affiliation(s)
- Xudong Qiu
- Department of Neuroscience, Box 1953, Brown University, Providence, Rhode Island 02912-1953, USA
| | | | | | | | | | | | | |
Collapse
|
1595
|
Farnell YZ, West JR, Chen WJA, Allen GC, Earnest DJ. Developmental alcohol exposure alters light-induced phase shifts of the circadian activity rhythm in rats. Alcohol Clin Exp Res 2005; 28:1020-7. [PMID: 15252288 PMCID: PMC2695982 DOI: 10.1097/01.alc.0000130807.21020.1b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Developmental alcohol (EtOH) exposure produces long-term changes in the photic regulation of rat circadian behavior. Because entrainment of circadian rhythms to 24-hr light/dark cycles is mediated by phase shifting or resetting the clock mechanism, we examined whether developmental EtOH exposure also alters the phase-shifting effects of light pulses on the rat activity rhythm. METHODS Artificially reared Sprague-Dawley rat pups were exposed to EtOH (4.5 g/kg/day) or an isocaloric milk formula (gastrostomy control; GC) on postnatal days 4 to 9. At 2 months of age, rats from the EtOH, GC, and suckle control groups were housed individually, and wheel-running behavior was continuously recorded first in a 12-hr light/12-hr dark photoperiod for 10 to 14 days and thereafter in constant darkness (DD). Once the activity rhythm was observed to stably free-run in DD for at least 14 days, animals were exposed to a 15-min light pulse at either 2 or 10 hr after the onset of activity [i.e., circadian time (CT) 14 or 22, respectively], because light exposure at these times induces maximal phase delays or advances of the rat activity rhythm. RESULTS EtOH-treated rats were distinguished by robust increases in their phase-shifting responses to light. In the suckle control and GC groups, light pulses shifted the activity rhythm as expected, inducing phase delays of approximately 2 hr at CT 14 and advances of similar amplitude at CT 22. In contrast, the same light stimulus produced phase delays at CT 14 and advances at CT 22 of longer than 3 hr in EtOH-treated rats. The mean phase delay at CT 14 and advance at CT 22 in EtOH rats were significantly greater (p < 0.05) than the light-induced shifts observed in control animals. CONCLUSIONS The data indicate that developmental EtOH exposure alters the phase-shifting responses of the rat activity rhythm to light. This finding, coupled with changes in the circadian period and light/dark entrainment observed in EtOH-treated rats, suggests that developmental EtOH exposure may permanently alter the clock mechanism in the suprachiasmatic nucleus and its regulation of circadian behavior.
Collapse
Affiliation(s)
- Yuhua Z Farnell
- Department of Human Anatomy and Medical Neurobiology, Texas A&M University System Health Science Center, College of Medicine, College Station, Texas 77843-1114, USA
| | | | | | | | | |
Collapse
|
1596
|
Shepard JW, Buysse DJ, Chesson AL, Dement WC, Goldberg R, Guilleminault C, Harris CD, Iber C, Mignot E, Mitler MM, Moore KE, Phillips BA, Quan SF, Rosenberg RS, Roth T, Schmidt HS, Silber MH, Walsh JK, White DP. History of the development of sleep medicine in the United States. J Clin Sleep Med 2005; 1:61-82. [PMID: 17561617 PMCID: PMC2413168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Sleep Medicine has only recently been recognized as a specialty of medicine. Its development is based on an increasing amount of knowledge concerning the physiology of sleep, circadian biology and the pathophysiology of sleep disorders. This review chronicles the major advances in sleep science over the past 70 years and the development of the primary organizations responsible for the emergence of Sleep Medicine as a specialty, sleep disorders as a public health concern and sleep science as an important area of research.
Collapse
Affiliation(s)
- John W Shepard
- Sleep Disorders Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1597
|
Isoldi MC, Rollag MD, Castrucci AMDL, Provencio I. Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin. Proc Natl Acad Sci U S A 2005; 102:1217-21. [PMID: 15653769 PMCID: PMC545850 DOI: 10.1073/pnas.0409252102] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Melanopsin is the photopigment that confers light sensitivity on intrinsically photosensitive retinal ganglion cells. Mammalian intrinsically photosensitive retinal ganglion cells are involved in the photic synchronization of circadian rhythms to the day-night cycle. Here, we report molecular components of melanopsin signaling using the cultured Xenopus dermal melanophore system. Photo-activated melanopsin is shown to initiate a phosphoinositide signaling pathway similar to that found in invertebrate photo-transduction. In melanophores, light increases the intracellular level of inositol trisphosphate and causes the dispersion of melanosomes. Inhibition of phospholipase C and protein kinase C and chelation of intracellular calcium block the effect of light on melanophores. At least four proteins, 43, 74, 90, and 134 kDa, are phosphorylated by protein kinase C upon light stimulation. This provides evidence of an invertebrate-like light-activated signaling cascade within vertebrate cells.
Collapse
Affiliation(s)
- Mauro Cesar Isoldi
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
1598
|
Yun AJ, Bazar KA, Gerber A, Lee PY, Daniel SM. The dynamic range of biologic functions and variation of many environmental cues may be declining in the modern age: implications for diseases and therapeutics. Med Hypotheses 2005; 65:173-8. [PMID: 15893136 DOI: 10.1016/j.mehy.2004.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2004] [Accepted: 11/08/2004] [Indexed: 12/28/2022]
Abstract
We hypothesize that declining dynamic range and variation of environmental cues may contribute to health dysfunctions, and that judicious expansion of biologic dynamic ranges may be beneficial. Three disparate examples involving the endocrine, autonomic, and musculoskeletal systems are discussed. Daytime sheltering, optical shading, and nighttime use of artificial light may reduce circadian luminal variation. The resulting melatonin alterations may contribute to systemic dysfunctions. Loss of temporal variation of other hormones may contribute to biologic dysfunctions, especially those involving the hypothalamic-pituitary axis. Reduced variation of physical exertion, environmental stressors, and thermal gradients that characterize modern lifestyles may reduce the autonomic dynamic range resulting in lowered heart rate variability and a myriad of systemic dysfunctions. The health benefits of activities such as exercise, meditation, acupuncture, coitus, and laughter may operate through increasing autonomic variability. Reduced physical exertion also accounts for declining dynamic range of musculoskeletal function. The resulting muscle atrophy, fat infiltration, and sarcomere shortening may not only have deleterious local effects, but may also be involved in systemic metabolic dysfunctions such as insulin resistance. The extent to which our endogenous systems rely on environmental variation for self-tuning and the impact that under-utilization of compensatory mechanisms has on biologic function are not well understood. Modern therapeutic approaches generally result in reversion to the mean of physiologic functions and may buffer against variation. For example, beta-blockers are given to reduce adrenergic excess, insulin to treat insulin insufficiency, serotonin-reuptake inhibitors for depression, and refractive lenses for myopia. By undermining the demand for native compensatory functions, such therapeutic strategies may actually impair future ability to respond to biologic disequilibria. Generalizing from these observations, we anticipate benefits of therapeutic and lifestyle approaches that expand, rather than reduce, the dynamic range of many biologic experiences.
Collapse
Affiliation(s)
- Anthony J Yun
- Department of Radiology, Stanford University, 470 University Avenue, Palo Alto, CA 94301, USA.
| | | | | | | | | |
Collapse
|
1599
|
Abstract
Cryptochromes are flavin- and folate-containing blue-light photoreceptors with a high degree of similarity to DNA photolyase, which repairs ultraviolet-induced DNA damage using blue light to initiate the repair reaction. Cryptochromes play essential roles in the maintenance of circadian rhythms in mice and Drosophila, and genetic data indicate that cryptochromes function as circadian photoreceptors in these and other animals. However, the photochemical reactions carried out by cryptochromes are not known at present.
Collapse
Affiliation(s)
- Carrie L Partch
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
1600
|
Chaurasia SS, Rollag MD, Jiang G, Hayes WP, Haque R, Natesan A, Zatz M, Tosini G, Liu C, Korf HW, Iuvone PM, Provencio I. Molecular cloning, localization and circadian expression of chicken melanopsin (Opn4): differential regulation of expression in pineal and retinal cell types. J Neurochem 2005; 92:158-70. [PMID: 15606905 DOI: 10.1111/j.1471-4159.2004.02874.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The avian retina and pineal gland contain autonomous circadian oscillators and photo-entrainment pathways, but the photopigment(s) that mediate entrainment have not been definitively identified. Melanopsin (Opn4) is a novel opsin involved in entrainment of circadian rhythms in mammals. Here, we report the cDNA cloning of chicken melanopsin and show its expression in retina, brain and pineal gland. Like the melanopsins identified in amphibians and mammals, chicken melanopsin is more similar to the invertebrate retinaldehyde-based photopigments than the retinaldehyde-based photopigments typically found in vertebrates. In retina, melanopsin mRNA is expressed in cells of all retinal layers. In pineal gland, expression was strong throughout the parenchyma of the gland. In brain, expression was observed in a few discrete nuclei, including the lateral septal area and medial preoptic nucleus. The retina and pineal gland showed distinct diurnal expression patterns. In pineal gland, melanopsin mRNA levels were highest at night at Zeitgeber time (ZT) 16. In contrast, transcript levels in the whole retina reached their highest levels in the early morning (ZT 0-4). Further analysis of melanopsin mRNA expression in retinal layers isolated by laser capture microdissection revealed different patterns in different layers. There was diurnal expression in all retinal layers except the ganglion cell layer, where heavy expression was localized to a small number of cells. Expression of melanopsin mRNA peaked during the daytime in the retinal pigment epithelium and inner nuclear layer but, like in the pineal, at night in the photoreceptors. Localization and regulation of melanopsin mRNA in the retina and pineal gland is consistent with the hypothesis that this novel photopigment plays a role in photic regulation of circadian function in these tissues.
Collapse
Affiliation(s)
- S S Chaurasia
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|