1601
|
Schwarzenbach H, da Silva AM, Calin G, Pantel K. Data Normalization Strategies for MicroRNA Quantification. Clin Chem 2015; 61:1333-42. [PMID: 26408530 DOI: 10.1373/clinchem.2015.239459] [Citation(s) in RCA: 360] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/25/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Different technologies, such as quantitative real-time PCR or microarrays, have been developed to measure microRNA (miRNA) expression levels. Quantification of miRNA transcripts implicates data normalization using endogenous and exogenous reference genes for data correction. However, there is no consensus about an optimal normalization strategy. The choice of a reference gene remains problematic and can have a serious impact on the actual available transcript levels and, consequently, on the biological interpretation of data. CONTENT In this review article we discuss the reliability of the use of small RNAs, commonly reported in the literature as miRNA expression normalizers, and compare different strategies used for data normalization. SUMMARY A workflow strategy is proposed for normalization of miRNA expression data in an attempt to provide a basis for the establishment of a global standard procedure that will allow comparison across studies.
Collapse
Affiliation(s)
- Heidi Schwarzenbach
- Department of Tumour Biology, Center of Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreia Machado da Silva
- Department of Experimental Therapeutics and The Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX; Instituto de Investigação em Saúde, Universidade do Porto, Porto, Portugal; INEB, Institute of Biomedical Engineering, Universidade do Porto, Porto, Portugal
| | - George Calin
- Department of Experimental Therapeutics and The Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Klaus Pantel
- Department of Tumour Biology, Center of Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany;
| |
Collapse
|
1602
|
Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J Control Release 2015; 220:727-37. [PMID: 26390807 DOI: 10.1016/j.jconrel.2015.09.031] [Citation(s) in RCA: 470] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/09/2015] [Accepted: 09/17/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Extracellular vesicles (EVs) are naturally occurring membrane particles that mediate intercellular communication by delivering molecular information between cells. In this study, we investigated the effectiveness of two different populations of EVs (microvesicle- and exosome-enriched) as carriers of Paclitaxel to autologous prostate cancer cells. METHODS EVs were isolated from LNCaP- and PC-3 prostate cancer cell cultures using differential centrifugation and characterized by electron microscopy, nanoparticle tracking analysis, and Western blot. The uptake of microvesicles and exosomes by the autologous prostate cancer cells was assessed by flow cytometry and confocal microscopy. The EVs were loaded with Paclitaxel and the effectiveness of EV-mediated drug delivery was assessed with viability assays. The distribution of EVs and EV-delivered Paclitaxel in cells was inspected by confocal microscopy. RESULTS Our main finding was that the loading of Paclitaxel to autologous prostate cancer cell-derived EVs increased its cytotoxic effect. This capacity was independent of the EV population and the cell line tested. Although the EVs without the drug increased cancer cell viability, the net effect of enhanced cytotoxicity remained. Both EV populations delivered Paclitaxel to the recipient cells through endocytosis, leading to the release of the drug from within the cells. The removal of EV surface proteins did not affect exosomes, while the drug delivery mediated by microvesicles was partially inhibited. CONCLUSIONS Cancer cell-derived EVs can be used as effective carriers of Paclitaxel to their parental cells, bringing the drug into the cells through an endocytic pathway and increasing its cytotoxicity. However, due to the increased cell viability, the use of cancer cell-derived EVs must be further investigated before any clinical applications can be designed.
Collapse
|
1603
|
Macrì S, Pavesi E, Crescitelli R, Aspesi A, Vizziello C, Botto C, Corti P, Quarello P, Notari P, Ramenghi U, Ellis SR, Dianzani I. Immunophenotypic Profiling of Erythroid Progenitor-Derived Extracellular Vesicles in Diamond-Blackfan Anaemia: A New Diagnostic Strategy. PLoS One 2015; 10:e0138200. [PMID: 26394034 PMCID: PMC4578940 DOI: 10.1371/journal.pone.0138200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 08/27/2015] [Indexed: 01/08/2023] Open
Abstract
Diamond-Blackfan Anaemia (DBA) is a rare inherited anaemia caused by heterozygous mutations in one of 13 ribosomal protein genes. Erythroid progenitors (BFU-E and CFU-E) in bone marrow (BM) show a proapoptotic phenotype. Suspicion of DBA is reached after exclusion of other forms of BM failure syndromes. To improve DBA diagnosis, which is confirmed by mutation analysis, we tested a new approach based on the study of extracellular vesicles (EVs) isolated from plasma by differential centrifugations and analysed by flow cytometry. We chose CD34, CD71 and CD235a markers to study erythroid EVs. We characterised the EVs immunophentoypic profiles of 13 DBA patients, 22 healthy controls and 16 patients with other haematological diseases. Among the three EVs clusters we found, only the CD34+/CD71low population showed statistically significant differences between DBA patients and controls (p< 0.05). The absence of this cluster is in agreement with the low levels of BFU-E found in DBA patients. The assessment of ROC curves demonstrated the potential diagnostic value of this population. We suggest that this assay may be useful to improve DBA diagnosis as a quicker and less invasive alternative to BM BFU-E culture analysis.
Collapse
Affiliation(s)
- Serena Macrì
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Elisa Pavesi
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | | | - Anna Aspesi
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Claudia Vizziello
- Chemical Clinical Analysis laboratory, SCDU, Azienda Universitaria Ospedaliera Maggiore della Carità, Novara, Italy
| | - Carlotta Botto
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Paola Corti
- Department of Pediatric Hematology, San Gerardo’s Hospital, Monza, Italy
| | - Paola Quarello
- Pediatric Onco-Hematology, Regina Margherita Children’s Hospital, Turin, Italy
| | - Patrizia Notari
- Chemical Clinical Analysis laboratory, SCDU, Azienda Universitaria Ospedaliera Maggiore della Carità, Novara, Italy
| | - Ugo Ramenghi
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Steven Robert Ellis
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Irma Dianzani
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
- * E-mail:
| |
Collapse
|
1604
|
Makarova JA, Shkurnikov MU, Turchinovich AA, Tonevitsky AG, Grigoriev AI. Circulating microRNAs. BIOCHEMISTRY (MOSCOW) 2015; 80:1117-26. [DOI: 10.1134/s0006297915090035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
1605
|
Doeppner TR, Herz J, Görgens A, Schlechter J, Ludwig AK, Radtke S, de Miroschedji K, Horn PA, Giebel B, Hermann DM. Extracellular Vesicles Improve Post-Stroke Neuroregeneration and Prevent Postischemic Immunosuppression. Stem Cells Transl Med 2015; 4:1131-43. [PMID: 26339036 DOI: 10.5966/sctm.2015-0078] [Citation(s) in RCA: 579] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/24/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Although the initial concepts of stem cell therapy aimed at replacing lost tissue, more recent evidence has suggested that stem and progenitor cells alike promote postischemic neurological recovery by secreted factors that restore the injured brain's capacity to reshape. Specifically, extracellular vesicles (EVs) derived from stem cells such as exosomes have recently been suggested to mediate restorative stem cell effects. In order to define whether EVs indeed improve postischemic neurological impairment and brain remodeling, we systematically compared the effects of mesenchymal stem cell (MSC)-derived EVs (MSC-EVs) with MSCs that were i.v. delivered to mice on days 1, 3, and 5 (MSC-EVs) or on day 1 (MSCs) after focal cerebral ischemia in C57BL6 mice. For as long as 28 days after stroke, motor coordination deficits, histological brain injury, immune responses in the peripheral blood and brain, and cerebral angiogenesis and neurogenesis were analyzed. Improved neurological impairment and long-term neuroprotection associated with enhanced angioneurogenesis were noticed in stroke mice receiving EVs from two different bone marrow-derived MSC lineages. MSC-EV administration closely resembled responses to MSCs and persisted throughout the observation period. Although cerebral immune cell infiltration was not affected by MSC-EVs, postischemic immunosuppression (i.e., B-cell, natural killer cell, and T-cell lymphopenia) was attenuated in the peripheral blood at 6 days after ischemia, providing an appropriate external milieu for successful brain remodeling. Because MSC-EVs have recently been shown to be apparently safe in humans, the present study provides clinically relevant evidence warranting rapid proof-of-concept studies in stroke patients. SIGNIFICANCE Transplantation of mesenchymal stem cells (MSCs) offers an interesting adjuvant approach next to thrombolysis for treatment of ischemic stroke. However, MSCs are not integrated into residing neural networks but act indirectly, inducing neuroprotection and promoting neuroregeneration. Although the mechanisms by which MSCs act are still elusive, recent evidence has suggested that extracellular vesicles (EVs) might be responsible for MSC-induced effects under physiological and pathological conditions. The present study has demonstrated that EVs are not inferior to MSCs in a rodent stroke model. EVs induce long-term neuroprotection, promote neuroregeneration and neurological recovery, and modulate peripheral post-stroke immune responses. Also, because EVs are well-tolerated in humans, as previously reported, the administration of EVs under clinical settings might set the path for a novel and innovative therapeutic stroke concept without the putative side effects attached to stem cell transplantation.
Collapse
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, Institute for Transfusion Medicine, and Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Josephine Herz
- Department of Neurology, Institute for Transfusion Medicine, and Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - André Görgens
- Department of Neurology, Institute for Transfusion Medicine, and Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jana Schlechter
- Department of Neurology, Institute for Transfusion Medicine, and Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna-Kristin Ludwig
- Department of Neurology, Institute for Transfusion Medicine, and Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Radtke
- Department of Neurology, Institute for Transfusion Medicine, and Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kyra de Miroschedji
- Department of Neurology, Institute for Transfusion Medicine, and Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Peter A Horn
- Department of Neurology, Institute for Transfusion Medicine, and Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Department of Neurology, Institute for Transfusion Medicine, and Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, Institute for Transfusion Medicine, and Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
1606
|
Laurent LC, Abdel-Mageed AB, Adelson PD, Arango J, Balaj L, Breakefield X, Carlson E, Carter BS, Majem B, Chen CC, Cocucci E, Danielson K, Courtright A, Das S, Abd Elmageed ZY, Enderle D, Ezrin A, Ferrer M, Freedman J, Galas D, Gandhi R, Huentelman MJ, Van Keuren-Jensen K, Kalani Y, Kim Y, Krichevsky AM, Lai C, Lal-Nag M, Laurent CD, Leonardo T, Li F, Malenica I, Mondal D, Nejad P, Patel T, Raffai RL, Rubio R, Skog J, Spetzler R, Sun J, Tanriverdi K, Vickers K, Wang L, Wang Y, Wei Z, Weiner HL, Wong D, Yan IK, Yeri A, Gould S. Meeting report: discussions and preliminary findings on extracellular RNA measurement methods from laboratories in the NIH Extracellular RNA Communication Consortium. J Extracell Vesicles 2015; 4:26533. [PMID: 26320937 PMCID: PMC4553263 DOI: 10.3402/jev.v4.26533] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 04/17/2015] [Accepted: 05/03/2015] [Indexed: 01/14/2023] Open
Abstract
Extracellular RNAs (exRNAs) have been identified in all tested biofluids and have been associated with a variety of extracellular vesicles, ribonucleoprotein complexes and lipoprotein complexes. Much of the interest in exRNAs lies in the fact that they may serve as signalling molecules between cells, their potential to serve as biomarkers for prediction and diagnosis of disease and the possibility that exRNAs or the extracellular particles that carry them might be used for therapeutic purposes. Among the most significant bottlenecks to progress in this field is the lack of robust and standardized methods for collection and processing of biofluids, separation of different types of exRNA-containing particles and isolation and analysis of exRNAs. The Sample and Assay Standards Working Group of the Extracellular RNA Communication Consortium is a group of laboratories funded by the U.S. National Institutes of Health to develop such methods. In our first joint endeavour, we held a series of conference calls and in-person meetings to survey the methods used among our members, placed them in the context of the current literature and used our findings to identify areas in which the identification of robust methodologies would promote rapid advancements in the exRNA field.
Collapse
Affiliation(s)
- Louise C Laurent
- Division of Maternal Fetal Medicine, Department of Reproductive Medicine, University of California San Diego, San Diego, CA, USA.,Sanford Consortium for Regenerative Medicine, San Diego, CA, USA;
| | - Asim B Abdel-Mageed
- Department of Urology, Tulane University, School of Medicine, New Orleans, LA, USA
| | | | | | - Leonora Balaj
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.,Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Xandra Breakefield
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.,Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth Carlson
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Bob S Carter
- Center for Theoretical and Applied Neuro-Oncology, Division of Neurosurgery, University of California San Diego, San Diego, CA, USA
| | - Blanca Majem
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Clark C Chen
- Center for Theoretical and Applied Neuro-Oncology, Division of Neurosurgery, University of California San Diego, San Diego, CA, USA
| | - Emanuele Cocucci
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kirsty Danielson
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Amanda Courtright
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Saumya Das
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD, USA
| | - Jane Freedman
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - David Galas
- Pacific Northwest Diabetes Research Institute, Seattle, WA, USA.,Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Roopali Gandhi
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Yong Kim
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charles Lai
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.,Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Madhu Lal-Nag
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD, USA
| | - Clara D Laurent
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Trevor Leonardo
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Feng Li
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Ivana Malenica
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Debasis Mondal
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Parham Nejad
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic Florida, Jacksonville, FL, USA.,Department of Cancer Biology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Robert L Raffai
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA.,Department of Veteran's Affairs, San Francisco, CA, USA
| | - Renee Rubio
- Center for Cancer Computational Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | | | | | - Jie Sun
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Kahraman Tanriverdi
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kasey Vickers
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Liang Wang
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yaoyu Wang
- Center for Cancer Computational Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Zhiyun Wei
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Howard L Weiner
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David Wong
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Irene K Yan
- Department of Cancer Biology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Ashish Yeri
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Stephen Gould
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
1607
|
Sitar S, Kejžar A, Pahovnik D, Kogej K, Tušek-Žnidarič M, Lenassi M, Žagar E. Size characterization and quantification of exosomes by asymmetrical-flow field-flow fractionation. Anal Chem 2015; 87:9225-33. [PMID: 26291637 DOI: 10.1021/acs.analchem.5b01636] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the past few years extracellular vesicles called exosomes have gained huge interest of scientific community since they show a great potential for human diagnostic and therapeutic applications. However, an ongoing challenge is accurate size characterization and quantification of exosomes because of the lack of reliable characterization techniques. In this work, the emphasis was focused on a method development to size-separate, characterize, and quantify small amounts of exosomes by asymmetrical-flow field-flow fractionation (AF4) technique coupled to a multidetection system (UV and MALS). Batch DLS (dynamic light-scattering) and NTA (nanoparticle tracking analysis) analyses of unfractionated exosomes were also conducted to evaluate their shape and internal structure, as well as their number density. The results show significant influence of cross-flow conditions and channel thickness on fractionation quality of exosomes, whereas the focusing time has less impact. The AF4/UV-MALS and DLS results display the presence of two particles subpopulations, that is, the larger exosomes and the smaller vesicle-like particles, which coeluted in AF4 together with impurities in early eluting peak. Compared to DLS and AF4-MALS results, NTA somewhat overestimates the size and the number density for larger exosome population, but it discriminates the smaller particle population.
Collapse
Affiliation(s)
- Simona Sitar
- National Institute of Chemistry , Laboratory for Polymer Chemistry and Technology, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Anja Kejžar
- University of Ljubljana , Faculty of Medicine, Institute of Biochemistry, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | - David Pahovnik
- National Institute of Chemistry , Laboratory for Polymer Chemistry and Technology, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Ksenija Kogej
- University of Ljubljana , Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, Večna pot 113, 1000 Ljubljana, Slovenia
| | | | - Metka Lenassi
- University of Ljubljana , Faculty of Medicine, Institute of Biochemistry, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | - Ema Žagar
- National Institute of Chemistry , Laboratory for Polymer Chemistry and Technology, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
1608
|
|
1609
|
Shin H, Han C, Labuz JM, Kim J, Kim J, Cho S, Gho YS, Takayama S, Park J. High-yield isolation of extracellular vesicles using aqueous two-phase system. Sci Rep 2015; 5:13103. [PMID: 26271727 PMCID: PMC4536486 DOI: 10.1038/srep13103] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/13/2015] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) such as exosomes and microvesicles released from cells are potential biomarkers for blood-based diagnostic applications. To exploit EVs as diagnostic biomarkers, an effective pre-analytical process is necessary. However, recent studies performed with blood-borne EVs have been hindered by the lack of effective purification strategies. In this study, an efficient EV isolation method was developed by using polyethylene glycol/dextran aqueous two phase system (ATPS). This method provides high EV recovery efficiency (~70%) in a short time (~15 min). Consequently, it can significantly increase the diagnostic applicability of EVs.
Collapse
Affiliation(s)
- Hyunwoo Shin
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 790-784, Republic of Korea
| | - Chungmin Han
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 790-784, Republic of Korea
| | - Joseph M. Labuz
- Department of Biomedical Engineering, College of Engineering, Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd, Ann Arbor, USA
| | - Jiyoon Kim
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 790-784, Republic of Korea
| | - Jongmin Kim
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 790-784, Republic of Korea
| | - Siwoo Cho
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 790-784, Republic of Korea
| | - Yong Song Gho
- Department of Life Sciences, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 790-784, Republic of Korea
| | - Shuichi Takayama
- Department of Biomedical Engineering, College of Engineering, Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd, Ann Arbor, USA
- Macromolecular Science and Engineering Center, College of Engineering, Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd, Ann Arbor, USA
| | - Jaesung Park
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 790-784, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 790-784, Republic of Korea
| |
Collapse
|
1610
|
Extracellular Vesicles from MSC Modulate the Immune Response to Renal Allografts in a MHC Disparate Rat Model. Stem Cells Int 2015; 2015:486141. [PMID: 26351463 PMCID: PMC4550760 DOI: 10.1155/2015/486141] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/02/2015] [Indexed: 12/13/2022] Open
Abstract
Application of mesenchymal stromal cells (MSC) has been proposed for solid organ transplantation based on their potent immunomodulatory effects. Since side effects from the injection of large cells cannot be excluded, the hypothesis rises that extracellular vesicles (EV) may cause immunomodulatory effects comparable to MSC without additional side effects. We used MSC-derived EV in a rat renal transplant model for acute rejection. We analysed peripheral blood leukocytes (PBL), kidney function, graft infiltrating cells, cytokines in the graft, and alloantibody development in animals without (allo) and with EV application (allo EV). There was no difference in kidney function and in the PBL subpopulation including Tregs between allo and allo EV. In the grafts T- and B-cell numbers were significantly higher and NK-cells lower in the allo EV kidneys compared to allo. TNF-α transcription was lower in allo EV grafts compared to allo; there was no difference regarding IL-10 and in the development of alloantibodies. In conclusion, the different cell infiltrates and cytokine transcription suggest distinct immunomodulatory properties of EV in allotransplantation. While the increased T- and B-cells in the allo EV grafts may represent a missing or negative effect on the adaptive immune system, EV seem to influence the innate immune system in a contrary fashion.
Collapse
|
1611
|
Giusti I, Di Francesco M, Cantone L, D'Ascenzo S, Bollati V, Carta G, Dolo V. Time-dependent release of extracellular vesicle subpopulations in tumor CABA I cells. Oncol Rep 2015; 34:2752-9. [PMID: 26323210 DOI: 10.3892/or.2015.4199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/06/2015] [Indexed: 11/05/2022] Open
Abstract
Investigations into extracellular vesicles (EVs) have significantly increased since their role in physiological and pathological processes has become more clearly understood. Furthermore, it has become increasingly clear that several subpopulations of EVs exist, such as exosomes (EXOs) and microvesicles (MVs). Various methods and techniques used to identify and isolate the specific EVs subpopulations exist. However, these methods should be further elucidated. A deep understanding of the different factors that affect the EVs release may therefore be useful for the standardization of protocols and to establish guidelines for a more adequate analysis and correct inter‑laboratory comparison. In the present study, we investigated whether composition and molecular features of EVs altered over time following a trigger stimulus. Starved CABA I cells were stimulated with FBS and conditioned medium was collected after different time intervals (30 min and 4, 8 and 18 h). The dynamic of EVs release was time-dependent, as shown by the results of scanning electron microscopy. Additionally, the time elapsed from the stimulus affected the size distribution (as highlighted by transmission electron microscopy and NanoSight assay), amount (in terms of the number of particles and protein amount) and molecular composition (CD63, HLA, Ago-2, gelatinases, and plasminogen activators) suggesting that, different EVs subpopulations were released at different time intervals following cell stimulation. Collectively, the results suggested that, parameters useful to standardize procedures for EVs isolation, including stimulation time should be considered.
Collapse
Affiliation(s)
- Ilaria Giusti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marianna Di Francesco
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Laura Cantone
- Department of Clinical Sciences and Community Health, Molecular Epidemiology and Environmental Epigenetics Laboratory, Università degli Studi di Milano, Milan, Italy
| | - Sandra D'Ascenzo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Valentina Bollati
- Department of Clinical Sciences and Community Health, Molecular Epidemiology and Environmental Epigenetics Laboratory, Università degli Studi di Milano, Milan, Italy
| | - Gaspare Carta
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
1612
|
Muth DC, McAlexander MA, Ostrenga LJ, Pate NM, Izzi JM, Adams RJ, Pate KAM, Beck SE, Karim BO, Witwer KW. Potential role of cervicovaginal extracellular particles in diagnosis of endometriosis. BMC Vet Res 2015; 11:187. [PMID: 26253321 PMCID: PMC4529722 DOI: 10.1186/s12917-015-0513-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/28/2015] [Indexed: 01/11/2023] Open
Abstract
Background Macaques are an excellent model for many human diseases, including reproductive diseases such as endometriosis. A long-recognized need for early biomarkers of endometriosis has not yet resulted in consensus. While biomarker studies have examined many bodily fluids and targets, cervicovaginal secretions have been relatively under-investigated. Extracellular vesicles (EVs, including exosomes and microvesicles) are found in every biofluid examined, carry cargo including proteins and RNA, and may participate in intercellular signaling. Little is known about EVs in the cervicovaginal compartment, including the effects of reproductive tract disease on quantity and quality of EVs. Case presentation In September 2014, a 9-year-old rhesus macaque was diagnosed with endometriosis at The Johns Hopkins University School of Medicine. Ultrasound-guided fine needle aspiration of a cyst and subsequent laparotomy confirmed diagnosis. The animal was sent to necropsy following euthanasia for humane reasons. Perimortem vaginal swabs and cervicovaginal lavages were obtained. Using a combination of methods, including ultracentrifugation and NanoSight visualization technology, approximate numbers of EVs from each sample were calculated and compared to populations of EVs from other, reproductively normal macaques. Fewer EVs were recovered from the endometriosis samples as compared with those from reproductively healthy individuals. Conclusion To our knowledge, this is the first examination of EVs in primate cervicovaginal secretions, including those of a macaque with endometriosis. This case study suggests that additional research is justified to determine whether quantification of EVs—or their molecular cargo—in cervicovaginal lavage and vaginal swabs may provide a novel, relatively non-invasive diagnostic for primate endometrial disease or other reproductive tract diseases.
Collapse
Affiliation(s)
- Dillon C Muth
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Melissa A McAlexander
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Lauren J Ostrenga
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Nathan M Pate
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Jessica M Izzi
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Robert J Adams
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Kelly A Metcalf Pate
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Sarah E Beck
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Baktiar O Karim
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
1613
|
Erdbrügger U, Le TH. Extracellular Vesicles in Renal Diseases: More than Novel Biomarkers? J Am Soc Nephrol 2015; 27:12-26. [PMID: 26251351 DOI: 10.1681/asn.2015010074] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles from the urine and circulation have gained significant interest as potential diagnostic biomarkers in renal diseases. Urinary extracellular vesicles contain proteins from all sections of the nephron, whereas most studied circulating extracellular vesicles are derived from platelets, immune cells, and the endothelium. In addition to their diagnostic role as markers of kidney and vascular damage, extracellular vesicles may have functional significance in renal health and disease by facilitating communication between cells and protecting against kidney injury and bacterial infection in the urinary tract. However, the current understanding of extracellular vesicles has derived mostly from studies with very small numbers of patients or in vitro data. Moreover, accurate assessment of these vesicles remains a challenge, in part because of a lack of consensus in the methodologies to measure extracellular vesicles and the inability of most techniques to capture the entire size range of these vesicles. However, newer techniques and standardized protocols to improve the detection of extracellular vesicles are in development. A clearer understanding of the composition and biology of extracellular vesicles will provide insights into their pathophysiologic, diagnostic, and therapeutic roles.
Collapse
Affiliation(s)
- Uta Erdbrügger
- Department of Medicine, Division of Nephrology, University of Virginia Health System, Charlottesville, Virginia
| | - Thu H Le
- Department of Medicine, Division of Nephrology, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
1614
|
Extracellular Vesicles from Ovarian Carcinoma Cells Display Specific Glycosignatures. Biomolecules 2015; 5:1741-61. [PMID: 26248080 PMCID: PMC4598773 DOI: 10.3390/biom5031741] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 06/22/2015] [Accepted: 07/28/2015] [Indexed: 12/19/2022] Open
Abstract
Cells release vesicles to the extracellular environment with characteristic nucleic acid, protein, lipid, and glycan composition. Here we have isolated and characterized extracellular vesicles (EVs) and total cell membranes (MBs) from ovarian carcinoma OVMz cells. EVs were enriched in specific markers, including Tsg101, CD63, CD9, annexin-I, and MBs contained markers of cellular membrane compartments, including calnexin, GRASP65, GS28, LAMP-1, and L1CAM. The glycoprotein galectin-3 binding protein (LGALS3BP) was strongly enriched in EVs and it contained sialylated complex N-glycans. Lectin blotting with a panel of lectins showed that EVs had specific glycosignatures relative to MBs. Furthermore, the presence of glycoproteins bearing complex N-glycans with α2,3-linked sialic acid, fucose, bisecting-GlcNAc and LacdiNAc structures, and O-glycans with the T-antigen were detected. The inhibition of N-glycosylation processing from high mannose to complex glycans using kifunensine caused changes in the composition of EVs and induced a decrease of several glycoproteins. In conclusion, the results showed that glycosignatures of EVs were specific and altered glycosylation within the cell affected the composition and/or dynamics of EVs release. Furthermore, the identified glycosignatures of EVs could provide novel biomarkers for ovarian cancer.
Collapse
|
1615
|
Abstract
Tumor-derived exosomes (TEX) are emerging as a new type of cancer biomarker. TEX are membrane-bound, virus-size vesicles of endocytic origin present in all body fluids of cancer patients. Based on the expanding albeit incomplete knowledge of their biogenesis, secretion by tumor cells and cancer cell-specific molecular and genetic contents, TEX are viewed as promising, clinically-relevant surrogates of cancer progression and response to therapy. Preliminary proteomic, genetic and functional profiling of tumor cell-derived or cancer plasma-derived exosomes confirms their unique characteristics. Alterations in protein or nucleic acid profiles of exosomes in plasma of cancer patients responding to therapies appear to correlate with clinical endpoints. However, methods for TEX isolation and separation from the bulk of human plasma-derived exosomes are not yet established and their role as biomarkers remains to be confirmed. Further development and validation of TEX as noninvasive, liquid equivalents of tumor biopsies are necessary to move this effort forward.
Collapse
Affiliation(s)
- Theresa L. Whiteside
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, Departments of Pathology, Immunology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, , Phone: 412-624-0096, FAX: 412-624-0264
| |
Collapse
|
1616
|
Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release 2015; 219:396-405. [PMID: 26241750 DOI: 10.1016/j.jconrel.2015.07.030] [Citation(s) in RCA: 765] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/20/2015] [Accepted: 07/29/2015] [Indexed: 02/06/2023]
Abstract
Exosomes offer distinct advantages that uniquely position them as highly effective drug carriers. Comprised of cellular membranes with multiple adhesive proteins on their surface, exosomes are known to specialize in cell-cell communications and provide an exclusive approach for the delivery of various therapeutic agents to target cells. In addition, exosomes can be amended through their parental cells to express a targeting moiety on their surface, or supplemented with desired biological activity. Development and validation of exosome-based drug delivery systems are the focus of this review. Different techniques of exosome isolation, characterization, drug loading, and applications in experimental disease models and clinic are discussed. Exosome-based drug formulations may be applied to a wide variety of disorders such as cancer, various infectious, cardiovascular, and neurodegenerative disorders. Overall, exosomes combine benefits of both synthetic nanocarriers and cell-mediated drug delivery systems while avoiding their limitations.
Collapse
Affiliation(s)
- Elena V Batrakova
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Myung Soo Kim
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
1617
|
Fujita Y, Kosaka N, Araya J, Kuwano K, Ochiya T. Extracellular vesicles in lung microenvironment and pathogenesis. Trends Mol Med 2015; 21:533-42. [PMID: 26231094 DOI: 10.1016/j.molmed.2015.07.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/01/2015] [Accepted: 07/07/2015] [Indexed: 12/18/2022]
Abstract
Increasing attention is being paid to the role of extracellular vesicles (EVs) in various lung diseases. EVs are released by a variety of cells, including respiratory cells and immune cells, and they encapsulate various molecules, such as proteins and microRNAs, as modulators of intercellular communication. Cancer cell-derived EVs play crucial roles in promoting tumor progression and modifying their microenvironment. By contrast, noncancerous cell-derived EVs demonstrate protective functions against injury, such as tissue recovery and repair, to maintain physiological homeostasis. Airway cells in contact with harmful substances may alter their EV composition and modify the balanced reciprocal interactions with surrounding mesenchymal cells. We summarize the novel findings of EV function in various lung diseases, primarily chronic obstructive pulmonary disease (COPD) and lung cancer.
Collapse
Affiliation(s)
- Yu Fujita
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, 3-19-18, Nishi-shinbashi, Minato-ku, Tokyo 105-8471, Japan; Department of Pathology and Moores UCSD Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nobuyoshi Kosaka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK
| | - Jun Araya
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, 3-19-18, Nishi-shinbashi, Minato-ku, Tokyo 105-8471, Japan
| | - Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, 3-19-18, Nishi-shinbashi, Minato-ku, Tokyo 105-8471, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| |
Collapse
|
1618
|
Lobb RJ, Becker M, Wen SW, Wong CSF, Wiegmans AP, Leimgruber A, Möller A. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles 2015; 4:27031. [PMID: 26194179 PMCID: PMC4507751 DOI: 10.3402/jev.v4.27031] [Citation(s) in RCA: 1246] [Impact Index Per Article: 124.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 06/02/2015] [Accepted: 06/08/2015] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles represent a rich source of novel biomarkers in the diagnosis and prognosis of disease. However, there is currently limited information elucidating the most efficient methods for obtaining high yields of pure exosomes, a subset of extracellular vesicles, from cell culture supernatant and complex biological fluids such as plasma. To this end, we comprehensively characterize a variety of exosome isolation protocols for their efficiency, yield and purity of isolated exosomes. Repeated ultracentrifugation steps can reduce the quality of exosome preparations leading to lower exosome yield. We show that concentration of cell culture conditioned media using ultrafiltration devices results in increased vesicle isolation when compared to traditional ultracentrifugation protocols. However, our data on using conditioned media isolated from the Non-Small-Cell Lung Cancer (NSCLC) SK-MES-1 cell line demonstrates that the choice of concentrating device can greatly impact the yield of isolated exosomes. We find that centrifuge-based concentrating methods are more appropriate than pressure-driven concentrating devices and allow the rapid isolation of exosomes from both NSCLC cell culture conditioned media and complex biological fluids. In fact to date, no protocol detailing exosome isolation utilizing current commercial methods from both cells and patient samples has been described. Utilizing tunable resistive pulse sensing and protein analysis, we provide a comparative analysis of 4 exosome isolation techniques, indicating their efficacy and preparation purity. Our results demonstrate that current precipitation protocols for the isolation of exosomes from cell culture conditioned media and plasma provide the least pure preparations of exosomes, whereas size exclusion isolation is comparable to density gradient purification of exosomes. We have identified current shortcomings in common extracellular vesicle isolation methods and provide a potential standardized method that is effective, reproducible and can be utilized for various starting materials. We believe this method will have extensive application in the growing field of extracellular vesicle research.
Collapse
Affiliation(s)
- Richard J Lobb
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Melanie Becker
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Shu Wen Wen
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Christina S F Wong
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Adrian P Wiegmans
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Antoine Leimgruber
- Department of Medical Imaging, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.,Service of Nuclear Medicine and Molecular Imaging, Department of Medical Imaging, University Hospital of Lausanne, Switzerland
| | - Andreas Möller
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,School of Medicine, University of Queensland, Brisbane, QLD, Australia;
| |
Collapse
|
1619
|
Imakawa K, Bai R, Fujiwara H, Kusama K. Conceptus implantation and placentation: molecules related to epithelial-mesenchymal transition, lymphocyte homing, endogenous retroviruses, and exosomes. Reprod Med Biol 2015; 15:1-11. [PMID: 29259417 DOI: 10.1007/s12522-015-0215-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/01/2015] [Indexed: 01/09/2023] Open
Abstract
Processes of conceptus implantation and placentation, unique to mammalian reproduction, have been extensively studied. It was once thought that processes of these events varied greatly, notably between invasive and noninvasive modes of implantation and/or placentation. Regardless of the mode of implantation, however, physiological and biochemical processes in conceptus implantation to the maternal endometrium including the kinds of gene expression and their products are now considered not to differ so much. Recent progress has identified that in addition to the hormones, cytokines, proteases and cell adhesion molecules classically characterized, epithelial-mesenchymal transition, molecules related to lymphocyte homing, the expression of endogenous retroviruses and possibly exosomes are all required for the progression of conceptus implantation to placentation. In this review, therefore, new findings related to these events are integrated into the context of conceptus implantation to the maternal endometrium.
Collapse
Affiliation(s)
- Kazuhiko Imakawa
- Laboratory of Theriogenology and Animal Breeding, Graduate School of Agricultural and Life SciencesThe University of Tokyo1-1-1 Yayoi, Bunkyo-ku 113-8657 Tokyo Japan
| | - Rulan Bai
- Laboratory of Theriogenology and Animal Breeding, Graduate School of Agricultural and Life SciencesThe University of Tokyo1-1-1 Yayoi, Bunkyo-ku 113-8657 Tokyo Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Graduate School of Medicine Science Kanazawa University 920-1192 Kanazawa Japan
| | - Kazuya Kusama
- Laboratory of Theriogenology and Animal Breeding, Graduate School of Agricultural and Life SciencesThe University of Tokyo1-1-1 Yayoi, Bunkyo-ku 113-8657 Tokyo Japan
| |
Collapse
|
1620
|
Huang T, Banizs AB, Shi W, Klibanov AL, He J. Size Exclusion HPLC Detection of Small-Size Impurities as a Complementary Means for Quality Analysis of Extracellular Vesicles. J Circ Biomark 2015; 4:6. [PMID: 28936242 PMCID: PMC5572986 DOI: 10.5772/61148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/18/2015] [Indexed: 12/21/2022] Open
Abstract
For extracellular vesicle research, whether for biomarker discoveries or therapeutic applications, it is critical to have high-quality samples. Both microscopy and NanoSight Tracking Analysis (NTA) for size distribution have been used to detect large vesicles. However, there is currently no well-established method that is convenient for routine quality analysis of small-size impurities in vesicle samples. In this paper we report a convenient method, called 'size-exclusion high-performance liquid chromatography' (SE-HPLC), alongside NTA and Microscopy analysis to guide and qualify the isolation and processing of vesicles. First, the SE-HPLC analysis was used to detect impurities of small-size proteins during the ultra-centrifugation process of vesicle isolation; it was then employed to test the changes of vesicles under different pH conditions or integrity after storage. As SE-HPLC is generally accessible in most institutions, it could be used as a routine means to assist researchers in examining the integrity and quality of extracellular vesicles along with other techniques either during isolation/preparation or for further engineering and storage.
Collapse
Affiliation(s)
- Tao Huang
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Anna B Banizs
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Weibin Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | | | - Jiang He
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
1621
|
High serum levels of extracellular vesicles expressing malignancy-related markers are released in patients with various types of hematological neoplastic disorders. Tumour Biol 2015; 36:9739-52. [DOI: 10.1007/s13277-015-3741-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/30/2015] [Indexed: 01/06/2023] Open
|
1622
|
de Menezes-Neto A, Sáez MJF, Lozano-Ramos I, Segui-Barber J, Martin-Jaular L, Ullate JME, Fernandez-Becerra C, Borrás FE, Del Portillo HA. Size-exclusion chromatography as a stand-alone methodology identifies novel markers in mass spectrometry analyses of plasma-derived vesicles from healthy individuals. J Extracell Vesicles 2015; 4:27378. [PMID: 26154623 PMCID: PMC4495624 DOI: 10.3402/jev.v4.27378] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/29/2015] [Accepted: 04/30/2015] [Indexed: 12/19/2022] Open
Abstract
Plasma-derived vesicles hold a promising potential for use in biomedical applications. Two major challenges, however, hinder their implementation into translational tools: (a) the incomplete characterization of the protein composition of plasma-derived vesicles, in the size range of exosomes, as mass spectrometric analysis of plasma sub-components is recognizably troublesome and (b) the limited reach of vesicle-based studies in settings where the infrastructural demand of ultracentrifugation, the most widely used isolation/purification methodology, is not available. In this study, we have addressed both challenges by carrying-out mass spectrometry (MS) analyses of plasma-derived vesicles, in the size range of exosomes, from healthy donors obtained by 2 alternative methodologies: size-exclusion chromatography (SEC) on sepharose columns and Exo-Spin™. No exosome markers, as opposed to the most abundant plasma proteins, were detected by Exo-Spin™. In contrast, exosomal markers were present in the early fractions of SEC where the most abundant plasma proteins have been largely excluded. Noticeably, after a cross-comparative analysis of all published studies using MS to characterize plasma-derived exosomes from healthy individuals, we also observed a paucity of “classical exosome markers.” Independent of the isolation method, however, we consistently identified 2 proteins, CD5 antigen-like (CD5L) and galectin-3-binding protein (LGALS3BP), whose presence was validated by a bead-exosome FACS assay. Altogether, our results support the use of SEC as a stand-alone methodology to obtain preparations of extracellular vesicles, in the size range of exosomes, from plasma and suggest the use of CD5L and LGALS3BP as more suitable markers of plasma-derived vesicles in MS.
Collapse
Affiliation(s)
- Armando de Menezes-Neto
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - María José Fidalgo Sáez
- Proteomic Unit from Scientific and Technological Centers, University of Barcelona (CCIT-UB), Barcelona, Spain
| | - Inés Lozano-Ramos
- IVECAT Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Joan Segui-Barber
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Lorena Martin-Jaular
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Josep M Estanyol Ullate
- Proteomic Unit from Scientific and Technological Centers, University of Barcelona (CCIT-UB), Barcelona, Spain
| | - Carmen Fernandez-Becerra
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Francesc E Borrás
- IVECAT Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain.,Nephrology Service, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Hernando A Del Portillo
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain;
| |
Collapse
|
1623
|
Jose AM. Movement of regulatory RNA between animal cells. Genesis 2015; 53:395-416. [PMID: 26138457 PMCID: PMC4915348 DOI: 10.1002/dvg.22871] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 06/28/2015] [Accepted: 06/29/2015] [Indexed: 12/12/2022]
Abstract
Recent studies suggest that RNA can move from one cell to another and regulate genes through specific base-pairing. Mechanisms that modify or select RNA for secretion from a cell are unclear. Secreted RNA can be stable enough to be detected in the extracellular environment and can enter the cytosol of distant cells to regulate genes. Mechanisms that import RNA into the cytosol of an animal cell can enable uptake of RNA from many sources including other organisms. This role of RNA is akin to that of steroid hormones, which cross cell membranes to regulate genes. The potential diagnostic use of RNA in human extracellular fluids has ignited interest in understanding mechanisms that enable the movement of RNA between animal cells. Genetic model systems will be essential to gain more confidence in proposed mechanisms of RNA transport and to connect an extracellular RNA with a specific biological function. Studies in the worm C. elegans and in other animals have begun to reveal parts of this novel mechanism of cell-to-cell communication. Here, I summarize the current state of this nascent field, highlight the many unknowns, and suggest future directions.
Collapse
Affiliation(s)
- Antony M Jose
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| |
Collapse
|
1624
|
Choi DS, Kim DK, Kim YK, Gho YS. Proteomics of extracellular vesicles: Exosomes and ectosomes. MASS SPECTROMETRY REVIEWS 2015; 34:474-90. [PMID: 24421117 DOI: 10.1002/mas.21420] [Citation(s) in RCA: 333] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/09/2013] [Accepted: 12/09/2013] [Indexed: 05/24/2023]
Abstract
Almost all bacteria, archaea, and eukaryotic cells shed extracellular vesicles either constitutively or in a regulated manner. These nanosized membrane vesicles are spherical, bilayered proteolipids that harbor specific subsets of proteins, DNAs, RNAs, and lipids. Recent research has facilitated conceptual advancements in this emerging field that indicate that extracellular vesicles act as intercellular communicasomes by transferring signals to their target cell via surface ligands and delivering receptors and functional molecules. Recent progress in mass spectrometry-based proteomic analyses of mammalian extracellular vesicles derived from diverse cell types and body fluids has resulted in the identification of several thousand vesicular proteins that provide us with essential clues to the molecular mechanisms involved in vesicle cargo sorting and biogenesis. Furthermore, cell-type- or disease-specific vesicular proteins help us to understand the pathophysiological functions of extracellular vesicles and contribute to the discovery of diagnostic and therapeutic target proteins. This review focuses on the high-throughput mass spectrometry-based proteomic analyses of mammalian extracellular vesicles (i.e., exosomes and ectosomes), EVpedia (a free web-based integrated database of high-throughput data for systematic analyses of extracellular vesicles; http://evpedia.info), and the intravesicular protein-protein interaction network analyses of mammalian extracellular vesicles. The goal of this article is to encourage further studies to construct a comprehensive proteome database for extracellular vesicles that will help us to not only decode the biogenesis and cargo-sorting mechanisms during vesicle formation but also elucidate the pathophysiological roles of these complex extracellular organelles.
Collapse
Affiliation(s)
- Dong-Sic Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Dae-Kyum Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yoon-Keun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
1625
|
Li X, Mauro M, Williams Z. Comparison of plasma extracellular RNA isolation kits reveals kit-dependent biases. Biotechniques 2015; 59:13-7. [PMID: 26156779 DOI: 10.2144/000114306] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/14/2015] [Indexed: 11/23/2022] Open
Affiliation(s)
- Xin Li
- Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY.,Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
| | - Maurizio Mauro
- Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY.,Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
| | - Zev Williams
- Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY.,Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
1626
|
Abstract
Peripheral nerve injuries remain problematic to treat, with poor functional recovery commonly observed. Injuries resulting in a nerve gap create specific difficulties for axonal regeneration. Approaches to address these difficulties include autologous nerve grafts (which are currently the gold standard treatment) and synthetic conduits, with the latter option being able to be impregnated with Schwann cells or stem cells which provide an appropriate micro-environment for neuronal regeneration to occur. Transplanting stem cells, however, infers additional risk of malignant transformation as well as manufacturing difficulties and ethical concerns, and the use of autologous nerve grafts and Schwann cells requires the sacrifice of a functioning nerve. A new approach utilizing exosomes, secreted extracellular vesicles, could avoid these complications. In this review, we summarize the current literature on exosomes, and suggest how they could help to improve axonal regeneration following peripheral nerve injury.
Collapse
Affiliation(s)
- Rosanna C Ching
- Department of Integrative Medical Biology, Umeå University, Umeå, SE-901 87, Sweden ; Department of Surgical & Perioperative Sciences, Umeå University, Umeå, SE-901 87, Sweden
| | - Paul J Kingham
- Department of Integrative Medical Biology, Umeå University, Umeå, SE-901 87, Sweden
| |
Collapse
|
1627
|
Mahmoudi K, Ezrin A, Hadjipanayis C. Small extracellular vesicles as tumor biomarkers for glioblastoma. Mol Aspects Med 2015; 45:97-102. [PMID: 26118341 DOI: 10.1016/j.mam.2015.06.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/16/2015] [Indexed: 12/21/2022]
Abstract
Small extracellular organelles such as exosomes and microvesicles are currently being studied as a novel way to track tumor progression, pseudoprogression, and treatment monitoring. Their role in intercellular communication shows potential in the treatment of even the most formidable cancers. Glioblastoma (GBM) is the most common malignancy of the brain and has no known cure. A large emphasis has been placed on trying to improve the prognosis of this aggressive primary brain tumor. It has recently been discovered that small extracellular vesicles, mainly exosomes and microvesicles, play a role in the cell signaling process that leads to uncontrollable cell growth indicative of a tumor state. Here we describe the role of exosomes and microvesicles as a tumor biomarker for tracking the progression of different types of cancer, with an emphasis on GBM.
Collapse
Affiliation(s)
- Keon Mahmoudi
- Georgia Institute of Technology, School of Biology, Atlanta, GA, USA
| | | | - Costas Hadjipanayis
- Brain Tumor Nanotechnology Laboratory, Winship Cancer Institute of Emory University, Atlanta, GA, USA; Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
1628
|
Bobis-Wozowicz S, Kmiotek K, Sekula M, Kedracka-Krok S, Kamycka E, Adamiak M, Jankowska U, Madetko-Talowska A, Sarna M, Bik-Multanowski M, Kolcz J, Boruczkowski D, Madeja Z, Dawn B, Zuba-Surma EK. Human Induced Pluripotent Stem Cell-Derived Microvesicles Transmit RNAs and Proteins to Recipient Mature Heart Cells Modulating Cell Fate and Behavior. Stem Cells 2015; 33:2748-61. [PMID: 26031404 DOI: 10.1002/stem.2078] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/28/2015] [Accepted: 05/07/2015] [Indexed: 12/18/2022]
Abstract
Microvesicles (MVs) are membrane-enclosed cytoplasmic fragments released by normal and activated cells that have been described as important mediators of cell-to-cell communication. Although the ability of human induced pluripotent stem cells (hiPSCs) to participate in tissue repair is being increasingly recognized, the use of hiPSC-derived MVs (hiPSC-MVs) in this regard remains unknown. Accordingly, we investigated the ability of hiPSC-MVs to transfer bioactive molecules including mRNA, microRNA (miRNA), and proteins to mature target cells such as cardiac mesenchymal stromal cells (cMSCs), and we next analyzed effects of hiPSC-MVs on fate and behavior of such target cells. The results show that hiPSC-MVs derived from integration-free hiPSCs cultured under serum-free and feeder-free conditions are rich in mRNA, miRNA, and proteins originated from parent cells; however, the levels of expression vary between donor cells and MVs. Importantly, we found that transfer of hiPSC components by hiPSC-MVs impacted on transcriptome and proteomic profiles of target cells as well as exerted proliferative and protective effects on cMSCs, and enhanced their cardiac and endothelial differentiation potential. hiPSC-MVs also transferred exogenous transcripts from genetically modified hiPSCs that opens new perspectives for future strategies to enhance MV content. We conclude that hiPSC-MVs are effective vehicles for transferring iPSC attributes to adult somatic cells, and hiPSC-MV-mediated horizontal transfer of RNAs and proteins to injured tissues may be used for therapeutic tissue repair. In this study, for the first time, we propose a new concept of use of hiPSCs as a source of safe acellular bioactive derivatives for tissue regeneration.
Collapse
Affiliation(s)
- Sylwia Bobis-Wozowicz
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Katarzyna Kmiotek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Malgorzata Sekula
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Malopolska Centre of Biotechnology, Krakow, Poland
| | - Sylwia Kedracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Elzbieta Kamycka
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marta Adamiak
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Urszula Jankowska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Malopolska Centre of Biotechnology, Krakow, Poland
| | - Anna Madetko-Talowska
- Department of Medical Genetics, Chair of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Michal Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Malopolska Centre of Biotechnology, Krakow, Poland
| | | | - Jacek Kolcz
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Buddhadeb Dawn
- Division of Cardiovascular Diseases, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, Kansas, USA
| | - Ewa K Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
1629
|
Kim J, Shin H, Kim J, Kim J, Park J. Isolation of High-Purity Extracellular Vesicles by Extracting Proteins Using Aqueous Two-Phase System. PLoS One 2015; 10:e0129760. [PMID: 26090684 PMCID: PMC4475045 DOI: 10.1371/journal.pone.0129760] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/13/2015] [Indexed: 12/21/2022] Open
Abstract
We present a simple and rapid method to isolate extracellular vesicles (EVs) by using a polyethylene glycol/dextran aqueous two-phase system (ATPS). This system isolated more than ~75% of melanoma-derived EVs from a mixture of EVs and serum proteins. To increase the purity of EVs, a batch procedure was combined as additional steps to remove protein contaminants, and removed more than ~95% of the protein contaminants. We also performed RT-PCR and western blotting to verify the diagnostic applicability of the isolated EVs, and detected mRNA derived from melanoma cells and CD81 in isolated EVs.
Collapse
Affiliation(s)
- Jongmin Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeong-buk, Republic of Korea
| | - Hyunwoo Shin
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeong-buk, Republic of Korea
| | - Jiyoon Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeong-buk, Republic of Korea
| | - Junho Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeong-buk, Republic of Korea
| | - Jaesung Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeong-buk, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeong-buk, Republic of Korea
- * E-mail:
| |
Collapse
|
1630
|
Foglio E, Puddighinu G, Fasanaro P, D'Arcangelo D, Perrone GA, Mocini D, Campanella C, Coppola L, Logozzi M, Azzarito T, Marzoli F, Fais S, Pieroni L, Marzano V, Germani A, Capogrossi MC, Russo MA, Limana F. Exosomal clusterin, identified in the pericardial fluid, improves myocardial performance following MI through epicardial activation, enhanced arteriogenesis and reduced apoptosis. Int J Cardiol 2015; 197:333-47. [PMID: 26159041 DOI: 10.1016/j.ijcard.2015.06.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/13/2015] [Accepted: 06/12/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND We recently demonstrated that epicardial progenitor cells participate in the regenerative response to myocardial infarction (MI) and factors released in the pericardial fluid (PF) may play a key role in this process. Exosomes are secreted nanovesicles of endocytic origin, identified in most body fluids, which may contain molecules able to modulate a variety of cell functions. Here, we investigated whether exosomes are present in the PF and their potential role in cardiac repair. METHODS AND RESULTS Early gene expression studies in 3day-infarcted mouse hearts showed that PF induces epithelial-to-mesenchymal transition (EMT) in epicardial cells. Exosomes were identified in PFs from non-infarcted patients (PFC) and patients with acute MI (PFMI). A shotgun proteomics analysis identified clusterin in exosomes isolated from PFMI but not from PFC. Notably, clusterin has a protective effect on cardiomyocytes after acute MI in vivo and is an important mediator of TGFβ-induced. Clusterin addition to the pericardial sac determined an increase in epicardial cells expressing the EMT marker α-SMA and, interestingly, an increase in the number of epicardial cells ckit(+)/α-SMA(+), 7days following MI. Importantly, clusterin treatment enhanced arteriolar length density and lowered apoptotic rates in the peri-infarct area. Hemodynamic studies demonstrated an improvement in cardiac function in clusterin-treated compared to untreated infarcted hearts. CONCLUSIONS Exosomes are present and detectable in the PFs. Clusterin was identified in PFMI-exosomes and might account for an improvement in myocardial performance following MI through a framework including EMT-mediated epicardial activation, arteriogenesis and reduced cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Eleonora Foglio
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giovanni Puddighinu
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Pasquale Fasanaro
- Epigenetics & Regenerative Pharmacology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Daniela D'Arcangelo
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata, IRCCS, Rome, Italy
| | | | | | | | | | - Mariantonia Logozzi
- Department of Therapeutic Research and Medicines Evaluation, National Institute of Health, Italy
| | - Tommaso Azzarito
- Department of Therapeutic Research and Medicines Evaluation, National Institute of Health, Italy
| | - Francesca Marzoli
- Department of Therapeutic Research and Medicines Evaluation, National Institute of Health, Italy
| | - Stefano Fais
- Department of Therapeutic Research and Medicines Evaluation, National Institute of Health, Italy
| | - Luisa Pieroni
- Dipartimento di Medicina Sperimentale e Chirurgia, Facoltà di Medicina e Chirurgia, Università' di Roma "Tor Vergata", Italy
| | - Valeria Marzano
- Institute of Chemistry of Molecular Recognition, Italian National Research Council (CNR), Rome, Italy
| | - Antonia Germani
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata, IRCCS, Rome, Italy
| | - Maurizio C Capogrossi
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata, IRCCS, Rome, Italy
| | - Matteo A Russo
- Laboratorio di Patologia Cellulare e Molecolare, San Raffaele Pisana, Istituto di Ricovero e Cura a Carattere Scientifico - IRCCS, Rome, Italy
| | - Federica Limana
- Laboratorio di Patologia Cellulare e Molecolare, San Raffaele Pisana, Istituto di Ricovero e Cura a Carattere Scientifico - IRCCS, Rome, Italy.
| |
Collapse
|
1631
|
Liga A, Vliegenthart ADB, Oosthuyzen W, Dear JW, Kersaudy-Kerhoas M. Exosome isolation: a microfluidic road-map. LAB ON A CHIP 2015; 15:2388-94. [PMID: 25940789 DOI: 10.1039/c5lc00240k] [Citation(s) in RCA: 296] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Exosomes, first isolated 30 years ago, are nanoscale vesicles shed by most types of cells. The nucleic acid rich content of these nanoparticles, floating in virtually all bodily fluids, has great potential for non-invasive molecular diagnostics and may represent a novel therapeutic delivery system. However, current isolation techniques such as ultracentrifugation are not convenient and do not result in high purity isolation. This represents an interesting challenge for microfluidic technologies, from a cost-effective perspective as well as for enhanced purity capabilities, and point-of-care acquisition and diagnosis. In this frontier review, we present the current challenges, comment the first microfluidic advances in this new field and propose a roadmap for future developments. This review enables biologists and clinicians familiar with exosome enrichment to assess the performance of novel microfluidic devices and, equally, enables microfluidic engineers to educate themselves about this new class of promising biomarker-rich particles and the challenges arising from their clinical use.
Collapse
Affiliation(s)
- A Liga
- Heriot-Watt University, Institute of Biological Chemistry, Biophysics and Bioengineering, Edinburgh, United Kingdom.
| | | | | | | | | |
Collapse
|
1632
|
Hoefer IE, Steffens S, Ala-Korpela M, Bäck M, Badimon L, Bochaton-Piallat ML, Boulanger CM, Caligiuri G, Dimmeler S, Egido J, Evans PC, Guzik T, Kwak BR, Landmesser U, Mayr M, Monaco C, Pasterkamp G, Tuñón J, Weber C. Novel methodologies for biomarker discovery in atherosclerosis. Eur Heart J 2015; 36:2635-42. [DOI: 10.1093/eurheartj/ehv236] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/18/2015] [Indexed: 01/21/2023] Open
|
1633
|
Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches. Methods 2015; 87:46-58. [PMID: 26044649 DOI: 10.1016/j.ymeth.2015.05.028] [Citation(s) in RCA: 371] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/21/2015] [Accepted: 05/26/2015] [Indexed: 12/15/2022] Open
Abstract
Clinical implementation of exosome based diagnostic and therapeutic applications is still limited by the lack of standardized technologies that integrate efficient isolation of exosomes with comprehensive detection of relevant biomarkers. Conventional methods for exosome isolation based on their physical properties such as size and density (filtration, ultracentrifugation or density gradient), or relying on their differential solubility (chemical precipitation) are established primarily for processing of cell supernatants and later adjusted to complex biological samples such as plasma. Though still representing gold standard in the field, these methods are clearly suboptimal for processing of routine clinical samples and have intrinsic limits that impair their use in biomarker discovery and development of novel diagnostics. Immunoisolation (IA) offers unique advantages for the recovery of exosomes from complex and viscous fluids, in terms of increased efficiency and specificity of exosome capture, integrity and selective origin of isolated vesicles. We have evaluated several commercially available solutions for immunoplate- and immunobead-based affinity isolation and have further optimized protocols to decrease non-specific binding due to exosomes complexity and matrix contaminants. In order to identify best molecular targets for total exosome capture from diverse biological sources, as well as for selective enrichment in populations of interest (e.g. tumor derived exosomes) several exosome displayed proteins and respective antibodies have been evaluated for plate and bead functionalisation. Moreover, we have optimized and directly implemented downstream steps allowing on-line quantification and characterization of bound exosome markers, namely proteins and RNAs. Thus assembled assays enabled rapid overall quantification and validation of specific exosome associated targets in/on plasma exosomes, with multifold increased yield and enrichment ratio over benchmarking technologies. Assays directly coupling selective immobilization of exosomes to a solid phase and their immune- and or molecular profiling through conventional ELISA and PCR analysis, resulted in easy-to-elaborate, quantitative readouts, with high low-end sensitivity and dynamic range, low costs and hands-on time, minimal sample handling and downscaling of a working plasma volumes to as few as 100 μl.
Collapse
|
1634
|
Fuhrmann G, Herrmann IK, Stevens MM. Cell-derived vesicles for drug therapy and diagnostics: opportunities and challenges. NANO TODAY 2015; 10:397-409. [PMID: 28458718 PMCID: PMC5409525 DOI: 10.1016/j.nantod.2015.04.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Extracellular vesicles are small lipid-based membrane-bound entities shed by cells under both physiological and pathological conditions. Their discovery as intercellular communicators through transfer of nucleic acid- and protein-based cargos between cells locally and at distance in a highly specific manner has created recent excitement. The information they transport and their composition may vary depending on the cell of origin as well as the eliciting stimulus. Such sensitive changes in vesicle characteristics hold significant promise for the improved diagnosis of pathological conditions, including infections and neoplastic lesions in a minimally invasive way. Similarly, these cell-derived vesicles exhibit promising characteristics that could enhance drug targeting efficiencies. Recent developments in the field have aimed at studying EVs as novel drug carriers due to their natural composition, biological function and selective cell interaction. In this review, we discuss new research avenues in diagnostics and drug therapy based on extracellular vesicles. We show how cell-derived vesicles can be harvested and engineered to meet application-specific design requirements. We finally discuss potential risks encountered when translating extracellular vesicle based approaches into (pre)clinical applications.
Collapse
Affiliation(s)
- Gregor Fuhrmann
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, SW7 2AZ London, United Kingdom
| | - Inge K. Herrmann
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, SW7 2AZ London, United Kingdom
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, SW7 2AZ London, United Kingdom
| |
Collapse
|
1635
|
Lozano-Ramos I, Bancu I, Oliveira-Tercero A, Armengol MP, Menezes-Neto A, Del Portillo HA, Lauzurica-Valdemoros R, Borràs FE. Size-exclusion chromatography-based enrichment of extracellular vesicles from urine samples. J Extracell Vesicles 2015; 4:27369. [PMID: 26025625 PMCID: PMC4449362 DOI: 10.3402/jev.v4.27369] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/20/2015] [Accepted: 04/07/2015] [Indexed: 02/06/2023] Open
Abstract
Renal biopsy is the gold-standard procedure to diagnose most of renal pathologies. However, this invasive method is of limited repeatability and often describes an irreversible renal damage. Urine is an easily accessible fluid and urinary extracellular vesicles (EVs) may be ideal to describe new biomarkers associated with renal pathologies. Several methods to enrich EVs have been described. Most of them contain a mixture of proteins, lipoproteins and cell debris that may be masking relevant biomarkers. Here, we evaluated size-exclusion chromatography (SEC) as a suitable method to isolate urinary EVs. Following a conventional centrifugation to eliminate cell debris and apoptotic bodies, urine samples were concentrated using ultrafiltration and loaded on a SEC column. Collected fractions were analysed by protein content and flow cytometry to determine the presence of tetraspanin markers (CD63 and CD9). The highest tetraspanin content was routinely detected in fractions well before the bulk of proteins eluted. These tetraspanin-peak fractions were analysed by cryo-electron microscopy (cryo-EM) and nanoparticle tracking analysis revealing the presence of EVs. When analysed by sodium dodecyl sulphate–polyacrylamide gel electrophoresis, tetraspanin-peak fractions from urine concentrated samples contained multiple bands but the main urine proteins (such as Tamm–Horsfall protein) were absent. Furthermore, a preliminary proteomic study of these fractions revealed the presence of EV-related proteins, suggesting their enrichment in concentrated samples. In addition, RNA profiling also showed the presence of vesicular small RNA species. To summarize, our results demonstrated that concentrated urine followed by SEC is a suitable option to isolate EVs with low presence of soluble contaminants. This methodology could permit more accurate analyses of EV-related biomarkers when further characterized by -omics technologies compared with other approaches.
Collapse
Affiliation(s)
- Inés Lozano-Ramos
- IVECAT-Group, Institut d'Investigació Germans Trias i Pujol (IGTP), Badalona, Spain.,Universitat Autònoma de Barcelona - Campus Can Ruti, Badalona, Spain
| | - Ioana Bancu
- Universitat Autònoma de Barcelona - Campus Can Ruti, Badalona, Spain.,Nephrology Service, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Anna Oliveira-Tercero
- IVECAT-Group, Institut d'Investigació Germans Trias i Pujol (IGTP), Badalona, Spain.,Genomic Platform, Institut d'Investigació Germans Trias i Pujol (IGTP), Badalona, Spain
| | - María Pilar Armengol
- Genomic Platform, Institut d'Investigació Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Armando Menezes-Neto
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Hernando A Del Portillo
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | | - Francesc E Borràs
- IVECAT-Group, Institut d'Investigació Germans Trias i Pujol (IGTP), Badalona, Spain.,Nephrology Service, Germans Trias i Pujol University Hospital, Badalona, Spain;
| |
Collapse
|
1636
|
Vajen T, Mause SF, Koenen RR. Microvesicles from platelets: novel drivers of vascular inflammation. Thromb Haemost 2015; 114:228-36. [PMID: 25994053 DOI: 10.1160/th14-11-0962] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/03/2015] [Indexed: 12/18/2022]
Abstract
Microvesicles are receiving increased attention not only as biomarkers but also as mediators of cell communication and as integral effectors of disease. Platelets present a major source of microvesicles and release these microvesicles either spontaneously or upon activation. Platelet-derived microvesicles retain many features of their parent cells and have been shown to exert modulatory effects on vascular and immune cells. Accordingly, microvesicles from platelets can be measured at increased levels in patients with cardiovascular disease or individuals at risk. In addition, isolated microvesicles from platelets were shown to exert immunomodulatory actions on various cell types. In this review the various aspects of platelet-derived microvesicles including release, clearance, measurement, occurrence during disease and relevance for the pathophysiology of vascular inflammation will be discussed.
Collapse
Affiliation(s)
| | | | - R R Koenen
- Rory R. Koenen, PhD, Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands, Tel.: +31 43 3881674, Fax: +31 43 3884159, E-mail:
| |
Collapse
|
1637
|
Agarwal K, Saji M, Lazaroff SM, Palmer AF, Ringel MD, Paulaitis ME. Analysis of exosome release as a cellular response to MAPK pathway inhibition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:5440-8. [PMID: 25915504 PMCID: PMC4589192 DOI: 10.1021/acs.langmuir.5b00095] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Exosome size distributions and numbers of exosomes released per cell are measured by asymmetric flow-field flow fractionation/multi-angle light scattering (A4F/MALS) for three thyroid cancer cell lines as a function of a treatment that inhibits MAPK signaling pathways in the cells. We show that these cell lines release exosomes with well-defined morphological features and size distributions that reflect a common biological process for their formation and release into the extracellular environment. We find that those cell lines with constitutive activation of the MAPK signaling pathway display MEK-dependent exosome release characterized by increased numbers of exosomes released per cell. Analysis of the measured exosome size distributions based on a generalized extreme value distribution model for exosome formation in intracellular multivesicular bodies highlights the importance of this experimental observable for delineating different mechanisms of vesicle formation and predicting how changes in exosome release can be modified by pathway inhibitors in a cell context-dependent manner.
Collapse
|
1638
|
Avoiding false positive antigen detection by flow cytometry on blood cell derived microparticles: the importance of an appropriate negative control. PLoS One 2015; 10:e0127209. [PMID: 25978814 PMCID: PMC4433223 DOI: 10.1371/journal.pone.0127209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 04/13/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Microparticles (MPs), also called microvesicles (MVs) are plasma membrane-derived fragments with sizes ranging from 0.1 to 1μm. Characterization of these MPs is often performed by flow cytometry but there is no consensus on the appropriate negative control to use that can lead to false positive results. MATERIALS AND METHODS We analyzed MPs from platelets, B-cells, T-cells, NK-cells, monocytes, and chronic lymphocytic leukemia (CLL) B-cells. Cells were purified by positive magnetic-separation and cultured for 48h. Cells and MPs were characterized using the following monoclonal antibodies (CD19,20 for B-cells, CD3,8,5,27 for T-cells, CD16,56 for NK-cells, CD14,11c for monocytes, CD41,61 for platelets). Isolated MPs were stained with annexin-V-FITC and gated between 300nm and 900nm. The latex bead technique was then performed for easy detection of MPs. Samples were analyzed by Transmission (TEM) and Scanning Electron microscopy (SEM). RESULTS Annexin-V positive events within a gate of 300-900nm were detected and defined as MPs. Our results confirmed that the characteristic antigens CD41/CD61 were found on platelet-derived-MPs validating our technique. However, for MPs derived from other cell types, we were unable to detect any antigen, although they were clearly expressed on the MP-producing cells in the contrary of several data published in the literature. Using the latex bead technique, we confirmed detection of CD41,61. However, the apparent expression of other antigens (already deemed positive in several studies) was determined to be false positive, indicated by negative controls (same labeling was used on MPs from different origins). CONCLUSION We observed that mother cell antigens were not always detected on corresponding MPs by direct flow cytometry or latex bead cytometry. Our data highlighted that false positive results could be generated due to antibody aspecificity and that phenotypic characterization of MPs is a difficult field requiring the use of several negative controls.
Collapse
|
1639
|
Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat Commun 2015; 6:7029. [PMID: 25967391 PMCID: PMC4435621 DOI: 10.1038/ncomms8029] [Citation(s) in RCA: 422] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/24/2015] [Indexed: 12/13/2022] Open
Abstract
Accurate spatiotemporal assessment of extracellular vesicle (EV) delivery and cargo RNA translation requires specific and robust live-cell imaging technologies. Here we engineer optical reporters to label multiple EV populations for visualization and tracking of tumour EV release, uptake and exchange between cell populations both in culture and in vivo. Enhanced green fluorescence protein (EGFP) and tandem dimer Tomato (tdTomato) were fused at NH2-termini with a palmitoylation signal (PalmGFP, PalmtdTomato) for EV membrane labelling. To monitor EV-RNA cargo, transcripts encoding PalmtdTomato were tagged with MS2 RNA binding sequences and detected by co-expression of bacteriophage MS2 coat protein fused with EGFP. By multiplexing fluorescent and bioluminescent EV membrane reporters, we reveal the rapid dynamics of both EV uptake and translation of EV-delivered cargo mRNAs in cancer cells that occurred within 1-hour post-horizontal transfer between cells. These studies confirm that EV-mediated communication is dynamic and multidirectional between cells with delivery of functional mRNA. Extracellular vesicles (EVs) act as a conduit for intercellular communication through the exchange of cellular materials without direct cell-to-cell contacts. Here the authors develop a multiplexed reporter system that allows monitoring of EV exchange, cargo delivery and protein translation between different cell populations.
Collapse
|
1640
|
Pegtel DM, Peferoen L, Amor S. Extracellular vesicles as modulators of cell-to-cell communication in the healthy and diseased brain. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0516. [PMID: 25135977 DOI: 10.1098/rstb.2013.0516] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Homeostasis relies heavily on effective cell-to-cell communication. In the central nervous system (CNS), probably more so than in other organs, such communication is crucial to support and protect neurons especially during ageing, as well as to control inflammation, remove debris and infectious agents. Emerging evidence indicates that extracellular vesicles (EVs) including endosome-derived exosomes and fragments of the cellular plasma membrane play a key role in intercellular communication by transporting messenger RNA, microRNA (miRNA) and proteins. In neurodegenerative diseases, secreted vesicles not only remove misfolded proteins, but also transfer aggregated proteins and prions and are thus thought to perpetuate diseases by 'infecting' neighbouring cells with these pathogenic proteins. Conversely, in other CNS disorders signals from stressed cells may help control inflammation and inhibit degeneration. EVs may also reflect the status of the CNS and are present in the cerebrospinal fluid indicating that exosomes may act as biomarkers of disease. That extracellular RNA and in particular miRNA, can be transferred by EV also indicates that these vesicles could be used as carriers to specifically target the CNS to deliver immune modulatory drugs, neuroprotective agents and anti-cancer drugs. Here, we discuss the recent evidence indicating the potential role of exosomes in neurological disorders and how knowledge of their biology may enable a Trojan-horse approach to deliver drugs into the CNS and treat neurodegenerative and other disorders of the CNS.
Collapse
Affiliation(s)
- D M Pegtel
- Exosomes Research Group, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | - L Peferoen
- Neuropathology, Department of Pathology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | - S Amor
- Neuropathology, Department of Pathology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
1641
|
Fröhlich D, Kuo WP, Frühbeis C, Sun JJ, Zehendner CM, Luhmann HJ, Pinto S, Toedling J, Trotter J, Krämer-Albers EM. Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0510. [PMID: 25135971 DOI: 10.1098/rstb.2013.0510] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Exosomes are small membranous vesicles of endocytic origin that are released by almost every cell type. They exert versatile functions in intercellular communication important for many physiological and pathological processes. Recently, exosomes attracted interest with regard to their role in cell-cell communication in the nervous system. We have shown that exosomes released from oligodendrocytes upon stimulation with the neurotransmitter glutamate are internalized by neurons and enhance the neuronal stress tolerance. Here, we demonstrate that oligodendroglial exosomes also promote neuronal survival during oxygen-glucose deprivation, a model of cerebral ischaemia. We show the transfer from oligodendrocytes to neurons of superoxide dismutase and catalase, enzymes which are known to help cells to resist oxidative stress. Additionally, we identify various effects of oligodendroglial exosomes on neuronal physiology. Electrophysiological analysis using in vitro multi-electrode arrays revealed an increased firing rate of neurons exposed to oligodendroglial exosomes. Moreover, gene expression analysis and phosphorylation arrays uncovered differentially expressed genes and altered signal transduction pathways in neurons after exosome treatment. Our study thus provides new insight into the broad spectrum of action of oligodendroglial exosomes and their effects on neuronal physiology. The exchange of extracellular vesicles between neural cells may exhibit remarkable potential to impact brain performance.
Collapse
Affiliation(s)
- Dominik Fröhlich
- Molecular Cell Biology, University of Mainz, 55128 Mainz, Germany
| | - Wen Ping Kuo
- Molecular Cell Biology, University of Mainz, 55128 Mainz, Germany Focus Programme Translational Neuroscience, University of Mainz, 55128 Mainz, Germany
| | - Carsten Frühbeis
- Molecular Cell Biology, University of Mainz, 55128 Mainz, Germany
| | - Jyh-Jang Sun
- Institute of Physiology, University Medical Center, 55128 Mainz, Germany Neuro-Electronics Research Flanders, 3001 Leuven, Belgium
| | - Christoph M Zehendner
- Institute of Physiology, University Medical Center, 55128 Mainz, Germany ZIM III, Department of Cardiology, Goethe University Frankfurt, 60389 Frankfurt, Germany
| | - Heiko J Luhmann
- Focus Programme Translational Neuroscience, University of Mainz, 55128 Mainz, Germany Institute of Physiology, University Medical Center, 55128 Mainz, Germany
| | - Sheena Pinto
- Division of Developmental Immunology, DKFZ Heidelberg, 69120 Heidelberg, Germany
| | - Joern Toedling
- Institute of Molecular Biology gGmbH, 55128 Mainz, Germany
| | - Jacqueline Trotter
- Molecular Cell Biology, University of Mainz, 55128 Mainz, Germany Focus Programme Translational Neuroscience, University of Mainz, 55128 Mainz, Germany
| | - Eva-Maria Krämer-Albers
- Molecular Cell Biology, University of Mainz, 55128 Mainz, Germany Focus Programme Translational Neuroscience, University of Mainz, 55128 Mainz, Germany
| |
Collapse
|
1642
|
Santiago-Dieppa DR, Steinberg J, Gonda D, Cheung VJ, Carter BS, Chen CC. Extracellular vesicles as a platform for 'liquid biopsy' in glioblastoma patients. Expert Rev Mol Diagn 2015; 14:819-25. [PMID: 25136839 DOI: 10.1586/14737159.2014.943193] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EVs) are cell-secreted vesicles that range from 30-2000 nm in size. These vesicles are secreted by both normal and neoplastic cells. Physiologically, EVs serve multiple critical biologic functions, including cellular remodeling, intracellular communication, modulation of the tumor microenvironment and regulation of immune function. Because EVs contain genetic and proteomic contents that reflect the cell of origin, it is possible to detect tumor-specific material in EVs secreted by cancer cells. Importantly, EVs secreted by cancer cells transgress anatomic compartments and can be detected in the blood, cerebrospinal fluid, and other biofluids of cancer patients. In this context, there is a growing interest in analyzing EVs from the biofluid of cancer patients as a means of disease diagnosis and therapeutic monitoring. In this article, we review the development of EVs as a diagnostic platform for the most common form of brain cancer, glioblastoma, discuss potential clinical translational opportunities and identify the central challenges associated with future clinical applications.
Collapse
Affiliation(s)
- David R Santiago-Dieppa
- Division of Neurosurgery, University of California, 3855 Health Science Drive #0987 La Jolla, San Diego, CA 92093-0987, USA
| | | | | | | | | | | |
Collapse
|
1643
|
Tosar JP, Gámbaro F, Sanguinetti J, Bonilla B, Witwer KW, Cayota A. Assessment of small RNA sorting into different extracellular fractions revealed by high-throughput sequencing of breast cell lines. Nucleic Acids Res 2015; 43:5601-16. [PMID: 25940616 PMCID: PMC4477662 DOI: 10.1093/nar/gkv432] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/21/2015] [Indexed: 01/08/2023] Open
Abstract
Intercellular communication can be mediated by extracellular small regulatory RNAs (sRNAs). Circulating sRNAs are being intensively studied for their promising use as minimally invasive disease biomarkers. To date, most attention is centered on exosomes and microRNAs as the vectors and the secreted species, respectively. However, this field would benefit from an increased understanding of the plethora of sRNAs secreted by different cell types in different extracellular fractions. It is still not clear if specific sRNAs are selected for secretion, or if sRNA secretion is mostly passive. We sequenced the intracellular sRNA content (19-60 nt) of breast epithelial cell lines (MCF-7 and MCF-10A) and compared it with extracellular fractions enriched in microvesicles, exosomes and ribonucleoprotein complexes. Our results are consistent with a non-selective secretion model for most microRNAs, although a few showed secretion patterns consistent with preferential secretion. On the contrary, 5' tRNA halves and 5' RNA Y4-derived fragments of 31-33 were greatly and significantly enriched in the extracellular space (even in non-mammary cell lines), where tRNA halves were detected as part of ∼45 kDa ribonucleoprotein complexes. Overall, we show that different sRNA families have characteristic secretion patterns and open the question of the role of these sRNAs in the extracellular space.
Collapse
Affiliation(s)
- Juan Pablo Tosar
- Functional Genomics Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay Nuclear Research Center, Faculty of Science, Universidad de la República, Montevideo 11400, Uruguay
| | - Fabiana Gámbaro
- Functional Genomics Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Julia Sanguinetti
- Functional Genomics Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Braulio Bonilla
- Functional Genomics Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alfonso Cayota
- Functional Genomics Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay Department of Medicine, Faculty of Medicine, Universidad de la República, Montevideo 11600, Uruguay
| |
Collapse
|
1644
|
Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Control Release 2015; 205:35-44. [DOI: 10.1016/j.jconrel.2014.11.029] [Citation(s) in RCA: 534] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 12/24/2022]
|
1645
|
Akagi T, Kato K, Kobayashi M, Kosaka N, Ochiya T, Ichiki T. On-chip immunoelectrophoresis of extracellular vesicles released from human breast cancer cells. PLoS One 2015; 10:e0123603. [PMID: 25928805 PMCID: PMC4415775 DOI: 10.1371/journal.pone.0123603] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 02/20/2015] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) including exosomes and microvesicles have attracted considerable attention in the fields of cell biology and medicine. For a better understanding of EVs and further exploration of their applications, the development of analytical methods for biological nanovesicles has been required. In particular, considering the heterogeneity of EVs, methods capable of measuring individual vesicles are desired. Here, we report that on-chip immunoelectrophoresis can provide a useful method for the differential protein expression profiling of individual EVs. Electrophoresis experiments were performed on EVs collected from the culture supernatant of MDA-MB-231 human breast cancer cells using a measurement platform comprising a microcapillary electrophoresis chip and a laser dark-field microimaging system. The zeta potential distribution of EVs that reacted with an anti-human CD63 (exosome and microvesicle marker) antibody showed a marked positive shift as compared with that for the normal immunoglobulin G (IgG) isotype control. Thus, on-chip immunoelectrophoresis could sensitively detect the over-expression of CD63 glycoproteins on EVs. Moreover, to explore the applicability of on-chip immunoelectrophoresis to cancer diagnosis, EVs collected from the blood of a mouse tumor model were analyzed by this method. By comparing the zeta potential distributions of EVs after their immunochemical reaction with normal IgG, and the anti-human CD63 and anti-human CD44 (cancer stem cell marker) antibodies, EVs of tumor origin circulating in blood were differentially detected in the real sample. The result indicates that the present method is potentially applicable to liquid biopsy, a promising approach to the low-invasive diagnosis of cancer.
Collapse
Affiliation(s)
- Takanori Akagi
- Department of Bioengineering, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Kei Kato
- Department of Bioengineering, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Masashi Kobayashi
- Department of Bioengineering, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Nobuyoshi Kosaka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo Japan
| | - Takanori Ichiki
- Department of Bioengineering, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
1646
|
Das S, Halushka MK. Extracellular vesicle microRNA transfer in cardiovascular disease. Cardiovasc Pathol 2015; 24:199-206. [PMID: 25958013 DOI: 10.1016/j.carpath.2015.04.007] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 04/22/2015] [Accepted: 04/22/2015] [Indexed: 12/19/2022] Open
Abstract
microRNAs (miRNAs) are a class of small regulatory RNAs that decrease protein translation to fine-tune cellular function. Recently, miRNAs were found to transfer from a donor cell into a recipient cell via exosomes and microparticles. These microvesicles are found in blood, urine, saliva, and other fluid compartments. miRNAs are delivered with intact functionality and have been repeatedly shown to regulate protein expression in recipient cells in a paracrine fashion. Thus, transported miRNAs are a new class of cell-to-cell regulatory species. Exosomal miRNA transfer is now being reported in cardiovascular systems and disease. In the blood vessels, this transfer modulates atherosclerosis and angiogenesis. In the heart, it modulates heart failure, myocardial infarction, and response to ischemic preconditioning. This review describes our current understanding of extracellular vesicle miRNA transfer, demonstrating the roles of miR-126, miR-146a, miR-143, and other miRNAs being shuttled from endothelial cells, stem cells, fibroblasts and others into myocytes, endothelial cells, and smooth muscle cells to activate cellular changes and modulate disease phenotypes.
Collapse
Affiliation(s)
- Samarjit Das
- Division of Cardiovascular Pathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marc K Halushka
- Division of Cardiovascular Pathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
1647
|
Tan S, Wu T, Zhang D, Zhang Z. Cell or cell membrane-based drug delivery systems. Theranostics 2015; 5:863-81. [PMID: 26000058 PMCID: PMC4440443 DOI: 10.7150/thno.11852] [Citation(s) in RCA: 335] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 02/18/2015] [Indexed: 01/14/2023] Open
Abstract
Natural cells have been explored as drug carriers for a long period. They have received growing interest as a promising drug delivery system (DDS) until recently along with the development of biology and medical science. The synthetic materials, either organic or inorganic, are found to be with more or less immunogenicity and/or toxicity. The cells and extracellular vesicles (EVs), are endogenous and thought to be much safer and friendlier. Furthermore, in view of their host attributes, they may achieve different biological effects and/or targeting specificity, which can meet the needs of personalized medicine as the next generation of DDS. In this review, we summarized the recent progress in cell or cell membrane-based DDS and their fabrication processes, unique properties and applications, including the whole cells, EVs and cell membrane coated nanoparticles. We expect the continuing development of this cell or cell membrane-based DDS will promote their clinic applications.
Collapse
Affiliation(s)
- Songwei Tan
- 1. Tongji School of Pharmacy
- 2. National Engineering Research Center for Nanomedicine
- 3. Hubei Engineering Research Center for Novel DDS, Huazhong University of Science and Technology, Wuhan 430030, P R China
| | | | | | - Zhiping Zhang
- 1. Tongji School of Pharmacy
- 2. National Engineering Research Center for Nanomedicine
- 3. Hubei Engineering Research Center for Novel DDS, Huazhong University of Science and Technology, Wuhan 430030, P R China
| |
Collapse
|
1648
|
Peterson MF, Otoc N, Sethi JK, Gupta A, Antes TJ. Integrated systems for exosome investigation. Methods 2015; 87:31-45. [PMID: 25916618 DOI: 10.1016/j.ymeth.2015.04.015] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 03/23/2015] [Accepted: 04/14/2015] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles, including exosomes, are currently being investigated to better understand their biogenesis and biological functions. There is also a rapidly growing interest in utilizing exosomes present in patient biofluids for molecular diagnostics in the clinic. Exosomes are natural shuttles of RNA and protein cargo, making them attractive as potential therapeutic delivery vehicles. Here, we describe the methods for using the latest tools and technologies to study exosomes to better understand their roles in cell-to-cell communication, for discovery of clinical biomarkers and to engineer exosomes for therapeutic applications.
Collapse
Affiliation(s)
- Maureen F Peterson
- System Biosciences (SBI), 265 N. Whisman Rd., Mountain View, CA 94043, USA
| | - Nicole Otoc
- System Biosciences (SBI), 265 N. Whisman Rd., Mountain View, CA 94043, USA
| | - Jasmine K Sethi
- System Biosciences (SBI), 265 N. Whisman Rd., Mountain View, CA 94043, USA
| | - Archana Gupta
- System Biosciences (SBI), 265 N. Whisman Rd., Mountain View, CA 94043, USA
| | - Travis J Antes
- System Biosciences (SBI), 265 N. Whisman Rd., Mountain View, CA 94043, USA.
| |
Collapse
|
1649
|
Akers JC, Ramakrishnan V, Kim R, Phillips S, Kaimal V, Mao Y, Hua W, Yang I, Fu CC, Nolan J, Nakano I, Yang Y, Beaulieu M, Carter BS, Chen CC. miRNA contents of cerebrospinal fluid extracellular vesicles in glioblastoma patients. J Neurooncol 2015; 123:205-16. [PMID: 25903655 DOI: 10.1007/s11060-015-1784-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 04/08/2015] [Indexed: 01/08/2023]
Abstract
Analysis of extracellular vesicles (EVs) derived from plasma or cerebrospinal fluid (CSF) has emerged as a promising biomarker platform for therapeutic monitoring in glioblastoma patients. However, the contents of the various subpopulations of EVs in these clinical specimens remain poorly defined. Here we characterize the relative abundance of miRNA species in EVs derived from the serum and cerebrospinal fluid of glioblastoma patients. EVs were isolated from glioblastoma cell lines as well as the plasma and CSF of glioblastoma patients. The microvesicle subpopulation was isolated by pelleting at 10,000×g for 30 min after cellular debris was cleared by a 2000×g (20 min) spin. The exosome subpopulation was isolated by pelleting the microvesicle supernatant at 120,000×g (120 min). qRT-PCR was performed to examine the distribution of miR-21, miR-103, miR-24, and miR-125. Global miRNA profiling was performed in select glioblastoma CSF samples. In plasma and cell line derived EVs, the relative abundance of miRNAs in exosome and microvesicles were highly variable. In some specimens, the majority of the miRNA species were found in exosomes while in other, they were found in microvesicles. In contrast, CSF exosomes were enriched for miRNAs relative to CSF microvesicles. In CSF, there is an average of one molecule of miRNA per 150-25,000 EVs. Most EVs derived from clinical biofluids are devoid of miRNA content. The relative distribution of miRNA species in plasma exosomes or microvesicles is unpredictable. In contrast, CSF exosomes are the major EV compartment that harbor miRNAs.
Collapse
Affiliation(s)
- Johnny C Akers
- Center for Theoretical and Applied Neuro-Oncology, University of California, San Diego, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1650
|
Szatanek R, Baran J, Siedlar M, Baj-Krzyworzeka M. Isolation of extracellular vesicles: Determining the correct approach (Review). Int J Mol Med 2015; 36:11-7. [PMID: 25902369 PMCID: PMC4494580 DOI: 10.3892/ijmm.2015.2194] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/22/2015] [Indexed: 12/16/2022] Open
Abstract
The discovery of extracellular vesicles (EVs) has revised the interpretation of intercellular communication. It is now well established that EVs play a significant role in coagulation, inflammation, cancer and stem cell renewal and expansion. Their release presents an intriguing, transporting/trafficking network of biologically active molecules, which are able to reach and modulate the function/behavior of the target cells in a variety of ways. Moreover, the presence of EVs in various body fluids points to their potential for use as biomarkers and prognostic indicators in the surveillance/monitoring of a variety of diseases. Although vast knowledge on the subject of EVs has accumulated over the years, there are still fundamental issues associated with the correct approach for their isolation. This review comprises the knowledge on EV isolation techniques that are currently available. The aim of this reveiw was to make both experienced researchers and newcomers to the field aware that different types of EVs require unique isolation approaches. The realization of this 'uniqueness' is the first step in the right direction for the complete assessment of EVs.
Collapse
Affiliation(s)
- Rafal Szatanek
- Department of Clinical Immunology and Transplantology, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Jarek Baran
- Department of Clinical Immunology and Transplantology, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology and Transplantology, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology and Transplantology, Jagiellonian University Medical College, 30-663 Krakow, Poland
| |
Collapse
|