1651
|
Schaub S, Wilkins JA, Rush D, Nickerson P. Developing a tool for noninvasive monitoring of renal allografts. Expert Rev Proteomics 2006; 3:497-509. [PMID: 17078764 DOI: 10.1586/14789450.3.5.497] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Renal transplantation has emerged as the therapy of choice for many patients with end-stage renal disease. One of the major goals is to tailor immunosuppressive therapy to the individual needs of every patient at every time point post transplant, balancing the risk for rejection and over-immunosuppression. Such individualized treatment will require assays that can detect harmful processes in the allograft early and that can be measured repeatedly. In this review, advantages and disadvantages of current assays to monitor renal allografts noninvasively and how proteomic technology might contribute to the development of novel biomarkers to improve patient management will be discussed.
Collapse
Affiliation(s)
- Stefan Schaub
- University Hospital Basel, Department for Transplantation Immunology and Nephrology, Petersgraben 4, 4031 Basel, Switzerland.
| | | | | | | |
Collapse
|
1652
|
Nairz M, Weiss G. Molecular and clinical aspects of iron homeostasis: From anemia to hemochromatosis. Wien Klin Wochenschr 2006; 118:442-62. [PMID: 16957974 DOI: 10.1007/s00508-006-0653-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 06/21/2006] [Indexed: 12/11/2022]
Abstract
The discovery in recent years of a plethora of new genes whose products are implicated in iron homeostasis has led to rapid expansion of our knowledge in the field of iron metabolism and its underlying complex regulation in both health and disease. Abnormalities of iron metabolism are among the most common disorders encountered in practical medicine and may have significant negative impact on physical condition and life expectancy. Basic insights into the principles of iron homeostasis and the pathophysiological and clinical consequences of iron overload, iron deficiency and misdistribution are thus of crucial importance in modern medicine. This review summarizes our current understanding of human iron metabolism and focuses on the clinically relevant features of hereditary and secondary hemochromatosis, iron deficiency anemia, anemia of chronic disease and anemia of critical illness. The interconnections between iron metabolism and immunity are also addressed, in as much as they may affect the risk and course of infections and malignancies.
Collapse
Affiliation(s)
- Manfred Nairz
- Klinische Abteilung für Allgemeine Innere Medizin, Klinische Infektiologie und Immunologie, Medizinische Universität Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
1653
|
Perco P, Pleban C, Kainz A, Lukas A, Mayer G, Mayer B, Oberbauer R. Protein biomarkers associated with acute renal failure and chronic kidney disease. Eur J Clin Invest 2006; 36:753-63. [PMID: 17032342 DOI: 10.1111/j.1365-2362.2006.01729.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Acute renal failure (ARF) as well as chronic kidney disease (CKD) are currently categorized according to serum creatinine concentrations. Serum creatinine, however, has shortcomings because of its low predictive values. The need for novel markers for the early diagnosis and prognosis of renal diseases is imminent, particularly for markers reflecting intrinsic organ injury in stages when glomerular filtration is not impaired. This review summarizes protein markers discussed in the context of ARF as well as CKD, and provides an overview on currently available discovery results following 'omics' techniques. The identified set of candidate marker proteins is discussed in their cellular and functional context. The systematic review of proteomics and genomics studies revealed 56 genes to be associated with acute or chronic kidney disease. Context analysis, i.e. correlation of biological processes and molecular functions of reported kidney markers, revealed that 15 genes on the candidate list were assigned to the most significant ontology groups: immunity and defence. Other significantly enriched groups were cell communication (14 genes), signal transduction (22 genes) and apoptosis (seven genes). Among 24 candidate protein markers, nine proteins were also identified by gene expression studies. Next generation candidate marker proteins with improved diagnostic and prognostic values for kidney diseases will be derived from whole genome scans and protemics approaches. Prospective validation still remains elusive for all proposed candidates.
Collapse
Affiliation(s)
- P Perco
- Krankenhaus der Elisabethinen, Linz, Austria
| | | | | | | | | | | | | |
Collapse
|
1654
|
Weiland C, Ahr HJ, Vohr HW, Ellinger-Ziegelbauer H. Characterization of primary rat proximal tubular cells by gene expression analysis. Toxicol In Vitro 2006; 21:466-91. [PMID: 17134868 DOI: 10.1016/j.tiv.2006.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 09/27/2006] [Accepted: 10/15/2006] [Indexed: 11/29/2022]
Abstract
The kidney plays a major role in excretory and reabsorptive processes. The kidney cortex consists primarily of proximal tubular cells, which are epithelial cells that are often involved in the induction and progression of various kidney diseases. Therefore primary proximal tubular cells are widely used as a renal cell model. To further characterize this kidney in vitro model different time points in culture after isolation of the cells were compared to the cortex in vivo using gene expression analysis based on microarrays. This study revealed that many metabolic pathways and some kidney-specific functions are lacking in the in vitro model. Furthermore genes involved in RNA and protein synthesis, intracellular transport, extracellular matrix and cytoskeletal organization were upregulated in culture compared to in vivo, indicating proliferation of the cells and differentiation into a cell culture phenotype. The data represented here may help to evaluate the in vivo relevance of results obtained with this in vitro model.
Collapse
Affiliation(s)
- C Weiland
- Molecular and Special Toxicology, Bayer HealthCare AG, Aprather Weg 18a, D-42096 Wuppertal, Germany.
| | | | | | | |
Collapse
|
1655
|
Singal RK, Docking LM, Girling LG, Graham MR, Nickerson PW, McManus BM, Magil AB, Walker EKY, Warrian RK, Cheang MS, Mutch WAC. Biologically variable bypass reduces enzymuria after deep hypothermic circulatory arrest. Ann Thorac Surg 2006; 82:1480-8. [PMID: 16996957 DOI: 10.1016/j.athoracsur.2006.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/27/2006] [Accepted: 05/03/2006] [Indexed: 12/19/2022]
Abstract
BACKGROUND Renal injury is common after open-heart surgery. Cardiopulmonary bypass contributes to the problem. We compared conventional nonpulsatile perfusion (NP) to biologically variable perfusion (BVP), which uses a computer controller to restore physiological beat-to-beat variability to roller pump flow. We hypothesized BVP would decrease renal injury after deep hypothermic circulatory arrest. METHODS Pigs were randomly assigned to either BVP (n = 9) or NP (n = 9), cooled, arrested at 18 degrees C (1 hour), reperfused, and rewarmed and maintained normothermic (3 hours). Additional pigs had NP for a similar time as above, but without circulatory arrest (n = 3), or were sham-treated without bypass (n = 3). Hemodynamics, acid-base status, temperature, and urine volumes were measured. Urinary enzyme markers of tubular injury were compared post-hoc for gamma glutamyl transpeptidase, alkaline phosphatase, and glutathione S-transferase and by urine proteomics using mass spectrometry. RESULTS Urine output at 1 hour after arrest was 250 +/- 129 mL with BVP versus 114 +/- 66 mL with NP (p < 0.02). All three renal enzyme markers were higher with NP after arrest compared with BVP. In animals on bypass without arrest or those sham-treated, no elevations were seen in renal enzymes. Urine proteomics revealed abnormal proteins, persisting longer with NP. Biologically variable perfusion decreased cooling to 21.0 +/- 9.0 minutes versus 31.7 +/- 7.5 minutes (p < 0.002), and decreased rewarming to 22.1 +/- 3.9 minutes versus 31.2 +/- 5.1 minutes (p < 0.002). CONCLUSIONS Biologically variable perfusion improved urine output, decreased enzymuria, and attenuated mass spectrometry urine protein signal with more rapid temperature changes. This strategy could potentially shorten bypass duration and may decrease renal tubular injury with deep hypothermic circulatory arrest.
Collapse
Affiliation(s)
- Rohit K Singal
- Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1656
|
Wang Y, Lam KSL, Kraegen EW, Sweeney G, Zhang J, Tso AWK, Chow WS, Wat NMS, Xu JY, Hoo RLC, Xu A. Lipocalin-2 is an inflammatory marker closely associated with obesity, insulin resistance, and hyperglycemia in humans. Clin Chem 2006; 53:34-41. [PMID: 17040956 DOI: 10.1373/clinchem.2006.075614] [Citation(s) in RCA: 429] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Lipocalin-2, a 25-kDa secreted glycoprotein, is a useful biomarker for early detection of various renal injuries. Because lipocalin-2 is abundantly expressed in adipose tissue and liver, we investigated its relevance to obesity-related pathologies. METHODS We used real-time PCR and in-house immunoassays to quantify the mRNA and serum concentrations of lipocalin-2 in C57BL/KsJ db/db obese mice and their age- and sex-matched lean littermates. We analyzed the association between serum lipocalin-2 concentrations and various metabolic and inflammatory variables in 229 persons (121 men and 108 women) recruited from a previous cross-sectional study, and we evaluated the effect of the insulin-sensitizing drug rosiglitazone on serum lipocalin-2 concentrations in 32 diabetic patients (21 men and 11 women). RESULTS Compared with the lean littermates, lipocalin-2 mRNA expression in adipose tissue and liver and its circulating concentrations were significantly increased in db/db diabetic/obese mice (P <0.001). These changes were normalized after rosiglitazone treatment. In humans, circulating lipocalin-2 concentrations were positively correlated (P <0.005) with adiposity, hypertriglyceridemia, hyperglycemia, and the insulin resistance index, but negatively correlated (P = 0.002) with HDL cholesterol. There was also a strong positive association between lipocalin-2 concentrations and high sensitivity C-reactive protein (hs-CRP), independent of age, sex, and adiposity (P = 0.007). Furthermore, rosiglitazone-mediated decreases in lipocalin-2 concentrations correlated significantly with increases in insulin sensitivity (r = 0.527; P = 0.002) and decreases in hs-CRP concentrations (r = 0.509; P = 0.003). CONCLUSIONS Lipocalin-2 is an inflammatory marker closely related to obesity and its metabolic complications. Measurement of serum lipocalin-2 might be useful for evaluating the outcomes of various clinical interventions for obesity-related metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Yu Wang
- Genome Research Center and Department of Biochemistry, University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1657
|
Abstract
Acute renal failure (ARF) is a frequent problem in the intensive care unit and is associated with a high mortality. Early recognition could help clinical management, but current indices lack sufficient predictive value for ARF. Therefore, there might be a need for biomarkers in detecting renal tubular injury and/or dysfunction at an early stage before a decline in glomerular filtration rate is noted by an increased serum creatinine. A MEDLINE/PubMed search was performed, including all articles about biomarkers for ARF. All publication types, human and animal studies, or subsets were searched in English language. An extraction of relevant articles was made for the purpose of this narrative review. These biomarkers include tubular enzymes (alpha- and pi-glutathione S-transferase, N-acetyl-glucosaminidase, alkaline phosphatase, gamma-glutamyl transpeptidase, Ala-(Leu-Gly)-aminopeptidase, and fructose-1,6-biphosphatase), low-molecular weight urinary proteins (alpha1- and beta2-microglobulin, retinol-binding protein, adenosine deaminase-binding protein, and cystatin C), Na+/H+ exchanger, neutrophil gelatinase-associated lipocalin, cysteine-rich protein 61, kidney injury molecule 1, urinary interleukins/adhesion molecules, and markers of glomerular filtration such as proatrial natriuretic peptide (1-98) and cystatin C. These biomarkers, detected in urine or serum shortly after tubular injury, have been suggested to contribute to prediction of ARF and need for renal replacement therapy. However, excretion of these biomarkers may also increase after reversible and mild dysfunction and may not necessarily be associated with persistent or irreversible damage. Large prospective studies in human are needed to demonstrate an improved outcome of biomarker-driven management of the patient at risk for ARF.
Collapse
Affiliation(s)
- Ronald J Trof
- Department of Intensive Care, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
1658
|
Zhou H, Pisitkun T, Aponte A, Yuen PST, Hoffert JD, Yasuda H, Hu X, Chawla L, Shen RF, Knepper MA, Star RA. Exosomal Fetuin-A identified by proteomics: a novel urinary biomarker for detecting acute kidney injury. Kidney Int 2006; 70:1847-57. [PMID: 17021608 PMCID: PMC2277342 DOI: 10.1038/sj.ki.5001874] [Citation(s) in RCA: 324] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Urinary exosomes containing apical membrane and intracellular fluid are normally secreted into the urine from all nephron segments, and may carry protein markers of renal dysfunction and structural injury. We aimed to discover biomarkers in urinary exosomes to detect acute kidney injury (AKI), which has a high mortality and morbidity. Animals were injected with cisplatin. Urinary exosomes were isolated by differential centrifugation. Protein changes were evaluated by two-dimensional difference in gel electrophoresis and changed proteins were identified by mass spectrometry. The identified candidate biomarkers were validated by Western blotting in individual urine samples from rats subjected to cisplatin injection; bilateral ischemia and reperfusion (I/R); volume depletion; and intensive care unit (ICU) patients with and without AKI. We identified 18 proteins that were increased and nine proteins that were decreased 8 h after cisplatin injection. Most of the candidates could not be validated by Western blotting. However, exosomal Fetuin-A increased 52.5-fold at day 2 (1 day before serum creatinine increase and tubule damage) and remained elevated 51.5-fold at day 5 (peak renal injury) after cisplatin injection. By immunoelectron microscopy and elution studies, Fetuin-A was located inside urinary exosomes. Urinary Fetuin-A was increased 31.6-fold in the early phase (2-8 h) of I/R, but not in prerenal azotemia. Urinary exosomal Fetuin-A also increased in three ICU patients with AKI compared to the patients without AKI. We conclude that (1) proteomic analysis of urinary exosomes can provide biomarker candidates for the diagnosis of AKI and (2) urinary Fetuin-A might be a predictive biomarker of structural renal injury.
Collapse
Affiliation(s)
- H Zhou
- Renal Diagnostics and Therapeutics Unit, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1659
|
Riordan M, Sreedharan R, Kashgarian M, Siegel NJ. Modulation of renal cell injury by heat shock proteins: lessons learned from the immature kidney. ACTA ACUST UNITED AC 2006; 2:149-56. [PMID: 16932413 DOI: 10.1038/ncpneph0117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 12/23/2005] [Indexed: 01/29/2023]
Abstract
The mechanisms that underlie tolerance to injury in immature animals and tissues have been a subject of interest since 1670. Observations in neonatal units that premature infants are less prone to develop acute renal failure than adults in critical care units have prompted a series of investigations. Although initially attributed to metabolic adaptation such as increased glycolytic capacity and preservation of high energy phosphate, more recent studies have indicated a prominent role for the heat shock response. Observed modulations of injury by heat shock proteins in the immature kidney have significant implications for advancement of our understanding of renal cell injury in both adults and children.
Collapse
Affiliation(s)
- Michael Riordan
- Division of Pediatric Nephrology at Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
1660
|
Brunner HI, Mueller M, Rutherford C, Passo MH, Witte D, Grom A, Mishra J, Devarajan P. Urinary neutrophil gelatinase-associated lipocalin as a biomarker of nephritis in childhood-onset systemic lupus erythematosus. ACTA ACUST UNITED AC 2006; 54:2577-84. [PMID: 16868980 DOI: 10.1002/art.22008] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Renal involvement in systemic lupus erythematosus (SLE) is associated with poor prognosis. Currently available renal biomarkers are relatively insensitive and nonspecific for diagnosing SLE nephritis. Previous research suggests that neutrophil gelatinase-associated lipocalin (NGAL) is a high-quality renal biomarker of acute kidney injury, while its usefulness in SLE is unclear. We undertook this study to determine the relationship between urinary NGAL excretion and SLE disease activity or damage, with a focus on nephritis. METHODS A cohort of 35 patients diagnosed as having SLE prior to age 16 years (childhood-onset SLE) was assessed for disease activity (using the Systemic Lupus Erythematosus Disease Activity Index 2000 update) and damage (using the Systemic Lupus International Collaborating Clinics/American College of Rheumatology SLE Damage Index) in a double-blind, cross-sectional study. Information on current markers of renal function and disease was obtained and compared with NGAL levels (ng/mg of urinary creatinine) measured by enzyme-linked immunosorbent assay. Eight children with juvenile idiopathic arthritis (JIA) served as controls. RESULTS NGAL levels did not differ with the age, weight, height, sex, or race of the patients. Patients with childhood-onset SLE had significantly higher NGAL levels than did those with JIA (P < 0.0001). NGAL levels were strongly to moderately correlated with renal disease activity and renal damage (Spearman's r >/= 0.47, P < 0.0001 for both comparisons), but not with extrarenal disease activity or extrarenal damage. NGAL levels of >0.6 ng/mg urinary creatinine were 90% sensitive and 100% specific for identifying childhood-onset SLE patients with biopsy-proven nephritis. CONCLUSION Urinary NGAL is a promising potential biomarker of childhood-onset SLE nephritis. The results of the current study require validation in a larger cohort to more accurately delineate urinary NGAL excretion in relation to the diverse SLE phenotypes.
Collapse
Affiliation(s)
- Hermine I Brunner
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA.
| | | | | | | | | | | | | | | |
Collapse
|
1661
|
Qing X, Zavadil J, Crosby MB, Hogarth MP, Hahn BH, Mohan C, Gilkeson GS, Bottinger EP, Putterman C. Nephritogenic anti-DNA antibodies regulate gene expression in MRL/lpr mouse glomerular mesangial cells. ACTA ACUST UNITED AC 2006; 54:2198-210. [PMID: 16804897 DOI: 10.1002/art.21934] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Lupus-associated IgG anti-double-stranded DNA antibodies are thought to be pathogenic in the kidney due to cross-reaction with glomerular antigens, leading subsequently to immune complex formation in situ and complement activation. We undertook this study to determine if pathogenic anti-DNA antibodies may also contribute to renal damage by directly influencing mesangial gene expression. METHODS Complementary DNA microarray gene profiling was performed in primary mesangial cells (derived from lupus-prone MRL/lpr mice) treated with pathogenic, noncomplexed anti-DNA antibodies. Significant gene up-regulation induced by anti-DNA antibodies as determined by microarray analysis was further investigated by real-time polymerase chain reaction and methods to detect the relevant proteins. Induction of proinflammatory genes by pathogenic antibodies was confirmed by comparing gene expression in glomeruli of old versus young MRL/lpr mice, and by antibody injection in vivo. RESULTS Pathogenic, but not nonpathogenic, antibodies significantly induced a number of transcripts, including CXCL1/KC, LCN2, iNOS, CX3CL1/fractalkine, SERPINA3G, and IkappaBalpha ("marker genes"). Blocking of Fcgamma receptors or using Fcgamma chain-knockout mesangial cells had no effect on the gene regulation effect of the pathogenic antibody R4A, indicating a non-Fc-dependent mechanism. The glomerular expression of these marker genes increased over time with the development of glomerular antibody deposition and active nephritis in MRL/lpr mice. Moreover, injection of R4A into SCID mice in vivo significantly up-regulated glomerular marker gene expression. CONCLUSION These findings indicate that the renal pathogenicity of anti-DNA antibodies may be attributed in part to their ability to directly modulate gene expression in kidney mesangial cells through both Fc-dependent and non-Fc-dependent mechanisms.
Collapse
MESH Headings
- Acute-Phase Proteins/genetics
- Acute-Phase Proteins/metabolism
- Animals
- Antibodies, Antinuclear/adverse effects
- Antibodies, Antinuclear/pharmacology
- Cells, Cultured
- Chemokine CX3CL1
- Chemokine CXCL1
- Chemokines, CX3C/genetics
- Chemokines, CX3C/metabolism
- Chemokines, CXC/genetics
- Chemokines, CXC/metabolism
- Female
- I-kappa B Proteins/genetics
- I-kappa B Proteins/metabolism
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Kidney Diseases/chemically induced
- Kidney Diseases/physiopathology
- Lipocalin-2
- Lipocalins
- Lupus Vasculitis, Central Nervous System/genetics
- Lupus Vasculitis, Central Nervous System/metabolism
- Lupus Vasculitis, Central Nervous System/pathology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mesangial Cells/drug effects
- Mesangial Cells/metabolism
- Mesangial Cells/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred MRL lpr/genetics
- Mice, Knockout
- Mice, SCID
- NF-KappaB Inhibitor alpha
- Nitric Oxide Synthase Type II/genetics
- Nitric Oxide Synthase Type II/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Serpins/genetics
- Serpins/metabolism
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Xiaoping Qing
- Division of Rheumatology, Forchheimer 701N, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1662
|
Cruz DN, Perazella MA, Bellomo R, Corradi V, de Cal M, Kuang D, Ocampo C, Nalesso F, Ronco C. Extracorporeal blood purification therapies for prevention of radiocontrast-induced nephropathy: a systematic review. Am J Kidney Dis 2006; 48:361-71. [PMID: 16931209 DOI: 10.1053/j.ajkd.2006.05.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 05/24/2006] [Indexed: 11/11/2022]
Abstract
BACKGROUND Radiocontrast-induced nephropathy (RCIN) causes acute kidney injury and increases mortality. Studies have examined the capacity of various forms of extracorporeal blood purification therapies for the prevention of RCIN, with conflicting results. We conducted a systematic review of published trials to determine whether periprocedural extracorporeal blood purification prevents RCIN. METHODS We searched PubMed, the Cochrane Collaboration Database, EMBASE, and CINAHL through January 2006 and bibliographies of retrieved articles and consulted with experts to identify relevant studies. Published studies of extracorporeal blood purification for the prevention of RCIN in patients receiving radiocontrast were included. Two authors reviewed all citations. The primary end point is the incidence of RCIN, defined as an increase in serum creatinine concentration (>or=0.5 mg/dL [>or=44 micromol/L]). Results were combined on the risk ratio scale. Random-effects models were used. Sensitivity analyses were performed to evaluate the effects of extracorporeal blood purification modality, study design, and sample size. RESULTS Eight trials (6 randomized controlled trials, 2 nonrandomized trials) were included in the analysis (pooled sample size, 412). Six trials assessed hemodialysis, whereas 1 trial each assessed continuous venovenous hemofiltration and continuous venovenous hemodiafiltration. The incidence of RCIN was 35.2% in the standard-medical-therapy group and 27.8% in the extracorporeal-blood-purification group. Extracorporeal blood purification did not decrease the incidence of RCIN significantly compared with standard medical therapy (risk ratio, 0.97; 95% confidence interval, 0.44 to 2.14); however, intertrial heterogeneity was high. Limiting analysis to only randomized trials did not eliminate heterogeneity, but limiting analysis to only hemodialysis trials did. Periprocedural hemodialysis did not decrease the incidence of RCIN. CONCLUSION This critical analysis of the published literature suggests that periprocedural extracorporeal blood purification does not decrease the incidence of RCIN compared with standard medical therapy.
Collapse
Affiliation(s)
- Dinna N Cruz
- Department of Nephrology, San Bortolo Hospital, Vicenza, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
1663
|
Lerolle N, Guérot E, Faisy C, Bornstain C, Diehl JL, Fagon JY. Renal failure in septic shock: predictive value of Doppler-based renal arterial resistive index. Intensive Care Med 2006; 32:1553-9. [PMID: 16941165 DOI: 10.1007/s00134-006-0360-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 07/28/2006] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Because acute renal failure (ARF) is frequent in septic shock, an early marker of ARF could impact on management of such patients. High renal arterial resistive index (RI) is associated with parenchymatous renal failure. We assessed whether Doppler-measured RI on day 1 (D1) of septic shock can predict ARF. DESIGN Prospective descriptive clinical study. SETTING A 20-bed medical intensive care unit in a university hospital. PATIENTS All patients with septic shock, excluding those with chronic renal failure (serum creatinine >120 micromol/l). MEASUREMENTS AND RESULTS RI was determined during the first 24 h (D1) following vasopressor introduction, concomitant with recording of: age, SAPS II, mean arterial pressure, arterial lactate, catecholamine (dose and type), urine output and serum creatinine. ARF was diagnosed according to the RIFLE classification. RI measurement was possible for 35 of 37 included patients. On day 5 (D5), 17 patients were without ARF (RIFLE-0 or R) and 18 patients were classified as having ARF (RIFLE-I or F). On D1, RI was higher in these latter 18 patients (0.77+/-0.08 vs. 0.68+/-0.08, p<0.001). They also had higher SAPS II and arterial lactate concentration. RI >0.74 on D1 had a positive likelihood ratio of 3.3 (95% CI 1.1-35) for developing ARF on D5. RI correlated inversely with mean arterial pressure (rho=-0.48, p=0.006) but not with catecholamine type or dose or with lactate concentration. CONCLUSION Doppler-based determination of RI on D1 in septic shock patients may help identify those who will develop ARF.
Collapse
Affiliation(s)
- Nicolas Lerolle
- Université Paris-Descartes, Faculté de Médecine, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Réanimation Médicale, 20, rue Leblanc, 75908 Paris Cedex 15, France.
| | | | | | | | | | | |
Collapse
|
1664
|
Bachorzewska-Gajewska H, Malyszko J, Sitniewska E, Malyszko JS, Dobrzycki S. Neutrophil-gelatinase-associated lipocalin and renal function after percutaneous coronary interventions. Am J Nephrol 2006; 26:287-92. [PMID: 16772710 DOI: 10.1159/000093961] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 05/16/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS The value of neutrophil-gelatinase-associated lipocalin (NGAL), a novel biomarker in the detection of acute renal failure in children after cardiac surgery, has been highlighted in previous studies. The incidence of percutaneous coronary intervention (PCI) increases, which may possibly result in increased incidences of contrast nephropathy, its potentially serious complication. Therefore, the aim of our study was to assess prospectively NGAL in patients undergoing elective PCI in relation to serum creatinine. METHODS NGAL was assessed in the serum and urine using commercially available kits. RESULTS We measured urinary and serum NGAL before, and 2, 4, 12, 24 and 48 h after PCI. We found a significant rise in serum NGAL 2 and 4 h after PCI, and a rise in urinary NGAL 4 and 12 h after PCI. Before PCI, serum NGAL was significantly associated with serum creatinine, urea, urinary NGAL, hemoglobin, hematocrit, albumin, age and presence of diabetes. In multivariate analysis, serum creatinine was the only predictor of serum NGAL. Serum NGAL 2 h after PCI correlated with serum creatinine, duration of PCI, HbA1c, hematocrit, hemoglobin and urinary NGAL. In multivariate analysis, the only predictors of serum NGAL 2 h after PCI were serum creatinine, time of PCI and HbA1c. Serum NGAL before PCI was significantly higher in diabetics than in non-diabetics. CONCLUSIONS NGAL may represent a sensitive early biomarker of renal impairment after PCI. Serum creatinine, duration of PCI, but not type and amount of contrast agent, and appropriate treatment of diabetes, reflected by HbA1c, predict a rise in serum NGAL and kidney function following PCI.
Collapse
|
1665
|
Parikh CR, Jani A, Mishra J, Ma Q, Kelly C, Barasch J, Edelstein CL, Devarajan P. Urine NGAL and IL-18 are predictive biomarkers for delayed graft function following kidney transplantation. Am J Transplant 2006; 6:1639-45. [PMID: 16827865 DOI: 10.1111/j.1600-6143.2006.01352.x] [Citation(s) in RCA: 342] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Delayed graft function (DGF) due to tubule cell injury frequently complicates deceased donor kidney transplants. We tested whether urinary neutrophil gelatinase-associated lipocalin (NGAL) and interleukin-18 (IL-18) represent early biomarkers for DGF (defined as dialysis requirement within the first week after transplantation). Urine samples collected on day 0 from recipients of living donor kidneys (n = 23), deceased donor kidneys with prompt graft function (n = 20) and deceased donor kidneys with DGF (n = 10) were analyzed in a double blind fashion by ELISA for NGAL and IL-18. In patients with DGF, peak postoperative serum creatinine requiring dialysis typically occurred 2-4 days after transplant. Urine NGAL and IL-18 values were significantly different in the three groups on day 0, with maximally elevated levels noted in the DGF group (p < 0.0001). The receiver-operating characteristic curve for prediction of DGF based on urine NGAL or IL-18 at day 0 showed an area under the curve of 0.9 for both biomarkers. By multivariate analysis, both urine NGAL and IL-18 on day 0 predicted the trend in serum creatinine in the posttransplant period after adjusting for effects of age, gender, race, urine output and cold ischemia time (p < 0.01). Our results indicate that urine NGAL and IL-18 represent early, predictive biomarkers of DGF.
Collapse
Affiliation(s)
- C R Parikh
- Nephrology, Yale University, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | |
Collapse
|
1666
|
Trachtman H, Christen E, Cnaan A, Patrick J, Mai V, Mishra J, Jain A, Bullington N, Devarajan P. Urinary neutrophil gelatinase-associated lipocalcin in D+HUS: a novel marker of renal injury. Pediatr Nephrol 2006; 21:989-94. [PMID: 16773412 DOI: 10.1007/s00467-006-0146-y] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 03/01/2006] [Accepted: 03/01/2006] [Indexed: 11/24/2022]
Abstract
BACKGROUND Diarrhea-associated hemolytic uremic syndrome (D+HUS) causes acute renal failure. Neutrophil gelatinase-associated lipocalcin (NGAL) is an early indicator of kidney injury. OBJECTIVE To determine if urinary NGAL excretion is a biomarker of severe renal injury and predicts the need for dialysis in D+HUS. METHODS Patients were randomly selected from among participants in the SYNSORB Pk trial. Urine samples were collected daily if available during the first week of hospitalization. NGAL levels were determined by ELISA. RESULTS 34 children, age 5.9+/-3.9 yr, were studied; ten (29%) required dialysis. Patients were categorized based on urinary NGAL concentration within five days of hospitalization - <200 ng/ml and >or=200 ng/ml. Twenty patients (58%) had increased urinary NGAL excretion. The severity of D+HUS at enrollment was similar in the two groups. However, children with increased urinary NGAL levels had higher peak BUN and creatinine concentrations (P<0.01) and required dialysis more often, 9/20 versus 1/14 (P=0.024) compared to children with normal excretion. CONCLUSION The majority of patients with D+HUS have renal tubular epithelial injury, as evidenced by elevated urinary NGAL excretion. Urinary NGAL levels below 200 ng/ml within five days of hospitalization may be an adjunctive marker that defines less severe renal involvement.
Collapse
Affiliation(s)
- Howard Trachtman
- Department of Pediatrics (Division of Nephrology), Schneider Children's Hospital of the North Shore-Long Island Jewish Medical Center, New Hyde Park, New York, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
1667
|
Abstract
The hemopoietic growth factor erythropoietin (EPO) has been recognized to be a multifunctional cytokine that plays a key role in ischemic preconditioning in the brain and heart. The EPO receptor is expressed widely in the kidney, and we review the important findings from the use of EPO in experimental models of acute renal failure that show that EPO reduces tubular cell death and hence the dysfunction induced by ischemia reperfusion injury, and we explore how these observations may be translated into the clinical arena.
Collapse
Affiliation(s)
- Edward J Sharples
- Center for Experimental Medicine, Nephrology and Critical Care, William Harvey Research Institute, Queen Mary, University of London, London, UK.
| | | |
Collapse
|
1668
|
Goldstein SL. Pediatric acute kidney injury: it's time for real progress. Pediatr Nephrol 2006; 21:891-5. [PMID: 16773398 DOI: 10.1007/s00467-006-0173-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Revised: 03/27/2006] [Accepted: 03/28/2006] [Indexed: 01/14/2023]
Abstract
Mortality and morbidity from acute renal failure has not improved in pediatric or adult patients over the past 40 years. This lack of improvement stems from varied definitions for acute renal failure (ARF), changes in ARF epidemiology, and the reliance on changes in serum creatinine for ARF diagnosis. Significant research has occurred in the past 5 years to standardize ARF definitions, recognize ARF earlier, discover urinary biomarkers of early renal insult, and more optimally manage patients with ARF. As a result, changes in nomenclature from ARF to acute kidney injury and earlier institution of renal replacement therapy may lead to improvements in patient outcome. The aim of this editorial is to provide a description of the state of the art in pediatric ARF diagnosis and management by highlighting recent significant clinical and research progress.
Collapse
|
1669
|
Bibliography. Current world literature. Mineral metabolism. Curr Opin Nephrol Hypertens 2006; 15:464-7. [PMID: 16775463 DOI: 10.1097/01.mnh.0000232889.65895.ae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
1670
|
Abstract
PURPOSE OF REVIEW Recent biochemical evidence increasingly implicates inflammatory mechanisms as precipitants of acute renal failure. In this review, we detail some of these pathways together with potential new therapeutic targets. RECENT FINDINGS Neutrophil gelatinase-associated lipocalin appears to be a sensitive, specific and reliable biomarker of renal injury, which may be predictive of renal outcome in the perioperative setting. For estimation of glomerular filtration rate, cystatin C is superior to creatinine. No drug is definitively effective at preventing postoperative renal failure. Clinical trials of fenoldopam and atrial natriuretic peptide are, at best, equivocal. As with pharmacological preconditioning of the heart, volatile anaesthetic agents appear to offer a protective effect to the subsequently ischaemic kidney. SUMMARY Although a greatly improved understanding of the pathophysiology of acute renal failure has offered even more therapeutic targets, the maintenance of intravascular euvolaemia and perfusion pressure is most effective at preventing new postoperative acute renal failure. In the future, strategies targeting renal regeneration after injury will use bone marrow-derived stem cells and growth factors such as insulin-like growth factor-1.
Collapse
Affiliation(s)
- Padraig Mahon
- Department of Anaesthesia, Cork University Hospital, Wilton, Cork, Ireland.
| | | |
Collapse
|
1671
|
Mishra J, Ma Q, Kelly C, Mitsnefes M, Mori K, Barasch J, Devarajan P. Kidney NGAL is a novel early marker of acute injury following transplantation. Pediatr Nephrol 2006; 21:856-63. [PMID: 16528543 DOI: 10.1007/s00467-006-0055-0] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 11/21/2005] [Accepted: 11/24/2005] [Indexed: 12/13/2022]
Abstract
Acute kidney injury secondary to ischemia-reperfusion in renal allografts often results in delayed graft function. We tested the hypothesis that expression of neutrophil gelatinase-associated lipocalin (NGAL) is an early marker of acute kidney injury following transplantation. Sections from paraffin-embedded protocol biopsy specimens obtained at approximately one hour of reperfusion after transplantation of 13 cadaveric (CAD) and 12 living-related (LRD) renal allografts were examined by immunohistochemistry for expression of NGAL. The staining intensity was correlated with cold ischemia time, peak post-operative serum creatinine, and dialysis requirement. There were no differences between the LRD and CAD groups in age, gender or preoperative serum creatinine. Using a scoring system of 0 (no staining) to 3 (most intense staining), NGAL expression was significantly increased in CAD specimens (2.3+/-0.8 versus 0.8+/-0.7 in LRD, p<0.001). There was a strong correlation between NGAL staining intensity and cold ischemia time (R=0.87, p<0.001). Importantly, NGAL staining in these early CAD biopsies was strongly correlated with peak postoperative serum creatinine, which occurred days later (R=0.86, p<0.001). Four patients developed delayed graft function requiring dialysis during the first week posttransplantation; all of these patients displayed the most intense NGAL staining in their first protocol biopsies. We conclude that NGAL staining intensity in early protocol biopsies represents a novel predictive biomarker of acute kidney injury following transplantation.
Collapse
Affiliation(s)
- Jaya Mishra
- Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | | | | | | | | | |
Collapse
|
1672
|
Affiliation(s)
- Prasad Devarajan
- Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, OH 45229-3039, USA.
| |
Collapse
|
1673
|
Parikh CR, Mishra J, Thiessen-Philbrook H, Dursun B, Ma Q, Kelly C, Dent C, Devarajan P, Edelstein CL. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int 2006; 70:199-203. [PMID: 16710348 DOI: 10.1038/sj.ki.5001527] [Citation(s) in RCA: 412] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acute kidney injury (AKI) is a frequent complication of cardiopulmonary bypass (CPB). The lack of early biomarkers for AKI has impaired our ability to intervene in a timely manner. Urinary neutrophil gelatinase-associated lipocalin (NGAL) is recently demonstrated as an early biomarker of AKI after CPB, increasing 25-fold within 2 h and declining 6 h after surgery. In the present study, we tested whether interleukin-18 (IL-18) is a predictive biomarker for AKI in the same group of patients following CPB. Exclusion criteria included pre-existing renal insufficiency and nephrotoxin use. Serial urine samples were analyzed by enzyme-linked immunosorbent assay for IL-18 in 20 patients who developed AKI (defined as a 50% or greater increase in serum creatinine after CPB) and 35 controls (age, race, and gender-matched patients who did not develop AKI after CPB). Using serum creatinine, AKI was detected only 48-72 h after CPB. In contrast, urine IL-18 increased at 4-6 h after CPB, peaked at over 25-fold at 12 h, and remained markedly elevated up to 48 h after CPB. The performance of IL-18 as demonstrated by area under the receiver operating characteristics curve for diagnosis of AKI at 4, 12, and 24 h after CPB was 61, 75, and 73% respectively. Also, on multivariate analysis, both IL-18 and NGAL were independently associated with number of days in AKI among cases. Our results indicate that IL-18 is an early, predictive biomarker of AKI after CPB, and that NGAL and IL-18 are increased in tandem after CPB. The combination of these two biomarkers may allow for the reliable early diagnosis and prognosis of AKI at all times after CPB, much before the rise in serum creatinine.
Collapse
Affiliation(s)
- C R Parikh
- Section of Nephrology, Yale University, New Haven, Connecticut 06516, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
1674
|
Affiliation(s)
- Eric B Milbrandt
- CRISMA (Clinical Research, Investigation, and Systems Modelling of Acute Illness) Laboratory, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
1675
|
Mehta RL. Urine IL-18 levels as a predictor of acute kidney injury in intensive care patients. ACTA ACUST UNITED AC 2006; 2:252-3. [PMID: 16932437 DOI: 10.1038/ncpneph0158] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2005] [Accepted: 02/22/2006] [Indexed: 11/08/2022]
Affiliation(s)
- Ravindra L Mehta
- Division of Nephrology, Department of Medicine, University of California, San Diego, CA 92103, USA.
| |
Collapse
|
1676
|
Leblanc M, Kellum JA, Gibney RTN, Lieberthal W, Tumlin J, Mehta R. Risk factors for acute renal failure: inherent and modifiable risks. Curr Opin Crit Care 2006; 11:533-6. [PMID: 16292055 DOI: 10.1097/01.ccx.0000183666.54717.3d] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Our purpose is to discuss established risk factors in the development of acute renal failure and briefly overview clinical markers and preventive measures. RECENT FINDINGS Findings from the literature support the role of older age, diabetes, underlying renal insufficiency, and heart failure as predisposing factors for acute renal failure. Diabetics with baseline renal insufficiency represent the highest risk subgroup. An association between sepsis, hypovolemia, and acute renal failure is clear. Liver failure, rhabdomyolysis, and open-heart surgery (especially valve replacement) are clinical conditions potentially leading to acute renal failure. Increasing evidence shows that intraabdominal hypertension may contribute to the development of acute renal failure. Radiocontrast and antimicrobial agents are the most common causes of nephrotoxic acute renal failure. In terms of prevention, avoiding nephrotoxins when possible is certainly desirable; fluid therapy is an effective prevention measure in certain clinical circumstances. Supporting cardiac output, mean arterial pressure, and renal perfusion pressure are indicated to reduce the risk for acute renal failure. Nonionic, isoosmolar intravenous contrast should be used in high-risk patients. Although urine output and serum creatinine lack sensitivity and specificity in acute renal failure, they remain the most used parameters in clinical practice. SUMMARY There are identified risk factors of acute renal failure. Because acute renal failure is associated with a worsening outcome, particularly if occurring in critical illness and if severe enough to require renal replacement therapy, preventive measures should be part of appropriate management.
Collapse
Affiliation(s)
- Martine Leblanc
- Department of Nephrology, University of Montreal, Montreal, Canada.
| | | | | | | | | | | |
Collapse
|
1677
|
Ikeda M, Prachasilchai W, Burne-Taney MJ, Rabb H, Yokota-Ikeda N. Ischemic acute tubular necrosis models and drug discovery: a focus on cellular inflammation. Drug Discov Today 2006; 11:364-70. [PMID: 16580979 DOI: 10.1016/j.drudis.2006.02.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 01/09/2006] [Accepted: 02/24/2006] [Indexed: 11/18/2022]
Abstract
Acute renal failure (ARF) is a common cause of mortality and morbidity in hospitalized patients. Ischemia is an important cause of ARF, and ARF caused by ischemic injury is referred to as ischemic acute tubular necrosis (ATN). There is growing evidence from models that ischemic ATN is associated with intrarenal inflammation. Consequently, intrarenal inflammation is an attractive target for the development of novel drug therapies for ARF. This review outlines ischemic ATN models, the pathophysiological roles of inflammatory cells such as T and B cells in ischemic ATN models, and effective T and B cell therapeutic reagents.
Collapse
Affiliation(s)
- Masahiro Ikeda
- Department of Veterinary Pharmacology, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki 889-2192, Japan
| | | | | | | | | |
Collapse
|
1678
|
Yuen PST, Jo SK, Holly MK, Hu X, Star RA. Ischemic and nephrotoxic acute renal failure are distinguished by their broad transcriptomic responses. Physiol Genomics 2006; 25:375-86. [PMID: 16507785 PMCID: PMC1502395 DOI: 10.1152/physiolgenomics.00223.2005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Acute renal failure (ARF) has a high morbidity and mortality. In animal ARF models, effective treatments must be administered before or shortly after the insult, limiting their clinical potential. We used microarrays to identify early biomarkers that distinguish ischemic from nephrotoxic ARF or biomarkers that detect both injury types. We compared rat kidney transcriptomes at 2 and 8 h after ischemia/reperfusion and after mercuric chloride. Quality control and statistical analyses were necessary to normalize microarrays from different lots, eliminate outliers, and exclude unaltered genes. Principal component analysis revealed distinct ischemic and nephrotoxic trajectories and clear array groupings. Therefore, we used supervised analysis, t-tests, and fold changes to compile gene lists for each group, exclusive or nonexclusive, alone or in combination. There was little network connectivity, even in the largest group. Some microarray-identified genes were validated by TaqMan assay, ruling out artifacts. Western blotting confirmed that heme oxygenase-1 (HO-1) and activating transcription factor-3 (ATF3) proteins were upregulated; however, unexpectedly, their localization changed within the kidney. HO-1 staining shifted from cortical (early) to outer stripe of the outer medulla (late), primarily in detaching cells, after mercuric chloride but not ischemia/reperfusion. ATF3 staining was similar, but with additional early transient expression in the outer stripe after ischemia/reperfusion. We conclude that microarray-identified genes must be evaluated not only for protein levels but also for anatomical distribution among different zones, nephron segments, or cell types. Although protein detection reagents are limited, microarray data lay a rich foundation to explore biomarkers, therapeutics, and the pathophysiology of ARF.
Collapse
Affiliation(s)
- Peter S T Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1268, USA.
| | | | | | | | | |
Collapse
|
1679
|
Journal club. Kidney Int 2006. [DOI: 10.1038/sj.ki.5000228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
1680
|
Berger T, Togawa A, Duncan GS, Elia AJ, You-Ten A, Wakeham A, Fong HEH, Cheung CC, Mak TW. Lipocalin 2-deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemia-reperfusion injury. Proc Natl Acad Sci U S A 2006; 103:1834-9. [PMID: 16446425 PMCID: PMC1413671 DOI: 10.1073/pnas.0510847103] [Citation(s) in RCA: 374] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Diverse functions have been reported for lipocalin 2. To investigate these functions in vivo, we generated gene-targeted lipocalin 2-deficient mice (Lcn2-/- mice). In vitro studies have suggested that lipocalin 2 is important for cellular apoptosis induced by IL-3 withdrawal, and for the induction of kidney differentiation during embryogenesis. Analysis of Lcn2-/- mice showed normal cell death upon IL-3 withdrawal and normal kidney development. However, we found that Lcn2-/- mice exhibited an increased susceptibility to bacterial infections, in keeping with the proposed function of lipocalin 2 in iron sequestration. Neutrophils isolated from Lcn2-/- mice showed significantly less bacteriostatic activity compared with WT controls. The bacteriostatic property of the WT neutrophils was abolished by the addition of exogenous iron, indicating that the main function of lipocalin 2 in the antibacterial innate immune response is to limit this essential element. Another important function ascribed to lipocalin 2 has been its protective role against kidney ischemia-reperfusion injury. We analyzed Lcn2-/- mice using a mouse model for severe renal failure and could not detect any significant differences compared with their WT littermates.
Collapse
Affiliation(s)
- Thorsten Berger
- *The Campbell Family Institute for Breast Cancer Research and the Ontario Cancer Institute, University Health Network, Toronto, ON, Canada M5G 2C1
| | - Atsushi Togawa
- Department of Molecular Genetics, Kyoto University Graduate School of Medicine, Shogoin Kawahara-cho 53, Sakyo-ku, Kyoto 606-8507, Japan; and
| | - Gordon S. Duncan
- *The Campbell Family Institute for Breast Cancer Research and the Ontario Cancer Institute, University Health Network, Toronto, ON, Canada M5G 2C1
| | - Andrew J. Elia
- *The Campbell Family Institute for Breast Cancer Research and the Ontario Cancer Institute, University Health Network, Toronto, ON, Canada M5G 2C1
| | - Annick You-Ten
- *The Campbell Family Institute for Breast Cancer Research and the Ontario Cancer Institute, University Health Network, Toronto, ON, Canada M5G 2C1
| | - Andrew Wakeham
- *The Campbell Family Institute for Breast Cancer Research and the Ontario Cancer Institute, University Health Network, Toronto, ON, Canada M5G 2C1
| | - Hannah E. H. Fong
- *The Campbell Family Institute for Breast Cancer Research and the Ontario Cancer Institute, University Health Network, Toronto, ON, Canada M5G 2C1
| | - Carol C. Cheung
- *The Campbell Family Institute for Breast Cancer Research and the Ontario Cancer Institute, University Health Network, Toronto, ON, Canada M5G 2C1
- Department of Pathology, University Health Network, Toronto, ON, Canada M5G 2C1
| | - Tak W. Mak
- *The Campbell Family Institute for Breast Cancer Research and the Ontario Cancer Institute, University Health Network, Toronto, ON, Canada M5G 2C1
- To whom correspondence should be addressed at:
The Campbell Family Institute for Breast Cancer Research/Ontario Cancer Institute, 620 University Avenue, Suite 706, Toronto, ON, Canada M5G 2C1. E-mail:
| |
Collapse
|
1681
|
|
1682
|
Tarabishi R, Zahedi K, Mishra J, Ma Q, Kelly C, Tehrani K, Devarajan P. Induction of Zf9 in the kidney following early ischemia/reperfusion. Kidney Int 2005; 68:1511-9. [PMID: 16164628 DOI: 10.1111/j.1523-1755.2005.00563.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND An improved understanding of the early cell injury mechanisms is critical for effective therapy of acute renal failure (ARF). METHODS We utilized cDNA microarrays to identify renal genes that are induced very early after renal ischemia in a mouse model, whose protein products might provide novel information regarding the pathogenesis of ARF. The findings were confirmed by downstream mRNA and protein expression studies, as well as knockdown analysis with antisense primers. RESULTS The maximally induced gene (21-fold at 3 hours of reflow) was Zf9, a Kruppel-like transcription factor involved in the regulation of transforming growth factor-beta1 (TGF-beta1). The rapid induction of Zf9 mRNA was confirmed by Northern analysis (14.5-fold at 3 hours of reflow) and that of Zf9 protein by Western analysis (10.5-fold at 3 hours of reflow). Zf9 protein was induced in both proximal and distal tubule cells in a cytoplasmic as well as nuclear distribution. TGF-beta1 protein was also up-regulated in a pattern parallel to that of Zf9. In cultured human proximal tubule cells, induction of ischemia by partial adenosine triphosphate (ATP) depletion resulted in a rapid up-regulation of both Zf9 and of TGF-beta1 proteins. Antisense oligonucleotides to Zf9 markedly blunted the induction of Zf9 and TGF-beta1, and significantly inhibited the apoptotic response to ATP depletion. CONCLUSION Induction of Zf9 and its transactivating factor TGF-beta1 may play a critical and hitherto unrecognized role in the early apoptotic response to ischemic renal injury.
Collapse
Affiliation(s)
- Ridwan Tarabishi
- Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | |
Collapse
|
1683
|
Zhou H, Kato A, Miyaji T, Yasuda H, Fujigaki Y, Yamamoto T, Yonemura K, Takebayashi S, Mineta H, Hishida A. Urinary marker for oxidative stress in kidneys in cisplatin-induced acute renal failure in rats. Nephrol Dial Transplant 2005; 21:616-23. [PMID: 16384831 DOI: 10.1093/ndt/gfi314] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Establishment of non-invasive urinary biomarkers for the prediction of acute renal failure (ARF) is important. We evaluated whether urinary oxidative stress markers reflect intrarenal oxidative stress in cisplatin (CDDP)-induced ARF, and whether these markers can be used for the prediction of future ARF. METHODS Urinary malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were measured up to day 14 post-CDDP (6 mg/kg) injection in rats. MDA and 8-OHdG expressions were examined in kidneys. RESULTS CDDP induced an increase in serum creatinine (Scr), blood urea nitrogen (BUN), and tubular damage at day 5, increased urinary MDA excretion and MDA expression in kidneys at day 1 (but returned to basal values by day 3), increased urinary excretion of 8-OHdG at day 5 till day 14 (though the number of 8-OHdG-positive tubular cells increased at day 5 and then gradually decreased). Urinary MDA levels at day 1 correlated significantly with Scr (rho = 0.721, P < 0.01) and tubular damage score (rho = 0.840, P < 0.01) at day 5. CONCLUSION Our findings demonstrated divergent changes of urinary oxidative stress markers in CDDP-induced ARF, and suggested that urinary MDA may be a useful marker for the prediction of the development of CDDP-induced ARF.
Collapse
Affiliation(s)
- Hua Zhou
- First Department of Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1684
|
Molls RR, Savransky V, Liu M, Bevans S, Mehta T, Tuder RM, King LS, Rabb H. Keratinocyte-derived chemokine is an early biomarker of ischemic acute kidney injury. Am J Physiol Renal Physiol 2005; 290:F1187-93. [PMID: 16368740 DOI: 10.1152/ajprenal.00342.2005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is the leading cause of acute kidney injury [AKI; acute renal failure (ARF)] in native kidneys and delayed graft function in deceased donor kidney transplants. Serum creatinine rises late after renal IRI, which results in delayed diagnosis. There is an important need to identify novel biomarkers for early diagnosis and prognosis in renal IRI. Given the inflammatory pathophysiology of renal IRI, we used a protein array to measure 18 cytokines and chemokines in a mouse model of renal IRI at 3, 24, and 72 h postischemia. A rise in renal keratinocyte-derived chemokine (KC) was the earliest and most consistent compared with other molecules, with 3-h postischemia values being 9- and 13-fold greater than sham and normal animals, respectively. Histological changes were evident within 1 h of IRI but serum creatinine only increased 24 h after IRI. With the use of an ELISA, KC levels in serum and urine were highest 3 h postischemia, well before a significant rise in serum creatinine. The human analog of KC, Gro-alpha, was markedly elevated in urine from humans who received deceased donor kidney transplants that required dialysis, compared with deceased donor kidney recipients with good graft function and live donor recipients with minimal ischemia. Measurement of KC and its human analog, Gro-alpha, could serve as a useful new biomarker for ischemic ARF.
Collapse
Affiliation(s)
- Roshni R Molls
- Johns Hopkins Univ. School of Medicine, Ross 965, 720 Rutland Ave, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
1685
|
Hemdahl AL, Gabrielsen A, Zhu C, Eriksson P, Hedin U, Kastrup J, Thorén P, Hansson GK. Expression of neutrophil gelatinase-associated lipocalin in atherosclerosis and myocardial infarction. Arterioscler Thromb Vasc Biol 2005; 26:136-42. [PMID: 16254208 DOI: 10.1161/01.atv.0000193567.88685.f4] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Neutrophil gelatinase-associated lipocalin (NGAL) modulates the activity of matrix metalloproteinase (MMP) 9, an important mediator of vascular remodeling and plaque instability in atherosclerosis. This study aimed to analyze the expression of NGAL in atherosclerotic plaques and myocardial infarction (MI). METHODS AND RESULTS Atherosclerotic apolipoprotein E (apoE)(-/-) x low-density lipoprotein receptor (LDLR)(-/-) and C57BL/6J control mice were exposed to brief hypoxic stress (10 minutes of 10% oxygen). Expression of the mouse NGAL homolog (24p3) and MMP-9 was analyzed 48 hours later by quantitative RT-PCR, immunohistochemistry, and zymography. Hypoxic stress increased NGAL/24p3 mRNA in the cardiac vasculature. NGAL/24p3 was also increased in atherosclerotic plaques of apolipoprotein E(-/-) x LDLR(-/-) mice compared with C57BL/6J mice. Mice developing MI exhibited the highest plaque mRNA expression of NGAL/24p3 and MMP-9. Zymography revealed strong proteolytic activity in areas rich in 24p3 and MMP-9 protein. Immunohistochemistry performed on human carotid endarterectomy specimens and control tissue from the internal mammary artery showed colocalization of MMP-9 and NGAL with macrophages in the atherosclerotic plaques. CONCLUSIONS NGAL/24p3 is increased in atherosclerotic plaques and MI. Colocalization with MMP-9 in areas with high-proteolytic activity suggests a role for NGAL/24p3 in modulating the MMP-9-mediated remodeling of plaques and infarcted hearts.
Collapse
Affiliation(s)
- Anne-Louise Hemdahl
- Center for Molecular Medicine, Department of Medicine, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
1686
|
|
1687
|
Vaidya VS, Ramirez V, Ichimura T, Bobadilla NA, Bonventre JV. Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. Am J Physiol Renal Physiol 2005; 290:F517-29. [PMID: 16174863 DOI: 10.1152/ajprenal.00291.2005] [Citation(s) in RCA: 459] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sensitive and specific biomarkers are needed to detect early kidney injury. The objective of the present work was to develop a sensitive quantitative urinary test to identify renal injury in the rodent to facilitate early assessment of pathophysiological influences and drug toxicity. Two mouse monoclonal antibodies were made against the purified ectodomain of kidney injury molecule-1 (Kim-1), and these were used to construct a sandwich Kim-1 ELISA. The assay range of this ELISA was 50 pg/ml to 5 ng/ml, with inter- and intra-assay variability of <10%. Urine samples were collected from rats treated with one of three doses of cisplatin (2.5, 5, or 7.5 mg/kg). At one day after each of the doses, there was an approximately three- to fivefold increase in the urine Kim-1 ectodomain, whereas other routinely used biomarkers measured in this study [plasma creatinine, blood urea nitrogen (BUN), urinary N-acetyl-beta-glucosaminidase (NAG), glycosuria, proteinuria] lacked the sensitivity to show any sign of renal damage at this time point. When rats were subjected to increasing periods (10, 20, 30, or 45 min) of bilateral ischemia, there was an increasing amount of urinary Kim-1 detected. After only 10 min of bilateral ischemia, Kim-1 levels on day 1 were 10-fold higher (5 ng/ml) than control levels, whereas plasma creatinine and BUN were not increased and there was no glycosuria, increased proteinuria, or increased urinary NAG levels. Thus urinary Kim-1 levels serve as a noninvasive, rapid, sensitive, reproducible, and potentially high-throughput method to detect early kidney injury in pathophysiological studies and in preclinical drug development studies for risk-benefit profiling of pharmaceutical agents.
Collapse
Affiliation(s)
- Vishal S Vaidya
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, 4 Blackfan Circle, Harvard Institutes of Medicine, Rm. 550, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
1688
|
Parikh CR, Abraham E, Ancukiewicz M, Edelstein CL. Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit. J Am Soc Nephrol 2005; 16:3046-52. [PMID: 16148039 DOI: 10.1681/asn.2005030236] [Citation(s) in RCA: 361] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Serum creatinine is not an ideal marker of renal function in patients with acute kidney injury (AKI). Previous studies demonstrated that urinary IL-18 is increased in human AKI. Thus, whether urine IL-18 is an early diagnostic marker of AKI was investigated. A nested case-control study was performed within the Acute Respiratory Distress Syndrome (ARDS) Network trial. AKI was defined as an increase in serum creatinine by at least 50% within the first 6 d of ARDS study enrollment. A total of 400 urine specimens that were collected on study days 0, 1, and 3 of the ARDS trial were available from 52 case patients and 86 control patients. The data were analyzed in a cross-sectional manner and according to the time before development of AKI. The median urine IL-18 levels were significantly different at 24 and 48 h before AKI in case patients as compared with control patients. On multivariable analysis, urine IL-18 values predicted development of AKI 24 and 48 h later after adjustment for demographics, sepsis, Acute Physiologic Assessment and Chronic Health Evaluation (APACHE) III score, serum creatinine, and urine output. Urine IL-18 levels of >100 pg/ml are associated with increased odds of AKI of 6.5 (95% confidence interval 2.1 to 20.4) in the next 24 h. On diagnostic performance testing, urine IL-18 demonstrates an area under the receiver operating characteristic curve of 73% to predict AKI in the next 24 h. The urine IL-18 values were also significantly different between survivors and nonsurvivors (P < 0.05), and on multivariable analysis, the urine IL-18 value on day 0 is an independent predictor of mortality. Urinary IL-18 levels can be used for the early diagnosis of AKI. Urine IL-18 levels also predict the mortality of patients who have ARDS and are in the intensive care unit.
Collapse
Affiliation(s)
- Chirag R Parikh
- Yale University, Section of Nephrology, 950 Campbell Avenue, Box 151B, West Haven, CT 06516, USA.
| | | | | | | |
Collapse
|
1689
|
Nguyen MT, Ross GF, Dent CL, Devarajan P. Early prediction of acute renal injury using urinary proteomics. Am J Nephrol 2005; 25:318-26. [PMID: 15961952 DOI: 10.1159/000086476] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 05/09/2005] [Indexed: 01/04/2023]
Abstract
AIMS The lack of early biomarkers for acute renal failure (ARF) has crippled our ability to launch potentially effective therapeutic measures. We tested the hypothesis that urinary proteomics could identify novel early biomarker patterns for ischemic renal injury. METHODS Sixty patients undergoing cardiopulmonary bypass (CPB) were enrolled. Urine samples obtained at 2 and 6 h post CPB were analyzed by Surface-Enhanced Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (SELDI-TOF-MS). The primary outcome variable was ARF, defined as a 50% or greater increase in serum creatinine. RESULTS Fifteen patients (25%) developed ARF 2-3 days after CPB. SELDI-TOF-MS analysis of urine from the ARF group at baseline versus at 2 and 6 h post-CPB consistently showed a marked and statistically significant enhancement of protein biomarkers with m/z of 6.4, 28.5, 43 and 66 kDa. The same biomarkers were enhanced when comparing control versus ARF groups at 2 and 6 h post-CPB. The sensitivity and specificity of the 28.5-, 43- and 66-kDa biomarkers for the prediction of ARF at 2 h following CPB was 100%. The receiver operating characteristic curves revealed an area under the curve of 0.98. CONCLUSION SELDI-TOF-MS is a novel, non-invasive, sensitive, highly predictive, reproducible, rapid method for the prediction of acute renal injury following CPB.
Collapse
Affiliation(s)
- Mai T Nguyen
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, OH 45229, USA
| | | | | | | |
Collapse
|