1751
|
Hajjar R, Oliero M, Cuisiniere T, Fragoso G, Calvé A, Djediai S, Annabi B, Richard CS, Santos MM. Improvement of colonic healing and surgical recovery with perioperative supplementation of inulin and galacto-oligosaccharides. Clin Nutr 2021; 40:3842-3851. [PMID: 34130031 DOI: 10.1016/j.clnu.2021.04.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/08/2021] [Accepted: 04/19/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND AIMS Anastomotic leak (AL) is a major complication in colorectal surgery. Recent evidence suggests that the gut microbiota may affect healing and may cause or prevent AL. Butyrate is a beneficial short-chain fatty acid (SCFA) that is produced as a result of bacterial fermentation of dietary oligosaccharides and has been described as beneficial in the maintenance of colonic health. To assess the impact of oligosaccharides on colonic anastomotic healing in mice, we propose to modulate the microbiota with oligosaccharides to increase butyrate production via enhancement of butyrate-producing bacteria and, consequently, improve anastomotic healing in mice. METHODS Animal experiments were conducted in mice that were subjected to diets supplemented with inulin, galacto-oligosaccharides (GOS) or cellulose, as a control, for two weeks before undergoing a surgical colonic anastomosis. Macroscopic and histological assessment of the anastomosis was performed. Extent of epithelial proliferation was assessed by Ki-67 immunohistochemistry. Gelatin zymography was used to evaluate the extent of matrix metalloproteinase (MMP) hydrolytic activity. RESULTS Inulin and GOS diets were associated with increased butyrate production and better anastomotic healing. Histological analysis revealed an enhanced mucosal continuity, and this was associated with an increased re-epithelialization of the wound as determined by increased epithelial proliferation. Collagen concentration in peri-anastomotic tissue was higher with inulin and GOS diets and MMP activity, a marker of collagen degradation, was lower with both oligosaccharides. Inulin and GOS diets were further associated with lower bacterial translocation. CONCLUSIONS Dietary supplementation with inulin and GOS may improve anastomotic healing and reinforce the gut barrier in mice.
Collapse
Affiliation(s)
- Roy Hajjar
- Nutrition and Microbiome Laboratory, Institut du Cancer de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada; Digestive Surgery Service, Department of Surgery, Centre hospitalier de l'Université de Montréal (CHUM), 1000 Rue Saint-Denis, Montréal, Québec, H2X 0C1, Canada; Department of Surgery, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
| | - Manon Oliero
- Nutrition and Microbiome Laboratory, Institut du Cancer de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada
| | - Thibault Cuisiniere
- Nutrition and Microbiome Laboratory, Institut du Cancer de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada
| | - Gabriela Fragoso
- Nutrition and Microbiome Laboratory, Institut du Cancer de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada
| | - Annie Calvé
- Nutrition and Microbiome Laboratory, Institut du Cancer de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada
| | - Souad Djediai
- Molecular Oncology Laboratory, Department of Chemistry, Université du Québec à Montréal (UQAM), P. O. Box 8888, Succ. Centre-Ville, Montréal, Québec, H3C 3P8, Canada
| | - Borhane Annabi
- Molecular Oncology Laboratory, Department of Chemistry, Université du Québec à Montréal (UQAM), P. O. Box 8888, Succ. Centre-Ville, Montréal, Québec, H3C 3P8, Canada
| | - Carole S Richard
- Digestive Surgery Service, Department of Surgery, Centre hospitalier de l'Université de Montréal (CHUM), 1000 Rue Saint-Denis, Montréal, Québec, H2X 0C1, Canada; Department of Surgery, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
| | - Manuela M Santos
- Nutrition and Microbiome Laboratory, Institut du Cancer de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada; Department of Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, H3T 1J4, Canada.
| |
Collapse
|
1752
|
Abstract
The term "small intestinal bacterial overgrowth" (SIBO) has been used to refer to a disorder resulting from the colonization of the small bowel by an increased number of microorganisms or by the presence of bacteria that are not usual constituents of this part of the gastrointestinal tract. Clinical presentations, often in patients with certain risk factors, can range from a full-blown malabsorption syndrome to such "functional" complaints as bloating and flatulence. SIBO is diagnosed by either culture of a small bowel aspirate or one of several breath tests. Treatment of SIBO entails risk factor modification, correction of nutritional deficiencies, and oral antibiotics.
Collapse
Affiliation(s)
- Daniel Bushyhead
- Division of Gastroenterology and Hepatology, Lynda K and David M Underwood Center for Digestive Disorders, Houston Methodist Hospital, 6550 Fannin Street Suite 1201, Houston, TX 77030, USA.
| | - Eamonn M Quigley
- Division of Gastroenterology and Hepatology, Lynda K and David M Underwood Center for Digestive Disorders, Houston Methodist Hospital, 6550 Fannin Street Suite 1201, Houston, TX 77030, USA
| |
Collapse
|
1753
|
Lin W, Jiang C, Yu H, Wang L, Li J, Liu X, Wang L, Yang H. The effects of Fushen Granule on the composition and function of the gut microbiota during Peritoneal Dialysis-Related Peritonitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153561. [PMID: 33857850 DOI: 10.1016/j.phymed.2021.153561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/16/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Peritoneal dialysis (PD) is an acknowledged treatment for patients with irreversible kidney failure. The treatment usually causes peritoneal dialysis-related peritonitis (PDRP), a common complication of PD that can lead to inadequate dialysis, gastrointestinal dysfunction, and even death. Recent studies indicated that Fushen Granule (FSG), a Chinese herbal formula, improves the treatment of PD. However, the mechanism of how FSG plays its role in the improvement is still unclear. Gut microbiota has been closely related to the development of various diseases. We carried out a randomized controlled trial to assess whether FSG can modulate the gut microbiota during PDRP treatment. METHODS Forty-two PDRP patients were recruited into the clinical trial, and they were randomly divided into control(CON), probiotics(PRO) or Fushen granule group(FSG). To check whether FSG improve the PD treatment, we assessed the clinical parameters, including albumin(ALB), hemoglobin(HGB), blood urea nitrogen(BUN) and creatinine(CR). Fecal samples were collected before hospitalization and discharge, and stored at -80°C within 1 hour. And we assessed the microbial population and function by applying the 16S rRNA gene sequencing and functional enrichment analysis. RESULTS Compared to control group, ALB is improved in both probiotics and FSG groups, while HGB is increased but BUN and CR is reduced in FSG group. Sequencing of 16S rRNA genes revealed that FSG and PRO affected the composition of the microbial community. FSG significantly increased a abundant represented by Bacteroides, Megamonas and Rothia, which was significantly correlated with the improvements in carbohydrate and amino acid metabolism. CONCLUSIONS This study demonstrates that FSG ameliorates the nutritional status and improves the quality of life by enriching beneficial bacteria associated with metabolism. These results indicate that FSG as alternative medicine is a promising treatment for patients with PDRP.
Collapse
Affiliation(s)
- Wei Lin
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, PR China
| | - Chen Jiang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, PR China
| | - Hangxing Yu
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, PR China
| | - Lingling Wang
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jiaqi Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, PR China
| | - Xinyue Liu
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, PR China
| | - Lingyun Wang
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, PR China.
| |
Collapse
|
1754
|
Cuellar-Núñez ML, Gonzalez de Mejia E, Loarca-Piña G. Moringa oleifera leaves alleviated inflammation through downregulation of IL-2, IL-6, and TNF-α in a colitis-associated colorectal cancer model. Food Res Int 2021; 144:110318. [PMID: 34053523 DOI: 10.1016/j.foodres.2021.110318] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
New chemopreventive alternatives are needed due to the rising worldwide incidence of colorectal cancer. The objective was to evaluate the chemopreventive activity of Moringa oleifera leaves (MO) in a colitis-associated colon carcinogenesis model. We hypothesized that MO contain bioactive compounds capable of modulating the expression of genes involved in the inflammatory response and carcinogenesis. Forty-eight male mice (CD-1) were divided into six groups; 1: Healthy control; 2: Positive control induced with azoxymethane (AOM, 10 mg/Kg body weight, intraperitoneal injection) and three cycles of dextran sodium sulfate (DSS, 1.5% in drinking water); groups 3, 4, and 5 were induced with AOM/DSS and supplemented with 5%, 10%, and 20% of MO, respectively; group 6: had no disease induction and supplemented with 20% of MO. Mice were treated for 12 weeks and euthanized. Significant differences (p < 0.05) were found for the moringa-administered groups in morphological and histopathological parameters compared to the AOM/DSS control. A decrease in myeloperoxidase activity (~50%) and lipid peroxidation (1.9-3.1 times) were found in groups with 10% and 20% of MO compared to the AOM/DSS control (p < 0.05). The group supplemented with 10% MO showed a significant increase (~3 times) in butyrate and propionate in fecal and cecal content. Groups supplemented with 10%, and 20% MO showed a reduction in proinflammatory cytokines in serum (MCP-1, IL-6, TNF-α) compared to the AOM/DSS control. Treatment with 10% MO induced differential expression of 65 genes in colon tissue such as IL-2, IL-6, TNF, IL-1ß, and INF-γ. MO downregulated proinflammatory mediators showing chemopreventive properties against inflammatory response and colon carcinogenesis.
Collapse
Affiliation(s)
- M L Cuellar-Núñez
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, Qro 76010, Mexico; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL 61801, United States
| | - E Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL 61801, United States
| | - G Loarca-Piña
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, Qro 76010, Mexico.
| |
Collapse
|
1755
|
Ioannou A, Knol J, Belzer C. Microbial Glycoside Hydrolases in the First Year of Life: An Analysis Review on Their Presence and Importance in Infant Gut. Front Microbiol 2021; 12:631282. [PMID: 34122357 PMCID: PMC8194493 DOI: 10.3389/fmicb.2021.631282] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/03/2021] [Indexed: 01/15/2023] Open
Abstract
The first year of life is a crucial period during which the composition and functionality of the gut microbiota develop to stabilize and resemble that of adults. Throughout this process, the gut microbiota has been found to contribute to the maturation of the immune system, in gastrointestinal physiology, in cognitive advancement and in metabolic regulation. Breastfeeding, the “golden standard of infant nutrition,” is a cornerstone during this period, not only for its direct effect but also due to its indirect effect through the modulation of gut microbiota. Human milk is known to contain indigestible carbohydrates, termed human milk oligosaccharides (HMOs), that are utilized by intestinal microorganisms. Bacteria that degrade HMOs like Bifidobacterium longum subsp. infantis, Bifidobacterium bifidum, and Bifidobacterium breve dominate the infant gut microbiota during breastfeeding. A number of carbohydrate active enzymes have been found and identified in the infant gut, thus supporting the hypothesis that these bacteria are able to degrade HMOs. It is suggested that via resource-sharing and cross-feeding, the initial utilization of HMOs drives the interplay within the intestinal microbial communities. This is of pronounced importance since these communities promote healthy development and some of their species also persist in the adult microbiome. The emerging production and accessibility to metagenomic data make it increasingly possible to unravel the metabolic capacity of entire ecosystems. Such insights can increase understanding of how the gut microbiota in infants is assembled and makes it a possible target to support healthy growth. In this manuscript, we discuss the co-occurrence and function of carbohydrate active enzymes relevant to HMO utilization in the first year of life, based on publicly available metagenomic data. We compare the enzyme profiles of breastfed children throughout the first year of life to those of formula-fed infants.
Collapse
Affiliation(s)
- Athanasia Ioannou
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Jan Knol
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands.,Danone Nutricia Research, Utrecht, Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
1756
|
Zhang C, Zhao Y, Jiang J, Yu L, Tian F, Zhao J, Zhang H, Chen W, Zhai Q. Identification of the key characteristics of Bifidobacterium longum strains for the alleviation of ulcerative colitis. Food Funct 2021; 12:3476-3492. [PMID: 33900330 DOI: 10.1039/d1fo00017a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bifidobacterium longum (B. longum) species are widely used to prevent and treat ulcerative colitis (UC). In this study, phylogenetic and pan-genomic characterization of 122 B. longum strains was performed on the basis of 936 core genes; among these, four strains from different branches of the phylogenetic tree were selected for an evaluation of anti-inflammatory and immune modulatory activities in a DSS-induced colitis mouse model. Among the tested B. longum strains (B. longum FBJ20M1, B. longum FGDLZ8M1, B. longum FGSZY16M3, and B. longum FJSWXJ2M1), B. longum FGDLZ8M1 was found to most effectively alleviate colitis by reducing the expression of pro-inflammatory cytokines, restoring the colon length, and maintaining the mucosal integrity. The anti-inflammatory mechanisms of B. longum FGDLZ8M1 were related to the inhibition of NF-κB signaling. Genomic analysis indicated that these protective effects of B. longum FGDLZ8M1 may be related to specific genes associated with carbohydrate transport and metabolism and defense mechanisms (e.g., tolerance to bile salts and acids). Correlation analysis indicated that gastrointestinal transit tolerance was the most strongly associated factor. Our findings may contribute to the rapid screening of lactic acid bacterial strains with UC-alleviating effects.
Collapse
Affiliation(s)
- Chengcheng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinchi Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China and Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, China and (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China and Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
1757
|
Qi R, Sun J, Qiu X, Zhang Y, Wang J, Wang Q, Huang J, Ge L, Liu Z. The intestinal microbiota contributes to the growth and physiological state of muscle tissue in piglets. Sci Rep 2021; 11:11237. [PMID: 34045661 PMCID: PMC8160342 DOI: 10.1038/s41598-021-90881-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Although the importance of the intestinal microbiota in host growth and health is well known, the relationship between microbiota colonization and muscle development is unclear. In this study, the direct causal effects of the colonization of gut microorganisms on the muscle tissue of piglets were investigated. The body weight and lean mass of germ-free (GF) piglets were approximately 40% lower than those of normal piglets. The deletion of the intestinal microbiota led to weakened muscle function and a reduction in myogenic regulatory proteins, such as MyoG and MyoD, in GF piglets. In addition, the blinded IGF1/AKT/mTOR pathway in GF piglets caused muscle atrophy and autophagy, which were characterized by the high expression of Murf-1 and KLF15. Gut microbiota introduced to GF piglets via fecal microbiota transplantation not only colonized the gut but also partially restored muscle growth and development. Furthermore, the proportion of slow-twitch muscle fibers was lower in the muscle of GF piglets, which was caused by the reduced short-chain fatty acid content in the circulation and impaired mitochondrial function in muscle. Collectively, these findings suggest that the growth, development and function of skeletal muscle in animals are mediated by the intestinal microbiota.
Collapse
Affiliation(s)
- Renli Qi
- Chongqing Academy of Animal Science, Rongchang, Chongqing, 402460, China. .,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture and Rural Areas, Rongchang, Chongqing, 402460, China. .,Chongqing Key Laboratory of Pig Industry Sciences, Rongchang, Chongqing, 402460, China.
| | - Jing Sun
- Chongqing Academy of Animal Science, Rongchang, Chongqing, 402460, China
| | - Xiaoyu Qiu
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture and Rural Areas, Rongchang, Chongqing, 402460, China
| | - Yong Zhang
- Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Jing Wang
- Chongqing Academy of Animal Science, Rongchang, Chongqing, 402460, China
| | - Qi Wang
- Chongqing Academy of Animal Science, Rongchang, Chongqing, 402460, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Science, Rongchang, Chongqing, 402460, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture and Rural Areas, Rongchang, Chongqing, 402460, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Science, Rongchang, Chongqing, 402460, China. .,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture and Rural Areas, Rongchang, Chongqing, 402460, China. .,Chongqing Key Laboratory of Pig Industry Sciences, Rongchang, Chongqing, 402460, China.
| | - Zuohua Liu
- Chongqing Academy of Animal Science, Rongchang, Chongqing, 402460, China. .,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture and Rural Areas, Rongchang, Chongqing, 402460, China.
| |
Collapse
|
1758
|
Potential Modulatory Microbiome Therapies for Prevention or Treatment of Inflammatory Bowel Diseases. Pharmaceuticals (Basel) 2021; 14:ph14060506. [PMID: 34073220 PMCID: PMC8229898 DOI: 10.3390/ph14060506] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
A disturbed interaction between the gut microbiota and the mucosal immune system plays a pivotal role in the development of inflammatory bowel disease (IBD). Various compounds that are produced by the gut microbiota, from its metabolism of diverse dietary sources, have been found to possess anti-inflammatory and anti-oxidative properties in in vitro and in vivo models relevant to IBD. These gut microbiota-derived metabolites may have similar, or more potent gut homeostasis-promoting effects compared to the widely-studied short-chain fatty acids (SCFAs). Available data suggest that mainly members of the Firmicutes are responsible for producing metabolites with the aforementioned effects, a phylum that is generally underrepresented in the microbiota of IBD patients. Further efforts aiming at characterizing such metabolites and examining their properties may help to develop novel modulatory microbiome therapies to treat or prevent IBD.
Collapse
|
1759
|
Gasaly N, de Vos P, Hermoso MA. Impact of Bacterial Metabolites on Gut Barrier Function and Host Immunity: A Focus on Bacterial Metabolism and Its Relevance for Intestinal Inflammation. Front Immunol 2021; 12:658354. [PMID: 34122415 PMCID: PMC8187770 DOI: 10.3389/fimmu.2021.658354] [Citation(s) in RCA: 266] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
The diverse and dynamic microbial community of the human gastrointestinal tract plays a vital role in health, with gut microbiota supporting the development and function of the gut immune barrier. Crosstalk between microbiota-gut epithelium and the gut immune system determine the individual health status, and any crosstalk disturbance may lead to chronic intestinal conditions, such as inflammatory bowel diseases (IBD) and celiac disease. Microbiota-derived metabolites are crucial mediators of host-microbial interactions. Some beneficially affect host physiology such as short-chain fatty acids (SCFAs) and secondary bile acids. Also, tryptophan catabolites determine immune responses, such as through binding to the aryl hydrocarbon receptor (AhR). AhR is abundantly present at mucosal surfaces and when activated enhances intestinal epithelial barrier function as well as regulatory immune responses. Exogenous diet-derived indoles (tryptophan) are a major source of endogenous AhR ligand precursors and together with SCFAs and secondary bile acids regulate inflammation by lowering stress in epithelium and gut immunity, and in IBD, AhR expression is downregulated together with tryptophan metabolites. Here, we present an overview of host microbiota-epithelium- gut immunity crosstalk and review how microbial-derived metabolites contribute to host immune homeostasis. Also, we discuss the therapeutic potential of bacterial catabolites for IBD and celiac disease and how essential dietary components such as dietary fibers and bacterial tryptophan catabolites may contribute to intestinal and systemic homeostasis.
Collapse
Affiliation(s)
- Naschla Gasaly
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, Netherlands
| | - Marcela A Hermoso
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
1760
|
Orso G, Solovyev MM, Facchiano S, Tyrikova E, Sateriale D, Kashinskaya E, Pagliarulo C, Hoseinifar HS, Simonov E, Varricchio E, Paolucci M, Imperatore R. Chestnut Shell Tannins: Effects on Intestinal Inflammation and Dysbiosis in Zebrafish. Animals (Basel) 2021; 11:ani11061538. [PMID: 34070355 PMCID: PMC8228309 DOI: 10.3390/ani11061538] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary With the increase in global population the production of animal proteins becomes increasingly crucial. Aquaculture is the first animal protein supply industry for human consumption. Intensive farming techniques are employed to increase productivity, but these may cause stressful conditions for fish, resulting in impaired growth and poor health conditions. Intestinal inflammation is one of the most common diseases of fish in intensive farming. Intestinal inflammation is usually accompanied by an alteration of the microbiota or dysbiosis. Inflammation and dysbiosis are so tightly intertwined that inflammation may contribute to or result from dysregulation of gut microbiota. Natural substances of plant origin rich in bioactive molecules or more simply phytochemicals, have been proved to be able to reduce inflammation and improve the general health status in various commercially relevant species. In this study, we evaluated the effect of tannins, a class of polyphenols, the most abundant phytochemicals, on intestinal inflammation and microbiota in zebrafish (Danio rerio), a small freshwater fish become an attractive biomedicine and aquaculture animal model during the last decades. The zebrafish has been employed in a vast array of studies aiming at investigating the essential processes underlying intestinal inflammation and injury due to its conservative gut morphology and functions. In this study, we administered a diet enriched with chestnut shell extract rich in tannins to a zebrafish model of intestinal inflammation. The treatment ameliorated the damaged intestinal morphophysiology and the microbiota asset. Our results sustain that products of natural origin with low environmental impact and low cost, such as tannins, may help to ease some of the critical issues affecting the aquaculture sector. Abstract The aim of the present study was to test the possible ameliorative efficacy of phytochemicals such as tannins on intestinal inflammation and dysbiosis. The effect of a chestnut shell (Castanea sativa) extract (CSE) rich in polyphenols, mainly represented by tannins, on k-carrageenan-induced intestinal inflammation in adult zebrafish (Danio rerio) was tested in a feeding trial. Intestinal inflammation was induced by 0.1% k-carrageenan added to the diet for 10 days. CSE was administered for 10 days after k-carrageenan induced inflammation. The intestinal morphology and histopathology, cytokine expression, and microbiota were analyzed. The k-carrageenan treatment led to gut lumen expansion, reduction of intestinal folds, and increase of the goblet cells number, accompanied by the upregulation of pro-inflammatory factors (TNFα, COX2) and alteration in the number and ratio of taxonomic groups of bacteria. CSE counteracted the inflammatory status enhancing the growth of health helpful bacteria (Enterobacteriaceae and Pseudomonas), decreasing the pro-inflammatory factors, and activating the anti-inflammatory cytokine IL-10. In conclusion, CSE acted as a prebiotic on zebrafish gut microbiota, sustaining the use of tannins as food additives to ameliorate the intestinal inflammation. Our results may be relevant for both aquaculture and medical clinic fields.
Collapse
Affiliation(s)
- Graziella Orso
- Department of Science and Technology (DST), University of Sannio, 82100 Benevento, Italy; (G.O.); (S.F.); (D.S.); (C.P.); (E.V.); (R.I.)
| | - Mikhail M. Solovyev
- Institute of Systematics and Ecology of Animals, Siberian Branch of RAS, 630091 Novosibirsk, Russia; (M.M.S.); (E.T.); (E.K.)
- Biological Institute, Tomsk State University, 634050 Tomsk, Russia
| | - Serena Facchiano
- Department of Science and Technology (DST), University of Sannio, 82100 Benevento, Italy; (G.O.); (S.F.); (D.S.); (C.P.); (E.V.); (R.I.)
| | - Evgeniia Tyrikova
- Institute of Systematics and Ecology of Animals, Siberian Branch of RAS, 630091 Novosibirsk, Russia; (M.M.S.); (E.T.); (E.K.)
- Department of Natural Sciences, Novosibirsk State University, 630091 Novosibirsk, Russia
| | - Daniela Sateriale
- Department of Science and Technology (DST), University of Sannio, 82100 Benevento, Italy; (G.O.); (S.F.); (D.S.); (C.P.); (E.V.); (R.I.)
| | - Elena Kashinskaya
- Institute of Systematics and Ecology of Animals, Siberian Branch of RAS, 630091 Novosibirsk, Russia; (M.M.S.); (E.T.); (E.K.)
| | - Caterina Pagliarulo
- Department of Science and Technology (DST), University of Sannio, 82100 Benevento, Italy; (G.O.); (S.F.); (D.S.); (C.P.); (E.V.); (R.I.)
| | - Hossein S. Hoseinifar
- Department of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, 49138-15739 Gorgan, Iran;
| | - Evgeniy Simonov
- Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, 625003 Tyumen, Russia;
| | - Ettore Varricchio
- Department of Science and Technology (DST), University of Sannio, 82100 Benevento, Italy; (G.O.); (S.F.); (D.S.); (C.P.); (E.V.); (R.I.)
| | - Marina Paolucci
- Department of Science and Technology (DST), University of Sannio, 82100 Benevento, Italy; (G.O.); (S.F.); (D.S.); (C.P.); (E.V.); (R.I.)
- Correspondence:
| | - Roberta Imperatore
- Department of Science and Technology (DST), University of Sannio, 82100 Benevento, Italy; (G.O.); (S.F.); (D.S.); (C.P.); (E.V.); (R.I.)
| |
Collapse
|
1761
|
Liu Y, Gao Y, Ma F, Sun M, Mu G, Tuo Y. The ameliorative effect of Lactobacillus plantarum Y44 oral administration on inflammation and lipid metabolism in obese mice fed with a high fat diet. Food Funct 2021; 11:5024-5039. [PMID: 32530448 DOI: 10.1039/d0fo00439a] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In our previous studies, Lactobacillus plantarum Y44 showed antioxidant activity and favorable gastric and intestinal transit tolerance. The purpose of this study is to determine whether L. plantarum Y44 could ameliorate intestinal inflammation and lipid metabolism disorder in obese mice fed with a high-fat diet. L. plantarum Y44 was administered by gavage to the mice fed with a high-fat diet for 12 weeks. The mice fed with a high fat diet only showed sustainably elevated body weight, liver lipid metabolism disorder, intestinal inflammation and a lower short chain fatty acid content in feces. Oral administration of L. plantarum Y44 regulated lipid metabolism disorder by inhibiting the expression of fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) in the liver of obese mice, reducing the contents of total cholesterol (TC), triacylglycerols (TG), low density lipoprotein cholesterol (LDL-c), alanine aminotransferase (ALT), and aspartate transaminase (AST) and increasing the content of high-density lipoprotein cholesterol (HDL-c) in the serum of obese mice. Oral administration of L. plantarum Y44 up-regulated the expression of colon tight junction protein such as claudin-1 and occludin, down-regulated p38 and phospho-p38 levels and reduced serum interleukin-8 (IL-8) and tumor necrosis factor-α (TNF-α). Oral administration of L. plantarum Y44 increased Muribaculaceae, Rikenellaceae, and Lactobacillaceae levels, reduced the Firmicutes/Bacteroidetes ratio, and Desulfovibrionaceae and Proteobacteria levels in obese mice. Oral administration of L. plantarum Y44 also enhanced the contents of propionic acid, butyric acid, butanoicacid-3-methyl, pentanoic acid and acetic acid in the feces of the obese mice. Correlation analysis of Spearman revealed a significant correlation between changes in intestinal microflora and obesity-related symptoms. L. plantarum Y44 ameliorated intestinal inflammation and lipid metabolism disorders by modulating gut microbiota.
Collapse
Affiliation(s)
- Yujun Liu
- School of food science and technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Yuan Gao
- School of food science and technology, Dalian Polytechnic University, Dalian 116034, China. and Dalian probiotics function research key laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Fenglian Ma
- School of food science and technology, Dalian Polytechnic University, Dalian 116034, China. and Dalian probiotics function research key laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Mengying Sun
- School of food science and technology, Dalian Polytechnic University, Dalian 116034, China. and Dalian probiotics function research key laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Guangqing Mu
- School of food science and technology, Dalian Polytechnic University, Dalian 116034, China. and Dalian probiotics function research key laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Yanfeng Tuo
- School of food science and technology, Dalian Polytechnic University, Dalian 116034, China. and Dalian probiotics function research key laboratory, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
1762
|
Pérez-Reytor D, Puebla C, Karahanian E, García K. Use of Short-Chain Fatty Acids for the Recovery of the Intestinal Epithelial Barrier Affected by Bacterial Toxins. Front Physiol 2021; 12:650313. [PMID: 34108884 PMCID: PMC8181404 DOI: 10.3389/fphys.2021.650313] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/26/2021] [Indexed: 01/22/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are carboxylic acids produced as a result of gut microbial anaerobic fermentation. They activate signaling cascades, acting as ligands of G-protein-coupled receptors, such as GPR41, GPR43, and GPR109A, that can modulate the inflammatory response and increase the intestinal barrier integrity by enhancing the tight junction proteins functions. These junctions, located in the most apical zone of epithelial cells, control the diffusion of ions, macromolecules, and the entry of microorganisms from the intestinal lumen into the tissues. In this sense, several enteric pathogens secrete diverse toxins that interrupt tight junction impermeability, allowing them to invade the intestinal tissue and to favor gastrointestinal colonization. It has been recently demonstrated that SCFAs inhibit the virulence of different enteric pathogens and have protective effects against bacterial colonization. Here, we present an overview of SCFAs production by gut microbiota and their effects on the recovery of intestinal barrier integrity during infections by microorganisms that affect tight junctions. These properties make them excellent candidates in the treatment of infectious diseases that cause damage to the intestinal epithelium.
Collapse
Affiliation(s)
- Diliana Pérez-Reytor
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Carlos Puebla
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Eduardo Karahanian
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
1763
|
Implications of SCFAs on the Parameters of the Lipid and Hepatic Profile in Pregnant Women. Nutrients 2021; 13:nu13061749. [PMID: 34063900 PMCID: PMC8224042 DOI: 10.3390/nu13061749] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/27/2022] Open
Abstract
Short-chain fatty acids (SCFAs) are the product of the anaerobic intestinal bacterial fermentation of dietary fiber and resistant starch. An abnormal intestinal microbiota may cause a reduction in the production of SCFAs, which stimulate the development of intestinal epithelial cells, nourish enterocytes, influence their maturation and proper differentiation, reduce the pH, and are an additional source of energy for the host. There have been reports of the special role of SCFAs in the regulation of glucose and lipid metabolism during pregnancy. AIM The aim of the study was to analyze the correlation of SCFAs with lipid and hepatic metabolism during pregnancy in relation to the body weight of pregnant women. MATERIAL AND METHODS This study was conducted in pregnant women divided into two groups: Obese (OW-overweight and obese women; n = 48) and lean (CG-control group; n = 48) individuals. The biochemical plasma parameters of lipid metabolism (TG, CH, LDL, HDL), inflammation (CRP), and liver function (ALT, AST, GGT) were determined in all of the subjects. SCFA analysis was performed in the stool samples to measure acetic acid (C 2:0), propionic acid (C 3:0), isobutyric acid (C 4:0 i), butyric acid (C 4:0 n), isovaleric acid (C 5:0 i) valeric acid (C 5:0 n), isocaproic acid (C 6:0 i), caproic acid (C 6:0 n), and heptanoic acid (C 7:0). RESULTS Statistically significant differences in the concentrations of C 3:0 and C 6:0 n were found between women in the OW group compared to the CG group. The other SCFAs tested did not differ significantly depending on BMI. The C 2:0, C 3:0, and C 4:0 n ratios showed differences in both OW and CG groups. In the OW group, no relationship was observed between the concentrations of the SCFAs tested and CRP, ALT, AST. A surprising positive relationship between C 5:0 n and all fractions of the tested lipids and branched C 5:0 with CHL, HDL, and LDL was demonstrated. In the OW group, HDL showed a positive correlation with C 3:0. However, lower GGT concentrations were accompanied by higher C 4:0 and C 5:0 values, and this tendency was statistically significant. CONCLUSIONS The results of our research show that some SCFAs are associated with hepatic lipid metabolism and CRP concentrations, which may vary with gestational weight. Obesity in pregnancy reduces the amount of SCFAs in the stool, and a decrease in the level of butyrate reduces liver function.
Collapse
|
1764
|
Joat N, Van TTH, Stanley D, Moore RJ, Chousalkar K. Temporal dynamics of gut microbiota in caged laying hens: a field observation from hatching to end of lay. Appl Microbiol Biotechnol 2021; 105:4719-4730. [PMID: 34014348 DOI: 10.1007/s00253-021-11333-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 11/30/2022]
Abstract
Gut health has major implications for the general health of food-producing animals such as the layer birds used in the egg industry. In order to modulate gut microbiota for the benefit of gut health, an understanding of the dynamics and details of the development of gut microbiota is critical. The present study investigated the phylogenetic composition of the gut microbiota of a commercial layer flock raised in cages from hatch to the end of the production cycle. This study also aimed to understand the establishment and development of gut microbiota in layer chickens. Results showed that the faecal microbiota was dominated by phyla Firmicutes and Proteobacteria in the rearing phase, but Bacteroidetes in mid lay and late lay phase. The gut microbiota composition changed significantly during the transfer of the flock from the rearing to the production shed. The richness and diversity of gut microbiota increased after week 6 of the flocks age and stabilized in the mid and late lay phase. The overall dynamics of gut microbiota development was similar to that reported in earlier studies, but the phylogenetic composition at the phylum and family level was different. The production stage of the birds is one of the important factors in the development of gut microbiota. This study has contributed to a better understanding of baseline gut microbiota development over the complete life cycles in layer chickens and will help to develop strategies to improve the gut health. KEY POINTS: • Faecal microbiota of caged hens was dominated by phyla Firmicutes and Proteobacteria in the rearing phase. • The gut microbiota composition changed significantly during the transfer of the flock from the rearing to the production shed. • The richness and diversity of gut microbiota increased after week 6 of the flocks age and stabilized in the mid and late lay phase.
Collapse
Affiliation(s)
- Nitish Joat
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia
| | - Thi Thu Hao Van
- School of Applied Sciences and Health Innovations Research Institute, RMIT University, Bundoora, Victoria, Australia
| | - Dragana Stanley
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, Australia
| | - Robert J Moore
- School of Applied Sciences and Health Innovations Research Institute, RMIT University, Bundoora, Victoria, Australia
| | - Kapil Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia.
| |
Collapse
|
1765
|
Fang Q, Liu N, Zheng B, Guo F, Zeng X, Huang X, Ouyang D. Roles of Gut Microbial Metabolites in Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2021; 12:636175. [PMID: 34093430 PMCID: PMC8173181 DOI: 10.3389/fendo.2021.636175] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes is a highly prevalent metabolic disease that has emerged as a global challenge due to its increasing prevalence and lack of sustainable treatment. Diabetic kidney disease (DKD), which is one of the most frequent and severe microvascular complications of diabetes, is difficult to treat with contemporary glucose-lowering medications. The gut microbiota plays an important role in human health and disease, and its metabolites have both beneficial and harmful effects on vital physiological processes. In this review, we summarize the current findings regarding the role of gut microbial metabolites in the development and progression of DKD, which will help us better understand the possible mechanisms of DKD and explore potential therapeutic approaches for DKD.
Collapse
Affiliation(s)
- Qing Fang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Na Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Binjie Zheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Fei Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Xinyi Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| |
Collapse
|
1766
|
Reiman D, Layden BT, Dai Y. MiMeNet: Exploring microbiome-metabolome relationships using neural networks. PLoS Comput Biol 2021; 17:e1009021. [PMID: 33999922 PMCID: PMC8158931 DOI: 10.1371/journal.pcbi.1009021] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 05/27/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022] Open
Abstract
The advance in microbiome and metabolome studies has generated rich omics data revealing the involvement of the microbial community in host disease pathogenesis through interactions with their host at a metabolic level. However, the computational tools to uncover these relationships are just emerging. Here, we present MiMeNet, a neural network framework for modeling microbe-metabolite relationships. Using ten iterations of 10-fold cross-validation on three paired microbiome-metabolome datasets, we show that MiMeNet more accurately predicts metabolite abundances (mean Spearman correlation coefficients increase from 0.108 to 0.309, 0.276 to 0.457, and -0.272 to 0.264) and identifies more well-predicted metabolites (increase in the number of well-predicted metabolites from 198 to 366, 104 to 143, and 4 to 29) compared to state-of-art linear models for individual metabolite predictions. Additionally, we demonstrate that MiMeNet can group microbes and metabolites with similar interaction patterns and functions to illuminate the underlying structure of the microbe-metabolite interaction network, which could potentially shed light on uncharacterized metabolites through “Guilt by Association”. Our results demonstrated that MiMeNet is a powerful tool to provide insights into the causes of metabolic dysregulation in disease, facilitating future hypothesis generation at the interface of the microbiome and metabolomics. The microbiome has shown to functionally interact with its host or environment at a metabolic level, however the exact nature of these interactions is not well understood. In addition, metabolic dysregulation caused by the microbiome is believed to contribute to the development of diseases such as inflammatory bowel disease, diabetes mellitus, and obesity. In this manuscript, we introduce a computational framework to integrate microbiome and metabolome data to uncover microbe-metabolite interactions in a data-driven manner. Our model uses neural networks to predict metabolite abundances from microbe abundances. The trained models are then used to derive microbe-metabolite feature scores, which are used for clustering microbes and metabolites into functional modules. These module-based interactions are useful in generating biological insights and facilitating hypothesis generation for the investigation of their roles in various metabolic diseases. The software of our model is made freely available to interested researchers.
Collapse
Affiliation(s)
- Derek Reiman
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Brian T. Layden
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, United States of America
| | - Yang Dai
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
1767
|
Borella F, Carosso AR, Cosma S, Preti M, Collemi G, Cassoni P, Bertero L, Benedetto C. Gut Microbiota and Gynecological Cancers: A Summary of Pathogenetic Mechanisms and Future Directions. ACS Infect Dis 2021; 7:987-1009. [PMID: 33848139 DOI: 10.1021/acsinfecdis.0c00839] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the past 20 years, important relationships between the microbiota and human health have emerged. A link between alterations of microbiota composition (dysbiosis) and cancer development has been recently demonstrated. In particular, the composition and the oncogenic role of intestinal bacterial flora has been extensively investigated in preclinical and clinical studies focusing on gastrointestinal tumors. Overall, the development of gastrointestinal tumors is favored by dysbiosis as it leads to depletion of antitumor substances (e.g., short-chain fatty acids) produced by healthy microbiota. Moreover, dysbiosis leads to alterations of the gut barrier, promotes a chronic inflammatory status through activation of toll-like receptors, and causes metabolic and hormonal dysregulations. However, the effects of these imbalances are not limited to the gastrointestinal tract and they can influence gynecological tumor carcinogenesis as well. The purpose of this Review is to provide a synthetic update about the mechanisms of interaction between gut microbiota and the female reproductive tract favoring the development of neoplasms. Furthermore, novel therapeutic approaches based on the modulation of microbiota and their role in gynecological oncology are discussed.
Collapse
Affiliation(s)
- Fulvio Borella
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Andrea Roberto Carosso
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Stefano Cosma
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Mario Preti
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Giammarco Collemi
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | | | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Chiara Benedetto
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
1768
|
Neckermann K, Claus G, De Baere S, Antonissen G, Lebrun S, Gemmi C, Taminiau B, Douny C, Scippo ML, Schatzmayr D, Gathumbi J, Uhlig S, Croubels S, Delcenserie V. The efficacy and effect on gut microbiota of an aflatoxin binder and a fumonisin esterase using an in vitro simulator of the human intestinal microbial ecosystem (SHIME®). Food Res Int 2021; 145:110395. [PMID: 34112398 DOI: 10.1016/j.foodres.2021.110395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/23/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022]
Abstract
Mycotoxin intoxication is in general an acknowledged and tackled issue in animals. However, in several parts of the world, mycotoxicoses in humans still remain a relevant issue. The efficacy of two mycotoxin detoxifying animal feed additives, an aflatoxin bentonite clay binder and a fumonisin esterase, was investigated in a human child gut model, i.e. the in vitro Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). Additionally, the effect of the detoxifiers on gut microbiota was examined in the SHIME. After an initial two weeks of system stabilisation, aflatoxin B1 (AFB1) and fumonisin B1 (FB1) were added to the SHIME diet during one week. Next, the two detoxifiers and mycotoxins were added to the system for an additional week. The AFB1, FB1, hydrolysed FB1 (HFB1), partially hydrolysed FB1a and FB1b concentrations were determined in SHIME samples using a validated ultra-performance liquid chromatography-tandem mass spectrometry method. The short-chain fatty acid (SCFA) concentrations were determined by a validated gas chromatography-mass spectrometry method. Colonic bacterial communities were analysed using metabarcoding, targeting the hypervariable V1-V3 regions of the 16S rRNA genes. The AFB1 and FB1 concentrations significantly decreased after the addition of the detoxifiers. Likewise, the concentration of HFB1 significantly increased. Concentrations of SCFAs remained generally stable throughout the experiment. No major changes in bacterial composition occurred during the experiment. The results demonstrate the promising effect of these detoxifiers in reducing AFB1 and FB1 concentrations in the human intestinal environment, without compromising the gastrointestinal microbiota.
Collapse
Affiliation(s)
- Kaat Neckermann
- Department of Food Sciences, Faculty of Veterinary Medicine, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium; Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Gregor Claus
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Siegrid De Baere
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Gunther Antonissen
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Sarah Lebrun
- Department of Food Sciences, Faculty of Veterinary Medicine, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium.
| | - Céline Gemmi
- Department of Food Sciences, Faculty of Veterinary Medicine, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium.
| | - Bernard Taminiau
- Department of Food Sciences, Faculty of Veterinary Medicine, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium.
| | - Caroline Douny
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium.
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium.
| | - Dian Schatzmayr
- BIOMIN Holding GmbH, BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria.
| | - James Gathumbi
- Department of Pathology, Parasitology and Microbiology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, 00625 Nairobi, Kenya.
| | - Silvio Uhlig
- Toxinology Research Group, Norwegian Veterinary Institute, Ullevålsveien 68, 0454 Oslo, Norway.
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Véronique Delcenserie
- Department of Food Sciences, Faculty of Veterinary Medicine, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium.
| |
Collapse
|
1769
|
FFAR from the Gut Microbiome Crowd: SCFA Receptors in T1D Pathology. Metabolites 2021; 11:metabo11050302. [PMID: 34064625 PMCID: PMC8151283 DOI: 10.3390/metabo11050302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022] Open
Abstract
The gut microbiome has emerged as a novel determinant of type 1 diabetes (T1D), but the underlying mechanisms are unknown. In this context, major gut microbial metabolites, short-chain fatty acids (SCFAs), are considered to be an important link between the host and gut microbiome. We, along with other laboratories, have explored how SCFAs and their cognate receptors affect various metabolic conditions, including obesity, type 2 diabetes, and metabolic syndrome. Though gut microbiome and SCFA-level changes have been reported in T1D and in mouse models of the disease, the role of SCFA receptors in T1D remains under explored. In this review article, we will highlight the existing and possible roles of these receptors in T1D pathology. We conclude with a discussion of SCFA receptors as therapeutic targets for T1D, exploring an exciting new potential for novel treatments of glucometabolic disorders.
Collapse
|
1770
|
Liu Y, Kong C, Gong L, Zhang X, Zhu Y, Wang H, Qu X, Gao R, Yin F, Liu X, Qin H. The Association of Post-Stroke Cognitive Impairment and Gut Microbiota and its Corresponding Metabolites. J Alzheimers Dis 2021; 73:1455-1466. [PMID: 31929168 DOI: 10.3233/jad-191066] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Post-stroke cognitive impairment (PSCI) is an important factor causing disabilities after acute ischemic stroke (AIS). Emerging evidence suggested that gut microbiota play an important role in cognitive impairment. OBJECTIVE This study aimed to explore the association between PSCI and gut microbiota. METHOD 65 patients with newly diagnostic AIS finished the fecal collection on admission and cognitive assessment 3 months later in the clinic. Fecal samples were subjected to 16SrRNA gene sequencing and gas chromatography-mass spectrometry analysis. Additionally, we enrolled new 18 AIS patients, whose treatment was supplemented by probiotics, to assess the potential of microbial treatment in PSCI. RESULTS PSCI patients were characterized by the significantly decreased alpha-diversity, disturbed microbial composition, and corresponding metabolites compared with non-PSCI patients. Increased Fusobacterium and deficiency of microbial metabolized short-chain fatty acids (SCFAs) were significantly associated with PSCI. A model based on gut microbiota and SCFAs could predict 3 months or longer PSCI early and accurately after stroke onset. While traditional probiotic administration had little effect on PSCI, it could ameliorate patients' mood, including depression and anxiety in the 3 months after stroke. CONCLUSION Our study revealed the association between PSCI and gut microbiota and its corresponding metabolites for the first time, suggesting the potential for applying microbiota and its corresponding metabolites to early clinical diagnosis and treatment of PSCI.
Collapse
Affiliation(s)
- Yongqiang Liu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China.,Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Cheng Kong
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Li Gong
- Department of Neurology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Xiaohui Zhang
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Yuefei Zhu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Haichao Wang
- Department of Neurology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Xiao Qu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Renyuan Gao
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Fang Yin
- Institute of Intestinal Diseases, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Xueyuan Liu
- Department of Neurology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China.,Institute of Intestinal Diseases, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
1771
|
Cuscó A, Pérez D, Viñes J, Fàbregas N, Francino O. Long-read metagenomics retrieves complete single-contig bacterial genomes from canine feces. BMC Genomics 2021; 22:330. [PMID: 33957869 PMCID: PMC8103633 DOI: 10.1186/s12864-021-07607-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Background Long-read sequencing in metagenomics facilitates the assembly of complete genomes out of complex microbial communities. These genomes include essential biologic information such as the ribosomal genes or the mobile genetic elements, which are usually missed with short-reads. We applied long-read metagenomics with Nanopore sequencing to retrieve high-quality metagenome-assembled genomes (HQ MAGs) from a dog fecal sample. Results We used nanopore long-read metagenomics and frameshift aware correction on a canine fecal sample and retrieved eight single-contig HQ MAGs, which were > 90% complete with < 5% contamination, and contained most ribosomal genes and tRNAs. At the technical level, we demonstrated that a high-molecular-weight DNA extraction improved the metagenomics assembly contiguity, the recovery of the rRNA operons, and the retrieval of longer and circular contigs that are potential HQ MAGs. These HQ MAGs corresponded to Succinivibrio, Sutterella, Prevotellamassilia, Phascolarctobacterium, Catenibacterium, Blautia, and Enterococcus genera. Linking our results to previous gastrointestinal microbiome reports (metagenome or 16S rRNA-based), we found that some bacterial species on the gastrointestinal tract seem to be more canid-specific –Succinivibrio, Prevotellamassilia, Phascolarctobacterium, Blautia_A sp900541345–, whereas others are more broadly distributed among animal and human microbiomes –Sutterella, Catenibacterium, Enterococcus, and Blautia sp003287895. Sutterella HQ MAG is potentially the first reported genome assembly for Sutterella stercoricanis, as assigned by 16S rRNA gene similarity. Moreover, we show that long reads are essential to detect mobilome functions, usually missed in short-read MAGs. Conclusions We recovered eight single-contig HQ MAGs from canine feces of a healthy dog with nanopore long-reads. We also retrieved relevant biological insights from these specific bacterial species previously missed in public databases, such as complete ribosomal operons and mobilome functions. The high-molecular-weight DNA extraction improved the assembly’s contiguity, whereas the high-accuracy basecalling, the raw read error correction, the assembly polishing, and the frameshift correction reduced the insertion and deletion errors. Both experimental and analytical steps ensured the retrieval of complete bacterial genomes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07607-0.
Collapse
Affiliation(s)
- Anna Cuscó
- Vetgenomics, Ed Eureka, Parc de Recerca UAB, Barcelona, Spain.
| | - Daniel Pérez
- Molecular Genetics Veterinary Service (SVGM), Veterinary School, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquim Viñes
- Vetgenomics, Ed Eureka, Parc de Recerca UAB, Barcelona, Spain.,Molecular Genetics Veterinary Service (SVGM), Veterinary School, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Norma Fàbregas
- Vetgenomics, Ed Eureka, Parc de Recerca UAB, Barcelona, Spain
| | - Olga Francino
- Molecular Genetics Veterinary Service (SVGM), Veterinary School, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
1772
|
Ailioaie LM, Litscher G. Probiotics, Photobiomodulation, and Disease Management: Controversies and Challenges. Int J Mol Sci 2021; 22:4942. [PMID: 34066560 PMCID: PMC8124384 DOI: 10.3390/ijms22094942] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, researchers around the world have been studying intensively how micro-organisms that are present inside living organisms could affect the main processes of life, namely health and pathological conditions of mind or body. They discovered a relationship between the whole microbial colonization and the initiation and development of different medical disorders. Besides already known probiotics, novel products such as postbiotics and paraprobiotics have been developed in recent years to create new non-viable micro-organisms or bacterial-free extracts, which can provide benefits to the host with additional bioactivity to probiotics, but without the risk of side effects. The best alternatives in the use of probiotics and postbiotics to maintain the health of the intestinal microbiota and to prevent the attachment of pathogens to children and adults are highlighted and discussed as controversies and challenges. Updated knowledge of the molecular and cellular mechanisms involved in the balance between microbiota and immune system for the introspection on the gut-lung-brain axis could reveal the latest benefits and perspectives of applied photobiomics for health. Multiple interconditioning between photobiomodulation (PBM), probiotics, and the human microbiota, their effects on the human body, and their implications for the management of viral infectious diseases is essential. Coupled complex PBM and probiotic interventions can control the microbiome, improve the activity of the immune system, and save the lives of people with immune imbalances. There is an urgent need to seek and develop innovative treatments to successfully interact with the microbiota and the human immune system in the coronavirus crisis. In the near future, photobiomics and metabolomics should be applied innovatively in the SARS-CoV-2 crisis (to study and design new therapies for COVID-19 immediately), to discover how bacteria can help us through adequate energy biostimulation to combat this pandemic, so that we can find the key to the hidden code of communication between RNA viruses, bacteria, and our body.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania;
- Ultramedical & Laser Clinic, 83 Arcu Street, 700135 Iasi, Romania
| | - Gerhard Litscher
- Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, and Traditional Chinese Medicine (TCM) Research Center Graz, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
| |
Collapse
|
1773
|
Thapa S, Venkatachalam A, Khan N, Naqvi M, Balderas M, Runge JK, Haag A, Hoch KM, Glaze DG, Luna RA, Motil KJ. Assessment of the gut bacterial microbiome and metabolome of girls and women with Rett Syndrome. PLoS One 2021; 16:e0251231. [PMID: 33956889 PMCID: PMC8101921 DOI: 10.1371/journal.pone.0251231] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/22/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Gastrointestinal problems affect the health and quality of life of individuals with Rett syndrome (RTT) and pose a medical hardship for their caregivers. We hypothesized that the variability in the RTT phenotype contributes to the dysbiosis of the gut microbiome and metabolome in RTT, predisposing these individuals to gastrointestinal dysfunction. OBJECTIVES We characterized the gut bacterial microbiome and metabolome in girls and young women with RTT (n = 44) and unaffected controls (n = 21), and examined the relation between the composition of the microbiome and variations in the RTT phenotype. METHODS Demographics and clinical information, including growth and anthropometric measurements, pubertal status, symptoms, clinical severity score, bowel movement, medication use, and dietary intakes were collected from the participants. Fecal samples were collected for analysis of the gut microbiome using Illumina MiSeq-based next-generation sequencing of the 16S rRNA gene followed by bioinformatics analysis of microbial composition, diversity, and community structure. Selected end-products of microbial protein metabolism were characterized by liquid chromatography-mass spectrometry. RESULTS The gut bacterial microbiome differed within the RTT cohort based on pubertal status (p<0.02) and clinical severity scores (p<0.02) of the individuals and the type of diet (p<0.01) consumed. Although the composition of the gut microbiome did not differ between RTT and unaffected individuals, concentrations of protein end-products of the gut bacterial metabolome, including γ-aminobutyric acid (GABA) (p<0.001), tyrosine (p<0.02), and glutamate (p<0.06), were lower in the RTT cohort. Differences in the microbiome within RTT groups, based on symptomatic anxiety, hyperventilation, abdominal distention, or changes in stool frequency and consistency, were not detected. CONCLUSIONS Although variability in the RTT phenotype contributes to the dysbiosis of the gut microbiome, we presently cannot infer causality between gut bacterial dysbiosis and gastrointestinal dysfunction. Nevertheless, alterations in the gut metabolome may provide clues to the pathophysiology of gastrointestinal problems in RTT.
Collapse
Affiliation(s)
- Santosh Thapa
- Department of Pathology, Medical Metagenomics Laboratory, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alamelu Venkatachalam
- Department of Pathology, Medical Metagenomics Laboratory, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nabeel Khan
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mohammed Naqvi
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Miriam Balderas
- Department of Pathology, Medical Metagenomics Laboratory, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jessica K. Runge
- Department of Pathology, Medical Metagenomics Laboratory, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anthony Haag
- Department of Pathology, Metabolomics and Proteomics Laboratory, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Kathleen M. Hoch
- Department of Pathology, Metabolomics and Proteomics Laboratory, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Daniel G. Glaze
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neurology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ruth Ann Luna
- Department of Pathology, Medical Metagenomics Laboratory, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kathleen J. Motil
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
1774
|
Zhu G, Su H, Johnson CH, Khan SA, Kluger H, Lu L. Intratumour microbiome associated with the infiltration of cytotoxic CD8+ T cells and patient survival in cutaneous melanoma. Eur J Cancer 2021; 151:25-34. [PMID: 33962358 DOI: 10.1016/j.ejca.2021.03.053] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/11/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The gut microbiome plays an important role in systemic inflammation and immune response. Microbes can translocate and reside in tumour niches. However, it is unclear how the intratumour microbiome affects immunity in human cancer. The purpose of this study was to investigate the association between intratumour bacteria, infiltrating CD8+ T cells and patient survival in cutaneous melanoma. METHODS Using The Cancer Genome Altas's cutaneous melanoma RNA sequencing data, levels of intratumour bacteria and infiltrating CD8+ T cells were determined. Correlation between intratumour bacteria and infiltrating CD8+ T cells or chemokine gene expression and survival analysis of infiltrating CD8+ T cells and Lachnoclostridium in cutaneous melanoma were performed. RESULTS Patients with low levels of CD8+ T cells have significantly shorter survival than those with high levels. The adjusted hazard ratio was 1.57 (low vs high) (95% confidence interval: 1.17-2.10, p = 0.002). Intratumour bacteria of the Lachnoclostridium genus ranked top in a positive association with infiltrating CD8+ T cells (correlation coefficient = 0.38, p = 9.4 × 10-14), followed by Gelidibacter (0.31, p = 1.13 × 10-9), Flammeovirga (0.29, p = 1.96 × 10-8) and Acinetobacter (0.28, p = 8.94 × 10-8). These intratumour genera positively correlated with chemokine CXCL9, CXCL10 and CCL5 expression. The high Lachnoclostridium load significantly reduced the mortality risk (p = 0.0003). However, no statistically significant correlation was observed between intratumour Lachnoclostridium abundance and the levels of either NK, B or CD4+ T cells. CONCLUSION Intratumour-residing gut microbiota could modulate chemokine levels and affect CD8+ T-cell infiltration, consequently influencing patient survival in cutaneous melanoma. Manipulating the intratumour gut microbiome may benefit patient outcomes for those undergoing immunotherapy.
Collapse
Affiliation(s)
- Gongjian Zhu
- Gansu Provincial Academy of Medical Science, Gansu Provincial Cancer Hospital, Lanzhou, 730050, China; Department of Chronic Disease Epidemiology, Yale School of Public Health, School of Medicine, Yale Cancer Center, Yale University, New Haven, CT, USA
| | - Haixiang Su
- Gansu Provincial Academy of Medical Science, Gansu Provincial Cancer Hospital, Lanzhou, 730050, China
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Sajid A Khan
- Department of Surgery, Division of Surgical Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Harriet Kluger
- Department of Medical Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, School of Medicine, Yale Cancer Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
1775
|
Effects of Colonic Fermentation Products of Polydextrose, Lactitol and Xylitol on Intestinal Barrier Repair In Vitro. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many functional food ingredients improve intestinal barrier function through their colonic fermentation products short chain fatty acids (SCFAs). Effects of individual SCFAs have been well studied, but the effects of SCFA mixtures–colonic fermentation products have been rarely investigated. Therefore, this study used an EnteroMix semi-continuous model to simulate the colonic fermentation of three widely used food ingredients, polydextrose, lactitol and xylitol in vitro, and investigated the effects of their fermentation products on impaired colonic epithelial barrier function through a mucus-secreting human HT29-MTX-E12 cell model. Fermentation of polydextrose and lactitol produced mainly acetate, while fermentation of xylitol produced mainly butyrate and resulted in a much higher butyrate proportion. All fermentation products significantly improved intestinal barrier repairing as measured by increased transepithelial electrical resistance and decreased paracellular permeability. Among these, xylitol fermentation products exhibited better repairing effects than that of polydextrose and lactitol. Correlation analysis showed that the repairing effects were attribute to butyrate but not acetate or propionate, implying that in the fermentation products butyrate may play a major role in improving intestinal barrier function. Our results suggest that functional food ingredients that mainly produce butyrate during fermentation may be of more value for improving gut health related to chronic diseases.
Collapse
|
1776
|
Qin T, Fu J, Verkade HJ. The role of the gut microbiome in graft fibrosis after pediatric liver transplantation. Hum Genet 2021; 140:709-724. [PMID: 32920649 PMCID: PMC8052232 DOI: 10.1007/s00439-020-02221-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/29/2020] [Indexed: 12/18/2022]
Abstract
Liver transplantation (LT) is a life-saving option for children with end-stage liver disease. However, about 50% of patients develop graft fibrosis in 1 year after LT, with normal liver function. Graft fibrosis may progress to cirrhosis, resulting in graft dysfunction and ultimately the need for re-transplantation. Previous studies have identified various risk factors for the post-LT fibrogenesis, however, to date, neither of the factors seems to fully explain the cause of graft fibrosis. Recently, evidence has accumulated on the important role of the gut microbiome in outcomes after solid organ transplantation. As an altered microbiome is present in pediatric patients with end-stage liver diseases, we hypothesize that the persisting alterations in microbial composition or function contribute to the development of graft fibrosis, for example by bacteria translocation due to increased intestinal permeability, imbalanced bile acids metabolism, and/or decreased production of short-chain fatty acids (SCFAs). Subsequently, an immune response can be activated in the graft, together with the stimulation of fibrogenesis. Here we review current knowledge about the potential mechanisms by which alterations in microbial composition or function may lead to graft fibrosis in pediatric LT and we provide prospective views on the efficacy of gut microbiome manipulation as a therapeutic target to alleviate the graft fibrosis and to improve long-term survival after LT.
Collapse
Affiliation(s)
- Tian Qin
- Pediatric Gastroenterology/Hepatology, Section of Nutrition and Metabolism, Research Laboratory of Pediatrics, Department of Pediatrics, Beatrix Children's Hospital/University Medical Center Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Jingyuan Fu
- Pediatric Gastroenterology/Hepatology, Section of Nutrition and Metabolism, Research Laboratory of Pediatrics, Department of Pediatrics, Beatrix Children's Hospital/University Medical Center Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Henkjan J Verkade
- Pediatric Gastroenterology/Hepatology, Section of Nutrition and Metabolism, Research Laboratory of Pediatrics, Department of Pediatrics, Beatrix Children's Hospital/University Medical Center Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
1777
|
Bui AT, Williams BA, Murtaza N, Lisle A, Mikkelsen D, Morrison M, Gidley MJ. Wheat-based food form has a greater effect than amylose content on fermentation outcomes and microbial community shifts in an in vitro fermentation model. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
1778
|
Zhang S, Li Z, Zhang Y, Chen J, Li Y, Wu F, Wang W, Cui ZJ, Chen G. Ketone Body 3-Hydroxybutyrate Ameliorates Atherosclerosis via Receptor Gpr109a-Mediated Calcium Influx. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003410. [PMID: 33977048 PMCID: PMC8097358 DOI: 10.1002/advs.202003410] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/19/2020] [Indexed: 02/05/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease that can cause acute cardiovascular events. Activation of the NOD-like receptor family, pyrin domain containing protein 3 (NLRP3) inflammasome enhances atherogenesis, which links lipid metabolism to sterile inflammation. This study examines the impact of an endogenous metabolite, namely ketone body 3-hydroxybutyrate (3-HB), on a mouse model of atherosclerosis. It is found that daily oral administration of 3-HB can significantly ameliorate atherosclerosis. Mechanistically, 3-HB is found to reduce the M1 macrophage proportion and promote cholesterol efflux by acting on macrophages through its receptor G-protein-coupled receptor 109a (Gpr109a). 3-HB-Gpr109a signaling promotes extracellular calcium (Ca2+) influx. The elevation of intracellular Ca2+ level reduces the release of Ca2+ from the endothelium reticulum (ER) to mitochondria, thus inhibits ER stress triggered by ER Ca2+ store depletion. As NLRP3 inflammasome can be activated by ER stress, 3-HB can inhibit the activation of NLRP3 inflammasome, which triggers the increase of M1 macrophage proportion and the inhibition of cholesterol efflux. It is concluded that daily nutritional supplementation of 3-HB attenuates atherosclerosis in mice.
Collapse
Affiliation(s)
- Shu‐jie Zhang
- School of Life SciencesTsinghua UniversityBeijing100084P. R. China
| | - Zi‐hua Li
- School of Life SciencesTsinghua UniversityBeijing100084P. R. China
| | - Yu‐dian Zhang
- School of Life SciencesTsinghua UniversityBeijing100084P. R. China
| | - Jin Chen
- School of Life SciencesTsinghua UniversityBeijing100084P. R. China
| | - Yuan Li
- Institute of Cell BiologyBeijing Normal UniversityBeijing100875P. R. China
| | - Fu‐qing Wu
- School of Life SciencesTsinghua UniversityBeijing100084P. R. China
| | - Wei Wang
- Innovative Institute of Animal Healthy BreedingCollege of Animal Sciences and TechnologyZhongkai University of Agriculture and EngineeringGuangzhou510025P. R. China
- Key Laboratory of Zoonosis ResearchMinistry of EducationCollege of Veterinary MedicineJilin UniversityChangchun130062P. R. China
| | - Zong Jie Cui
- Institute of Cell BiologyBeijing Normal UniversityBeijing100875P. R. China
| | - Guo‐Qiang Chen
- School of Life SciencesTsinghua UniversityBeijing100084P. R. China
- Tsinghua‐Peking Center for Life SciencesTsinghua UniversityBeijing100084P. R. China
- Center for Synthetic and Systems BiologyTsinghua UniversityBeijing100084P. R. China
- MOE Key Laboratory for Industrial BiocatalysisDept Chemical EngineeringTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
1779
|
Bajaj JS, Gavis EA, Fagan A, Wade JB, Thacker LR, Fuchs M, Patel S, Davis B, Meador J, Puri P, Sikaroodi M, Gillevet PM. A Randomized Clinical Trial of Fecal Microbiota Transplant for Alcohol Use Disorder. Hepatology 2021; 73:1688-1700. [PMID: 32750174 DOI: 10.1002/hep.31496] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Alcohol use disorder (AUD) is associated with microbial alterations that worsen with cirrhosis. Fecal microbiota transplant (FMT) could be a promising approach. APPROACH AND RESULTS In this phase 1, double-blind, randomized clinical trial, patients with AUD-related cirrhosis with problem drinking (AUDIT-10 > 8) were randomized 1:1 into receiving one placebo or FMT enema from a donor enriched in Lachnospiraceae and Ruminococcaceae. Six-month safety was the primary outcome. Alcohol craving questionnaire, alcohol consumption (urinary ethylglucuronide/creatinine), quality of life, cognition, serum IL-6 and lipopolysaccharide-binding protein, plasma/stool short-chain fatty acids (SCFAs), and stool microbiota were tested at baseline and day 15. A 6-month follow-up with serious adverse event (SAE) analysis was performed. Twenty patients with AUD-related cirrhosis (65 ± 6.4 years, all men, Model for End-Stage Liver Disease 8.9 ± 2.7) with similar demographics, cirrhosis, and AUD severity were included. Craving reduced significantly in 90% of FMT versus 30% in placebo at day 15 (P = 0.02) with lower urinary ethylglucuronide/creatinine (P = 0.03) and improved cognition and psychosocial quality of life. There was reduction in serum IL-6 and lipopolysaccharide-binding protein and increased butyrate/isobutyrate compared with baseline in FMT but not placebo. Microbial diversity increased with higher Ruminococcaceae and other SCFAs, producing taxa following FMT but not placebo, which were linked with SCFA levels. At 6 months, patients with any SAEs (8 vs. 2, P = 0.02), AUD-related SAEs (7 vs. 1, P = 0.02), and SAEs/patient (median [interquartile range], 1.5 [1.25] vs. 0 [0.25] in FMT, P = 0.02) were higher in placebo versus FMT. CONCLUSIONS This phase 1 trial shows that FMT is safe and associated with short-term reduction in alcohol craving and consumption with favorable microbial changes versus placebo in patients with alcohol-associated cirrhosis with alcohol misuse. There was also a reduction in AUD-related events over 6 months in patients assigned to FMT.
Collapse
Affiliation(s)
- Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, VA
| | - Edith A Gavis
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, VA
| | - Andrew Fagan
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, VA
| | - James B Wade
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA
| | - Leroy R Thacker
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA
| | - Michael Fuchs
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, VA
| | - Samarth Patel
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, VA
| | - Brian Davis
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, VA
| | - Jill Meador
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, VA
| | - Puneet Puri
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, VA
| | | | | |
Collapse
|
1780
|
Wang C, Ma Q, Xue Z, Li R, Wang Q, Li N, Zhang M, Panichayupakaranant P, Chen H. Physicochemical properties, α‐amylase and α‐glucosidase inhibitory effects of the polysaccharide from leaves of Morus alba L. under simulated gastro‐intestinal digestion and its fermentation capability in vitro by human gut microbiota. Int J Food Sci Technol 2021; 56:2098-2108. [DOI: 10.1111/ijfs.14759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/02/2020] [Indexed: 02/05/2023]
Abstract
SummaryThe investigation aimed at determining the impact of sequential simulated digestion on the physicochemical properties and digestive enzymes inhibitory effects of the polysaccharides fraction (MLP‐2) of Morus alba L. leaves as well as its in vitro fermentation behaviours. After artificial salivary, gastric and intestinal digestions, the chemical components and microstructure of MLP‐2 were altered with significantly (P < 0.05) decreased molecular weight. The α‐amylase and α‐glucosidase inhibitory activities of MLP‐2 were significantly (P < 0.05) improved throughout simulated digestion. MLP‐2I, the intestinal digested fraction of MLP‐2, could significantly (P < 0.05) decrease the pH value of fermented culture and increase the short‐chain fatty acids (SCFA) concentrations, especially acetic, propionic and butyric acids. In conclusion, MLP‐2 could be gradually degraded under simulated digestion with altered physicochemical properties and enhanced α‐amylase and α‐glucosidase inhibitory effects, and further utilised by human gut microbiota to decrease pH value and promote SCFA production.
Collapse
Affiliation(s)
- Chunli Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 China
| | - Qiqi Ma
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 China
| | - Zihan Xue
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 China
| | - Ruilin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 China
| | - Qirou Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 China
| | - Nannan Li
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 China
| | - Min Zhang
- Tianjin Agricultural University Tianjin 300384 China
- State Key Laboratory of Nutrition and Safety Tianjin University of Science & Technology Tianjin 300457 China
| | - Pharkphoom Panichayupakaranant
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center Faculty of Pharmaceutical Sciences Prince of Songkla University Hat‐Yai Songkhla 90112 Thailand
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 China
| |
Collapse
|
1781
|
Aldars-García L, Chaparro M, Gisbert JP. Systematic Review: The Gut Microbiome and Its Potential Clinical Application in Inflammatory Bowel Disease. Microorganisms 2021; 9:microorganisms9050977. [PMID: 33946482 PMCID: PMC8147118 DOI: 10.3390/microorganisms9050977] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing-remitting systemic disease of the gastrointestinal tract. It is well established that the gut microbiome has a profound impact on IBD pathogenesis. Our aim was to systematically review the literature on the IBD gut microbiome and its usefulness to provide microbiome-based biomarkers. A systematic search of the online bibliographic database PubMed from inception to August 2020 with screening in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was conducted. One-hundred and forty-four papers were eligible for inclusion. There was a wide heterogeneity in microbiome analysis methods or experimental design. The IBD intestinal microbiome was generally characterized by reduced species richness and diversity, and lower temporal stability, while changes in the gut microbiome seemed to play a pivotal role in determining the onset of IBD. Multiple studies have identified certain microbial taxa that are enriched or depleted in IBD, including bacteria, fungi, viruses, and archaea. The two main features in this sense are the decrease in beneficial bacteria and the increase in pathogenic bacteria. Significant differences were also present between remission and relapse IBD status. Shifts in gut microbial community composition and abundance have proven to be valuable as diagnostic biomarkers. The gut microbiome plays a major role in IBD, yet studies need to go from casualty to causality. Longitudinal designs including newly diagnosed treatment-naïve patients are needed to provide insights into the role of microbes in the onset of intestinal inflammation. A better understanding of the human gut microbiome could provide innovative targets for diagnosis, prognosis, treatment and even cure of this relevant disease.
Collapse
Affiliation(s)
- Laila Aldars-García
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain; (L.A.-G.); (M.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
| | - María Chaparro
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain; (L.A.-G.); (M.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
| | - Javier P. Gisbert
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain; (L.A.-G.); (M.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
- Correspondence: ; Tel.: +34-913-093-911; Fax: +34-915-204-013
| |
Collapse
|
1782
|
Porzi M, Burton-Pimentel KJ, Walther B, Vergères G. Development of Personalized Nutrition: Applications in Lactose Intolerance Diagnosis and Management. Nutrients 2021; 13:nu13051503. [PMID: 33946892 PMCID: PMC8145768 DOI: 10.3390/nu13051503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/23/2022] Open
Abstract
Recent discoveries in the “omics” field and the growing focus on preventive health have opened new avenues for personalized nutrition (PN), which is becoming an important theme in the strategic plans of organizations that are active in healthcare, food, and nutrition research. PN holds great potential for individual health optimization, disease management, public health interventions, and product innovation. However, there are still multiple challenges to overcome before PN can be truly embraced by the public and healthcare stakeholders. The diagnosis and management of lactose intolerance (LI), a common condition with a strong inter-individual component, is explored as an interesting example for the potential role of these technologies and the challenges of PN. From the development of genetic and metabolomic LI diagnostic tests that can be carried out in the home, to advances in the understanding of LI pathology and individualized treatment optimization, PN in LI care has shown substantial progress. However, there are still many research gaps to address, including the understanding of epigenetic regulation of lactase expression and how lactose is metabolized by the gut microbiota, in order to achieve better LI detection and effective therapeutic interventions to reverse the potential health consequences of LI.
Collapse
Affiliation(s)
- Millie Porzi
- Laboratory of Human Nutrition, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland;
| | - Kathryn J. Burton-Pimentel
- Agroscope, Federal Department of Economic Affairs, Education and Research EAER, 3003 Bern, Switzerland; (K.J.B.-P.); (B.W.)
| | - Barbara Walther
- Agroscope, Federal Department of Economic Affairs, Education and Research EAER, 3003 Bern, Switzerland; (K.J.B.-P.); (B.W.)
| | - Guy Vergères
- Agroscope, Federal Department of Economic Affairs, Education and Research EAER, 3003 Bern, Switzerland; (K.J.B.-P.); (B.W.)
- Correspondence: ; Tel.: +41-58-463-8154
| |
Collapse
|
1783
|
The role of mucosal barriers in human gut health. Arch Pharm Res 2021; 44:325-341. [PMID: 33890250 DOI: 10.1007/s12272-021-01327-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022]
Abstract
The intestinal mucosa is continuously exposed to a large number of commensal or pathogenic microbiota and foreign food antigens. The intestinal epithelium forms a dynamic physicochemical barrier to maintain immune homeostasis. To efficiently absorb nutrients from food, the epithelium in the small intestine has thin, permeable layers spread over a vast surface area. Epithelial cells are renewed from the crypt toward the villi, accompanying epithelial cell death and shedding, to control bacterial colonization. Tight junction and adherens junction proteins provide epithelial cell-cell integrity. Microbial signals are recognized by epithelial cells via toll-like receptors. Environmental signals from short-chain fatty acids derived from commensal microbiota metabolites, aryl hydrocarbon receptors, and hypoxia-induced factors fortify gut barrier function. Here we summarize recent findings regarding various environmental factors for gut barrier function. Further, we discuss the role of gut barriers in the pathogenesis of human intestinal disease and the challenges of therapeutic strategies targeting gut barrier restoration.
Collapse
|
1784
|
Kushugulova A, Löber U, Akpanova S, Rysbekov K, Kozhakhmetov S, Khassenbekova Z, Essex M, Nurgozhina A, Nurgaziyev M, Babenko D, Markó L, Forslund SK. Dynamic Changes in Microbiome Composition Following Mare's Milk Intake for Prevention of Collateral Antibiotic Effect. Front Cell Infect Microbiol 2021; 11:622735. [PMID: 33968795 PMCID: PMC8097163 DOI: 10.3389/fcimb.2021.622735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/01/2021] [Indexed: 01/22/2023] Open
Abstract
Introduction Probiotics and prebiotics are widely used for recovery of the human gut microbiome after antibiotic treatment. High antibiotic usage is especially common in children with developing microbiome. We hypothesized that dry Mare’s milk, which is rich in biologically active substances without containing live bacteria, could be used as a prebiotic in promoting microbial diversity following antibiotic treatment in children. The present pilot study aims to determine the impacts of dry Mare’s milk on the diversity of gut bacterial communities when administered during antibiotic treatment and throughout the subsequent recovery phase. Methods Six children aged 4 to 5 years and diagnosed with bilateral bronchopneumonia were prescribed cephalosporin antibiotics. During the 60 days of the study, three children consumed dry Mare’s milk whereas the other three did not. Fecal samples were collected daily during antibiotic therapy and every 5 days after antibiotic therapy. Total DNA was isolated and taxonomic composition of gut microbiota was analyzed by 16S rRNA amplicon sequencing. To assess the immune status of the gut, stool samples were analyzed by bead-based multiplex assays. Results Mare’s milk treatment seems to prevent the bloom of Mollicutes, while preventing the loss of Coriobacteriales. Immunological analysis of the stool reveals an effect of Mare’s milk on local immune parameters under the present conditions.
Collapse
Affiliation(s)
- Almagul Kushugulova
- Laboratory of Human Microbiome and Longevity, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan.,Kazakhstan Society of Human Microbiome Researchers, Nur-Sultan, Kazakhstan.,SaumalBioTech, Nur-Sultan, Kazakhstan
| | - Ulrike Löber
- Experimental and Clinical Research Center, a Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Saniya Akpanova
- Department of Pediatric Diseases with Courses in Cardio-Rheumatology and Gastroenterology, Nur-sultan (Astana) Medical University, Nur-Sultan, Kazakhstan
| | - Kairat Rysbekov
- Department of Pediatric Diseases with Courses in Cardio-Rheumatology and Gastroenterology, Nur-sultan (Astana) Medical University, Nur-Sultan, Kazakhstan
| | - Samat Kozhakhmetov
- Laboratory of Human Microbiome and Longevity, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan.,Kazakhstan Society of Human Microbiome Researchers, Nur-Sultan, Kazakhstan.,SaumalBioTech, Nur-Sultan, Kazakhstan
| | | | - Morgan Essex
- Experimental and Clinical Research Center, a Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin, Berlin, Germany
| | - Ayaulym Nurgozhina
- Laboratory of Human Microbiome and Longevity, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan.,Kazakhstan Society of Human Microbiome Researchers, Nur-Sultan, Kazakhstan
| | - Madiyar Nurgaziyev
- Laboratory of Human Microbiome and Longevity, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan.,Kazakhstan Society of Human Microbiome Researchers, Nur-Sultan, Kazakhstan
| | - Dmitriy Babenko
- Research Center Karaganda Medical University, Karagandy, Kazakhstan
| | - Lajos Markó
- Experimental and Clinical Research Center, a Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Sofia K Forslund
- Experimental and Clinical Research Center, a Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Structural and Computational Biology Unit, The European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
1785
|
Yusuf F, Fahriani M, Mamada SS, Frediansyah A, Abubakar A, Maghfirah D, Fajar JK, Maliga HA, Ilmawan M, Emran TB, Ophinni Y, Innayah MR, Masyeni S, Ghouth ASB, Yusuf H, Dhama K, Nainu F, Harapan H. Global prevalence of prolonged gastrointestinal symptoms in COVID-19 survivors and potential pathogenesis: A systematic review and meta-analysis. F1000Res 2021; 10:301. [PMID: 34131481 PMCID: PMC8171196 DOI: 10.12688/f1000research.52216.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Background: This study aimed to determine the cumulative prevalence of prolonged gastrointestinal (GI) symptoms, including nausea, vomiting, diarrhea, lack of appetite, abdominal pain, and dysgeusia, in survivors of both mild and severe COVID-19 worldwide and to discuss the potential pathogenesis. Methods: Three databases (PubMed, Scopus, and Web of Science) were searched for relevant articles up to January 30, 2021. Data on study characteristics, clinical characteristics during follow-up, the number of patients with prolonged GI symptoms, and total number of COVID-19 survivors were retrieved according to PRISMA guidelines. The quality of eligible studies was assessed using the Newcastle-Ottawa scale. The pooled prevalence of specific prolonged GI symptoms was calculated and the association between COVID-19 severity and the occurrence of prolonged GI symptoms was assessed if appropriate. Results: The global prevalence of prolonged nausea was 3.23% (95% CI: 0.54%-16.53%) among 527 COVID-19 survivors. Vomiting persisted in 93 of 2,238 COVID-19 survivors (3.19%, 95% CI: 1.62%-6.17%) and prolonged diarrhea was found in 34 of 1,073 survivors (4.12%, 95% CI: 1.07%-14.64%). A total of 156 patients among 2,238 COVID-19 survivors (4.41%, 95% CI: 1.91%-9.94%) complained of persistent decreased or loss of appetite. The cumulative prevalence of prolonged abdominal pain was 1.68% (95% CI: 0.84%-3.32%), whereas persistent dysgeusia was identified in 130 cases among 1,887 COVID-19 survivors (7.04%, 95% CI: 5.96%-8.30%). Data was insufficient to assess the relationship between COVID-19 severity and the occurrence of all prolonged GI symptoms. Conclusion: Persistent GI symptoms among COVID-19 survivors after discharge or recovery raises a concern regarding the long-term impact of the COVID-19 infection on the quality of life of the survivors. Despite several potential explanations proposed, studies that aim to follow patients after recovery from COVID-19 and determine the pathogenesis of the prolonged symptoms of COVID-19 survivors are warranted. PROSPERO registration: CRD42021239187.
Collapse
Affiliation(s)
- Fauzi Yusuf
- Division of Gastroenterohepatology, Department of Internal
Medicine, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111,
Indonesia
- Division of Gastroenterohepatology, Department of Internal
Medicine, Dr. Zainoel Abidin Hospital, Banda Aceh, Aceh, 23126, Indonesia
| | - Marhami Fahriani
- Medical Research Unit, School of Medicine, Universitas Syiah
Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Sukamto S. Mamada
- Faculty of Pharmacy, Hasanuddin University, Makassar, South
Sulawesi, 90245, Indonesia
| | - Andri Frediansyah
- Research Division for Natural Product Technology (BPTBA),
Indonesian Institute of Sciences (LIPI), Wonosari, 55861, Indonesia
| | - Azzaki Abubakar
- Division of Gastroenterohepatology, Department of Internal
Medicine, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111,
Indonesia
- Division of Gastroenterohepatology, Department of Internal
Medicine, Dr. Zainoel Abidin Hospital, Banda Aceh, Aceh, 23126, Indonesia
| | - Desi Maghfirah
- Division of Gastroenterohepatology, Department of Internal
Medicine, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111,
Indonesia
- Division of Gastroenterohepatology, Department of Internal
Medicine, Dr. Zainoel Abidin Hospital, Banda Aceh, Aceh, 23126, Indonesia
| | - Jonny Karunia Fajar
- Medical Research Unit, School of Medicine, Universitas Syiah
Kuala, Banda Aceh, Aceh, 23111, Indonesia
- Brawijaya Internal Medicine Research Center, Department of
Internal Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, East
Java, 65145, Indonesia
| | | | - Muhammad Ilmawan
- Faculty of Medicine, Universitas Brawijaya, Malang, East Java,
65117, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh,
Chittagong, 4381, Bangladesh
| | - Youdiil Ophinni
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139,
USA
| | | | - Sri Masyeni
- Department of Internal Medicine, Faculty of Medicine and Health
Sciences, Universitas Warmadewa, Bali, Indonesia
- Department of Internal Medicine, Sanjiwani Hospital, Bali,
Indonesia
| | - Abdulla Salem Bin Ghouth
- Department of Community Medicine, Hadhramout University College
of Medicine, Mukalla, Yemen
- Ministry of Public Health and Population, Sana'a, Yemen
| | - Hanifah Yusuf
- Department of Pharmacology, School of Medicine, Universitas
Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research
Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar, South
Sulawesi, 90245, Indonesia
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah
Kuala, Banda Aceh, Aceh, 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas
Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
- Tropical Disease Centre, School of Medicine, Universitas Syiah
Kuala, Banda Aceh, Aceh, 23111, Indonesia
| |
Collapse
|
1786
|
Patnaude L, Mayo M, Mario R, Wu X, Knight H, Creamer K, Wilson S, Pivorunas V, Karman J, Phillips L, Dunstan R, Kamath RV, McRae B, Terrillon S. Mechanisms and regulation of IL-22-mediated intestinal epithelial homeostasis and repair. Life Sci 2021; 271:119195. [PMID: 33581125 DOI: 10.1016/j.lfs.2021.119195] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/19/2022]
Abstract
AIMS Ulcerative colitis and Crohn's disease, collectively known as inflammatory bowel disease (IBD), are chronic inflammatory disorders of the intestine for which key elements in disease initiation and perpetuation are defects in epithelial barrier integrity. Achieving mucosal healing is essential to ameliorate disease outcome and so new therapies leading to epithelial homeostasis and repair are under investigation. This study was designed to determine the mechanisms by which IL-22 regulates intestinal epithelial cell function. MAIN METHODS Human intestinal organoids and resections, as well as mice were used to evaluate the effect of IL-22 on stem cell expansion, proliferation and expression of mucus components. IL-22 effect on barrier function was assessed in polarized T-84 cell monolayers. Butyrate co-treatments and organoid co-cultures with immune cells were performed to monitor the impact of microbial-derived metabolites and inflammatory environments on IL-22 responses. KEY FINDINGS IL-22 led to epithelial stem cell expansion, proliferation, barrier dysfunction and anti-microbial peptide production in human and mouse models evaluated. IL-22 also altered the mucus layer by inducing an increase in membrane mucus but a decrease in secreted mucus and goblet cell content. IL-22 had the same effect on anti-microbial peptides and membrane mucus in both healthy and IBD human samples. In contrast, this IL-22-associated epithelial phenotype was different when treatments were performed in presence of butyrate and organoids co-cultured with immune cells. SIGNIFICANCE Our data indicate that IL-22 promotes epithelial regeneration, innate defense and membrane mucus production, strongly supporting the potential clinical utility of IL-22 as a mucosal healing therapy in IBD.
Collapse
Affiliation(s)
- Lori Patnaude
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Martha Mayo
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Regina Mario
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Xiaoming Wu
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Heather Knight
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Kelly Creamer
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Sarah Wilson
- Abbvie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Valerie Pivorunas
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Jozsef Karman
- Abbvie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Lucy Phillips
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Robert Dunstan
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Rajesh V Kamath
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Bradford McRae
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Sonia Terrillon
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| |
Collapse
|
1787
|
Abstract
Tuberculosis (TB) remains an infectious disease of global significance and a
leading cause of death in low- and middle-income countries. Significant effort
has been directed towards understanding Mycobacterium
tuberculosis genomics, virulence, and pathophysiology within the
framework of Koch postulates. More recently, the advent of “-omics” approaches
has broadened our appreciation of how “commensal” microbes have coevolved with
their host and have a central role in shaping health and susceptibility to
disease. It is now clear that there is a diverse repertoire of interactions
between the microbiota and host immune responses that can either sustain or
disrupt homeostasis. In the context of the global efforts to combatting TB, such
findings and knowledge have raised important questions: Does microbiome
composition indicate or determine susceptibility or resistance to
M. tuberculosis infection? Is the
development of active disease or latent infection upon M.
tuberculosis exposure influenced by the microbiome? Does
microbiome composition influence TB therapy outcome and risk of reinfection with
M. tuberculosis? Can the microbiome be
actively managed to reduce risk of M.
tuberculosis infection or recurrence of TB? Here, we
explore these questions with a particular focus on microbiome-immune
interactions that may affect TB susceptibility, manifestation and progression,
the long-term implications of anti-TB therapy, as well as the potential of the
host microbiome as target for clinical manipulation.
Collapse
Affiliation(s)
- Giorgia Mori
- The University of Queensland Diamantina Institute, Faculty
of Medicine, The University of Queensland, Brisbane, Australia
| | - Mark Morrison
- The University of Queensland Diamantina Institute, Faculty
of Medicine, The University of Queensland, Brisbane, Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, Faculty
of Medicine, The University of Queensland, Brisbane, Australia
- * E-mail:
| |
Collapse
|
1788
|
Chi T, Zhao Q, Wang P. Fecal 16S rRNA Gene Sequencing Analysis of Changes in the Gut Microbiota of Rats with Low-Dose Aspirin-Related Intestinal Injury. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8848686. [PMID: 33954200 PMCID: PMC8060078 DOI: 10.1155/2021/8848686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 02/06/2021] [Accepted: 02/13/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The incidence of small intestinal injury caused by low-dose aspirin (LDA) is high, but the pathogenesis and intervention measures of it have not been elucidated. Recent studies have found gut microbiota to be closely associated with onset and development of NSAID-induced intestinal injury. However, studies of the changes in the gut microbiota of rats with LDA-related intestinal injury have been lacking recently. In this study, we investigated fecal 16S rRNA gene sequencing analysis of changes in the gut microbiota of rats with LDA-related intestinal injury. METHODS Sprague-Dawley (SD) rat models of small intestinal injury were established by intragastric administration of LDA. The small intestinal tissues and the fecal samples were harvested. The fecal samples were then analyzed using high-throughput sequencing of 16S rRNA V3-V4 amplicons. The gut microbiota composition and diversity were analyzed and compared using principal coordinate analysis (PCoA), nonmetric multidimensional scaling (NMDS) analysis, the unweighted pair-group method with arithmetic mean (UPGMA) clustering analysis, multivariate statistical analysis (ANOSIM, MetaStats, and LEfSe), and spatial statistics. RESULTS The LDA rat model was successfully established. Decreased Firmicutes and increased Bacteroidetes abundances in rats with LDA-induced small intestinal injury were revealed. MetaStats analysis between the before administration of LDA (CG) and after administration of LDA (APC) groups showed that the intestinal floras exhibiting significant differences (P < 0.05, q < 0.1) were Firmicutes, Bacteroides, Cyanobacteria, Melainabacteria, Coriobacteriia, Bacteroidia, Bacteroidales, Eubacteriaceae, and Streptococcaceae. In addition, the bacterial taxa showing significant differences between the control (NS) and APC groups were Firmicutes, Bacteroides, Verrucomicrobiaceae and Peptococcaceae. CONCLUSIONS The alterations in the gut microbiota composition and diversity of rats with LDA-related intestinal injury were found in the present study. The change of gut microbiota in LDA-related intestinal injury will lay the foundation for further research on the function and signaling pathways of the intestinal flora and promote the use of intestinal flora as drug targets to treat LDA-induced small intestinal injury.
Collapse
Affiliation(s)
- Tianyu Chi
- Departments of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Quchuan Zhao
- Departments of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Peili Wang
- Cardiovascular Center, Xi Yuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
1789
|
Xu HM, Huang HL, Xu J, He J, Zhao C, Peng Y, Zhao HL, Huang WQ, Cao CY, Zhou YJ, Zhou YL, Nie YQ. Cross-Talk Between Butyric Acid and Gut Microbiota in Ulcerative Colitis Following Fecal Microbiota Transplantation. Front Microbiol 2021; 12:658292. [PMID: 33912150 PMCID: PMC8071877 DOI: 10.3389/fmicb.2021.658292] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Fecal microbiota transplantation (FMT) can inhibit the progression of ulcerative colitis (UC). However, how FMT modulates the gut microbiota and which biomarker is valuable for evaluating the efficacy of FMT have not been clarified. This study aimed to determine the changes in the gut microbiota and their relationship with butyric acid following FMT for UC. Fecal microbiota (FM) was isolated from healthy individuals or mice and transplanted into 12 UC patients or colitis mice induced by dextran sulfate sodium (DSS). Their clinical colitis severities were monitored. Their gut microbiota were analyzed by 16S sequencing and bioinformatics. The levels of fecal short-chain fatty acids (SCFAs) from five UC patients with recurrent symptoms after FMT and individual mice were quantified by liquid chromatography-mass spectrometry (LC-MS). The impact of butyric acid on the abundance and diversity of the gut microbiota was tested in vitro. The effect of the combination of butyric acid-producing bacterium and FMT on the clinical responses of 45 UC patients was retrospectively analyzed. Compared with that in the controls, the FMT significantly increased the abundance of butyric acid-producing bacteria and fecal butyric acid levels in UC patients. The FMT significantly increased the α-diversity, changed gut microbial structure, and elevated fecal butyric acid levels in colitis mice. Anaerobic culture with butyrate significantly increased the α-diversity of the gut microbiota from colitis mice and changed their structure. FMT combination with Clostridium butyricum-containing probiotics significantly prolonged the UC remission in the clinic. Therefore, fecal butyric acid level may be a biomarker for evaluating the efficacy of FMT for UC, and addition of butyrate-producing bacteria may prolong the therapeutic effect of FMT on UC by changing the gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - You-Lian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yu-Qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
1790
|
Ji Y, Fan X, Zhang Y, Li J, Dai Z, Wu Z. Glycine regulates mucosal immunity and the intestinal microbial composition in weaned piglets. Amino Acids 2021; 54:385-398. [PMID: 33839961 DOI: 10.1007/s00726-021-02976-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023]
Abstract
Glycine is an amino acid with a diverse array of health benefits regarding metabolism, immunity, and development. The aim of this study was to test the hypothesis that glycine supplementation alters the intestinal microbial composition and improves the intestinal mucosal immunity of weaned piglets. One hundred and twenty-eight weaned piglets divided into 4 groups were fed with a corn- and soybean meal-based diet supplemented with 0 (control), 0.5, 1, or 2% glycine for 7 days. The intestinal microbiota and tissue samples from the control and the 2% glycine-supplemented piglets were collected for determination of the composition of microbial community and the intestinal mucosal barrier function. Piglets fed with diet containing 2% glycine, instead of 0.5% or 1% glycine, presented elevated average daily gain and feed conversion ratio, as compared with the control. 2% glycine enhanced the abundance of mucins in the jejunum and ileum and mRNA level of porcine β-defensin (pBD) 2 and pBD-3, as well as the protein level of secretory immunoglobulin A (sIgA) in the jejunum. The mRNA expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, and the protein level of phosphorylated p38 mitogen-activated protein kinase (MAPK), signal transducer and activator of transcription 3 (STAT3), nuclear factor (NF)-κB p65, and claudin-2 in the jejunum were lower in the 2% glycine group than that in the control. In addition, an elevated ratio of CD4+/CD8+ T lymphocytes was observed in the jejunum of piglets receiving diet supplemented with 2% glycine. The colon content of piglets fed with 2% glycine exhibited a reduction in abundance of pathogenic bacteria (Escherichia-Shigella, Clostridium, and Burkholderiales) and an increase in short-chain fatty acid-producing bacteria (Blautia, Lachnospiraceae, Anaerostipes, and Prevotella) in comparison with the control. We conclude that dietary supplementation with 2% glycine improves the intestinal immunological barrier function and the microbial composition, therefore, contributing to the growth performance of weaned piglets.
Collapse
Affiliation(s)
- Yun Ji
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Xiaoxiao Fan
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Yunchang Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Ju Li
- Henan Yinfa Animal Husbandry Co., Xinzheng, 451100, Henan, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
1791
|
Short-Chain Fatty Acids, Maternal Microbiota and Metabolism in Pregnancy. Nutrients 2021; 13:nu13041244. [PMID: 33918804 PMCID: PMC8069164 DOI: 10.3390/nu13041244] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Short-chain fatty acids (SCFAs), as products of intestinal bacterial metabolism, are particularly relevant in the diagnosis of intestinal dysbiosis. The most common studies of microbiome metabolites include butyric acid, propionic acid and acetic acid, which occur in varying proportions depending on diet, age, coexisting disease and other factors. During pregnancy, metabolic changes related to the protection of energy homeostasis are of fundamental importance for the developing fetus, its future metabolic fate and the mother’s health. SCFAs act as signaling molecules that regulate the body’s energy balance through G-protein receptors. GPR41 receptors affect metabolism through the microflora, while GPR43 receptors are recognized as a molecular link between diet, microflora, gastrointestinal tract, immunity and the inflammatory response. The possible mechanism by which the gut microflora may contribute to fat storage, as well as the occurrence of gestational insulin resistance, is blocking the expression of the fasting-induced adipose factor. SCFAs, in particular propionic acid via GPR, determine the development and metabolic programming of the fetus in pregnant women. The mechanisms regulating lipid metabolism during pregnancy are similar to those found in obese people and those with impaired microbiome and its metabolites. The implications of SCFAs and metabolic disorders during pregnancy are therefore critical to maternal health and neonatal development. In this review paper, we summarize the current knowledge about SCFAs, their potential impact and possible mechanisms of action in relation to maternal metabolism during pregnancy. Therefore, they constitute a contemporary challenge to practical nutritional therapy. Material and methods: The PubMed database were searched for “pregnancy”, “lipids”, “SCFA” in conjunction with “diabetes”, “hypertension”, and “microbiota”, and searches were limited to work published for a period not exceeding 20 years in the past. Out of 2927 publication items, 2778 papers were excluded from the analysis, due to being unrelated to the main topic, conference summaries and/or articles written in a language other than English, while the remaining 126 publications were included in the analysis.
Collapse
|
1792
|
Xu Y, Bolvig AK, McCarthy-Sinclair B, Marco ML, Bach Knudsen KE, Hedemann MS, Lærke HN. The role of rye bran and antibiotics on the digestion, fermentation process and short-chain fatty acid production and absorption in an intact pig model. Food Funct 2021; 12:2886-2900. [PMID: 33877244 DOI: 10.1039/d1fo00213a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of arabinoxylan (AX)-rich rye bran based diet (RB) and antibiotics on digestion, fermentation and short-chain fatty acids (SCFA) absorption were studied compared with an iso-dietary fibre (DF) cellulose based diet (CEL). Thirty female pigs (body weight 72.5 ± 3.9 kg) were fed a standard swine diet in week 1, CEL as wash-out for bran-associated bioactive components in week 2 and then divided into 3 groups fed either the CEL (n = 10) or RB (n = 20) for 2 weeks, where 10 pigs from RB had daily intramuscular antibiotic injections (RB+) and the other 10 pigs were untreated (RB-) in week 4. In RB, the degradation of AX mainly occurred in caecum and proximal colon (P < 0.01) and to a higher extent than cellulose, which on the other hand, irrespective of antibiotic treatment, was less degraded in the RB groups than in the CEL (P < 0.01). The apparent digestibility of fat and protein in the distal small intestine was lower for RB than CEL (P < 0.05), the protein digestibility remained lower in most of the colon, and the digestibility was not affected by treatment with antibiotics. The colonic concentrations of SCFA, acetate and propionate as well as the butyrate concentration in the distal colon were lower with the RB treatments compared with CEL (P < 0.01). Caecal butyrate concentrations were on the other hand higher, and a significant reduction was seen with antibiotic treatment (P < 0.001). The daily net absorption of SCFA and acetate was lower with RB than with CEL (P < 0.01). In conclusion, RB resulted in different DF degradation processes and SCFA production compared with CEL, whereas antibiotic treatment had marginal effects on the intestinal DF degradation but hampered butyrate production.
Collapse
Affiliation(s)
- Yetong Xu
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark.
| | | | | | | | | | | | | |
Collapse
|
1793
|
Ortega VA, Mercer EM, Giesbrecht GF, Arrieta MC. Evolutionary Significance of the Neuroendocrine Stress Axis on Vertebrate Immunity and the Influence of the Microbiome on Early-Life Stress Regulation and Health Outcomes. Front Microbiol 2021; 12:634539. [PMID: 33897639 PMCID: PMC8058197 DOI: 10.3389/fmicb.2021.634539] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Stress is broadly defined as the non-specific biological response to changes in homeostatic demands and is mediated by the evolutionarily conserved neuroendocrine networks of the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Activation of these networks results in transient release of glucocorticoids (cortisol) and catecholamines (epinephrine) into circulation, as well as activation of sympathetic fibers innervating end organs. These interventions thus regulate numerous physiological processes, including energy metabolism, cardiovascular physiology, and immunity, thereby adapting to cope with the perceived stressors. The developmental trajectory of the stress-axis is influenced by a number of factors, including the gut microbiome, which is the community of microbes that colonizes the gastrointestinal tract immediately following birth. The gut microbiome communicates with the brain through the production of metabolites and microbially derived signals, which are essential to human stress response network development. Ecological perturbations to the gut microbiome during early life may result in the alteration of signals implicated in developmental programming during this critical window, predisposing individuals to numerous diseases later in life. The vulnerability of stress response networks to maladaptive development has been exemplified through animal models determining a causal role for gut microbial ecosystems in HPA axis activity, stress reactivity, and brain development. In this review, we explore the evolutionary significance of the stress-axis system for health maintenance and review recent findings that connect early-life microbiome disturbances to alterations in the development of stress response networks.
Collapse
Affiliation(s)
- Van A Ortega
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada
| | - Emily M Mercer
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Gerald F Giesbrecht
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada.,Owerko Centre, The Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
1794
|
Rooney J, Cortés A, Scotti R, Price DRG, Bartley Y, Fairlie-Clarke K, McNeilly TN, Nisbet AJ, Cantacessi C. Vaccination against the brown stomach worm, Teladorsagia circumcincta, followed by parasite challenge, induces inconsistent modifications in gut microbiota composition of lambs. Parasit Vectors 2021; 14:189. [PMID: 33823914 PMCID: PMC8025363 DOI: 10.1186/s13071-021-04688-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/16/2021] [Indexed: 01/04/2023] Open
Abstract
Background Growing evidence points towards a role of gastrointestinal (GI) helminth parasites of ruminants in modifying the composition of the host gut flora, with likely repercussions on the pathophysiology of worm infection and disease, and on animal growth and productivity. However, a thorough understanding of the mechanisms governing helminth-microbiota interactions and of their impact on host health and welfare relies on reproducibility and replicability of findings. To this aim, in this study, we analysed quantitative and qualitative fluctuations in the faecal microbiota composition of lambs vaccinated against, and experimentally infected with, the parasitic GI nematode Teladorsagia circumcincta over the course of two separate trials performed over two consecutive years. Methods Two trials were conducted under similar experimental conditions in 2017 and 2018, respectively. In each trial, lambs were randomly assigned to one of the following experimental groups: (i) vaccinated/infected, (ii) unvaccinated/infected and (iii) unvaccinated/uninfected. Faecal samples collected from individual animals were subjected to DNA extraction followed by high-throughput sequencing of the V3-V4 region of the bacterial 16S rRNA gene and bioinformatics and biostatistical analyses of sequence data. Results Substantial differences in the populations of bacteria affected by immunisation against and infection by T. circumcincta were detected when comparing data from the two trials. Nevertheless, the abundance of Prevotella spp. was significantly linked to helminth infection in both trials. Conclusions Despite the largely conflicting findings between the two trials, our data revealed that selected gut microbial populations are consistently affected by T. circumcincta infection and/or vaccination. Nevertheless, our study calls for caution when interpreting data generated from in vivo helminth-microbiome interaction studies that may be influenced by several intrinsic and extrinsic host-, parasite- and environment-related factors.![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04688-4.
Collapse
Affiliation(s)
- James Rooney
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Alba Cortés
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.,Departament de Farmàcia I Tecnologia Farmacèutica I Parasitologia, Facultat de Farmàcia, Universitat de València, Valencia, Spain
| | - Riccardo Scotti
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Daniel R G Price
- Vaccines and Diagnostics Department, Moredun Research Institute, Edinburgh, UK
| | - Yvonne Bartley
- Vaccines and Diagnostics Department, Moredun Research Institute, Edinburgh, UK
| | | | - Tom N McNeilly
- Disease Control Department, Moredun Research Institute, Edinburgh, UK
| | - Alasdair J Nisbet
- Vaccines and Diagnostics Department, Moredun Research Institute, Edinburgh, UK
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
1795
|
Ma G, Du H, Hu Q, Yang W, Pei F, Xiao H. Health benefits of edible mushroom polysaccharides and associated gut microbiota regulation. Crit Rev Food Sci Nutr 2021; 62:6646-6663. [PMID: 33792430 DOI: 10.1080/10408398.2021.1903385] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Edible mushrooms have been an important part of the human diet for thousands of years, and over 100 varieties have been cultivated for their potential human health benefits. In recent years, edible mushroom polysaccharides (EMPs) have been studied for their activities against obesity, inflammatory bowel disease (IBD), and cancer. Particularly, accumulating evidence on the exact causality between these health risks and specific gut microbiota species has been revealed and characterized, and most of the beneficial health effects of EMPs have been associated with its reversal impacts on gut microbiota dysbiosis. This demonstrates the key role of EMPs in decreasing health risks through gut microbiota modulation effects. This review article compiles and summarizes the latest studies that focus on the health benefits and underlying functional mechanisms of gut microbiota regulation via EMPs. We conclude that EMPs can be considered a dietary source for the improvement and prevention of several health risks, and this review provides the theoretical basis and technical guidance for the development of novel functional foods with the utilization of edible mushrooms.
Collapse
Affiliation(s)
- Gaoxing Ma
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Qiuhui Hu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Wenjian Yang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Fei Pei
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
1796
|
Hajjar R, Richard CS, Santos MM. The role of butyrate in surgical and oncological outcomes in colorectal cancer. Am J Physiol Gastrointest Liver Physiol 2021; 320:G601-G608. [PMID: 33404375 PMCID: PMC8238168 DOI: 10.1152/ajpgi.00316.2020] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Butyrate is a short-chain fatty acid produced by colonic gut bacteria as a result of fermentation of dietary fibers. In the colon, butyrate is a major energy substrate and contributes to the nutritional support and proliferation of a healthy mucosa. It also promotes the intestinal barrier function by enhancing mucus production and tight junctions. In addition to its pro-proliferative effect in healthy colonocytes, butyrate inhibits the proliferation of cancer cells. The antineoplastic effect of butyrate is associated with the inhibitory effect of butyrate on histone deacetylase (HDAC) enzymes, which promote carcinogenesis. Due to the metabolic shift of cancer cells toward glycolysis, unused butyrate accumulates and inhibits procarcinogenic HDACs. In addition, recent studies suggest that butyrate may improve the healing of colonic tissue after surgery in animal models, specifically at the site of reconnection of colonic ends, anastomosis, after surgical resection. Here, we review current evidence on the impact of butyrate on epithelial integrity and colorectal cancer and present current knowledge on data that support its potential applications in surgical practice.
Collapse
Affiliation(s)
- Roy Hajjar
- 1Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada,2Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Carole S. Richard
- 1Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada,2Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Manuela M. Santos
- 1Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada,3Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
1797
|
Yeoh YK, Zuo T, Lui GCY, Zhang F, Liu Q, Li AY, Chung AC, Cheung CP, Tso EY, Fung KS, Chan V, Ling L, Joynt G, Hui DSC, Chow KM, Ng SSS, Li TCM, Ng RW, Yip TC, Wong GLH, Chan FK, Wong CK, Chan PK, Ng SC. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 2021; 70:698-706. [PMID: 33431578 PMCID: PMC7804842 DOI: 10.1136/gutjnl-2020-323020] [Citation(s) in RCA: 821] [Impact Index Per Article: 205.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/27/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Although COVID-19 is primarily a respiratory illness, there is mounting evidence suggesting that the GI tract is involved in this disease. We investigated whether the gut microbiome is linked to disease severity in patients with COVID-19, and whether perturbations in microbiome composition, if any, resolve with clearance of the SARS-CoV-2 virus. METHODS In this two-hospital cohort study, we obtained blood, stool and patient records from 100 patients with laboratory-confirmed SARS-CoV-2 infection. Serial stool samples were collected from 27 of the 100 patients up to 30 days after clearance of SARS-CoV-2. Gut microbiome compositions were characterised by shotgun sequencing total DNA extracted from stools. Concentrations of inflammatory cytokines and blood markers were measured from plasma. RESULTS Gut microbiome composition was significantly altered in patients with COVID-19 compared with non-COVID-19 individuals irrespective of whether patients had received medication (p<0.01). Several gut commensals with known immunomodulatory potential such as Faecalibacterium prausnitzii, Eubacterium rectale and bifidobacteria were underrepresented in patients and remained low in samples collected up to 30 days after disease resolution. Moreover, this perturbed composition exhibited stratification with disease severity concordant with elevated concentrations of inflammatory cytokines and blood markers such as C reactive protein, lactate dehydrogenase, aspartate aminotransferase and gamma-glutamyl transferase. CONCLUSION Associations between gut microbiota composition, levels of cytokines and inflammatory markers in patients with COVID-19 suggest that the gut microbiome is involved in the magnitude of COVID-19 severity possibly via modulating host immune responses. Furthermore, the gut microbiota dysbiosis after disease resolution could contribute to persistent symptoms, highlighting a need to understand how gut microorganisms are involved in inflammation and COVID-19.
Collapse
Affiliation(s)
- Yun Kit Yeoh
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tao Zuo
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Grace Chung-Yan Lui
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Fen Zhang
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Qin Liu
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Amy Yl Li
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Arthur Ck Chung
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chun Pan Cheung
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Eugene Yk Tso
- Department of Medicine and Geriatrics, United Christian Hospital, Kwun Tong, Hong Kong
| | - Kitty Sc Fung
- Department of Pathology, United Christian Hospital, Kwun Tong, Hong Kong
| | - Veronica Chan
- Department of Medicine and Geriatrics, United Christian Hospital, Kwun Tong, Hong Kong
| | - Lowell Ling
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Gavin Joynt
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - David Shu-Cheong Hui
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kai Ming Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Susanna So Shan Ng
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Timothy Chun-Man Li
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Rita Wy Ng
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Terry Cf Yip
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Grace Lai-Hung Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Francis Kl Chan
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Paul Ks Chan
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Siew C Ng
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
1798
|
Almonte AA, Rangarajan H, Yip D, Fahrer AM. How does the gut microbiome influence immune checkpoint blockade therapy? Immunol Cell Biol 2021; 99:361-372. [PMID: 33147357 DOI: 10.1111/imcb.12423] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/21/2020] [Accepted: 11/01/2020] [Indexed: 01/11/2023]
Abstract
Immune checkpoint blockade (ICB) therapies are revolutionary cancer treatments; however, they only benefit about a third of patients. Therefore, extensive research is underway to find methods to improve their therapeutic efficacy. One avenue of study that has recently emerged is to consider the role the gut microbiome plays in therapeutic success. Several high-impact studies have repeatedly shown that the presence, composition and level of diversity of the gut flora directly impact cancer treatment outcome in both mice and patients. These studies have also highlighted the danger of using antibiotics shortly before or during cancer treatments. However, there are still several questions that need to be answered, including which bacteria promote the greatest benefit, the mechanisms by which they act and how we can use this information to influence treatment outcome. In this review, we explain how the gut microbiome was realized to be of such importance and propose hypotheses for why gut flora have such a critical impact on ICB therapeutic success. We also describe a hypothetical mechanism involving bacterial translocation out of the gut and into the tumor, whereby the bacteria act in an adjuvant capacity to facilitate an antitumor response. By highlighting key papers in the field, we hope to hasten research on the subject so as to find a means to improve the therapeutic efficacy of these ground-breaking cancer treatments.
Collapse
Affiliation(s)
- Andrew A Almonte
- Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Acton, ACT, Australia
| | - Hareesha Rangarajan
- Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Acton, ACT, Australia
| | - Desmond Yip
- Department of Medical Oncology, The Canberra Hospital and ANU Medical School, Australian National University, Garran, ACT, Australia
| | - Aude M Fahrer
- Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Acton, ACT, Australia
| |
Collapse
|
1799
|
The Effects of Pro-, Pre-, and Synbiotics on Muscle Wasting, a Systematic Review-Gut Permeability as Potential Treatment Target. Nutrients 2021; 13:nu13041115. [PMID: 33805286 PMCID: PMC8065581 DOI: 10.3390/nu13041115] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023] Open
Abstract
Muscle wasting is a frequently observed, inflammation-driven condition in aging and disease, known as sarcopenia and cachexia. Current treatment strategies target the muscle directly and are often not able to reverse the process. Because a reduced gut function is related to systemic inflammation, this might be an indirect target to ameliorate muscle wasting, by administering pro-, pre-, and synbiotics. Therefore, this review aimed to study the potential of pro-, pre-, and synbiotics to treat muscle wasting and to elucidate which metabolites and mechanisms affect the organ crosstalk in cachexia. Overall, the literature shows that Lactobacillus species pluralis (spp.) and possibly other genera, such as Bifidobacterium, can ameliorate muscle wasting in mouse models. The beneficial effects of Lactobacillus spp. supplementation may be attributed to its potential to improve microbiome balance and to its reported capacity to reduce gut permeability. A subsequent literature search revealed that the reduction of a high gut permeability coincided with improved muscle mass or strength, which shows an association between gut permeability and muscle mass. A possible working mechanism is proposed, involving lactate, butyrate, and reduced inflammation in gut–brain–muscle crosstalk. Thus, reducing gut permeability via Lactobacillus spp. supplementation could be a potential treatment strategy for muscle wasting.
Collapse
|
1800
|
Lupo GFD, Rocchetti G, Lucini L, Lorusso L, Manara E, Bertelli M, Puglisi E, Capelli E. Potential role of microbiome in Chronic Fatigue Syndrome/Myalgic Encephalomyelits (CFS/ME). Sci Rep 2021; 11:7043. [PMID: 33782445 PMCID: PMC8007739 DOI: 10.1038/s41598-021-86425-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) is a severe multisystemic disease characterized by immunological abnormalities and dysfunction of energy metabolism. Recent evidences suggest strong correlations between dysbiosis and pathological condition. The present research explored the composition of the intestinal and oral microbiota in CFS/ME patients as compared to healthy controls. The fecal metabolomic profile of a subgroup of CFS/ME patients was also compared with the one of healthy controls. The fecal and salivary bacterial composition in CFS/ME patients was investigated by Illumina sequencing of 16S rRNA gene amplicons. The metabolomic analysis was performed by an UHPLC-MS. The fecal microbiota of CFS/ME patients showed a reduction of Lachnospiraceae, particularly Anaerostipes, and an increased abundance of genera Bacteroides and Phascolarctobacterium compared to the non-CFS/ME groups. The oral microbiota of CFS/ME patients showed an increase of Rothia dentocariosa. The fecal metabolomic profile of CFS/ME patients revealed high levels of glutamic acid and argininosuccinic acid, together with a decrease of alpha-tocopherol. Our results reveal microbial signatures of dysbiosis in the intestinal microbiota of CFS/ME patients. Further studies are needed to better understand if the microbial composition changes are cause or consequence of the onset of CFS/ME and if they are related to any of the several secondary symptoms.
Collapse
Affiliation(s)
- Giuseppe Francesco Damiano Lupo
- Department for Sustainable Food Process-DiSTAS, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
- Laboratory of Immunology and Genetic Analysis, Department of Earth and Environmental Science, University of Pavia, 27100, Pavia, Italy
- Centre for Health Technologies, University of Pavia, 27100, Pavia, Italy
| | - Gabriele Rocchetti
- Department for Sustainable Food Process-DiSTAS, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process-DiSTAS, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Lorenzo Lorusso
- ASST Lecco, UOC Neurology and Stroke Unit, Merate, LC, Italy
| | - Elena Manara
- MAGI Euregio, Via Maso della Pieve, 60/A, 39100, Bolzano, Italy
| | - Matteo Bertelli
- MAGI Euregio, Via Maso della Pieve, 60/A, 39100, Bolzano, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process-DiSTAS, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy.
| | - Enrica Capelli
- Laboratory of Immunology and Genetic Analysis, Department of Earth and Environmental Science, University of Pavia, 27100, Pavia, Italy.
| |
Collapse
|