151
|
Aoki M, Aoki H, Mukhopadhyay P, Katsuta E, Takabe K. The Roles of Sphingosine Kinases in Skin Aging. J Invest Dermatol 2019; 139:951-953. [PMID: 30367873 PMCID: PMC11849584 DOI: 10.1016/j.jid.2018.06.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/04/2018] [Accepted: 06/15/2018] [Indexed: 11/21/2022]
Affiliation(s)
- Masayo Aoki
- Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA; Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and Massey Cancer Center, Richmond, Virginia, USA
| | - Hiroaki Aoki
- Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA; Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Partha Mukhopadhyay
- Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Eriko Katsuta
- Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA; Department of Surgery, the Jikei University School of Medicine, Tokyo, Japan
| | - Kazuaki Takabe
- Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA; Department of Surgery, the Jikei University School of Medicine, Tokyo, Japan; Department of Surgery, University at Buffalo Jacob School of Medicine and Biomedical Sciences, the State University of New York, Buffalo, New York, USA; Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan; Department of Surgery, Yokohama City University, Yokohama, Japan; Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
152
|
Zhao ZH, Lai JKL, Qiao L, Fan JG. Role of gut microbial metabolites in nonalcoholic fatty liver disease. J Dig Dis 2019; 20:181-188. [PMID: 30706694 DOI: 10.1111/1751-2980.12709] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/08/2019] [Accepted: 01/30/2019] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common, multifactorial liver disease that has emerged as a global challenge due to its increasing prevalence and lack of sustainable treatment options. Gut microbiota possess vital functions in fermenting dietary nutrients and synthesizing bioactive molecules. This function is of great importance in maintaining health because these microbial metabolites are essential in regulating energy metabolism, immune response, and other vital physiological processes. Altered gut flora can result in a change in gut microbial metabolites, affecting the onset and progression of multiple diseases. In this review we summarize the metabolites that may have beneficial or harmful effects on the development and progression of NAFLD. This will help us better understand the possible mechanisms underlying the pathogenesis of NAFLD and facilitate the identification of potential therapeutic approaches for NAFLD.
Collapse
Affiliation(s)
- Ze Hua Zhao
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jonathan King-Lam Lai
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Sydney, New South Wales, Australia
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Sydney, New South Wales, Australia
| | - Jian Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
153
|
Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Bile Acid Receptors and Gastrointestinal Functions. LIVER RESEARCH 2019; 3:31-39. [PMID: 32368358 PMCID: PMC7197881 DOI: 10.1016/j.livres.2019.01.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bile acids modulate several gastrointestinal functions including electrolyte secretion and absorption, gastric emptying, and small intestinal and colonic motility. High concentrations of bile acids lead to diarrhea and are implicated in the development of esophageal, gastric and colonic cancer. Alterations in bile acid homeostasis are also implicated in the pathophysiology of irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Our understanding of the mechanisms underlying these effects of bile acids on gut functions has been greatly enhanced by the discovery of bile acid receptors, including the nuclear receptors: farnesoid X receptor (FXR), vitamin D receptor (VDR), pregnane X receptor (PXR), and constitutive androstane receptor (CAR); and the G protein-coupled receptors: Takeda G protein-coupled receptor (TGR5), sphingosine-1-phosphate receptor 2 (S1PR2), and muscarinic acetylcholine receptor M3 (M3R).. For example, various studies provided evidence demonstrating the anti-inflammatory effects FXR and TGR5 activation in models of intestinal inflammation. In addition, TGR5 activation in enteric neurons was recently shown to increase colonic motility, which may lead to bile acid-induced diarrhea. Interestingly, TGR5 induces the secretion of glucagon-like peptide-1 (GLP-1) from L-cells to enhance insulin secretion and modulate glucose metabolism. Because of the importance of these receptors, agonists of TGR5 and intestine-specific FXR agonists are currently being tested as an option for the treatment of diabetes mellitus and primary bile acid diarrhea, respectively. This review summarizes current knowledge of the functional roles of bile acid receptors in the gastrointestinal tract.
Collapse
Affiliation(s)
- Alexander L. Ticho
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago
| | - Pooja Malhotra
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago
| | - Pradeep K. Dudeja
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago,Jesse Brown VA Medical Center, Chicago, IL
| | - Ravinder K. Gill
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago
| | - Waddah A. Alrefai
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago,Jesse Brown VA Medical Center, Chicago, IL,To whom correspondence should be addressed: Waddah A. Alrefai, MD: Research Career Scientist, Jesse Brown VA Medical Center, Professor of Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612; ; Tel. (312) 569-7429; Fax. (312) 569-8114
| |
Collapse
|
154
|
Ding Y, Yanagi K, Cheng C, Alaniz RC, Lee K, Jayaraman A. Interactions between gut microbiota and non-alcoholic liver disease: The role of microbiota-derived metabolites. Pharmacol Res 2019; 141:521-529. [PMID: 30660825 PMCID: PMC6392453 DOI: 10.1016/j.phrs.2019.01.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 02/07/2023]
Abstract
There is increasing evidence that the intestinal microbiota plays a mechanistic role in the etiology of non-alcoholic fatty liver disease (NAFLD). Animal and human studies have linked small molecule metabolites produced by commensal bacteria in the gut contribute to not only intestinal inflammation, but also to hepatic inflammation. These immunomodulatory metabolites are capable of engaging host cellular receptors, and may mediate the observed association between gut dysbiosis and NAFLD. This review focuses on the effects and potential mechanisms of three specific classes of metabolites that synthesized or modified by gut bacteria: short chain fatty acids, amino acid catabolites, and bile acids. In particular, we discuss their role as ligands for cell surface and nuclear receptors regulating metabolic and inflammatory pathways in the intestine and liver. Studies reveal that the metabolites can both agonize and antagonize their cognate receptors to reduce or exacerbate liver steatosis and inflammation, and that the effects are metabolite- and context-specific. Further studies are warranted to more comprehensively understand bacterial metabolite-mediated gut-liver in NAFLD. This understanding could help identify novel therapeutics and therapeutic targets to intervene in the disease through the gut microbiota.
Collapse
Affiliation(s)
- Yufang Ding
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Karin Yanagi
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, 02155, USA
| | - Clint Cheng
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, 77807, USA
| | - Robert C Alaniz
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, 77807, USA
| | - Kyongbum Lee
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, 02155, USA.
| | - Arul Jayaraman
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, 77807, USA; Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, 77843, USA.
| |
Collapse
|
155
|
Song Z, Cai Y, Lao X, Wang X, Lin X, Cui Y, Kalavagunta PK, Liao J, Jin L, Shang J, Li J. Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome. MICROBIOME 2019; 7:9. [PMID: 30674356 PMCID: PMC6345003 DOI: 10.1186/s40168-019-0628-3] [Citation(s) in RCA: 312] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 01/16/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Bile salt hydrolase plays an important role in bile acid-mediated signaling pathways, which regulate lipid absorption, glucose metabolism, and energy homeostasis. Several reports suggest that changes in the composition of bile acids are found in many diseases caused by dysbacteriosis. RESULTS Here, we present the taxonomic identification of bile salt hydrolase (BSH) in human microbiota and elucidate the abundance and activity differences of various bacterial BSH among 11 different populations from six continents. For the first time, we revealed that bile salt hydrolase protein sequences (BSHs) are distributed in 591 intestinal bacterial strains within 117 genera in human microbiota, and 27.52% of these bacterial strains containing BSH paralogs. Significant variations are observed in BSH distribution patterns among different populations. Based on phylogenetic analysis, we reclassified these BSHs into eight phylotypes and investigated the abundance patterns of these phylotypes among different populations. From the inspection of enzyme activity among different BSH phylotypes, BSH-T3 showed the highest enzyme activity and is only found in Lactobaclillus. The phylotypes of BSH-T5 and BSH-T6 mainly from Bacteroides with high percentage of paralogs exhibit different enzyme activity and deconjugation activity. Furthermore, we found that there were significant differences between healthy individuals and patients with atherosclerosis and diabetes in some phylotypes of BSHs though the correlations were pleiotropic. CONCLUSION This study revealed the taxonomic and abundance profiling of BSH in human gut microbiome and provided a phylogenetic-based system to assess BSHs activity by classifying the target sequence into specific phylotype. Furthermore, the present work disclosed the variation patterns of BSHs among different populations of geographical regions and health/disease cohorts, which is essential to understand the role of BSH in the development and progression of related diseases.
Collapse
Affiliation(s)
- Ziwei Song
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China
| | - Yuanyuan Cai
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009 China
| | - Xingzhen Lao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China
| | - Xue Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China
| | - Xiaoxuan Lin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China
| | - Yingyun Cui
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China
| | | | - Jun Liao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009 China
| | - Liang Jin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009 China
| | - Jing Shang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009 China
| | - Jing Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China
| |
Collapse
|
156
|
Abstract
Hepatic encephalopathy describes the array of neurological complications that arise due to liver insufficiency and/or portal-systemic shunt. The pathogenesis of hepatic encephalopathy shares a longstanding association with hyperammonemia and inflammation. Recently, aberrant bile acid signaling has been implicated in the development of key features of hepatic encephalopathy due to acute liver failure including neuronal dysfunction, neuroinflammation and blood-brain barrier permeability. This review summarizes the findings of recent studies demonstrating a role for bile acids in hepatic encephalopathy and speculates on the possible downstream consequences of bile acid signaling.
Collapse
Key Words
- ASBT, Apical Sodium-Dependent Bile Acid Transporter
- CCL2, Chemokine Ligand 2
- CCR2, Chemokine Receptor 2
- Cyp46A1, Cytochrome p450 46A1
- FXR, Farnesoid X Receptor
- GR, Glucocorticoid Receptor
- NTCP, Sodium Taurocholate Cotransporting Polypeptide
- PXR, Pregnane X Receptor
- S1P2R, Sphingosine 1 Phosphate Receptor 2
- TGR5, Takeda G-Protein Receptor 5
- Takeda G-protein coupled receptor 5 (TGR5)
- VDR, Vitamin D Receptor
- blood–brain barrier
- farnesoid X receptor
- neuroinflammation
- sphingosine-1-phosphate receptor 2
Collapse
|
157
|
Bile Acid-Activated Receptors: GPBAR1 (TGR5) and Other G Protein-Coupled Receptors. Handb Exp Pharmacol 2019; 256:19-49. [PMID: 31302759 DOI: 10.1007/164_2019_230] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The BA-responsive GPCRs S1PR2 and TGR5 are almost ubiquitously expressed in human and rodent tissues. In the liver, S1PR2 is expressed in all cell types, while TGR5 is predominately found in non-parenchymal cells. In contrast to S1PR2, which is mainly activated by conjugated bile acids (BAs), all BAs serve as ligands for TGR5 irrespective of their conjugation state and substitution pattern.Mice with targeted deletion of either S1PR2 or TGR5 are viable and develop no overt phenotype. In liver injury models, S1PR2 exerts pro-inflammatory and pro-fibrotic effects and thus aggravates liver damage, while TGR5 mediates anti-inflammatory, anti-cholestatic, and anti-fibrotic effects. Thus, inhibitors of S1PR2 signaling and agonists for TGR5 have been employed to attenuate liver injury in rodent models for cholestasis, nonalcoholic steatohepatitis, and fibrosis/cirrhosis.In biliary epithelial cells, both receptors activate a similar signaling cascade resulting in ERK1/2 phosphorylation and cell proliferation. Overexpression of both S1PR2 and TGR5 was found in human cholangiocarcinoma tissue as well as in CCA cell lines, where stimulation of both GPCRs resulted in transactivation of the epidermal growth factor receptor and triggered cell proliferation as well as increased cell migration and invasiveness.This chapter will focus on the function of S1PR2 and TGR5 in different liver cell types and summarizes current knowledge on the role of these receptors in liver disease models.
Collapse
|
158
|
Nagahashi M, Abe M, Sakimura K, Takabe K, Wakai T. The role of sphingosine-1-phosphate in inflammation and cancer progression. Cancer Sci 2018; 109:3671-3678. [PMID: 30238699 PMCID: PMC6272099 DOI: 10.1111/cas.13802] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/04/2018] [Accepted: 09/15/2018] [Indexed: 12/20/2022] Open
Abstract
Many inflammatory mediators are involved in the process of carcinogenesis and cancer progression. In addition to cytokines and chemokines, lipid mediators have recently attracted attention as signaling molecules associated with inflammatory diseases. Sphingosine-1-phosphate (S1P) is a pleiotropic lipid mediator that regulates cell survival and migration, immune cell recruitment, angiogenesis and lymphangiogenesis. S1P also plays a significant role in inflammation and cancer. The gradation of S1P concentration in the blood, lymph and tissue regulates lymphocyte trafficking, an important component of inflammation. Furthermore, cancer cells produce elevated levels of S1P, contributing to the tumor microenvironment and linking cancer and inflammation. Future technological advances may reveal greater detail about the mechanisms of S1P regulation in the tumor microenvironment and the contribution of S1P to cancer progression. Considering the critical role of S1P in linking inflammation and cancer, it is possible that the S1P signaling pathway could be a novel therapeutic target for cancers with chronic inflammation.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Division of Digestive and General SurgeryNiigata University Graduate School of Medical and Dental SciencesNiigata CityJapan
| | - Manabu Abe
- Department of Animal Model DevelopmentBrain Research InstituteNiigata UniversityNiigata CityJapan
| | - Kenji Sakimura
- Department of Animal Model DevelopmentBrain Research InstituteNiigata UniversityNiigata CityJapan
| | - Kazuaki Takabe
- Division of Digestive and General SurgeryNiigata University Graduate School of Medical and Dental SciencesNiigata CityJapan
- Breast SurgeryRoswell Park Cancer InstituteBuffaloNew York
- Department of SurgeryUniversity at BuffaloThe State University of New York Jacobs School of Medicine and Biomedical SciencesBuffaloNew York
| | - Toshifumi Wakai
- Division of Digestive and General SurgeryNiigata University Graduate School of Medical and Dental SciencesNiigata CityJapan
| |
Collapse
|
159
|
Abstract
Many receptors can be activated by bile acids (BAs) and their derivatives. These include nuclear receptors farnesoid X receptor (FXR), pregnane X receptor (PXR), and vitamin D receptor (VDR), as well as membrane receptors Takeda G protein receptor 5 (TGR5), sphingosine-1-phosphate receptor 2 (S1PR2), and cholinergic receptor muscarinic 2 (CHRM2). All of them are implicated in the development of metabolic and immunological diseases in response to endobiotic and xenobiotic exposure. Because epigenetic regulation is critical for organisms to adapt to constant environmental changes, this review article summarizes epigenetic regulation as well as post-transcriptional modification of bile acid receptors. In addition, the focus of this review is on the liver and digestive tract although these receptors may have effects on other organs. Those regulatory mechanisms are implicated in the disease process and critically important in uncovering innovative strategy for prevention and treatment of metabolic and immunological diseases.
Collapse
|
160
|
Hanafi NI, Mohamed AS, Sheikh Abdul Kadir SH, Othman MHD. Overview of Bile Acids Signaling and Perspective on the Signal of Ursodeoxycholic Acid, the Most Hydrophilic Bile Acid, in the Heart. Biomolecules 2018; 8:E159. [PMID: 30486474 PMCID: PMC6316857 DOI: 10.3390/biom8040159] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022] Open
Abstract
Bile acids (BA) are classically known as an important agent in lipid absorption and cholesterol metabolism. Nowadays, their role in glucose regulation and energy homeostasis are widely reported. BAs are involved in various cellular signaling pathways, such as protein kinase cascades, cyclic AMP (cAMP) synthesis, and calcium mobilization. They are ligands for several nuclear hormone receptors, including farnesoid X-receptor (FXR). Recently, BAs have been shown to bind to muscarinic receptor and Takeda G-protein-coupled receptor 5 (TGR5), both G-protein-coupled receptor (GPCR), independent of the nuclear hormone receptors. Moreover, BA signals have also been elucidated in other nonclassical BA pathways, such as sphingosine-1-posphate and BK (large conductance calcium- and voltage activated potassium) channels. Hydrophobic BAs have been proven to affect heart rate and its contraction. Elevated BAs are associated with arrhythmias in adults and fetal heart, and altered ratios of primary and secondary bile acid are reported in chronic heart failure patients. Meanwhile, in patients with liver cirrhosis, cardiac dysfunction has been strongly linked to the increase in serum bile acid concentrations. In contrast, the most hydrophilic BA, known as ursodeoxycholic acid (UDCA), has been found to be beneficial in improving peripheral blood flow in chronic heart failure patients and in protecting the heart against reperfusion injury. This review provides an overview of BA signaling, with the main emphasis on past and present perspectives on UDCA signals in the heart.
Collapse
Affiliation(s)
- Noorul Izzati Hanafi
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia.
| | - Anis Syamimi Mohamed
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia.
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia.
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia.
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Bharu 81310, Johor, Malaysia.
| |
Collapse
|
161
|
Sun X, Jia Z. Microbiome modulates intestinal homeostasis against inflammatory diseases. Vet Immunol Immunopathol 2018; 205:97-105. [PMID: 30459007 DOI: 10.1016/j.vetimm.2018.10.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/21/2018] [Accepted: 10/27/2018] [Indexed: 02/07/2023]
Abstract
Eliminating prophylactic antibiotics in food animal production has exerted pressure on discovering antimicrobial alternatives (e.g. microbiome) to reduce elevated intestinal diseases. Intestinal tract is a complex ecosystem coupling host cells with microbiota. The microbiota and its metabolic activities and products are collectively called microbiome. Intestinal homeostasis is reached through dynamic and delicate crosstalk between host immunity and microbiome. However, this balance can be occasionally broken, which results in intestinal inflammatory diseases such as human Inflammatory Bowel Diseases, chicken necrotic enteritis, and swine postweaning diarrhea. In this review, we introduce the intestinal immune system, intestinal microbiome, and microbiome modulation of inflammation against intestinal diseases. The purpose of this review is to provide updated knowledge on host-microbe interaction and to promote using microbiome as new antimicrobial strategies to reduce intestinal diseases.
Collapse
Affiliation(s)
- Xiaolun Sun
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, 72701, United States.
| | - Zhenquan Jia
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, United States
| |
Collapse
|
162
|
Schubert K, Olde Damink SWM, von Bergen M, Schaap FG. Interactions between bile salts, gut microbiota, and hepatic innate immunity. Immunol Rev 2018; 279:23-35. [PMID: 28856736 DOI: 10.1111/imr.12579] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bile salts are the water-soluble end products of hepatic cholesterol catabolism that are released into the duodenum and solubilize lipids due to their amphipathic structure. Bile salts also act as endogenous ligands for dedicated nuclear receptors that exert a plethora of biological processes, mostly related to metabolism. Bile salts are actively reclaimed in the distal part of the small intestine, released into the portal system, and subsequently extracted by the liver. This enterohepatic cycle is critically dependent on dedicated bile salt transporters. In the intestinal lumen, bile salts exert direct antimicrobial activity based on their detergent property and shape the gut microbiota. Bile salt metabolism by gut microbiota serves as a mechanism to counteract this toxicity and generates bile salt species that are distinct from those of the host. Innate immune cells of the liver play an important role in the early recognition and effector response to invading microbes. Bile salts signal primarily via the membrane receptor TGR5 and the intracellular farnesoid-x receptor, both present in innate immune cells. In this review, the interactions between bile salts, gut microbiota, and hepatic innate immunity are discussed.
Collapse
Affiliation(s)
- Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Center for Environmental Research, Leipzig, Germany
| | - Steven W M Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Center for Environmental Research, Leipzig, Germany.,Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Frank G Schaap
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
163
|
Ma J, Li H. The Role of Gut Microbiota in Atherosclerosis and Hypertension. Front Pharmacol 2018; 9:1082. [PMID: 30319417 PMCID: PMC6167910 DOI: 10.3389/fphar.2018.01082] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022] Open
Abstract
In recent years, accumulating evidence has indicated the importance of gut microbiota in maintaining human health. Gut dysbiosis is associated with the pathogenesis of a number of metabolic diseases including obesity, type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases (CVDs). Indeed, CVD has become the leading cause of death worldwide, especially in developed countries. In this review, we mainly discuss the gut microbiota-involved mechanisms of CVD focusing on atherosclerosis and hypertension, two major risk factors for serious CVD. Then, we briefly discuss the prospects of gut microbiota-targeted therapeutic strategies for the treatment of CVD in the future.
Collapse
Affiliation(s)
| | - Houkai Li
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
164
|
Chang S, Kim YH, Kim YJ, Kim YW, Moon S, Lee YY, Jung JS, Kim Y, Jung HE, Kim TJ, Cheong TC, Moon HJ, Cho JA, Kim HR, Han D, Na Y, Seok SH, Cho NH, Lee HC, Nam EH, Cho H, Choi M, Minato N, Seong SY. Taurodeoxycholate Increases the Number of Myeloid-Derived Suppressor Cells That Ameliorate Sepsis in Mice. Front Immunol 2018; 9:1984. [PMID: 30279688 PMCID: PMC6153344 DOI: 10.3389/fimmu.2018.01984] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/13/2018] [Indexed: 01/01/2023] Open
Abstract
Bile acids (BAs) control metabolism and inflammation by interacting with several receptors. Here, we report that intravenous infusion of taurodeoxycholate (TDCA) decreases serum pro-inflammatory cytokines, normalizes hypotension, protects against renal injury, and prolongs mouse survival during sepsis. TDCA increases the number of granulocytic myeloid-derived suppressor cells (MDSCLT) distinctive from MDSCs obtained without TDCA treatment (MDSCL) in the spleen of septic mice. FACS-sorted MDSCLT cells suppress T-cell proliferation and confer protection against sepsis when adoptively transferred better than MDSCL. Proteogenomic analysis indicated that TDCA controls chromatin silencing, alternative splicing, and translation of the immune proteome of MDSCLT, which increases the expression of anti-inflammatory molecules such as oncostatin, lactoferrin and CD244. TDCA also decreases the expression of pro-inflammatory molecules such as neutrophil elastase. These findings suggest that TDCA globally edits the proteome to increase the number of MDSCLT cells and affect their immune-regulatory functions to resolve systemic inflammation during sepsis.
Collapse
Affiliation(s)
- Sooghee Chang
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Youn-Hee Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Young-Joo Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Young-Woo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Sungyoon Moon
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Yong Yook Lee
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Jin Sun Jung
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Youngsoo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Hi-Eun Jung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Tae-Joo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Taek-Chin Cheong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Hye-Jung Moon
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung-Ah Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Hang-Rae Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea
| | - Dohyun Han
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Yirang Na
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Seung-Hyeok Seok
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Hai-Chon Lee
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Eun-Hee Nam
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Hyosuk Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seung-Yong Seong
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| |
Collapse
|
165
|
Li X, Liu R, Huang Z, Gurley EC, Wang X, Wang J, He H, Yang H, Lai G, Zhang L, Bajaj JS, White M, Pandak WM, Hylemon PB, Zhou H. Cholangiocyte-derived exosomal long noncoding RNA H19 promotes cholestatic liver injury in mouse and humans. Hepatology 2018; 68:599-615. [PMID: 29425397 PMCID: PMC6085159 DOI: 10.1002/hep.29838] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/28/2018] [Accepted: 02/07/2018] [Indexed: 12/12/2022]
Abstract
UNLABELLED Cholestatic liver injury is an important clinical problem with limited understanding of disease pathologies. Exosomes are small extracellular vesicles released by a variety of cells, including cholangiocytes. Exosome-mediated cell-cell communication can modulate various cellular functions by transferring a variety of intracellular components to target cells. Our recent studies indicate that the long noncoding RNA (lncRNA), H19, is mainly expressed in cholangiocytes, and its aberrant expression is associated with significant down-regulation of small heterodimer partner (SHP) in hepatocytes and cholestatic liver injury in multidrug resistance 2 knockout (Mdr2-/- ) mice. However, how cholangiocyte-derived H19 suppresses SHP in hepatocytes remains unknown. Here, we report that cholangiocyte-derived exosomes mediate transfer of H19 into hepatocytes and promote cholestatic injury. Hepatic H19 level is correlated with severity of cholestatic injury in both fibrotic mouse models, including Mdr2-/- mice, a well-characterized model of primary sclerosing cholangitis (PSC), or CCl4 -induced cholestatic liver injury mouse models, and human PSC patients. Moreover, serum exosomal-H19 level is gradually up-regulated during disease progression in Mdr2-/- mice and patients with cirrhosis. H19-carrying exosomes from the primary cholangiocytes of wild-type (WT) mice suppress SHP expression in hepatocytes, but not the exosomes from the cholangiocytes of H19-/- mice. Furthermore, overexpression of H19 significantly suppressed SHP expression at both transcriptional and posttranscriptional levels. Importantly, transplant of H19-carrying serum exosomes of old fibrotic Mdr2-/- mice significantly promoted liver fibrosis (LF) in young Mdr2-/- mice. CONCLUSION Cholangiocyte-derived exosomal-H19 plays a critical role in cholestatic liver injury. Serum exosomal H19 represents a noninvasive biomarker and potential therapeutic target for cholestatic diseases. (Hepatology 2018).
Collapse
Affiliation(s)
- Xiaojiaoyang Li
- Department of Microbiology and Immunology and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Runping Liu
- Department of Microbiology and Immunology and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Zhiming Huang
- Department of Gastroenterology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Emily C. Gurley
- Department of Microbiology and Immunology and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, USA,Division of Gastroenterology, Hepatology and Nutrition and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University
| | - Xuan Wang
- Department of Microbiology and Immunology and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Juan Wang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Hongliang He
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Guanhua Lai
- Department of Pathology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Luyong Zhang
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University
| | - Melanie White
- Division of Gastroenterology, Hepatology and Nutrition and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University
| | - William M Pandak
- Division of Gastroenterology, Hepatology and Nutrition and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, USA,Department of Gastroenterology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,Address correspondence to: Huiping Zhou, Ph.D., Department of Microbiology & Immunology, Virginia Commonwealth University, McGuire Veterans Affairs Medical Center, 1217 East Marshall Street, MSB#533, Richmond, VA, 23298-0678, USA, Tel: 804-828-6817; Fax: 804-828-0676,
| |
Collapse
|
166
|
Hirose Y, Nagahashi M, Katsuta E, Yuza K, Miura K, Sakata J, Kobayashi T, Ichikawa H, Shimada Y, Kameyama H, McDonald KA, Takabe K, Wakai T. Generation of sphingosine-1-phosphate is enhanced in biliary tract cancer patients and is associated with lymphatic metastasis. Sci Rep 2018; 8:10814. [PMID: 30018456 PMCID: PMC6050292 DOI: 10.1038/s41598-018-29144-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/04/2018] [Indexed: 02/07/2023] Open
Abstract
Lymphatic metastasis is known to contribute to worse prognosis of biliary tract cancer (BTC). Recently, sphingosine-1-phosphate (S1P), a bioactive lipid mediator generated by sphingosine kinase 1 (SPHK1), has been shown to play an important role in lymphangiogenesis and lymph node metastasis in several types of cancer. However, the role of the lipid mediator in BTC has never been examined. Here we found that S1P is elevated in BTC with the activation of ceramide-synthetic pathways, suggesting that BTC utilizes SPHK1 to promote lymphatic metastasis. We found that S1P, sphingosine and ceramide precursors such as monohexosyl-ceramide and sphingomyelin, but not ceramide, were significantly increased in BTC compared to normal biliary tract tissue using LC-ESI-MS/MS. Utilizing The Cancer Genome Atlas cohort, we demonstrated that S1P in BTC is generated via de novo pathway and exported via ABCC1. Further, we found that SPHK1 expression positively correlated with factors related to lymphatic metastasis in BTC. Finally, immunohistochemical examination revealed that gallbladder cancer with lymph node metastasis had significantly higher expression of phospho-SPHK1 than that without. Taken together, our data suggest that S1P generated in BTC contributes to lymphatic metastasis.
Collapse
Affiliation(s)
- Yuki Hirose
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, 951-8510, Japan
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, 951-8510, Japan.
| | - Eriko Katsuta
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, 14263, USA
| | - Kizuki Yuza
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, 951-8510, Japan
| | - Kohei Miura
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, 951-8510, Japan
| | - Jun Sakata
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, 951-8510, Japan
| | - Takashi Kobayashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, 951-8510, Japan
| | - Hiroshi Ichikawa
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, 951-8510, Japan
| | - Yoshifumi Shimada
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, 951-8510, Japan
| | - Hitoshi Kameyama
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, 951-8510, Japan
| | - Kerry-Ann McDonald
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, 14263, USA
| | - Kazuaki Takabe
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, 951-8510, Japan
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, 14263, USA
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, the State University of New York, Buffalo, New York, 14203, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, Shinjuku-ku, Tokyo, 160-8402, Japan
- Department of Surgery, Yokohama City University, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, 951-8510, Japan
| |
Collapse
|
167
|
Wang Y, Ding WX, Li T. Cholesterol and bile acid-mediated regulation of autophagy in fatty liver diseases and atherosclerosis. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:726-733. [PMID: 29653253 PMCID: PMC6037329 DOI: 10.1016/j.bbalip.2018.04.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/22/2018] [Accepted: 04/08/2018] [Indexed: 12/19/2022]
Abstract
Liver is the major organ that regulates whole body cholesterol metabolism. Disrupted hepatic cholesterol homeostasis contributes to the pathogenesis of nonalcoholic steatohepatitis, dyslipidemia, atherosclerosis, and cardiovascular diseases. Hepatic bile acid synthesis is the major catabolic mechanism for cholesterol elimination from the body. Furthermore, bile acids are signaling molecules that regulate liver metabolism and inflammation. Autophagy is a highly-conserved lysosomal degradation mechanism, which plays an essential role in maintaining cellular integrity and energy homeostasis. In this review, we discuss emerging evidence linking hepatic cholesterol and bile acid metabolism to cellular autophagy activity in hepatocytes and macrophages, and how these interactions may be implicated in the pathogenesis and treatment of fatty liver disease and atherosclerosis.
Collapse
Affiliation(s)
- Yifeng Wang
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, United States.
| |
Collapse
|
168
|
Cheng JC, Wang EY, Yi Y, Thakur A, Tsai SH, Hoodless PA. S1P Stimulates Proliferation by Upregulating CTGF Expression through S1PR2-Mediated YAP Activation. Mol Cancer Res 2018; 16:1543-1555. [DOI: 10.1158/1541-7786.mcr-17-0681] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 04/06/2018] [Accepted: 05/31/2018] [Indexed: 11/16/2022]
|
169
|
Hartmann P, Hochrath K, Horvath A, Chen P, Seebauer CT, Llorente C, Wang L, Alnouti Y, Fouts DE, Stärkel P, Loomba R, Coulter S, Liddle C, Yu RT, Ling L, Rossi SJ, DePaoli AM, Downes M, Evans RM, Brenner DA, Schnabl B. Modulation of the intestinal bile acid/farnesoid X receptor/fibroblast growth factor 15 axis improves alcoholic liver disease in mice. Hepatology 2018; 67:2150-2166. [PMID: 29159825 PMCID: PMC5962369 DOI: 10.1002/hep.29676] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 10/28/2017] [Accepted: 11/17/2017] [Indexed: 12/13/2022]
Abstract
UNLABELLED Alcoholic liver disease (ALD) is associated with changes in the intestinal microbiota. Functional consequences of alcohol-associated dysbiosis are largely unknown. The aim of this study was to identify a mechanism of how changes in the intestinal microbiota contribute to ALD. Metagenomic sequencing of intestinal contents demonstrated that chronic ethanol feeding in mice is associated with an over-representation of bacterial genomic DNA encoding choloylglycine hydrolase, which deconjugates bile acids in the intestine. Bile acid analysis confirmed an increased amount of unconjugated bile acids in the small intestine after ethanol administration. Mediated by a lower farnesoid X receptor (FXR) activity in enterocytes, lower fibroblast growth factor (FGF)-15 protein secretion was associated with increased hepatic cytochrome P450 enzyme (Cyp)-7a1 protein expression and circulating bile acid levels. Depletion of the commensal microbiota with nonabsorbable antibiotics attenuated hepatic Cyp7a1 expression and reduced ALD in mice, suggesting that increased bile acid synthesis is dependent on gut bacteria. To restore intestinal FXR activity, we used a pharmacological intervention with the intestine-restricted FXR agonist fexaramine, which protected mice from ethanol-induced liver injury. Whereas bile acid metabolism was only minimally altered, fexaramine treatment stabilized the gut barrier and significantly modulated hepatic genes involved in lipid metabolism. To link the beneficial metabolic effect to FGF15, a nontumorigenic FGF19 variant-a human FGF15 ortholog-was overexpressed in mice using adeno-associated viruses. FGF19 treatment showed similarly beneficial metabolic effects and ameliorated alcoholic steatohepatitis. CONCLUSION Taken together, alcohol-associated metagenomic changes result in alterations of bile acid profiles. Targeted interventions improve bile acid-FXR-FGF15 signaling by modulation of hepatic Cyp7a1 and lipid metabolism, and reduce ethanol-induced liver disease in mice. (Hepatology 2018;67:2150-2166).
Collapse
Affiliation(s)
- Phillipp Hartmann
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Katrin Hochrath
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Angela Horvath
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Gastroenterology and Hepatology, Medical University of Graz, Graz Austria
| | - Peng Chen
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Lirui Wang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Peter Stärkel
- St. Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - Rohit Loomba
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sally Coulter
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Australia
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Australia
| | - Ruth T. Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Lei Ling
- NGM Biopharmaceuticals, Inc., South San Francisco, CA, USA
| | | | | | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - David A. Brenner
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
170
|
Deoxycholic Acid-Mediated Sphingosine-1-Phosphate Receptor 2 Signaling Exacerbates DSS-Induced Colitis through Promoting Cathepsin B Release. J Immunol Res 2018; 2018:2481418. [PMID: 29854830 PMCID: PMC5966668 DOI: 10.1155/2018/2481418] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/08/2018] [Indexed: 01/07/2023] Open
Abstract
We recently have proved that excessive fecal DCA caused by high-fat diet may serve as an endogenous danger-associated molecular pattern to activate NLRP3 inflammasome and thus contributes to the development of inflammatory bowel disease (IBD). Moreover, the effect of DCA on inflammasome activation is mainly mediated through bile acid receptor sphingosine-1-phosphate receptor 2 (S1PR2); however, the intermediate process remains unclear. Here, we sought to explore the detailed molecular mechanism involved and examine the effect of S1PR2 blockage in a colitis mouse model. In this study, we found that DCA could dose dependently upregulate S1PR2 expression. Meanwhile, DCA-induced NLRP3 inflammasome activation is at least partially achieved through stimulating extracellular regulated protein kinases (ERK) signaling pathway downstream of S1PR2 followed by promoting of lysosomal cathepsin B release. DCA enema significantly aggravated DSS-induced colitis in mice and S1PR2 inhibitor as well as inflammasome inhibition by cathepsin B antagonist substantially reducing the mature IL-1β production and alleviated colonic inflammation superimposed by DCA. Therefore, our findings suggest that S1PR2/ERK1/2/cathepsin B signaling plays a critical role in triggering inflammasome activation by DCA and S1PR2 may represent a new potential therapeutic target for the management of intestinal inflammation in individuals on a high-fat diet.
Collapse
|
171
|
Bile acids and their respective conjugates elicit different responses in neonatal cardiomyocytes: role of Gi protein, muscarinic receptors and TGR5. Sci Rep 2018; 8:7110. [PMID: 29740092 PMCID: PMC5940781 DOI: 10.1038/s41598-018-25569-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/18/2018] [Indexed: 12/27/2022] Open
Abstract
Bile acids are recognised as bioactive signalling molecules. While they are known to influence arrhythmia susceptibility in cholestasis, there is limited knowledge about the underlying mechanisms. To delineate mechanisms underlying fetal heart rhythm disturbances in cholestatic pregnancy, we used FRET microscopy to monitor cAMP release and contraction measurements in isolated rodent neonatal cardiomyocytes. The unconjugated bile acids CDCA, DCA and UDCA and, to a lesser extent, CA were found to be relatively potent agonists for the GPBAR1 (TGR5) receptor and elicit cAMP release, whereas all glyco- and tauro- conjugated bile acids are weak agonists. The bile acid-induced cAMP production does not lead to an increase in contraction rate, and seems to be mediated by the RI isoform of adenylate cyclase, unlike adrenaline-dependent release which is mediated by the RII isoform. In contrast, bile acids elicited slowing of neonatal cardiomyocyte contraction indicating that other signalling pathways are involved. The conjugated bile acids were found to be partial agonists of the muscarinic M2, but not sphingosin-1-phosphate-2, receptors, and act partially through the Gi pathway. Furthermore, the contraction slowing effect of unconjugated bile acids may also relate to cytotoxicity at higher concentrations.
Collapse
|
172
|
Hylemon PB, Harris SC, Ridlon JM. Metabolism of hydrogen gases and bile acids in the gut microbiome. FEBS Lett 2018; 592:2070-2082. [PMID: 29683480 DOI: 10.1002/1873-3468.13064] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/26/2022]
Abstract
The human gut microbiome refers to a highly diverse microbial ecosystem, which has a symbiotic relationship with the host. Molecular hydrogen (H2 ) and carbon dioxide (CO2 ) are generated by fermentative metabolism in anaerobic ecosystems. H2 generation and oxidation coupled to CO2 reduction to methane or acetate help maintain the structure of the gut microbiome. Bile acids are synthesized by hepatocytes from cholesterol in the liver and are important regulators of host metabolism. In this Review, we discuss how gut bacteria metabolize hydrogen gases and bile acids in the intestinal tract and the consequences on host physiology. Finally, we focus on bile acid metabolism by the Actinobacterium Eggerthella lenta. Eggerthella lenta appears to couple hydroxyl group oxidations to reductive acetogenesis under a CO2 or N2 atmosphere, but not under H2 . Hence, at low H2 levels, E. lenta is proposed to use NADH from bile acid hydroxyl group oxidations to reduce CO2 to acetate.
Collapse
Affiliation(s)
- Phillip B Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA.,McGuire Veterans Hospital, Richmond, VA, USA
| | - Spencer C Harris
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA.,McGuire Veterans Hospital, Richmond, VA, USA
| | - Jason M Ridlon
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, IL, USA
| |
Collapse
|
173
|
Mercer KE, Bhattacharyya S, Diaz-Rubio ME, Piccolo BD, Pack LM, Sharma N, Chaudhury M, Cleves MA, Chintapalli SV, Shankar K, Ronis MJJ, Yeruva L. Infant Formula Feeding Increases Hepatic Cholesterol 7α Hydroxylase (CYP7A1) Expression and Fecal Bile Acid Loss in Neonatal Piglets. J Nutr 2018; 148:702-711. [PMID: 30053282 PMCID: PMC6857617 DOI: 10.1093/jn/nxy038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/16/2017] [Accepted: 02/09/2018] [Indexed: 12/14/2022] Open
Abstract
Background During the postnatal feeding period, formula-fed infants have higher cholesterol synthesis rates and lower circulating cholesterol concentrations than their breastfed counterparts. Although this disparity has been attributed to the uniformly low dietary cholesterol content of typical infant formulas, little is known of the underlying mechanisms associated with this altered cholesterol metabolism phenotype. Objective We aimed to determine the molecular etiology of diet-associated changes in early-life cholesterol metabolism with the use of a postnatal piglet feeding model. Methods Two-day-old male and female White-Dutch Landrace piglets were fed either sow milk (Sow group) or dairy-based (Milk group; Similac Advance powder) or soy-based (Soy group; Emfamil Prosobee Lipil powder) infant formulas until day 21. In addition to measuring serum cholesterol concentrations, hepatic and intestinal genes involved in enterohepatic circulation of cholesterol and bile acids were analyzed by real-time reverse-transcriptase polymerase chain reaction and Western blot. Bile acid concentrations were measured by liquid chromatography-mass spectrometry in serum, liver, and feces. Results Compared with the Sow group, hepatic cholesterol 7α hydroxylase (CYP7A1) protein expression was 3-fold higher in the Milk group (P < 0.05) and expression was 10-fold higher in the Soy group compared with the Milk group (P < 0.05). Likewise, fecal bile acid concentrations were 3-fold higher in the Soy group compared with the Milk group (P < 0.05). Intestinal mRNA expression of fibroblast factor 19 (Fgf19) was reduced in the Milk and Soy groups, corresponding to 54% and 67% decreases compared with the Sow group. In the Soy group, small heterodimer protein (SHP) protein expression was 30% lower compared with the Sow group (P < 0.05). Conclusions These results indicate that formula feeding leads to increased CYP7A1 protein expression and fecal bile acid loss in neonatal piglets, and this outcome is linked to reduced efficacy in inhibiting CYP7A1 expression through FGF19 and SHP transcriptional repression mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Neha Sharma
- Arkansas Children's Nutrition Center, Little Rock, AR
| | | | | | | | | | - Martin J J Ronis
- Louisiana State University Health Sciences Center, New Orleans, LA
| | - Laxmi Yeruva
- Arkansas Children's Nutrition Center, Little Rock, AR
| |
Collapse
|
174
|
Yu Q, Jiang Z, Zhang L. Bile acid regulation: A novel therapeutic strategy in non-alcoholic fatty liver disease. Pharmacol Ther 2018; 190:81-90. [PMID: 29684468 DOI: 10.1016/j.pharmthera.2018.04.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive fat deposition in the liver in the absence of significant alcohol consumption. Dysregulated bile acid (BA) metabolism is an important indicator in the pathology of NAFLD, which could progress into more severe forms of liver injury. Lipid metabolism, immune environment and intestinal bacteria are all affected by dysregulated BA metabolism directly, but the mechanisms remain unclear. Several drug candidates that target BA metabolism, either used alone or in combination with other agents, are currently under development for treatment of NAFLD. Here, we summarize the relationship of dysregulated BA metabolism and NAFLD, discuss the effects and mechanisms of dysregulated BAs-induced lipid metabolism disorder. Challenges in developing novel treatments are also discussed.
Collapse
Affiliation(s)
- Qinwei Yu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
175
|
Abstract
Although diet has long been known to contribute to the pathogenesis of cardiovascular disease (CVD), research over the past decade has revealed an unexpected interplay between nutrient intake, gut microbial metabolism and the host to modify the risk of developing CVD. Microbial-associated molecular patterns are sensed by host pattern recognition receptors and have been suggested to drive CVD pathogenesis. In addition, the host microbiota produces various metabolites, such as trimethylamine-N-oxide, short-chain fatty acids and secondary bile acids, that affect CVD pathogenesis. These recent advances support the notion that targeting the interactions between the host and microorganisms may hold promise for the prevention or treatment of CVD. In this Review, we summarize our current knowledge of the gut microbial mechanisms that drive CVD, with special emphasis on therapeutic interventions, and we highlight the need to establish causal links between microbial pathways and CVD pathogenesis.
Collapse
Affiliation(s)
- J Mark Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, NC-10, Cleveland, Ohio 44195, USA
| | - Stanley L Hazen
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, NC-10, Cleveland, Ohio 44195, USA
| |
Collapse
|
176
|
Vettorazzi JF, Kurauti MA, Soares GM, Borck PC, Ferreira SM, Branco RCS, Michelone LDSL, Boschero AC, Junior JMC, Carneiro EM. Bile acid TUDCA improves insulin clearance by increasing the expression of insulin-degrading enzyme in the liver of obese mice. Sci Rep 2017; 7:14876. [PMID: 29093479 PMCID: PMC5665899 DOI: 10.1038/s41598-017-13974-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/03/2017] [Indexed: 02/06/2023] Open
Abstract
Disruption of insulin secretion and clearance both contribute to obesity-induced hyperinsulinemia, though reduced insulin clearance seems to be the main factor. The liver is the major site for insulin degradation, a process mainly coordinated by the insulin-degrading enzyme (IDE). The beneficial effects of taurine conjugated bile acid (TUDCA) on insulin secretion as well as insulin sensitivity have been recently described. However, the possible role of TUDCA in insulin clearance had not yet been explored. Here, we demonstrated that 15 days treatment with TUDCA reestablished plasma insulin to physiological concentrations in high fat diet (HFD) mice, a phenomenon associated with increased insulin clearance and liver IDE expression. TUDCA also increased IDE expression in human hepatic cell line HepG2. This effect was not observed in the presence of an inhibitor of the hepatic membrane bile acid receptor, S1PR2, nor when its downstream proteins were inhibited, including IR, PI3K and Akt. These results indicate that treatment with TUDCA may be helpful to counteract obesity-induced hyperinsulinemia through increasing insulin clearance, likely through enhanced liver IDE expression in a mechanism dependent on S1PR2-Insulin pathway activation.
Collapse
Affiliation(s)
- Jean Franciesco Vettorazzi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| | - Mirian Ayumi Kurauti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| | - Gabriela Moreira Soares
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| | - Patricia Cristine Borck
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| | - Sandra Mara Ferreira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| | - Renato Chaves Souto Branco
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| | - Luciana de Souza Lima Michelone
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| | - Antonio Carlos Boschero
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| | - Jose Maria Costa Junior
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| | - Everardo Magalhães Carneiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil.
| |
Collapse
|
177
|
Mohamed AS, Hanafi NI, Sheikh Abdul Kadir SH, Md Noor J, Abdul Hamid Hasani N, Ab Rahim S, Siran R. Ursodeoxycholic acid protects cardiomyocytes against cobalt chloride induced hypoxia by regulating transcriptional mediator of cells stress hypoxia inducible factor 1α and p53 protein. Cell Biochem Funct 2017; 35:453-463. [PMID: 29027248 DOI: 10.1002/cbf.3303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 08/10/2017] [Accepted: 09/01/2017] [Indexed: 11/06/2022]
Abstract
In hepatocytes, ursodeoxycholic acid (UDCA) activates cell signalling pathways such as p53, intracellular calcium ([Ca2+ ]i ), and sphingosine-1-phosphate (S1P)-receptor via Gαi -coupled-receptor. Recently, UDCA has been shown to protect the heart against hypoxia-reoxygenation injury. However, it is not clear whether UDCA cardioprotection against hypoxia acts through a transcriptional mediator of cells stress, HIF-1α and p53. Therefore, in here, we aimed to investigate whether UDCA could protect cardiomyocytes (CMs) against hypoxia by regulating expression of HIF-1α, p53, [Ca2+ ]i , and S1P-Gαi -coupled-receptor. Cardiomyocytes were isolated from newborn rats (0-2 days), and hypoxia was induced by using cobalt chloride (CoCl2 ). Cardiomyocytes were treated with UDCA and cotreated with either FTY720 (S1P-receptor agonist) or pertussis toxin (PTX; Gαi inhibitor). Cells were subjected for proliferation assay, beating frequency, QuantiGene Plex assay, western blot, immunofluorescence, and calcium imaging. Our findings showed that UDCA counteracted the effects of CoCl2 on cell viability, beating frequency, HIF-1α, and p53 protein expression. We found that these cardioprotection effects of UDCA were similar to FTY720, S1P agonist. Furthermore, we observed that UDCA protects CMs against CoCl2 -induced [Ca2+ ]i dynamic alteration. Pharmacological inhibition of the Gαi -sensitive receptor did not abolish the cardioprotection of UDCA against CoCl2 detrimental effects, except for cell viability and [Ca2+ ]i . Pertussis toxin is partially effective in inhibiting UDCA protection against CoCl2 effects on CM cell viability. Interestingly, PTX fully inhibits UDCA cardioprotection on CoCl2 -induced [Ca2+ ]i dynamic changes. We conclude that UDCA cardioprotection against CoCl2 -induced hypoxia is similar to FTY720, and its actions are not fully mediated by the Gαi -coupled protein sensitive pathways. Ursodeoxycholic acid is the most hydrophilic bile acid and is currently used to treat liver diseases. Recently, UDCA is shown to have a cardioprotection effects; however, the mechanism of UDCA cardioprotection is still poorly understood. The current data generated were the first to show that UDCA is able to inhibit the activation of HIF-1α and p53 protein during CoCl2 -induced hypoxia in cardiomyocytes. This study provides an insight of UDCA mechanism in protecting cardiomyocytes against hypoxia.
Collapse
Affiliation(s)
- Anis Syamimi Mohamed
- Institute of Molecular Medicine and Biotechnology, Faculty of Medicine, UiTM, Sungai Buloh, Malaysia
| | - Noorul Izzati Hanafi
- Institute of Molecular Medicine and Biotechnology, Faculty of Medicine, UiTM, Sungai Buloh, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Molecular Medicine and Biotechnology, Faculty of Medicine, UiTM, Sungai Buloh, Malaysia.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, UiTM, Sungai Buloh, Malaysia
| | - Julina Md Noor
- Department of Emergency and Trauma, Faculty of Medicine, UiTM, Sungai Buloh, Malaysia
| | | | - Sharaniza Ab Rahim
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, UiTM, Sungai Buloh, Malaysia
| | - Rosfaiizah Siran
- Department of Physiology, Faculty of Medicine, UiTM, Sungai Buloh, Malaysia
| |
Collapse
|
178
|
Comeglio P, Morelli A, Adorini L, Maggi M, Vignozzi L. Beneficial effects of bile acid receptor agonists in pulmonary disease models. Expert Opin Investig Drugs 2017; 26:1215-1228. [PMID: 28949776 DOI: 10.1080/13543784.2017.1385760] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Bile acids act as steroid hormones, controlling lipid, glucose and energy metabolism, as well as inflammation and fibrosis. Their actions are implemented through activation of nuclear (FXR, VDR, PXR) and membrane G protein-coupled (TGR5, S1PR2) receptors. Areas covered: This review discusses the potential of FXR and TGR5 as therapeutic targets in the treatment of pulmonary disorders linked to metabolism and/or inflammation. Obeticholic acid (OCA) is the most clinically advanced bile acid-derived agonist for FXR-mediated anti-inflammatory and anti-fibrotic effects. It therefore represents an attractive pharmacological approach for the treatment of lung conditions characterized by vascular and endothelial dysfunctions. Expert opinion: Inflammation, vascular remodeling and fibrotic processes characterize the progression of pulmonary arterial hypertension (PAH) and idiopathic pulmonary fibrosis (IPF). These processes are only partially targeted by the available therapeutic options and still represent a relevant medical need. The results hereby summarized demonstrate OCA efficacy in preventing experimental lung disorders, i.e. monocrotaline-induced PAH and bleomycin-induced fibrosis, by abating proinflammatory and vascular remodeling progression. TGR5 is also expressed in the lung, and targeting the TGR5 pathway, using the TGR5 agonist INT-777 or the dual FXR/TGR5 agonist INT-767, could also contribute to the treatment of pulmonary disorders mediated by inflammation and fibrosis.
Collapse
Affiliation(s)
- Paolo Comeglio
- a Department of Biomedical, Experimental and Clinical Sciences , University of Florence , Florence , Italy
| | - Annamaria Morelli
- b Department of Experimental and Clinical Medicine , University of Florence , Florence , Italy
| | | | - Mario Maggi
- a Department of Biomedical, Experimental and Clinical Sciences , University of Florence , Florence , Italy
| | - Linda Vignozzi
- a Department of Biomedical, Experimental and Clinical Sciences , University of Florence , Florence , Italy
| |
Collapse
|
179
|
Voiosu A, Wiese S, Voiosu T, Bendtsen F, Møller S. Bile acids and cardiovascular function in cirrhosis. Liver Int 2017; 37:1420-1430. [PMID: 28222247 DOI: 10.1111/liv.13394] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/12/2017] [Indexed: 02/13/2023]
Abstract
Cirrhotic cardiomyopathy and the hyperdynamic syndrome are clinically important complications of cirrhosis, but their exact pathogenesis is still partly unknown. Experimental models have proven the cardiotoxic effects of bile acids and recent studies of their varied receptor-mediated functions offer new insight into their involvement in cardiovascular dysfunction in cirrhosis. Bile acid receptors such as farnesoid X-activated receptor and TGR5 are currently under investigation as potential therapeutic targets in a variety of pathological conditions. These receptors have also recently been identified in cardiomyocytes, vascular endothelial cells and smooth muscle cells where they seem to play an important role in cellular metabolism. Chronic cholestasis leading to abnormal levels of circulating bile acids alters the normal signalling pathways and contributes to the development of profound cardiovascular disturbances. This review summarizes the evidence regarding the role of bile acids and their receptors in the generation of cardiovascular dysfunction in cirrhosis.
Collapse
Affiliation(s)
- Andrei Voiosu
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, Hvidovre, Denmark.,Gastroenterology and Hepatology Department, Colentina Clinical Hospital, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Signe Wiese
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, Hvidovre, Denmark.,Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Theodor Voiosu
- Gastroenterology and Hepatology Department, Colentina Clinical Hospital, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Flemming Bendtsen
- Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Gastro Unit, Medical Division, Hvidovre Hospital, Hvidovre, Denmark
| | - Søren Møller
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, Hvidovre, Denmark.,Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
180
|
Li X, Liu R, Zhang L, Jiang Z. The emerging role of AMP-activated protein kinase in cholestatic liver diseases. Pharmacol Res 2017; 125:105-113. [PMID: 28889972 DOI: 10.1016/j.phrs.2017.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/15/2017] [Accepted: 09/05/2017] [Indexed: 11/26/2022]
Abstract
AMP-activated protein kinase (AMPK), recognized as an energy sensor with three heterotrimeric subunits (α, β and γ), not only maintains basal intracellular adenosine triphosphate levels but also regulates energy-intensive pathological responses, such as neurodegenerative and metabolic diseases, through multiple signaling pathways. Recent studies open a new direction for AMPK research and demonstrate that AMPK is a critical player in the pathogenesis of cholestatic liver injury and plays paradoxical roles in the regulation of different pathological processes, including the disruption of bile acid homeostasis and the regulation of hepatic polarity, inflammation and fibrosis. In the present review, we summarize recent findings that implicate AMPK-mediated signaling pathways in the pathogenesis of cholestatic liver injury. These findings provide novel insight regarding the potential use of AMPK as a therapeutic target for the treatment of cholestatic liver injury.
Collapse
Affiliation(s)
- Xiaojiaoyang Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Runping Liu
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China; Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
181
|
Li X, Liu R, Yang J, Sun L, Zhang L, Jiang Z, Puri P, Gurley EC, Lai G, Tang Y, Huang Z, Pandak WM, Hylemon PB, Zhou H. The role of long noncoding RNA H19 in gender disparity of cholestatic liver injury in multidrug resistance 2 gene knockout mice. Hepatology 2017; 66:869-884. [PMID: 28271527 PMCID: PMC5570619 DOI: 10.1002/hep.29145] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/11/2017] [Accepted: 03/02/2017] [Indexed: 12/31/2022]
Abstract
UNLABELLED The multidrug resistance 2 knockout (Mdr2-/- ) mouse is a well-established model of cholestatic cholangiopathies. Female Mdr2-/- mice develop more severe hepatobiliary damage than male Mdr2-/- mice, which is correlated with a higher proportion of taurocholate in the bile. Although estrogen has been identified as an important player in intrahepatic cholestasis, the underlying molecular mechanisms of gender-based disparity of cholestatic injury remain unclear. The long noncoding RNA H19 is an imprinted, maternally expressed, and estrogen-targeted gene, which is significantly induced in human fibrotic/cirrhotic liver and bile duct-ligated mouse liver. However, whether aberrant expression of H19 accounts for gender-based disparity of cholestatic injury in Mdr2-/- mice remains unknown. The current study demonstrated that H19 was markedly induced (∼200-fold) in the livers of female Mdr2-/- mice at advanced stages of cholestasis (100 days old) but not in age-matched male Mdr2-/- mice. During the early stages of cholestasis, H19 expression was minimal. We further determined that hepatic H19 was mainly expressed in cholangiocytes, not hepatocytes. Both taurocholate and estrogen significantly activated the extracellular signal-regulated kinase 1/2 signaling pathway and induced H19 expression in cholangiocytes. Knocking down H19 not only significantly reduced taurocholate/estrogen-induced expression of fibrotic genes and sphingosine 1-phosphate receptor 2 in cholangiocytes but also markedly reduced cholestatic injury in female Mdr2-/- mice. Furthermore, expression of small heterodimer partner was substantially inhibited at advanced stages of liver fibrosis, which was reversed by H19 short hairpin RNA in female Mdr2-/- mice. Similar findings were obtained in human primary sclerosing cholangitis liver samples. CONCLUSION H19 plays a critical role in the disease progression of cholestasis and represents a key factor that causes the gender disparity of cholestatic liver injury in Mdr2-/- mice. (Hepatology 2017;66:869-884).
Collapse
Affiliation(s)
- Xiaojiaoyang Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China.,Department of Microbiology and Immunology, Virginia Commonwealth University, and McGuire Veterans Affairs Medical Center, Richmond, VA
| | - Runping Liu
- Department of Microbiology and Immunology, Virginia Commonwealth University, and McGuire Veterans Affairs Medical Center, Richmond, VA.,Guangdong Pharmaceutical University, Guangzhou, China
| | - Jing Yang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China.,Department of Microbiology and Immunology, Virginia Commonwealth University, and McGuire Veterans Affairs Medical Center, Richmond, VA
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China.,Department of Microbiology and Immunology, Virginia Commonwealth University, and McGuire Veterans Affairs Medical Center, Richmond, VA
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China.,Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Puneet Puri
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA
| | - Emily C Gurley
- Department of Microbiology and Immunology, Virginia Commonwealth University, and McGuire Veterans Affairs Medical Center, Richmond, VA
| | - Guanhua Lai
- Department of Pathology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA
| | - Yuping Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resource Industrialization and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiming Huang
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - William M Pandak
- Department of Microbiology and Immunology, Virginia Commonwealth University, and McGuire Veterans Affairs Medical Center, Richmond, VA.,Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA
| | - Phillip B Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University, and McGuire Veterans Affairs Medical Center, Richmond, VA.,Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, and McGuire Veterans Affairs Medical Center, Richmond, VA.,Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA.,Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
182
|
Deutschmann K, Reich M, Klindt C, Dröge C, Spomer L, Häussinger D, Keitel V. Bile acid receptors in the biliary tree: TGR5 in physiology and disease. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1319-1325. [PMID: 28844960 DOI: 10.1016/j.bbadis.2017.08.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023]
Abstract
Bile salts represent signalling molecules with a variety of endocrine functions. Bile salt effects are mediated by different receptor molecules, comprising ligand-activated nuclear transcription factors as well as G protein-coupled membrane-bound receptors. The farnesoid X receptor (FXR) and the plasma membrane-bound G protein-coupled receptor TGR5 (Gpbar-1) are prototypic bile salt receptors of both classes and are highly expressed in the liver including the biliary tree as well as in the intestine. In liver, TGR5 is localized in different non-parenchymal cells such as sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells and small and large cholangiocytes. Through TGR5 bile salts can mediate choleretic, cell-protective as well as proliferative effects in cholangiocytes. A disturbance of these signalling mechanisms can contribute to the development of biliary diseases. In line with the important role of TGR5 for bile salt signalling, TGR5 knockout mice are more susceptible to cholestatic liver damage. Furthermore, in absence of TGR5 cholangiocyte proliferation in response to cholestasis is attenuated and intrahepatic and extrahepatic bile ducts show increased cell damage, underscoring the role of the receptor for biliary physiology. Decreased TGR5 expression may also contribute to the development or progression of cholangiopathies like primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) since reduced TGR5-dependent cell-protective mechanisms such as bicarbonate secretion renders cholangiocytes more vulnerable towards bile salt toxicity. Nevertheless, TGR5 overexpression or constant stimulation of the receptor can promote cholangiocyte proliferation leading to cyst growth in polycystic liver disease or even progression of cholangiocarcinoma. Not only the stimulation of TGR5-mediated pathways by suitable TGR5 agonists but also the inhibition of TGR5 signalling by the use of antagonists represent potential therapeutic approaches for different types of biliary diseases. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Kathleen Deutschmann
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Maria Reich
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Caroline Klindt
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Carola Dröge
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Lina Spomer
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
183
|
McMillin M, Frampton G, Grant S, Khan S, Diocares J, Petrescu A, Wyatt A, Kain J, Jefferson B, DeMorrow S. Bile Acid-Mediated Sphingosine-1-Phosphate Receptor 2 Signaling Promotes Neuroinflammation during Hepatic Encephalopathy in Mice. Front Cell Neurosci 2017; 11:191. [PMID: 28725183 PMCID: PMC5496949 DOI: 10.3389/fncel.2017.00191] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/20/2017] [Indexed: 12/16/2022] Open
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric complication that occurs due to deteriorating hepatic function and this syndrome influences patient quality of life, clinical management strategies and survival. During acute liver failure, circulating bile acids increase due to a disruption of the enterohepatic circulation. We previously identified that bile acid-mediated signaling occurs in the brain during HE and contributes to cognitive impairment. However, the influences of bile acids and their downstream signaling pathways on HE-induced neuroinflammation have not been assessed. Conjugated bile acids, such as taurocholic acid (TCA), can activate sphingosine-1-phosphate receptor 2 (S1PR2), which has been shown to promote immune cell infiltration and inflammation in other models. The current study aimed to assess the role of bile-acid mediated S1PR2 signaling in neuroinflammation and disease progression during azoxymethane (AOM)-induced HE in mice. Our findings demonstrate a temporal increase of bile acids in the cortex during AOM-induced HE and identified that cortical bile acids were elevated as an early event in this model. In order to classify the specific bile acids that were elevated during HE, a metabolic screen was performed and this assay identified that TCA was increased in the serum and cortex during AOM-induced HE. To reduce bile acid concentrations in the brain, mice were fed a diet supplemented with cholestyramine, which alleviated neuroinflammation by reducing proinflammatory cytokine expression in the cortex compared to the control diet-fed AOM-treated mice. S1PR2 was expressed primarily in neurons and TCA treatment increased chemokine ligand 2 mRNA expression in these cells. The infusion of JTE-013, a S1PR2 antagonist, into the lateral ventricle prior to AOM injection protected against neurological decline and reduced neuroinflammation compared to DMSO-infused AOM-treated mice. Together, this identifies that reducing bile acid levels or S1PR2 signaling are potential therapeutic strategies for the management of HE.
Collapse
Affiliation(s)
- Matthew McMillin
- Department of Research, Central Texas Veterans Health Care SystemTemple, TX, United States.,Department of Internal Medicine, College of Medicine, Texas A&M University Health Science CenterTemple, TX, United States
| | - Gabriel Frampton
- Department of Research, Central Texas Veterans Health Care SystemTemple, TX, United States.,Department of Internal Medicine, College of Medicine, Texas A&M University Health Science CenterTemple, TX, United States
| | - Stephanie Grant
- Department of Research, Central Texas Veterans Health Care SystemTemple, TX, United States.,Department of Internal Medicine, College of Medicine, Texas A&M University Health Science CenterTemple, TX, United States
| | - Shamyal Khan
- Department of Internal Medicine, Baylor Scott & White HealthTemple, TX, United States
| | - Juan Diocares
- Department of Internal Medicine, Baylor Scott & White HealthTemple, TX, United States
| | - Anca Petrescu
- Department of Research, Central Texas Veterans Health Care SystemTemple, TX, United States.,Department of Internal Medicine, College of Medicine, Texas A&M University Health Science CenterTemple, TX, United States
| | - Amy Wyatt
- Department of Research, Central Texas Veterans Health Care SystemTemple, TX, United States.,Department of Internal Medicine, College of Medicine, Texas A&M University Health Science CenterTemple, TX, United States
| | - Jessica Kain
- Department of Research, Central Texas Veterans Health Care SystemTemple, TX, United States.,Department of Internal Medicine, College of Medicine, Texas A&M University Health Science CenterTemple, TX, United States
| | - Brandi Jefferson
- Department of Research, Central Texas Veterans Health Care SystemTemple, TX, United States.,Department of Internal Medicine, College of Medicine, Texas A&M University Health Science CenterTemple, TX, United States
| | - Sharon DeMorrow
- Department of Research, Central Texas Veterans Health Care SystemTemple, TX, United States.,Department of Internal Medicine, College of Medicine, Texas A&M University Health Science CenterTemple, TX, United States
| |
Collapse
|
184
|
Kwong EK, Li X, Hylemon PB, Zhou H. Sphingosine Kinases/Sphingosine 1-Phosphate Signaling in Hepatic Lipid Metabolism. ACTA ACUST UNITED AC 2017; 3:176-183. [PMID: 29130028 DOI: 10.1007/s40495-017-0093-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ever-increasing prevalence of metabolic diseases such as dyslipidemia and diabetes in the western world continues to be of great public health concern. Biologically active sphingolipids, such as sphingosine 1-phosphate (S1P) and ceramide, are important regulators of lipid metabolism. S1P not only directly functions as an active intracellular mediator, but also activates multiple signaling pathways via five transmembrane G-protein coupled receptors (GPCRs), S1PR1-5. S1P is exclusively formed by sphingosine kinases (SphKs). Two isoforms of SphKs, SphK1 and SphK2, have been identified. Recent identification of the conjugated bile acid-induced activation of S1PR2 as a key regulator of SphK2 opened new directions for both the sphingolipid and bile acid research fields. The role of SphKs/S1P-mediated signaling pathways in health and various human diseases has been extensively reviewed elsewhere. This review focuses on recent findings related to SphKs/S1P-medaited signaling pathways in regulating hepatic lipid metabolism.
Collapse
Affiliation(s)
- Eric K Kwong
- Department of Microbiology and Immunology, Medical College of Virginia Campus, McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, 23298
| | - Xiaojiaoyang Li
- Department of Microbiology and Immunology, Medical College of Virginia Campus, McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, 23298
| | - Phillip B Hylemon
- Department of Microbiology and Immunology, Medical College of Virginia Campus, McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, 23298
| | - Huiping Zhou
- Department of Microbiology and Immunology, Medical College of Virginia Campus, McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, 23298
| |
Collapse
|
185
|
Abstract
Bile acids (BA) are synthesized from cholesterol in the liver. They are essential for promotion of the absorption of lipids, cholesterol, and lipid-soluble vitamins from the intestines. BAs are hormones that regulate nutrient metabolism by activating nuclear receptors (farnesoid X receptor (FXR), pregnane X receptor, vitamin D) and G protein-coupled receptors (e.g., TGR5, sphingosine-1-phosphate receptor 2 (S1PR2)) in the liver and intestines. In the liver, S1PR2 activation by conjugated BAs activates the extracellular signal-regulated kinase 1/2 and AKT signaling pathways, and nuclear sphingosine kinase 2. The latter produces sphingosine-1-phosphate (S1P), an inhibitor of histone deacetylases 1/2, which allows for the differential up-regulation of expression of genes involved in the metabolism of sterols and lipids. We discuss here the emerging concepts of the interactions of BAs, FXR, insulin, S1P signaling and nutrient metabolism.
Collapse
|
186
|
Wang Y, Aoki H, Yang J, Peng K, Liu R, Li X, Qiang X, Sun L, Gurley EC, Lai G, Zhang L, Liang G, Nagahashi M, Takabe K, Pandak WM, Hylemon PB, Zhou H. The role of sphingosine 1-phosphate receptor 2 in bile-acid-induced cholangiocyte proliferation and cholestasis-induced liver injury in mice. Hepatology 2017; 65:2005-2018. [PMID: 28120434 PMCID: PMC5444993 DOI: 10.1002/hep.29076] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/14/2016] [Accepted: 01/19/2017] [Indexed: 12/13/2022]
Abstract
UNLABELLED Bile duct obstruction is a potent stimulus for cholangiocyte proliferation, especially for large cholangiocytes. Our previous studies reported that conjugated bile acids (CBAs) activate the protein kinase B (AKT) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling pathways through sphingosine 1-phosphate receptor (S1PR) 2 in hepatocytes and cholangiocarcinoma cells. It also has been reported that taurocholate (TCA) promotes large cholangiocyte proliferation and protects cholangiocytes from bile duct ligation (BDL)-induced apoptosis. However, the role of S1PR2 in bile-acid-mediated cholangiocyte proliferation and cholestatic liver injury has not been elucidated. Here, we report that S1PR2 is the predominant S1PR expressed in cholangiocytes. Both TCA- and sphingosine-1-phosphate (S1P)-induced activation of ERK1/2 and AKT were inhibited by JTE-013, a specific antagonist of S1PR2, in cholangiocytes. In addition, TCA- and S1P-induced cell proliferation and migration were inhibited by JTE-013 and a specific short hairpin RNA of S1PR2, as well as chemical inhibitors of ERK1/2 and AKT in mouse cholangiocytes. In BDL mice, expression of S1PR2 was up-regulated in whole liver and cholangiocytes. S1PR2 deficiency significantly reduced BDL-induced cholangiocyte proliferation and cholestatic injury, as indicated by significant reductions in inflammation and liver fibrosis in S1PR2 knockout mice. Treatment of BDL mice with JTE-013 significantly reduced total bile acid levels in serum and cholestatic liver injury. CONCLUSION This study suggests that CBA-induced activation of S1PR2-mediated signaling pathways plays a critical role in obstructive cholestasis and may represent a novel therapeutic target for cholestatic liver diseases. (Hepatology 2017;65:2005-2018).
Collapse
Affiliation(s)
- Yongqing Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, 23298
| | - Hiroaki Aoki
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University, Richmond, Virginia, 23298
| | - Jing Yang
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, 23298,China Pharmaceutical University
| | - Kesong Peng
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, 23298,College of Pharmaceutical Science, Wenzhou Medical University
| | - Runping Liu
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, 23298
| | - Xiaojiaoyang Li
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, 23298,China Pharmaceutical University
| | - Xiaoyan Qiang
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, 23298,China Pharmaceutical University
| | - Lixin Sun
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, 23298,China Pharmaceutical University
| | - Emily C Gurley
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, 23298,McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, 23298
| | - Guanhua Lai
- Department of Pathology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, 23298
| | | | - Guang Liang
- College of Pharmaceutical Science, Wenzhou Medical University
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata City 951-8510
| | - Kazuaki Takabe
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, 23298,Breast Surgery, Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, New York, 14263
| | - William M Pandak
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, 23298
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, 23298,McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, 23298
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, 23298,McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, 23298,College of Pharmaceutical Science, Wenzhou Medical University
| |
Collapse
|
187
|
Yang J, Sun L, Wang L, Hassan HM, Wang X, Hylemon PB, Wang T, Zhou H, Zhang L, Jiang Z. Activation of Sirt1/FXR Signaling Pathway Attenuates Triptolide-Induced Hepatotoxicity in Rats. Front Pharmacol 2017; 8:260. [PMID: 28536529 PMCID: PMC5422577 DOI: 10.3389/fphar.2017.00260] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/25/2017] [Indexed: 01/14/2023] Open
Abstract
Triptolide (TP), a diterpenoid isolated from Tripterygium wilfordii Hook F, has an excellent pharmacological profile of immunosuppression and anti-tumor activities, but its clinical applications are severely restricted due to its severe and cumulative toxicities. The farnesoid X receptor (FXR) is the master bile acid nuclear receptor and plays an important role in maintaining hepatic metabolism homeostasis. Hepatic Sirtuin (Sirt1) is a key regulator of the FXR signaling pathway and hepatic metabolism homeostasis. The aims of this study were to determine whether Sirt1/FXR signaling pathway plays a critical role in TP-induced hepatotoxicity. Our study revealed that the intragastric administration of TP (400 μg/kg body weight) for 28 consecutive days increased bile acid accumulation, suppressed hepatic gluconeogenesis in rats. The expression of bile acid transporter BSEP was significantly reduced and cholesterol 7α-hydroxylase (CYP7A1) was markedly increased in the TP-treated group, whereas the genes responsible for hepatic gluconeogenesis were suppressed in the TP-treated group. TP also modulated the FXR and Sirt1 by decreasing its expression both in vitro and in vivo. The Sirt1 agonist SRT1720 and the FXR agonist obeticholic acid (OCA) were used both in vivo and in vitro. The remarkable liver damage induced by TP was attenuated by treatment with either SRT1720 or OCA, as reflected by decreased levels of serum total bile acids and alkaline phosphatase and increased glucose levels. Meanwhile, SRT1720 significantly alleviated TP-induced FXR suppression and FXR-targets involved in hepatic lipid and glucose metabolism. Based on these results, we conclude that Sirt1/FXR inactivation plays a critical role in TP-induced hepatotoxicity. Moreover, Sirt1/FXR axis represents a novel therapeutic target that could potentially ameliorate TP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Jing Yang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China.,Department of Microbiology and Immunology, Virginia Commonwealth University, RichmondVA, USA
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Lu Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Hozeifa M Hassan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Xuan Wang
- Department of Microbiology and Immunology, Virginia Commonwealth University, RichmondVA, USA
| | - Phillip B Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University, RichmondVA, USA.,McGuire Veterans Affairs Medical Center, RichmondVA, USA
| | - Tao Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, RichmondVA, USA.,McGuire Veterans Affairs Medical Center, RichmondVA, USA
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical UniversityNanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical UniversityNanjing, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of EducationNanjing, China.,Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical UniversityNanjing, China
| |
Collapse
|
188
|
Chow MD, Lee YH, Guo GL. The role of bile acids in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Mol Aspects Med 2017; 56:34-44. [PMID: 28442273 DOI: 10.1016/j.mam.2017.04.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/11/2017] [Accepted: 04/20/2017] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease is growing in prevalence worldwide. It is marked by the presence of macrosteatosis on liver histology but is often clinically asymptomatic. However, it can progress into nonalcoholic steatohepatitis which is a more severe form of liver disease characterized by inflammation and fibrosis. Further progression leads to cirrhosis, which predisposes patients to hepatocellular carcinoma or liver failure. The mechanism by which simple steatosis progresses to steatohepatitis is not entirely clear. However, multiple pathways have been proposed. A common link amongst many of these pathways is disruption of the homeostasis of bile acids. Other than aiding in the absorption of lipids and lipid-soluble vitamins, bile acids act as ligands. For example, they bind to farnesoid X receptor, which is critically involved in many of the pathways responsible for maintaining bile acid, glucose, and lipid homeostasis. Alterations to these pathways can lead to dysregulation of energy balance and increased inflammation and fibrosis. Repeated insults over time may be the key to development of steatohepatitis. For this reason, current drug therapies target aspects of these pathways to try to reduce and halt inflammation and fibrosis. This review will focus on the role of bile acids in these various pathways and how changes in these pathways may result in steatohepatitis. While there is no approved pharmaceutical treatment for either hepatic steatosis or steatohepatitis, this review will also touch upon the multitude of potential therapies.
Collapse
Affiliation(s)
- Monica D Chow
- Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Yi-Horng Lee
- Division of Pediatric Surgery, Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Grace L Guo
- Department of Pharmacy and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
189
|
Trauner M, Fuchs CD, Halilbasic E, Paumgartner G. New therapeutic concepts in bile acid transport and signaling for management of cholestasis. Hepatology 2017; 65:1393-1404. [PMID: 27997980 DOI: 10.1002/hep.28991] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 12/13/2022]
Abstract
The identification of the key regulators of bile acid (BA) synthesis and transport within the enterohepatic circulation has revealed potential targets for pharmacological therapies of cholestatic liver diseases. Novel drug targets include the bile BA receptors, farnesoid X receptor and TGR5, the BA-induced gut hormones, fibroblast growth factor 19 and glucagon-like peptide 1, and the BA transport systems, apical sodium-dependent bile acid transporter and Na+ -taurocholate cotransporting polypeptide, within the enterohepatic circulation. Moreover, BA derivatives undergoing cholehepatic shunting may allow improved targeting to the bile ducts. This review focuses on the pathophysiological basis, mechanisms of action, and clinical development of novel pharmacological strategies targeting BA transport and signaling in cholestatic liver diseases. (Hepatology 2017;65:1393-1404).
Collapse
Affiliation(s)
- Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria
| | - Claudia Daniela Fuchs
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria
| | - Emina Halilbasic
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria
| | - Gustav Paumgartner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria
| |
Collapse
|
190
|
Ikeda Y, Morita SY, Terada T. Cholesterol attenuates cytoprotective effects of phosphatidylcholine against bile salts. Sci Rep 2017; 7:306. [PMID: 28331225 PMCID: PMC5428433 DOI: 10.1038/s41598-017-00476-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/27/2017] [Indexed: 01/03/2023] Open
Abstract
Bile salts have potent detergent properties and damaging effects on cell membranes, leading to liver injury. However, the molecular mechanisms for the protection of hepatocytes against bile salts are not fully understood. In this study, we demonstrated that the cytotoxicity of nine human major bile salts to HepG2 cells and primary human hepatocytes was prevented by phosphatidylcholine (PC). In contrast, cholesterol had no direct cytotoxic effects but suppressed the cytoprotective effects of PC. PC reduced the cell-association of bile salt, which was reversed by cholesterol. Light scattering measurements and gel filtration chromatography revealed that cholesterol within bile salt/PC dispersions decreased mixed micelles but increased vesicles, bile salt simple micelles and monomers. These results suggest that cholesterol attenuates the cytoprotective effects of PC against bile salts by facilitating the formation of bile salt simple micelles and monomers. Therefore, biliary PC and cholesterol may play different roles in the pathogenesis of bile salt-induced liver injury.
Collapse
Affiliation(s)
- Yoshito Ikeda
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga, 520-2192, Japan
| | - Shin-Ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga, 520-2192, Japan.
| | - Tomohiro Terada
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga, 520-2192, Japan
| |
Collapse
|
191
|
Wesolowski SR, El Kasmi KC, Jonscher KR, Friedman JE. Developmental origins of NAFLD: a womb with a clue. Nat Rev Gastroenterol Hepatol 2017; 14:81-96. [PMID: 27780972 PMCID: PMC5725959 DOI: 10.1038/nrgastro.2016.160] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Changes in the maternal environment leading to an altered intrauterine milieu can result in subtle insults to the fetus, promoting increased lifetime disease risk and/or disease acceleration in childhood and later in life. Particularly worrisome is that the prevalence of NAFLD is rapidly increasing among children and adults, and is being diagnosed at increasingly younger ages, pointing towards an early-life origin. A wealth of evidence, in humans and non-human primates, suggests that maternal nutrition affects the placenta and fetal tissues, leading to persistent changes in hepatic metabolism, mitochondrial function, the intestinal microbiota, liver macrophage activation and susceptibility to NASH postnatally. Deleterious exposures in utero include fetal hypoxia, increased nutrient supply, inflammation and altered gut microbiota that might produce metabolic clues, including fatty acids, metabolites, endotoxins, bile acids and cytokines, which prime the infant liver for NAFLD in a persistent manner and increase susceptibility to NASH. Mechanistic links to early disease pathways might involve shifts in lipid metabolism, mitochondrial dysfunction, pioneering gut microorganisms, macrophage programming and epigenetic changes that alter the liver microenvironment, favouring liver injury. In this Review, we discuss how maternal, fetal, neonatal and infant exposures provide developmental clues and mechanisms to help explain NAFLD acceleration and increased disease prevalence. Mechanisms identified in clinical and preclinical models suggest important opportunities for prevention and intervention that could slow down the growing epidemic of NAFLD in the next generation.
Collapse
Affiliation(s)
| | - Karim C. El Kasmi
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Colorado
| | | | - Jacob E. Friedman
- Department of Pediatrics, Section of Neonatology, University of Colorado,Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado, Anschutz Medical Campus, 12801 East 17th Avenue, MS 8106, Aurora, Colorado 80045, USA
| |
Collapse
|
192
|
Zhang L, Yang Z, Trottier J, Barbier O, Wang L. Long noncoding RNA MEG3 induces cholestatic liver injury by interaction with PTBP1 to facilitate shp mRNA decay. Hepatology 2017; 65:604-615. [PMID: 27770549 PMCID: PMC5258819 DOI: 10.1002/hep.28882] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
Abstract
UNLABELLED Bile acids (BAs) play critical physiological functions in cholesterol homeostasis, and deregulation of BA metabolism causes cholestatic liver injury. The long noncoding RNA maternally expressed gene 3 (MEG3) was recently shown as a potential tumor suppressor; however, its basic hepatic function remains elusive. Using RNA pull-down with biotin-labeled sense or anti-sense MEG 3RNA followed by mass spectrometry, we identified RNA-binding protein polypyrimidine tract-binding protein 1 (PTBP1) as a MEG3 interacting protein and validated their interaction by RNA immunoprecipitation (RIP). Bioinformatics analysis revealed putative binding sites for PTBP1 within the coding region (CDS) of small heterodimer partner (SHP), a key repressor of BA biosynthesis. Forced expression of MEG3 in hepatocellular carcinoma cells guided and facilitated PTBP1 binding to the Shp CDS, resulting in Shp mRNA decay. Transient overexpression of MEG3 RNA in vivo in mouse liver caused rapid Shp mRNA degradation and cholestatic liver injury, which was accompanied by the disruption of BA homeostasis, elevation of liver enzymes, as well as dysregulation of BA synthetic enzymes and metabolic genes. Interestingly, RNA sequencing coupled with quantitative PCR (qPCR) revealed a drastic induction of MEG3 RNA in Shp-/- liver. SHP inhibited MEG3 gene transcription by repressing cAMP response element-binding protein (CREB) transactivation of the MEG3 promoter. In addition, the expression of MEG3 and PTBP1 was activated in human fibrotic and cirrhotic livers. CONCLUSION MEG3 causes cholestasis by serving as a guide RNA scaffold to recruit PTBP1 to destabilize Shp mRNA. SHP in turn represses CREB-mediated activation of MEG3 expression in a feedback-regulatory fashion. (Hepatology 2017;65:604-615).
Collapse
Affiliation(s)
- Li Zhang
- Department of Physiology and Neurobiology, and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | - Zhihong Yang
- Department of Physiology and Neurobiology, and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269,Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Jocelyn Trottier
- Laboratory of Molecular Pharmacology, CHU-Québec Research Centre and Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, CHU-Québec Research Centre and Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - Li Wang
- Department of Physiology and Neurobiology, and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269,Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516,Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT 06520,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China,Address reprint requests to: Li Wang, Ph.D., 75 North Eagleville Rd., U3156, Storrs, CT 06269. ; Tel: 860-486-0857; Fax: 860-486-3303
| |
Collapse
|
193
|
Preference of Conjugated Bile Acids over Unconjugated Bile Acids as Substrates for OATP1B1 and OATP1B3. PLoS One 2017; 12:e0169719. [PMID: 28060902 PMCID: PMC5218478 DOI: 10.1371/journal.pone.0169719] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022] Open
Abstract
Bile acids, the metabolites of cholesterol, are signaling molecules that play critical role in many physiological functions. They undergo enterohepatic circulation through various transporters expressed in intestine and liver. Human organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3 contribute to hepatic uptake of bile acids such as taurocholic acid. However, the transport properties of individual bile acids are not well understood. Therefore, we selected HEK293 cells overexpressing OATP1B1 and OATP1B3 to evaluate the transport of five major human bile acids (cholic acid, chenodeoxycholic acid, deoxycholic acid, ursodeoxycholic acid, lithocholic acid) together withtheir glycine and taurine conjugates via OATP1B1 and OATP1B3. The bile acids were quantified by liquid chromatography-tandem mass spectrometry. The present study revealed that cholic acid, chenodeoxyxcholic acid, and deoxycholic acid were transported by OATP1B1 and OATP1B3, while ursodeoxycholic acid and lithocholic acid were not significantly transported by OATPs. However, all the conjugated bile acids were taken up rapidly by OATP1B1 and OATP1B3. Kinetic analyses revealed the involvement of saturable OATP1B1- and OATP1B3-mediated transport of bile acids. The apparent Km values for OATP1B1 and OATP1B3 of the conjugated bile acids were similar (0.74-14.7 μM for OATP1B1 and 0.47-15.3 μM for OATP1B3). They exhibited higher affinity than cholic acid (47.1 μM for OATP1B1 and 42.2 μM for OATP1B3). Our results suggest that conjugated bile acids (glycine and taurine) are preferred to unconjugated bile acids as substrates for OATP1B1 and OATP1B3.
Collapse
|
194
|
Aoki H, Aoki M, Yang J, Katsuta E, Mukhopadhyay P, Ramanathan R, Woelfel IA, Wang X, Spiegel S, Zhou H, Takabe K. Murine model of long-term obstructive jaundice. J Surg Res 2016; 206:118-125. [PMID: 27916350 PMCID: PMC5142243 DOI: 10.1016/j.jss.2016.07.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/16/2016] [Accepted: 07/08/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND With the recent emergence of conjugated bile acids as signaling molecules in cancer, a murine model of obstructive jaundice by cholestasis with long-term survival is in need. Here, we investigated the characteristics of three murine models of obstructive jaundice. METHODS C57BL/6J mice were used for total ligation of the common bile duct (tCL), partial common bile duct ligation (pCL), and ligation of left and median hepatic bile duct with gallbladder removal (LMHL) models. Survival was assessed by Kaplan-Meier method. Fibrotic change was determined by Masson-Trichrome staining and Collagen expression. RESULTS Overall, 70% (7 of 10) of tCL mice died by day 7, whereas majority 67% (10 of 15) of pCL mice survived with loss of jaundice. A total of 19% (3 of 16) of LMHL mice died; however, jaundice continued beyond day 14, with survival of more than a month. Compensatory enlargement of the right lobe was observed in both pCL and LMHL models. The pCL model demonstrated acute inflammation due to obstructive jaundice 3 d after ligation but jaundice rapidly decreased by day 7. The LHML group developed portal hypertension and severe fibrosis by day 14 in addition to prolonged jaundice. CONCLUSIONS The standard tCL model is too unstable with high mortality for long-term studies. pCL may be an appropriate model for acute inflammation with obstructive jaundice, but long-term survivors are no longer jaundiced. The LHML model was identified to be the most feasible model to study the effect of long-term obstructive jaundice.
Collapse
Affiliation(s)
- Hiroaki Aoki
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Masayo Aoki
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Jing Yang
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Eriko Katsuta
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Partha Mukhopadhyay
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Rajesh Ramanathan
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Ingrid A Woelfel
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Xuan Wang
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Kazuaki Takabe
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, New York.
| |
Collapse
|
195
|
Li X, Yuan Z, Liu R, Hassan HM, Yang H, Sun R, Zhang L, Jiang Z. UDCA and CDCA alleviate 17α-ethinylestradiol-induced cholestasis through PKA-AMPK pathways in rats. Toxicol Appl Pharmacol 2016; 311:12-25. [DOI: 10.1016/j.taap.2016.10.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/26/2016] [Accepted: 10/10/2016] [Indexed: 01/08/2023]
|
196
|
Khan FH, Shaw L, Zhang W, Salazar Gonzalez RM, Mowery S, Oehrle M, Zhao X, Jenkins T, Setchell KDR, Inge TH, Kohli R. Fibroblast growth factor 21 correlates with weight loss after vertical sleeve gastrectomy in adolescents. Obesity (Silver Spring) 2016; 24:2377-2383. [PMID: 27615057 PMCID: PMC5846337 DOI: 10.1002/oby.21658] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/03/2016] [Accepted: 08/03/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Vertical sleeve gastrectomy (VSG) results in weight loss and increased bile acids (BA) and fibroblast growth factor 19 (FGF19) levels. FGF21 shares essential cofactors with FGF19, but its physiology early post-VSG has not been assessed. METHODS Ten adolescents (17.4 ± 0.5 years and BMI 51.5 ± 2.5 kg/m2 ) were enrolled. Fasting and postmeal (100 mL Ensure™) samples (0-120 min) were collected (pre-VSG [V1], 1 [V2], and 3 months [V3] post-VSG) for analysis of BA, FGF19, and FGF21. RESULTS Post-VSG subjects lost weight (V2 11.8 ± 0.8 kg; V3 21.9 ± 1.7 kg). BA and FGF19 increased by V2, 143.6% at 30 min and 74.9% at 90 min post-meal, respectively. BA hydrophobicity index also improved by V3, 21.1% at 30 min post-meal. Interestingly, fasting and 120-min post-meal FGF21 levels at V2 were increased by 135.7% and 253.9%, respectively, but then returned to baseline at V3. BA levels correlated with FGF21 at V2 (P = 0.003, r = 0.89), and body weight lost post-VSG correlated with FGF21 levels (V2; P = 0.012, R = 0.82). CONCLUSIONS Expected changes were seen in BA and FGF19 biology after VSG in adolescents, but novel changes were seen in correlation between the early postsurgical increase in FGF21 and weight loss, suggesting that FGF21 may play a role in energy balance postoperatively, and further investigation is warranted.
Collapse
Affiliation(s)
- Farooq H Khan
- Division of General Internal Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Lindsey Shaw
- Department of Pediatric Surgery, Surgical Weight Loss Program for Teens, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Wujuan Zhang
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Rosa Maria Salazar Gonzalez
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Sarah Mowery
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Melissa Oehrle
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Xueheng Zhao
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Todd Jenkins
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kenneth D R Setchell
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Thomas H Inge
- Department of Pediatric Surgery, Surgical Weight Loss Program for Teens, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, California, USA.
| |
Collapse
|
197
|
Fiorucci S, Zampella A, Cirino G, Bucci M, Distrutti E. Decoding the vasoregulatory activities of bile acid-activated receptors in systemic and portal circulation: role of gaseous mediators. Am J Physiol Heart Circ Physiol 2016; 312:H21-H32. [PMID: 27765751 DOI: 10.1152/ajpheart.00577.2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 01/06/2023]
Abstract
Bile acids are end products of cholesterol metabolism generated in the liver and released in the intestine. Primary and secondary bile acids are the result of the symbiotic relation between the host and intestinal microbiota. In addition to their role in nutrient absorption, bile acids are increasingly recognized as regulatory signals that exert their function beyond the intestine by activating a network of membrane and nuclear receptors. The best characterized of these bile acid-activated receptors, GPBAR1 (also known as TGR5) and the farnesosid-X-receptor (FXR), have also been detected in the vascular system and their activation mediates the vasodilatory effects of bile acids in the systemic and splanchnic circulation. GPBAR1, is a G protein-coupled receptor, that is preferentially activated by lithocholic acid (LCA) a secondary bile acid. GPBAR1 is expressed in endothelial cells and liver sinusoidal cells (LSECs) and responds to LCA by regulating the expression of both endothelial nitric oxide synthase (eNOS) and cystathionine-γ-lyase (CSE), an enzyme involved in generation of hydrogen sulfide (H2S). Activation of CSE by GPBAR1 ligands in LSECs is due to genomic and nongenomic effects, involves protein phosphorylation, and leads to release of H2S. Despite that species-specific effects have been described, vasodilation caused by GPBAR1 ligands in the liver microcirculation and aortic rings is abrogated by inhibition of CSE but not by eNOS inhibitor. Vasodilation caused by GPBAR1 (and FXR) ligands also involves large conductance calcium-activated potassium channels likely acting downstream to H2S. The identification of GPBAR1 as a vasodilatory receptor is of relevance in the treatment of complex disorders including metabolic syndrome-associated diseases, liver steatohepatitis, and portal hypertension.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy;
| | - Angela Zampella
- Department of Pharmacy, University of Naples "Federico II," Naples, Italy; and
| | - Giuseppe Cirino
- Department of Pharmacy, University of Naples "Federico II," Naples, Italy; and
| | - Mariarosaria Bucci
- Department of Pharmacy, University of Naples "Federico II," Naples, Italy; and
| | | |
Collapse
|
198
|
Nagahashi M, Yuza K, Hirose Y, Nakajima M, Ramanathan R, Hait NC, Hylemon PB, Zhou H, Takabe K, Wakai T. The roles of bile acids and sphingosine-1-phosphate signaling in the hepatobiliary diseases. J Lipid Res 2016; 57:1636-1643. [PMID: 27459945 PMCID: PMC5003161 DOI: 10.1194/jlr.r069286] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/21/2016] [Indexed: 12/23/2022] Open
Abstract
Based on research carried out over the last decade, it has become increasingly evident that bile acids act not only as detergents, but also as important signaling molecules that exert various biological effects via activation of specific nuclear receptors and cell signaling pathways. Bile acids also regulate the expression of numerous genes encoding enzymes and proteins involved in the synthesis and metabolism of bile acids, glucose, fatty acids, and lipoproteins, as well as energy metabolism. Receptors activated by bile acids include, farnesoid X receptor α, pregnane X receptor, vitamin D receptor, and G protein-coupled receptors, TGR5, muscarinic receptor 2, and sphingosine-1-phosphate receptor (S1PR)2. The ligand of S1PR2, sphingosine-1-phosphate (S1P), is a bioactive lipid mediator that regulates various physiological and pathophysiological cellular processes. We have recently reported that conjugated bile acids, via S1PR2, activate and upregulate nuclear sphingosine kinase 2, increase nuclear S1P, and induce genes encoding enzymes and transporters involved in lipid and sterol metabolism in the liver. Here, we discuss the role of bile acids and S1P signaling in the regulation of hepatic lipid metabolism and in hepatobiliary diseases.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata City 951-8510, Japan
| | - Kizuki Yuza
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata City 951-8510, Japan
| | - Yuki Hirose
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata City 951-8510, Japan
| | - Masato Nakajima
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata City 951-8510, Japan
| | - Rajesh Ramanathan
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, VA 23298
| | - Nitai C Hait
- Surgical Oncology and Molecular and Cellular Biology Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Phillip B Hylemon
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 and McGuire Veterans Affairs Medical Center, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23224
| | - Huiping Zhou
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 and McGuire Veterans Affairs Medical Center, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23224
| | - Kazuaki Takabe
- Breast Surgery, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata City 951-8510, Japan
| |
Collapse
|
199
|
Hisamoto S, Shimoda S, Harada K, Iwasaka S, Onohara S, Chong Y, Nakamura M, Bekki Y, Yoshizumi T, Ikegami T, Maehara Y, He XS, Gershwin ME, Akashi K. Hydrophobic bile acids suppress expression of AE2 in biliary epithelial cells and induce bile duct inflammation in primary biliary cholangitis. J Autoimmun 2016; 75:150-160. [PMID: 27592379 DOI: 10.1016/j.jaut.2016.08.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 12/19/2022]
Abstract
Understanding the mechanisms of chronic inflammation in primary biliary cholangitis (PBC) is essential for successful treatment. Earlier work has demonstrated that patients with PBC have reduced expression of the anion exchanger 2 (AE2) on biliary epithelial cells (BEC) and deletion of AE2 gene has led to a PBC-like disorder in mice. To directly address the role of AE2 in preventing PBC pathogenesis, we took advantage of our ability to isolate human BEC and autologous splenic mononuclear cells (SMC). We studied the influence of hydrophobic bile acids, in particular, glycochenodeoxycholic acid (GCDC), on AE2 expression in BEC and the subsequent impact on the phenotypes of BEC and local inflammatory responses. We demonstrate herein that GCDC reduces AE2 expression in BEC through induction of reactive oxygen species (ROS), which enhances senescence of BEC. In addition, a reduction of AE2 levels by either GCDC or another AE2 inhibitor upregulates expression of CD40 and HLA-DR as well as production of IL-6, IL-8 and CXCL10 from BEC in response to toll like receptor ligands, an effect suppressed by inhibition of ROS. Importantly, reduced AE2 expression enhances the migration of autologous splenic mononuclear cells (SMC) towards BEC. In conclusion, our data highlight a key functional role of AE2 in the maintenance of the normal physiology of BEC and the pathogenic consequences of reduced AE2 expression, including abnormal intrinsic characteristics of BEC and their production of signal molecules that lead to the chronic inflammatory responses in small bile ducts.
Collapse
Affiliation(s)
- Satomi Hisamoto
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Shinji Shimoda
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan.
| | - Sho Iwasaka
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Shinya Onohara
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Yong Chong
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Minoru Nakamura
- Clinical Research Center in National Hospital Organization (NHO), Nagasaki Medical Center and Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan.
| | - Yuki Bekki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Toru Ikegami
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Xiao-Song He
- Division of Rheumatology, Allergy and Clinical Immunology, School of Medicine, University of California at Davis, Davis, CA, USA.
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, School of Medicine, University of California at Davis, Davis, CA, USA.
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
200
|
Chen MH, Yen CC, Cheng CT, Wu RC, Huang SC, Yu CS, Chung YH, Liu CY, Chang PMH, Chao Y, Chen MH, Chen YF, Chiang KC, Yeh TS, Chen TC, Huang CYF, Yeh CN. Identification of SPHK1 as a therapeutic target and marker of poor prognosis in cholangiocarcinoma. Oncotarget 2016; 6:23594-608. [PMID: 26090720 PMCID: PMC4695139 DOI: 10.18632/oncotarget.4335] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 05/30/2015] [Indexed: 01/01/2023] Open
Abstract
Cholangiocarcinoma (CCA) is characterized by a uniquely aggressive behavior and lack of effective targeted therapies. After analyzing the gene expression profiles of seven paired intrahepatic CCA microarrays, a novel sphingosine kinase 1 (SPHK1)/sphingosine-1-phosphate (S1P) pathway and a novel target gene, SPHK1, were identified. We hypothesized that therapeutic targeting of this pathway can be used to kill intrahepatic cholangiocarcinoma (CCA) cells. High levels of SPHK1 protein expression, which was evaluated by immunohistochemical staining of samples from 96 patients with intrahepatic CCA, correlated with poor overall survival. The SPHK1 inhibitor SK1-I demonstrated potent antiproliferative activity in vitro and in vivo. SK1-I modulated the balance of ceramide-sphinogosine-S1P and induced CCA apoptosis. Furthermore, SK1-I combined with JTE013, an antagonist of the predominant S1P receptor S1PR2, inhibited the AKT and ERK signaling pathways in CCA cells. Our preclinical data suggest SPHK1/S1P pathway targeting may be an effective treatment option for patients with CCA.
Collapse
Affiliation(s)
- Ming-Huang Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chueh-Chuan Yen
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Tung Cheng
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Ren-Chin Wu
- Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Chiang Huang
- Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Shan Yu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, Taiwan
| | - Yi-Hsiu Chung
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Yu Liu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Peter Mu-Hsin Chang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yee Chao
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Han Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Fen Chen
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kun-Chun Chiang
- Department of General Surgery, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Ta-Sen Yeh
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Tzu Chi Chen
- Institute of Clinical Medicine and Institute of Biopharmaceutical Sciences National Yang-Ming University, Taipei, Taiwan
| | - Chi-Ying F Huang
- Institute of Clinical Medicine and Institute of Biopharmaceutical Sciences National Yang-Ming University, Taipei, Taiwan
| | - Chun-Nan Yeh
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|