151
|
Hammers D, Carothers K, Lee S. The Role of Bacterial Proteases in Microbe and Host-microbe Interactions. Curr Drug Targets 2021; 23:222-239. [PMID: 34370632 DOI: 10.2174/1389450122666210809094100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Secreted proteases are an important class of factors used by bacterial to modulate their extracellular environment through the cleavage of peptides and proteins. These proteases can range from broad, general proteolytic activity to high degrees of substrate specificity. They are often involved in interactions between bacteria and other species, even across kingdoms, allowing bacteria to survive and compete within their niche. As a result, many bacterial proteases are of clinical importance. The immune system is a common target for these enzymes, and bacteria have evolved ways to use these proteases to alter immune responses for their benefit. In addition to the wide variety of human proteins that can be targeted by bacterial proteases, bacteria also use these secreted factors to disrupt competing microbes, ranging from outright antimicrobial activity to disrupting processes like biofilm formation. OBJECTIVE In this review, we address how bacterial proteases modulate host mechanisms of protection from infection and injury, including immune factors and cell barriers. We also discuss the contributions of bacterial proteases to microbe-microbe interactions, including antimicrobial and anti-biofilm dynamics. CONCLUSION Bacterial secreted proteases represent an incredibly diverse group of factors that bacteria use to shape and thrive in their microenvironment. Due to the range of activities and targets of these proteases, some have been noted for having potential as therapeutics. The vast array of bacterial proteases and their targets remains an expanding field of research, and this field has many important implications for human health.
Collapse
Affiliation(s)
- Daniel Hammers
- Department of Biological Sciences, University of Notre Dame, Galvin Hall, Notre Dame, IN 46556, United States
| | - Katelyn Carothers
- Department of Biological Sciences, University of Notre Dame, Galvin Hall, Notre Dame, IN 46556, United States
| | - Shaun Lee
- Department of Biological Sciences, University of Notre Dame, Galvin Hall, Notre Dame, IN 46556, United States
| |
Collapse
|
152
|
Influenza hemagglutinin-specific IgA Fc-effector functionality is restricted to stalk epitopes. Proc Natl Acad Sci U S A 2021; 118:2018102118. [PMID: 33593910 DOI: 10.1073/pnas.2018102118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, we utilized a panel of human immunoglobulin (Ig) IgA monoclonal antibodies isolated from the plasmablasts of eight donors after 2014/2015 influenza virus vaccination (Fluarix) to study the binding and functional specificities of this isotype. In this cohort, isolated IgA monoclonal antibodies were primarily elicited against the hemagglutinin protein of the H1N1 component of the vaccine. To compare effector functionalities, an H1-specific subset of antibodies targeting distinct epitopes were expressed as monomeric, dimeric, or secretory IgA, as well as in an IgG1 backbone. When expressed with an IgG Fc domain, all antibodies elicited Fc-effector activity in a primary polymorphonuclear cell-based assay which differs from previous observations that found only stalk-specific antibodies activate the low-affinity FcγRIIIa. However, when expressed with IgA Fc domains, only antibodies targeting the stalk domain showed Fc-effector activity in line with these previous findings. To identify the cause of this discrepancy, we then confirmed that IgG signaling through the high-affinity FcγI receptor was not restricted to stalk epitopes. Since no corresponding high-affinity Fcα receptor exists, the IgA repertoire may therefore be limited to stalk-specific epitopes in the context of Fc receptor signaling.
Collapse
|
153
|
Athayde LA, de Aguiar SLF, Miranda MCG, Brito RVJ, de Faria AMC, Nobre SAM, Andrade MC. Lactococcus lactis Administration Modulates IgE and IL-4 Production and Promotes Enterobacteria Growth in the Gut from Ethanol-Intake Mice. Protein Pept Lett 2021; 28:1164-1179. [PMID: 34315363 DOI: 10.2174/0929866528666210727102019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND It is well known that alcohol can trigger inflammatory effects in the gastrointestinal tract (GIT) interfering with mucosal homeostasis. OBJECTIVE This study evaluated the effectiveness of Lactococcus lactis treatment in controlling the increase in molecular biomarkers related to allergic inflammation, and the effect on the diversity and abundance of the Enterobacteriaceae family in the GIT after high-dose acute administration of ethanol. METHODS Mice received ethanol or saline solution by gavage for four consecutive days, and 24 h after the last administration the animals were given L. lactis or M17 broth orally ad libitum for two consecutive days. The animals were subsequently sacrificed and dissected. RESULTS L. lactis treatment was able to restore basal levels of secretory immunoglobulin A in the gastric mucosa, serum total immunoglobulin E, interleukin (IL)-4 production in gastric and intestinal tissues, and IL-10 levels in gastric tissue. L. lactis treatment encouraged the diversification of the Enterobacteriaceae population, particularly the commensal species, in the GIT. CONCLUSION This research opens a field of studies regarding the modulatory effect of L. lactis on immunological and microbial changes induced after alcohol intake.
Collapse
|
154
|
Wu Y, Wang L, Luo R, Chen H, Nie C, Niu J, Chen C, Xu Y, Li X, Zhang W. Effect of a Multispecies Probiotic Mixture on the Growth and Incidence of Diarrhea, Immune Function, and Fecal Microbiota of Pre-weaning Dairy Calves. Front Microbiol 2021; 12:681014. [PMID: 34335503 PMCID: PMC8318002 DOI: 10.3389/fmicb.2021.681014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/20/2021] [Indexed: 12/29/2022] Open
Abstract
The effects of different doses of a multispecies probiotic (MSP) mixture on growth performance, the incidence of diarrhea rate and immune function, and fecal microbial diversity and structure were evaluated in pre-weaning Holstein dairy calves at WK2, WK4, WK6, and WK8. Forty Chinese Holstein female newborn calves were randomly assigned to four treatments with 10 calves in each group, C (control group), T1 (0.5 g MSP/calf/day, T2 (1 g MSP/calf/day), and T3 (2 g MSP/calf/day) groups. The experimental period was 56 days. Feed intake and health scoring were recorded every day until the end of the experiment. Fecal contents and blood samples were sampled at WK2, WK4, WK6, and WK8. Growth performance, incidence of diarrhea, and total serum concentrations (IgA, IgG, and IgM) were analyzed. Bacterial 16S rRNA and fungal ITS genes were high-throughput sequenced for fecal microbiota. The relationships among the populations of the principal fecal microbiota at WK2 and the growth performance or serum immunoglobulin concentrations were analyzed using Pearson's rank correlation coefficients. The MSP supplementation reduced the incidence of diarrhea in the first 4 weeks of life, and serum IgA, IgG, and IgM concentrations increased between WK2 and WK8 in the T3 group. There was an increase in growth performance and reduction in the incidence of diarrhea until WK4 after birth in T3 group, compared with the control, T1, and T2 groups. The results of fecal microbiota analysis showed that Firmicutes and Bacteroides were the predominant phyla, with Blautia, Ruminococcaceae_UCG-005, norank_f__Muribaculaceae, Bacteroides, Subdoligranulum, and Bifidobacterium being the dominant genera in calf feces. Aspergillus, Thermomyces, and Saccharomyces were the predominant fungal phyla. Compared with the control, in T1 and T2 groups, the MSP supplementation reduced the relative abundance of Bacteroidetes and increased the relative abundance of Bifidobacterium, Lactobacillus, Collinsella, and Saccharomyces at WK2 in group T3. Thus, the fecal microbial composition and diversity was significantly affected by the MSP mixture during the first 2 weeks of the calves' life. MSP mixtures reduced the incidence of diarrhea in pre-weaning calves (during the first 4 weeks of life). There was a significant improvement in growth performance, reduction in calf diarrhea, balance in the fecal microbiota, and an overall improvement in serum immunity, compared with the control group. We, therefore, recommend adding 2 g/day of multispecies probiotic mixture supplementation in diets of dairy calves during their first 4 weeks of life before weaning.
Collapse
Affiliation(s)
- Yanyan Wu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Ruiqing Luo
- Xinjiang Tianshan Junken Animal Husbandry Co., Ltd., Shihezi, China
| | - Hongli Chen
- Xinjiang Tianshan Junken Animal Husbandry Co., Ltd., Shihezi, China
| | - Cunxi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Junli Niu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Cheng Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Wenjun Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
155
|
Influence of immunomodulatory drugs on the gut microbiota. Transl Res 2021; 233:144-161. [PMID: 33515779 PMCID: PMC8184576 DOI: 10.1016/j.trsl.2021.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/10/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022]
Abstract
Immunomodulatory medications are a mainstay of treatment for autoimmune diseases and malignancies. In addition to their direct effects on immune cells, these medications also impact the gut microbiota. Drug-induced shifts in commensal microbes can lead to indirect but important changes in the immune response. We performed a comprehensive literature search focusing on immunotherapy/microbe interactions. Immunotherapies were categorized into 5 subtypes based on their mechanisms of action: cell trafficking inhibitors, immune checkpoint inhibitors, immunomodulators, antiproliferative drugs, and inflammatory cytokine inhibitors. Although no consistent relationships were observed between types of immunotherapy and microbiota, most immunotherapies were associated with shifts in specific colonizing bacterial taxa. The relationships between colonizing microbes and drug efficacy were not well-studied for autoimmune diseases. In contrast, the efficacy of immune checkpoint inhibitors for cancer was tied to the baseline composition of the gut microbiota. There was a paucity of high-quality data; existing data were generated using heterogeneous sampling and analytic techniques, and most studies involved small numbers of participants. Further work is needed to elucidate the extent and clinical significance of immunotherapy effects on the human microbiome.
Collapse
|
156
|
Lee KH, Choi S, Kwon JS, Kim SH, Park SY. Varicella zoster virus (VZV)-specific immunity and subclinical VZV reactivation in patients with autoimmune diseases. Korean J Intern Med 2021; 36:992-1000. [PMID: 34126665 PMCID: PMC8273822 DOI: 10.3904/kjim.2020.672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/25/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND/AIMS The risk of herpes zoster (HZ) is increased in patients with autoimmune diseases (AID), probably due to immunosuppressive therapy. METHODS This prospective cross-sectional study investigated varicella zoster virus (VZV)-specific immunity in relation to subclinical VZV reactivation in 48 AID patients and 48 healthy controls (HCs). We assessed humoral immunity (serum VZV immunoglobulin g [IgG], IgA, and IgM) and cell-mediated immunity (interferon-γ [IFNγ]-releasing assay) to VZV as well as salivary VZV DNA status. Subclinical VZV reactivation was confirmed by detecting VZV DNA in saliva or VZV IgM in serum in the absence of typical HZ symptoms. RESULTS Median IgA levels were higher in the AID group than in the HC group, while VZV IgG and IgM levels were comparable between the groups. AID patients showed fewer IFNγ spot-forming cells (SFCs) upon VZV stimulation than HCs (58.2 vs. 122.0 SFCs/106 peripheral blood mononuclear cells [PBMCs], p < 0.0001). Subclinical VZV reactivation was more frequent in AID patients than in HCs (12.5% vs. 0%, p = 0.01). AID patients with VZV reactivation received prednisolone more frequently and at a higher dose than AID patients without reactivation. VZV-specific IFNγ SFCs were significantly lower in patients with VZV reactivation among AID patients (26.3 vs. 62.6 SFCs/106 PBMCs, p < 0.0001). CONCLUSION Results suggest that poor cellular response against VZV might cause clinical and subclinical reactivation of VZV in AID patients.
Collapse
Affiliation(s)
- Kwang-Hoon Lee
- Division of Rheumatology, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang,
Korea
| | - Sungim Choi
- Division of Infectious Diseases, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang,
Korea
| | - Ji-Soo Kwon
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Seong Yeon Park
- Division of Infectious Diseases, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang,
Korea
| |
Collapse
|
157
|
Tan J, Cho H, Pholcharee T, Pereira LS, Doumbo S, Doumtabe D, Flynn BJ, Schön A, Kanatani S, Aylor SO, Oyen D, Vistein R, Wang L, Dillon M, Skinner J, Peterson M, Li S, Idris AH, Molina-Cruz A, Zhao M, Olano LR, Lee PJ, Roth A, Sinnis P, Barillas-Mury C, Kayentao K, Ongoiba A, Francica JR, Traore B, Wilson IA, Seder RA, Crompton PD. Functional human IgA targets a conserved site on malaria sporozoites. Sci Transl Med 2021; 13:eabg2344. [PMID: 34162751 PMCID: PMC7611206 DOI: 10.1126/scitranslmed.abg2344] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/21/2021] [Indexed: 12/27/2022]
Abstract
Immunoglobulin (Ig)A antibodies play a critical role in protection against mucosal pathogens. However, the role of serum IgA in immunity to nonmucosal pathogens, such as Plasmodium falciparum, is poorly characterized, despite being the second most abundant isotype in blood after IgG. Here, we investigated the circulating IgA response in humans to P. falciparum sporozoites that are injected into the skin by mosquitoes and migrate to the liver via the bloodstream to initiate malaria infection. We found that circulating IgA was induced in three independent sporozoite-exposed cohorts: individuals living in an endemic region in Mali, malaria-naïve individuals immunized intravenously with three large doses of irradiated sporozoites, and malaria-naïve individuals exposed to a single controlled mosquito bite infection. Mechanistically, we found evidence in an animal model that IgA responses were induced by sporozoites at dermal inoculation sites. From malaria-resistant individuals, we isolated several IgA monoclonal antibodies that reduced liver parasite burden in mice. One antibody, MAD2-6, bound to a conserved epitope in the amino terminus of the P. falciparum circumsporozoite protein, the dominant protein on the sporozoite surface. Crystal structures of this antibody revealed a unique mode of binding whereby two Fabs simultaneously bound either side of the target peptide. This study reveals a role for circulating IgA in malaria and identifies the amino terminus of the circumsporozoite protein as a target of functional antibodies.
Collapse
Affiliation(s)
- Joshua Tan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD 20852, USA.
| | - Hyeseon Cho
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lais S Pereira
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Didier Doumtabe
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sachie Kanatani
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Samantha O Aylor
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - David Oyen
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rachel Vistein
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marlon Dillon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Mary Peterson
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Shanping Li
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Azza H Idris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Biological Engineering Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Ming Zhao
- Protein Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Lisa Renee Olano
- Protein Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Patricia J Lee
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Alison Roth
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Photini Sinnis
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Joseph R Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
158
|
Diks AM, Khatri I, Oosten LE, de Mooij B, Groenland RJ, Teodosio C, Perez-Andres M, Orfao A, Berbers GAM, Zwaginga JJ, van Dongen JJM, Berkowska MA. Highly Sensitive Flow Cytometry Allows Monitoring of Changes in Circulating Immune Cells in Blood After Tdap Booster Vaccination. Front Immunol 2021; 12:666953. [PMID: 34177905 PMCID: PMC8223751 DOI: 10.3389/fimmu.2021.666953] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022] Open
Abstract
Antigen-specific serum immunoglobulin (Ag-specific Ig) levels are broadly used as correlates of protection. However, in several disease and vaccination models these fail to predict immunity. In these models, in-depth knowledge of cellular processes associated with protective versus poor responses may bring added value. We applied high-throughput multicolor flow cytometry to track over-time changes in circulating immune cells in 10 individuals following pertussis booster vaccination (Tdap, Boostrix®, GlaxoSmithKline). Next, we applied correlation network analysis to extensively investigate how changes in individual cell populations correlate with each other and with Ag-specific Ig levels. We further determined the most informative cell subsets and analysis time points for future studies. Expansion and maturation of total IgG1 plasma cells, which peaked at day 7 post-vaccination, was the most prominent cellular change. Although these cells preceded the increase in Ag-specific serum Ig levels, they did not correlate with the increase of Ig levels. In contrast, strong correlation was observed between Ag-specific IgGs and maximum expansion of total IgG1 and IgA1 memory B cells at days 7 to 28. Changes in circulating T cells were limited, implying the need for a more sensitive approach. Early changes in innate immune cells, i.e. expansion of neutrophils, and expansion and maturation of monocytes up to day 5, most likely reflected their responses to local damage and adjuvant. Here we show that simultaneous monitoring of multiple circulating immune subsets in blood by flow cytometry is feasible. B cells seem to be the best candidates for vaccine monitoring.
Collapse
Affiliation(s)
- Annieck M. Diks
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Indu Khatri
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, Netherlands
| | | | - Bas de Mooij
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Rick J. Groenland
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Cristina Teodosio
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Martin Perez-Andres
- Cancer Research Centre (IBMCC, USAL-CSIC; CIBERONC CB16/12/00400), Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Medicine and Cytometry Service (NUCLEUS Research Support Platform), University of Salamanca (USAL), Salamanca, Spain
| | - Alberto Orfao
- Cancer Research Centre (IBMCC, USAL-CSIC; CIBERONC CB16/12/00400), Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Medicine and Cytometry Service (NUCLEUS Research Support Platform), University of Salamanca (USAL), Salamanca, Spain
| | - Guy A. M. Berbers
- Center for Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, Netherlands
| | - Jaap Jan Zwaginga
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | | |
Collapse
|
159
|
Nascimento JMD, Leão TEH, Nascimento TP, Conniff AS, Batista JMDS, Costa RMPB, Porto ALF, Leite ACL. Evaluation of the influence of temperature on the protein-tannic acid complex. Int J Biol Macromol 2021; 182:2056-2065. [PMID: 34087296 DOI: 10.1016/j.ijbiomac.2021.05.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 01/04/2023]
Abstract
Precipitation of blood products from plasma fractionation has played a fundamental role in the industrial purification of important therapeutic products. Only a few studies have been reported by using tannins as proteins precipitant agent from whole plasma while, several conditions have been analyzed. Here, we decided to verify the effect of the temperature on the precipitation process of plasma proteins using tannic acid (TA). Plasma proteins were precipitated with tannic acid by using different temperature incubations. Subsequently, the protein-TA complex was analyzed by SDS-PAGE and quantified. In addition, the protein activity of the complex was measured after heating, as well as the structural changes of the complexes were accompanied by thermogravimetric analysis, differential scanning calorimetry and circular dichroism. In all conditions tested, tannic acid was able to precipitate without selectively separating the proteins in the mixture by using different temperatures during the precipitation process. Furthermore, the protein concentration from the plasma precipitate was not affected by different temperatures and the plasma precipitate was able to dissolve fibrin clots in vitro.
Collapse
Affiliation(s)
- Jéssica Miranda do Nascimento
- Laboratory of Research in Biotechnology and Hemoderivatives, Department of Pharmaceutical Sciences, Federal University of Pernambuco, 50670-420 Recife, Pernambuco, Brazil
| | - Talita Emanuely Henrique Leão
- Laboratory of Research in Biotechnology and Hemoderivatives, Department of Pharmaceutical Sciences, Federal University of Pernambuco, 50670-420 Recife, Pernambuco, Brazil
| | - Thiago Pajeú Nascimento
- Laboratory of Research in Biotechnology and Hemoderivatives, Department of Pharmaceutical Sciences, Federal University of Pernambuco, 50670-420 Recife, Pernambuco, Brazil; Laboratory of Bioactive Technology, Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, 52171-900 Recife, Pernambuco, Brazil
| | | | - Juanize Matias da Silva Batista
- Laboratory of Bioactive Technology, Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, 52171-900 Recife, Pernambuco, Brazil
| | - Romero Marcos Pedrosa Brandão Costa
- Laboratory of Advances in Protein Biotechnology (LABIOPROT), Institute of Biological Sciences, University of Pernambuco, Rua Arnóbio Marquês, 310 - Santo Amaro, Recife - PE, 50100-130 Recife, Pernambuco, Brazil
| | - Ana Lúcia Figueiredo Porto
- Laboratory of Bioactive Technology, Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, 52171-900 Recife, Pernambuco, Brazil
| | - Ana Cristina Lima Leite
- Laboratory of Research in Biotechnology and Hemoderivatives, Department of Pharmaceutical Sciences, Federal University of Pernambuco, 50670-420 Recife, Pernambuco, Brazil.
| |
Collapse
|
160
|
Janssen LMA, Heron M, Murk JL, Leenders ACAP, Rijkers GT, de Vries E. The clinical relevance of IgM and IgA anti-pneumococcal polysaccharide ELISA assays in patients with suspected antibody deficiency. Clin Exp Immunol 2021; 205:213-221. [PMID: 33877708 PMCID: PMC8274160 DOI: 10.1111/cei.13605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/08/2021] [Accepted: 03/27/2021] [Indexed: 11/28/2022] Open
Abstract
Unlike immunoglobulin (Ig)G pneumococcal polysaccharide (PnPS)‐antibodies, PnPS IgA and IgM‐antibodies are not routinely determined for the assessment of immunocompetence. It is not yet known whether an isolated inability to mount a normal IgM or IgA‐PnPS response should be considered a relevant primary antibody deficiency (PAD). We studied the clinical relevance of anti‐PnPS IgM and IgA‐assays in patients with suspected primary immunodeficiency in a large teaching hospital in ’s‐Hertogenbosch, the Netherlands. Serotype‐specific‐PnPS IgG assays were performed; subsequently, 23‐valent‐PnPS IgG assays (anti‐PnPS IgG assays), and later anti‐PnPS IgA and IgM assays, were performed in archived material (240 patients; 304 samples). Eleven of 65 pre‐ and six of 10 post‐immunization samples from good responders to PnPS serotype‐specific IgG testing had decreased anti‐PnPS IgA and/or IgM titres. Of these, three pre‐ and no post‐immunization samples were from patients previously classified as ‘no PAD’. Determination of anti‐PnPS IgA and IgM in addition to anti‐PnPS IgG did not reduce the need for serotype‐specific PnPS IgG testing to assess immunocompetence [receiver operating characteristic (ROC) analysis of post‐immunization samples: anti‐PnPS IgA + IgG area under the curve (AUC) = 0.80, 95% confidence interval (CI) = 0.63–0.97; anti‐PnPS IgM + IgG AUC 0.80, 95% CI = 0.62–0.98; anti‐PnPS IgA + IgG + IgM AUC = 0.71, 95% CI = 0.51–0.91; anti‐PnPS IgG AUC = 0.93, 95% CI = 0.85–1.00]. Our data show that patients classified as having an intact antibody response based on measurement of serotype‐specific PnPS IgG can still display impaired anti‐PnPS IgM and IgA responses, and that the additional measurement of anti‐PnPS IgA and IgM could not reduce the need for serotype‐specific IgG testing. Future studies are needed to investigate the clinical relevance of potential ‘specific IgA or IgM antibody deficiency’ in patients with recurrent airway infections in whom no PAD could be diagnosed according to the current definitions.
Collapse
Affiliation(s)
- Lisanne M A Janssen
- Department of Tranzo, Tilburg University, Tilburg, the Netherlands.,Department of Paediatrics, Amalia Children's Hospital, Nijmegen, the Netherlands
| | - Michiel Heron
- Laboratory of Medical Microbiology and Immunology, Elisabeth-Tweesteden Hospital, Tilburg, the Netherlands
| | - Jean-Luc Murk
- Laboratory of Medical Microbiology and Immunology, Elisabeth-Tweesteden Hospital, Tilburg, the Netherlands
| | | | - Ger T Rijkers
- Laboratory of Medical Microbiology and Immunology, Elisabeth-Tweesteden Hospital, Tilburg, the Netherlands.,Science Department, University College Roosevelt, Middelburg, the Netherlands
| | - Esther de Vries
- Department of Tranzo, Tilburg University, Tilburg, the Netherlands.,Laboratory of Medical Microbiology and Immunology, Elisabeth-Tweesteden Hospital, Tilburg, the Netherlands
| |
Collapse
|
161
|
Abstract
In the past 30 years, highly specific drugs, known as antibodies, have conquered the biopharmaceutical market. In addition to monoclonal antibodies (mAbs), antibody fragments are successfully applied. However, recombinant production faces challenges. Process analytical tools for monitoring and controlling production processes are scarce and time-intensive. In the downstream process (DSP), affinity ligands are established as the primary and most important step, while the application of other methods is challenging. The use of these affinity ligands as monitoring tools would enable a platform technology to monitor process steps in the USP and DSP. In this review, we highlight the current applications of affinity ligands (proteins A, G, and L) and discuss further applications as process analytical tools.
Collapse
|
162
|
Fraser DD, Cepinskas G, Slessarev M, Martin CM, Daley M, Patel MA, Miller MR, Patterson EK, O’Gorman DB, Gill SE, Higgins I, John JPP, Melo C, Nini L, Wang X, Zeidler J, Cruz-Aguado JA. Critically Ill COVID-19 Patients Exhibit Anti-SARS-CoV-2 Serological Responses. PATHOPHYSIOLOGY 2021; 28:212-223. [PMID: 35366258 PMCID: PMC8830473 DOI: 10.3390/pathophysiology28020014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, is a global health care emergency. Anti-SARS-CoV-2 serological profiling of critically ill COVID-19 patients was performed to determine their humoral response. Blood was collected from critically ill ICU patients, either COVID-19 positive (+) or COVID-19 negative (-), to measure anti-SARS-CoV-2 immunoglobulins: IgM; IgA; IgG; and Total Ig (combined IgM/IgA/IgG). Cohorts were similar, with the exception that COVID-19+ patients had a greater body mass indexes, developed bilateral pneumonias more frequently and suffered increased hypoxia when compared to COVID-19- patients (p < 0.05). The mortality rate for COVID-19+ patients was 50%. COVID-19 status could be determined by anti-SARS-CoV-2 serological responses with excellent classification accuracies on ICU day 1 (89%); ICU day 3 (96%); and ICU days 7 and 10 (100%). The importance of each Ig isotype for determining COVID-19 status on combined ICU days 1 and 3 was: Total Ig, 43%; IgM, 27%; IgA, 24% and IgG, 6%. Peak serological responses for each Ig isotype occurred on different ICU days (IgM day 13 > IgA day 17 > IgG persistently increased), with the Total Ig peaking at approximately ICU day 18. Those COVID-19+ patients who died had earlier or similar peaks in IgA and Total Ig in their ICU stay when compared to patients who survived (p < 0.005). Critically ill COVID-19 patients exhibit anti-SARS-CoV-2 serological responses, including those COVID-19 patients who ultimately died, suggesting that blunted serological responses did not contribute to mortality. Serological profiling of critically ill COVID-19 patients may aid disease surveillance, patient cohorting and help guide antibody therapies such as convalescent plasma.
Collapse
Affiliation(s)
- Douglas D. Fraser
- Lawson Health Research Institute, London, ON N6C 2R5, Canada; (G.C.); (M.S.); (C.M.M.); (M.D.); (M.R.M.); (E.K.P.); (D.B.O.); (S.E.G.)
- Department of Pediatrics, Western University, London, ON N6A 3K7, Canada
- Department of Clinical Neurological Sciences, Western University, London, ON N6A 3K7, Canada
- Department of Physiology & Pharmacology, Western University, London, ON N6A 3K7, Canada
| | - Gediminas Cepinskas
- Lawson Health Research Institute, London, ON N6C 2R5, Canada; (G.C.); (M.S.); (C.M.M.); (M.D.); (M.R.M.); (E.K.P.); (D.B.O.); (S.E.G.)
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
| | - Marat Slessarev
- Lawson Health Research Institute, London, ON N6C 2R5, Canada; (G.C.); (M.S.); (C.M.M.); (M.D.); (M.R.M.); (E.K.P.); (D.B.O.); (S.E.G.)
- Department of Medicine, Western University, London, ON N6A 3K7, Canada
| | - Claudio M. Martin
- Lawson Health Research Institute, London, ON N6C 2R5, Canada; (G.C.); (M.S.); (C.M.M.); (M.D.); (M.R.M.); (E.K.P.); (D.B.O.); (S.E.G.)
- Department of Medicine, Western University, London, ON N6A 3K7, Canada
| | - Mark Daley
- Lawson Health Research Institute, London, ON N6C 2R5, Canada; (G.C.); (M.S.); (C.M.M.); (M.D.); (M.R.M.); (E.K.P.); (D.B.O.); (S.E.G.)
- Department of Computer Science, Western University, London, ON N6A 3K7, Canada;
- The Vector Institute for Artificial Intelligence, Toronto, ON M5G 1M1, Canada
| | - Maitray A. Patel
- Department of Computer Science, Western University, London, ON N6A 3K7, Canada;
| | - Michael R. Miller
- Lawson Health Research Institute, London, ON N6C 2R5, Canada; (G.C.); (M.S.); (C.M.M.); (M.D.); (M.R.M.); (E.K.P.); (D.B.O.); (S.E.G.)
- Department of Pediatrics, Western University, London, ON N6A 3K7, Canada
| | - Eric K. Patterson
- Lawson Health Research Institute, London, ON N6C 2R5, Canada; (G.C.); (M.S.); (C.M.M.); (M.D.); (M.R.M.); (E.K.P.); (D.B.O.); (S.E.G.)
| | - David B. O’Gorman
- Lawson Health Research Institute, London, ON N6C 2R5, Canada; (G.C.); (M.S.); (C.M.M.); (M.D.); (M.R.M.); (E.K.P.); (D.B.O.); (S.E.G.)
- Department of Surgery, Western University, London, ON N6A 3K7, Canada
- Department of Biochemistry, Western University, London, ON N6A 3K7, Canada
| | - Sean E. Gill
- Lawson Health Research Institute, London, ON N6C 2R5, Canada; (G.C.); (M.S.); (C.M.M.); (M.D.); (M.R.M.); (E.K.P.); (D.B.O.); (S.E.G.)
- Department of Physiology & Pharmacology, Western University, London, ON N6A 3K7, Canada
- Department of Medicine, Western University, London, ON N6A 3K7, Canada
| | - Ian Higgins
- Diagnostics Biochem Canada, London, ON N6M 1A1, Canada; (I.H.); (J.P.P.J.); (C.M.); (L.N.); (X.W.); (J.Z.); (J.A.C.-A.)
| | - Julius P. P. John
- Diagnostics Biochem Canada, London, ON N6M 1A1, Canada; (I.H.); (J.P.P.J.); (C.M.); (L.N.); (X.W.); (J.Z.); (J.A.C.-A.)
| | - Christopher Melo
- Diagnostics Biochem Canada, London, ON N6M 1A1, Canada; (I.H.); (J.P.P.J.); (C.M.); (L.N.); (X.W.); (J.Z.); (J.A.C.-A.)
| | - Lylia Nini
- Diagnostics Biochem Canada, London, ON N6M 1A1, Canada; (I.H.); (J.P.P.J.); (C.M.); (L.N.); (X.W.); (J.Z.); (J.A.C.-A.)
| | - Xiaoqin Wang
- Diagnostics Biochem Canada, London, ON N6M 1A1, Canada; (I.H.); (J.P.P.J.); (C.M.); (L.N.); (X.W.); (J.Z.); (J.A.C.-A.)
| | - Johannes Zeidler
- Diagnostics Biochem Canada, London, ON N6M 1A1, Canada; (I.H.); (J.P.P.J.); (C.M.); (L.N.); (X.W.); (J.Z.); (J.A.C.-A.)
| | - Jorge A. Cruz-Aguado
- Diagnostics Biochem Canada, London, ON N6M 1A1, Canada; (I.H.); (J.P.P.J.); (C.M.); (L.N.); (X.W.); (J.Z.); (J.A.C.-A.)
| |
Collapse
|
163
|
Zhang J, van Oostrom D, Li J, Savelkoul HFJ. Innate Mechanisms in Selective IgA Deficiency. Front Immunol 2021; 12:649112. [PMID: 33981304 PMCID: PMC8107477 DOI: 10.3389/fimmu.2021.649112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Selective IgA deficiency (SIgAD), characterized by a serum IgA level below 0.07 mg/ml, while displaying normal serum levels of IgM and IgG antibodies, is the most frequently occurring primary immunodeficiency that reveals itself after the first four years after birth. These individuals with SIgAD are for the majority healthy and even when they are identified they are usually not investigated further or followed up. However, recent studies show that newborns and young infants already display clinical manifestations of this condition due to aberrancies in their immune defense. Interestingly, there is a huge heterogeneity in the clinical symptoms of the affected individuals. More than 50% of the affected individuals do not have clinical symptoms, while the individuals that do show clinical symptoms can suffer from mild to severe infections, allergies and autoimmune diseases. However, the reason for this heterogeneity in the manifestation of clinical symptoms of the individuals with SIgAD is unknown. Therefore, this review focusses on the characteristics of innate immune system driving T-cell independent IgA production and providing a mechanism underlying the development of SIgAD. Thereby, we focus on some important genes, including TNFRSF13B (encoding TACI), associated with SIgAD and the involvement of epigenetics, which will cover the methylation degree of TNFRSF13B, and environmental factors, including the gut microbiota, in the development of SIgAD. Currently, no specific treatment for SIgAD exists and novel therapeutic strategies could be developed based on the discussed information.
Collapse
Affiliation(s)
- Jingyan Zhang
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Dèlenn van Oostrom
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - JianXi Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
164
|
Tolnay M. Lymphocytes sense antibodies through human FCRL proteins: Emerging roles in mucosal immunity. J Leukoc Biol 2021; 111:477-487. [PMID: 33884658 DOI: 10.1002/jlb.4ru0221-102rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/23/2022] Open
Abstract
Members of the Fc receptor-like (FCRL) family modulate B and T cell responses, yet their functional roles remain enigmatic. Nevertheless, FCRL3 promoter polymorphism that alters gene expression has been associated with autoimmune disease risk, indicating physiologic importance. Providing essential functional context, human FCRL3, FCRL4, and FCRL5 have recently been identified as secretory IgA (SIgA), dimeric IgA, and IgG receptors, respectively, revealing novel ways lymphocytes can interact with antibodies. FCRL3 and FCRL4 are able to distinguish the mucosal and systemic origin of IgA-containing immune complexes, respectively, with clear implications in guiding mucosal responses. SIgA can signal mucosal breach through FCRL3, driving the functional plasticity of regulatory T cells toward inflammatory to help control invading pathogens. Conversely, recognition of dimeric IgA by FCRL4 on memory B cells located in mucosa-associated lymphoid tissues could promote tolerance to commensals. Memory B cells that accumulate under conditions of chronic antigen presence frequently express FCRL4 and FCRL5, and antibody ligands could provide functional feedback to the cells. FCRL5 apparently recognizes the age of the IgG molecule, using deamidation as a molecular clock, conceivably playing regulatory roles in chronic antibody responses. A framework of FCRL3, FCRL4, and FCRL5 operating as sensors of antibodies in immune complexes is proposed. Sensing the spatial origin and age of immune complexes can shape lymphocyte functional attributes and inform their participation in mucosal immune responses. The potential contributions of FCRL3 and SIgA to the pathogenesis of autoimmune diseases are discussed.
Collapse
Affiliation(s)
- Mate Tolnay
- Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
165
|
Bhaskara V, Leal MT, Seigner J, Friedrich T, Kreidl E, Gadermaier E, Tesarz M, Rogalli A, Stangl L, Wallwitz J, Hammel K, Rothbauer M, Moll H, Ertl P, Hahn R, Himmler G, Bauer A, Casanova E. Efficient production of recombinant secretory IgA against Clostridium difficile toxins in CHO-K1 cells. J Biotechnol 2021; 331:1-13. [PMID: 33689865 DOI: 10.1016/j.jbiotec.2021.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/25/2021] [Accepted: 02/22/2021] [Indexed: 12/29/2022]
Abstract
Despite the essential role secretory IgAs play in the defense against pathogenic invasion and the proposed value of recombinant secretory IgAs as novel therapeutics, currently there are no IgA-based therapies in clinics. Secretory IgAs are complex molecules and the major bottleneck limiting their therapeutic potential is a reliable recombinant production system. In this report, we addressed this issue and established a fast and robust production method for secretory IgAs in CHO-K1 cells using BAC-based expression vectors. As a proof of principle, we produced IgAs against Clostridium difficile toxins TcdA and TcdB. Recombinant secretory IgAs produced using our expression system showed comparable titers to IgGs, widely used as therapeutic biologicals. Importantly, secretory IgAs produced using our method were functional and could efficiently neutralize Clostridium difficile toxins TcdA and TcdB. These results show that recombinant secretory IgAs can be efficiently produced, thus opening the possibility to use them as therapeutic agents in clinics.
Collapse
Affiliation(s)
- Venugopal Bhaskara
- Department of Physiology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria.
| | - Maria Trinidad Leal
- Department of Physiology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria
| | - Jacqueline Seigner
- Department of Physiology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria
| | - Theresa Friedrich
- Department of Physiology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria
| | | | | | | | | | - Laura Stangl
- Department of Physiology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria
| | | | - Katharina Hammel
- Department for Biotechnology, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
| | - Mario Rothbauer
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, 1060 Vienna, Austria
| | - Herwig Moll
- Department of Physiology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Ertl
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, 1060 Vienna, Austria
| | - Rainer Hahn
- Department for Biotechnology, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
| | | | - Anton Bauer
- Department of Physiology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria; The Antibody Lab GmbH, 1210 Vienna, Austria.
| | - Emilio Casanova
- Department of Physiology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
166
|
Müller K, Girl P, Ruhnke M, Spranger M, Kaier K, von Buttlar H, Dobler G, Borde JP. SARS-CoV-2 Seroprevalence among Health Care Workers-A Voluntary Screening Study in a Regional Medical Center in Southern Germany. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3910. [PMID: 33917840 PMCID: PMC8068211 DOI: 10.3390/ijerph18083910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 01/25/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is associated with a potentially severe clinical manifestation, coronavirus disease 2019 (COVID-19), and currently poses a worldwide challenge. Health care workers (HCWs) are at the forefront of any health care system and thus especially at risk for SARS-CoV-2 infection due to their potentially frequent and close contact with patients suffering from COVID-19. Serum samples from 198 HCWs with direct patient contact of a regional medical center and several outpatient facilities were collected during the early phase of the pandemic (April 2020) and tested for SARS-CoV-2-specific antibodies. Commercially available IgA- and IgG-specific ELISAs were used as screening technique, followed by an in-house neutralization assay for confirmation. Neutralizing SARS-CoV-2-specific antibodies were detected in seven of 198 (3.5%) tested HCWs. There was no significant difference in seroprevalence between the regional medical center (3.4%) and the outpatient institution (5%). The overall seroprevalence of neutralizing SARS-CoV-2-specific antibodies in HCWs in both a large regional medical center and a small outpatient institution was low (3.5%) at the beginning of April 2020. The findings may indicate that the timely implemented preventive measures (strict hygiene protocols, personal protective equipment) were effective to protect from transmission of an airborne virus when only limited information on the pathogen was available.
Collapse
Affiliation(s)
- Katharina Müller
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany; (K.M.); (H.v.B.); (G.D.)
- German Centre for Infection Research (DZIF), Partner Site Munich, 80937 Munich, Germany
| | - Philipp Girl
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany; (K.M.); (H.v.B.); (G.D.)
- German Centre for Infection Research (DZIF), Partner Site Munich, 80937 Munich, Germany
| | - Michaela Ruhnke
- Praxis Dr. J. Borde, Gesundheitszentrum Oberkirch, 77704 Oberkirch, Germany; (M.R.); (M.S.); (J.P.B.)
| | - Mareike Spranger
- Praxis Dr. J. Borde, Gesundheitszentrum Oberkirch, 77704 Oberkirch, Germany; (M.R.); (M.S.); (J.P.B.)
| | - Klaus Kaier
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, 79098 Freiburg, Germany;
| | - Heiner von Buttlar
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany; (K.M.); (H.v.B.); (G.D.)
- German Centre for Infection Research (DZIF), Partner Site Munich, 80937 Munich, Germany
| | - Gerhard Dobler
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany; (K.M.); (H.v.B.); (G.D.)
- German Centre for Infection Research (DZIF), Partner Site Munich, 80937 Munich, Germany
| | - Johannes P. Borde
- Praxis Dr. J. Borde, Gesundheitszentrum Oberkirch, 77704 Oberkirch, Germany; (M.R.); (M.S.); (J.P.B.)
- Department of Medicine II, Division of Infectious Diseases, Faculty of Medicine and Medical Center, University of Freiburg, 79098 Freiburg, Germany
| |
Collapse
|
167
|
Zhang L, Liu S, Piao X. Dietary 25-hydroxycholecalciferol supplementation improves performance, immunity, antioxidant status, intestinal morphology, and bone quality in weaned piglets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2592-2600. [PMID: 33063320 DOI: 10.1002/jsfa.10889] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND 25-Hydroxycholecalciferol (25OHD3 ) is a new feed additive, which is a potential alternative to vitamin D3 in swine nutrition. The objective of this study was to determine the effects of different doses of 25OHD3 supplementation on performance, immunity, antioxidant capacity, intestinal morphology and bone quality in piglets. RESULTS As dietary 25OHD3 supplementation increased, the average daily gain (ADG) improved (P < 0.05) quadratically during days 1-14, and tended to increase (P = 0.06) quadratically during the overall period of the experiment. Increasing 25OHD3 supplementation increased (linear effect, P < 0.05) the serum 25OHD3 level and serum glutathione peroxidase (GSH-Px) activity. On day 14, serum immunoglobulin A (IgA) was increased (linear and quadratic effects, P < 0.05) as dietary 25OHD3 supplementation increased. On day 28, serum IgA level was higher (P < 0.05) linearly and the complement 3 (C3) level was reduced (P < 0.05) linearly as dietary supplementation of 25OHD3 increased. The mucosal GSH-Px activity of the small intestine was higher (quadratic effect, P < 0.05) with increasing 25OHD3 supplementation. Jejunal villus height (P = 0.06) and villus height to crypt depth ratio (P = 0.07) tended to increase quadratically, and the villus height to crypt-depth ratio of the ileum increased (P < 0.05) linearly and quadratically with increasing 25OHD3 supplementation. Dietary supplementation with an increasing level of 25OHD3 increased breaking strength of tibias and femurs (quadratic effect, P < 0.05). CONCLUSION Increasing dietary 25OHD3 supplementation partly improved performance, immunity, antioxidant status, intestinal morphology, and bone properties of weaned piglets. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lianhua Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Sujie Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
168
|
Edelstein S, Tannous S, Jacobs MT, Ben-Amram H, Zarka S. BNT 13b2 Pfizer vaccine protects against SARS-CoV-2 respiratory mucosal colonization even after prolonged exposure to positive family members. J Hosp Infect 2021; 113:192-194. [PMID: 33811961 PMCID: PMC8011028 DOI: 10.1016/j.jhin.2021.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 11/30/2022]
Affiliation(s)
- S Edelstein
- Infectious Diseases Unit, Ziv Medical Center, Safed, Israel.
| | - S Tannous
- Infectious Diseases Unit, Ziv Medical Center, Safed, Israel
| | - M T Jacobs
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - H Ben-Amram
- Clinical Microbiology Lab, Ziv Medical Center, Safed, Israel
| | - S Zarka
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Ziv Medical Center, Safed, Israel
| |
Collapse
|
169
|
Zhang XT, Yu YY, Xu HY, Huang ZY, Liu X, Cao JF, Meng KF, Wu ZB, Han GK, Zhan MT, Ding LG, Kong WG, Li N, Takizawa F, Sunyer JO, Xu Z. Prevailing Role of Mucosal Igs and B Cells in Teleost Skin Immune Responses to Bacterial Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1088-1101. [PMID: 33495235 PMCID: PMC11152320 DOI: 10.4049/jimmunol.2001097] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
The skin of vertebrates is the outermost organ of the body and serves as the first line of defense against external aggressions. In contrast to mammalian skin, that of teleost fish lacks keratinization and has evolved to operate as a mucosal surface containing a skin-associated lymphoid tissue (SALT). Thus far, IgT representing the prevalent Ig in SALT have only been reported upon infection with a parasite. However, very little is known about the types of B cells and Igs responding to bacterial infection in the teleost skin mucosa, as well as the inductive or effector role of the SALT in such responses. To address these questions, in this study, we analyzed the immune response of trout skin upon infection with one of the most widespread fish skin bacterial pathogens, Flavobacterium columnare This pathogen induced strong skin innate immune and inflammatory responses at the initial phases of infection. More critically, we found that the skin mucus of fish having survived the infection contained significant IgT- but not IgM- or IgD-specific titers against the bacteria. Moreover, we demonstrate the local proliferation and production of IgT+ B cells and specific IgT titers, respectively, within the SALT upon bacterial infection. Thus, our findings represent the first demonstration that IgT is the main Ig isotype induced by the skin mucosa upon bacterial infection and that, because of the large surface of the skin, its SALT probably represents a prominent IgT-inductive site in fish.
Collapse
Affiliation(s)
- Xiao-Ting Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yong-Yao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hao-Yue Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhen-Yu Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xia Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jia-Feng Cao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Kai-Feng Meng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zheng-Ben Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Guang-Kun Han
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Meng-Ting Zhan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Li-Guo Ding
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Wei-Guang Kong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Fumio Takizawa
- Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, Shandong, China
| |
Collapse
|
170
|
Kim J, Eygeris Y, Gupta M, Sahay G. Self-assembled mRNA vaccines. Adv Drug Deliv Rev 2021; 170:83-112. [PMID: 33400957 PMCID: PMC7837307 DOI: 10.1016/j.addr.2020.12.014] [Citation(s) in RCA: 313] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/22/2020] [Accepted: 12/27/2020] [Indexed: 01/08/2023]
Abstract
mRNA vaccines have evolved from being a mere curiosity to emerging as COVID-19 vaccine front-runners. Recent advancements in the field of RNA technology, vaccinology, and nanotechnology have generated interest in delivering safe and effective mRNA therapeutics. In this review, we discuss design and self-assembly of mRNA vaccines. Self-assembly, a spontaneous organization of individual molecules, allows for design of nanoparticles with customizable properties. We highlight the materials commonly utilized to deliver mRNA, their physicochemical characteristics, and other relevant considerations, such as mRNA optimization, routes of administration, cellular fate, and immune activation, that are important for successful mRNA vaccination. We also examine the COVID-19 mRNA vaccines currently in clinical trials. mRNA vaccines are ready for the clinic, showing tremendous promise in the COVID-19 vaccine race, and have pushed the boundaries of gene therapy.
Collapse
Affiliation(s)
- Jeonghwan Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 South Moody Avenue, Portland, Oregon 97201, USA
| | - Yulia Eygeris
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 South Moody Avenue, Portland, Oregon 97201, USA
| | - Mohit Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 South Moody Avenue, Portland, Oregon 97201, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 South Moody Avenue, Portland, Oregon 97201, USA; Department of Biomedical Engineering, Oregon Health & Science University, Robertson Life Science Building, 2730 South Moody Avenue, Portland, Oregon 97201, USA; Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239, USA.
| |
Collapse
|
171
|
Zeng Y, Hu X, Yu Z, Wang F, Zhang Z, He K, Tian H, Yu F. Immune enhancement and antioxidant effects of low molecular-weight peptides derived from Nibea japonica muscles on immune-deficient mice induced by cyclophosphamide. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
172
|
dos Santos JDMB, Soares CP, Monteiro FR, Mello R, do Amaral JB, Aguiar AS, Soledade MP, Sucupira C, De Paulis M, Andrade JB, Almeida FJ, Sáfadi MAP, Mau LB, Brasil JM, Ramalho T, Loures FV, Vieira RP, Durigon EL, de Oliveira DBL, Bachi ALL. In Nasal Mucosal Secretions, Distinct IFN and IgA Responses Are Found in Severe and Mild SARS-CoV-2 Infection. Front Immunol 2021; 12:595343. [PMID: 33717074 PMCID: PMC7946815 DOI: 10.3389/fimmu.2021.595343] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 02/01/2021] [Indexed: 12/23/2022] Open
Abstract
Likely as in other viral respiratory diseases, SARS-CoV-2 elicit a local immune response, which includes production and releasing of both cytokines and secretory immunoglobulin (SIgA). Therefore, in this study, we investigated the levels of specific-SIgA for SARS-CoV-2 and cytokines in the airways mucosa 37 patients who were suspected of COVID-19. According to the RT-PCR results, the patients were separated into three groups: negative for COVID-19 and other viruses (NEGS, n = 5); negative for COVID-19 but positive for the presence of other viruses (OTHERS, n = 5); and the positive for COVID-19 (COVID-19, n = 27). Higher specific-SIgA for SARS-CoV-2, IFN-β, and IFN-γ were found in the COVID-19 group than in the other groups. Increased IL-12p70 levels were observed in OTHERS group as compared to COVID-19 group. When the COVID-19 group was sub stratified according to the illness severity, significant differences and correlations were found for the same parameters described above comparing severe COVID-19 to the mild COVID-19 group and other non-COVID-19 groups. For the first time, significant differences are shown in the airway's mucosa immune responses in different groups of patients with or without respiratory SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Camila Pereira Soares
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Science of University of São Paulo, São Paulo, Brazil
| | - Fernanda Rodrigues Monteiro
- Ear, Nose and Throat (ENT) Lab, Department of Otorhinolaryngology, Federal University of São Paulo, São Paulo, Brazil
- Method Faculty of São Paulo, São Paulo, Brazil
| | - Ralyria Mello
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Science of University of São Paulo, São Paulo, Brazil
| | - Jonatas Bussador do Amaral
- Ear, Nose and Throat (ENT) Lab, Department of Otorhinolaryngology, Federal University of São Paulo, São Paulo, Brazil
| | - Andressa Simões Aguiar
- Infection Control Service, São Luiz Gonzaga Hospital of Santa Casa de Misericordia os São Paulo, São Paulo, Brazil
- Infection Control Service and Epidemiological Hospital Nucleo, Municipal Children's Hospital Candido Fontoura, São Paulo, Brazil
| | - Mariana Pereira Soledade
- Infection Control Service and Epidemiological Hospital Nucleo, Municipal Children's Hospital Candido Fontoura, São Paulo, Brazil
| | - Carolina Sucupira
- Infection Control Service and Epidemiological Hospital Nucleo, Municipal Children's Hospital Candido Fontoura, São Paulo, Brazil
| | - Milena De Paulis
- Department of Pediatrics, School of Medicine, University Hospital, University of São Paulo, São Paulo, Brazil
| | - Juliana Bannwart Andrade
- Department of Pediatrics, School of Medicine, University Hospital, University of São Paulo, São Paulo, Brazil
| | | | | | - Luciana Becker Mau
- Infection Control Service and Epidemiological Hospital Nucleo, Menino Jesus Municipal Hospital, São Paulo, Brazil
| | - Jamile Menezes Brasil
- Infection Control Service and Epidemiological Hospital Nucleo, Menino Jesus Municipal Hospital, São Paulo, Brazil
| | - Theresa Ramalho
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Flávio V. Loures
- Institute of Science and Technology, Federal University of São Paulo, São Paulo, Brazil
| | - Rodolfo Paula Vieira
- Post-graduation Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo, São Paulo, Brazil
- Post-graduation Program in Bioengineering and Biomedical Engineering, Universidade Brasil, São Paulo, Brazil
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Sao Jose dos Campos, Brazil
| | - Edison Luiz Durigon
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Science of University of São Paulo, São Paulo, Brazil
- Scientific Platform Pasteur University of São Paulo, São Paulo, Brazil
| | - Danielle Bruna Leal de Oliveira
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Science of University of São Paulo, São Paulo, Brazil
- Scientific Platform Pasteur University of São Paulo, São Paulo, Brazil
| | - André Luis Lacerda Bachi
- Ear, Nose and Throat (ENT) Lab, Department of Otorhinolaryngology, Federal University of São Paulo, São Paulo, Brazil
- Post-graduation Program in Health Science, University of Santo Amaro, São Paulo, Brazil
| |
Collapse
|
173
|
das Neves J, Sverdlov Arzi R, Sosnik A. Molecular and cellular cues governing nanomaterial-mucosae interactions: from nanomedicine to nanotoxicology. Chem Soc Rev 2021; 49:5058-5100. [PMID: 32538405 DOI: 10.1039/c8cs00948a] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mucosal tissues constitute the largest interface between the body and the surrounding environment and they regulate the access of molecules, supramolecular structures, particulate matter, and pathogens into it. All mucosae are characterized by an outer mucus layer that protects the underlying cells from physicochemical, biological and mechanical insults, a mono-layered or stratified epithelium that forms tight junctions and controls the selective transport of solutes across it and associated lymphoid tissues that play a sentinel role. Mucus is a gel-like material comprised mainly of the glycoprotein mucin and water and it displays both hydrophilic and hydrophobic domains, a net negative charge, and high porosity and pore interconnectivity, providing an efficient barrier for the absorption of therapeutic agents. To prolong the residence time, absorption and bioavailability of a broad spectrum of active compounds upon mucosal administration, mucus-penetrating and mucoadhesive particles have been designed by tuning the chemical composition, the size, the density, and the surface properties. The benefits of utilizing nanomaterials that interact intimately with mucosae by different mechanisms in the nanomedicine field have been extensively reported. To ensure the safety of these nanosystems, their compatibility is evaluated in vitro and in vivo in preclinical and clinical trials. Conversely, there is a growing concern about the toxicity of nanomaterials dispersed in air and water effluents that unintentionally come into contact with the airways and the gastrointestinal tract. Thus, deep understanding of the key nanomaterial properties that govern the interplay with mucus and tissues is crucial for the rational design of more efficient drug delivery nanosystems (nanomedicine) and to anticipate the fate and side-effects of nanoparticulate matter upon acute or chronic exposure (nanotoxicology). This review initially overviews the complex structural features of mucosal tissues, including the structure of mucus, the epithelial barrier, the mucosal-associated lymphatic tissues and microbiota. Then, the most relevant investigations attempting to identify and validate the key particle features that govern nanomaterial-mucosa interactions and that are relevant in both nanomedicine and nanotoxicology are discussed in a holistic manner. Finally, the most popular experimental techniques and the incipient use of mathematical and computational models to characterize these interactions are described.
Collapse
Affiliation(s)
- José das Neves
- i3S - Instituto de Investigação e Inovação em Saúde & INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Roni Sverdlov Arzi
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Haifa, 3200003, Israel.
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Haifa, 3200003, Israel.
| |
Collapse
|
174
|
Rajasekaran A, Julian BA, Rizk DV. IgA Nephropathy: An Interesting Autoimmune Kidney Disease. Am J Med Sci 2021; 361:176-194. [PMID: 33309134 PMCID: PMC8577278 DOI: 10.1016/j.amjms.2020.10.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/19/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022]
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. It is a leading cause of chronic kidney disease and progresses to end-stage kidney disease in up to 40% of patients about 20 years after diagnosis. Additionally, IgAN is associated with significant mortality. The diagnosis currently necessitates a kidney biopsy, as no biomarker sufficiently specific and sensitive is available to supplant the procedure. Patients display significant heterogeneity in the epidemiology, clinical manifestations, renal progression, and long-term outcomes across diverse racial and ethnic populations. Recent advances in understanding the underlying pathophysiology of the disease have led to the proposal of a four-hit hypothesis supporting an autoimmune process. To date, there is no disease-specific treatment but, with a better understanding of the disease pathogenesis, new therapeutic approaches are currently being tested in clinical trials. In this review, we examine the multiple facets and most recent advances of this interesting disease.
Collapse
Affiliation(s)
- Arun Rajasekaran
- Division of Nephrology, Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Bruce A Julian
- Division of Nephrology, Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Dana V Rizk
- Division of Nephrology, Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
175
|
Risk factors of partial IgA deficiency among low serum IgA patients: a retrospective observational study. Cent Eur J Immunol 2021; 45:189-194. [PMID: 33456330 PMCID: PMC7792431 DOI: 10.5114/ceji.2020.97908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/21/2018] [Indexed: 11/29/2022] Open
Abstract
Introduction Partial IgA deficiency (pIgAD), including selective IgA deficiency, is one of the most common types of immunodeficiency. Early detection is crucial to prevent complications, such as recurrent infections and anaphylactic reactions to blood derivatives. Material and methods Useful screening methods have not yet been established. We conducted a single-center retrospective observational study, with low serum IgA patients to clarify the risk factors of pIgAD among patients with low serum levels of IgA. All patients with low serum IgA levels treated in our outpatient clinic from April 2010 to March 2016 were retrospectively reviewed using electronic medical records. We performed c2 tests and Student’s t-tests for the univariate analysis, logistic regression analysis using the multiple imputation method for the multivariate analysis, and receiver operating characteristic (ROC) curve analysis. Results The univariate analysis showed statistically significant differences between the pIgAD group and the non-pIgAD group in age, gender, blood cell counts, serum protein levels, and renal function tests. The multivariate analysis revealed that female gender, a white blood cell counts lower than 10,000/µl, and a hemoglobin level of 10.0-15.0 g/dl are predictive factors of pIgAD. Conclusions After estimating any missing data using the multiple imputation method, age younger than 60 years old was also statistically significant. ROC curve analysis confirmed the validity of the model used in our multivariate analysis. When clinicians encounter low serum IgA patients who are female, of younger age, and have normal blood cell counts, and hemoglobin levels, they should suspect the existence of pIgAD.
Collapse
|
176
|
Karrasch S, Bongartz W, Gumpp AM, Kolassa IT. Die Wirkung von Hypnose auf Parameter des Immunsystems. ZEITSCHRIFT FUR KLINISCHE PSYCHOLOGIE UND PSYCHOTHERAPIE 2021. [DOI: 10.1026/1616-3443/a000605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Zusammenfassung. Theoretischer Hintergrund: Mit Hypnose können positive immunmodulierende und therapeutische Effekte bei psychischen sowie somatischen stress-assoziierten Erkrankungen erzielt werden. Fragestellung: Diese Arbeit beschäftigt sich mit immunologischen Veränderungen durch Hypnose und zeigt potentielle zukünftige Forschungsfelder zu biomolekularen Wirkfaktoren von Hypnose auf. Methode: Es werden empirische Befunde zur Wirkung von Hypnose auf Parameter des Immunsystems zusammengefasst. Ergebnisse: Hypnose führt zu einer Anpassungsreaktion des Immunsystems in Form von Veränderungen in der Anzahl von Immunzellen und Zytokinen. Schlussfolgerung: Ein spannendes neues Forschungsfeld liegt in der Untersuchung der Wirkmechanismen von Hypnose auf das Immunsystem sowie dessen Interaktion mit dem Stresssystem und dem Energiemetabolismus.
Collapse
Affiliation(s)
- Sarah Karrasch
- Klinisch & Biologische Psychologie, Institut für Psychologie und Pädagogik, Universität Ulm, Deutschland
| | - Walter Bongartz
- Klingenberger Institut für Klinische Hypnose, Konstanz, Deutschland
| | - Anja M. Gumpp
- Klinisch & Biologische Psychologie, Institut für Psychologie und Pädagogik, Universität Ulm, Deutschland
| | - Iris-Tatjana Kolassa
- Klinisch & Biologische Psychologie, Institut für Psychologie und Pädagogik, Universität Ulm, Deutschland
| |
Collapse
|
177
|
Hansen AL, Reily C, Novak J, Renfrow MB. Immunoglobulin A Glycosylation and Its Role in Disease. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:433-477. [PMID: 34687019 DOI: 10.1007/978-3-030-76912-3_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Human IgA is comprised of two subclasses, IgA1 and IgA2. Monomeric IgA (mIgA), polymeric IgA (pIgA), and secretory IgA (SIgA) are the main molecular forms of IgA. The production of IgA rivals all other immunoglobulin isotypes. The large quantities of IgA reflect the fundamental roles it plays in immune defense, protecting vulnerable mucosal surfaces against invading pathogens. SIgA dominates mucosal surfaces, whereas IgA in circulation is predominately monomeric. All forms of IgA are glycosylated, and the glycans significantly influence its various roles, including antigen binding and the antibody effector functions, mediated by the Fab and Fc portions, respectively. In contrast to its protective role, the aberrant glycosylation of IgA1 has been implicated in the pathogenesis of autoimmune diseases, such as IgA nephropathy (IgAN) and IgA vasculitis with nephritis (IgAVN). Furthermore, detailed characterization of IgA glycosylation, including its diverse range of heterogeneity, is of emerging interest. We provide an overview of the glycosylation observed for each subclass and molecular form of IgA as well as the range of heterogeneity for each site of glycosylation. In many ways, the role of IgA glycosylation is in its early stages of being elucidated. This chapter provides an overview of the current knowledge and research directions.
Collapse
Affiliation(s)
- Alyssa L Hansen
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Colin Reily
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
178
|
White I, Tamot N, Doddareddy R, Ho J, Jiao Q, Harvilla PB, Yang TY, Geist B, Borrok MJ, Truppo MD, Ganesan R, Chowdhury P, Zwolak A. Bifunctional molecules targeting SARS-CoV-2 spike and the polymeric Ig receptor display neutralization activity and mucosal enrichment. MAbs 2021; 13:1987180. [PMID: 34693867 PMCID: PMC8547864 DOI: 10.1080/19420862.2021.1987180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
The global health crisis and economic tolls of COVID-19 necessitate a panoply of strategies to treat SARS-CoV-2 infection. To date, few treatment options exist, although neutralizing antibodies against the spike glycoprotein have proven to be effective. Because infection is initiated at the mucosa and propagates mainly at this site throughout the course of the disease, blocking the virus at the mucosal milieu should be effective. However, administration of biologics to the mucosa presents a substantial challenge. Here, we describe bifunctional molecules combining single-domain variable regions that bind to the polymeric Ig receptor (pIgR) and to the SARS-CoV-2 spike protein via addition of the ACE2 extracellular domain (ECD). The hypothesis behind this design is that pIgR will transport the molecule from the circulation to the mucosal surface where the ACE ECD would act as a decoy receptor for the nCoV2. The bifunctional molecules bind SARS-Cov-2 spike glycoprotein in vitro and efficiently transcytose across the lung epithelium in human tissue-based analyses. Designs featuring ACE2 tethered to the C-terminus of the Fc do not induce antibody-dependent cytotoxicity against pIgR-expressing cells. These molecules thus represent a potential therapeutic modality for systemic administration of neutralizing anti-SARS-CoV-2 molecules to the mucosa.
Collapse
Affiliation(s)
- Ian White
- Janssen Biotherapeutics, Janssen R&D LLC, Spring House, PA, USA
| | - Ninkka Tamot
- Janssen Biotherapeutics, Janssen R&D LLC, Spring House, PA, USA
| | | | - Jason Ho
- Janssen Biotherapeutics, Janssen R&D LLC, Spring House, PA, USA
| | - Qun Jiao
- Janssen Biotherapeutics, Janssen R&D LLC, Spring House, PA, USA
| | | | - Tong-Yuan Yang
- Janssen Biotherapeutics, Janssen R&D LLC, Spring House, PA, USA
| | - Brian Geist
- Janssen Biotherapeutics, Janssen R&D LLC, Spring House, PA, USA
| | - M. Jack Borrok
- Janssen Biotherapeutics, Janssen R&D LLC, Spring House, PA, USA
| | - Matthew D. Truppo
- Active Pharmaceutical Ingredient Development, Janssen R&D LLC, Spring House, PA, USA
| | - Rajkumar Ganesan
- Biologics Discovery, Alector, Inc., South San Francisco, CA, USA
| | | | - Adam Zwolak
- Janssen Biotherapeutics, Janssen R&D LLC, Spring House, PA, USA
| |
Collapse
|
179
|
Nimmerjahn F, Werner A. Sweet Rules: Linking Glycosylation to Antibody Function. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:365-393. [PMID: 34687017 DOI: 10.1007/978-3-030-76912-3_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antibodies produced upon infections with pathogenic microorganisms are essential for clearing primary infections and for providing the host with long-lasting immunity. Moreover, antibodies have become the most widely used platform for developing novel therapies against cancer and autoimmunity, requiring an in-depth understanding of how antibodies mediate their activity in vivo and which factors modulate pro- or anti-inflammatory antibody activities. Since the discovery that select residues present in the sugar domain attached to the immunoglobulin G (IgG) fragment crystallizable (Fc) region can modulate both, pro- and anti-inflammatory effector functions, a wealth of studies has focused on understanding how IgG glycosylation is regulated and how this knowledge can be used to optimize therapeutic antibody activity. With the introduction of glycoengineered afucosylated antibodies in cancer therapy and the initiation of clinical testing of highly sialylated anti-inflammatory antibodies the proof-of-concept that understanding antibody glycosylation can lead to clinical innovation has been provided. The focus of this review is to summarize recent insights into how antibody glycosylation is regulated in vivo and how select sugar residues impact IgG function.
Collapse
Affiliation(s)
- Falk Nimmerjahn
- Chair of Genetics, Department of Biology, Institute of Genetics, University of Erlangen-Nürnberg, Erlangen, Germany.
- Medical Immunology Campus Erlangen, Erlangen, Germany.
| | - Anja Werner
- Chair of Genetics, Department of Biology, Institute of Genetics, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
180
|
Miyake T, Tanaka Y, Kawabata H, Saito S, Oda M. Effects of Pre-Schooler Lifestyle on the Circadian Rhythm of Secretory Immunoglobulin A. Health (London) 2021. [DOI: 10.4236/health.2021.132016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
181
|
Suau R, Vidal M, Aguilar R, Ruiz-Olalla G, Vázquez-Santiago M, Jairoce C, Nhabomba AJ, Gyan B, Dosoo D, Asante KP, Owusu-Agyei S, Campo JJ, Izquierdo L, Cavanagh D, Coppel RL, Chauhan V, Angov E, Dutta S, Gaur D, Beeson JG, Moncunill G, Dobaño C. RTS,S/AS01 E malaria vaccine induces IgA responses against CSP and vaccine-unrelated antigens in African children in the phase 3 trial. Vaccine 2020; 39:687-698. [PMID: 33358704 DOI: 10.1016/j.vaccine.2020.12.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/05/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The evaluation of immune responses to RTS,S/AS01 has traditionally focused on immunoglobulin (Ig) G antibodies that are only moderately associated with protection. The role of other antibody isotypes that could also contribute to vaccine efficacy remains unclear. Here we investigated whether RTS,S/AS01E elicits antigen-specific serum IgA antibodies to the vaccine and other malaria antigens, and we explored their association with protection. METHODS Ninety-five children (age 5-17 months old at first vaccination) from the RTS,S/AS01E phase 3 clinical trial who received 3 doses of RTS,S/AS01E or a comparator vaccine were selected for IgA quantification 1 month post primary immunization. Two sites with different malaria transmission intensities (MTI) and clinical malaria cases and controls, were included. Measurements of IgA against different constructs of the circumsporozoite protein (CSP) vaccine antigen and 16 vaccine-unrelated Plasmodium falciparum antigens were performed using a quantitative suspension array assay. RESULTS RTS,S vaccination induced a 1.2 to 2-fold increase in levels of serum/plasma IgA antibodies to all CSP constructs, which was not observed upon immunization with a comparator vaccine. The IgA response against 13 out of 16 vaccine-unrelated P. falciparum antigens also increased after vaccination, and levels were higher in recipients of RTS,S than in comparators. IgA levels to malaria antigens before vaccination were more elevated in the high MTI than the low MTI site. No statistically significant association of IgA with protection was found in exploratory analyses. CONCLUSIONS RTS,S/AS01E induces IgA responses in peripheral blood against CSP vaccine antigens and other P. falciparum vaccine-unrelated antigens, similar to what we previously showed for IgG responses. Collectively, data warrant further investigation of the potential contribution of vaccine-induced IgA responses to efficacy and any possible interplay, either synergistic or antagonistic, with protective IgG, as identifying mediators of protection by RTS,S/AS01E immunization is necessary for the design of improved second-generation vaccines. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov: NCT008666191.
Collapse
Affiliation(s)
- Roger Suau
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK Building, E-08036 Barcelona, Catalonia, Spain.
| | - Marta Vidal
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK Building, E-08036 Barcelona, Catalonia, Spain.
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK Building, E-08036 Barcelona, Catalonia, Spain.
| | - Gemma Ruiz-Olalla
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK Building, E-08036 Barcelona, Catalonia, Spain.
| | - Miquel Vázquez-Santiago
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK Building, E-08036 Barcelona, Catalonia, Spain.
| | - Chenjerai Jairoce
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK Building, E-08036 Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique.
| | - Augusto J Nhabomba
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique
| | - Ben Gyan
- Noguchi Memorial Institute for Medical Research, University of Ghana, Ghana.
| | - David Dosoo
- Kintampo Health Research Centre, Kintampo, Ghana.
| | | | - Seth Owusu-Agyei
- Kintampo Health Research Centre, Kintampo, Ghana; Disease Control Department. London School of Hygiene and Tropical Medicine, London, UK
| | - Joseph J Campo
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK Building, E-08036 Barcelona, Catalonia, Spain.
| | - Luis Izquierdo
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK Building, E-08036 Barcelona, Catalonia, Spain.
| | - David Cavanagh
- Institute of Immunology & Infection Research and Centre for Immunity, Infection & Evolution, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, UK.
| | - Ross L Coppel
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia.
| | - Virander Chauhan
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Evelina Angov
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, USA.
| | - Sheetij Dutta
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, USA.
| | - Deepak Gaur
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India; Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - James G Beeson
- Burnet Institute, Melbourne, Victoria, Australia; Central Clinical School, Monash University, Australia; Department of Medicine, University of Melbourne, Australia.
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK Building, E-08036 Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique.
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK Building, E-08036 Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique.
| |
Collapse
|
182
|
Fc Engineering Strategies to Advance IgA Antibodies as Therapeutic Agents. Antibodies (Basel) 2020; 9:antib9040070. [PMID: 33333967 PMCID: PMC7768499 DOI: 10.3390/antib9040070] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
In the past three decades, a great interest has arisen in the use of immunoglobulins as therapeutic agents. In particular, since the approval of the first monoclonal antibody Rituximab for B cell malignancies, the progress in the antibody-related therapeutic agents has been incremental. Therapeutic antibodies can be applied in a variety of diseases, ranging from cancer to autoimmunity and allergy. All current therapeutic monoclonal antibodies used in the clinic are of the IgG isotype. IgG antibodies can induce the killing of cancer cells by growth inhibition, apoptosis induction, complement activation (CDC) or antibody-dependent cellular cytotoxicity (ADCC) by NK cells, antibody-dependent cellular phagocytosis (ADCP) by monocytes/macrophages, or trogoptosis by granulocytes. To enhance these effector mechanisms of IgG, protein and glyco-engineering has been successfully applied. As an alternative to IgG, antibodies of the IgA isotype have been shown to be very effective in tumor eradication. Using the IgA-specific receptor FcαRI expressed on myeloid cells, IgA antibodies show superior tumor-killing compared to IgG when granulocytes are employed. However, reasons why IgA has not been introduced in the clinic yet can be found in the intrinsic properties of IgA posing several technical limitations: (1) IgA is challenging to produce and purify, (2) IgA shows a very heterogeneous glycosylation profile, and (3) IgA has a relatively short serum half-life. Next to the technical challenges, pre-clinical evaluation of IgA efficacy in vivo is not straightforward as mice do not naturally express the FcαR. Here, we provide a concise overview of the latest insights in these engineering strategies overcoming technical limitations of IgA as a therapeutic antibody: developability, heterogeneity, and short half-life. In addition, alternative approaches using IgA/IgG hybrid and FcαR-engagers and the impact of engineering on the clinical application of IgA will be discussed.
Collapse
|
183
|
Magen E, Blum I, Waitman DA, Kahan N, Forer B. Autoimmune Inner Ear Disease among Patients with Selective IgA Deficiency. Audiol Neurootol 2020; 26:127-134. [PMID: 33311024 DOI: 10.1159/000509577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/19/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Autoimmune inner ear disease (AIED) is a distinct clinical entity from sudden sensorineural hearing loss. The purpose of this study was to investigate the clinical characteristics of AIED in patients with selective IgA deficiency (sIgAD). MATERIALS AND METHODS This retrospective observational study was based on data from the Leumit Healthcare Services database in Israel. We searched all subjects aged ≥12 years who had undergone serum total IgA measurements during 2004-2014 for any reason. The sIgAD patients included all subjects with serum IgA of ≤7 mg/dL (0.07 g/L). A control group was randomly sampled from the full study population (n ≈ 730,000) with a case-control ratio of 10 controls for each case (1:10). RESULTS Among 347 subjects with sIgAD, we identified 9 patients with concomitant AIED (sIgAD + AIED group). This group was characterized by a higher prevalence of allergic diseases (8 patients; 88.9%) than sIgAD patients without AEID (sIgAD + AIED group; 153 patients; 45.2%; p = 0.014). Both systemic diseases (3 patients; 33.3%) and organ-specific autoimmune diseases (7 patients; 77.8%) were more prevalent in the sIgAD + AIED group (sIgAD + AIED group: 19 patients 5.5%, p = 0.015; sIgAD - AEID group: 76 patients, 21.9%, p < 0.001), with an OR of 8.39 (1.94-36.19; p = 0.004). sIgAD patients with and without AIED were characterized by a higher prevalence of documented episodes of acute otitis media, allergic diseases, and autoimmune diseases than the control group. CONCLUSION The study exposes a significant association between AIED and sIgAD. We believe that sIgAD has to be excluded in AIED patients.
Collapse
Affiliation(s)
- Eli Magen
- Leumit Health Services, Tel Aviv, Israel, .,Medicine C Department, Allergy and Clinical Immunology Unit, Barzilai University Medical Center, Ashkelon, Israel, .,Ben-Gurion University of the Negev, Beer Sheba, Israel,
| | - Idan Blum
- Medicine C Department, Allergy and Clinical Immunology Unit, Barzilai University Medical Center, Ashkelon, Israel.,Ben-Gurion University of the Negev, Beer Sheba, Israel
| | | | - Natan Kahan
- Leumit Health Services, Tel Aviv, Israel.,School of Public Health, Tel-Aviv University, Tel Aviv, Israel
| | - Boaz Forer
- School of Public Health, Tel-Aviv University, Tel Aviv, Israel.,Department of Otolaryngology Head and Neck Surgery, Barzilai Medical Center, Ashkelon, Israel
| |
Collapse
|
184
|
Cristina Borges Araujo E, Cariaco Y, Paulo Oliveira Almeida M, Patricia Pallete Briceño M, Neto de Sousa JE, Rezende Lima W, Maria Costa-Cruz J, Maria Silva N. Beneficial effects of Strongyloides venezuelensis antigen extract in acute experimental toxoplasmosis. Parasite Immunol 2020; 43:e12811. [PMID: 33247953 DOI: 10.1111/pim.12811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Toxoplasma gondii is a protozoan with worldwide distribution and triggers a strong Th1 immune response in infected susceptible hosts. On the contrary, most helminth infections are characterized by Th2 immune response and the use of helminth-derived antigens to regulate immune response in inflammatory disorders has been broadly investigated. OBJECTIVES The aim of this study was to investigate whether treatment with Strongyloides venezuelensis antigen extract (SvAg) would alter immune response against T gondii. METHODS C57BL/6 mice were orally infected with T gondii and treated with SvAg, and parasitological, histological and immunological parameters were investigated. RESULTS It was observed that SvAg treatment improved survival rates of T gondii-infected mice. At day 7 post-infection, the parasite load was lower in the lung and small intestine of infected SvAg-treated mice than untreated infected mice. Remarkably, SvAg-treated mice infected with T gondii presented reduced inflammatory lesions in the small intestine than infected untreated mice and decreased intestinal and systemic levels of IFN-γ, TNF-α and IL-6. In contrast, SvAg treatment increased T gondii-specific IgA serum levels in infected mice. CONCLUSIONS S venezuelensis antigen extract has anti-parasitic and anti-inflammatory properties during T gondii infection suggesting as a possible alternative to parasite and inflammation control.
Collapse
Affiliation(s)
- Ester Cristina Borges Araujo
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Yusmaris Cariaco
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Marcos Paulo Oliveira Almeida
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | | | - José Eduardo Neto de Sousa
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Wânia Rezende Lima
- Instituto de Biotecnologia, Universidade Federal de Catalão, Rua Terezinha Margon Vaz, s/n Residencial Barka II, Catalão, Brasil
| | - Julia Maria Costa-Cruz
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Neide Maria Silva
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| |
Collapse
|
185
|
Pietrzak B, Tomela K, Olejnik-Schmidt A, Mackiewicz A, Schmidt M. Secretory IgA in Intestinal Mucosal Secretions as an Adaptive Barrier against Microbial Cells. Int J Mol Sci 2020; 21:ijms21239254. [PMID: 33291586 PMCID: PMC7731431 DOI: 10.3390/ijms21239254] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Secretory IgA (SIgA) is the dominant antibody class in mucosal secretions. The majority of plasma cells producing IgA are located within mucosal membranes lining the intestines. SIgA protects against the adhesion of pathogens and their penetration into the intestinal barrier. Moreover, SIgA regulates gut microbiota composition and provides intestinal homeostasis. In this review, we present mechanisms of SIgA generation: T cell-dependent and -independent; in different non-organized and organized lymphoid structures in intestinal lamina propria (i.e., Peyer’s patches and isolated lymphoid follicles). We also summarize recent advances in understanding of SIgA functions in intestinal mucosal secretions with focus on its role in regulating gut microbiota composition and generation of tolerogenic responses toward its members.
Collapse
Affiliation(s)
- Bernadeta Pietrzak
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego, 60-627 Poznań, Poland;
- Correspondence: (B.P.); (M.S.)
| | - Katarzyna Tomela
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznań, Poland; (K.T.); (A.M.)
| | - Agnieszka Olejnik-Schmidt
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego, 60-627 Poznań, Poland;
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznań, Poland; (K.T.); (A.M.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznań, Poland
| | - Marcin Schmidt
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego, 60-627 Poznań, Poland;
- Correspondence: (B.P.); (M.S.)
| |
Collapse
|
186
|
Argentova VV, Aliev TK, Gasparyan ME, Dolgikh DA, Kirpichnikov MP. Effects of Fibroblast Growth Factor-2 and Other Microsupplements on the Productivity of IgG- and IgA-Producing Cell Lines. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820090021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
187
|
Schoos AMM, Bullens D, Chawes BL, Costa J, De Vlieger L, DunnGalvin A, Epstein MM, Garssen J, Hilger C, Knipping K, Kuehn A, Mijakoski D, Munblit D, Nekliudov NA, Ozdemir C, Patient K, Peroni D, Stoleski S, Stylianou E, Tukalj M, Verhoeckx K, Zidarn M, van de Veen W. Immunological Outcomes of Allergen-Specific Immunotherapy in Food Allergy. Front Immunol 2020; 11:568598. [PMID: 33224138 PMCID: PMC7670865 DOI: 10.3389/fimmu.2020.568598] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/30/2020] [Indexed: 12/21/2022] Open
Abstract
IgE-mediated food allergies are caused by adverse immunologic responses to food proteins. Allergic reactions may present locally in different tissues such as skin, gastrointestinal and respiratory tract and may result is systemic life-threatening reactions. During the last decades, the prevalence of food allergies has significantly increased throughout the world, and considerable efforts have been made to develop curative therapies. Food allergen immunotherapy is a promising therapeutic approach for food allergies that is based on the administration of increasing doses of culprit food extracts, or purified, and sometime modified food allergens. Different routes of administration for food allergen immunotherapy including oral, sublingual, epicutaneous and subcutaneous regimens are being evaluated. Although a wealth of data from clinical food allergen immunotherapy trials has been obtained, a lack of consistency in assessed clinical and immunological outcome measures presents a major hurdle for evaluating these new treatments. Coordinated efforts are needed to establish standardized outcome measures to be applied in food allergy immunotherapy studies, allowing for better harmonization of data and setting the standards for the future research. Several immunological parameters have been measured in food allergen immunotherapy, including allergen-specific immunoglobulin levels, basophil activation, cytokines, and other soluble biomarkers, T cell and B cell responses and skin prick tests. In this review we discuss different immunological parameters and assess their applicability as potential outcome measures for food allergen immunotherapy that may be included in such a standardized set of outcome measures.
Collapse
Affiliation(s)
- Ann-Marie Malby Schoos
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics, Slagelse Sygehus, Slagelse, Denmark
| | - Dominique Bullens
- Allergy and Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Clinical Division of Pediatrics, UZ Leuven, Leuven, Belgium
| | - Bo Lund Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Liselot De Vlieger
- Allergy and Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Audrey DunnGalvin
- School of Applied Psychology, University College Cork, Cork, Ireland
- Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child’s Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Michelle M. Epstein
- Experimental Allergy Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Centre of Excellence Immunology, Danone Nutricia research, Utrecht, Netherlands
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Karen Knipping
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Centre of Excellence Immunology, Danone Nutricia research, Utrecht, Netherlands
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Dragan Mijakoski
- Institute of Occupational Health of RNM, Skopje, North Macedonia
- Faculty of Medicine, Ss. Cyril and Methodius, University in Skopje, Skopje, North Macedonia
| | - Daniel Munblit
- Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child’s Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Inflammation, Repair and Development Section, NHLI, Imperial College London, London, United Kingdom
| | - Nikita A. Nekliudov
- Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child’s Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Cevdet Ozdemir
- Institute of Child Health, Department of Pediatric Basic Sciences, Istanbul University, Istanbul, Turkey
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Karine Patient
- SPI—Food Allergy Unit, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Diego Peroni
- Section of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sasho Stoleski
- Institute of Occupational Health of RNM, Skopje, North Macedonia
- Faculty of Medicine, Ss. Cyril and Methodius, University in Skopje, Skopje, North Macedonia
| | - Eva Stylianou
- Regional Unit for Asthma, Allergy and Hypersensitivity, Department of Pulmonary Diseases, Oslo University Hospital, Oslo, Norway
| | - Mirjana Tukalj
- Children’s Hospital, Department of Allergology and Pulmonology, Zagreb, Croatia
- Faculty of Medicine, University of Osijek, Osijek, Croatia
- Catholic University of Croatia, Zagreb, Croatia
| | - Kitty Verhoeckx
- Division of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mihaela Zidarn
- University Clinic of Pulmonary and Allergic Diseases Golnik, Golnik, Slovenia, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| |
Collapse
|
188
|
Shrestha B, Schaefer A, Chavez EC, Kopp AJ, Jacobs TM, Moench TR, Lai SK. Engineering tetravalent IgGs with enhanced agglutination potencies for trapping vigorously motile sperm in mucin matrix. Acta Biomater 2020; 117:226-234. [PMID: 32937206 PMCID: PMC8778962 DOI: 10.1016/j.actbio.2020.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
Multivalent antibodies such as sIgA can crosslink motile entities such as sperm and bacteria, creating agglomerates that are too large to permeate the dense mucin matrix in mucus, a process commonly referred to as immune exclusion. Unfortunately, sIgA remains challenging to produce in large quantities, and easily aggregates, which prevented their use in clinical applications. To develop sIgA-like tetravalent antibodies that are stable and can be easily produced in large quantities, we designed two IgGs possessing 4 identical Fab domains, with the Fabs arranged either in serial or in the diametrically opposite orientation. As a proof-of-concept, we engineered these tetravalent IgG constructs to bind a ubiquitous sperm antigen using a Fab previously isolated from an immune infertile woman. Both constructs possess at least 4-fold greater agglutination potency and induced much more rapid sperm agglutination than the parent IgG, while exhibiting comparable production yields and identical thermostability as the parent IgG. These tetravalent IgGs offer promise for non-hormonal contraception and underscores the multimerization of IgG as a promising strategy to enhance antibody effector functions based on immune exclusion.
Collapse
Affiliation(s)
- Bhawana Shrestha
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| | - Alison Schaefer
- UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| | - Elizabeth C Chavez
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| | - Alexander J Kopp
- Department of Health Policy and Management, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| | - Timothy M Jacobs
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| | | | - Samuel K Lai
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Mucommune, LLC., Durham, NC 27709, United States.
| |
Collapse
|
189
|
IgA Monoclonal Gammopathy of Undetermined Significance and Complication of Streptococcus mitis Bacteremia. Case Rep Hematol 2020; 2020:8823908. [PMID: 33101741 PMCID: PMC7569424 DOI: 10.1155/2020/8823908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/18/2020] [Accepted: 10/03/2020] [Indexed: 11/25/2022] Open
Abstract
This case presents a patient with bacteremia of an unusual organism with a history of monoclonal gammopathy of undetermined significance (MGUS). MGUS is typically thought to be asymptomatic until potential progression of the disease. This case reports a patient with a history of MGUS who does not show disease progression, however, may be showing symptoms, such as immunodeficiency. This case displays bacteremia with Streptococcus mitis within a two-week period of an invasive procedure. Recent studies parallel this case by showing MGUS patients may have two times the risk of infections compared to the unaffected population. This report brings up the question of taking prophylactic measures for this patient population to prevent future complications.
Collapse
|
190
|
Kumar Bharathkar S, Parker BW, Malyutin AG, Haloi N, Huey-Tubman KE, Tajkhorshid E, Stadtmueller BM. The structures of secretory and dimeric immunoglobulin A. eLife 2020; 9:56098. [PMID: 33107820 PMCID: PMC7707832 DOI: 10.7554/elife.56098] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022] Open
Abstract
Secretory (S) Immunoglobulin (Ig) A is the predominant mucosal antibody, which binds pathogens and commensal microbes. SIgA is a polymeric antibody, typically containing two copies of IgA that assemble with one joining-chain (JC) to form dimeric (d) IgA that is bound by the polymeric Ig-receptor ectodomain, called secretory component (SC). Here, we report the cryo-electron microscopy structures of murine SIgA and dIgA. Structures reveal two IgAs conjoined through four heavy-chain tailpieces and the JC that together form a β-sandwich-like fold. The two IgAs are bent and tilted with respect to each other, forming distinct concave and convex surfaces. In SIgA, SC is bound to one face, asymmetrically contacting both IgAs and JC. The bent and tilted arrangement of complex components limits the possible positions of both sets of antigen-binding fragments (Fabs) and preserves steric accessibility to receptor-binding sites, likely influencing antigen binding and effector functions.
Collapse
Affiliation(s)
- Sonya Kumar Bharathkar
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, United States
| | - Benjamin W Parker
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, United States
| | - Andrey G Malyutin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.,Beckman Institute, California Institute of Technology, Pasadena, United States
| | - Nandan Haloi
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Urbana, United States
| | - Kathryn E Huey-Tubman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, United States.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Urbana, United States
| | - Beth M Stadtmueller
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, United States
| |
Collapse
|
191
|
Young BE, Murphy K, Borman LL, Heinrich R, Krebs NF. Milk Bank Pooling Practices Impact Concentrations and Variability of Bioactive Components of Donor Human Milk. Front Nutr 2020; 7:579115. [PMID: 33123548 PMCID: PMC7573550 DOI: 10.3389/fnut.2020.579115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/26/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Donor human milk (DHM) bank practices, such as pasteurization and pooling according to postpartum age of milk donations and number of donors included in a pool may impact the resulting concentration of bioactive components of DHM. Aims: We determined the impact of Holder pasteurization, postpartum milk age, and pool donor number (number of donors included in a pool) on resulting concentrations of total immunoglobulin A (IgA; which provides immune protection to the recipient infant) and insulin (an important hormone for gut maturation).We also documented inter-relationships between these bioactive components and macronutrients in DHM pools. Methods: Pre and post-pasteurization aliquots of 128 DHM samples were obtained from the Rocky Mountain Children's Foundation Mother's Milk Bank (a member of the Human Milk Banking Association of North America, HMBANA). Macronutrients were measured via mid-infrared spectroscopy. Total IgA was measured via customized immunoassay in skim milk and insulin was measured via chemiluminescent immunoassay. Results: Mean post-pasteurization total IgA concentration was 0.23 ± 0.10 (range: 0.04-0.65) mg/mL a 17.9% decrease due to pasteurization (n = 126). Mean post-pasteurization DHM insulin concentration was 7.0 ± 4.6 (range: 3-40) μU/mL, a decrease of 13.6% due to pasteurization (n = 128). The average DHM pool postpartum milk age was not associated with total IgA or insulin concentrations, but pool donor number was associated with bioactive components. Pools with only one donor had lower total IgA and lower insulin concentrations than pools with at least 2 donors (p < 0.05). Increasing the number of donors in a pool decreased the variability in total IgA and insulin concentrations (p < 0.04). Conclusion: Increasing the number of donors included in DHM pools may help optimize bioactive components in DHM received by premature infants. These results help inform milk banking practices to decrease compositional variability in produced DHM pools.
Collapse
Affiliation(s)
- Bridget E Young
- Department of Pediatrics Allergy and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Katherine Murphy
- Department of Pediatrics Allergy and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Laraine L Borman
- Mothers' Milk Bank, Rocky Mountain Children's Health Foundation, Arvada, CO, United States
| | - Rebecca Heinrich
- Mothers' Milk Bank, Rocky Mountain Children's Health Foundation, Arvada, CO, United States
| | - Nancy F Krebs
- Department of Pediatrics - Section of Nutrition, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
192
|
Adhikari J, Rizwan M, Koh D, Keasberry NA, Ahmed MU. Electrochemical Study of Dimensional Specific Carbon Nanomaterials Modified Glassy Carbon Electrode for Highly Sensitive Label-free Detection of Immunoglobulin A. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411015666190925152124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Immunoglobulin A (IgA) accounts for 15% of total protein production per
day and plays a crucial role in the first-line immune defence. Recently, IgA has been established as a
vital clinical biomarker for nephropathy, allergic asthma, celiac disease (CD), pneumonia, and asthma
as well as some neurological disorders. In this work, we have studied several carbon nanomaterials
(CNMs) having different dimensions (D): carbon nano-onions (CNOs) - 0D, single-walled carbon
nanotubes (SWCNTs) - 1D, and graphene nanoplatelets (GNPs) - 2D, on glassy carbon electrode
(GCE) to identify which CNMs (CNOs/SWCNTs/GNPs) work best to fabricate IgA based electrochemical
immunosensor.
Methods:
Different CNMs (CNOs, SWCNTs, GNPs) were tested for high electric current on GCE
using square wave voltammetry (SWV), and among them, GNPs modified GCE platform
(GNPs/GCE) showcased the highest electric current. Therefore, GNPs/GCE was utilized for the development
of highly sensitive label-free electrochemical immunosensor for the detection of Immunoglobulin
A using SWV.
Results:
Despite the simple fabrication strategies employed, the fabricated sensor demonstrated a
low limit of detection of 50 fg mL-1 with an extensive linear range of detection from 50 fg mL-1 to
0.1 μg mL-1.
Conclusion:
Fabricated immunosensor represented high stability, repeatability, specificity and resistance
to most common interferences as well as great potential to analyse the real sample.
Collapse
Affiliation(s)
- Juthi Adhikari
- Faculty of Science, Biosensors and Biotechnology Laboratory, Chemical Science Programme, Universiti Brunei Darussalam. Jalan Tungku Link, Gadong, BE 1410, Brunei, Brunei Darussalam
| | - Mohammad Rizwan
- Faculty of Science, Biosensors and Biotechnology Laboratory, Chemical Science Programme, Universiti Brunei Darussalam. Jalan Tungku Link, Gadong, BE 1410, Brunei, Brunei Darussalam
| | - David Koh
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Natasha Ann Keasberry
- Faculty of Science, Biosensors and Biotechnology Laboratory, Chemical Science Programme, Universiti Brunei Darussalam. Jalan Tungku Link, Gadong, BE 1410, Brunei, Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Faculty of Science, Biosensors and Biotechnology Laboratory, Chemical Science Programme, Universiti Brunei Darussalam. Jalan Tungku Link, Gadong, BE 1410, Brunei, Brunei Darussalam
| |
Collapse
|
193
|
Lippi G, Mattiuzzi C. Clinical value of anti-SARS-COV-2 serum IgA titration in patients with COVID-19. J Med Virol 2020; 93:1210-1211. [PMID: 32966614 PMCID: PMC7537252 DOI: 10.1002/jmv.26539] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Giuseppe Lippi
- Department of Neuroscience, Biomedicine and Movement, Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Camilla Mattiuzzi
- Service of Clinical Governance, Provincial Agency for Social and Sanitary Services, Trento, Italy
| |
Collapse
|
194
|
Martinsson K, Roos Ljungberg K, Ziegelasch M, Cedergren J, Eriksson P, Klimovich V, Reckner Å, Griazeva I, Sjöwall C, Samoylovich M, Skogh T, Wetterö J, Kastbom A. Elevated free secretory component in early rheumatoid arthritis and prior to arthritis development in patients at increased risk. Rheumatology (Oxford) 2020; 59:979-987. [PMID: 31504979 PMCID: PMC7850007 DOI: 10.1093/rheumatology/kez348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 07/05/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives Considering growing evidence of mucosal involvement in RA induction, this study investigated circulating free secretory component (SC) in patients with either recent-onset RA or with ACPA and musculoskeletal pain. Methods Two prospective cohorts were studied: TIRA-2 comprising 452 recent-onset RA patients with 3 years of clinical and radiological follow-up, and TIRx patients (n = 104) with ACPA IgG and musculoskeletal pain followed for 290 weeks (median). Blood donors and three different chronic inflammatory diseases served as controls. Free SC was analysed by sandwich ELISA. Results Serum levels of free SC were significantly higher in TIRA-2 patients compared with TIRx and all control groups (P < 0.01). Among TIRx patients who subsequently developed arthritis, free SC levels were higher compared with all control groups (P < 0.05) except ankylosing spondylitis (P = 0.74). In TIRA-2, patients with ACPA had higher baseline levels of free SC compared with ACPA negative patients (P < 0.001). Free SC status at baseline did not predict radiographic joint damage or disease activity over time. In TIRx, elevated free SC at baseline trendwise associated with arthritis development during follow-up (P = 0.066) but this disappeared when adjusting for confounders (P = 0.72). Cigarette smoking was associated with higher levels of free SC in both cohorts. Conclusion Serum free SC levels are increased in recent-onset RA compared with other inflammatory diseases, and associate with ACPA and smoking. Free SC is elevated before arthritis development among ACPA positive patients with musculoskeletal pain, but does not predict arthritis development. These findings support mucosal engagement in RA development.
Collapse
Affiliation(s)
- Klara Martinsson
- Department of Rheumatology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Karin Roos Ljungberg
- Department of Rheumatology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Michael Ziegelasch
- Department of Rheumatology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jan Cedergren
- Department of Rheumatology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Per Eriksson
- Department of Rheumatology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Vladimir Klimovich
- Russian Research Center for Radiology and Surgical Technologies, St Petersburg, Russia
| | - Åsa Reckner
- Department of Rheumatology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Irina Griazeva
- Russian Research Center for Radiology and Surgical Technologies, St Petersburg, Russia
| | - Christopher Sjöwall
- Department of Rheumatology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Marina Samoylovich
- Russian Research Center for Radiology and Surgical Technologies, St Petersburg, Russia
| | - Thomas Skogh
- Department of Rheumatology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jonas Wetterö
- Department of Rheumatology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Alf Kastbom
- Department of Rheumatology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
195
|
Li S, Li J, Liu Y, Li C, Zhang R, Bao J. Effects of Intermittent Mild Cold Stimulation on mRNA Expression of Immunoglobulins, Cytokines, and Toll-Like Receptors in the Small Intestine of Broilers. Animals (Basel) 2020; 10:ani10091492. [PMID: 32846975 PMCID: PMC7552237 DOI: 10.3390/ani10091492] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cold stress has been associated with adverse effects on health and welfare of broilers. Whilst several studies have shown that long-term sustained and mild cold stimulation can improve immune function, little is known of the effects of intermittent cold stimulation on immune modulation in broilers. In this study, broilers were submitted to cold stimulation of 3 °C below than the usual rearing temperature during 3 and 6 h every two days during 43 days to explore its effect on the intestinal immunity. The findings confirm that appropriate mild cold stimulation has an overall positive influence on the intestinal immunity of broilers. The mild cold stimulation tested in this study is cost-effective and likely enhances overall health of broilers. Abstract Appropriate cold stimulation can improve immune function and stress tolerance in broilers. In order to investigate the effect of intermittent mild cold stimulation on the intestinal immunity of broilers, 240 healthy one-day-old Ross 308 chickens were randomly divided into three groups: the control group (CC) housed in climatic chambers under usual rearing ambient temperature with a gradual 3.5 °C decrease per week; group II (C3) and group III (C6) to which cold stimulation at 3 °C below the temperature used in CC was applied every two days for 3 and 6 h, respectively, from day 15 to 35, and at the same temperature used in CC from day 35 to 43. The mRNA expression levels of immunoglobulins (IgA and IgG), cytokines (IL2, IL6, IL8, IL17, and IFNγ), and Toll-like receptors (TLR2, TLR4, TLR5, TLR7, and TLR21) were investigated in duodenum, jejunum, and ileum tissue samples on days 22, 29, 35, and 43. From day 15 to 35, mRNA expression of IL2 and IFNγ was increased in the intestine of broilers. After one week of cold stimulation on day 43, mRNA levels of immunoglobulins, cytokines, and Toll-like receptors (TLRs) stabilized. Collectively, the findings indicate that cold stimulation at 3 °C below the usual rearing temperature had a positive impact on intestinal immunity of broilers.
Collapse
Affiliation(s)
- Shuang Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (S.L.); (J.L.); (Y.L.); (C.L.)
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (S.L.); (J.L.); (Y.L.); (C.L.)
| | - Yanhong Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (S.L.); (J.L.); (Y.L.); (C.L.)
| | - Chun Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (S.L.); (J.L.); (Y.L.); (C.L.)
| | - Runxiang Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (R.Z.); (J.B.)
| | - Jun Bao
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (R.Z.); (J.B.)
| |
Collapse
|
196
|
Primary Humoral Immune Deficiencies: Overlooked Mimickers of Chronic Immune-Mediated Gastrointestinal Diseases in Adults. Int J Mol Sci 2020; 21:ijms21155223. [PMID: 32718006 PMCID: PMC7432083 DOI: 10.3390/ijms21155223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, the incidence of immune-mediated gastrointestinal disorders, including celiac disease (CeD) and inflammatory bowel disease (IBD), is increasingly growing worldwide. This generates a need to elucidate the conditions that may compromise the diagnosis and treatment of such gastrointestinal disorders. It is well established that primary immunodeficiencies (PIDs) exhibit gastrointestinal manifestations and mimic other diseases, including CeD and IBD. PIDs are often considered pediatric ailments, whereas between 25 and 45% of PIDs are diagnosed in adults. The most common PIDs in adults are the selective immunoglobulin A deficiency (SIgAD) and the common variable immunodeficiency (CVID). A trend to autoimmunity occurs, while gastrointestinal disorders are common in both diseases. Besides, the occurrence of CeD and IBD in SIgAD/CVID patients is significantly higher than in the general population. However, some differences concerning diagnostics and management between enteropathy/colitis in PIDs, as compared to idiopathic forms of CeD/IBD, have been described. There is an ongoing discussion whether CeD and IBD in CVID patients should be considered a true CeD and IBD or just CeD-like and IBD-like diseases. This review addresses the current state of the art of the most common primary immunodeficiencies in adults and co-occurring CeD and IBD.
Collapse
|
197
|
Gnanesh Kumar B, Rawal A. Sequence characterization and N-glycoproteomics of secretory immunoglobulin A from donkey milk. Int J Biol Macromol 2020; 155:605-613. [DOI: 10.1016/j.ijbiomac.2020.03.253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
|
198
|
Kacem I, Kahloul M, El Arem S, Ayachi S, Hafsia M, Maoua M, Ben Othmane M, El Maalel O, Hmida W, Bouallague O, Ben Abdessalem K, Naija W, Mrizek N. Effects of music therapy on occupational stress and burn-out risk of operating room staff. Libyan J Med 2020; 15:1768024. [PMID: 32449482 PMCID: PMC7448868 DOI: 10.1080/19932820.2020.1768024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The operating theatre staff is exposed to various constraints such as excessive working hours, severe medical conditions and dreadful consequences in case of malpractice. These working conditions may lead to high and chronic levels of stress, which can interfere with medical staff well-being and patients quality of care. The aim of this study is toassess the impact of music therapy on stress levels and burnout risk on the operating room staff. This is a pre-experimental study including the operating rooms staff of urology and maxillofacial surgery in the academic hospital of Sahloul Sousse (Tunisia) over a period of six weeks. The study consisted of three phases. The first was an initial assessment of stress level with a predefined survey. The second included three music therapy sessions per day over one month. The third was an immediate stress level reassessment following the intervention. Stress levels were evaluated using the Perceived Stress Scale version PSS-10 and the Maslach Burnout Inventory. The overall response rate was 73.9%.The average age of the study population was 37.8 ± 7.7 years with a female predominance (64.7%). After the music therapy program, Perceived Stress Scale average score decreased from 22 ± 8.9 to 16 ± 7.9 (p = 0.006). Concerning the burnout, only the average score of emotional exhaustion decreased significantly from 27 ± 10.8 to 19.2 ± 9.5 (p = 0.004). Music therapy is an innovative approach that seems to reduce operating theatre staff stress. It must be considered as a non pharmacological, simple, economic and non invasive preventive tool.
Collapse
Affiliation(s)
- I Kacem
- Faculty of Medicine of Sousse, Université de Sousse , Sousse, Tunisia.,Department of Occupational Medicine, Farhat Hached Academic Hospital , Sousse, Tunisia
| | - M Kahloul
- Faculty of Medicine of Sousse, Université de Sousse , Sousse, Tunisia.,Department of Anesthesia and Intensive Care, Sahloul Academic Hospital , Sousse, Tunisia
| | - S El Arem
- Faculty of Medicine of Sousse, Université de Sousse , Sousse, Tunisia.,Department of Urology, Sahloul Academic Hospital , Sousse, Tunisia
| | - S Ayachi
- Faculty of Medicine of Sousse, Université de Sousse , Sousse, Tunisia.,Department of Maxillofacial Surgery, Sahloul Academic Hospital , Sousse, Tunisia
| | - M Hafsia
- Faculty of Medicine of Sousse, Université de Sousse , Sousse, Tunisia.,Department of Occupational Medicine, Farhat Hached Academic Hospital , Sousse, Tunisia
| | - M Maoua
- Faculty of Medicine of Sousse, Université de Sousse , Sousse, Tunisia.,Department of Occupational Medicine, Farhat Hached Academic Hospital , Sousse, Tunisia
| | - M Ben Othmane
- Faculty of Medicine of Sousse, Université de Sousse , Sousse, Tunisia.,Department of Urology, Sahloul Academic Hospital , Sousse, Tunisia
| | - O El Maalel
- Faculty of Medicine of Sousse, Université de Sousse , Sousse, Tunisia.,Department of Occupational Medicine, Farhat Hached Academic Hospital , Sousse, Tunisia
| | - W Hmida
- Faculty of Medicine of Sousse, Université de Sousse , Sousse, Tunisia.,Department of Urology, Sahloul Academic Hospital , Sousse, Tunisia
| | - O Bouallague
- Faculty of Medicine of Sousse, Université de Sousse , Sousse, Tunisia.,Laboratory of Microbiology, Sahloul Academic Hospital , Sousse, Tunisia
| | - K Ben Abdessalem
- Faculty of Medicine of Sousse, Université de Sousse , Sousse, Tunisia.,Department of Anesthesia and Intensive Care, Sahloul Academic Hospital , Sousse, Tunisia
| | - W Naija
- Faculty of Medicine of Sousse, Université de Sousse , Sousse, Tunisia.,Department of Anesthesia and Intensive Care, Sahloul Academic Hospital , Sousse, Tunisia
| | - N Mrizek
- Faculty of Medicine of Sousse, Université de Sousse , Sousse, Tunisia.,Department of Occupational Medicine, Farhat Hached Academic Hospital , Sousse, Tunisia
| |
Collapse
|
199
|
Immunomodulatory activity of low molecular-weight peptides from Nibea japonica skin in cyclophosphamide-induced immunosuppressed mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103888] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
200
|
Gayet R, Michaud E, Nicoli F, Chanut B, Paul M, Rochereau N, Guillon C, He Z, Papagno L, Bioley G, Corthesy B, Paul S. Impact of IgA isoforms on their ability to activate dendritic cells and to prime T cells. Eur J Immunol 2020; 50:1295-1306. [PMID: 32277709 DOI: 10.1002/eji.201948177] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 02/20/2020] [Accepted: 04/07/2020] [Indexed: 12/23/2022]
Abstract
Human IgA could be from different isotypes (IgA1/IgA2) and/or isoforms (monomeric, dimeric, or secretory). Monomeric IgA mainly IgA1 are considered as an anti-inflammatory isotype whereas dimeric/secretory IgA have clearly dual pro- and anti-inflammatory effects. Here, we show that IgA isotypes and isoforms display different binding abilities to FcαRI, Dectin-1, DC-SIGN, and CD71 on monocyte-derived dendritic cells (moDC). We describe that IgA regulate the expression of their own receptors and trigger modulation of moDC maturation. We also demonstrate that dimeric IgA2 and IgA1 induce different inflammatory responses leading to cytotoxic CD8+ T cells activation. moDC stimulation by dimeric IgA2 was followed by a strong pro-inflammatory effect. Our study highlights differences regarding IgA isotypes and isoforms in the context of DC conditioning. Further investigations are needed on the activation of adaptive immunity by IgA in the context of microbiota/IgA complexes during antibody-mediated immune selection.
Collapse
Affiliation(s)
- Rémi Gayet
- GIMAP/EA3064, Université de Lyon, Saint-Etienne, France
| | - Eva Michaud
- GIMAP/EA3064, Université de Lyon, Saint-Etienne, France
| | - Francesco Nicoli
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Universités, Paris, France
| | | | - Mireille Paul
- SAINBIOSE, INSERM U1059, University of Lyon, Saint-Etienne, France
| | | | - Christophe Guillon
- Retroviruses and Structural Biochemistry, Institut de Biologie et Chimie des Protéines, University of Lyon, CNRS, UMR5086, Lyon, France
| | - Zhiguo He
- BiiGC/EA2521, Université de Lyon, Saint-Etienne, France
| | - Laura Papagno
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Universités, Paris, France
| | - Gilles Bioley
- BiiGC/EA2521, Université de Lyon, Saint-Etienne, France
| | - Blaise Corthesy
- R&D Laboratory of the Division of Immunology and Allergy, CHUV, Centre des Laboratoires d'Epalinges, Epalinges, Switzerland
| | - Stéphane Paul
- GIMAP/EA3064, Université de Lyon, Saint-Etienne, France
| |
Collapse
|