151
|
Park WS, Heo SC, Jeon ES, Hong DH, Son YK, Ko JH, Kim HK, Lee SY, Kim JH, Han J. Functional expression of smooth muscle-specific ion channels in TGF-β(1)-treated human adipose-derived mesenchymal stem cells. Am J Physiol Cell Physiol 2013; 305:C377-91. [PMID: 23761629 DOI: 10.1152/ajpcell.00404.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Human adipose tissue-derived mesenchymal stem cells (hASCs) have the power to differentiate into various cell types including chondrocytes, osteocytes, adipocytes, neurons, cardiomyocytes, and smooth muscle cells. We characterized the functional expression of ion channels after transforming growth factor-β1 (TGF-β1)-induced differentiation of hASCs, providing insights into the differentiation of vascular smooth muscle cells. The treatment of hASCs with TGF-β1 dramatically increased the contraction of a collagen-gel lattice and the expression levels of specific genes for smooth muscle including α-smooth muscle actin, calponin, smooth mucle-myosin heavy chain, smoothelin-B, myocardin, and h-caldesmon. We observed Ca(2+), big-conductance Ca(2+)-activated K(+) (BKCa), and voltage-dependent K(+) (Kv) currents in TGF-β1-induced, differentiated hASCs and not in undifferentiated hASCs. The currents share the characteristics of vascular smooth muscle cells (SMCs). RT-PCR and Western blotting revealed that the L-type (Cav1.2) and T-type (Cav3.1, 3.2, and 3.3), known to be expressed in vascular SMCs, dramatically increased along with the Cavβ1 and Cavβ3 subtypes in TGF-β1-induced, differentiated hASCs. Although the expression-level changes of the β-subtype BKCa channels varied, the major α-subtype BKCa channel (KCa1.1) clearly increased in the TGF-β1-induced, differentiated hASCs. Most of the Kv subtypes, also known to be expressed in vascular SMCs, dramatically increased in the TGF-β1-induced, differentiated hASCs. Our results suggest that TGF-β1 induces the increased expression of vascular SMC-like ion channels and the differentiation of hASCs into contractile vascular SMCs.
Collapse
Affiliation(s)
- Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Liu Y, Deng B, Zhao Y, Xie S, Nie R. Differentiated markers in undifferentiated cells: expression of smooth muscle contractile proteins in multipotent bone marrow mesenchymal stem cells. Dev Growth Differ 2013; 55:591-605. [PMID: 23557080 DOI: 10.1111/dgd.12052] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 02/24/2013] [Accepted: 02/24/2013] [Indexed: 12/19/2022]
Abstract
In studying the differentiation of stem cells along smooth muscle lineage, smooth muscle cell (SMC) contractile proteins serve as markers for the relative state of maturation. Yet, recent evidence suggests that some SMC markers are probably expressed in multipotent mesenchymal stem cells (MSCs). Such a paradox necessitates investigations to re-examine their role as differentiated markers in MSCs. We tried to detect the expression of four widely used SMC markers including α-smooth muscle actin (α-SMA), h1-calponin, desmin and smooth muscle myosin heavy chain (SM-MHC), as well as the other isoforms of calponin family in resting MSCs. Then we used three different conditions to initiate MSCs differentiation along SMC lineage, and examined the alternation of SMC markers expression at both the transcript level and protein level. Desmin and h1-calponin are expressed in MSCs, in the presence or absence of SMC induction conditions. Moreover, MSCs are shown to express all known isoforms of calponin. Double-staining reveals that h1-calponin +/α-SMA - cells constitute the majority of resting MSCs. Under differentiated conditions, expression of SM-MHC was initiated and expression of α-SMA was promoted. The expression of SM-MHC and upregulation of α-SMA are relatively reliable indications of a mature smooth muscle phenotype in MSCs. Given that the cells are particularly rich in calponins expression, we postulate possible roles of these proteins in regulating cellular function by taking part in actin cytoskeleton and signaling. These findings imply that an extensive study of the cell physiology of MSCs should focus on the functional roles for these proteins, rather than simply regard them as differentiated markers.
Collapse
Affiliation(s)
- Yingxi Liu
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guanghzhou, Guangdong 510120, PR China
| | | | | | | | | |
Collapse
|
153
|
ZHOU SHAOQIONG, FANG XIN, XIN HUAPING, GUAN SIMING. Effects of alendronate on the Notch1-RBP-Jκ signaling pathway in the osteogenic differentiation and mineralization of vascular smooth muscle cells. Mol Med Rep 2013; 8:89-94. [DOI: 10.3892/mmr.2013.1489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/09/2013] [Indexed: 11/06/2022] Open
|
154
|
Zhou J, Niklason LE. Microfluidic artificial "vessels" for dynamic mechanical stimulation of mesenchymal stem cells. Integr Biol (Camb) 2013; 4:1487-97. [PMID: 23114826 DOI: 10.1039/c2ib00171c] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cells in the cardiovascular system are constantly exposed to complex mechanical stimulation due to the pulsatile nature of blood flow and the haemodynamic forces that are key to the regulation of vascular development, remodeling and pathophysiology. Mechanical stretch can also modulate the differentiation of stem cells toward vascular cell lineages (i.e., vascular smooth muscle cells), and represent a critical factor in vascular tissue engineering. Here we report on the development of a microchip platform that can emulate several key aspects of the vascular mechanical environment, such as cyclic stimulation and circumferential strain. This chip consists of an array of microfluidic channels with widths ranging from 20 to 500 micrometers. These channels are covered by suspended deformable membranes, on which cells are cultured and stimulated by cyclic circumferential strain of up to 20% via hydrodynamic actuation of the fluid in the microfluidic channels, thereby mimicking the biomechanical conditions of small blood vessels. We show that human mesenchymal stem cells (MSCs) can be cultured and continuously stimulated by cyclic stretch over a period of 7 days with no evidence of device fatigue or performance degradation. We observed localization and alignment of MSCs when mechanical stretch is larger than 10%, indicating the importance of mechanical stimulation in modulating cellular behavior. We further demonstrated simultaneous detection of proteins in multiple signaling pathways, including SMAD1/SMAD2 and canonical Wnt/β-catenin. This microchip represents a generic and versatile platform for high-throughput and rapid screening of cellular responses, including signal transduction cascades, in response to mechanical cues. The system emulates the physiological conditions of blood vessels and other tissues that are subject to cyclic strain, and may have a wide range of applications in the fields of stem cell mechanobiology, vascular tissue engineering, and other areas of regenerative medicine.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06519, USA
| | | |
Collapse
|
155
|
Huang F, Li ML, Fang ZF, Hu XQ, Liu QM, Liu ZJ, Tang L, Zhao YS, Zhou SH. Overexpression of MicroRNA-1 improves the efficacy of mesenchymal stem cell transplantation after myocardial infarction. Cardiology 2013; 125:18-30. [PMID: 23615185 DOI: 10.1159/000347081] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/04/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND The aim of this research was to study whether transplantation of mesenchymal stem cells (MSCs) overexpressing microRNA-1 into mouse infarcted myocardium can enhance cardiac myocyte differentiation and improve cardiac function efficiently. METHODS Eight-week-old female C57BL/6 mice underwent ligation of the left coronary artery to produce models of myocardial infarction. The ligated animals were randomly divided into 4 groups (20 in each). One week later, they were intramyocardially injected at the heart infarcted zone with microRNA-1-transduced MSCs (MSC(miR-1) group), mock-vector-transduced MSCs (MSC(null) group), MSCs (MSC group) or medium (PBS group). At 4 weeks post-transplantation, transthoracic echocardiographic assessment, histological evaluation and Western blot were performed. RESULTS The transplanted MSCs were able to differentiate into cardiomyocytes in the infarcted zone. Cardiac function in the MSC, MSC(null) and MSC(miR-1) groups was significantly improved compared to the PBS group (p < 0.01 or p < 0.001). However, treatment of MSCs expressing microRNA-1 was more effective for cardiac repair and improved cardiac function more efficiently by enhancing cell survival and cardiac myocyte differentiation compared to the MSC group or the MSC(null) groups (p < 0.05 or p < 0.01, respectively). CONCLUSIONS Transplantation of microRNA-1-transfected MSCs was more conducive to repair of infarct injury and improved heart function by enhancing transplanted cells survival and cardiomyogenic differentiation.
Collapse
Affiliation(s)
- Feng Huang
- Department of Cardiology, Second Xiangya Hospital of Central South University, Changsha, China
| | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Chen DY, Wei HJ, Lin KJ, Huang CC, Wang CC, Wu CT, Chao KT, Chen KJ, Chang Y, Sung HW. Three-dimensional cell aggregates composed of HUVECs and cbMSCs for therapeutic neovascularization in a mouse model of hindlimb ischemia. Biomaterials 2013; 34:1995-2004. [DOI: 10.1016/j.biomaterials.2012.11.045] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 11/23/2012] [Indexed: 01/28/2023]
|
157
|
Firth AL, Yuan JXJ. Human models for smooth muscle cell differentiation. Focus on "A novel in vitro model system for smooth muscle differentiation from human embryonic stem cell-derived mesenchymal cells". Am J Physiol Cell Physiol 2013; 304:C287-8. [PMID: 23325406 DOI: 10.1152/ajpcell.00010.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
158
|
Qiao LN, Xu HB, Shi K, Zhou TF, Hua YM, Liu HM. Role of notch signal in angiotensin II induced pulmonary vascular remodeling. Transl Pediatr 2013; 2:5-13. [PMID: 26835278 PMCID: PMC4728945 DOI: 10.3978/j.issn.2224-4336.2012.05.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Notch signal is particularly important to vascular remodeling during the process of embryonic development, vessel repair and tumor growth, but there are few studies about pulmonary vascular remodeling in pulmonary hypertension. This study was to explore the effect of inhibiting Notch signal on pulmonary vascular remodeling induced by angiotensin II. METHODS Vessel strips taken from healthy Wistar rats were cocultured with extrogenous angiotensin II and the potent smooth muscle cell proliferation stimulators for 7 days. Vascular wall thickness, proliferating cell nuclear antigen (PCNA) positive cell rate, and caspase-3 positive cell rate were examined in vessel strips. Some of the vessel strips were cultured with angiotensin II and γ-secretase inhibitor DAPT, a Notch signaling inhibitor, for 7 days. The levels of Notch 1 to 4 receptor and HERP1/2 mRNA were ascertained by FQ-PCR. RESULTS Angiotensin II stimulation in the cultured normal pulmonary arteries resulted in an increase in the vascular medial thickness by nearly 50%, and a significant increase in the PCNA positive cell rate and a decrease in the caspase-3 positive cell rate (P<0.05). DAPT treatment did not alter the levels of Notch 1 to 4 receptor but remarkably decreased HERP1 and HERP2 mRNA expression (P<0.05). DAPT treatment also decreased angiotensin II-induced vascular medial thickness and PCNA positive cell rate, and increased caspase-3 positive cell rate (P<0.05). CONCLUSIONS Inhibition of Notch signal by the γ-secretase inhibitor may suppress pulmonary vascular remodeling induced by angiotensin II, suggesting that the inhibition of Notch signal pathway might be a novel strategy for the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Li-Na Qiao
- Department of Pediatrics, Second West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hong-Bo Xu
- Department of Pediatrics, Second West China Hospital of Sichuan University, Chengdu 610041, China
| | - Kun Shi
- Department of Pediatrics, Second West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tong-Fu Zhou
- Department of Pediatrics, Second West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yi-Min Hua
- Department of Pediatrics, Second West China Hospital of Sichuan University, Chengdu 610041, China
| | - Han-Min Liu
- Department of Pediatrics, Second West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
159
|
Yu H, Lui YS, Xiong S, Leong WS, Wen F, Nurkahfianto H, Rana S, Leong DT, Ng KW, Tan LP. Insights into the role of focal adhesion modulation in myogenic differentiation of human mesenchymal stem cells. Stem Cells Dev 2013; 22:136-47. [PMID: 22765653 PMCID: PMC3528092 DOI: 10.1089/scd.2012.0160] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/05/2012] [Indexed: 11/13/2022] Open
Abstract
We report the establishment of a novel platform to induce myogenic differentiation of human mesenchymal stem cells (hMSCs) via focal adhesion (FA) modulation, giving insights into the role of FA on stem cell differentiation. Micropatterning of collagen type I on a polyacrylamide gel with a stiffness of 10.2 kPa efficiently modulated elongated FA. This elongated FA profile preferentially recruited the β(3) integrin cluster and induced specific myogenic differentiation at both transcription and translation levels with expression of myosin heavy chain and α-sarcomeric actin. This was initiated with elongation of FA complexes that triggered the RhoA downstream signaling toward a myogenic lineage commitment. This study also illustrates how one could partially control myogenic differentiation outcomes of similar-shaped hMSCs by modulating FA morphology and distribution. This technology increases our toolkit choice for controlled differentiation in muscle engineering.
Collapse
Affiliation(s)
- Haiyang Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yuan Siang Lui
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Sijing Xiong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wen Shing Leong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Feng Wen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Himawan Nurkahfianto
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Sravendra Rana
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Lay Poh Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
160
|
Notch signaling in descending thoracic aortic aneurysm and dissection. PLoS One 2012; 7:e52833. [PMID: 23300792 PMCID: PMC3530510 DOI: 10.1371/journal.pone.0052833] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/22/2012] [Indexed: 01/08/2023] Open
Abstract
Background Descending thoracic aortic aneurysm and dissection (DTAAD) is characterized by progressive medial degeneration, which may result from excessive tissue destruction and insufficient repair. Resistance to tissue destruction and aortic self-repair are critical in preventing medial degeneration. The signaling pathways that control these processes in DTAAD are poorly understood. Because Notch signaling is a critical pathway for cell survival, proliferation, and tissue repair, we examined its activation in DTAAD. Methods We studied descending thoracic aortic tissue from patients with sporadic thoracic aortic aneurysm (TAA; n = 14) or chronic thoracic aortic dissection (TAD; n = 16) and from age-matched organ donors (n = 12). Using western blot, real-time RT-PCR, and immunofluorescence staining, we examined aortic tissue samples for the Notch ligands Delta-like 1, Delta-like 4 (DLL1/4), and Jagged1; the Notch receptor 1 (Notch1); the Notch1 intracellular domain (NICD); and Hes1, a downstream target of Notch signaling. Results Western blots and RT-PCR showed higher levels of the Notch1 protein and mRNA and the NICD and Hes1 proteins in both TAA and TAD tissues than in control tissue. However, immunofluorescence staining showed a complex pattern of Notch signaling in the diseased tissue. The ligand DLL1/4 and Notch1 were significantly decreased and NICD and Hes1 were rarely detected in medial vascular smooth muscle cells (VSMCs) in both TAA and TAD tissues, indicating downregulation of Notch signaling in aortic VSMCs. Interestingly Jagged1, NICD, and Hes1 were highly present in CD34+ stem cells and Stro-1+ stem cells in aortas from TAA and TAD patients. NICD and Hes1 were also detected in most fibroblasts and macrophages that accumulated in the aortic wall of DTAAD patients. Conclusions Notch signaling exhibits a complex pattern in DTAAD. The Notch pathway is impaired in medial VSMCs but activated in stem cells, fibroblasts, and macrophages.
Collapse
|
161
|
miR-1-mediated induction of cardiogenesis in mesenchymal stem cells via downregulation of Hes-1. BIOMED RESEARCH INTERNATIONAL 2012; 2013:216286. [PMID: 23509692 PMCID: PMC3591156 DOI: 10.1155/2013/216286] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/27/2012] [Accepted: 07/31/2012] [Indexed: 01/11/2023]
Abstract
MicroRNAs (miRNAs, miRs) have the potential to control stem cells fate decisions. The cardiac- and skeletal-muscle-specific miRNA, miR-1, can regulate embryonic stem cells differentiation to cardiac lineage by suppressing gene expression of alternative lineages. Accordingly, we hypothesized that overexpression of miR-1 may also promote cardiac gene expression in mesenchymal stem cells. Since Notch signaling could inhibit muscle differentiation, a process in contrast with the effect of miR-1, miR-1-mediated repression of Notch signaling may contribute to the observed effects of miR-1 in mesenchymal stem cells. Thus, mesenchymal stem cells were infected by lentiviral vectors carrying miR-1, and cells expressing miR-1 were selected. Alterations in Notch signaling and cardiomyocyte markers, Nkx2.5, GATA-4, cTnT, and CX43, were identified by Western blot in the infected cells on days 1, 7, and 14. Our study showed that the downstream target molecule of Notch pathway, Hes-1, was obviously decreased in mesenchymal stem cells modified with miR-1, and overexpression of miR-1 promotes the specific cardiac gene expression in the infected cells. Knockdown of Hes-1 leads to the same effects on cell lineage decisions. Our results indicated that miR-1 promotes the differentiation of MSCs into cardiac lineage in part due to negative regulation of Hes-1.
Collapse
|
162
|
Park JK, Ki MR, Lee EM, Kim AY, You SY, Han SY, Lee EJ, Hong IH, Kwon SH, Kim SJ, Rando TA, Jeong KS. Losartan Improves Adipose Tissue-Derived Stem Cell Niche by Inhibiting Transforming Growth Factor-β and Fibrosis in Skeletal Muscle Injury. Cell Transplant 2012; 21:2407-24. [DOI: 10.3727/096368912x637055] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recently, adipose tissue-derived stem cells (ASCs) were emerged as an alternative, abundant, and easily accessible source of stem cell therapy. Previous studies revealed losartan (an angiotensin II type I receptor blocker) treatment promoted the healing of skeletal muscle by attenuation of the TGF-β signaling pathway, which inhibits muscle differentiation. Therefore, we hypothesized that a combined therapy using ASCs and losartan might dramatically improve the muscle remodeling after muscle injury. To determine the combined effect of losartan with ASC transplantation, we created a muscle laceration mouse model. EGFP-labeled ASCs were locally transplanted to the injured gastrocnemius muscle after muscle laceration. The dramatic muscle regeneration and the remarkably inhibited muscular fibrosis were observed by combined treatment. Transplanted ASCs fused with the injured or differentiating myofibers. Myotube formation was also enhanced by ASC+ satellite coculture and losartan treatment. Thus, the present study indicated that ASC transplantation effect for skeletal muscle injury can be dramatically improved by losartan treatment inducing better niche.
Collapse
Affiliation(s)
- Jin-Kyu Park
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Mi-Ran Ki
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Eun-Mi Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
- Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, South Korea
| | - Ah-Young Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
- Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, South Korea
| | - Sang-Young You
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
- Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, South Korea
| | - Seon-Young Han
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
- Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, South Korea
| | - Eun-Joo Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
- Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, South Korea
| | - Il-Hwa Hong
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Soon-Hak Kwon
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Seong-Jin Kim
- CHA Cancer Institute, CHA University, Seoul, South Korea
| | - Thomas A. Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kyu-Shik Jeong
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
- Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
163
|
Dynamic expression characteristics of Notch signal in bone marrow-derived mesenchymal stem cells during the process of differentiation into hepatocytes. Tissue Cell 2012; 45:95-100. [PMID: 23116754 DOI: 10.1016/j.tice.2012.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/03/2012] [Accepted: 09/24/2012] [Indexed: 01/28/2023]
Abstract
Notch signaling is often involved in early development which helps to determine the differentiation state and fate of stem cells destined to form different tissues in the body. Its role in the differentiation of BM-MSCs (bone marrow-derived mesenchymal stem cells) is much less clear. As there is great interest in the potential of BM-MSCs as a source of cells for treating liver damage, it is important to understand if Notch signaling promotes or suppresses BM-MSCs differentiation into hepatocytes. In the present study, RT-PCR, Western blot results and morphologic changes demonstrated that BM-MSCs could successfully differentiate into hepatocytes in our special induction system including the tissue extract of damaged liver. On the 21st day when the differentiation direction was determined in BM-MSCs, the mRNA level of Jagged2, Delta1, Delta3, Notch1, Notch2, Notch3 and Presenilin1, was significantly lower than that on days 0, 7, and 11. In the further experiments, down-regulation of Notch signaling was shown to be critical for BM-MSCs to differentiate into hepatocytes, as increased Jagged1 resulted in up-regulated Notch activation leading to higher levels of expression of Hes1 and Hey1, which completely blocked Albumin expresion in BM-MSCs. These results in our study showed that Notch signaling in BM-MSCs was necessary to initiate differentiation into hepatocytes, but must be down-regulated for the differentiation to proceed continuously.
Collapse
|
164
|
Sakaki-Yumoto M, Katsuno Y, Derynck R. TGF-β family signaling in stem cells. Biochim Biophys Acta Gen Subj 2012; 1830:2280-96. [PMID: 22959078 DOI: 10.1016/j.bbagen.2012.08.008] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 07/11/2012] [Accepted: 08/07/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND The diversity of cell types and tissue types that originate throughout development derives from the differentiation potential of embryonic stem cells and somatic stem cells. While the former are pluripotent, and thus can give rise to a full differentiation spectrum, the latter have limited differentiation potential but drive tissue remodeling. Additionally cancer tissues also have a small population of self-renewing cells with stem cell properties. These cancer stem cells may arise through dedifferentiation from non-stem cells in cancer tissues, illustrating their plasticity, and may greatly contribute to the resistance of cancers to chemotherapies. SCOPE OF REVIEW The capacity of the different types of stem cells for self-renewal, the establishment and maintenance of their differentiation potential, and the selection of differentiation programs are greatly defined by the interplay of signaling molecules provided by both the stem cells themselves, and their microenvironment, the niche. Here we discuss common and divergent roles of TGF-β family signaling in the regulation of embryonic, reprogrammed pluripotent, somatic, and cancer stem cells. MAJOR CONCLUSIONS Increasing evidence highlights the similarities between responses of normal and cancer stem cells to signaling molecules, provided or activated by their microenvironment. While TGF-β family signaling regulates stemness of normal and cancer stem cells, its effects are diverse and depend on the cell types and physiological state of the cells. GENERAL SIGNIFICANCE Further mechanistic studies will provide a better understanding of the roles of TGF-β family signaling in the regulation of stem cells. These basic studies may lead to the development of a new therapeutic or prognostic strategies for the treatment of cancers. This article is part of a Special Issue entitled Biochemistry of Stem Cells.
Collapse
Affiliation(s)
- Masayo Sakaki-Yumoto
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA 94143-0669, USA
| | | | | |
Collapse
|
165
|
Yu J, Wang A, Tang Z, Henry J, Li-Ping Lee B, Zhu Y, Yuan F, Huang F, Li S. The effect of stromal cell-derived factor-1α/heparin coating of biodegradable vascular grafts on the recruitment of both endothelial and smooth muscle progenitor cells for accelerated regeneration. Biomaterials 2012; 33:8062-74. [PMID: 22884813 DOI: 10.1016/j.biomaterials.2012.07.042] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/21/2012] [Indexed: 12/21/2022]
Abstract
Small-diameter synthetic vascular grafts have high failure rate and tissue-engineered blood vessels are limited by the scalability. Here we engineered bioactive materials for in situ vascular tissue engineering, which recruits two types of endogenous progenitor cells for the regeneration of blood vessels. Heparin was conjugated to microfibrous vascular grafts to suppress thrombogenic responses, and stromal cell-derived factor-1α (SDF-1α) was immobilized onto heparin to recruit endogenous progenitor cells. Heparin-bound SDF-1α was more stable than adsorbed SDF-1α under both static and flow conditions. Microfibrous grafts were implanted in rats by anastomosis to test the functional performance. Heparin coating improved the short-term patency, and immobilized SDF-1α further improved the long-term patency. SDF-1α effectively recruited endothelial progenitor cells (EPCs) to the luminal surface of the grafts, which differentiated into endothelial cells (ECs) and accelerated endothelialization. More interestingly, SDF-1α increased the recruitment of smooth muscle progenitor cells (SMPCs) to the grafts, and SMPCs differentiated into smooth muscle cells (SMCs) in vivo and in vitro. Consistently, SDF-1α-immobilized grafts had significantly higher elastic modulus. This work demonstrates the feasibility of simultaneously recruiting progenitor cells of ECs and SMCs for in situ blood vessel regeneration. This in situ tissue engineering approach will have broad applications in regenerative medicine.
Collapse
Affiliation(s)
- Jian Yu
- Department of Bioengineering, University of California, Berkeley, CA 94720-1762, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Tang Z, Wang A, Yuan F, Yan Z, Liu B, Chu JS, Helms JA, Li S. Differentiation of multipotent vascular stem cells contributes to vascular diseases. Nat Commun 2012; 3:875. [PMID: 22673902 PMCID: PMC3538044 DOI: 10.1038/ncomms1867] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 04/24/2012] [Indexed: 12/14/2022] Open
Abstract
It is generally accepted that the de-differentiation of smooth muscle cells (SMCs) from contractile to proliferative/synthetic phenotype has an important role during vascular remodeling and diseases. Here we provide evidence that challenges this theory. We identify a new type of multipotent vascular stem cell (MVSC) in blood vessel wall. MVSCs express markers including Sox17, Sox10 and S100β, are cloneable, have telomerase activity, and can differentiate into neural cells and mesenchymal stem cell (MSC)-like cells that subsequently differentiate into SMCs. On the other hand, we use lineage tracing with smooth muscle myosin heavy chain as a marker to show that MVSCs and proliferative or synthetic SMCs do not arise from the de-differentiation of mature SMCs. Upon vascular injuries, MVSCs, instead of SMCs, become proliferative, and MVSCs can differentiate into SMCs and chondrogenic cells, thus contributing to vascular remodeling and neointimal hyperplasia. These findings support a new hypothesis that the differentiation of MVSCs, rather than the de-differentiation of SMCs, contributes to vascular remodeling and diseases.
Collapse
Affiliation(s)
- Zhenyu Tang
- Department of Bioengineering, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Wang MK, Sun HQ, Xiang YC, Jiang F, Su YP, Zou ZM. Different roles of TGF-β in the multi-lineage differentiation of stem cells. World J Stem Cells 2012; 4:28-34. [PMID: 22993659 PMCID: PMC3443709 DOI: 10.4252/wjsc.v4.i5.28] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 03/10/2012] [Accepted: 03/25/2012] [Indexed: 02/06/2023] Open
Abstract
Stem cells are a population of cells that has infinite or long-term self-renewal ability and can produce various kinds of descendent cells. Transforming growth factor β (TGF-β) family is a superfamily of growth factors, including TGF-β1, TGF-β2 and TGF-β3, bone morphogenetic proteins, activin/inhibin, and some other cytokines such as nodal, which plays very important roles in regulating a wide variety of biological processes, such as cell growth, differentiation, cell death. TGF-β, a pleiotropic cytokine, has been proved to be differentially involved in the regulation of multi-lineage differentiation of stem cells, through the Smad pathway, non-Smad pathways including mitogen-activated protein kinase pathways, phosphatidylinositol-3-kinase/AKT pathways and Rho-like GTPase signaling pathways, and their cross-talks. For instance, it is generally known that TGF-β promotes the differentiation of stem cells into smooth muscle cells, immature cardiomyocytes, chondrocytes, neurocytes, hepatic stellate cells, Th17 cells, and dendritic cells. However, TGF-β inhibits the differentiation of stem cells into myotubes, adipocytes, endothelial cells, and natural killer cells. Additionally, TGF-β can provide competence for early stages of osteoblastic differentiation, but at late stages TGF-β acts as an inhibitor. The three mammalian isoforms (TGF-β1, 2 and 3) have distinct but overlapping effects on hematopoiesis. Understanding the mechanisms underlying the regulatory effect of TGF-β in the stem cell multi-lineage differentiation is of importance in stem cell biology, and will facilitate both basic research and clinical applications of stem cells. In this article, we discuss the current status and progress in our understanding of different mechanisms by which TGF-β controls multi-lineage differentiation of stem cells.
Collapse
Affiliation(s)
- Ming-Ke Wang
- Ming-Ke Wang, Fan Jiang, Zhong-Min Zou, Department of Chemical Defense and Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | |
Collapse
|
168
|
Lui KO, Bu L, Li RA, Chan CW. Pluripotent stem cell-based heart regeneration: From the developmental and immunological perspectives. ACTA ACUST UNITED AC 2012; 96:98-108. [DOI: 10.1002/bdrc.21004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
169
|
Guo X, Chen SY. Transforming growth factor-β and smooth muscle differentiation. World J Biol Chem 2012; 3:41-52. [PMID: 22451850 PMCID: PMC3312200 DOI: 10.4331/wjbc.v3.i3.41] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 01/19/2012] [Accepted: 01/26/2012] [Indexed: 02/05/2023] Open
Abstract
Transforming growth factor (TGF)-β family members are multifunctional cytokines regulating diverse cellular functions such as growth, adhesion, migration, apoptosis, and differentiation. TGF-βs elicit their effects via specific type I and type II serine/threonine kinase receptors and intracellular Smad transcription factors. Knockout mouse models for the different components of the TGF-β signaling pathway have revealed their critical roles in smooth muscle cell (SMC) differentiation. Genetic studies in humans have linked mutations in these signaling components to specific cardiovascular disorders such as aorta aneurysm and congenital heart diseases due to SMC defects. In this review, the current understanding of TGF-β function in SMC differentiation is highlighted, and the role of TGF-β signaling in SMC-related diseases is discussed.
Collapse
Affiliation(s)
- Xia Guo
- Xia Guo, Shi-You Chen, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, United States
| | | |
Collapse
|
170
|
Vunjak-Novakovic G, Lui KO, Tandon N, Chien KR. Bioengineering heart muscle: a paradigm for regenerative medicine. Annu Rev Biomed Eng 2012; 13:245-67. [PMID: 21568715 DOI: 10.1146/annurev-bioeng-071910-124701] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The idea of extending the lifetime of our organs is as old as humankind, fueled by major advances in organ transplantation, novel drugs, and medical devices. However, true regeneration of human tissue has become increasingly plausible only in recent years. The human heart has always been a focus of such efforts, given its notorious inability to repair itself following injury or disease. We discuss here the emerging bioengineering approaches to regeneration of heart muscle as a paradigm for regenerative medicine. Our focus is on biologically inspired strategies for heart regeneration, knowledge gained thus far about how to make a "perfect" heart graft, and the challenges that remain to be addressed for tissue-engineered heart regeneration to become a clinical reality. We emphasize the need for interdisciplinary research and training, as recent progress in the field is largely being made at the interfaces between cardiology, stem cell science, and bioengineering.
Collapse
|
171
|
Spitzer TLB, Rojas A, Zelenko Z, Aghajanova L, Erikson DW, Barragan F, Meyer M, Tamaresis JS, Hamilton AE, Irwin JC, Giudice LC. Perivascular human endometrial mesenchymal stem cells express pathways relevant to self-renewal, lineage specification, and functional phenotype. Biol Reprod 2012; 86:58. [PMID: 22075475 DOI: 10.1095/biolreprod.111.095885] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human endometrium regenerates on a cyclic basis from candidate stem/progenitors whose genetic programs are yet to be determined. A subpopulation of endometrial stromal cells, displaying key properties of mesenchymal stem cells (MSCs), has been characterized. The endometrial MSC (eMSC) is likely the precursor of the endometrial stromal fibroblast. The goal of this study was to determine the transcriptome and signaling pathways in the eMSC to understand its functional phenotype. Endometrial stromal cells from oocyte donors (n = 20) and patients undergoing benign gynecologic surgery (n = 7) were fluorescence-activated cell sorted into MCAM (CD146)(+)/PDGFRB(+) (eMSC), MCAM (CD146)(-)/PDGFRB(+) (fibroblast), and MCAM (CD146)(+)/PDGFRB(-) (endothelial) populations. The eMSC population contained clonogenic cells with a mesenchymal phenotype differentiating into adipocytes when cultured in adipogenic medium. Gene expression profiling using Affymetrix Human Gene 1.0 ST arrays revealed 762 and 1518 significantly differentially expressed genes in eMSCs vs. stromal fibroblasts and eMSCs vs. endothelial cells, respectively. By principal component and hierarchical clustering analyses, eMSCs clustered with fibroblasts and distinctly from endothelial cells. Endometrial MSCs expressed pericyte markers and were localized by immunofluorescence to the perivascular space of endometrial small vessels. Endometrial MSCs also expressed genes involved in angiogenesis/vasculogenesis, steroid hormone/hypoxia responses, inflammation, immunomodulation, cell communication, and proteolysis/inhibition, and exhibited increased Notch, TGFB, IGF, Hedgehog, and G-protein-coupled receptor signaling pathways, characteristic of adult tissue MSC self-renewal and multipotency. Overall, the data support the eMSC as a clonogenic, multipotent pericyte that displays pathways of self-renewal and lineage specification, the potential to respond to conditions during endometrial desquamation and regeneration, and a genetic program predictive of its differentiated lineage, the stromal fibroblast.
Collapse
Affiliation(s)
- Trimble L B Spitzer
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Fouillade C, Monet-Lepretre M, Baron-Menguy C, Joutel A. Notch signalling in smooth muscle cells during development and disease. Cardiovasc Res 2012; 95:138-46. [DOI: 10.1093/cvr/cvs019] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
173
|
Secretion of rat tracheal epithelial cells induces mesenchymal stem cells to differentiate into epithelial cells. Cell Biol Int 2011; 36:169-75. [DOI: 10.1042/cbi20110121] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
174
|
Young DA, DeQuach JA, Christman KL. Human cardiomyogenesis and the need for systems biology analysis. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2011; 3:666-80. [PMID: 21197666 PMCID: PMC3282989 DOI: 10.1002/wsbm.141] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease remains the leading cause of death in the Western world and myocardial infarction is one of the primary facets of this disease. The limited natural self-renewal of cardiac muscle following injury and restricted supply of heart transplants has encouraged researchers to investigate other means to stimulate regeneration of damaged myocardium. The plasticity of stem cells toward multiple lineages offers the potential to repair the heart following injury. Embryonic stem cells have been extensively studied for their ability to differentiate into early cardiomyocytes, however, the pathway has only been partially defined and inadequate efficiency limits their clinical applicability. Some studies have shown cardiomyogenesis from adult mesenchymal stem cells, from both bone marrow and adipose tissue, but their differentiation pathway remains poorly detailed and these results remain controversial. Despite promising results using stem cells in animal models of cardiac injury, the driving mechanisms behind their differentiation down a cardiomyogenic pathway have yet to be determined. Currently, there is a paucity of information regarding cardiomyogenesis on the systemic level. Stem cell differentiation results from multiple signaling parameters operating in a tightly regulated spatiotemporal pattern. Investigating this phenomenon from a systems biology perspective could unveil the abstruse mechanisms controlling cardiomyogenesis that would otherwise require extensive in vitro testing.
Collapse
Affiliation(s)
- D Adam Young
- Department of Bioengineering, University of California, San Diego, CA, USA
| | | | | |
Collapse
|
175
|
Wang A, Tang Z, Li X, Jiang Y, Tsou DA, Li S. Derivation of smooth muscle cells with neural crest origin from human induced pluripotent stem cells. Cells Tissues Organs 2011; 195:5-14. [PMID: 22005509 DOI: 10.1159/000331412] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The heterogeneity of vascular smooth muscle cells (SMCs) is related to their different developmental origins such as the neural crest and mesoderm. Derivation of SMCs from different origins will provide valuable in vitro models for the investigation of vascular development and diseases. From the perspective of regenerative medicine and tissue engineering, an expandable cell source of SMCs is required for the construction of tissue-engineered blood vessels. In this study, we developed a robust protocol to derive neural crest stem cells (NCSCs) from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). NCSCs derived from ESCs and iPSCs were expandable with similar cell doubling times. NCSCs were capable of differentiating into neural and mesenchymal lineages. TGF-β1 induced the expression of SMC markers calponin-1, SM22α, and smooth muscle myosin heavy chain and resulted in the assembly of smooth muscle α-actin, calponin-1, and SM22α into stress fibers. This work provides a basis for using iPSCs to study SMC biology and deriving vascular cells for tissue engineering.
Collapse
Affiliation(s)
- Aijun Wang
- Department of Bioengineering, University of California, Berkeley, USA
| | | | | | | | | | | |
Collapse
|
176
|
Li X, Chu J, Wang A, Zhu Y, Chu WK, Yang L, Li S. Uniaxial mechanical strain modulates the differentiation of neural crest stem cells into smooth muscle lineage on micropatterned surfaces. PLoS One 2011; 6:e26029. [PMID: 22016804 PMCID: PMC3189240 DOI: 10.1371/journal.pone.0026029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 09/15/2011] [Indexed: 11/19/2022] Open
Abstract
Neural crest stem cells (NCSCs) play an important role in the development and represent a valuable cell source for tissue engineering. However, how mechanical factors in vivo regulate NCSC differentiation is not understood. Here NCSCs were derived from induced pluripotent stem cells and used as a model to determine whether vascular mechanical strain modulates the differentiation of NCSCs into smooth muscle (SM) lineage. NCSCs were cultured on micropatterned membranes to mimic the organization of smooth muscle cells (SMCs), and subjected to cyclic uniaxial strain. Mechanical strain enhanced NCSC proliferation and ERK2 phosphorylation. In addition, mechanical strain induced contractile marker calponin-1 within 2 days and slightly induced SM myosin within 5 days. On the other hand, mechanical strain suppressed the differentiation of NCSCs into Schwann cells. The induction of calponin-1 by mechanical strain was inhibited by neural induction medium but further enhanced by TGF-β. For NCSCs pre-treated with TGF-β, mechanical strain induced the gene expression of both calponin-1 and SM myosin. Our results demonstrated that mechanical strain regulates the differentiation of NCSCs in a manner dependent on biochemical factors and the differentiation stage of NCSCs. Understanding the mechanical regulation of NCSC differentiation will shed light on the development and remodeling of vascular tissues, and how transplanted NCSCs respond to mechanical factors.
Collapse
Affiliation(s)
- Xian Li
- Bioengineering College, Chongqing University, Chongqing, China
- Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Julia Chu
- Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Aijun Wang
- Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Yiqian Zhu
- Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Wai Keung Chu
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Li Yang
- Bioengineering College, Chongqing University, Chongqing, China
| | - Song Li
- Department of Bioengineering, University of California, Berkeley, California, United States of America
| |
Collapse
|
177
|
Abstract
Accumulating evidence indicates that the mobilization and recruitment of circulating or tissue-resident progenitor cells that give rise to endothelial cells (ECs) and smooth muscle cells (SMCs) can participate in atherosclerosis, neointima hyperplasia after arterial injury, and transplant arteriosclerosis. It is believed that endothelial progenitor cells do exist and can repair and rejuvenate the arteries under physiologic conditions; however, they may also contribute to lesion formation by influencing plaque stability in advanced atherosclerotic plaque under specific pathologic conditions. At the same time, smooth muscle progenitors, despite their capacity to expedite lesion formation during restenosis, may serve to promote atherosclerotic plaque stabilization by producing extracellular matrix proteins. This profound evidence provides support to the hypothesis that both endothelial and smooth muscle progenitors may act as a double-edged sword in the pathogenesis of arteriosclerosis. Therefore, the understanding of the regulatory networks that control endothelial and smooth muscle progenitor differentiation is undoubtedly fundamental both for basic research and for improving current therapeutic avenues for atherosclerosis. We update the progress in progenitor cell study related to the development of arteriosclerosis, focusing specifically on the role of progenitor cells in lesion formation and discuss the controversial issues that regard the origins, frequency, and impact of the progenitors in the disease.
Collapse
Affiliation(s)
- Paola Campagnolo
- Cardiovascular Division, King's College London BHF Centre, London, England
| | | | | |
Collapse
|
178
|
Davis-Dusenbery BN, Chan MC, Reno KE, Weisman AS, Layne MD, Lagna G, Hata A. down-regulation of Kruppel-like factor-4 (KLF4) by microRNA-143/145 is critical for modulation of vascular smooth muscle cell phenotype by transforming growth factor-beta and bone morphogenetic protein 4. J Biol Chem 2011; 286:28097-110. [PMID: 21673106 PMCID: PMC3151055 DOI: 10.1074/jbc.m111.236950] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/09/2011] [Indexed: 11/06/2022] Open
Abstract
In the postnatal vasculature, fully differentiated and quiescent vascular smooth muscle cells (VSMCs) in a "contractile" phenotype are required for the normal regulation of vascular tone. The transforming growth factor-β (TGF-β) superfamily of growth factors (TGF-βs and bone morphogenetic proteins (BMPs)) are potent inducers of contractile phenotype and mediate (i) induction of contractile genes, and (ii) inhibition of VSMC growth and migration. Transcription of contractile genes is positively regulated by a regulatory DNA element called a CArG box. The CArG box is activated by the binding of serum response factor and its coactivators, myocardin (Myocd) or Myocd-related transcription factors (MRTFs). Krüppel-like factor-4 (KLF4) is known to inhibit activation of the CArG box. However, the potential role of KLF4 in the contractile activities of TGF-β or BMP has not been explored. Here, we demonstrate that TGF-β and BMP4 rapidly down-regulate KLF4 through induction of microRNA-143 (miR-143) and miR-145, which leads to a reduction of KLF4 transcripts and decreased KLF4 protein expression. Inhibition of miR-145 prevents down-regulation of KLF4 and activation of contractile genes by TGF-β or BMP4, suggesting that modulation of KLF4 is a prerequisite for induction of contractile genes by TGF-β and BMP4. Interestingly, both TGF-β and BMP4 activate transcription of the miR-143/145 gene cluster through the CArG box, however, TGF-β mediates this effect through induction of Myocd expression, whereas BMP4 utilizes nuclear translocation of MRTF-A. Thus, this study sheds light on both the similarities and the differences of TGF-β and BMP4 signaling in the regulation of KLF4 and contractile genes.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/physiology
- Animals
- Bone Morphogenetic Protein 4/genetics
- Bone Morphogenetic Protein 4/metabolism
- Cell Line
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Down-Regulation/physiology
- Humans
- Kruppel-Like Factor 4
- Kruppel-Like Transcription Factors/biosynthesis
- Kruppel-Like Transcription Factors/genetics
- Mice
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle Contraction/physiology
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic/physiology
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
| | - Mun Chun Chan
- From the Molecular Cardiology Research Institute, Tufts Medical Center, and
| | - Kelsey E. Reno
- the Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111 and
| | | | - Matthew D. Layne
- the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Giorgio Lagna
- From the Molecular Cardiology Research Institute, Tufts Medical Center, and
| | - Akiko Hata
- From the Molecular Cardiology Research Institute, Tufts Medical Center, and
| |
Collapse
|
179
|
Tang Y, Yang X, Friesel RE, Vary CPH, Liaw L. Mechanisms of TGF-β-induced differentiation in human vascular smooth muscle cells. J Vasc Res 2011; 48:485-94. [PMID: 21832838 DOI: 10.1159/000327776] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/21/2011] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Transforming growth factor-β (TGF-β) plays an important role in vascular homeostasis through effects on vascular smooth muscle cells (SMC). Fine-tuning of TGF-β signaling occurs at the level of ALK receptors or Smads, and is regulated with cell type specificity. METHODS Our goal was to understand TGF-β signaling in regulating SMC differentiation marker expression in human SMC. Activation of Smads was characterized, and loss- and gain-of-function reagents used to define ALK pathways. In addition, Smad-independent mechanisms were determined. RESULTS TGF-β type I receptors, ALK1 and ALK5, are expressed in human SMC, and TGF-β1 phosphorylates Smad1/5/8 and Smad2/3 in a time- and dosage-dependent pattern. ALK5 activity, not bone morphogenetic protein type I receptors, is required for Smad phosphorylation. Endoglin, a TGF-β type III receptor, is a TGF-β1 target in SMC, yet endoglin does not modify TGF-β1 responsiveness. ALK5, not ALK1, is required for TGF-β1-induction of SMC differentiation markers, and ALK5 signals through an ALK5/Smad3- and MAP kinase-dependent pathway. CONCLUSION The definition of the specific signaling downstream of TGF-β regulating SMC differentiation markers will contribute to a better understanding of vascular disorders involving changes in SMC phenotype.
Collapse
Affiliation(s)
- Yuefeng Tang
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | | | | | | | | |
Collapse
|
180
|
Ravindran S, Roam JL, Nguyen PK, Hering TM, Elbert DL, McAlinden A. Changes of chondrocyte expression profiles in human MSC aggregates in the presence of PEG microspheres and TGF-β3. Biomaterials 2011; 32:8436-45. [PMID: 21820171 DOI: 10.1016/j.biomaterials.2011.07.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/17/2011] [Indexed: 11/27/2022]
Abstract
Biomaterial microparticles are commonly utilized as growth factor delivery vehicles to induce chondrogenic differentiation of mesenchymal stem/stromal cells (MSCs). To address whether the presence of microparticles could themselves affect differentiation of MSCs, a 3D co-aggregate system was developed containing an equal volume of human primary bone marrow-derived MSCs and non-degradable RGD-conjugated poly(ethylene glycol) microspheres (PEG-μs). Following TGF-β3 induction, differences in cell phenotype, gene expression and protein localization patterns were found when compared to MSC aggregate cultures devoid of PEG-μs. An outer fibrous layer always found in differentiated MSC aggregate cultures was not formed in the presence of PEG-μs. Type II collagen protein was synthesized by cells in both culture systems, although increased levels of the long (embryonic) procollagen isoforms were found in MSC/PEG-μs aggregates. Ubiquitous deposition of type I and type X collagen proteins was found in MSC/PEG-μs cultures while the expression patterns of these collagens was restricted to specific areas in MSC aggregates. These findings show that MSCs respond differently to TGF-β3 when in a PEG-μs environment due to effects of cell dilution, altered growth factor diffusion and/or cellular interactions with the microspheres. Although not all of the expression patterns pointed toward improved chondrogenic differentiation in the MSC/PEG-μs cultures, the surprisingly large impact of the microparticles themselves should be considered when designing drug delivery/scaffold strategies.
Collapse
Affiliation(s)
- Soumya Ravindran
- Department of Orthopaedic Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
181
|
Wang A, Tang Z, Park IH, Zhu Y, Patel S, Daley GQ, Song L. Induced pluripotent stem cells for neural tissue engineering. Biomaterials 2011; 32:5023-32. [PMID: 21514663 PMCID: PMC3100451 DOI: 10.1016/j.biomaterials.2011.03.070] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Accepted: 03/29/2011] [Indexed: 12/13/2022]
Abstract
Induced pluripotent stem cells (iPSCs) hold great promise for cell therapies and tissue engineering. Neural crest stem cells (NCSCs) are multipotent and represent a valuable system to investigate iPSC differentiation and therapeutic potential. Here we derived NCSCs from human iPSCs and embryonic stem cells (ESCs), and investigated the potential of NCSCs for neural tissue engineering. The differentiation of iPSCs and the expansion of derived NCSCs varied in different cell lines, but all NCSC lines were capable of differentiating into mesodermal and ectodermal lineages, including neural cells. Tissue-engineered nerve conduits were fabricated by seeding NCSCs into nanofibrous tubular scaffolds, and used as a bridge for transected sciatic nerves in a rat model. Electrophysiological analysis showed that only NCSC-engrafted nerve conduits resulted in an accelerated regeneration of sciatic nerves at 1 month. Histological analysis demonstrated that NCSC transplantation promoted axonal myelination. Furthermore, NCSCs differentiated into Schwann cells and were integrated into the myelin sheath around axons. No teratoma formation was observed for up to 1 year after NCSC transplantation in vivo. This study demonstrates that iPSC-derived multipotent NCSCs can be directly used for tissue engineering and that the approach that combines stem cells and scaffolds has tremendous potential for regenerative medicine applications.
Collapse
Affiliation(s)
- Aijun Wang
- Department of Bioengineering, University of California, Berkeley
| | - Zhenyu Tang
- Department of Bioengineering, University of California, Berkeley
| | - In-Hyun Park
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Children's Hospital Boston and Dana Farber Cancer Institute; Division of Hematology, Brigham and Women's Hospital; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Harvard Stem Cell Institute; Boston, MA 02115, USA
| | - Yiqian Zhu
- Department of Bioengineering, University of California, Berkeley
| | | | - George Q. Daley
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Children's Hospital Boston and Dana Farber Cancer Institute; Division of Hematology, Brigham and Women's Hospital; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Harvard Stem Cell Institute; Boston, MA 02115, USA
| | - Li Song
- Department of Bioengineering, University of California, Berkeley
| |
Collapse
|
182
|
Xie C, Ritchie RP, Huang H, Zhang J, Chen YE. Smooth muscle cell differentiation in vitro: models and underlying molecular mechanisms. Arterioscler Thromb Vasc Biol 2011; 31:1485-94. [PMID: 21677291 PMCID: PMC3123451 DOI: 10.1161/atvbaha.110.221101] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/10/2011] [Indexed: 11/16/2022]
Abstract
Development of in vitro models by which to study smooth muscle cell (SMC) differentiation has been hindered by some peculiarities intrinsic to these cells, namely their different embryological origins and their ability to undergo phenotypic modulation in cell culture. Although many in vitro models are available for studying SMC differentiation, careful consideration should be taken so that the model chosen fits the questions being posed. In this review, we summarize several well-established in vitro models available to study SMC differentiation from stem cells and outline novel mechanisms recently identified as underlying SMC differentiation programs.
Collapse
Affiliation(s)
- Changqing Xie
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | | | | | | | | |
Collapse
|
183
|
Mack CP. Signaling mechanisms that regulate smooth muscle cell differentiation. Arterioscler Thromb Vasc Biol 2011; 31:1495-505. [PMID: 21677292 PMCID: PMC3141215 DOI: 10.1161/atvbaha.110.221135] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/25/2011] [Indexed: 01/05/2023]
Abstract
Extensive studies over the last 30 years have demonstrated that vascular smooth muscle cell (SMC) differentiation and phenotypic modulation is controlled by a dynamic array of environmental cues. The identification of the signaling mechanisms by which these environmental cues regulate SMC phenotype has been more difficult because of our incomplete knowledge of the transcription mechanisms that regulate SMC-specific gene expression. However, recent advances in this area have provided significant insight, and the goal of this review is to summarize the signaling mechanisms by which extrinsic cues control SMC differentiation.
Collapse
Affiliation(s)
- Christopher P Mack
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599-7525, USA.
| |
Collapse
|
184
|
Park JS, Chu JS, Tsou AD, Diop R, Tang Z, Wang A, Li S. The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β. Biomaterials 2011; 32:3921-30. [PMID: 21397942 PMCID: PMC3073995 DOI: 10.1016/j.biomaterials.2011.02.019] [Citation(s) in RCA: 552] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 02/10/2011] [Indexed: 11/27/2022]
Abstract
Bone marrow mesenchymal stem cells (MSCs) are a valuable cell source for tissue engineering and regenerative medicine. Transforming growth factor β (TGF-β) can promote MSC differentiation into either smooth muscle cells (SMCs) or chondrogenic cells. Here we showed that the stiffness of cell adhesion substrates modulated these differential effects. MSCs on soft substrates had less spreading, fewer stress fibers and lower proliferation rate than MSCs on stiff substrates. MSCs on stiff substrates had higher expression of SMC markers α-actin and calponin-1; in contrast, MSCs on soft substrates had a higher expression of chondrogenic marker collagen-II and adipogenic marker lipoprotein lipase (LPL). TGF-β increased SMC marker expression on stiff substrates. However, TGF-β increased chondrogenic marker expression and suppressed adipogenic marker expression on soft substrates, while adipogenic medium and soft substrates induced adipogenic differentiation effectively. Rho GTPase was involved in the expression of all aforementioned lineage markers, but did not account for the differential effects of substrate stiffness. In addition, soft substrates did not significantly affect Rho activity, but inhibited Rho-induced stress fiber formation and α-actin assembly. Further analysis showed that MSCs on soft substrates had weaker cell adhesion, and that the suppression of cell adhesion strength mimicked the effects of soft substrates on the lineage marker expression. These results provide insights of how substrate stiffness differentially regulates stem cell differentiation, and have significant implications for the design of biomaterials with appropriate mechanical property for tissue regeneration.
Collapse
Affiliation(s)
- Jennifer S. Park
- Department of Bioengineering, University of California, Berkeley
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco
- California Institute of Quantitative Biosciences
| | - Julia S. Chu
- Department of Bioengineering, University of California, Berkeley
- California Institute of Quantitative Biosciences
| | - Anchi D. Tsou
- Department of Bioengineering, University of California, Berkeley
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco
- California Institute of Quantitative Biosciences
| | - Rokhaya Diop
- Department of Bioengineering, University of California, Berkeley
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco
- California Institute of Quantitative Biosciences
| | - Zhenyu Tang
- Department of Bioengineering, University of California, Berkeley
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco
- California Institute of Quantitative Biosciences
| | - Aijun Wang
- Department of Bioengineering, University of California, Berkeley
- California Institute of Quantitative Biosciences
| | - Song Li
- Department of Bioengineering, University of California, Berkeley
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco
- California Institute of Quantitative Biosciences
| |
Collapse
|
185
|
Donati C, Marseglia G, Magi A, Serratì S, Cencetti F, Bernacchioni C, Nannetti G, Benelli M, Brunelli S, Torricelli F, Cossu G, Bruni P. Sphingosine 1-phosphate induces differentiation of mesoangioblasts towards smooth muscle. A role for GATA6. PLoS One 2011; 6:e20389. [PMID: 21629665 PMCID: PMC3101247 DOI: 10.1371/journal.pone.0020389] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 05/02/2011] [Indexed: 11/18/2022] Open
Abstract
Different cells can contribute to repair following vascular injury by differentiating into smooth muscle (SM) cells; however the extracellular signals involved are presently poorly characterized. Mesoangioblasts are progenitor cells capable of differentiating into various mesoderm cell types including SM cells. In this study the biological action exerted by the pleiotropic sphingolipid sphingosine 1-phosphate (S1P) in human mesoangioblasts has been initially investigated by cDNA microarray analysis. Obtained data confirmed the anti-apoptotic action of this sphingolipid and identified for the first time a strong differentiating action toward SM cells. Quantitative mRNA and protein analysis corroborated the microarray results demonstrating enhanced expression of myogenic marker proteins and regulation of the expression of transcription factor GATA6 and its co-regulator, LMCD1. Importantly, GATA6 up-regulation induced by S1P was responsible for the enhanced expression of SM-specific contractile proteins. Moreover, by specific gene silencing experiments GATA6 was critical in the pro-differentiating activity of the cytokine TGFβ. Finally, the pharmacological inhibition of endogenous S1P formation in response to TGFβ abrogated GATA6 up-regulation, supporting the view that the S1P pathway plays a physiological role in mediating the pro-myogenic effect of TGFβ. This study individuates GATA6 as novel player in the complex transcriptional regulation of mesoangioblast differentiation into SM cells and highlights a role for S1P to favour vascular regeneration.
Collapse
Affiliation(s)
- Chiara Donati
- Dipartimento di Scienze Biochimiche, Università di Firenze, Firenze, Italia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Chen Y, Ai A, Tang ZY, Zhou GD, Liu W, Cao Y, Zhang WJ. Mesenchymal-like stem cells derived from human parthenogenetic embryonic stem cells. Stem Cells Dev 2011; 21:143-51. [PMID: 21457005 DOI: 10.1089/scd.2010.0585] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human parthenogenetic embryonic stem cells (hpESCs) established from artificially activated oocytes have a wider immune-matching ability because of their homozygosity in the major histocompatibility complex alleles. Whether these cells possess the differentiation capacity similar to regular human embryonic stem cells (hESCs) derived from fertilized eggs is unclear. The aims of this study were to determine whether hpESCs could be differentiated into multipotent mesenchymal stem cell (MSC)-like cells in vitro and then compare these cells with those derived from hESCs. MSC-like cells were obtained from both hpESCs and hESCs, which exhibited similar cell surface marker expression profiles. Further analyses revealed that cells derived from hpESCs possessed stronger osteogenic but weaker adipogenic potentials compared with cells derived from hESCs. This is the first work that demonstrates the differentiation of hpESCs into multipotent MSC-like cells. These hpESCs could be a potential source for cell-based therapies.
Collapse
Affiliation(s)
- Yao Chen
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, National Tissue Engineering Center of China, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
187
|
Li F, Lan Y, Wang Y, Wang J, Yang G, Meng F, Han H, Meng A, Wang Y, Yang X. Endothelial Smad4 maintains cerebrovascular integrity by activating N-cadherin through cooperation with Notch. Dev Cell 2011; 20:291-302. [PMID: 21397841 DOI: 10.1016/j.devcel.2011.01.011] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 12/31/2010] [Accepted: 01/19/2011] [Indexed: 11/16/2022]
Abstract
Cerebrovascular dysfunction is strongly associated with neonatal intracranial hemorrhage (ICH) and stroke in adults. Cerebrovascular endothelial cells (ECs) play important roles in maintaining a stable cerebral circulation in the central nervous system by interacting with pericytes. However, the genetic mechanisms controlling the functions of cerebral ECs are still largely unknown. Here, we report that disruption of Smad4, the central intracellular mediator of transforming growth factor-β (TGF-β) signaling, specifically in the cerebral ECs, results in perinatal ICH and blood-brain barrier breakdown. Furthermore, the mutant vessels exhibit defective mural cell coverage. Smad4 stabilizes cerebrovascular EC-pericyte interactions by regulating the transcription of N-cadherin through associating with the Notch intracellular complex at the RBP-J binding site of the N-cadherin promoter. These findings uncover a distinct role of endothelial Smad4 in maintaining cerebrovascular integrity and suggest important implications for genetic or functional deficiencies in TGF-β/Smad signaling in the pathogenesis of cerebrovascular dysfunction.
Collapse
Affiliation(s)
- Fangfei Li
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing 100071, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Grieskamp T, Rudat C, Lüdtke THW, Norden J, Kispert A. Notch Signaling Regulates Smooth Muscle Differentiation of Epicardium-Derived Cells. Circ Res 2011; 108:813-23. [DOI: 10.1161/circresaha.110.228809] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Thomas Grieskamp
- From the Institut für Molekularbiologie, Medizinische Hochschule Hannover, Germany
| | - Carsten Rudat
- From the Institut für Molekularbiologie, Medizinische Hochschule Hannover, Germany
| | - Timo H.-W. Lüdtke
- From the Institut für Molekularbiologie, Medizinische Hochschule Hannover, Germany
| | - Julia Norden
- From the Institut für Molekularbiologie, Medizinische Hochschule Hannover, Germany
| | - Andreas Kispert
- From the Institut für Molekularbiologie, Medizinische Hochschule Hannover, Germany
| |
Collapse
|
189
|
Whyte JL, Ball SG, Shuttleworth CA, Brennan K, Kielty CM. Density of human bone marrow stromal cells regulates commitment to vascular lineages. Stem Cell Res 2011; 6:238-50. [PMID: 21420373 PMCID: PMC3223522 DOI: 10.1016/j.scr.2011.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 02/04/2011] [Accepted: 02/09/2011] [Indexed: 02/06/2023] Open
Abstract
Mechanisms underlying the vascular differentiation of human bone marrow stromal cells (HBMSCs) and their contribution to neovascularisation are poorly understood. We report the essential role of cell density-induced signals in directing HBMSCs along endothelial or smooth muscle lineages. Plating HBMSCs at high density rapidly induced Notch signaling, which initiated HBMSC commitment to a vascular progenitor cell population expressing markers for both vascular lineages. Notch also induced VEGF-A, which inhibited vascular smooth muscle commitment while consolidating differentiation to endothelial cells with cobblestone morphology and characteristic endothelial markers and functions. These mechanisms can be exploited therapeutically to regulate HBMSCs during neovascularisation.
Collapse
Affiliation(s)
| | | | | | | | - Cay M. Kielty
- Corresponding author at: Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK. Fax: +44 161 275 5082.
| |
Collapse
|
190
|
Pankajakshan D, Agrawal DK. Scaffolds in tissue engineering of blood vessels. Can J Physiol Pharmacol 2011; 88:855-73. [PMID: 20921972 DOI: 10.1139/y10-073] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tissue engineering of small diameter (<5 mm) blood vessels is a promising approach for developing viable alternatives to autologous vascular grafts. It involves in vitro seeding of cells onto a scaffold on which the cells attach, proliferate, and differentiate while secreting the components of extracellular matrix that are required for creating the tissue. The scaffold should provide the initial requisite mechanical strength to withstand in vivo hemodynamic forces until vascular smooth muscle cells and fibroblasts reinforce the extracellular matrix of the vessel wall. Hence, the choice of scaffold is crucial for providing guidance cues to the cells to behave in the required manner to produce tissues and organs of the desired shape and size. Several types of scaffolds have been used for the reconstruction of blood vessels. They can be broadly classified as biological scaffolds, decellularized matrices, and polymeric biodegradable scaffolds. This review focuses on the different types of scaffolds that have been designed, developed, and tested for tissue engineering of blood vessels, including use of stem cells in vascular tissue engineering.
Collapse
Affiliation(s)
- Divya Pankajakshan
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska, USA
| | | |
Collapse
|
191
|
Kusuma S, Gerecht S. Engineering blood vessels using stem cells: innovative approaches to treat vascular disorders. Expert Rev Cardiovasc Ther 2011; 8:1433-45. [PMID: 20936930 DOI: 10.1586/erc.10.121] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vascular disease is the leading cause of mortality in the USA, providing the impetus for new treatments and technologies. Current therapies rely on the implantation of stents or grafts to treat injured blood vessels. However, these therapies may be immunogenic or may incompletely recover the functional integrity of the vasculature. In light of these shortcomings, cell-based therapies provide new treatment options to heal damaged areas with more suitable substitutes. Current clinical trials employing stem cell-based therapies involve the transfusion of harvested endothelial progenitor cells. While the results from these trials have been encouraging, utilizing tissue-engineered approaches could yield technologically advanced solutions. This article discusses engineered stem cell-based therapies from three angles: the differentiation of adult stem cells, such as mesenchymal stem cells and endothelial progenitor cells, into vascular lineages; investigation of human embryonic stem cells and induced pluripotent stem cells as inexhaustible sources of vascular cells; and tissue-engineering approaches, which incorporate these vascular progenitor cells into biomimetic scaffolds to guide regeneration. The optimal solution to vascular disease lies at the interface of these technologies--embedding differentiated cells into engineered scaffolds to impart precise control over vascular regeneration.
Collapse
Affiliation(s)
- Sravanti Kusuma
- Chemical and Biomolecular Engineering and Johns Hopkins Physical Sciences-Oncology Center, 3400 N Charles Street, Baltimore, MD 21218, USA
| | | |
Collapse
|
192
|
Kane NM, Xiao Q, Baker AH, Luo Z, Xu Q, Emanueli C. Pluripotent stem cell differentiation into vascular cells: a novel technology with promises for vascular re(generation). Pharmacol Ther 2011; 129:29-49. [PMID: 20965210 DOI: 10.1016/j.pharmthera.2010.10.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 12/15/2022]
Abstract
Several types of stem and progenitor cells are currently under investigation for their potential to accomplish vascular regeneration. This review focuses on embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). We will discuss the technologies allowing for their derivation, culture expansion and maintenance in a pluripotent status. Moreover, both ESCs and iPSCs can be differentiated in endothelial cells (ECs) and mural cell, including vascular smooth muscle cells (VSMCs). Here, we will describe the involvements of growth factors (vascular endothelial growth factors-VEGFs-, platet-derived growth factors-PDGFs-), Wnt and Notch signal pathways, reactive oxygen species (ROS), histone deacetylases (HDACs), and microRNAs (miRNAs) in vascular cell differentiation from pluripotent stem cells. We will additionally describe the therapeutic potential of stem cells for vascular medicine.
Collapse
Affiliation(s)
- Nicole M Kane
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | | | | | | | | | | |
Collapse
|
193
|
Charbord P. Bone marrow mesenchymal stem cells: historical overview and concepts. Hum Gene Ther 2010; 21:1045-56. [PMID: 20565251 DOI: 10.1089/hum.2010.115] [Citation(s) in RCA: 304] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This review describes the historical emergence of the concept of bone marrow mesenchymal stem cells (MSCs), summarizing data on Wolf and Trentin's hematopoietic inductive microenvironment; Dexter's hematopoiesis-supportive stromal cells; Friedenstein's osteogenic cells; and Pittenger's trilineal osteoblastic, chondrocytic, and adipocytic precursors; to finally introduce the specific bone marrow mesenchymal stem cells with differentiation potential to four lineages (mesenchymal and vascular smooth muscle lineages), and stromal and immunomodulatory capacities. Two points are the object of detailed discussion. The first point envisions the stem cell attributes (multipotentiality, self-renewal, tissue regeneration, population heterogeneity, plasticity, and lineage priming) compared with that of the paradigmatic hematopoietic stem cell. In the second point, we discuss the possible existence of bone marrow cells with greater differentiation potential, eventually pluripotential cells. The latter point raises the issues of cell fusion, reprogramming, or selection under nonstandardized conditions of rare populations of neuroectodermal origin, or of cells that had undergone mesenchymal-to-epithelial transition. In the last section, we review data on MSC senescence and possible malignant transformation secondary to extensive culture, gene transfer of telomerase, or mutations such as leading to Ewing's sarcoma. The set of data leads to the conclusion that bone marrow MSCs constitute a specific adult tissue stem cell population. The multiple characteristics of this stem cell type account for the versatility of the mechanisms of injured tissue repair. Although MSC administration may be extremely useful in a number of clinical applications, their transplantation is not without risks that must not be overlooked when developing cell therapy protocols.
Collapse
Affiliation(s)
- Pierre Charbord
- Institut National de la Recherche et Santé Médicale U, Université Paris XI, Kremlin Bicêtre, France.
| |
Collapse
|
194
|
Park JS, Yang HN, Woo DG, Jeon SY, Park KH. Chondrogenesis of human mesenchymal stem cells in fibrin constructs evaluated in vitro and in nude mouse and rabbit defects models. Biomaterials 2010; 32:1495-507. [PMID: 21122912 DOI: 10.1016/j.biomaterials.2010.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 11/03/2010] [Indexed: 11/30/2022]
Abstract
In this study, hMSCs encapsulated in a fibrin hydrogel containing heparinized NPs loaded with TGF-β3 (100 ng/ml), or TGF-β3 (100 ng/ml) alone, were subjected to growth factor release and denaturation tests at one, two and four weeks in in vitro culture systems. Additionally, stem cell differentiation was assessed via RT-PCR, real-time quantitative PCR (qPCR), histology, and immunohistochemical assays. In the in vivo studies with nude mouse, when transplanted into nude mice, hMSCs embedded in fibrin hydrogels survived and proliferated more readily in those samples containing TGF-β3-loaded NPs, or TGF-β3 alone, compared to those containing only NPs or the fibrin hydrogel alone. Additionally, RT-PCR, real-time qPCR, histology, Western blotting, and immunohistochemistry analyses revealed that chondrocyte-specific extracellular matrix (ECM) genes and their proteins were expressed at high levels by hMSCs embedded in hydrogels containing TGF-β3-loaded NPs. Finally, the results observed in the rabbit animal model treated with hMSCs embedded in a fibrin hydrogel containing TGF-β3-loaded NPs were also evaluated by the RT-PCR, real-time qPCR, histology, Western blotting, and immunohistochemistry analyses. The in vitro and in vivo results indicated that transplanted hMSCs together with TGF-β3 may constitute a clinically efficient method for the regeneration of hyaline articular cartilage.
Collapse
Affiliation(s)
- Ji S Park
- Department of Biomedical Science, College of Life Science, CHA University 606-16, Yeoksam 1-dong, Kangnam-gu, Seoul 135-081, Republic of Korea
| | | | | | | | | |
Collapse
|
195
|
Mosna F, Sensebé L, Krampera M. Human Bone Marrow and Adipose Tissue Mesenchymal Stem Cells: A User's Guide. Stem Cells Dev 2010; 19:1449-70. [DOI: 10.1089/scd.2010.0140] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Federico Mosna
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, Policlinico “G.B. Rossi”—University of Verona, Verona, Italy
| | - Luc Sensebé
- Etablissement Français du Sang (EFS), Centre-Atlantique and EA3855 University François Rabelais, Tours, France
| | - Mauro Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, Policlinico “G.B. Rossi”—University of Verona, Verona, Italy
| |
Collapse
|
196
|
Song MJ, Dean D, Knothe Tate ML. In situ spatiotemporal mapping of flow fields around seeded stem cells at the subcellular length scale. PLoS One 2010; 5. [PMID: 20862249 PMCID: PMC2941457 DOI: 10.1371/journal.pone.0012796] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 08/24/2010] [Indexed: 01/14/2023] Open
Abstract
A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV) for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD) predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms.
Collapse
Affiliation(s)
- Min Jae Song
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - David Dean
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Melissa L. Knothe Tate
- Department of Biomedical Engineering, Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
197
|
Vo E, Hanjaya-Putra D, Zha Y, Kusuma S, Gerecht S. Smooth-Muscle-Like Cells Derived from Human Embryonic Stem Cells Support and Augment Cord-Like Structures In Vitro. Stem Cell Rev Rep 2010; 6:237-47. [DOI: 10.1007/s12015-010-9144-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|