151
|
Abstract
The role of metabolism in the generation of plasma insulin oscillations was investigated by simultaneous in vivo recordings of oxygen tension (pO(2)) in the endocrine and exocrine pancreas and portal blood insulin concentrations in the anesthetized rat. At the start of the experiment, the blood glucose concentration of seven rats was 6.2 +/- 0.1 mmol/l and the arterial blood pressure was 116 +/- 5 mmHg. These values did not differ from those obtained at the end of the experiment. Islet pO(2) was measured by impaling superficially located islets with a miniaturized Clark electrode. The pO(2) measurements revealed slow (0.21 +/- 0.03 min(-1)) with superimposed rapid (3.1 +/- 0.3 min(-1)) oscillations. The average pO(2) was 39 +/- 5 mmHg. Simultaneous recordings of pO(2) in the exocrine pancreas were significantly lower (16 +/- 6 mmHg), but showed a slow and a rapid oscillatory activity with similar frequencies as seen in the endocrine pancreas. Corresponding measurements of portal insulin concentrations revealed insulin oscillations at a frequency of 0.22 +/- 0.02 min(-1). The results are the first in vivo recordings of an oscillatory islet parameter with a frequency corresponding to that of plasma insulin oscillations; they support a primary role of metabolic oscillations in the induction of plasma insulin oscillations.
Collapse
Affiliation(s)
- Peter Bergsten
- Department of Medical Cell, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
152
|
Pørksen N, Hollingdal M, Juhl C, Butler P, Veldhuis JD, Schmitz O. Pulsatile insulin secretion: detection, regulation, and role in diabetes. Diabetes 2002; 51 Suppl 1:S245-54. [PMID: 11815487 DOI: 10.2337/diabetes.51.2007.s245] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Insulin concentrations oscillate at a periodicity of 5-15 min per oscillation. These oscillations are due to coordinate insulin secretory bursts, from millions of islets. The generation of common secretory bursts requires strong within-islet and within-pancreas coordination to synchronize the secretory activity from the beta-cell population. The overall contribution of this pulsatile mechanism dominates and accounts for the majority of insulin release. This review discusses the methods involved in the detection and quantification of periodicities and individual secretory bursts. The mechanism by which overall insulin secretion is regulated through changes in the pulsatile component is discussed for nerves, metabolites, hormones, and drugs. The impaired pulsatile secretion of insulin in type 2 diabetes has resulted in much focus on the impact of the insulin delivery pattern on insulin action, and improved action from oscillatory insulin exposure is demonstrated on liver, muscle, and adipose tissues. Therefore, not only is the dominant regulation of insulin through changes in secretory burst mass and amplitude, but the changes may affect insulin action. Finally, the role of impaired pulsatile release in early type 2 diabetes suggests a predictive value of studies on insulin pulsatility in the development of this disease.
Collapse
Affiliation(s)
- Niels Pørksen
- Department of Endocrinology and Metabolism M, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | | | |
Collapse
|
153
|
Kanno T, Gopel SO, Rorsman P, Wakui M. Cellular function in multicellular system for hormone-secretion: electrophysiological aspect of studies on alpha-, beta- and delta-cells of the pancreatic islet. Neurosci Res 2002; 42:79-90. [PMID: 11849727 DOI: 10.1016/s0168-0102(01)00318-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We review a new method to explore the cellular functions in multicellular system by application of the perforated patch-clamp technique to intact pancreatic islet of Langerhans. Using this approach, the integrity of the islet is preserved and intercellular communication via gap junctions and paracrine processes are maintained. By using low-resistance patch electrodes, rapid current responses can be monitored under voltage-clamp control. We have applied this methodology to answer questions not resolved by patch-clamp experiments on isolated single insulin-secreting beta-cells. First, the role of a K(+)-current dependent on Ca(2+)-influx for the termination of burst of action potentials in beta-cells could be documented. Neither the current, nor the bursting pattern of electrical activity is preserved in isolated beta-cells. Second, the conductance of gap junctions (approximately 1 nS) between beta-cells was determined. Third, electrical properties of glucagon-producing alpha- and somatostatin-secreting delta-cells and the different mechanisms for glucose-sensing in these cells could be explored. The findings emanating from these experiments may have implications for neuroscience research such as the mechanism of oscillatory electrical activity in general and processes involved in the glucose-sensing in some neurons, which response to changes of blood glucose concentration.
Collapse
Affiliation(s)
- Takahiro Kanno
- Department of Physiology, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan.
| | | | | | | |
Collapse
|
154
|
Rolland JF, Henquin JC, Gilon P. Feedback control of the ATP-sensitive K(+) current by cytosolic Ca(2+) contributes to oscillations of the membrane potential in pancreatic beta-cells. Diabetes 2002; 51:376-84. [PMID: 11812744 DOI: 10.2337/diabetes.51.2.376] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
During glucose stimulation, pancreatic beta-cells display membrane potential oscillations that correspond to intermittent Ca(2+) influx, leading to oscillations of the cytosolic free calcium concentration ([Ca(2+)](c)) and insulin secretion. The role of ATP-sensitive K(+) (K(+)-ATP) channels in the control of these oscillations was investigated by measuring the K(+)-ATP current (I(KATP)) with the perforated mode of the patch-clamp technique. No oscillations of I(KATP) were observed when glucose-stimulated beta-cells were kept hyperpolarized, thus with low and stable [Ca(2+)](c). However, increasing [Ca(2+)](c) by Ca(2+) influx (depolarizing pulses) or Ca(2+) mobilization (acetylcholine) transiently augmented I(KATP). This effect was abolished by tolbutamide, attenuated by increasing the glucose concentration in the medium, and prevented by abrogation of the [Ca(2+)](c) rise, which demonstrates that the current is really I(KATP) and that its increase is Ca(2+)-dependent. Injection of a current of a similar amplitude to that of the Ca(2+)-induced increase in I(KATP) was sufficient to repolarize glucose-stimulated beta-cells. These results suggest that, in the absence of [Ca(2+)](c) oscillations, no metabolic oscillations affect I(KATP) in pancreatic beta-cells. In contrast, [Ca(2+)](c) oscillations evoke I(KATP) oscillations. This mechanism may constitute the feedback loop controlling the glucose-induced oscillating electrical activity in beta-cells.
Collapse
|
155
|
Gilon P, Ravier MA, Jonas JC, Henquin JC. Control mechanisms of the oscillations of insulin secretion in vitro and in vivo. Diabetes 2002; 51 Suppl 1:S144-51. [PMID: 11815474 DOI: 10.2337/diabetes.51.2007.s144] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mechanisms driving the pulsatility of insulin secretion in vivo and in vitro are still unclear. Because glucose metabolism and changes in cytosolic free Ca(2+) ([Ca(2+)](c)) in beta-cells play a key role in the control of insulin secretion, and because oscillations of these two factors have been observed in single isolated islets and beta-cells, pulsatile insulin secretion could theoretically result from [Ca(2+)](c) or metabolism oscillations. We could not detect metabolic oscillations independent from [Ca(2+)](c) changes in beta-cells, and imposed metabolic oscillations were poorly effective in inducing oscillations of secretion when [Ca(2+)](c) was kept stable, which suggests that metabolic oscillations are not the direct regulator of the oscillations of secretion. By contrast, tight temporal and quantitative correlations between the changes in [Ca(2+)](c) and insulin release strongly suggest that [Ca(2+)](c) oscillations are the direct drivers of insulin secretion oscillations. Metabolism may play a dual role, inducing [Ca(2+)](c) oscillations (via changes in ATP-sensitive K(+) channel activity and membrane potential) and amplifying the secretory response by increasing the efficiency of Ca(2+) on exocytosis. The mechanisms underlying the oscillations of insulin secretion by the isolated pancreas and those observed in vivo remain elusive. It is not known how the functioning of distinct islets is synchronized, and the possible role of intrapancreatic ganglia in this synchronization requires confirmation. That pulsatile insulin secretion is beneficial in vivo, by preventing insulin resistance, is suggested by the greater hypoglycemic effect of exogenous insulin when it is infused in a pulsatile rather than continuous manner. The observation that type 2 diabetic patients have impaired pulsatile insulin secretion has prompted the suggestion that such dysregulation contributes to the disease and justifies the efforts toward understanding of the mechanism underlying the pulsatility of insulin secretion both in vitro and in vivo.
Collapse
Affiliation(s)
- Patrick Gilon
- Unité d'Endocrinologie et Métabolisme, University of Louvain Faculty of Medicine, Brussels, Belgium.
| | | | | | | |
Collapse
|
156
|
Bergsten P. Role of oscillations in membrane potential, cytoplasmic Ca2+, and metabolism for plasma insulin oscillations. Diabetes 2002; 51 Suppl 1:S171-6. [PMID: 11815477 DOI: 10.2337/diabetes.51.2007.s171] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A model for the relationship between ionic and metabolic oscillations and plasma insulin oscillations is presented. It is argued that the pancreatic beta-cell in vivo displays two intrinsic frequencies that are important for the regulation of plasma insulin oscillations. The rapid oscillatory activity (2--7 oscillations [osc] per minute), which is evident in both ionic and metabolic events, causes the required elevation in cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) for the exocytosis of insulin granules. This activity is important for regulation of the amplitude of plasma insulin oscillations. The frequency of the rapid oscillatory ionic activities is regulated by glucose and allows the beta-cell to respond in an analogous way, with gradual changes in [Ca(2+)](i) and insulin release in response to the alterations in glucose concentration. The slower oscillatory activity (0.2--0.4 osc/min), which is evident in the metabolism of the beta-cell, has a frequency corresponding to the frequency observed in plasma insulin oscillations. The frequency is not affected by changes in the glucose concentration. This activity is suggested to generate energy in a pulsatile fashion, which sets the frequency of the plasma insulin oscillations. It is proposed that the slow oscillations in [Ca(2+)](i) observed in vitro are a manifestation of the metabolic oscillations and do not represent an in vivo phenomenon.
Collapse
Affiliation(s)
- Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
157
|
Abstract
Rapid and sustained stimulation of beta-cells with glucose induces biphasic insulin secretion. The two phases appear to reflect a characteristic of stimulus-secretion coupling in each beta-cell rather than heterogeneity in the time-course of the response between beta-cells or islets. There is no evidence indicating that biphasic secretion can be attributed to an intrinsically biphasic metabolic signal. In contrast, the biphasic rise in cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) induced by glucose is important to shape the two phases of secretion. The first phase requires a rapid and marked elevation of [Ca(2+)](i) and corresponds to the release of insulin granules from a limited pool. The magnitude of the second phase is determined by the elevation of [Ca(2+)](i), but its development requires production of another signal. This signal corresponds to the amplifying action of glucose and may serve to replenish the pool of granules that are releasable at the prevailing [Ca(2+)](i). The species characteristics of biphasic insulin secretion and its perturbations in pathological situations are discussed.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unité d'Endocrinologie et Métabolisme, University of Louvain School of Medicine, UCL 55.30, B-1200 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
158
|
Abstract
Whereas the mechanisms underlying oscillatory insulin secretion remain unknown, several models have been advanced to explain if they involve generation of metabolic oscillations in beta-cells. Evidence, including measurements of oxygen consumption, glucose consumption, NADH, and ATP/ADP ratio, has accumulated to support the hypothesis that energy metabolism in beta-cells can oscillate. Where simultaneous measurements have been made, these oscillations are well correlated with oscillations in intracellular [Ca(2+)] and insulin secretion. Considerable evidence has been accumulated to suggest that entry of Ca(2+) into cells can modulate metabolism both positively and negatively. The main positive effect of Ca(2+) is an increase in oxygen consumption, believed to involve activation of mitochondrial dehydrogenases. Negative feedback by Ca(2+) includes decreases in glucose consumption and decreases in the mitochondrial membrane potential. Ca(2+) also provides negative feedback by increasing consumption of ATP. The negative feedback provided by Ca(2+) provides a mechanism for generating oscillations based on a model in which glucose stimulates a rise in ATP/ADP ratio that closes ATP-sensitive K(+) (K(ATP)) channels, thus depolarizing the cell membrane and allowing Ca(2+) entry through voltage-sensitive channels. Ca(2+) entry reduces the ATP/ADP ratio and allows reopening of the K(ATP) channel.
Collapse
Affiliation(s)
- Robert T Kennedy
- Department of Chemistry, University of Florida, Gainesville, FL, USA.
| | | | | | | |
Collapse
|
159
|
Van Eylen F, Horta OD, Barez A, Kamagate A, Flatt PR, Macianskiene R, Mubagwa K, Herchuelz A. Overexpression of the Na/Ca exchanger shapes stimulus-induced cytosolic Ca(2+) oscillations in insulin-producing BRIN-BD11 cells. Diabetes 2002; 51:366-75. [PMID: 11812743 DOI: 10.2337/diabetes.51.2.366] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In response to glucose, mouse beta-cells display slow oscillations of the membrane potential and cytosolic free Ca(2+) concentration ([Ca(2+)](i)), whereas rat beta-cells display a staircase increase in these parameters. Mouse and rat islet cells differ also by their level of Na/Ca exchanger (NCX) activity. The view that the inward current generated by Na/Ca exchange shapes stimulus-induced electrical activity and [Ca(2+)](i) oscillations in pancreatic beta-cells was examined in insulin-producing BRIN-BD11 cells overexpressing the Na/Ca exchanger. BRIN-BD11 cells were stably transfected with NCX1.7, one of the exchanger isoforms identified in the beta-cell. Overexpression could be assessed at the mRNA and protein level. Appropriate targeting to the plasma membrane could be assessed by microfluorescence and the increase in Na/Ca exchange activity. In response to K(+), overexpressing cells showed a more rapid increase in [Ca(2+)](i) on membrane depolarization as well as a more rapid decrease of [Ca(2+)](i) on membrane repolarization. In response to glucose and tolbutamide, control BRIN cells showed large amplitude [Ca(2+)](i) oscillations. In contrast, overexpressing cells showed a staircase increase in [Ca(2+)](i) without such large oscillations. Diazoxide-induced membrane hyperpolarization restored large amplitude [Ca(2+)](i) oscillations in overexpressing cells. The present data confirm that Na/Ca exchange plays a significant role in the rat beta-cell [Ca(2+)](i) homeostasis, the exchanger being a versatile system allowing both Ca(2+) entry and outflow. Our data suggest that the current generated by the exchanger shapes stimulus-induced membrane potential and [Ca(2+)](i) oscillations in insulin-secreting cells, with the difference in electrical activity and [Ca(2+)](i) behavior seen in mouse and rat beta-cells resulting in part from a difference in Na/Ca exchange activity between these two cells.
Collapse
Affiliation(s)
- Françoise Van Eylen
- Laboratory of Pharmacology, Brussels University School of Medicine, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
160
|
|
161
|
Abstract
Stem cell biology is a new field that holds promise for in-vitro mass production of pancreatic beta-cells, which are responsible for insulin synthesis, storage, and release. Lack or defect of insulin produces diabetes mellitus, a devastating disease suffered by 150 million people in the world. Transplantation of insulin-producing cells could be a cure for type 1 and some cases of type 2 diabetes, however this procedure is limited by the scarcity of material. Obtaining pancreatic beta-cells from embryonic stem cells would overcome this problem. We have derived insulin-producing cells from mouse embryonic stem cells by a 3-step in-vitro differentiation method consisting of directed differentiation, cell-lineage selection, and maturation. These insulin-producing cells normalize blood glucose when transplanted into streptozotocin-diabetic mice. Strategies to increase islet precursor cells from embryonic stem cells include the expression of relevant transcription factors (Pdx1, Ngn3, Isl-1, etc), together with the use of extracellular factors. Once a high enough proportion of islet precursors has been obtained there is a need for cell-lineage selection in order to purify the desired cell population. For this purpose, we designed a cell-trapping method based on a chimeric gene that fuses the human insulin gene regulatory region with the structural gene that confers resistance to neomycin. When incorporated into embryonic stem cells, this fusion gene will generate neomycin resistance in those cells that initiate the synthesis of insulin. Not only embryonic, but also adult stem cells are potential sources for insulin-containing cells. Duct cells from the adult pancreas are committed to differentiate into the four islet cell types; other possibilities may include nestin-positive cells from islets and adult pluripotent stem cells from other origins. Whilst the former are committed to be islet cells but have a reduced capacity to expand, the latter are more pluripotent and more expandable, but a longer pathway separates them from the insulin-producing stage. The aim of this review is to discuss the different strategies that may be followed to in-vitro differentiate pancreatic beta-cells from stem cells.
Collapse
Affiliation(s)
- B Soria
- Institute of Bioengineering and Department of Physiology, School of Medicine, Miguel Hernández University, Alicante, Spain.
| |
Collapse
|
162
|
Berná G, León-Quinto T, Fuentes E, Andreu E, Nadal A, Roche E, Martín F, Reig JA, Soria B. [Cellular engineering and diabetes mellitus]. Rev Clin Esp 2001; 201:548-56. [PMID: 11692416 DOI: 10.1016/s0014-2565(01)70908-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- G Berná
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche. Alicante, 03550 San Juan, Alicante.
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Abstract
Periodic oscillations appear to be a characteristic of insulin secretion at various different levels. Very rapid pulsations are seen in the isolated beta-cell and islet, while rapid (10- to 15-min) pulsations are seen both in the intact organism and in the isolated pancreas. Ultradian oscillations, particularly evident in situations of sustained exogenous glucose loading, appear to be a characteristic of intact organisms and have been hypothesized to be intrinsic to the normal glucose-insulin feedback system. Many of the features seen in experimental situations and in abnormalities of the system can be predicted by computer modelling of this system, supporting this hypothesis. A further theoretical feature of this hypothesis, borne out by experiment, is the ability to entrain insulin pulsatility by oscillations in an exogenous glucose infusion. Identification of defective ultradian oscillations and entrainment can identify subtle abnormalities of insulin sensitivity and pancreatic function, and restoration of normal function can be demonstrated after pharmaceutical intervention.
Collapse
Affiliation(s)
- J C Levy
- Diabetes Research Laboratories, The Oxford Centre for Diabetes, Endocrinology and Metabolism, The Radcliffe Infirmary, UK.
| |
Collapse
|
164
|
Holstein-Rathlou NH, Yip KP, Sosnovtseva OV, Mosekilde E. Synchronization phenomena in nephron-nephron interaction. CHAOS (WOODBURY, N.Y.) 2001; 11:417-426. [PMID: 12779477 DOI: 10.1063/1.1376398] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Experimental data for tubular pressure oscillations in rat kidneys are analyzed in order to examine the different types of synchronization that can arise between neighboring functional units. For rats with normal blood pressure, the individual unit (the nephron) typically exhibits regular oscillations in its tubular pressure and flow variations. For such rats, both in-phase and antiphase synchronization can be demonstrated in the experimental data. For spontaneously hypertensive rats, where the pressure variations in the individual nephrons are highly irregular, signs of chaotic phase and frequency synchronization can be observed. Accounting for a hemodynamic as well as for a vascular coupling between nephrons that share a common interlobular artery, we develop a mathematical model of the pressure and flow regulation in a pair of adjacent nephrons. We show that this model, for appropriate values of the parameters, can reproduce the different types of experimentally observed synchronization. (c) 2001 American Institute of Physics.
Collapse
|
165
|
Popovych O, Maistrenko Y, Mosekilde E, Pikovsky A, Kurths J. Transcritical riddling in a system of coupled maps. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2001; 63:036201. [PMID: 11308735 DOI: 10.1103/physreve.63.036201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2000] [Indexed: 05/23/2023]
Abstract
The transition from fully synchronized behavior to two-cluster dynamics is investigated for a system of N globally coupled chaotic oscillators by means of a model of two coupled logistic maps. An uneven distribution of oscillators between the two clusters causes an asymmetry to arise in the coupling of the model system. While the transverse period-doubling bifurcation remains essentially unaffected by this asymmetry, the transverse pitchfork bifurcation is turned into a saddle-node bifurcation followed by a transcritical riddling bifurcation in which a periodic orbit embedded in the synchronized chaotic state loses its transverse stability. We show that the transcritical riddling transition is always hard. For this, we study the sequence of bifurcations that the asynchronous point cycles produced in the saddle-node bifurcation undergo, and show how the manifolds of these cycles control the magnitude of asynchronous bursts. In the case where the system involves two subpopulations of oscillators with a small mismatch of the parameters, the transcritical riddling will be replaced by two subsequent saddle-node bifurcations, or the saddle cycle involved in the transverse destabilization of the synchronized chaotic state may smoothly shift away from the synchronization manifold. In this way, the transcritical riddling bifurcation is substituted by a symmetry-breaking bifurcation, which is accompanied by the destruction of a thin invariant region around the symmetrical chaotic state.
Collapse
Affiliation(s)
- O Popovych
- Institute of Mathematics, National Academy of Sciences of Ukraine, 01601 Kiev, Ukraine
| | | | | | | | | |
Collapse
|
166
|
Aslanidi OV, Mornev OA, Skyggebjerg O, Arkhammar P, Thastrup O, Sørensen MP, Christiansen PL, Conradsen K, Scott AC. Excitation wave propagation as a possible mechanism for signal transmission in pancreatic islets of Langerhans. Biophys J 2001; 80:1195-209. [PMID: 11222284 PMCID: PMC1301315 DOI: 10.1016/s0006-3495(01)76096-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In response to glucose application, beta-cells forming pancreatic islets of Langerhans start bursting oscillations of the membrane potential and intracellular calcium concentration, inducing insulin secretion by the cells. Until recently, it has been assumed that the bursting activity of beta-cells in a single islet of Langerhans is synchronized across the whole islet due to coupling between the cells. However, time delays of several seconds in the activity of distant cells are usually observed in the islets of Langerhans, indicating that electrical/calcium wave propagation through the islets can occur. This work presents both experimental and theoretical evidence for wave propagation in the islets of Langerhans. Experiments with Fura-2 fluorescence monitoring of spatiotemporal calcium dynamics in the islets have clearly shown such wave propagation. Furthermore, numerical simulations of the model describing a cluster of electrically coupled beta-cells have supported our view that the experimentally observed calcium waves are due to electric pulses propagating through the cluster. This point of view is also supported by independent experimental results. Based on the model equations, an approximate analytical expression for the wave velocity is introduced, indicating which parameters can alter the velocity. We point to the possible role of the observed waves as signals controlling the insulin secretion inside the islets of Langerhans, in particular, in the regions that cannot be reached by any external stimuli such as high glucose concentration outside the islets.
Collapse
Affiliation(s)
- O V Aslanidi
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, 142290 Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Satin LS. Localized calcium influx in pancreatic beta-cells: its significance for Ca2+-dependent insulin secretion from the islets of Langerhans. Endocrine 2000; 13:251-62. [PMID: 11216635 DOI: 10.1385/endo:13:3:251] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2000] [Accepted: 06/08/2000] [Indexed: 12/18/2022]
Abstract
Ca2+ influx through voltage-dependent Ca2+ channels plays a crucial role in stimulus-secretion coupling in pancreatic islet beta-cells. Molecular and physiologic studies have identified multiple Ca2+ channel subtypes in rodent islets and insulin-secreting cell lines. The differential targeting of Ca2+ channel subtypes to the vicinity of the insulin secretory apparatus is likely to account for their selective coupling to glucose-dependent insulin secretion. In this article, I review these studies. In addition, I discuss temporal and spatial aspects of Ca2+ signaling in beta-cells, the former involving the oscillatory activation of Ca2+ channels during glucose-induced electrical bursting, and the latter involving [Ca2+]i elevation in restricted microscopic "domains," as well as direct interactions between Ca2+ channels and secretory SNARE proteins. Finally, I review the evidence supporting a possible role for Ca2+ release from the endoplasmic reticulum in glucose-dependent insulin secretion, and evidence to support the existence of novel Ca2+ entry pathways. I also show that the beta-cell has an elaborate and complex set of [Ca2+]i signaling mechanisms that are capable of generating diverse and extremely precise [Ca2+]i patterns. These signals, in turn, are exquisitely coupled in space and time to the beta-cell secretory machinery to produce the precise minute-to-minute control of insulin secretion necessary for body energy homeostasis.
Collapse
Affiliation(s)
- L S Satin
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond 23298-0524, USA.
| |
Collapse
|
168
|
Rosati B, Marchetti P, Crociani O, Lecchi M, Lupi R, Arcangeli A, Olivotto M, Wanke E. Glucose- and arginine-induced insulin secretion by human pancreatic beta-cells: the role of HERG K(+) channels in firing and release. FASEB J 2000; 14:2601-10. [PMID: 11099479 DOI: 10.1096/fj.00-0077com] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The human ether-a-go-go-related genes (herg) are expressed in tissues other than heart and brain where the HERG K(+) channels are known to regulate the repolarization of the heart action potential and the neuronal spike-frequency accommodation. We provide evidence that herg1 transcripts are present in human pancreatic islets that were used to study both insulin secretion and electrical activity with radioimmunoassay and single cell perforated patch-clamp techniques, respectively. Glucose- and arginine-induced islets insulin secretion data suggested a net increase of release under perfusion with antiarrhythmic drugs known to selectively block HERG channels. Indeed we could routinely isolate a K(+) current that was recognized as biophysically and pharmacologically similar to the HERG current. An analysis of the glucose- and arginine-induced electrical activity (several applications during 30 min) in terms of firing frequency and putative insulin release was done in control and in the presence of selective blockers of HERG channels: the firing frequency and the release increased by 32% and 77%, respectively. It is concluded that HERG channels have a crucial role in regulating insulin secretion and firing of human beta-cells. This raises the possibility that some genetically characterized hyperinsulinemic diseases of unknown origin might involve mutations in the HERG channels.
Collapse
Affiliation(s)
- B Rosati
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, I-20126 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Lenzen S, Lerch M, Peckmann T, Tiedge M. Differential regulation of [Ca2+]i oscillations in mouse pancreatic islets by glucose, alpha-ketoisocaproic acid, glyceraldehyde and glycolytic intermediates. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1523:65-72. [PMID: 11099859 DOI: 10.1016/s0304-4165(00)00100-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glucose induces slow oscillations of the cytoplasmic Ca2+ concentration in pancreatic beta-cells. In order to elucidate the mechanisms responsible for the slow [Ca2+]i oscillations the effects of various nutrient insulin secretagogues on glucose-induced [Ca2+]i oscillations in intact mouse pancreatic islets and single beta-cells were studied. These were the glycolytic intermediates, glyceraldehyde and pyruvate, and the mitochondrial substrate, alpha-ketoisocaproic acid (KIC). Glucose, at a 10 or 15 mM concentration, induced the typical slow oscillations of [Ca2+]i (0.4 min(-1)). At higher glucose concentrations the frequency of these oscillations decreased further (0.2 min(-1)). Glyceraldehyde, an insulin secretagogue like glucose, did not cause slow oscillations of [Ca2+]i in the absence of glucose. However, it exhibited a synergistic action with glucose. Glyceraldehyde, at 3 or 10 mM concentration, induced slow [Ca2+]i oscillations at a substimulatory concentration of 5 mM glucose (0.3-0.4 min(-1)) and reduced the frequency of the glucose-induced [Ca2+]i oscillations at stimulatory concentrations of 10 or 15 mM glucose (0.2 min(-1)). KIC (5 or 10 mM) as well as pyruvate (10 mM), the end product of glycolysis, and its ester methyl pyruvate (10 mM), did not cause slow oscillations of [Ca2+]i in the absence of glucose. In contrast to glyceraldehyde, however, all three compounds were capable of preventing the slow [Ca2+]i oscillations induced by glucose. Mannoheptulose (2 mM), an inhibitor of glucokinase and glucose-induced insulin secretion, reversibly blocked any kind of [Ca2+]i oscillation and returned the [Ca2+]i to a basal level through its ability to inhibit glycolytic flux. It can be concluded therefore that only substrates which generate a glucokinase-mediated metabolic flux through glycolysis and produce glycolytic ATP can induce slow [Ca2+]i oscillations in pancreatic beta-cells.
Collapse
Affiliation(s)
- S Lenzen
- Institute of Clinical Biochemistry, Hannover Medical School, Germany
| | | | | | | |
Collapse
|
170
|
Abstract
Glucose-induced insulin secretion is pulsatile. Glucose metabolism generates oscillations in the ATP/ADP ratio which lead to opening and closing of ATP-sensitive K(+)-channels producing subsequent oscillations in membrane potential, cytoplasmic calcium and insulin release. Metabolic signals derived from glucose can also stimulate insulin release independent of their effects on ATP-sensitive K(+)-channels. The ATP/ADP ratio may mediate both ATP-sensitive K(+)-channel-dependent and -independent pathways of secretion. Glucose metabolism also results in an increase in long-chain acyl-CoA, which is proposed to act as an effector molecule in the beta -cell. Long-chain acyl-CoA has a variety of effects in the beta -cell that may effect insulin secretion including opening ATP-sensitive K(+)-channels, activating endoplasmic reticulum Ca(2+)-ATPases and stimulating classical protein kinase C activity. In addition to stimulating insulin release, nutrients also effect gene expression, protein synthesis and beta -cell proliferation. Gene expression is effected by nutrient induction of a variety of immediate early response genes. Glucose stimulates proinsulin biosynthesis both at the translational and transcriptional level. beta -cell proliferation, as a result of insulin-like growth factor and growth hormone mitogenic pathways, is also glucose dependent. Thus, many beta -cell functions in addition to secretion are controlled by nutrient metabolism.
Collapse
Affiliation(s)
- J T Deeney
- Obesity Research Center, Evans Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | | | | |
Collapse
|
171
|
Fernandez J, Valdeolmillos M. Synchronous glucose-dependent [Ca(2+)](i) oscillations in mouse pancreatic islets of Langerhans recorded in vivo. FEBS Lett 2000; 477:33-6. [PMID: 10899306 DOI: 10.1016/s0014-5793(00)01631-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using microfluorescence in combination with image-analysis techniques we monitored intracellular calcium ([Ca(2+)](i)) dynamics in mouse islets of Langerhans loaded with fura-2 and recorded in vivo. [Ca(2+)](i) oscillates in the glycaemias range 5-10 mM, the duration of the oscillations being directly proportional to the blood glucose concentration. The analysis of different areas within the same islet shows that [Ca(2+)](i) oscillations are synchronous throughout the islet. These results show that in vivo, individual islets of Langerhans behave as a functional syncytium and suggest the existence of secretory pulses of insulin.
Collapse
Affiliation(s)
- J Fernandez
- Instituto de Neurociencias-CSIC, Universidad Miguel Hernandez, 03550 San Juan, Alicante, Spain
| | | |
Collapse
|
172
|
Charollais A, Gjinovci A, Huarte J, Bauquis J, Nadal A, Martín F, Andreu E, Sánchez-Andrés JV, Calabrese A, Bosco D, Soria B, Wollheim CB, Herrera PL, Meda P. Junctional communication of pancreatic beta cells contributes to the control of insulin secretion and glucose tolerance. J Clin Invest 2000; 106:235-43. [PMID: 10903339 PMCID: PMC314309 DOI: 10.1172/jci9398] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2000] [Accepted: 06/07/2000] [Indexed: 12/20/2022] Open
Abstract
Proper insulin secretion requires the coordinated functioning of the numerous beta cells that form pancreatic islets. This coordination depends on a network of communication mechanisms whereby beta cells interact with extracellular signals and adjacent cells via connexin channels. To assess whether connexin-dependent communication plays a role in vivo, we have developed transgenic mice in which connexin 32 (Cx32), one of the vertebrate connexins found in the pancreas, is expressed in beta cells. We show that the altered beta-cell coupling that results from this expression causes reduced insulin secretion in response to physiologically relevant concentrations of glucose and abnormal tolerance to the sugar. These alterations were observed in spite of normal numbers of islets, increased insulin content, and preserved secretory response to glucose by individual beta cells. Moreover, glucose-stimulated islets showed improved electrical synchronization of these cells and increased cytosolic levels of Ca(2+). The results show that connexins contribute to the control of beta cells in vivo and that their excess is detrimental for insulin secretion.
Collapse
Affiliation(s)
- A Charollais
- Department of Morphology, and. Department of Medicine, University of Geneva, Medical School, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Bertram R, Sherman A. Dynamical complexity and temporal plasticity in pancreatic gβb-cells. J Biosci 2000. [DOI: 10.1007/bf03404915] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
174
|
Abstract
Plasma insulin displays 5-10 min oscillations. In Type 2 diabetes the regularity of the oscillations disappears, which may lead to insulin receptor down-regulation and glucose intolerance and explain why pulsatile delivery of the hormone has a greater hypoglycemic effect than continuous delivery. The rhythm is intrinsic to the islet. Variations in metabolism, cytoplasmic Ca(2+) concentration ([Ca(2+)](i)), other hormones, neuronal signaling and possibly beta-cell insulin receptor expression have been implicated in the regulation of plasma insulin oscillations. Most of these factors are important for amplitude-regulation of the insulin pulses. Although evidence exists supporting a role of both metabolism and [Ca(2+)](i) as pacemakers of the pulses, metabolic oscillations probably have a primary role and [Ca(2+)](i) oscillations a permissive role. Results from islets from animal models of diabetes suggest that altered plasma insulin pattern could be due to lowering of pulse amplitude of insulin oscillations rather than alterations in their frequency. Supporting a role of metabolism, altered plasma insulin oscillations were found in MODY2, MIDD and glycogenosis Type VII, which are linked to alterations in glucokinase, mitochondrial tRNALeu(UUR) and phosphofructokinase. Plasma insulin oscillations require coordination of islet secretory activities in the pancreas. The intrapancreatic ganglia have been suggested as coordinators. The diabetes-associated neuropathy may contribute to the deranged pattern as indicated by glucose intolerance in chagasic patients. Continued investigation of the role and regulation of pulsatile insulin release will lead to better understanding of the pathophysiology of impaired pulsatile insulin release, which could lead to new approaches to restore normal plasma insulin oscillations in diabetes and related diseases.
Collapse
Affiliation(s)
- P Bergsten
- Department of Medical Cell Biology, University of Uppsala, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
175
|
Jung SK, Kauri LM, Qian WJ, Kennedy RT. Correlated oscillations in glucose consumption, oxygen consumption, and intracellular free Ca(2+) in single islets of Langerhans. J Biol Chem 2000; 275:6642-50. [PMID: 10692473 DOI: 10.1074/jbc.275.9.6642] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Micron-sized sensors were used to monitor glucose and oxygen levels in the extracellular space of single islets of Langerhans in real-time. At 10 mM glucose, oscillations in intraislet glucose concentration were readily detected. Changes in glucose level correspond to changes in glucose consumption by glycolysis balanced by mass transport into the islet. Oscillations had a period of 3.1 +/- 0.2 min and amplitude of 0.8 +/- 0.1 mM glucose (n = 21). Superimposed on these oscillations were faster fluctuations in glucose level during the periods of low glucose consumption. Oxygen level oscillations that were out of phase with the glucose oscillations were also detected. Oscillations in both oxygen and glucose consumption were strongly dependent upon extracellular Ca(2+) and sensitive to nifedipine. Simultaneous measurements of glucose with intracellular Ca(2+) ([Ca(2+)](i)) revealed that decreases in [Ca(2+)](i) preceded increases in glucose consumption by 7.4 +/- 2.1 s during an oscillation (n = 9). Conversely, increases in [Ca(2+)](i) preceded increases in oxygen consumption by 1.5 +/- 0.2 s (n = 4). These results suggest that during oscillations, bursts of glycolysis begin after Ca(2+) has stopped entering the cell. Glycolysis stimulates further Ca(2+) entry, which in turn stimulates increases in respiration. The data during oscillation are in contrast to the time course of events during initial exposure to glucose. Under these conditions, a burst of oxygen consumption precedes the initial rise in [Ca(2+)](i). A model to explain these results is described.
Collapse
Affiliation(s)
- S K Jung
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA
| | | | | | | |
Collapse
|
176
|
Ravier MA, Eto K, Jonkers FC, Nenquin M, Kadowaki T, Henquin JC. The oscillatory behavior of pancreatic islets from mice with mitochondrial glycerol-3-phosphate dehydrogenase knockout. J Biol Chem 2000; 275:1587-93. [PMID: 10636849 DOI: 10.1074/jbc.275.3.1587] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucose stimulation of pancreatic beta cells induces oscillations of the membrane potential, cytosolic Ca(2+) ([Ca(2+)](i)), and insulin secretion. Each of these events depends on glucose metabolism. Both intrinsic oscillations of metabolism and repetitive activation of mitochondrial dehydrogenases by Ca(2+) have been suggested to be decisive for this oscillatory behavior. Among these dehydrogenases, mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH), the key enzyme of the glycerol phosphate NADH shuttle, is activated by cytosolic [Ca(2+)](i). In the present study, we compared different types of oscillations in beta cells from wild-type and mGPDH(-/-) mice. In clusters of 5-30 islet cells and in intact islets, 15 mM glucose induced an initial drop of [Ca(2+)](i), followed by an increase in three phases: a marked initial rise, a partial decrease with rapid oscillations and eventually large and slow oscillations. These changes, in particular the frequency of the oscillations and the magnitude of the [Ca(2+)] rise, were similar in wild-type and mGPDH(-/-) mice. Glucose-induced electrical activity (oscillations of the membrane potential with bursts of action potentials) was not altered in mGPDH(-/-) beta cells. In single islets from either type of mouse, insulin secretion strictly followed the changes in [Ca(2+)](i) during imposed oscillations induced by pulses of high K(+) or glucose and during the biphasic elevation induced by sustained stimulation with glucose. An imposed and controlled rise of [Ca(2+)](i) in beta cells similarly increased NAD(P)H fluorescence in control and mGDPH(-/-) islets. Inhibition of the malate-aspartate NADH shuttle with aminooxyacetate only had minor effects in control islets but abolished the electrical, [Ca(2+)](i) and secretory responses in mGPDH(-/-) islets. The results show that the two distinct NADH shuttles play an important but at least partially redundant role in glucose-induced insulin secretion. The oscillatory behavior of beta cells does not depend on the functioning of mGPDH and on metabolic oscillations that would be generated by cyclic activation of this enzyme by Ca(2+).
Collapse
Affiliation(s)
- M A Ravier
- Unité d'Endocrinologie et Métabolisme, University of Louvain Faculty of Medicine, B-1200 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
177
|
Krippeit-Drews P, Düfer M, Drews G. Parallel oscillations of intracellular calcium activity and mitochondrial membrane potential in mouse pancreatic B-cells. Biochem Biophys Res Commun 2000; 267:179-83. [PMID: 10623595 DOI: 10.1006/bbrc.1999.1921] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Insulin secretion in normal B-cells is pulsatile, a consequence of oscillations in the cell membrane potential (MP) and cytosolic calcium activity ([Ca(2+)](c)). We simultaneously monitored glucose-induced changes in [Ca(2+)](c) and in the mitochondrial membrane potential DeltaPsi, as a measure for ATP generation. Increasing the glucose concentration from 0.5 to 15 mM led to the well-known hyperpolarization of DeltaPsi and ATP-dependent lowering of [Ca(2+)](c). However, as soon as [Ca(2+)](c) rose due to the opening of voltage-dependent Ca(2+) channels, DeltaPsi depolarized and thereafter oscillations in [Ca(2+)](c) were parallel to oscillations in DeltaPsi. A depolarization or oscillations of DeltaPsi cannot be evoked by a substimulatory glucose concentration, but Ca(2+) influx provoked by 30 mM KCl was followed by a depolarization of DeltaPsi. The following feedback loop is suggested: Glucose metabolism via mitochondrial ATP production and closure of K(+)(ATP) channels induces an increase in [Ca(2+)](c). The rise in [Ca(2+)](c) in turn decreases ATP synthesis by depolarizing DeltaPsi, thus transiently terminating Ca(2+) influx.
Collapse
Affiliation(s)
- P Krippeit-Drews
- Department of Pharmacology, University of Tübingen, Auf der Morgenstelle 8, Tübingen, D-72076, Germany.
| | | | | |
Collapse
|
178
|
Gylfe E, Ahmed M, Bergsten P, Dansk H, Dyachok O, Eberhardson M, Grapengiesser E, Hellman B, Lin JM, Sundsten T, Tengholm A, Vieira E, Westerlund J. Signaling underlying pulsatile insulin secretion. Ups J Med Sci 2000; 105:35-51. [PMID: 11095104 DOI: 10.1517/03009734000000054] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- E Gylfe
- Department of Medical Cell Biology, Uppsala University, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Göpel SO, Kanno T, Barg S, Eliasson L, Galvanovskis J, Renström E, Rorsman P. Activation of Ca(2+)-dependent K(+) channels contributes to rhythmic firing of action potentials in mouse pancreatic beta cells. J Gen Physiol 1999; 114:759-70. [PMID: 10578013 PMCID: PMC2230648 DOI: 10.1085/jgp.114.6.759] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
We have applied the perforated patch whole-cell technique to beta cells within intact pancreatic islets to identify the current underlying the glucose-induced rhythmic firing of action potentials. Trains of depolarizations (to simulate glucose-induced electrical activity) resulted in the gradual (time constant: 2.3 s) development of a small (<0.8 nS) K(+) conductance. The current was dependent on Ca(2+) influx but unaffected by apamin and charybdotoxin, two blockers of Ca(2+)-activated K(+) channels, and was insensitive to tolbutamide (a blocker of ATP-regulated K(+) channels) but partially (>60%) blocked by high (10-20 mM) concentrations of tetraethylammonium. Upon cessation of electrical stimulation, the current deactivated exponentially with a time constant of 6.5 s. This is similar to the interval between two successive bursts of action potentials. We propose that this Ca(2+)-activated K(+) current plays an important role in the generation of oscillatory electrical activity in the beta cell.
Collapse
Affiliation(s)
- Sven O. Göpel
- From the Department of Physiological Sciences, Division of Molecular and Cellular Physiology, Lund University, SE-223 62 Lund, Sweden
| | - Takahiro Kanno
- From the Department of Physiological Sciences, Division of Molecular and Cellular Physiology, Lund University, SE-223 62 Lund, Sweden
| | - Sebastian Barg
- From the Department of Physiological Sciences, Division of Molecular and Cellular Physiology, Lund University, SE-223 62 Lund, Sweden
| | - Lena Eliasson
- From the Department of Physiological Sciences, Division of Molecular and Cellular Physiology, Lund University, SE-223 62 Lund, Sweden
| | - Juris Galvanovskis
- From the Department of Physiological Sciences, Division of Molecular and Cellular Physiology, Lund University, SE-223 62 Lund, Sweden
| | - Erik Renström
- From the Department of Physiological Sciences, Division of Molecular and Cellular Physiology, Lund University, SE-223 62 Lund, Sweden
| | - Patrik Rorsman
- From the Department of Physiological Sciences, Division of Molecular and Cellular Physiology, Lund University, SE-223 62 Lund, Sweden
| |
Collapse
|
180
|
Sooy K, Schermerhorn T, Noda M, Surana M, Rhoten WB, Meyer M, Fleischer N, Sharp GW, Christakos S. Calbindin-D(28k) controls [Ca(2+)](i) and insulin release. Evidence obtained from calbindin-d(28k) knockout mice and beta cell lines. J Biol Chem 1999; 274:34343-9. [PMID: 10567411 DOI: 10.1074/jbc.274.48.34343] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of the calcium-binding protein, calbindin-D(28k) in potassium/depolarization-stimulated increases in the cytosolic free Ca(2+) concentration ([Ca(2+)](i)) and insulin release was investigated in pancreatic islets from calbindin-D(28k) nullmutant mice (knockouts; KO) or wild type mice and beta cell lines stably transfected and overexpressing calbindin. Using single islets from KO mice and stimulation with 45 mM KCl, the peak of [Ca(2+)](i) was 3.5-fold greater in islets from KO mice compared with wild type islets (p < 0.01) and [Ca(2+)](i) remained higher during the plateau phase. In addition to the increase in [Ca(2+)](i) in response to KCl there was also a significant increase in insulin release in islets isolated from KO mice. Evidence for modulation by calbindin of [Ca(2+)](i) and insulin release was also noted using beta cell lines. Rat calbindin was stably expressed in betaTC-3 and betaHC-13 cells. In response to depolarizing concentrations of K(+), insulin release was decreased by 45-47% in calbindin expressing betaTC cells and was decreased by 70-80% in calbindin expressing betaHC cells compared with insulin release from vector transfected betaTC or betaHC cells (p < 0.01). In addition, the K(+)-stimulated intracellular calcium peak was markedly inhibited in calbindin expressing betaHC cells compared with vector transfected cells (225 nM versus 1,100 nM, respectively). Buffering of the depolarization-induced rise in [Ca(2+)](i) was also observed in calbindin expressing betaTC cells. In summary, our findings, using both isolated islets from calbindin-D(28k) KO mice and beta cell lines, establish a role for calbindin in the modulation of depolarization-stimulated insulin release and suggest that calbindin can control the rate of insulin release via regulation of [Ca(2+)](i).
Collapse
Affiliation(s)
- K Sooy
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, New Jersey Medical School and Graduate School of Biomedical Sciences, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Jonkers FC, Jonas JC, Gilon P, Henquin JC. Influence of cell number on the characteristics and synchrony of Ca2+ oscillations in clusters of mouse pancreatic islet cells. J Physiol 1999; 520 Pt 3:839-49. [PMID: 10545148 PMCID: PMC2269631 DOI: 10.1111/j.1469-7793.1999.00839.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
1. The cytoplasmic Ca2+ concentration ([Ca2+]i) was measured in single cells and cell clusters of different sizes prepared from mouse pancreatic islets. 2. During stimulation with 15 mM glucose, 20 % of isolated cells were inert, whereas 80 % showed [Ca2+]i oscillations of variable amplitude, duration and frequency. Spectral analysis identified a major frequency of 0.14 min-1 and a less prominent one of 0.27 min-1. 3. In contrast, practically all clusters (2-50 cells) responded to glucose, and no inert cells were identified within the clusters. As compared to single cells, mean [Ca2+]i was more elevated, [Ca2+]i oscillations were more regular and their major frequency was slightly higher (but reached a plateau at approximately 0.25 min-1). In some cells and clusters, faster oscillations occurred on top of the slow ones, between them or randomly. 4. Image analysis revealed that the regular [Ca2+]i oscillations were well synchronized between all cells of the clusters. Even when the Ca2+ response was irregular, slow and fast [Ca2+]i oscillations induced by glucose were also synchronous in all cells. 5. In contrast, [Ca2+]i oscillations resulting from mobilization of intracellular Ca2+ by acetylcholine were restricted to certain cells only and were not synchronized. 6. Heptanol and 18alpha-glycyrrhetinic acid, two agents widely used to block gap junctions, altered glucose-induced Ca2+ oscillations, but control experiments showed that they also exerted effects other than a selective uncoupling of the cells. 7. The results support theoretical models predicting an increased regularity of glucose-dependent oscillatory events in clusters as compared to isolated islet cells, but contradict the proposal that the frequency of the oscillations increases with the number of coupled cells. Islet cell clusters function better as electrical than biochemical syncytia. This may explain the co-ordination of [Ca2+]i oscillations driven by depolarization-dependent Ca2+ influx during glucose stimulation.
Collapse
Affiliation(s)
- F C Jonkers
- Unite d'Endocrinologie et Metabolisme, University of Louvain School of Medicine, UCL 55.30, B-1200 Brussels, Belgium
| | | | | | | |
Collapse
|
182
|
Gilon P, Arredouani A, Gailly P, Gromada J, Henquin JC. Uptake and release of Ca2+ by the endoplasmic reticulum contribute to the oscillations of the cytosolic Ca2+ concentration triggered by Ca2+ influx in the electrically excitable pancreatic B-cell. J Biol Chem 1999; 274:20197-20205. [PMID: 10400636 DOI: 10.1074/jbc.274.29.20197] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The role of intracellular Ca2+ pools in oscillations of the cytosolic Ca2+ concentration ([Ca2+]c) triggered by Ca2+ influx was investigated in mouse pancreatic B-cells. [Ca2+]c oscillations occurring spontaneously during glucose stimulation or repetitively induced by pulses of high K+ (in the presence of diazoxide) were characterized by a descending phase in two components. A rapid decrease in [Ca2+]c coincided with closure of voltage-dependent Ca2+ channels and was followed by a slower phase independent of Ca2+ influx. Blocking the SERCA pump with thapsigargin or cyclopiazonic acid accelerated the rising phase of [Ca2+]c oscillations and increased their amplitude, which suggests that the endoplasmic reticulum (ER) rapidly takes up Ca2+. It also suppressed the slow [Ca2+]c recovery phase, which indicates that this phase corresponds to the slow release of Ca2+ that was taken up by the ER during the upstroke of the [Ca2+]c transient. Glucose promoted the buffering capacity of the ER and amplified the slow [Ca2+]c recovery phase. The slow phase induced by high K+ pulses was not affected by modulators of Ca2+- or inositol 1,4,5-trisphosphate-induced Ca2+ release, did not involve a depolarization-induced Ca2+ release, and was also observed at the end of a rapid rise in [Ca2+]c triggered from caged Ca2+. It is attributed to passive leakage of Ca2+ from the ER. We suggest that the ER displays oscillations of the Ca2+ concentration ([Ca2+]ER) concomitant and parallel to [Ca2+]c. The observation that thapsigargin depolarizes the membrane of B-cells supports the proposal that the degree of Ca2+ filling of the ER modulates the membrane potential. Therefore, [Ca2+]ER oscillations occurring during glucose stimulation are likely to influence the bursting behavior of B-cells and eventually [Ca2+]c oscillations.
Collapse
Affiliation(s)
- P Gilon
- Unité d'Endocrinologie et Métabolisme, University of Louvain Faculty of Medicine, Av. Hippocrate 55, 1200 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
183
|
Gall D, Susa I. Effect of Na/Ca exchange on plateau fraction and [Ca]i in models for bursting in pancreatic beta-cells. Biophys J 1999; 77:45-53. [PMID: 10388739 PMCID: PMC1300311 DOI: 10.1016/s0006-3495(99)76871-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In the presence of an insulinotropic glucose concentration, beta-cells, in intact pancreatic islets, exhibit periodic bursting electrical activity consisting of an alternation of active and silent phases. The fraction of time spent in the active phase over a period is called the plateau fraction and is correlated with the rate of insulin release. However, the mechanisms that regulate the plateau fraction remain unclear. In this paper we investigate the possible role of the plasma membrane Na+/Ca2+ exchange of the beta-cell in controlling the plateau fraction. We have extended different single-cell models to incorporate this Ca2+-activated electrogenic Ca2+ transporter. We find that the Na+/Ca2+ exchange can provide a physiological mechanism to increase the plateau fraction as the glucose concentration is raised. In addition, we show theoretically that the Na+/Ca2+ exchanger is a key regulator of the cytoplasmic calcium concentration in clusters of heterogeneous cells with gap-junctional electrical coupling.
Collapse
Affiliation(s)
- D Gall
- Laboratoire de Pharmacodynamie et Thérapeutique (CP617), Faculté de Médecine, Université Libre de Bruxelles, B-1070 Bruxelles, Belgium
| | | |
Collapse
|
184
|
Nadal A, Quesada I, Soria B. Homologous and heterologous asynchronicity between identified alpha-, beta- and delta-cells within intact islets of Langerhans in the mouse. J Physiol 1999; 517 ( Pt 1):85-93. [PMID: 10226151 PMCID: PMC2269319 DOI: 10.1111/j.1469-7793.1999.0085z.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
1. Using laser scanning confocal microscopy to image [Ca2+]i within intact murine islets of Langerhans, we analysed the [Ca2+]i signals generated by glucose in immunocytochemically identified alpha-, beta- and delta-cells. 2. Glucagon-containing alpha-cells exhibited [Ca2+]i oscillations in the absence of glucose, which petered out when islets were exposed to high glucose concentrations. 3. Somatostatin-containing delta-cells were silent in the absence of glucose but concentrations of glucose as low as 3 mM elicited oscillations. 4. In pancreatic beta-cells, a characteristic oscillatory calcium pattern was evoked when glucose levels were raised from 3 to 11 mM and this was synchronized throughout the beta-cell population. Remarkably, [Ca2+]i oscillations in non-beta-cells were completely asynchronous, both with respect to each other and to beta-cells. 5. These results demonstrate that the islet of Langerhans behaves as a functional syncytium only in terms of beta-cells, implying a pulsatile secretion of insulin. However, the lack of a co-ordinated calcium signal in alpha- and delta-cells implies that each cell acts as an independent functional unit and the concerted activity of these units results in a smoothly graded secretion of glucagon and somatostatin. Understanding the calcium signals underlying glucagon and somatostatin secretion may be of importance in the treatment of non-insulin-dependent diabetes mellitus since both glucagon and somatostatin appear to regulate insulin release in a paracrine fashion.
Collapse
Affiliation(s)
- A Nadal
- Institute of Bioengineering and Department of Physiology, Miguel Hernández University, Campus of San Juan, Alicante 03550, Spain.
| | | | | |
Collapse
|
185
|
Dryselius S, Grapengiesser E, Hellman B, Gylfe E. Voltage-dependent entry and generation of slow Ca2+ oscillations in glucose-stimulated pancreatic beta-cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:E512-8. [PMID: 10070018 DOI: 10.1152/ajpendo.1999.276.3.e512] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of voltage-dependent Ca2+ entry for glucose generation of slow oscillations of the cytoplasmic Ca2+ concentration ([Ca2+]i) was evaluated in individual mouse pancreatic beta-cells. Like depolarization with K+, a rise of the glucose concentration resulted in an enhanced influx of Mn2+, which was inhibited by nifedipine. This antagonist of L-type Ca2+ channels also blocked the slow oscillations of [Ca2+]i induced by glucose. The slow oscillations occurred in synchrony with variations in Mn2+ influx and bursts of action currents, with the elevation of [Ca2+]i being proportional to the frequency of the action currents. A similar relationship was obtained when Ca2+ was replaced with Sr2+. Occasionally, the slow [Ca2+]i oscillations were superimposed with pronounced spikes temporarily arresting the action currents. It is concluded that the glucose-induced slow oscillations of [Ca2+]i are caused by periodic depolarization with Ca2+ influx through L-type channels. Ca2+ spiking, due to intracellular mobilization, may be important for chopping the slow oscillations of [Ca2+]i into shorter ones characterizing beta-cells situated in pancreatic islets.
Collapse
Affiliation(s)
- S Dryselius
- Department of Medical Cell Biology, Uppsala University, Biomedical Center, S-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
186
|
Nadal A, Rovira JM, Laribi O, Leon-quinto T, Andreu E, Ripoll C, Soria B. Rapid insulinotropic effect of 17beta-estradiol via a plasma membrane receptor. FASEB J 1998; 12:1341-8. [PMID: 9761777 DOI: 10.1096/fasebj.12.13.1341] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Impaired insulin secretion is a hallmark in both type I and type II diabetic individuals. Whereas type I (insulin-dependent diabetes mellitus) implies ss-cell destruction, type II (non-insulin dependent diabetes mellitus), responsible for 75% of diabetic syndromes, involves diminished glucose-dependent secretion of insulin from pancreatic beta-cells. Although a clear demonstration of a direct effect of 17beta-estradiol on the pancreatic ss-cell is lacking, an in vivo insulinotropic effect has been suggested. In this report we describe the effects of 17beta-estradiol in mouse pancreatic ss-cells. 17beta-Estradiol, at physiological concentrations, closes K(ATP) channels, which are also targets for antidiabetic sulfonylureas, in a rapid and reversible manner. Furthermore, in synergy with glucose, 17beta-estradiol depolarizes the plasma membrane, eliciting electrical activity and intracellular calcium signals, which in turn enhance insulin secretion. These effects occur through a receptor located at the plasma membrane, distinct from the classic cytosolic estrogen receptor. Specific competitive binding and localization of 17beta-estradiol receptors at the plasma membrane was demonstrated using confocal reflective microscopy and immunocytochemistry. Gaining deeper knowledge of the effect induced by 17beta-estradiol may be important in order to better understand the hormonal regulation of insulin secretion and for the treatment of NIDDM. receptor.
Collapse
Affiliation(s)
- A Nadal
- Institute of Bioengineering and Department of Physiology, Miguel Hernández University, San Juan Campus, Alicante, Spain.
| | | | | | | | | | | | | |
Collapse
|
187
|
Detimary P, Gilon P, Henquin JC. Interplay between cytoplasmic Ca2+ and the ATP/ADP ratio: a feedback control mechanism in mouse pancreatic islets. Biochem J 1998; 333 ( Pt 2):269-74. [PMID: 9657965 PMCID: PMC1219582 DOI: 10.1042/bj3330269] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In pancreatic beta cells, the increase in the ATP/ADP ratio that follows a stimulation by glucose is thought to play an important role in the Ca2+-dependent increase in insulin secretion. Here we have investigated the possible interactions between Ca2+ and adenine nucleotides in mouse islets. Measurements of both parameters in the same single islet showed that the rise in the ATP/ADP ratio precedes any rise in the cytoplasmic free-Ca2+ concentration ([Ca2+]i) and is already present during the initial transient lowering of [Ca2+]i produced by the sugar. Blockade of Ca2+ influx with nimodipine did not prevent the concentration-dependent increase in the ATP/ADP ratio produced by glucose and even augmented the ratio at all glucose concentrations which normally stimulate Ca2+ influx. In contrast, stimulation of Ca2+ influx by 30 mM K+ or 100 microM tolbutamide lowered the ATP/ADP ratio. This lowering was of rapid onset and reversibility, sustained and prevented by nimodipine or omission of extracellular Ca2+. It was, however, not attenuated after blockade of secretion by activation of alpha2-adrenoceptors. The difference in islet ATP/ADP ratio during blockade and stimulation of Ca2+ influx was similar to that observed between threshold and submaximal glucose concentrations. The results suggest that the following feedback loop could control the oscillations of membrane potential and [Ca2+]i in beta cells. Glucose metabolism increases the ATP/ADP ratio in a Ca2+-independent manner, which leads to closure of ATP-sensitive K+ channels, depolarization and stimulation of Ca2+ influx. The resulting increase in [Ca2+]i causes a larger consumption than production of ATP, which induces reopening of ATP-sensitive K+ channels and arrest of Ca2+ influx. Upon lowering of [Ca2+]i the ATP/ADP ratio increases again and a new cycle may start.
Collapse
Affiliation(s)
- P Detimary
- Unit of Endocrinology and Metabolism, University of Louvain Faculty of Medicine, UCL 55.30, Avenue Hippocrate 55, B-1200 Brussels, Belgium
| | | | | |
Collapse
|
188
|
Barbosa RM, Silva AM, Tomé AR, Stamford JA, Santos RM, Rosário LM. Control of pulsatile 5-HT/insulin secretion from single mouse pancreatic islets by intracellular calcium dynamics. J Physiol 1998; 510 ( Pt 1):135-43. [PMID: 9625872 PMCID: PMC2231018 DOI: 10.1111/j.1469-7793.1998.135bz.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. Glucose-induced insulin release from single islets of Langerhans is pulsatile. We have investigated the correlation between changes in cytosolic free calcium concentration ([Ca2+]i) and oscillatory insulin secretion from single mouse islets, in particular examining the basis for differences in secretory responses to intermediate and high glucose concentrations. Insulin release was monitored in real time through the amperometric detection of the surrogate insulin marker 5-hydroxytryptamine (5-HT) via carbon fibre microelectrodes. The [Ca2+]i was simultaneously recorded by whole-islet fura-2 microfluorometry. 2. In 82 % of the experiments, exposure to 11 mM glucose evoked regular high-frequency (average, 3.4 min-1) synchronous oscillations in amperometric current and [Ca2+]i. In the remaining experiments (18 %), 11 mM glucose induced an oscillatory pattern consisting of high-frequency [Ca2+]i oscillations that were superimposed on low-frequency (average, 0.32 min-1) [Ca2+]i waves. Intermittent high-frequency [Ca2+]i oscillations gave rise to a similar pattern of pulsatile 5-HT release. 3. Raising the glucose concentration from 11 to 20 mM increased the duration of the steady-state [Ca2+]i oscillations without increasing their amplitude. In contrast, both the duration and amplitude of the associated 5-HT transients were increased by glucose stimulation. The amount of 5-HT released per secretion cycle was linearly related to the duration of the underlying [Ca2+]i oscillations in both 11 and 20 mM glucose. The slopes of the straight lines were identical, indicating that there is no significant difference between the ability of calcium oscillations to elicit 5-HT/insulin release in 11 and 20 mM glucose. 4. In situ 5-HT microamperometry has the potential to resolve the high-frequency oscillatory component of the second phase of glucose-induced insulin secretion. This component appears to reflect primarily the duration of the underlying [Ca2+]i oscillations, suggesting that glucose metabolism and/or access to glucose metabolites is not rate limiting to fast pulsatile insulin release.
Collapse
Affiliation(s)
- R M Barbosa
- Centre for Neurosciences of Coimbra, Laboratory of Instrumental Analysis, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
189
|
Santos RM, Barbosa RM, Antunes CM, Silva AM, Salgado AP, Abrunhosa AJ, Pereira FC, Seiça RM, Rosário LM. Bursting electrical activity generated in the presence of KATP channel blockers. Pharmacology, sensitivity to intracellular pH and modulation by glucose metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 426:33-41. [PMID: 9544253 DOI: 10.1007/978-1-4899-1819-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- R M Santos
- Center for Neurosciences of Coimbra, University of Coimbra, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Sherman A, Smolen P. Computer modeling of heterogeneous beta-cell populations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 426:275-84. [PMID: 9544285 DOI: 10.1007/978-1-4899-1819-2_38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- A Sherman
- Mathematical Research Branch, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
191
|
Gomis A, Valdeolmillos M. Effects of localized pulses of high K+ and carbachol on [Ca2+]i in pancreatic islets of Langerhans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 426:203-9. [PMID: 9544275 DOI: 10.1007/978-1-4899-1819-2_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- A Gomis
- Departamento de Fisiologia, Facultad de Medicina, Universidad Miguel Hernandez, Alicante, Spain
| | | |
Collapse
|
192
|
Nadal A, Soria B. Glucose metabolism regulates cytosolic Ca2+ in the pancreatic beta-cell by three different mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 426:235-43. [PMID: 9544280 DOI: 10.1007/978-1-4899-1819-2_33] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- A Nadal
- Department of Physiology, Miguel Hernandez University, Alicante, Spain
| | | |
Collapse
|
193
|
Bosco D, Meda P. Reconstructing islet function in vitro. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 426:285-98. [PMID: 9544286 DOI: 10.1007/978-1-4899-1819-2_39] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- D Bosco
- Department of Morphology, University of Geneva, Switzerland
| | | |
Collapse
|
194
|
Martín F, Pertusa JA, Soria B. Oscillations of cytosolic Ca2+ in pancreatic islets of Langerhans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 426:195-202. [PMID: 9544274 DOI: 10.1007/978-1-4899-1819-2_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- F Martín
- Department of Physiology, Miguel Hernandez University, Alicante, Spain
| | | | | |
Collapse
|
195
|
Smith P, Millard PJ, Fewtrell CM, Ashcroft FM. Heterogeneity of beta-cell Ca2+ responses to glucose. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 426:253-7. [PMID: 9544282 DOI: 10.1007/978-1-4899-1819-2_35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- P Smith
- Department of Pharmacology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
196
|
Liu YJ, Tengholm A, Grapengiesser E, Hellman B, Gylfe E. Origin of slow and fast oscillations of Ca2+ in mouse pancreatic islets. J Physiol 1998; 508 ( Pt 2):471-81. [PMID: 9508810 PMCID: PMC2230881 DOI: 10.1111/j.1469-7793.1998.471bq.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. Pancreatic islets exposed to 11 mM glucose exhibited complex variations of cytoplasmic Ca2+ concentration ([Ca2+]i) with slow (0.3-0.9 min-1) or fast (2-7 min-1) oscillations or with a mixed pattern. 2. Using digital imaging and confocal microscopy we demonstrated that the mixed pattern with slow and superimposed fast oscillations was due to separate cell populations with the respective responses. 3. In islets with mixed [Ca2+]i oscillations, exposure to the sarcoplasmic-endoplasmic reticulum Ca2+-ATPase inhibitors thapsigargin or 2,5-di-tert-butylhydroquinone (DTBHQ) resulted in a selective disappearance of the fast pattern and amplification of the slow pattern. 4. In addition, the protein kinase A inhibitor RP-cyclic adenosine 3',5'-monophosphorothioate sodium salt transformed the mixed [Ca2+]i oscillations into slow oscillations with larger amplitude. 5. Islets exhibiting only slow oscillations reacted to low concentrations of glucagon with induction of the fast or the mixed pattern. In this case the fast oscillations were also counteracted by DTBHQ. 6. The spontaneously occurring fast oscillations seemed to require the presence of cAMP-elevating glucagon, since they were more common in large islets and suppressed during culture. 7. Image analysis revealed [Ca2+]i spikes occurring irregularly in time and space within an islet. These spikes were preferentially observed together with fast [Ca2+]i oscillations, and they became more common after exposure to glucagon. 8. Both the slow and fast oscillations of [Ca2+]i in pancreatic islets rely on periodic entry of Ca2+. However, the fast oscillations also depend in some way on paracrine factors promoting mobilization of Ca2+ from intracellular stores. It is proposed that such a mobilization in different cells within a tightly coupled islet syncytium generates spikes which co-ordinate the regular bursts of action potentials underlying the fast oscillations.
Collapse
Affiliation(s)
- Y J Liu
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, S-751 23 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
197
|
Abstract
We investigate the time required for glucose to diffuse through an isolated pancreatic islet of Langerhans and reach an equilibrium. This question is relevant in the context of in vitro electrophysiological studies of the response of an islet to step changes in the bath glucose concentration. Islet cells are electrically coupled by gap junctions, so nonuniformities in islet glucose concentration may be reflected in the activity of cells on the islet periphery, where electrical recordings are made. Using a mathematical model of hindered glucose diffusion, we investigate the effects of the islet porosity and the permeability of a surrounding layer of acinar cells. A major factor in the determination of the equilibrium time is the transport of glucose into islet beta-cells, which removes glucose from the interstitial spaces where diffusion occurs. This transport is incorporated by using a model of the GLUT-2 glucose transporter. We find that several minutes are required for the islet to equilibrate to a 10 mM change in bath glucose, a typical protocol in islet experiments. It is therefore likely that in electrophysiological islet experiments the glucose distribution is nonuniform for several minutes after a step change in bath glucose. The delay in glucose penetration to the inner portions of the islet may be a major contributing factor to the 1-2-min delay in islet electrical activity typically observed after bath application of a stimulatory concentration of glucose.
Collapse
Affiliation(s)
- R Bertram
- School of Science, Pennsylvania State University, Erie 16563, USA.
| | | |
Collapse
|
198
|
Magnus G, Keizer J. Model of beta-cell mitochondrial calcium handling and electrical activity. I. Cytoplasmic variables. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C1158-73. [PMID: 9575813 DOI: 10.1152/ajpcell.1998.274.4.c1158] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We continue our development of a kinetic model of bursting electrical activity in the pancreatic beta-cell (J. Keizer and G. Magnus. Biophys. J. 56: 229-242, 1989), including the influence of Ca2+ handling by the mitochondria. Our minimal model of mitochondrial Ca2+ handling [G. Magnus and J. Keizer. Am. J. Physiol. 273 (Cell Physiol. 42): C717-C733, 1997] is expanded to include the D-glucose dependence of the rate of production of mitochondrial reducing equivalents. The Ca2+ dependence of the mitochondrial dehydrogenases, which is also included in the model, plays only a small role in the simulations, since the dehydrogenases appear to be maximally activated when D-glucose concentrations are sufficient to produce bursting. A previous model of ionic currents in the plasma membrane is updated using a recent experimental characterization of the dependence of the conductance of the ATP-sensitive K+ (KATP) current on adenine nucleotides. The resulting whole cell model is complex, involving 12 dynamic variables that couple Ca2+ handling in the cytoplasm and the mitochondria with electrical activity in the plasma and inner mitochondrial membranes. Simulations with the whole cell model give rise to bursting electrical activity similar to that seen in pancreatic islets and clusters of pancreatic beta-cells. The full D-glucose dose response of electrical activity is obtained if the cytosolic rate of ATP hydrolysis is a sigmoidal function of glucose. The simulations give the correct shape, period, and phase of the associated oscillations in cytosolic Ca2+, predict that the conductance of the KATP current oscillates out of phase with electrical activity [as recently observed in ob/ob mice (O. Larsson, H. Kindmark, R. Bränstrom, B. Fredholm, and P.-O. Berggren. Proc. Natl. Acad. Sci. USA 93: 5161-5165, 1996)], and make other novel predictions. In this model, bursting results because Ca2+ uptake into mitochondria during the active phase reduces the mitochondrial inner membrane potential, reducing the rate of production of ATP, which in turn activates the KATP current and repolarizes the plasma membrane.
Collapse
Affiliation(s)
- G Magnus
- Institute of Theoretical Dynamics, University of California, Davis 95616, USA
| | | |
Collapse
|
199
|
Gomis A, Valdeolmillos M. Regulation by tolbutamide and diazoxide of the electrical activity in mouse pancreatic beta-cells recorded in vivo. Br J Pharmacol 1998; 123:443-8. [PMID: 9504385 PMCID: PMC1565189 DOI: 10.1038/sj.bjp.0701628] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. The glucose-dependence of beta-cell electrical activity and the effects of tolbutamide and diazoxide were studied in anaesthetized mice. 2. In untreated animals there was a direct relationship between glycaemia and the burst pattern of electrical activity. Animals with high glucose concentration showed continuous electrical activity. The application of insulin led to a steady decrease in blood glucose concentration and a transition from continuous to oscillatory activity at 7.7+/-0.1 mM glucose (mean+/-s.d.) and a subsequent transition from oscillatory to silent at 4.7+/-0.6 mM glucose. 3. At physiological blood glucose concentrations the electrical activity was oscillatory. The injection of tolbutamide (1800 mg kg[-1]) transformed this oscillatory pattern into one of continuous electrical activity. The increased electrical activity was associated with a decrease in blood glucose concentration from 7.1+/-0.9 (control) to 5.5+/-1.0 mM (10 min after tolbutamide injection). The effects of tolbutamide are consistent with a direct blocking effect on the K(ATP) channel that leads to membrane depolarization. 4. The injection of diazoxide (6000 mg kg[-1]) hyperpolarized the cells and transformed the oscillatory pattern into a silent one. This is consistent with a direct stimulant effect by diazoxide on the K(ATP) channel. The use of tolbutamide or diazoxide correspondingly led to the lengthening or shortening of the active phase of electrical activity, respectively. This indicates that in vivo, such activity can be modulated by the relative degree of activation or inhibition of the K(ATP) channel. 5. These results indicate that under physiological conditions, tolbutamide and diazoxide have direct and opposite effects on the electrical activity of pancreatic beta-cells, most likely through their action on K(ATP) channels. This is consistent with previous work carried out on in vitro models and explains the drugs hypo- and hyperglycaemic effects.
Collapse
Affiliation(s)
- A Gomis
- Instituto de Neurociencias-Departamento de Fisiología, Universidad Miguel Hernandez, Facultad de Medicina, Alicante, Spain
| | | |
Collapse
|
200
|
Sato Y, Nenquin M, Henquin JC. Relative contribution of Ca2+-dependent and Ca2+-independent mechanisms to the regulation of insulin secretion by glucose. FEBS Lett 1998; 421:115-9. [PMID: 9468290 DOI: 10.1016/s0014-5793(97)01547-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although insulin secretion is usually regarded as a Ca2+-dependent mechanism, recent studies have suggested the existence of a Ca2+-independent pathway of regulation by glucose. Here, mouse islets were used to compare the contribution of Ca2+-dependent and -independent pathways. Glucose increased insulin release in a concentration-dependent manner both in a control medium, when it depolarizes beta cells and raises [Ca2+]i (triggering signal), and in the presence of 30 mM K+ and diazoxide, when it does not further raise [Ca2+]i but increases its efficacy on exocytosis. Both Ca2+-dependent responses were amplified by glucagon-like peptide-1+acetylcholine, and were strongly potentiated by forskolin+PMA. Under conditions of mild or stringent Ca2+ deprivation, glucose had no effect either alone or with GLP-1 and acetylcholine, and was poorly effective even during pharmacological activation of protein kinases A and C. Similar results were obtained with rat islets. It is concluded that physiological regulation of insulin release by glucose is essentially achieved through the two Ca2+-dependent pathways without significant contribution of a Ca2+-independent mechanism.
Collapse
Affiliation(s)
- Y Sato
- Unité d'Endocrinologie et Métabolisme, University of Louvain Faculty of Medicine, UCL 55.30, Brussels, Belgium
| | | | | |
Collapse
|