151
|
Candidato RT, Thouzellier C, Pawłowski L. Evaluation of the in-vitro behavior of nanostructured hydroxyapatite and zinc doped hydroxyapatite coatings obtained using solution precursor plasma spraying. J Biomed Mater Res B Appl Biomater 2017; 106:2101-2108. [PMID: 28963860 DOI: 10.1002/jbm.b.34014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/12/2017] [Accepted: 09/17/2017] [Indexed: 11/08/2022]
Abstract
The in-vitro behavior of hydroxyapatite (HA) and zinc (Zn) doped HA coatings obtained using solution precursor plasma spraying is evaluated in this work. The modifications of the surface morphology and phase composition of the coatings after immersion in simulated body fluid (SBF) were analyzed. In particular, apatite layer was formed on the pure HA coating's surface and inside their micropores. The layer exhibited needle-like nanostructures where needles had diameter of 7-10 nm. The formation of apatite was explained by the surface charge mechanism. The formed thin apatite layer is considered to be bone-like apatite based from the thin film-X-ray diffraction analysis. The nanometric/submicrometric deposits of the HA coatings resulted to greater effective surface area exposed to SBF which allows for the accelerated formation of homogeneous apatite layer. Moreover, apatite was not formed in all Zn doped HA coatings due to the inhibiting effect of Zn ions present at the coatings' surface. This observation helped understand the mechanism of apatite formation based on the exchange of ionic charges between the SBF and the surface of the HA coating. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2101-2108, 2018.
Collapse
Affiliation(s)
- Rolando T Candidato
- Laboratoire de Science des Procédés Céramiques et de Traitements de Surface (SPCTS) UMR 7315 CNRS, Université de Limoges, Centre Européen de la Céramique, Limoges Cedex, France
| | - Camille Thouzellier
- Laboratoire de Science des Procédés Céramiques et de Traitements de Surface (SPCTS) UMR 7315 CNRS, Université de Limoges, Centre Européen de la Céramique, Limoges Cedex, France
| | - Lech Pawłowski
- Laboratoire de Science des Procédés Céramiques et de Traitements de Surface (SPCTS) UMR 7315 CNRS, Université de Limoges, Centre Européen de la Céramique, Limoges Cedex, France
| |
Collapse
|
152
|
Amorphous surface layer versus transient amorphous precursor phase in bone - A case study investigated by solid-state NMR spectroscopy. Acta Biomater 2017; 59:351-360. [PMID: 28690009 DOI: 10.1016/j.actbio.2017.06.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 12/31/2022]
Abstract
The presence of an amorphous surface layer that coats a crystalline core has been proposed for many biominerals, including bone mineral. In parallel, transient amorphous precursor phases have been proposed in various biomineralization processes, including bone biomineralization. Here we propose a methodology to investigate the origin of these amorphous environments taking the bone tissue as a key example. This study relies on the investigation of a bone tissue sample and its comparison with synthetic calcium phosphate samples, including a stoichiometric apatite, an amorphous calcium phosphate sample, and two different biomimetic apatites. To reveal if the amorphous environments in bone originate from an amorphous surface layer or a transient amorphous precursor phase, a combined solid-state nuclear magnetic resonance (NMR) experiment has been used. The latter consists of a double cross polarization 1H→31P→1H pulse sequence followed by a 1H magnetization exchange pulse sequence. The presence of an amorphous surface layer has been investigated through the study of the biomimetic apatites; while the presence of a transient amorphous precursor phase in the form of amorphous calcium phosphate particles has been mimicked with the help of a physical mixture of stoichiometric apatite and amorphous calcium phosphate. The NMR results show that the amorphous and the crystalline environments detected in our bone tissue sample belong to the same particle. The presence of an amorphous surface layer that coats the apatitic core of bone apatite particles has been unambiguously confirmed, and it is certain that this amorphous surface layer has strong implication on bone tissue biogenesis and regeneration. STATEMENT OF SIGNIFICANCE Questions still persist on the structural organization of bone and biomimetic apatites. The existing model proposes a core/shell structure, with an amorphous surface layer coating a crystalline bulk. The accuracy of this model is still debated because amorphous calcium phosphate (ACP) environments could also arise from a transient amorphous precursor phase of apatite. Here, we provide an NMR spectroscopy methodology to reveal the origin of these ACP environments in bone mineral or in biomimetic apatite. The 1H magnetization exchange between protons arising from amorphous and crystalline domains shows unambiguously that an ACP layer coats the apatitic crystalline core of bone et biomimetic apatite platelets.
Collapse
|
153
|
Sionkowska A, Kaczmarek B. Preparation and characterization of composites based on the blends of collagen, chitosan and hyaluronic acid with nano-hydroxyapatite. Int J Biol Macromol 2017; 102:658-666. [DOI: 10.1016/j.ijbiomac.2017.03.196] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/23/2017] [Accepted: 03/30/2017] [Indexed: 11/26/2022]
|
154
|
Ivanchenko P, Delgado-López JM, Iafisco M, Gómez-Morales J, Tampieri A, Martra G, Sakhno Y. On the surface effects of citrates on nano-apatites: evidence of a decreased hydrophilicity. Sci Rep 2017; 7:8901. [PMID: 28827557 PMCID: PMC5567200 DOI: 10.1038/s41598-017-09376-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 07/26/2017] [Indexed: 11/09/2022] Open
Abstract
The surface structure and hydrophilicity of synthetic nanocrystalline apatite with strongly bound citrates on their surface are here investigated at the molecular level, by combining advanced IR spectroscopy, microgravimetry and adsorption microcalorimetry. Citrate are found to form unidentate-like and ionic-like complexes with surface Ca2+ ions, with a surface coverage closely resembling that present in bone apatite platelets (i.e., 1 molecule/(n nm)2, with n ranging between 1.4 and 1.6). These surface complexes are part of a hydrated non-apatitic surface layer with a sub-nanometre thickness. Noticeably, it is found that the hydrophilicity of the nanoparticles, measured in terms of adsorption of water molecules in the form of multilayers, decreases in a significant extent in relation to the presence of citrates, most likely because of the exposure toward the exterior of –CH2 groups. Our findings provide new insights on the surface properties of bio-inspired nano-apatites, which can be of great relevance for better understanding the role of citrate in determining important interfacial properties, such as hydrophobicity, of bone apatite platelets. The evaluation and comprehension of surface composition and structure is also of paramount interest to strictly control the functions of synthetic biomaterials, since their surface chemistry strongly affects the hosting tissue response.
Collapse
Affiliation(s)
- Pavlo Ivanchenko
- Department of Chemistry and Interdepartmental Centre "Nanostructured Interfaces and Surfaces-NIS", University of Torino, Via P. Giuria 7, 10125, Torino, Italy
| | - José Manuel Delgado-López
- Laboratorio de Estudios Cristalográficos, IACT (CSIC-UGR), Avda. Las Palmeras 4, E-18100, Armilla, Granada, Spain
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018, Faenza (RA), Italy
| | - Jaime Gómez-Morales
- Laboratorio de Estudios Cristalográficos, IACT (CSIC-UGR), Avda. Las Palmeras 4, E-18100, Armilla, Granada, Spain
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018, Faenza (RA), Italy
| | - Gianmario Martra
- Department of Chemistry and Interdepartmental Centre "Nanostructured Interfaces and Surfaces-NIS", University of Torino, Via P. Giuria 7, 10125, Torino, Italy.
| | - Yuriy Sakhno
- Department of Chemistry and Interdepartmental Centre "Nanostructured Interfaces and Surfaces-NIS", University of Torino, Via P. Giuria 7, 10125, Torino, Italy.
| |
Collapse
|
155
|
Sugiura Y, Tsuru K, Ishikawa K. "Fabrication of arbitrarily shaped carbonate apatite foam based on the interlocking process of dicalcium hydrogen phosphate dihydrate". JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:122. [PMID: 28689353 DOI: 10.1007/s10856-017-5937-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
Carbonate apatite (CO3Ap) foam with an interconnected porous structure is highly attractive as a scaffold for bone replacement. In this study, arbitrarily shaped CO3Ap foam was formed from α-tricalcium phosphate (α-TCP) foam granules via a two-step process involving treatment with acidic calcium phosphate solution followed by hydrothermal treatment with NaHCO3. The treatment with acidic calcium phosphate solution, which is key to fabricating arbitrarily shaped CO3Ap foam, enables dicalcium hydrogen phosphate dihydrate (DCPD) crystals to form on the α-TCP foam granules. The generated DCPD crystals cause the α-TCP granules to interlock with each other, inducing an α-TCP/DCPD foam. The interlocking structure containing DCPD crystals can survive hydrothermal treatment with NaHCO3. The arbitrarily shaped CO3Ap foam was fabricated from the α-TCP/DCPD foam via hydrothermal treatment at 200 °C for 24 h in the presence of a large amount of NaHCO3.
Collapse
Affiliation(s)
- Yuki Sugiura
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Kanji Tsuru
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
156
|
More N, Kapusetti G. Piezoelectric material - A promising approach for bone and cartilage regeneration. Med Hypotheses 2017; 108:10-16. [PMID: 29055380 DOI: 10.1016/j.mehy.2017.07.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022]
Abstract
Bone and cartilage are major weight-bearing connective tissues in human and possesses utmost vulnerability for degeneration. The potential causes are mechanical trauma, cancer and disease condition like osteoarthritis and osteoporosis, etc. The regeneration/repair is a challenging, since their complex structures and activities. Current treatment options comprise of auto graft, allograft, artificial bone substituent, autologous chondrocyte implantation, mosaicplasty, marrow stimulation and tissue engineering. Were incompetent to overcome the problem like abandoned growth factor degradation, indistinct growth factor dose and lack of integrity and mechanical properties in regenerated tissues. Present, paper focuses on the novel hypothesis for regeneration of bone and cartilage by using piezoelectric smart property of scaffold material.
Collapse
Affiliation(s)
- Namdev More
- National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, India
| | - Govinda Kapusetti
- National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, India.
| |
Collapse
|
157
|
Mathew R, Turdean-Ionescu C, Yu Y, Stevensson B, Izquierdo-Barba I, García A, Arcos D, Vallet-Regí M, Edén M. Proton Environments in Biomimetic Calcium Phosphates Formed from Mesoporous Bioactive CaO-SiO 2-P 2O 5 Glasses in Vitro: Insights from Solid-State NMR. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:13223-13238. [PMID: 28663772 PMCID: PMC5484558 DOI: 10.1021/acs.jpcc.7b03469] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/23/2017] [Indexed: 05/26/2023]
Abstract
When exposed to body fluids, mesoporous bioactive glasses (MBGs) of the CaO-SiO2-P2O5 system develop a bone-bonding surface layer that initially consists of amorphous calcium phosphate (ACP), which transforms into hydroxy-carbonate apatite (HCA) with a very similar composition as bone/dentin mineral. Information from various 1H-based solid-state nuclear magnetic resonance (NMR) experiments was combined to elucidate the evolution of the proton speciations both at the MBG surface and within each ACP/HCA constituent of the biomimetic phosphate layer formed when each of three MBGs with distinct Ca, Si, and P contents was immersed in a simulated body fluid (SBF) for variable periods between 15 min and 30 days. Directly excited magic-angle-spinning (MAS) 1H NMR spectra mainly reflect the MBG component, whose surface is rich in water and silanol (SiOH) moieties. Double-quantum-single-quantum correlation 1H NMR experimentation at fast MAS revealed their interatomic proximities. The comparatively minor H species of each ACP and HCA component were probed selectively by heteronuclear 1H-31P NMR experimentation. The initially prevailing ACP phase comprises H2O and "nonapatitic" HPO42-/PO43- groups, whereas for prolonged MBG soaking over days, a well-progressed ACP → HCA transformation was evidenced by a dominating O1H resonance from HCA. We show that 1H-detected 1H → 31P cross-polarization NMR is markedly more sensitive than utilizing powder X-ray diffraction or 31P NMR for detecting the onset of HCA formation, notably so for P-bearing (M)BGs. In relation to the long-standing controversy as to whether bone mineral comprises ACP and/or forms via an ACP precursor, we discuss a recently accepted structural core-shell picture of both synthetic and biological HCA, highlighting the close relationship between the disordered surface layer and ACP.
Collapse
Affiliation(s)
- Renny Mathew
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Claudia Turdean-Ionescu
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Yang Yu
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Baltzar Stevensson
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Isabel Izquierdo-Barba
- Departamento
de Química Inorgánica y Bioinorgánica,
Facultad de Farmacia, Universidad Complutense
de Madrid, Instituto
de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain
- Networking
Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Ana García
- Departamento
de Química Inorgánica y Bioinorgánica,
Facultad de Farmacia, Universidad Complutense
de Madrid, Instituto
de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain
- Networking
Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Daniel Arcos
- Departamento
de Química Inorgánica y Bioinorgánica,
Facultad de Farmacia, Universidad Complutense
de Madrid, Instituto
de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain
- Networking
Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - María Vallet-Regí
- Departamento
de Química Inorgánica y Bioinorgánica,
Facultad de Farmacia, Universidad Complutense
de Madrid, Instituto
de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain
- Networking
Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Mattias Edén
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
158
|
Shin K, Acri T, Geary S, Salem AK. Biomimetic Mineralization of Biomaterials Using Simulated Body Fluids for Bone Tissue Engineering and Regenerative Medicine<sup/>. Tissue Eng Part A 2017; 23:1169-1180. [PMID: 28463603 DOI: 10.1089/ten.tea.2016.0556] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Development of synthetic biomaterials imbued with inorganic and organic characteristics of natural bone that are capable of promoting effective bone tissue regeneration is an ongoing goal of regenerative medicine. Calcium phosphate (CaP) has been predominantly utilized to mimic the inorganic components of bone, such as calcium hydroxyapatite, due to its intrinsic bioactivity and osteoconductivity. CaP-based materials can be further engineered to promote osteoinductivity through the incorporation of osteogenic biomolecules. In this study, we briefly describe the microstructure and the process of natural bone mineralization and introduce various methods for coating CaP onto biomaterial surfaces. In particular, we summarize the advantages and current progress of biomimetic surface-mineralizing processes using simulated body fluids for coating bone-like carbonated apatite onto various material surfaces such as metals, ceramics, and polymers. The osteoinductive effects of integrating biomolecules such as proteins, growth factors, and genes into the mineral coatings are also discussed.
Collapse
Affiliation(s)
- Kyungsup Shin
- 1 Department of Orthodontics, College of Dentistry and Dental Clinics, University of Iowa , Iowa City, Iowa
| | - Timothy Acri
- 2 Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa , Iowa City, Iowa
| | - Sean Geary
- 2 Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa , Iowa City, Iowa
| | - Aliasger K Salem
- 2 Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa , Iowa City, Iowa
| |
Collapse
|
159
|
Sethu SN, Namashivayam S, Devendran S, Nagarajan S, Tsai WB, Narashiman S, Ramachandran M, Ambigapathi M. Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering. Int J Biol Macromol 2017; 98:67-74. [DOI: 10.1016/j.ijbiomac.2017.01.089] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/11/2017] [Accepted: 01/18/2017] [Indexed: 01/24/2023]
|
160
|
Aortic calcified particles modulate valvular endothelial and interstitial cells. Cardiovasc Pathol 2017; 28:36-45. [DOI: 10.1016/j.carpath.2017.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/15/2017] [Accepted: 02/22/2017] [Indexed: 12/11/2022] Open
|
161
|
Abstract
The rising incidence of metabolic diseases worldwide has prompted renewed interest in the study of intermediary metabolism and cellular bioenergetics. The application of modern biochemical methods for quantitating fuel substrate metabolism with advanced mouse genetic approaches has greatly increased understanding of the mechanisms that integrate energy metabolism in the whole organism. Examination of the intermediary metabolism of skeletal cells has been sparked by a series of unanticipated observations in genetically modified mice that suggest the existence of novel endocrine pathways through which bone cells communicate their energy status to other centers of metabolic control. The recognition of this expanded role of the skeleton has in turn led to new lines of inquiry directed at defining the fuel requirements and bioenergetic properties of bone cells. This article provides a comprehensive review of historical and contemporary studies on the metabolic properties of bone cells and the mechanisms that control energy substrate utilization and bioenergetics. Special attention is devoted to identifying gaps in our current understanding of this new area of skeletal biology that will require additional research to better define the physiological significance of skeletal cell bioenergetics in human health and disease.
Collapse
Affiliation(s)
- Ryan C Riddle
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, Maryland; and The Baltimore Veterans Administration Medical Center, Baltimore, Maryland
| | - Thomas L Clemens
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, Maryland; and The Baltimore Veterans Administration Medical Center, Baltimore, Maryland
| |
Collapse
|
162
|
Eliaz N, Metoki N. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E334. [PMID: 28772697 PMCID: PMC5506916 DOI: 10.3390/ma10040334] [Citation(s) in RCA: 433] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/15/2017] [Accepted: 03/22/2017] [Indexed: 02/06/2023]
Abstract
Calcium phosphate (CaP) bioceramics are widely used in the field of bone regeneration, both in orthopedics and in dentistry, due to their good biocompatibility, osseointegration and osteoconduction. The aim of this article is to review the history, structure, properties and clinical applications of these materials, whether they are in the form of bone cements, paste, scaffolds, or coatings. Major analytical techniques for characterization of CaPs, in vitro and in vivo tests, and the requirements of the US Food and Drug Administration (FDA) and international standards from CaP coatings on orthopedic and dental endosseous implants, are also summarized, along with the possible effect of sterilization on these materials. CaP coating technologies are summarized, with a focus on electrochemical processes. Theories on the formation of transient precursor phases in biomineralization, the dissolution and reprecipitation as bone of CaPs are discussed. A wide variety of CaPs are presented, from the individual phases to nano-CaP, biphasic and triphasic CaP formulations, composite CaP coatings and cements, functionally graded materials (FGMs), and antibacterial CaPs. We conclude by foreseeing the future of CaPs.
Collapse
Affiliation(s)
- Noam Eliaz
- Biomaterials and Corrosion Lab, Department of Materials Science and Engineering, Tel-Aviv University, Ramat Aviv 6997801, Israel.
| | - Noah Metoki
- Biomaterials and Corrosion Lab, Department of Materials Science and Engineering, Tel-Aviv University, Ramat Aviv 6997801, Israel.
| |
Collapse
|
163
|
Gomes S, Kaur A, Grenèche JM, Nedelec JM, Renaudin G. Atomic scale modeling of iron-doped biphasic calcium phosphate bioceramics. Acta Biomater 2017; 50:78-88. [PMID: 27965170 DOI: 10.1016/j.actbio.2016.12.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 12/31/2022]
Abstract
Biphasic calcium phosphates (BCPs) are bioceramics composed of hydroxyapatite (HAp, Ca10(PO4)6(OH)2) and beta-Tricalcium Phosphate (β-TCP, Ca3(PO4)2). Because their chemical and mineral composition closely resembles that of the mineral component of bone, they are potentially interesting candidates for bone repair surgery, and doping can advantageously be used to improve their biological behavior. However, it is important to describe the doping mechanism of BCP thoroughly in order to be able to master its synthesis and then to fully appraise the benefit of the doping process. In the present paper we describe the ferric doping mechanism: the crystallographic description of our samples, sintered at between 500°C and 1100°C, was provided by Rietveld analyses on X-ray powder diffraction, and the results were confirmed using X-ray absorption spectroscopy and 57Fe Mössbauer spectrometry. The mechanism is temperature-dependent, like the previously reported zinc doping mechanism. Doping was performed on the HAp phase, at high temperature only, by an insertion mechanism. The Fe3+ interstitial site is located in the HAp hexagonal channel, shifted from its centre to form a triangular three-fold coordination. At lower temperatures, the Fe3+ are located at the centre of the channel, forming linear two-fold coordinated O-Fe-O entities. The knowledge of the doping mechanism is a prerequisite for a correct synthesis of the targeted bioceramic with the adapted (Ca+Fe)/P ratio, and so to be able to correctly predict its potential iron release or magnetic properties. STATEMENT OF SIGNIFICANCE Biphasic calcium phosphates (BCPs) are bioceramics composed of hydroxyapatite (HAp, Ca10(PO4)6(OH)2) and beta-Tricalium Phosphate (β-TCP, Ca3(PO4)2). Because their chemical and mineral composition closely resembles that of the mineral component of bone, they are potentially interesting candidates for bone repair surgery. Doping can advantageously be used to improve their biological behaviors and/or magnetic properties; however, it is important to describe the doping mechanism of BCP thoroughly in order to fully appraise the benefit of the doping process. The present paper scrutinizes in detail the incorporation of ferric cation in order to correctly interpret the behavior of the iron-doped bioceramic in biological fluid. The temperature dependent mechanism has been fully described for the first time. And it clearly appears that temperature can be used to design the doping according to desired medical application: blood compatibility, remineralization, bactericidal or magnetic response.
Collapse
|
164
|
Islam MT, Felfel RM, Abou Neel EA, Grant DM, Ahmed I, Hossain KMZ. Bioactive calcium phosphate-based glasses and ceramics and their biomedical applications: A review. J Tissue Eng 2017; 8:2041731417719170. [PMID: 28794848 PMCID: PMC5524250 DOI: 10.1177/2041731417719170] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/15/2017] [Indexed: 01/15/2023] Open
Abstract
An overview of the formation of calcium phosphate under in vitro environment on the surface of a range of bioactive materials (e.g. from silicate, borate, and phosphate glasses, glass-ceramics, bioceramics to metals) based on recent literature is presented in this review. The mechanism of bone-like calcium phosphate (i.e. hydroxyapatite) formation and the test protocols that are either already in use or currently being investigated for the evaluation of the bioactivity of biomaterials are discussed. This review also highlights the effect of chemical composition and surface charge of materials, types of medium (e.g. simulated body fluid, phosphate-buffered saline and cell culture medium) and test parameters on their bioactivity performance. Finally, a brief summary of the biomedical applications of these newly formed calcium phosphate (either in the form of amorphous or apatite) is presented.
Collapse
Affiliation(s)
- Md Towhidul Islam
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Reda M Felfel
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
- Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ensanya A Abou Neel
- Division of Biomaterials, Operative Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
- Biomaterials and Tissue Engineering Division, Eastman Dental Institute, University College London, London, UK
| | - David M Grant
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Ifty Ahmed
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Kazi M Zakir Hossain
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| |
Collapse
|
165
|
Sakae T, Kono T, Okada H, Nakada H, Ogawa H, Tsukioka T, Kaneda T. X-ray Micro-Diffraction Analysis Revealed the Crystallite Size Variation in the Neighboring Regions of a Small Bone Mass. J HARD TISSUE BIOL 2017. [DOI: 10.2485/jhtb.26.103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Toshiro Sakae
- Department of Histology, Nihon University School of Dentistry at Matsudo
| | - Tetsuro Kono
- Department of Histology, Nihon University School of Dentistry at Matsudo
| | - Hiroyuki Okada
- Department of Histology, Nihon University School of Dentistry at Matsudo
| | - Hiroshi Nakada
- Department of Removal Prosthodontics, Nihon University School of Dentistry at Matsudo
| | - Hidehito Ogawa
- Department of Radiology, Nihon University School of Dentistry at Matsudo
| | - Tsuneyuki Tsukioka
- Department of Radiology, Nihon University School of Dentistry at Matsudo
| | - Takashi Kaneda
- Department of Radiology, Nihon University School of Dentistry at Matsudo
| |
Collapse
|
166
|
Álvarez-Lloret P, Lee CM, Conti MI, Terrizzi AR, González-López S, Martínez MP. Effects of chronic lead exposure on bone mineral properties in femurs of growing rats. Toxicology 2016; 377:64-72. [PMID: 27915097 DOI: 10.1016/j.tox.2016.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/19/2016] [Accepted: 11/27/2016] [Indexed: 11/26/2022]
Abstract
Lead exposure has been associated with several defective skeletal growth processes and bone mineral alterations. The aim of the present study is to make a more detailed description of the toxic effects of lead intoxication on bone intrinsic material properties as mineral composition, morphology and microstructural characteristics. For this purpose, Wistar rats were exposed (n=12) to 1000ppm lead acetate in drinking water for 90days while control group (n=8) were treated with sodium acetate. Femurs were examined using inductively coupled plasma optical emission spectrometry (ICP-OES), Attenuated Total Reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and micro-Computed Tomography (μCT). Results showed that femur from the lead-exposed rats had higher carbonate content in bone mineral and (Ca2++Mg2++ Na+)/P ratio values, although no variations were observed in crystal maturity and crystallite size. From morphological analyses, lead exposure rats showed a decreased in trabecular bone surface and distribution while trabecular thickness and cortical area increased. These overall effects indicate a similar mechanism of bone maturation normally associated to age-related processes. These responses are correlated with the adverse actions induced by lead on the processes regulating bone turnover mechanism. This information may explain the osteoporosis diseases associated to lead intoxication as well as the risk of fracture observed in populations exposed to this toxicant.
Collapse
Affiliation(s)
- Pedro Álvarez-Lloret
- Departamento de Geología, Facultad de Geología, Universidad de Oviedo, Oviedo, Spain.
| | - Ching Ming Lee
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Fisiología, Buenos Aires, Argentina
| | - María Inés Conti
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Fisiología, Buenos Aires, Argentina
| | - Antonela Romina Terrizzi
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Fisiología, Buenos Aires, Argentina
| | | | - María Pilar Martínez
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Fisiología, Buenos Aires, Argentina
| |
Collapse
|
167
|
Voegel C, Bertron A, Erable B. Mechanisms of cementitious material deterioration in biogas digester. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:892-901. [PMID: 27432729 DOI: 10.1016/j.scitotenv.2016.07.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/08/2016] [Accepted: 07/10/2016] [Indexed: 06/06/2023]
Abstract
Digesters produce biogas from organic wastes through anaerobic digestion processes. These digesters, often made of concrete, suffer severe premature deterioration caused mainly by the presence of fermentative microorganisms producing metabolites that are aggressive towards cementitious materials. To clarify the degradation mechanisms in an anaerobic digestion medium, ordinary Portland cement paste specimens were immersed in the liquid fraction of a running, lab-scale digester for 4weeks. The anaerobic digestion medium was a mixture of a biowaste substrate and sludge from municipal wastewater treatment plant used as a source of anaerobic bacteria. The chemical characteristics of the anaerobic digestion liquid phase were monitored over time using a pH metre, high performance liquid chromatography (HPLC) and ion chromatography (HPIC). An initial critical period of low pH in the bioreactors was observed before the pH stabilized around 8. Acetic, propionic and butyric acids were produced during the digestion with a maximum total organic acid concentration of 50mmolL(-1). The maximum ammonium content of the liquid phase was 40mmolL(-1), which was about seven times the upper limit of the highly aggressive chemical environment class (XA3) as defined by the European standard for the specification of concrete design in chemically aggressive environments (EN 206). The changes in the mineralogical, microstructural and chemical characteristics of the cement pastes exposed to the solid and liquid phase of the digesters were analysed at the end of the immersion period by X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectrometry (EDS) and electron-probe micro-analysis (EPMA). A 700-μm thick altered layer was identified in the cement paste specimens. The main biodeterioration patterns in the bioreactors' solid/liquid phase were calcium leaching and carbonation of the cement matrix.
Collapse
Affiliation(s)
- C Voegel
- Laboratoire Matériaux et Durabilité des Constructions, Université de Toulouse, INSA, UPS, France; Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, France.
| | - A Bertron
- Laboratoire Matériaux et Durabilité des Constructions, Université de Toulouse, INSA, UPS, France
| | - B Erable
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, France
| |
Collapse
|
168
|
Marisa ME, Zhou S, Melot BC, Peaslee GF, Neilson JR. Paracrystalline Disorder from Phosphate Ion Orientation and Substitution in Synthetic Bone Mineral. Inorg Chem 2016; 55:12290-12298. [PMID: 27934442 DOI: 10.1021/acs.inorgchem.6b02025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mary E. Marisa
- Department of Chemistry, Colorado State University, Fort
Collins, Colorado 80523-1872, United States
| | - Shiliang Zhou
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0105, United States
| | - Brent C. Melot
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0105, United States
| | - Graham F. Peaslee
- Department
of Chemistry, Hope College, Holland, Michigan 49423-3605, United States
| | - James R. Neilson
- Department of Chemistry, Colorado State University, Fort
Collins, Colorado 80523-1872, United States
| |
Collapse
|
169
|
Kaflak A, Chmielewski D, Kolodziejski W. Solid-state NMR study of discrete environments of bone mineral nanoparticles using phosphorus-31 relaxation. J Appl Biomed 2016. [DOI: 10.1016/j.jab.2016.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
170
|
Microengineered platforms for co-cultured mesenchymal stem cells towards vascularized bone tissue engineering. Tissue Eng Regen Med 2016; 13:465-474. [PMID: 30603428 DOI: 10.1007/s13770-016-9080-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/08/2015] [Accepted: 12/18/2015] [Indexed: 12/11/2022] Open
Abstract
Bone defects are common disease requiring thorough treatments since the bone is a complex vascularized tissue that is composed of multiple cell types embedded within an intricate extracellular matrix (ECM). For past decades, tissue engineering using cells, proteins, and scaffolds has been suggested as one of the promising approaches for effective bone regeneration. Recently, many researchers have been interested in designing effective platform for tissue regeneration by orchestrating factors involved in microenvironment around tissues. Among factors affecting bone formation, vascularization during bone development and after minor insults via endochondral and intramembranous ossification is especially critical for the long-term support for functional bone. In order to create vascularized bone constructs, the interactions between human mesenchymal stem cells (MSCs) and endothelial cells (ECs) have been investigated using both direct and indirect co-culture studies. Recently, various culture methods including micropatterning techniques, three dimensional scaffolds, and microfluidics have been developed to create micro-engineered platforms that mimic the nature of vascularized bone formation, leading to the creation of functional bone structures. This review focuses on MSCs co-cultured with endothelial cells and microengineered platforms to determine the underlying interplay between co-cultured MSCs and vascularized bone constructs, which is ultimately necessary for adequate regeneration of bone defects.
Collapse
|
171
|
Abou Neel EA, Aljabo A, Strange A, Ibrahim S, Coathup M, Young AM, Bozec L, Mudera V. Demineralization-remineralization dynamics in teeth and bone. Int J Nanomedicine 2016; 11:4743-4763. [PMID: 27695330 PMCID: PMC5034904 DOI: 10.2147/ijn.s107624] [Citation(s) in RCA: 375] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Biomineralization is a dynamic, complex, lifelong process by which living organisms control precipitations of inorganic nanocrystals within organic matrices to form unique hybrid biological tissues, for example, enamel, dentin, cementum, and bone. Understanding the process of mineral deposition is important for the development of treatments for mineralization-related diseases and also for the innovation and development of scaffolds. This review provides a thorough overview of the up-to-date information on the theories describing the possible mechanisms and the factors implicated as agonists and antagonists of mineralization. Then, the role of calcium and phosphate ions in the maintenance of teeth and bone health is described. Throughout the life, teeth and bone are at risk of demineralization, with particular emphasis on teeth, due to their anatomical arrangement and location. Teeth are exposed to food, drink, and the microbiota of the mouth; therefore, they have developed a high resistance to localized demineralization that is unmatched by bone. The mechanisms by which demineralization-remineralization process occurs in both teeth and bone and the new therapies/technologies that reverse demineralization or boost remineralization are also scrupulously discussed. Technologies discussed include composites with nano- and micron-sized inorganic minerals that can mimic mechanical properties of the tooth and bone in addition to promoting more natural repair of surrounding tissues. Turning these new technologies to products and practices would improve health care worldwide.
Collapse
Affiliation(s)
- Ensanya Ali Abou Neel
- Division of Biomaterials, Operative Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Anas Aljabo
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Adam Strange
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Salwa Ibrahim
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Melanie Coathup
- UCL Institute of Orthopaedics and Musculoskeletal Sciences, Royal National Orthopaedic Hospital, Stanmore, London, UK
| | - Anne M Young
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Laurent Bozec
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Vivek Mudera
- UCL Institute of Orthopaedics and Musculoskeletal Sciences, Royal National Orthopaedic Hospital, Stanmore, London, UK
| |
Collapse
|
172
|
Cholakova D, Denkov N, Tcholakova S, Lesov I, Smoukov SK. Control of drop shape transformations in cooled emulsions. Adv Colloid Interface Sci 2016; 235:90-107. [PMID: 27389390 DOI: 10.1016/j.cis.2016.06.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 11/27/2022]
Abstract
The general mechanisms of structure and form generation are the keys to understanding the fundamental processes of morphogenesis in living and non-living systems. In our recent study (Denkov et al., Nature 528 (2015) 392) we showed that micrometer sized n-alkane drops, dispersed in aqueous surfactant solutions, can break symmetry upon cooling and "self-shape" into a series of geometric shapes with complex internal structure. This phenomenon is important in two contexts, as it provides: (a) new, highly efficient bottom-up approach for producing particles with complex shapes, and (b) remarkably simple system, from the viewpoint of its chemical composition, which exhibits the basic processes of structure and shape transformations, reminiscent of morphogenesis events in living organisms. In the current study, we show for the first time that drops of other chemical substances, such as long-chain alcohols, triglycerides, alkyl cyclohexanes, and linear alkenes, can also evolve spontaneously into similar non-spherical shapes. We demonstrate that the main factors which control the drop "self-shaping", are the surfactant type and chain length, cooling rate, and initial drop size. The studied surfactants are classified into four distinct groups, with respect to their effect on the "self-shaping" phenomenon. Coherent explanations of the main experimental trends are proposed. The obtained results open new prospects for fundamental and applied research in several fields, as they demonstrate that: (1) very simple chemical systems may show complex structure and shape shifts, similar to those observed in living organisms; (2) the molecular self-assembly in frustrated confinement may result in complex events, governed by the laws of elasto-capillarity and tensegrity; (3) the surfactant type and cooling rate could be used to obtain micro-particles with desired shapes and aspect ratios; and (4) the systems studied serve as a powerful toolbox to investigate systematically these phenomena.
Collapse
Affiliation(s)
- Diana Cholakova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, Bulgaria
| | - Nikolai Denkov
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, Bulgaria
| | - Slavka Tcholakova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, Bulgaria
| | - Ivan Lesov
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, Bulgaria
| | - Stoyan K Smoukov
- Active and Intelligent Materials Lab, Department of Materials Science & Metallurgy, University of Cambridge, UK.
| |
Collapse
|
173
|
Adsorption of tranexamic acid on hydroxyapatite: Toward the development of biomaterials with local hemostatic activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 66:1-7. [DOI: 10.1016/j.msec.2016.04.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/16/2016] [Accepted: 04/11/2016] [Indexed: 11/19/2022]
|
174
|
Nganvongpanit K, Siengdee P, Buddhachat K, Brown JL, Klinhom S, Pitakarnnop T, Angkawanish T, Thitaram C. Anatomy, histology and elemental profile of long bones and ribs of the Asian elephant (Elephas maximus). Anat Sci Int 2016; 92:554-568. [PMID: 27491825 DOI: 10.1007/s12565-016-0361-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/26/2016] [Indexed: 10/21/2022]
Abstract
This study evaluated the morphology and elemental composition of Asian elephant (Elephas maximus) bones (humerus, radius, ulna, femur, tibia, fibula and rib). Computerized tomography was used to image the intraosseous structure, compact bones were processed using histological techniques, and elemental profiling of compact bone was conducted using X-ray fluorescence. There was no clear evidence of an open marrow cavity in any of the bones; rather, dense trabecular bone was found in the bone interior. Compact bone contained double osteons in the radius, tibia and fibula. The osteon structure was comparatively large and similar in all bones, although the lacuna area was greater (P < 0.05) in the femur and ulna. Another finding was that nutrient foramina were clearly present in the humerus, ulna, femur, tibia and rib. Twenty elements were identified in elephant compact bone. Of these, ten differed significantly across the seven bones: Ca, Ti, V, Mn, Fe, Zr, Ag, Cd, Sn and Sb. Of particular interest was the finding of a significantly larger proportion of Fe in the humerus, radius, fibula and ribs, all bones without an open medullary cavity, which is traditionally associated with bone marrow for blood cell production. In conclusion, elephant bones present special characteristics, some of which may be important to hematopoiesis and bone strength for supporting a heavy body weight.
Collapse
Affiliation(s)
- Korakot Nganvongpanit
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Faculty of Veterinary Medicine, Center of Excellence in Elephant Research and Education, Chiang Mai University, Chiang Mai, 50100, Thailand.
| | - Puntita Siengdee
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Kittisak Buddhachat
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Janine L Brown
- Smithsonian Conservation Biology Institute, Center for Species Survival, 1500 Remount Road, Front Royal, VA, 22630, USA
| | - Sarisa Klinhom
- Faculty of Veterinary Medicine, Center of Excellence in Elephant Research and Education, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Tanita Pitakarnnop
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Taweepoke Angkawanish
- National Elephant Institute, Forest Industry Organization, Hangchat, Lampang, 52190, Thailand
| | - Chatchote Thitaram
- Faculty of Veterinary Medicine, Center of Excellence in Elephant Research and Education, Chiang Mai University, Chiang Mai, 50100, Thailand
| |
Collapse
|
175
|
Ishiko-Uzuka R, Anada T, Kobayashi K, Kawai T, Tanuma Y, Sasaki K, Suzuki O. Oriented bone regenerative capacity of octacalcium phosphate/gelatin composites obtained through two-step crystal preparation method. J Biomed Mater Res B Appl Biomater 2016; 105:1029-1039. [DOI: 10.1002/jbm.b.33640] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/21/2016] [Accepted: 02/03/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Risa Ishiko-Uzuka
- Division of Maxillofacial Prosthetic Clinic; Tohoku University Hospital; Sendai 980-8575 Japan
- Division of Craniofacial Function Engineering; Tohoku University Graduate of Dentistry; Sendai 980-8575 Japan
- Division of Advanced Prosthetic Dentistry; Tohoku University Graduate School of Dentistry; Sendai 980-8575 Japan
| | - Takahisa Anada
- Division of Craniofacial Function Engineering; Tohoku University Graduate of Dentistry; Sendai 980-8575 Japan
| | - Kazuhito Kobayashi
- Division of Craniofacial Function Engineering; Tohoku University Graduate of Dentistry; Sendai 980-8575 Japan
| | - Tadashi Kawai
- Division of Oral and Maxillofacial Surgery; Tohoku University Graduate School of Dentistry; Sendai 980-8575 Japan
| | - Yuji Tanuma
- Division of Oral and Maxillofacial Surgery; Tohoku University Graduate School of Dentistry; Sendai 980-8575 Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry; Tohoku University Graduate School of Dentistry; Sendai 980-8575 Japan
| | - Osamu Suzuki
- Division of Craniofacial Function Engineering; Tohoku University Graduate of Dentistry; Sendai 980-8575 Japan
| |
Collapse
|
176
|
Impact of the chemical composition of poly-substituted hydroxyapatite particles on the in vitro pro-inflammatory response of macrophages. Biomed Microdevices 2016; 18:27. [DOI: 10.1007/s10544-016-0056-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
177
|
Zhao Z, Espanol M, Guillem-Marti J, Kempf D, Diez-Escudero A, Ginebra MP. Ion-doping as a strategy to modulate hydroxyapatite nanoparticle internalization. NANOSCALE 2016; 8:1595-1607. [PMID: 26690499 DOI: 10.1039/c5nr05262a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Although it is widely acknowledged that ionic substitutions on bulk hydroxyapatite substrates have a strong impact on their biological performance, little is known of their effect on nanoparticles (NPs) especially when used for gene transfection or drug delivery. The fact that NPs would be internalized poses many questions but also opens up many new possibilities. The objective of the present work is to synthesize and assess the effect of a series of hydroxyapatite-like (HA) NPs doped with various ions on cell behavior, i.e. carbonate, magnesium and co-addition. We synthesized NPs under similar conditions to allow comparison of results and different aspects in addition to assessing the effect of the doping ion(s) were investigated: (1) the effect of performing the cell culture study on citrate-dispersed NPs and on agglomerated NPs, (2) the effect of adding/excluding 10% of foetal bovine serum (FBS) in the cell culture media and (3) the type of cell, i.e. MG-63 versus rat mesenchymal stem cells (rMSCs). The results clearly demonstrated that Mg-doping had a major effect on MG-63 cells with high cytotoxicity but not to rMSCs. This was a very important finding because it proved that doping could be a tool to modify NP internalization. The results also suggest that NP surface charge had a large impact on MG-63 cells and prevents their internalization if it is too negative-this effect was less critical for rMSCs.
Collapse
Affiliation(s)
- Z Zhao
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia, Av. Diagonal 647, Barcelona 08028, Spain. and Centre for Research in Nanoengineering, Technical University of Catalonia, Pascual i Vila 15, Barcelona 08028, Spain
| | - M Espanol
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia, Av. Diagonal 647, Barcelona 08028, Spain. and Centre for Research in Nanoengineering, Technical University of Catalonia, Pascual i Vila 15, Barcelona 08028, Spain
| | - J Guillem-Marti
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia, Av. Diagonal 647, Barcelona 08028, Spain. and Centre for Research in Nanoengineering, Technical University of Catalonia, Pascual i Vila 15, Barcelona 08028, Spain
| | - D Kempf
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia, Av. Diagonal 647, Barcelona 08028, Spain.
| | - A Diez-Escudero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia, Av. Diagonal 647, Barcelona 08028, Spain. and Centre for Research in Nanoengineering, Technical University of Catalonia, Pascual i Vila 15, Barcelona 08028, Spain
| | - M-P Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia, Av. Diagonal 647, Barcelona 08028, Spain. and Centre for Research in Nanoengineering, Technical University of Catalonia, Pascual i Vila 15, Barcelona 08028, Spain
| |
Collapse
|
178
|
Biomineralization of calcium phosphate crystals on chitin nanofiber hydrogel for bone regeneration material. Carbohydr Polym 2016; 136:964-9. [DOI: 10.1016/j.carbpol.2015.10.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/30/2015] [Accepted: 10/03/2015] [Indexed: 02/01/2023]
|
179
|
Sukul M, Min YK, Lee SY, Lee BT. Osteogenic potential of simvastatin loaded gelatin-nanofibrillar cellulose-β tricalcium phosphate hydrogel scaffold in critical-sized rat calvarial defect. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.10.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
180
|
Unal M, Akkus O. Raman spectral classification of mineral- and collagen-bound water's associations to elastic and post-yield mechanical properties of cortical bone. Bone 2015; 81. [PMID: 26211992 PMCID: PMC4640992 DOI: 10.1016/j.bone.2015.07.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Water that is bound to bone's matrix is implied as a predictor of fracture resistance; however, bound water is an elusive variable to be measured nondestructively. To date, the only nondestructive method used for studying bone hydration status is magnetic resonance variants (NMR or MRI). For the first time, bone hydration status was studied by short-wave infrared (SWIR) Raman spectroscopy to investigate associations of mineral-bound and collagen-bound water compartments with mechanical properties. Thirty cortical bone samples were used for quantitative Raman-based water analysis, gravimetric analysis, porosity measurement, and biomechanical testing. A sequential dehydration protocol was developed to replace unbound (heat drying) and bound (ethanol treatment) water in bone. Raman spectra were collected serially to track the OH-stretch band during dehydration. Four previously identified peaks were investigated: I3220/I2949, I3325/I2949 and I3453/I2949 reflect status of organic-matrix related water (mostly collagen-related water) compartments and collagen portion of bone while I3584/I2949 reflects status of mineral-related water compartments and mineral portion of bone. These spectroscopic biomarkers were correlated with elastic and post-yield mechanical properties of bone. Collagen-water related biomarkers (I3220/I2949 and I3325/I2949) correlated significantly and positively with toughness (R(2)=0.81 and R(2)=0.79; p<0.001) and post-yield toughness (R(2)=0.65 and R(2)=0.73; p<0.001). Mineral-water related biomarker correlated significantly and negatively with elastic modulus (R(2)=0.78; p<0.001) and positively with strength (R(2)=0.46; p<0.001). While MR-based techniques have been useful in measuring unbound and bound water, this is the first study which probed bound-water compartments differentially for collagen and mineral-bound water. For the first time, we showed an evidence for contributions of different bound-water compartments to mechanical properties of wet bone and the reported correlations of Raman-based water measurements to mechanical properties underline the necessity for enabling approaches to assess these new biomarkers noninvasively in vivo to improve the current diagnosis of those who may be at risk of bone fracture due to aging and diseases.
Collapse
Affiliation(s)
- Mustafa Unal
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Orthopaedics, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
181
|
Dorozhkin SV. Calcium orthophosphates (CaPO 4): occurrence and properties. Prog Biomater 2015; 5:9-70. [PMID: 27471662 PMCID: PMC4943586 DOI: 10.1007/s40204-015-0045-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/05/2015] [Indexed: 01/02/2023] Open
Abstract
The present overview is intended to point the readers' attention to the important subject of calcium orthophosphates (CaPO4). This type of materials is of the special significance for the human beings because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with CaPO4, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenorthophosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of CaPO4. Similarly, dental caries and osteoporosis might be considered as in vivo dissolution of CaPO4. In addition, natural CaPO4 are the major source of phosphorus, which is used to produce agricultural fertilizers, detergents and various phosphorus-containing chemicals. Thus, there is a great significance of CaPO4 for the humankind and, in this paper, an overview on the current knowledge on this subject is provided.
Collapse
|
182
|
Canullo L, Wiel Marin G, Tallarico M, Canciani E, Musto F, Dellavia C. Histological and Histomorphometrical Evaluation of Postextractive Sites Grafted with Mg-Enriched Nano-Hydroxyapatite: A Randomized Controlled Trial Comparing 4 Versus 12 Months of Healing. Clin Implant Dent Relat Res 2015; 18:973-983. [DOI: 10.1111/cid.12381] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | - Elena Canciani
- Department of Biomedical, Surgical Dental Sciences; “Università degli Studi di Milano”; Milan Italy
| | - Federica Musto
- Department of Biomedical, Surgical Dental Sciences; “Università degli Studi di Milano”; Milan Italy
| | - Claudia Dellavia
- Department of Biomedical, Surgical Dental Sciences; “Università degli Studi di Milano”; Milan Italy
| |
Collapse
|
183
|
Querido W, Rossi AL, Farina M. The effects of strontium on bone mineral: A review on current knowledge and microanalytical approaches. Micron 2015; 80:122-34. [PMID: 26546967 DOI: 10.1016/j.micron.2015.10.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/14/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022]
Abstract
The interest in effects of strontium (Sr) on bone has greatly increased in the last decade due to the development of the promising drug strontium ranelate. This drug is used for treating osteoporosis, a major bone disease affecting hundreds of millions of people worldwide, especially postmenopausal women. The novelty of strontium ranelate compared to other treatments for osteoporosis is its unique effect on bone: it simultaneously promotes bone formation by osteoblasts and inhibits bone resorption by osteoclasts. Besides affecting bone cells, treatment with strontium ranelate also has a direct effect on the mineralized bone matrix. Due to the chemical similarities between Sr and Ca, a topic that has long been of particular interest is the incorporation of Sr into bones replacing Ca from the mineral phase, which is composed by carbonated hydroxyapatite nanocrystals. Several groups have analyzed the mineral produced during treatment; however, most analysis were done with relatively large samples containing numerous nanocrystals, resulting thus on data that represents an average of many crystalline domains. The nanoscale analysis of the bone apatite crystals containing Sr has only been described in a few studies. In this study, we review the current knowledge on the effects of Sr on bone mineral and discuss the methodological approaches that have been used in the field. In particular, we focus on the great potential that advanced microscopy and microanalytical techniques may have on the detailed analysis of the nanostructure and composition of bone apatite nanocrystals produced during treatment with strontium ranelate.
Collapse
Affiliation(s)
- William Querido
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Andre L Rossi
- Centro Brasileiro de Pesquisas Físicas, 22290-180 Rio de Janeiro, RJ, Brazil
| | - Marcos Farina
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
184
|
Denry I, Kuhn LT. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dent Mater 2015; 32:43-53. [PMID: 26423007 DOI: 10.1016/j.dental.2015.09.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/04/2015] [Accepted: 09/09/2015] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Our goal is to review design strategies for the fabrication of calcium phosphate ceramic scaffolds (CPS), in light of their transient role in bone tissue engineering and associated requirements for effective bone regeneration. METHODS We examine the various design options available to meet mechanical and biological requirements of CPS and later focus on the importance of proper characterization of CPS in terms of architecture, mechanical properties and time-sensitive properties such as biodegradability. Finally, relationships between in vitro versus in vivo testing are addressed, with an attempt to highlight reliable performance predictors. RESULTS A combinatory design strategy should be used with CPS, taking into consideration 3D architecture, adequate surface chemistry and topography, all of which are needed to promote bone formation. CPS represent the media of choice for delivery of osteogenic factors and anti-infectives. Non-osteoblast mediated mineral deposition can confound in vitro osteogenesis testing of CPS and therefore the expression of a variety of proteins or genes including collagen type I, bone sialoprotein and osteocalcin should be confirmed in addition to increased mineral content. CONCLUSIONS CPS are a superior scaffold material for bone regeneration because they actively promote osteogenesis. Biodegradability of CPS via calcium and phosphate release represents a unique asset. Structural control of CPS at the macro, micro and nanoscale and their combination with cells and polymeric materials is likely to lead to significant developments in bone tissue engineering.
Collapse
Affiliation(s)
- Isabelle Denry
- Department of Prosthodontics, University of Iowa College of Dentistry, 801 Newton Road, Iowa City, IA 52242-1010, USA.
| | - Liisa T Kuhn
- Department of Reconstructive Sciences, UConn Health, 263 Farmington Avenue, MC 1615, Farmington, CT 06030-1615, USA
| |
Collapse
|
185
|
Müller WEG, Tolba E, Schröder HC, Wang X. Polyphosphate: A Morphogenetically Active Implant Material Serving as Metabolic Fuel for Bone Regeneration. Macromol Biosci 2015; 15:1182-1197. [DOI: 10.1002/mabi.201500100] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry; University Medical Center of the Johannes Gutenberg University; Duesbergweg 6; D-55128 Mainz Germany
| | - Emad Tolba
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry; University Medical Center of the Johannes Gutenberg University; Duesbergweg 6; D-55128 Mainz Germany
- Biomaterials Department; Inorganic Chemical Industries Division; National Research Center; Doki Cairo; 11884 Egypt
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry; University Medical Center of the Johannes Gutenberg University; Duesbergweg 6; D-55128 Mainz Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry; University Medical Center of the Johannes Gutenberg University; Duesbergweg 6; D-55128 Mainz Germany
| |
Collapse
|
186
|
Ellingham ST, Thompson TJ, Islam M. The Effect of Soft Tissue on Temperature Estimation from Burnt Bone Using Fourier Transform Infrared Spectroscopy. J Forensic Sci 2015; 61:153-9. [DOI: 10.1111/1556-4029.12855] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/26/2014] [Accepted: 11/15/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Sarah T.D. Ellingham
- School of Science and Engineering; Teesside University; TS5 5QG Middlesbrough UK
| | - Tim J.U. Thompson
- School of Science and Engineering; Teesside University; TS5 5QG Middlesbrough UK
| | - Meez Islam
- School of Science and Engineering; Teesside University; TS5 5QG Middlesbrough UK
| |
Collapse
|
187
|
Iline-Vul T, Matlahov I, Grinblat J, Keinan-Adamsky K, Goobes G. Changes to the Disordered Phase and Apatite Crystallite Morphology during Mineralization by an Acidic Mineral Binding Peptide from Osteonectin. Biomacromolecules 2015. [PMID: 26207448 DOI: 10.1021/acs.biomac.5b00465] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Noncollagenous proteins regulate the formation of the mineral constituent in hard tissue. The mineral formed contains apatite crystals coated by a functional disordered calcium phosphate phase. Although the crystalline phase of bone mineral was extensively investigated, little is known about the disordered layer's composition and structure, and less is known regarding the function of noncollagenous proteins in the context of this layer. In the current study, apatite was prepared with an acidic peptide (ON29) derived from the bone/dentin protein osteonectin. The mineral formed comprises needle-shaped hydroxyapatite crystals like in dentin and a stable disordered phase coating the apatitic crystals as shown using X-ray diffraction, transmission electron microscopy, and solid-state NMR techniques. The peptide, embedded between the mineral particles, reduces the overall phosphate content in the mineral formed as inferred from inductively coupled plasma and elemental analysis results. Magnetization transfers between disordered phase species and apatitic phase species are observed for the first time using 2D (1)H-(31)P heteronuclear correlation NMR measurements. The dynamics of phosphate magnetization transfers reveal that ON29 decreases significantly the amount of water molecules in the disordered phase and increases slightly their content at the ordered-disordered interface. The peptide decreases hydroxyl to disordered phosphate transfers within the surface layer but does not influence transfer within the bulk crystalline mineral. Overall, these results indicate that control of crystallite morphology and properties of the inorganic component in hard tissue by biomolecules is more involved than just direct interaction between protein functional groups and mineral crystal faces. Subtler mechanisms such as modulation of the disordered phase composition and structural changes at the ordered-disordered interface may be involved.
Collapse
Affiliation(s)
- Taly Iline-Vul
- Department of Chemistry, Bar Ilan University , Ramat Gan 52900, Israel
| | - Irina Matlahov
- Department of Chemistry, Bar Ilan University , Ramat Gan 52900, Israel
| | - Judith Grinblat
- Department of Chemistry, Bar Ilan University , Ramat Gan 52900, Israel
| | | | - Gil Goobes
- Department of Chemistry, Bar Ilan University , Ramat Gan 52900, Israel
| |
Collapse
|
188
|
Dicken AJ, Evans JPO, Rogers KD, Stone N, Greenwood C, Godber SX, Prokopiou D, Clement JG, Lyburn ID, Martin RM, Zioupos P. X-ray diffraction from bone employing annular and semi-annular beams. Phys Med Biol 2015; 60:5803-12. [PMID: 26159892 DOI: 10.1088/0031-9155/60/15/5803] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There is a compelling need for accurate, low cost diagnostics to identify osteo-tissues that are associated with a high risk of fracture within an individual. To satisfy this requirement the quantification of bone characteristics such as 'bone quality' need to exceed that provided currently by densitometry. Bone mineral chemistry and microstructure can be determined from coherent x-ray scatter signatures of bone specimens. Therefore, if these signatures can be measured, in vivo, to an appropriate accuracy it should be possible by extending terms within a fracture risk model to improve fracture risk prediction.In this preliminary study we present an examination of a new x-ray diffraction technique that employs hollow annular and semi-annular beams to measure aspects of 'bone quality'. We present diffractograms obtained with our approach from ex vivo bone specimens at Mo Kα and W Kα energies. Primary data is parameterized to provide estimates of bone characteristics and to indicate the precision with which these can be determined.
Collapse
Affiliation(s)
- A J Dicken
- Imaging Science Group, Nottingham Trent University, Nottingham, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Dorozhkin SV. Calcium Orthophosphate-Containing Biocomposites and Hybrid Biomaterials for Biomedical Applications. J Funct Biomater 2015; 6:708-832. [PMID: 26262645 PMCID: PMC4598679 DOI: 10.3390/jfb6030708] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 12/30/2022] Open
Abstract
The state-of-the-art on calcium orthophosphate (CaPO4)-containing biocomposites and hybrid biomaterials suitable for biomedical applications is presented. Since these types of biomaterials offer many significant and exciting possibilities for hard tissue regeneration, this subject belongs to a rapidly expanding area of biomedical research. Through the successful combinations of the desired properties of matrix materials with those of fillers (in such systems, CaPO4 might play either role), innovative bone graft biomaterials can be designed. Various types of CaPO4-based biocomposites and hybrid biomaterials those are either already in use or being investigated for biomedical applications are extensively discussed. Many different formulations in terms of the material constituents, fabrication technologies, structural and bioactive properties, as well as both in vitro and in vivo characteristics have been already proposed. Among the others, the nano-structurally controlled biocomposites, those containing nanodimensional compounds, biomimetically fabricated formulations with collagen, chitin and/or gelatin, as well as various functionally graded structures seem to be the most promising candidates for clinical applications. The specific advantages of using CaPO4-based biocomposites and hybrid biomaterials in the selected applications are highlighted. As the way from a laboratory to a hospital is a long one and the prospective biomedical candidates have to meet many different necessities, the critical issues and scientific challenges that require further research and development are also examined.
Collapse
|
190
|
Uskoković V. The Role of Hydroxyl Channel in Defining Selected Physicochemical Peculiarities Exhibited by Hydroxyapatite. RSC Adv 2015; 5:36614-36633. [PMID: 26229593 PMCID: PMC4517856 DOI: 10.1039/c4ra17180b] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mysteries surrounding the most important mineral for the vertebrate biology, hydroxyapatite, are many. Perhaps the Greek root of its name, απαταo, meaning 'to deceive' and given to its mineral form by the early gem collectors who confused it with more precious stones, is still applicable today, though in a different connotation, descriptive of a number of physicochemical peculiarities exhibited by it. Comparable to water as the epitome of peculiarities in the realm of liquids, hydroxyapatite can serve as a paradigm for peculiarities in the world of solids. Ten of the peculiar properties of hydroxyapatite are sketched in this review piece, ranging from (i) the crystal lattice flexibility to (ii) notorious surface layer instability to (iii) finite piezoelectricity, pyroelectricity and conductivity to protons to (iv) accelerated growth and improved osteoconductivity in the electromagnetic fields to (v) high nucleation rate at low supersaturations and low crystal growth rate at high supersaturations to (vi) higher bioactivity and resorbability of biological apatite compared to the synthetic ones, and beyond. An attempt has been made to explain this array of curious characteristics by referring to a particular element of the crystal structure of hydroxyapatite: the hydroxyl ion channel extending in the direction of the c-axis, through a crystallographic column created by the overlapping calcium ion triangles.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, IL 60607-7052, USA
| |
Collapse
|
191
|
Kolmas J, Marek D, Kolodziejski W. Near-Infrared (NIR) Spectroscopy of Synthetic Hydroxyapatites and Human Dental Tissues. APPLIED SPECTROSCOPY 2015; 69:902-912. [PMID: 26163232 DOI: 10.1366/14-07720] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Near-infrared spectroscopy (NIR) was used to analyze synthetic hydroxyapatite calcined at various temperatures, synthetic carbonated hydroxyapatite, and human hard dental tissues (enamel and dentin). The NIR bands of those materials in the combination, first-overtone, and second-overtone spectral regions were assigned and evaluated for structural characterization. They were attributed to adsorbed and structural water, structural hydroxyl (OH) groups and surface P-OH groups. The NIR spectral features were quantitatively discussed in view of proton solid-state magic-angle spinning nuclear magnetic resonance ((1)H MAS NMR) results. We conclude that the NIR spectra of apatites are useful in the structural characterization of synthetic and biogenic apatites.
Collapse
Affiliation(s)
- Joanna Kolmas
- Medical University of Warsaw, Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, ul. Banacha 1, 02-097 Warsaw, Poland
| | | | | |
Collapse
|
192
|
Meng S, Zhang X, Xu M, Heng BC, Dai X, Mo X, Wei J, Wei Y, Deng X. Effects of deer age on the physicochemical properties of deproteinized antler cancellous bone: an approach to optimize osteoconductivity of bone graft. Biomed Mater 2015; 10:035006. [DOI: 10.1088/1748-6041/10/3/035006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
193
|
Liu Q, Matinlinna JP, Chen Z, Ning C, Ni G, Pan H, Darvell BW. Effect of thermal treatment on carbonated hydroxyapatite: Morphology, composition, crystal characteristics and solubility. CERAMICS INTERNATIONAL 2015; 41:6149-6157. [DOI: 10.1016/j.ceramint.2014.11.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
194
|
Arun Kumar R, Sivashanmugam A, Deepthi S, Iseki S, Chennazhi KP, Nair SV, Jayakumar R. Injectable Chitin-Poly(ε-caprolactone)/Nanohydroxyapatite Composite Microgels Prepared by Simple Regeneration Technique for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2015; 7:9399-9409. [PMID: 25893690 DOI: 10.1021/acsami.5b02685] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Injectable gel systems, for the purpose of bone defect reconstruction, have many advantages, such as controlled flowability, adaptability to the defect site, and increased handling properties when compared to the conventionally used autologous graft, scaffolds, hydroxyapatite blocks, etc. In this work, nanohydroxyapatite (nHAp) incorporated chitin-poly(ε-caprolactone) (PCL) based injectable composite microgels has been developed by a simple regeneration technique for bone defect repair. The prepared microgel systems were characterized using scanning electron microscope (SEM), Fourier transformed infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The composite microgel, with the incorporation of nHAp, showed an increased elastic modulus and thermal stability and had shear-thinning behavior proving the injectability of the system. The protein adsorption, cytocompatibility, and migration of rabbit adipose derived mesenchymal stem cells (rASCs) were also studied. Chitin-PCL-nHAp microgel elicited an early osteogenic differentiation compared to control gel. The immunofluorescence studies confirmed the elevated expression of osteogenic-specific markers such as alkaline phosphatase, osteopontin, and osteocalcin in chitin-PCL-nHAp microgels. Thus, chitin-PCL-nHAp microgel could be a promising injectable system for regeneration of bone defects which are, even in deeper planes, irregularly shaped and complex in nature.
Collapse
Affiliation(s)
- R Arun Kumar
- †Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Kochi-682041, India
| | - A Sivashanmugam
- †Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Kochi-682041, India
| | - S Deepthi
- †Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Kochi-682041, India
| | - Sachiko Iseki
- ‡Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo-113-8549, Japan
| | - K P Chennazhi
- †Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Kochi-682041, India
| | - Shantikumar V Nair
- †Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Kochi-682041, India
| | - R Jayakumar
- †Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Kochi-682041, India
| |
Collapse
|
195
|
Duer MJ. The contribution of solid-state NMR spectroscopy to understanding biomineralization: atomic and molecular structure of bone. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:98-110. [PMID: 25797009 DOI: 10.1016/j.jmr.2014.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/15/2014] [Accepted: 12/23/2014] [Indexed: 05/06/2023]
Abstract
Solid-state NMR spectroscopy has had a major impact on our understanding of the structure of mineralized tissues, in particular bone. Bone exemplifies the organic-inorganic composite structure inherent in mineralized tissues. The organic component of the extracellular matrix in bone is primarily composed of ordered fibrils of collagen triple-helical molecules, in which the inorganic component, calcium phosphate particles, composed of stacks of mineral platelets, are arranged around the fibrils. This perspective argues that key factors in our current structural model of bone mineral have come about through NMR spectroscopy and have yielded the primary information on how the mineral particles interface and bind with the underlying organic matrix. The structure of collagen within the organic matrix of bone or any other structural tissue has yet to be determined, but here too, this perspective shows there has been real progress made through application of solid-state NMR spectroscopy in conjunction with other techniques. In particular, NMR spectroscopy has highlighted the fact that even within these structural proteins, there is considerable dynamics, which suggests that one should be cautious when using inherently static structural models, such as those arising from X-ray diffraction analyses, to gain insight into molecular roles. It is clear that the NMR approach is still in its infancy in this area, and that we can expect many more developments in the future, particularly in understanding the molecular mechanisms of bone diseases and ageing.
Collapse
Affiliation(s)
- Melinda J Duer
- Dept. of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
196
|
Addison WN, Nelea V, Chicatun F, Chien YC, Tran-Khanh N, Buschmann MD, Nazhat SN, Kaartinen MT, Vali H, Tecklenburg MM, Franceschi RT, McKee MD. Extracellular matrix mineralization in murine MC3T3-E1 osteoblast cultures: an ultrastructural, compositional and comparative analysis with mouse bone. Bone 2015; 71:244-56. [PMID: 25460184 PMCID: PMC6342200 DOI: 10.1016/j.bone.2014.11.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/30/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
Abstract
Bone cell culture systems are essential tools for the study of the molecular mechanisms regulating extracellular matrix mineralization. MC3T3-E1 osteoblast cell cultures are the most commonly used in vitro model of bone matrix mineralization. Despite the widespread use of this cell line to study biomineralization, there is as yet no systematic characterization of the mineral phase produced in these cultures. Here we provide a comprehensive, multi-technique biophysical characterization of this cell culture mineral and extracellular matrix, and compare it to mouse bone and synthetic apatite mineral standards, to determine the suitability of MC3T3-E1 cultures for biomineralization studies. Elemental compositional analysis by energy-dispersive X-ray spectroscopy (EDS) showed calcium and phosphorus, and trace amounts of sodium and magnesium, in both biological samples. X-ray diffraction (XRD) on resin-embedded intact cultures demonstrated that similar to 1-month-old mouse bone, apatite crystals grew with preferential orientations along the (100), (101) and (111) mineral planes indicative of guided biogenic growth as opposed to dystrophic calcification. XRD of crystals isolated from the cultures revealed that the mineral phase was poorly crystalline hydroxyapatite with 10 to 20nm-sized nanocrystallites. Consistent with the XRD observations, electron diffraction patterns indicated that culture mineral had low crystallinity typical of biological apatites. Fourier-transform infrared spectroscopy (FTIR) confirmed apatitic carbonate and phosphate within the biological samples. With all techniques utilized, cell culture mineral and mouse bone mineral were remarkably similar. Scanning (SEM) and transmission (TEM) electron microscopy showed that the cultures had a dense fibrillar collagen matrix with small, 100nm-sized, collagen fibril-associated mineralization foci which coalesced to form larger mineral aggregates, and where mineralized sites showed the accumulation of the mineral-binding protein osteopontin. Light microscopy, confocal microscopy and three-dimensional reconstructions showed that some cells had dendritic processes and became embedded within the mineral in an osteocyte-like manner. In conclusion, we have documented characteristics of the mineral and matrix phases of MC3T3-E1 osteoblast cultures, and have determined that the structural and compositional properties of the mineral are highly similar to that of mouse bone.
Collapse
Affiliation(s)
- W N Addison
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - V Nelea
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - F Chicatun
- Department of Mining and Materials, McGill University, Montreal, Quebec, Canada
| | - Y-C Chien
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - N Tran-Khanh
- Department of Chemical Engineering, École Polytechnique, Montreal, Quebec, Canada
| | - M D Buschmann
- Department of Chemical Engineering, École Polytechnique, Montreal, Quebec, Canada
| | - S N Nazhat
- Department of Mining and Materials, McGill University, Montreal, Quebec, Canada
| | - M T Kaartinen
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - H Vali
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - M M Tecklenburg
- Department of Chemistry, Central Michigan University, Mount Pleasant, MI, USA
| | - R T Franceschi
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - M D McKee
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
197
|
Yazdani ME, Monjezi BH, Mokfi M, Bozorgzadeh H, Gil A, Ghiaci M. Synthesis and characterization of new hydrodesulphurization Co–Mo catalysts supported on calcined and pyrolyzed bone. RSC Adv 2015. [DOI: 10.1039/c5ra00828j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of cobalt–molybdenum catalysts supported on calcined bone (hydroxyapatite, HAP) and pyrolyzed bone (hydroxyapatite–carbon, HAP–C) have been prepared by an impregnation method.
Collapse
Affiliation(s)
- M. Emami Yazdani
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Iran
| | - B. H. Monjezi
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Iran
| | - M. Mokfi
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Iran
| | - H. Bozorgzadeh
- Gas Research Center
- Research Institute of Petroleum Industry
- Tehran
- Iran
| | - A. Gil
- Department of Applied Chemistry
- Public University of Navarra
- 31006 Pamplona
- Spain
| | - M. Ghiaci
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Iran
| |
Collapse
|
198
|
Bendtsen ST, Wei M. Synthesis and characterization of a novel injectable alginate–collagen–hydroxyapatite hydrogel for bone tissue regeneration. J Mater Chem B 2015; 3:3081-3090. [DOI: 10.1039/c5tb00072f] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This novel fabrication process allowed for the development of an injectable hydrogel system with a gelation time suitable for a surgical setting and components necessary for promoting enhanced bone regeneration.
Collapse
Affiliation(s)
- Stephanie T. Bendtsen
- Department of Materials Science and Engineering
- Institute of Material Science
- University of Connecticut
- Storrs
- USA
| | - Mei Wei
- Department of Materials Science and Engineering
- Institute of Material Science
- University of Connecticut
- Storrs
- USA
| |
Collapse
|
199
|
Relationships between tissue composition and viscoelastic properties in human trabecular bone. J Biomech 2015; 48:269-75. [DOI: 10.1016/j.jbiomech.2014.11.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 01/22/2023]
|
200
|
Cosmidis J, Benzerara K, Nassif N, Tyliszczak T, Bourdelle F. Characterization of Ca-phosphate biological materials by scanning transmission X-ray microscopy (STXM) at the Ca L2,3-, P L2,3- and C K-edges. Acta Biomater 2015; 12:260-269. [PMID: 25305511 DOI: 10.1016/j.actbio.2014.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 08/19/2014] [Accepted: 10/02/2014] [Indexed: 02/05/2023]
Abstract
Several naturally occurring biological materials, including bones and teeth, pathological calcifications, microbial mineral deposits formed in marine phosphogenesis areas, as well as bio-inspired cements used for bone and tooth repair are composed of Ca-phosphates. These materials are usually identified and characterized using bulk-scale analytical tools such as X-ray diffraction, Fourier transform infrared spectroscopy or nuclear magnetic resonance. However, there is a need for imaging techniques that provide information on the spatial distribution and chemical composition of the Ca-phosphate phases at the micrometer- and nanometer scales. Such analyses provide insightful indications on how the materials may have formed, e.g. through transient precursor phases that eventually remain spatially separated from the mature phase. Here, we present scanning transmission X-ray microscopy (STXM) analyses of Ca-phosphate reference compounds, showing the feasibility of fingerprinting Ca-phosphate-based materials. We calibrate methods to determine important parameters of Ca-phosphate phases, such as their Ca/P ratio and carbonate content at the ∼25nm scale, using X-ray absorption near-edge spectra at the C K-, Ca L2,3- and P L2,3-edges. As an illustrative case study, we also perform STXM analyses on hydroxyapatite precipitates formed in a dense fibrillar collagen matrix. This study paves the way for future research on Ca-phosphate biomineralization processes down to the scale of a few tens of nanometers.
Collapse
Affiliation(s)
- Julie Cosmidis
- Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), Sorbonne Universités, Univ Paris 06, CNRS UMR 7590, MNHN, IRD UMR 206, F-75252 Paris 05, France
| | - Karim Benzerara
- Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), Sorbonne Universités, Univ Paris 06, CNRS UMR 7590, MNHN, IRD UMR 206, F-75252 Paris 05, France.
| | - Nadine Nassif
- Lab Chim Matière Condensée (LMCM), Univ Paris 06, Coll France, CNRS UMR 7574, F-75231 Paris 05, France
| | - Tolek Tyliszczak
- Lawrence Berkeley National Laboratory, Advanced Light Source, Berkeley, CA 94720 USA
| | - Franck Bourdelle
- Lab Génie Civil et géo-Environnement (LGCgE), Univ Lille 1, SN5, 59655 Villeneuve-d'Ascq, France
| |
Collapse
|