151
|
Wang W, Zheng S, Sharshov K, Sun H, Yang F, Wang X, Li L, Xiao Z. Metagenomic profiling of gut microbial communities in both wild and artificially reared Bar-headed goose (Anser indicus). Microbiologyopen 2016; 6. [PMID: 27998035 PMCID: PMC5387313 DOI: 10.1002/mbo3.429] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/17/2016] [Accepted: 10/27/2016] [Indexed: 12/28/2022] Open
Abstract
Bar-headed goose (Anser indicus), a species endemic to Asia, has become one of the most popular species in recent years for rare bird breeding industries in several provinces of China. There has been no information on the gut metagenome configuration in both wild and artificially reared Bar-headed geese, even though the importance of gut microbiome in vertebrate nutrient and energy metabolism, immune homeostasis and reproduction is widely acknowledged. In this study, metagenomic methods have been used to describe the microbial community structure and composition of functional genes associated with both wild and artificially reared Bar-headed goose. Taxonomic analyses revealed that Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes were the four most abundant phyla in the gut of Bar-headed geese. Bacteroidetes were significantly abundant in the artificially reared group compared to wild group. Through functional profiling, we found that artificially reared Bar-headed geese had higher bacterial gene content related to carbohydrate transport and metabolism, energy metabolism and coenzyme transport, and metabolism. A comprehensive gene catalog of Bar-headed geese metagenome was built, and the metabolism of carbohydrate, amino acid, nucleotide, and energy were found to be the four most abundant categories. These results create a baseline for future Bar-headed goose microbiology research, and make an original contribution to the artificial rearing of this bird.
Collapse
Affiliation(s)
- Wen Wang
- Center of GrowthMetabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life Sciences and State Key Laboratory of BiotherapySichuan UniversityChengduChina
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXi'ningChina
| | - Sisi Zheng
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXi'ningChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kirill Sharshov
- Research Institute of Experimental and Clinical MedicineNovosibirskRussia
| | - Hao Sun
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXi'ningChina
| | - Fang Yang
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXi'ningChina
| | - Xuelian Wang
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXi'ningChina
| | - Laixing Li
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXi'ningChina
| | - Zhixiong Xiao
- Center of GrowthMetabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life Sciences and State Key Laboratory of BiotherapySichuan UniversityChengduChina
| |
Collapse
|
152
|
Aranda-Olmedo I, Rubio LA. Heterogeneous size datasets of broiler intestinal microbial communities can be analyzed without normalization. Poult Sci 2016; 95:2414-20. [PMID: 26740134 DOI: 10.3382/ps/pev268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/29/2015] [Indexed: 11/20/2022] Open
Abstract
Next-generation sequencing technologies have become a powerful tool for the analysis of microbial communities. Sequencing of the hypervariable regions of the 16S ribosomal RNA gene following the amplitag amplification process has allowed the study of the diversity of samples of diverse origin. According to previous reports, the number of sequences required for the correct determination of the composition of a given sample may vary with the degree of diversity of that sample. In this paper, we investigate the correctness of comparing heterogeneous size datasets of bird intestinal microbial communities obtained from pyrosequencing data (Roche 454 technology) without prior normalization. We conclude that the differences observed between samples are due mainly to individual differences, not to differences in the number of readings in each sample, which makes data normalization unnecessary with the conditions described here.
Collapse
Affiliation(s)
- I Aranda-Olmedo
- Fisiología y Bioquímica de la Nutrición Animal (EEZ, CSIC), Profesor Albareda, 1 18008 Granada, Spain
| | - L A Rubio
- Fisiología y Bioquímica de la Nutrición Animal (EEZ, CSIC), Profesor Albareda, 1 18008 Granada, Spain
| |
Collapse
|
153
|
Effects of captivity and artificial breeding on microbiota in feces of the red-crowned crane (Grus japonensis). Sci Rep 2016; 6:33350. [PMID: 27628212 PMCID: PMC5024133 DOI: 10.1038/srep33350] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 08/26/2016] [Indexed: 01/25/2023] Open
Abstract
Reintroduction of the threatened red-crowned crane has been unsuccessful. Although gut microbiota correlates with host health, there is little information on gut microbiota of cranes under different conservation strategies. The study examined effects of captivity, artificial breeding and life stage on gut microbiota of red-crown cranes. The gut microbiotas of wild, captive adolescent, captive adult, artificially bred adolescent and artificially bred adult cranes were characterized by next-generation sequencing of 16S rRNA gene amplicons. The gut microbiotas were dominated by three phyla: Firmicutes (62.9%), Proteobacteria (29.9%) and Fusobacteria (9.6%). Bacilli dominated the 'core' community consisting of 198 operational taxonomic units (OTUs). Both captivity and artificial breeding influenced the structures and diversities microbiota of the gut. Especially, wild cranes had distinct compositions of gut microbiota from captive and artificially bred cranes. The greatest alpha diversity was found in captive cranes, while wild cranes had the least. According to the results of ordination analysis, influences of captivity and artificial breeding were greater than that of life stage. Overall, captivity and artificial breeding influenced the gut microbiota, potentially due to changes in diet, vaccination, antibiotics and living conditions. Metagenomics can serve as a supplementary non-invasive screening tool for disease control.
Collapse
|
154
|
Yang Y, Deng Y, Cao L. Characterising the interspecific variations and convergence of gut microbiota in Anseriformes herbivores at wintering areas. Sci Rep 2016; 6:32655. [PMID: 27600170 PMCID: PMC5013396 DOI: 10.1038/srep32655] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/12/2016] [Indexed: 02/07/2023] Open
Abstract
Microorganisms in vertebrate guts have been recognized as important symbionts influencing host life. However, it remains unclear about the gut microbiota in long-distance migratory Anseriformes herbivores, which could be functionally important for these wetland-dependent animals. We collected faeces of the greater white-fronted goose (GWFG), bean goose (BG) and swan goose (SG) from Shengjin Lake (SJL) and Poyang Lake (PYL) in the Yangtze River Floodplain, China. High-throughput sequencing of 16S rRNA V4 region was employed to depict the composition and structure of geese gut microbiota during wintering period. The dominant bacterial phyla across all samples were Firmicutes, Proteobacteria and Actinobacteria, but significant variations were detected among different goose species and sampling sites, in terms of α diversity, community structures and microbial interactions. We found a significant correlation between diet and the microbial community structure in GWFG-SJL samples. These results demonstrated that host species and diet are potential drivers of goose gut microbiota assemblies. Despite these variations, functions of geese gut microbiota were similar, with great abundances of potential genes involved in nutrient metabolism. This preliminary study would be valuable for future, exhaustive investigations of geese gut microbiota and their interactions with host.
Collapse
Affiliation(s)
- Yuzhan Yang
- School of Life Sciences, University of Science and Technology of China, Huangshan Road, Hefei, 230026, China
| | - Ye Deng
- Research Center of Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lei Cao
- Research Center of Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
155
|
Colston TJ, Jackson CR. Microbiome evolution along divergent branches of the vertebrate tree of life: what is known and unknown. Mol Ecol 2016; 25:3776-800. [DOI: 10.1111/mec.13730] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/25/2016] [Accepted: 05/30/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Timothy J. Colston
- Department of Biology The University of Mississippi University MS 38677 USA
| | - Colin R. Jackson
- Department of Biology The University of Mississippi University MS 38677 USA
| |
Collapse
|
156
|
Escallón C, Becker MH, Walke JB, Jensen RV, Cormier G, Belden LK, Moore IT. Testosterone levels are positively correlated with cloacal bacterial diversity and the relative abundance of Chlamydiae in breeding male rufous‐collared sparrows. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12696] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Camilo Escallón
- Department of Biological Sciences Virginia Tech 2119 Derring Hall Blacksburg Virginia 24061 USA
| | - Matthew H. Becker
- Department of Biological Sciences Virginia Tech 2119 Derring Hall Blacksburg Virginia 24061 USA
| | - Jenifer B. Walke
- Department of Biological Sciences Virginia Tech 2119 Derring Hall Blacksburg Virginia 24061 USA
| | - Roderick V. Jensen
- Department of Biological Sciences Virginia Tech 2119 Derring Hall Blacksburg Virginia 24061 USA
| | - Guy Cormier
- Georgia Advanced Computing Resource Center The University of Georgia 4098C Stegeman Coliseum Athens Georgia 30602 USA
| | - Lisa K. Belden
- Department of Biological Sciences Virginia Tech 2119 Derring Hall Blacksburg Virginia 24061 USA
| | - Ignacio T. Moore
- Department of Biological Sciences Virginia Tech 2119 Derring Hall Blacksburg Virginia 24061 USA
| |
Collapse
|
157
|
Wang W, Zheng S, Sharshov K, Cao J, Sun H, Yang F, Wang X, Li L. Distinctive gut microbial community structure in both the wild and farmed Swan goose (Anser cygnoides). J Basic Microbiol 2016; 56:1299-1307. [DOI: 10.1002/jobm.201600155] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/29/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Wen Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota; Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xi'ning Qinghai P.R. China
- Center of Growth, Metabolism and Aging; College of Life Sciences; Sichuan University; Chengdu Sichuan P.R. China
| | - Sisi Zheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota; Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xi'ning Qinghai P.R. China
- University of Chinese Academy of Sciences; Beijing P.R. China
| | - Kirill Sharshov
- Research Institute of Experimental and Clinical Medicine; Novosibirsk Russia
| | - Jian Cao
- Key Laboratory of Adaptation and Evolution of Plateau Biota; Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xi'ning Qinghai P.R. China
- University of Chinese Academy of Sciences; Beijing P.R. China
| | - Hao Sun
- Key Laboratory of Adaptation and Evolution of Plateau Biota; Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xi'ning Qinghai P.R. China
| | - Fang Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota; Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xi'ning Qinghai P.R. China
| | - Xuelian Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota; Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xi'ning Qinghai P.R. China
| | - Laixing Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota; Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xi'ning Qinghai P.R. China
| |
Collapse
|
158
|
Diversity and composition of cultivable gut bacteria in an endemic island bird and its mainland sister species. Symbiosis 2016. [DOI: 10.1007/s13199-016-0419-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
159
|
Kohl KD, Connelly JW, Dearing MD, Forbey JS. Microbial detoxification in the gut of a specialist avian herbivore, the Greater Sage-Grouse. FEMS Microbiol Lett 2016; 363:fnw144. [DOI: 10.1093/femsle/fnw144] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2016] [Indexed: 12/25/2022] Open
|
160
|
Barbosa A, Balagué V, Valera F, Martínez A, Benzal J, Motas M, Diaz JI, Mira A, Pedrós-Alió C. Age-Related Differences in the Gastrointestinal Microbiota of Chinstrap Penguins (Pygoscelis antarctica). PLoS One 2016; 11:e0153215. [PMID: 27055030 PMCID: PMC4824521 DOI: 10.1371/journal.pone.0153215] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/26/2016] [Indexed: 11/30/2022] Open
Abstract
The gastrointestinal tract microbiota is known to play very important roles in the well being of animals. It is a complex community composed by hundreds of microbial species interacting closely among them and with their host, that is, a microbial ecosystem. The development of high throughput sequencing techniques allows studying the diversity of such communities in a realistic way and considerable work has been carried out in mammals and some birds such as chickens. Wild birds have received less attention and in particular, in the case of penguins, only a few individuals of five species have been examined with molecular techniques. We collected cloacal samples from Chinstrap penguins in the Vapour Col rookery in Deception Island, Antarctica, and carried out pyrosequencing of the V1-V3 region of the 16S rDNA in samples from 53 individuals, 27 adults and 26 chicks. This provided the first description of the Chinstrap penguin gastrointestinal tract microbiota and the most extensive in any penguin species. Firmicutes, Bacteoridetes, Proteobacteria, Fusobacteria, Actinobacteria, and Tenericutes were the main components. There were large differences between chicks and adults. The former had more Firmicutes and the latter more Bacteroidetes and Proteobacteria. In addition, adults had richer and more diverse bacterial communities than chicks. These differences were also observed between parents and their offspring. On the other hand, nests explained differences in bacterial communities only among chicks. We suggest that environmental factors have a higher importance than genetic factors in the microbiota composition of chicks. The results also showed surprisingly large differences in community composition with other Antarctic penguins including the congeneric Adélie and Gentoo penguins.
Collapse
Affiliation(s)
- Andrés Barbosa
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Vanessa Balagué
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Spain
| | - Francisco Valera
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, CSIC, Almería, Spain
| | - Ana Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México DF, México
| | - Jesús Benzal
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, CSIC, Almería, Spain
| | - Miguel Motas
- Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | - Julia I. Diaz
- Centro de Estudios Parasitológicos y de Vectores, CCT La Plata (CONICET-UNLP), La Plata, Argentina
| | - Alex Mira
- Department of Genomics and Health, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain
| | - Carlos Pedrós-Alió
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Spain
| |
Collapse
|
161
|
Park SH, Lee SI, Ricke SC. Microbial Populations in Naked Neck Chicken Ceca Raised on Pasture Flock Fed with Commercial Yeast Cell Wall Prebiotics via an Illumina MiSeq Platform. PLoS One 2016; 11:e0151944. [PMID: 26992104 PMCID: PMC4798181 DOI: 10.1371/journal.pone.0151944] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/07/2016] [Indexed: 12/11/2022] Open
Abstract
Prebiotics are non-digestible carbohydrate dietary supplements that selectively stimulate the growth of one or more beneficial bacteria in the gastrointestinal tract of the host. These bacteria can inhibit colonization of pathogenic bacteria by producing antimicrobial substances such as short chain fatty acids (SCFAs) and competing for niches with pathogens within the gut. Pasture flock chickens are generally raised outdoors with fresh grass, sunlight and air, which represents different environmental growth conditions compared to conventionally raised chickens. The purpose of this study was to evaluate the difference in microbial populations from naked neck chicken ceca fed with commercial prebiotics derived from brewer’s yeast cell wall via an Illumina MiSeq platform. A total of 147 day-of-hatch naked neck chickens were distributed into 3 groups consisted of 1) C: control (no prebiotic), 2) T1: Biolex® MB40 with 0.2%, and 3) T2: Leiber® ExCel with 0.2%, consistently supplemented prebiotics during the experimental period. At 8 weeks, a total of 15 birds from each group were randomly selected and ceca removed for DNA extraction. The Illumina Miseq platform based on V4 region of 16S rRNA gene was applied for microbiome analysis. Both treatments exhibited limited impact on the microbial populations at the phylum level, with no significant differences in the OTU number of Bacteroidetes among groups and an increase of Proteobacteria OTUs for the T1 (Biolex® MB40) group. In addition there was a significant increase of genus Faecalibacterium OTU, phylum Firmicutes. According to the development of next generation sequencing (NGS), microbiome analysis based on 16S rRNA gene proved to be informative on the prebiotic impact on poultry gut microbiota in pasture-raised naked neck birds.
Collapse
Affiliation(s)
- Si Hong Park
- Center for Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704, United States of America
| | - Sang In Lee
- Center for Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704, United States of America
- Cellular and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR 72701, United States of America
| | - Steven C. Ricke
- Center for Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704, United States of America
- Cellular and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR 72701, United States of America
- * E-mail:
| |
Collapse
|
162
|
Energetic costs and implications of the intake of plant secondary metabolites on digestive and renal morphology in two austral passerines. J Comp Physiol B 2016; 186:625-37. [PMID: 26931656 DOI: 10.1007/s00360-016-0974-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/12/2016] [Accepted: 02/16/2016] [Indexed: 10/22/2022]
Abstract
Seed-eating birds have a diet of high nutritional value; however, they must cope with plant secondary metabolites (PSM). We postulated that the detoxification capacity of birds is associated with a metabolic cost, given that the organs responsible for detoxification significantly contribute to energetic metabolism. We used an experimental approach to assess the effects of phenol-enriched diets on two passerines with different feeding habits: the omnivorous rufous-collared sparrow (Zonotrichia capensis) and the granivorous common diuca-finch (Diuca diuca). The birds were fed with one of three diets: control diet, supplemented with tannic acid, or supplemented with Opuntia ficus-indica phenolic extract (a common food of the sparrow but not the finch). After 5 weeks of exposure to the diets, we measured basal metabolic rates (BMR), energy intake, glucuronic acid output and digestive and kidney structure. In both species, detoxification capacity expressed as glucuronic acid output was higher in individuals consuming phenol-enriched diets compared to the control diet. However, whereas sparrows increase energy intake and intestinal mass when feeding on phenol-enriched diets, finches had lower intestinal mass and energy intake remains stable. Furthermore, sparrows had higher BMR on phenol-enriched diets compared to the control group, whereas in the finches BMR remains unchanged. Interspecific differences in response to phenols intake may be determined by the dietary habits of these species. While both species can feed on moderate phenolic diets for 5 weeks, energy costs may differ due to different responses in food intake and organ structure to counteract the effects of PSM intake.
Collapse
|
163
|
Chalvatzi S, Kalamaki M, Arsenos G, Fortomaris P. Dietary supplementation with the clay mineral palygorskite affects performance and beneficially modulates caecal microbiota in laying pullets. J Appl Microbiol 2016; 120:1033-40. [DOI: 10.1111/jam.13041] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 12/18/2022]
Affiliation(s)
- S. Chalvatzi
- Laboratory of Animal Husbandry; Faculty of Veterinary Medicine; School of Health Sciences; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - M.S. Kalamaki
- Laboratory of Animal Husbandry; Faculty of Veterinary Medicine; School of Health Sciences; Aristotle University of Thessaloniki; Thessaloniki Greece
- Division of Technology and Sciences; American College of Thessaloniki; Thessaloniki Greece
| | - G. Arsenos
- Laboratory of Animal Husbandry; Faculty of Veterinary Medicine; School of Health Sciences; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - P. Fortomaris
- Laboratory of Animal Husbandry; Faculty of Veterinary Medicine; School of Health Sciences; Aristotle University of Thessaloniki; Thessaloniki Greece
| |
Collapse
|
164
|
Wang W, Cao J, Yang F, Wang X, Zheng S, Sharshov K, Li L. High-throughput sequencing reveals the core gut microbiome of Bar-headed goose (Anser indicus) in different wintering areas in Tibet. Microbiologyopen 2016; 5:287-95. [PMID: 26842811 PMCID: PMC4831473 DOI: 10.1002/mbo3.327] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/31/2015] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
Elucidating the spatial dynamic and core gut microbiome related to wild bar‐headed goose is of crucial importance for probiotics development that may meet the demands of bar‐headed goose artificial breeding industries and accelerate the domestication of this species. However, the core microbial communities in the wild bar‐headed geese remain totally unknown. Here, for the first time, we present a comprehensive survey of bar‐headed geese gut microbial communities by Illumina high‐throughput sequencing technology using nine individuals from three distinct wintering locations in Tibet. A total of 236,676 sequences were analyzed, and 607 OTUs were identified. We show that the gut microbial communities of bar‐headed geese have representatives of 14 phyla and are dominated by Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. The additive abundance of these four most dominant phyla was above 96% across all the samples. At the genus level, the sequences represented 150 genera. A set of 19 genera were present in all samples and considered as core gut microbiome. The top seven most abundant core genera were distributed in that four dominant phyla. Among them, four genera (Lactococcus, Bacillus, Solibacillus, and Streptococcus) belonged to Firmicutes, while for other three phyla, each containing one genus, such as Proteobacteria (genus Pseudomonas), Actinobacteria (genus Arthrobacter), and Bacteroidetes (genus Bacteroides). This broad survey represents the most in‐depth assessment, to date, of the gut microbes that associated with bar‐headed geese. These data create a baseline for future bar‐headed goose microbiology research, and make an original contribution to probiotics development for bar‐headed goose artificial breeding industries.
Collapse
Affiliation(s)
- Wen Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, 810000, China.,Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610000, China
| | - Jian Cao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, 810000, China.,University of the Chinese Academy of Sciences, Beijing, 100101,, China
| | - Fang Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, 810000, China
| | - Xuelian Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, 810000, China
| | - Sisi Zheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, 810000, China.,University of the Chinese Academy of Sciences, Beijing, 100101,, China
| | - Kirill Sharshov
- Research Institute of Experimental and Clinical Medicine, Novosibirsk, 630117, Russia
| | - Laixing Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning, 810000, China
| |
Collapse
|
165
|
|
166
|
Hird SM, Sánchez C, Carstens BC, Brumfield RT. Comparative Gut Microbiota of 59 Neotropical Bird Species. Front Microbiol 2015; 6:1403. [PMID: 26733954 PMCID: PMC4685052 DOI: 10.3389/fmicb.2015.01403] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 11/25/2015] [Indexed: 12/26/2022] Open
Abstract
The gut microbiota of vertebrates are essential to host health. Most non-model vertebrates, however, lack even a basic description of natural gut microbiota biodiversity. Here, we sampled 116 intestines from 59 Neotropical bird species and used the V6 region of the 16S rRNA molecule as a microbial fingerprint (average coverage per bird ~80,000 reads). A core microbiota of Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria was identified, as well as several gut-associated genera. We tested 18 categorical variables associated with each bird for significant correlation to the gut microbiota; host taxonomic categories were most frequently significant and explained the most variation. Ecological variables (e.g., diet, foraging stratum) were also frequently significant but explained less variation. Little evidence was found for a significant influence of geographic space. Finally, we suggest that microbial sampling during field collection of organisms would propel biological understanding of evolutionary history and ecological significance of host-associated microbiota.
Collapse
Affiliation(s)
- Sarah M. Hird
- Museum of Natural Science, Louisiana State UniversityBaton Rouge, LA, USA
- Department of Biological Sciences, Louisiana State UniversityBaton Rouge, LA, USA
| | - César Sánchez
- Museum of Natural Science, Louisiana State UniversityBaton Rouge, LA, USA
- Department of Biological Sciences, Louisiana State UniversityBaton Rouge, LA, USA
| | - Bryan C. Carstens
- Department of Evolution, Ecology and Organismal Biology, Ohio State UniversityColumbus, OH, USA
| | - Robb T. Brumfield
- Museum of Natural Science, Louisiana State UniversityBaton Rouge, LA, USA
- Department of Biological Sciences, Louisiana State UniversityBaton Rouge, LA, USA
| |
Collapse
|
167
|
Ahmed ST, Kim G, Islam MM, Mun HS, Bostami AR, Yang CJ. Effects of dietary chlorine dioxide on growth performance, intestinal and excreta microbiology, and odorous gas emissions from broiler excreta. J APPL POULTRY RES 2015. [DOI: 10.3382/japr/pfv058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
168
|
Nicolai A, Rouland-Lefèvre C, Ansart A, Filser J, Lenz R, Pando A, Charrier M. Inter-Population Differences and Seasonal Dynamic of the Bacterial Gut Community in the Endangered Land SnailHelix pomatia(Gastropoda: Helicidae). MALACOLOGIA 2015. [DOI: 10.4002/040.059.0101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
169
|
Wang W, Cao J, Li JR, Yang F, Li Z, Li LX. Comparative analysis of the gastrointestinal microbial communities of bar-headed goose (Anser indicus) in different breeding patterns by high-throughput sequencing. Microbiol Res 2015; 182:59-67. [PMID: 26686614 DOI: 10.1016/j.micres.2015.10.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 09/28/2015] [Accepted: 10/10/2015] [Indexed: 02/06/2023]
Abstract
The bar-headed goose is currently one of the most popular species for rare birds breeding in China. However, bar-headed geese in captivity display a reduced reproductive rate. The gut microbiome has been shown to influence host factors such as nutrient and energy metabolism, immune homeostasis and reproduction. It is therefore of great scientific and agriculture value to analyze the microbial communities associated with bar-headed geese in order to improve their reproductive rate. Here we describe the first comparative study of the gut microbial communities of bar-headed geese in three different breeding pattern groups by 16SrRNA sequences using the Illumina MiSeq platform. The results showed that Firmicutes predominated (58.33%) among wild bar-headed geese followed by Proteobacteria (30.67%), Actinobacteria (7.33%) and Bacteroidetes (3.33%). In semi-artificial breeding group, Firmicutes was also the most abundant bacteria (62.00%), followed by Bacteroidetes (28.67%), Proteobacteria (4.20%), Actinobacteria (3.27%) and Fusobacteria (1.51%). The microbial communities of artificial breeding group were dominated by Firmicutes (60.67%), Fusobacteria (29.67%) and Proteobacteria (9.33%). Wild bar-headed geese had a significant higher relative abundance of Proteobacteria and Actinobacteria, while semi-artificial breeding bar-headed geese had significantly more Bacteroidetes. The semi-artificial breeding group had the highest microbial community diversity and richness, followed by wild group, and then the artificial breeding group. The marked differences of genus level group-specific microbes create a baseline for future bar-headed goose microbiology research.
Collapse
Affiliation(s)
- Wen Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning 810000, China; Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Jian Cao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning 810000, China; University of the Chinese Academy of Sciences, Beijing 100101, China
| | - Ji-Rong Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning 810000, China; University of the Chinese Academy of Sciences, Beijing 100101, China
| | - Fang Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning 810000, China
| | - Zhuo Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning 810000, China
| | - Lai-Xing Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning 810000, China.
| |
Collapse
|
170
|
Clanton R, Saucier D, Ford J, Akabani G. Microbial influences on hormesis, oncogenesis, and therapy: A review of the literature. ENVIRONMENTAL RESEARCH 2015; 142:239-256. [PMID: 26183884 DOI: 10.1016/j.envres.2015.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/11/2015] [Accepted: 06/23/2015] [Indexed: 06/04/2023]
Abstract
Utilization of environmental stimuli for growth is the main factor contributing to the evolution of prokaryotes and eukaryotes, independently and mutualistically. Epigenetics describes an organism's ability to vary expression of certain genes based on their environmental stimuli. The diverse degree of dose-dependent responses based on their variances in expressed genetic profiles makes it difficult to ascertain whether hormesis or oncogenesis has or is occurring. In the medical field this is shown where survival curves used in determining radiotherapeutic doses have substantial uncertainties, some as large as 50% (Barendsen, 1990). Many in-vitro radiobiological studies have been limited by not taking into consideration the innate presence of microbes in biological systems, which have either grown symbiotically or pathogenically. Present in-vitro studies neglect to take into consideration the varied responses that commensal and opportunistic pathogens will have when exposed to the same stimuli and how such responses could act as stimuli for their macro/microenvironment. As a result many theories such as radiation carcinogenesis explain microscopic events but fail to describe macroscopic events (Cohen, 1995). As such, this review shows how microorganisms have the ability to perturb risks of cancer and enhance hormesis after irradiation. It will also look at bacterial significance in the microenvironment of the tumor before and during treatment. In addition, bacterial systemic communication after irradiation and the host's immune responses to infection could explain many of the phenomena associated with bystander effects. Therefore, the present literature review considers the paradigms of hormesis and oncogenesis in order to find a rationale that ties them all together. This relationship was thus characterized to be the microbiome.
Collapse
Affiliation(s)
- Ryan Clanton
- Department of Nuclear Engineering, Texas A&M University, College Station, TX 77843, USA; Texas A&M Institute for Preclinical Studies, Texas A&M University, College Station, TX 77843, USA
| | - David Saucier
- Department of Nuclear Engineering, Texas A&M University, College Station, TX 77843, USA
| | - John Ford
- Department of Nuclear Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Gamal Akabani
- Department of Nuclear Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; Texas A&M Institute for Preclinical Studies, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
171
|
Mignon-Grasteau S, Narcy A, Rideau N, Chantry-Darmon C, Boscher MY, Sellier N, Chabault M, Konsak-Ilievski B, Le Bihan-Duval E, Gabriel I. Impact of Selection for Digestive Efficiency on Microbiota Composition in the Chicken. PLoS One 2015; 10:e0135488. [PMID: 26267269 PMCID: PMC4534097 DOI: 10.1371/journal.pone.0135488] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/22/2015] [Indexed: 01/23/2023] Open
Abstract
Objectives Feed efficiency and its digestive component, digestive efficiency, are key factors in the environmental impact and economic output of poultry production. The interaction between the host and intestinal microbiota has a crucial role in the determination of the ability of the bird to digest its food and to the birds’ feed efficiency. We therefore investigated the phenotypic and genetic relationships between birds’ efficiency and the composition of the cecal microbiota in a F2 cross between broiler lines divergently selected for their high or low digestive efficiency. Methods Analyses were performed on 144 birds with extreme feed efficiency values at 3 weeks, with feed conversion values of 1.41±0.05 and 2.02±0.04 in the efficient and non-efficient groups, respectively. The total numbers of Lactobacillus, L. salivarius, L. crispatus, C. coccoides, C. leptum and E. coli per gram of cecal content were measured. Results The two groups mainly differed in larger counts of Lactobacillus, L. salivarius and E. coli in less efficient birds. The equilibrium between bacterial groups was also affected, efficient birds showing higher C. leptum, C. coccoides and L. salivarius to E. coli ratios. The heritability of the composition of microbiota was also estimated and L. crispatus, C. leptum, and C. coccoides to E. coli ratios were moderately but significantly heritable (0.16 to 0.24). The coefficient of fecal digestive use of dry matter was genetically and positively correlated with L. crispatus, C. leptum, C. coccoides (0.50 to 0.76) and negatively with E. coli (-0.66). Lipid digestibility was negatively correlated with E. coli (-0.64), and AMEn positively correlated with C. coccoides and with the C. coccoides to Lactobacillus ratio (0.48 to 0.64). We also detected 14 Quantitative Trait Loci (QTL) for microbiota on the host genome, mostly on C. leptum and Lactobacillus. The QTL for C. leptum on GGA6 was close to genome-wide significance. This region mainly includes genes involved in anti-inflammatory responses and in the motility of the gastrointestinal tract.
Collapse
Affiliation(s)
| | - Agnès Narcy
- UR83 Recherches Avicoles, INRA, Nouzilly, France
| | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Influence of hand rearing and bird age on the fecal microbiota of the critically endangered kakapo. Appl Environ Microbiol 2015; 80:4650-8. [PMID: 24837385 DOI: 10.1128/aem.00975-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The critically endangered New Zealand parrot, the kakapo, is subject to an intensive management regime aiming to maintain bird health and boost population size. Newly hatched kakapo chicks are subjected to human intervention and are frequently placed in captivity throughout their formative months. Hand rearing greatly reduces mortality among juveniles, but the potential long-term impact on the kakapo gut microbiota is uncertain. To track development of the kakapo gut microbiota, fecal samples from healthy, prefledged juvenile kakapos, as well as from unrelated adults, were analyzed by using 16S rRNA gene amplicon pyrosequencing. Following the original sampling, juvenile kakapos underwent a period of captivity, so further sampling during and after captivity aimed to elucidate the impact of captivity on the juvenile gut microbiota. Variation in the fecal microbiota over a year was also investigated, with resampling of the original juvenile population. Amplicon pyrosequencing revealed a juvenile fecal microbiota enriched with particular lactic acid bacteria compared to the microbiota of adults, although the overall community structure did not differ significantly among kakapos of different ages. The abundance of key operational taxonomic units (OTUs) was correlated with antibiotic treatment and captivity, although the importance of these factors could not be proven unequivocally within the bounds of this study. Finally, the microbial community structure of juvenile and adult kakapos changed over time, reinforcing the need for continual monitoring of the microbiota as part of regular health screening.
Collapse
|
173
|
Roberts T, Wilson J, Guthrie A, Cookson K, Vancraeynest D, Schaeffer J, Moody R, Clark S. New issues and science in broiler chicken intestinal health: Emerging technology and alternative interventions. J APPL POULTRY RES 2015. [DOI: 10.3382/japr/pfv023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
174
|
Kowalski KP, Bacon C, Bickford W, Braun H, Clay K, Leduc-Lapierre M, Lillard E, McCormick MK, Nelson E, Torres M, White J, Wilcox DA. Advancing the science of microbial symbiosis to support invasive species management: a case study on Phragmites in the Great Lakes. Front Microbiol 2015; 6:95. [PMID: 25745417 PMCID: PMC4333861 DOI: 10.3389/fmicb.2015.00095] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/26/2015] [Indexed: 01/03/2023] Open
Abstract
A growing body of literature supports microbial symbiosis as a foundational principle for the competitive success of invasive plant species. Further exploration of the relationships between invasive species and their associated microbiomes, as well as the interactions with the microbiomes of native species, can lead to key new insights into invasive success and potentially new and effective control approaches. In this manuscript, we review microbial relationships with plants, outline steps necessary to develop invasive species control strategies that are based on those relationships, and use the invasive plant species Phragmites australis (common reed) as an example of how development of microbial-based control strategies can be enhanced using a collective impact approach. The proposed science agenda, developed by the Collaborative for Microbial Symbiosis and Phragmites Management, contains a foundation of sequential steps and mutually-reinforcing tasks to guide the development of microbial-based control strategies for Phragmites and other invasive species. Just as the science of plant-microbial symbiosis can be transferred for use in other invasive species, so too can the model of collective impact be applied to other avenues of research and management.
Collapse
Affiliation(s)
- Kurt P. Kowalski
- U.S. Geological Survey, Great Lakes Science CenterAnn Arbor, MI, USA
| | - Charles Bacon
- U.S. Department of Agriculture, Agricultural Research ServiceAthens, GA, USA
| | - Wesley Bickford
- U.S. Geological Survey, Great Lakes Science CenterAnn Arbor, MI, USA
| | | | - Keith Clay
- Department of Biology, Indiana UniversityBloomington, IN, USA
| | | | | | | | - Eric Nelson
- Department of Plant Pathology and Plant-Microbe Biology, Cornell UniversityIthaca, NY, USA
| | - Monica Torres
- Department of Plant Biology and Pathology, Rutgers UniversityNew Brunswick, NJ, USA
| | - James White
- Department of Plant Biology and Pathology, Rutgers UniversityNew Brunswick, NJ, USA
| | - Douglas A. Wilcox
- Department of Environmental Science and Biology, The College at Brockport, State University of New YorkBrockport, NY, USA
| |
Collapse
|
175
|
Oakley BB, Lillehoj HS, Kogut MH, Kim WK, Maurer JJ, Pedroso A, Lee MD, Collett SR, Johnson TJ, Cox NA. The chicken gastrointestinal microbiome. FEMS Microbiol Lett 2014; 360:100-12. [PMID: 25263745 DOI: 10.1111/1574-6968.12608] [Citation(s) in RCA: 457] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 11/27/2022] Open
Abstract
The domestic chicken is a common model organism for human biological research and of course also forms the basis of a global protein industry. Recent methodological advances have spurred the recognition of microbiomes as complex communities with important influences on the health and disease status of the host. In this minireview, we provide an overview of the current state of knowledge of the chicken gastrointestinal microbiome focusing on spatial and temporal variability, the presence and importance of human pathogens, the influence of the microbiota on the immune system, and the importance of the microbiome for poultry nutrition. Review and meta-analysis of public data showed cecal communities dominated by Firmicutes and Bacteroides at the phylum level, while at finer levels of taxonomic resolution, a phylogenetically diverse assemblage of microorganisms appears to have similar metabolic functions that provide important benefits to the host as inferred from metagenomic data. This observation of functional redundancy may have important implications for management of the microbiome. We foresee advances in strategies to improve gut health in commercial operations through management of the intestinal microbiota as an alternative to in-feed subtherapeutic antibiotics, improvements in pre- and probiotics, improved management of polymicrobial poultry diseases, and better control of human pathogens via colonization reduction or competitive exclusion strategies.
Collapse
Affiliation(s)
- Brian B Oakley
- Poultry Microbiological Safety Research Unit, Richard B. Russell Agricultural Research Center, USDA-Agricultural Research Service, Athens, GA, USA; College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Su H, McKelvey J, Rollins D, Zhang M, Brightsmith DJ, Derr J, Zhang S. Cultivable bacterial microbiota of northern bobwhite (Colinus virginianus): a new reservoir of antimicrobial resistance? PLoS One 2014; 9:e99826. [PMID: 24937705 PMCID: PMC4061065 DOI: 10.1371/journal.pone.0099826] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/18/2014] [Indexed: 01/24/2023] Open
Abstract
The northern bobwhite (Colinus virginianus) is an ecologically and economically important avian species. At the present time, little is known about the microbial communities associated with these birds. As the first step to create a quail microbiology knowledge base, the current study conducted an inventory of cultivable quail tracheal, crop, cecal, and cloacal microbiota and associated antimicrobial resistance using a combined bacteriology and DNA sequencing approach. A total of 414 morphologically unique bacterial colonies were selected from nonselective aerobic and anaerobic cultures, as well as selective and enrichment cultures. Analysis of the first 500-bp 16S rRNA gene sequences in conjunction with biochemical identifications revealed 190 non-redundant species-level taxonomic units, representing 160 known bacterial species and 30 novel species. The bacterial species were classified into 4 phyla, 14 orders, 37 families, and 59 or more genera. Firmicutes was the most commonly encountered phylum (57%) followed by Actinobacteria (24%), Proteobacteria (17%) and Bacteroidetes (0.02%). Extensive diversity in the species composition of quail microbiota was observed among individual birds and anatomical locations. Quail microbiota harbored several opportunistic pathogens, such as E. coli and Ps. aeruginosa, as well as human commensal organisms, including Neisseria species. Phenotypic characterization of selected bacterial species demonstrated a high prevalence of resistance to the following classes of antimicrobials: phenicol, macrolide, lincosamide, quinolone, and sulphate. Data from the current investigation warrant further investigation on the source, transmission, pathology, and control of antimicrobial resistance in wild quail populations.
Collapse
Affiliation(s)
- Hongwen Su
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jessica McKelvey
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Dale Rollins
- Rolling Plains Quail Research Foundation, Texas AgriLife Research, San Angelo, Texas, United States of America
| | - Michael Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Donald J. Brightsmith
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - James Derr
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Shuping Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
177
|
Uropygial gland size and composition varies according to experimentally modified microbiome in Great tits. BMC Evol Biol 2014; 14:134. [PMID: 24938652 PMCID: PMC4074404 DOI: 10.1186/1471-2148-14-134] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/11/2014] [Indexed: 12/31/2022] Open
Abstract
Background Parasites exert important selective pressures on host life history traits. In birds, feathers are inhabited by numerous microorganisms, some of them being able to degrade feathers or lead to infections. Preening feathers with secretions of the uropygial gland has been found to act as an antimicrobial defence mechanism, expected to regulate feather microbial communities and thus limit feather abrasion and infections. Here, we used an experimental approach to test whether Great tits (Parus major) modify their investment in the uropygial gland in response to differences in environmental microorganisms. Results We found that males, but not females, modified the size of their gland when exposed to higher bacterial densities on feathers. We also identified 16 wax esters in the uropygial gland secretions. The relative abundance of some of these esters changed in males and females, while the relative abundance of others changed only in females when exposed to greater bacterial loads on feathers. Conclusion Birds live in a bacterial world composed of commensal and pathogenic microorganisms. This study provides the first experimental evidence for modifications of investment in the defensive trait that is the uropygial gland in response to environmental microorganisms in a wild bird.
Collapse
|
178
|
Warne RW. The Micro and Macro of Nutrients across Biological Scales. Integr Comp Biol 2014; 54:864-72. [DOI: 10.1093/icb/icu071] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
179
|
Waite DW, Taylor MW. Characterizing the avian gut microbiota: membership, driving influences, and potential function. Front Microbiol 2014; 5:223. [PMID: 24904538 PMCID: PMC4032936 DOI: 10.3389/fmicb.2014.00223] [Citation(s) in RCA: 294] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/28/2014] [Indexed: 12/18/2022] Open
Abstract
Birds represent a diverse and evolutionarily successful lineage, occupying a wide range of niches throughout the world. Like all vertebrates, avians harbor diverse communities of microorganisms within their guts, which collectively fulfill important roles in providing the host with nutrition and protection from pathogens. Although many studies have investigated the role of particular microbes in the guts of avian species, there has been no attempt to unify the results of previous, sequence-based studies to examine the factors that shape the avian gut microbiota as a whole. In this study, we present the first meta-analysis of the avian gut microbiota, using 16S rRNA gene sequences obtained from a range of publicly available clone-library and amplicon pyrosequencing data. We investigate community membership and structure, as well as probe the roles of some of the key biological factors that influence the gut microbiota of other vertebrates, such as host phylogeny, location within the gut, diet, and association with humans. Our results indicate that, across avian studies, the microbiota demonstrates a similar phylum-level composition to that of mammals. Host bird species is the most important factor in determining community composition, although sampling site, diet, and captivity status also contribute. These analyses provide a first integrated look at the composition of the avian microbiota, and serve as a foundation for future studies in this area.
Collapse
Affiliation(s)
- David W Waite
- Centre for Microbial Innovation, School of Biological Sciences, Faculty of Science, The University of Auckland Auckland, New Zealand
| | - Michael W Taylor
- Centre for Microbial Innovation, School of Biological Sciences, Faculty of Science, The University of Auckland Auckland, New Zealand
| |
Collapse
|
180
|
Dewar ML, Arnould JPY, Krause L, Dann P, Smith SC. Interspecific variations in the faecal microbiota of Procellariiform seabirds. FEMS Microbiol Ecol 2014; 89:47-55. [PMID: 24684257 DOI: 10.1111/1574-6941.12332] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 01/12/2023] Open
Abstract
Despite the enormous amount of data available on the importance of gut microbiota in vertebrates (especially mammals), there is no information available on the microbiota of seabirds. Procellariiformes are long-lived seabirds that consume a diet high in lipids and are characterised by their ability to produce and store large amount of stomach oils through the partial digestion of prey (with the exception of the Pelecanoididae). Examining the faecal microbiota of three Procellariiform species (short-tailed shearwater, common diving petrel and fairy prion) provided a unique opportunity to not only characterise the gastrointestinal (GI) microbial composition of seabirds but to also examine the influence of stomach oils on the microbial community. The results indicated that Procellariiform seabirds host a highly diverse community of faecal microorganisms, dominated by three phyla (Firmicutes, Proteobacteria and Bacteroidetes) and that each species has its own species-specific GI microbiota. In addition, significant differences were observed in the microbial communities of oil-producing and non-oil-producing seabirds. This study is the first whole-community examination and classification of the faecal microbiota of Procellariiform seabirds.
Collapse
Affiliation(s)
- Meagan L Dewar
- School of Exercise and Nutrition Sciences, Deakin University, Burwood, Vic., Australia
| | | | | | | | | |
Collapse
|
181
|
Vasaï F, Ricaud KB, Cauquil L, Daniel P, Peillod C, Gontier K, Tizaoui A, Bouchez O, Combes S, Davail S. Lactobacillus sakei modulates mule duck microbiota in ileum and ceca during overfeeding. Poult Sci 2014; 93:916-25. [PMID: 24706969 DOI: 10.3382/ps.2013-03497] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The supplementation with Lactobacillus sakei as probiotic on the ileal and cecal microbiota of mule ducks during overfeeding was investigated using high-throughput 16S rRNA gene-based pyrosequencing and real-time PCR. The ducks were overfed with or without L. sakei for 12 d with 56% ground corn and 42% whole corn. Samples were collected before the overfeeding period (at 12 wk), at 13 wk (meal 12 of overfeeding), and at 14 wk (meal 24), 3 h postfeeding. Whatever the digestive segment and the level of intake, Firmicutes, Bacteroidetes, and Proteobacteria were the dominant phyla in the bacterial community of mule ducks (at least 90%). Before overfeeding, ileal samples were dominated by Clostridia, Bacteroidia, and Gammaproteobacteria (80% and up), and cecal samples by Bacteroidia and Clostridia (around 85%). The richness and diversity decreased in the ileum and increased in the ceca after overfeeding. Overfeeding increased the relative abundance of Firmicutes and especially the Lactobacillus group in ileal samples. Nonmetric multidimensional scaling profiles separated the bacterial communities with respect to overfeeding only in cecal samples. Richness indicators decreased after L. sakei has been added at mid-overfeeding only in the ileum. In the ceca, the decrease of these indexes only occurred at the end of overfeeding. The addition of L. sakei triggers major changes in the ileum, whereas the ceca are not affected. Lactobacillus sakei decreased the relative abundance of Bacteroides at mid-overfeeding and the relative abundance of Enterobacteria at the end of overfeeding in the ileum.
Collapse
Affiliation(s)
- F Vasaï
- Institut pluridisciplinaire de recherche sur l'environnement et les matériaux-Equipe Environnement et Microbiologie UMR5254, IUT des Pays de l'Adour, Rue du Ruisseau, BP 201, 40004 Mont de Marsan, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Hird SM, Carstens BC, Cardiff SW, Dittmann DL, Brumfield RT. Sampling locality is more detectable than taxonomy or ecology in the gut microbiota of the brood-parasitic Brown-headed Cowbird (Molothrus ater). PeerJ 2014; 2:e321. [PMID: 24711971 PMCID: PMC3970801 DOI: 10.7717/peerj.321] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 03/04/2014] [Indexed: 01/15/2023] Open
Abstract
Brown-headed Cowbirds (Molothrus ater) are the most widespread avian brood parasite in North America, laying their eggs in the nests of approximately 250 host species that raise the cowbird nestlings as their own. It is currently unknown how these heterospecific hosts influence the cowbird gut microbiota relative to other factors, such as the local environment and genetics. We test a Nature Hypothesis (positing the importance of cowbird genetics) and a Nurture Hypothesis (where the host parents are most influential to cowbird gut microbiota) using the V6 region of 16S rRNA as a microbial fingerprint of the gut from 32 cowbird samples and 16 potential hosts from nine species. We test additional hypotheses regarding the influence of the local environment and age of the birds. We found no evidence for the Nature Hypothesis and little support for the Nurture Hypothesis. Cowbird gut microbiota did not form a clade, but neither did members of the host species. Rather, the physical location, diet and age of the bird, whether cowbird or host, were the most significant categorical variables. Thus, passerine gut microbiota may be most strongly influenced by environmental factors. To put this variation in a broader context, we compared the bird data to a fecal microbiota dataset of 38 mammal species and 22 insect species. Insects were always the most variable; on some axes, we found more variation within cowbirds than across all mammals. Taken together, passerine gut microbiota may be more variable and environmentally determined than other taxonomic groups examined to date.
Collapse
Affiliation(s)
- Sarah M Hird
- Department of Biological Sciences, Louisiana State University , Baton Rouge, LA , USA ; Museum of Natural Science, Louisiana State University , Baton Rouge, LA , USA
| | - Bryan C Carstens
- Department of Evolution, Ecology and Organismal Biology, Ohio State University , Columbus, OH , USA
| | - Steven W Cardiff
- Museum of Natural Science, Louisiana State University , Baton Rouge, LA , USA
| | - Donna L Dittmann
- Museum of Natural Science, Louisiana State University , Baton Rouge, LA , USA
| | - Robb T Brumfield
- Department of Biological Sciences, Louisiana State University , Baton Rouge, LA , USA ; Museum of Natural Science, Louisiana State University , Baton Rouge, LA , USA
| |
Collapse
|
183
|
Calenge F, Mignon-Grasteau S, Chanteloup NK, Brée A, Lalmanach AC, Schouler C. Broiler lines divergently selected for digestive efficiency also differ in their susceptibility to colibacillosis. Avian Pathol 2014; 43:78-81. [PMID: 24320598 DOI: 10.1080/03079457.2013.873531] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Increasing feed efficiency of broiler chickens by selective breeding could lead to decreased feed cost and reduced environmental impact of poultry production. At INRA, two broiler chicken lines (D+/D-) were divergently selected for their digestive efficiency. Strong differences were shown between both lines for the anatomy and histology of the digestive tract, and for the intestinal microbiota composition. In the present study, we investigated whether this selection also had an effect on susceptibility to colibacillosis, which is one of the main causes of economic losses in poultry production. The broiler lines D+/D- were challenged with an avian pathogenic Escherichia coli strain. A first experiment was conducted to assess the 50% lethal dose by subcutaneous infection of hatchlings, whereas a second experiment reproduced colibacillosis by infecting air sacs of 23-day-old chicks. The 50% lethal dose was very low for both lines. However, the line with the higher digestive efficiency (D+) was the less susceptible to colibacillosis. This result is interesting for selection purposes and opens the way to integrative genetic studies of the interactions between digestion efficiency and resistance to colibacillosis.
Collapse
Affiliation(s)
- F Calenge
- a INRA , UR083 Unité de Recherches Avicoles , Nouzilly , France
| | | | | | | | | | | |
Collapse
|
184
|
van der Hoeven-Hangoor E, van der Vossen JMBM, Schuren FHJ, Verstegen MWA, de Oliveira JE, Montijn RC, Hendriks WH. Ileal microbiota composition of broilers fed various commercial diet compositions. Poult Sci 2013; 92:2713-23. [PMID: 24046419 DOI: 10.3382/ps.2013-03017] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Microbiota plays a role in the release and absorption of nutrients from feed components, thereby affecting digesta composition and moisture content of the excreta. The objective of the current study was to determine the effects of 5 different diets varying in ingredients (medium-chain fatty acids, nonstarch polysaccharides, and starch) on the microbiota composition of ileal digesta of broiler chickens and excreta DM content. Each treatment was repeated 6 times in cages each containing 18 Ross 308 broilers, with growth performance measured from 0 to 34 d of age and excreta DM and ileal microbiota composition analyzed at 34 d of age. Microbiota composition was evaluated using a novel ribosomal RNA microarray technology containing 370 different probes covering various genera, groups of microbial species, and individual species of the chicken gut microbiota, of which 321 had a signal above the background threshold. Replacing part of the animal fat and soybean oil in the wheat-based diet with medium-chain fatty acids (MCFA; 0.3% C10 and 2.7% C12) improved feed efficiency compared with the other dietary treatments. This coincided with a suppression of gram-positive bacteria belonging to the phylum of the Firmicutes, including Lactobacillus species, and species belonging to the family of the Enterococcaceae and Micrococcaceae, whereas the gram-negative bacteria belonging to the family of the Enterobacteriaceae were promoted. None of the other diets used in the present study notably changed the ileal digesta bacteria composition. Excreta DM content was not affected by dietary treatment. The variation between individual birds per dietary treatment was more pronounced than variation caused by feed composition, with the exception of the digesta microbiota of the birds fed the MCFA diet. It is concluded that a diet with MCFA significantly changes the ileal microbiota composition, whereas the effect of the other diets on the composition of the microbiota and excreta DM content is small in broiler chickens.
Collapse
|
185
|
Vasaï F, Brugirard Ricaud K, Bernadet MD, Cauquil L, Bouchez O, Combes S, Davail S. Overfeeding and genetics affect the composition of intestinal microbiota in Anas platyrhynchos (Pekin) and Cairina moschata (Muscovy) ducks. FEMS Microbiol Ecol 2013; 87:204-16. [PMID: 24102552 DOI: 10.1111/1574-6941.12217] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 08/30/2013] [Accepted: 09/09/2013] [Indexed: 01/10/2023] Open
Abstract
To investigate the effect of overfeeding on the ileal and cecal microbiota of two genotypes of ducks (Pekin and Muscovy), high-throughput 16S rRNA gene-based pyrosequencing was used. The ducks were overfed for 12 days with 58% maize flour and 42% maize grain. Samples were collected before the overfeeding period (at 12 weeks), at 13 weeks, at 14 weeks, and 3 h after feeding. In parallel, ducks fed ad libitum were killed at the same ages. Whatever the digestive segment, the genotype, and the level of intake, Firmicutes and Bacteroidetes are the dominant phyla in the bacterial community of ducks (at least 80%). Before overfeeding, ileal samples were dominated by Bacilli, Clostridia, and Bacteroidia classes (≥ 70%), and cecal samples, by Bacteroidia and Clostridia classes (around 90%) in both Pekin and Muscovy ducks. The richness and diversity decreased in the ileum and increased in the ceca after overfeeding. Overfeeding triggers major changes in the ileum, whereas the ceca are less affected. Overfeeding increased the relative abundance of Clostridiaceae, Lactobacillaceae, Streptococcaceae, and Enterococcaceae families in the ileum, whereas genotype affects particularly three families: Lachnospiraceae, Bacteroidaceae, and Desulfovibrionaceae in the ceca.
Collapse
Affiliation(s)
- Florian Vasaï
- IUT des Pays de l'Adour, IPREM-EEM UMR 5254, Mont de Marsan, France
| | | | | | | | | | | | | |
Collapse
|
186
|
Montiel-Castro AJ, González-Cervantes RM, Bravo-Ruiseco G, Pacheco-López G. The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality. Front Integr Neurosci 2013; 7:70. [PMID: 24109440 PMCID: PMC3791857 DOI: 10.3389/fnint.2013.00070] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/04/2013] [Indexed: 02/04/2023] Open
Abstract
Recent data suggest that the human body is not such a neatly self-sufficient island after all. It is more like a super-complex ecosystem containing trillions of bacteria and other microorganisms that inhabit all our surfaces; skin, mouth, sexual organs, and specially intestines. It has recently become evident that such microbiota, specifically within the gut, can greatly influence many physiological parameters, including cognitive functions, such as learning, memory and decision making processes. Human microbiota is a diverse and dynamic ecosystem, which has evolved in a mutualistic relationship with its host. Ontogenetically, it is vertically inoculated from the mother during birth, established during the first year of life and during lifespan, horizontally transferred among relatives, mates or close community members. This micro-ecosystem serves the host by protecting it against pathogens, metabolizing complex lipids and polysaccharides that otherwise would be inaccessible nutrients, neutralizing drugs and carcinogens, modulating intestinal motility, and making visceral perception possible. It is now evident that the bidirectional signaling between the gastrointestinal tract and the brain, mainly through the vagus nerve, the so called “microbiota–gut–vagus–brain axis,” is vital for maintaining homeostasis and it may be also involved in the etiology of several metabolic and mental dysfunctions/disorders. Here we review evidence on the ability of the gut microbiota to communicate with the brain and thus modulate behavior, and also elaborate on the ethological and cultural strategies of human and non-human primates to select, transfer and eliminate microorganisms for selecting the commensal profile.
Collapse
Affiliation(s)
- Augusto J Montiel-Castro
- Centro Darwin de Pensamiento Evolucionista and Philosophy Department, Social Sciences and Humanities Division, Universidad Autonoma Metropolitana Iztapalapa Mexico City, Mexico ; Health Sciences Department, Biological and Health Sciences Division, Universidad Autonoma Metropolitana Lerma Lerma, Mexico
| | | | | | | |
Collapse
|
187
|
Bennett DC, Tun HM, Kim JE, Leung FC, Cheng KM. Characterization of cecal microbiota of the emu (Dromaius novaehollandiae). Vet Microbiol 2013; 166:304-10. [PMID: 23850439 DOI: 10.1016/j.vetmic.2013.05.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 01/24/2023]
Abstract
Emus (Dromaius novaehollandiae), large flightless ratites native to Australia, are farmed for their fat and meat. They are omnivorous and feed on a wide variety of plants and insects. Despite having a relatively simple gastrointestinal tract and a short digesta retention time, emus are able to digest a significant portion of the ingested dietary neutral detergent fibre. However, nothing is known about the microbial diversity in their gastrointestinal tract. In this study, we evaluated the phylogenetic diversity of the cecal microbiota of four emus (2 males, 2 females) that were fed a barley-alfalfa-canola based diet, using 454 pyrosequencing after amplification for V3-V5 region of bacterial 16S rRNA gene. Emus were slaughtered in early November, just prior to the onset of their breeding season, but after the seasonal decline in their feed intake had begun. A total of 822 operational taxonomic units (OTUs) (335.3 ± 70.5 OTUs/sample) belonging to 9 bacterial phyla were identified. The most predominant bacterial phyla were Bacteroidetes (≈ 57% of total classified diversity), Proteobacteria (≈ 24%), Fusobacteria (≈ 11.3%), and Firmicutes (≈ 7%). Our results indicate that the emus' ceca may have a higher microbial richness (Chao1: 624 ± 170 OTUs, and ACE: 586 ± 161 OTUs) than other species of birds, but they have a lower microbial diversity (Shannon diversity index: 3.4 ± 0.2, Simpson index: 0.79 ± 0.02), possibly reflecting their decrease feed intake. This is the first study to characterize the microbial community of the gastrointestinal tract of a ratite using pyrosequencing, providing a baseline for further study.
Collapse
Affiliation(s)
- Darin C Bennett
- Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | | | | | |
Collapse
|
188
|
Alternatives to antibiotics: a symposium on the challenges and solutions for animal production. Anim Health Res Rev 2013; 14:78-87. [PMID: 23702321 DOI: 10.1017/s1466252313000030] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Antibiotics are one of the most important medical discoveries of the 20th century and will remain an essential tool for treating animal and human diseases in the 21st century. However, antibiotic resistance among bacterial pathogens and concerns over their extensive use in food animals has garnered global interest in limiting antibiotic use in animal agriculture. Yet, limiting the availability of medical interventions to prevent and control animal diseases on the farm will directly impact global food security and safety as well as animal and human health. Insufficient attention has been given to the scientific breakthroughs and novel technologies that provide alternatives to antibiotics. The objectives of the symposium 'Alternatives to Antibiotics' were to highlight promising research results and novel technologies that could potentially lead to alternatives to conventional antibiotics, and assess challenges associated with their commercialization, and provide actionable strategies to support development of alternative antimicrobials. The symposium focused on the latest scientific breakthroughs and technologies that could provide new options and alternative strategies for preventing and treating diseases of animals. Some of these new technologies have direct applications as medical interventions for human health, but the focus of the symposium was animal production, animal health and food safety during food-animal production. Five subject areas were explored in detail through scientific presentations and expert panel discussions, including: (1) alternatives to antibiotics, lessons from nature; (2) immune modulation approaches to enhance disease resistance and to treat animal diseases; (3) gut microbiome and immune development, health and diseases; (4) alternatives to antibiotics for animal production; and (5) regulatory pathways to enable the licensure of alternatives to antibiotics.
Collapse
|
189
|
Matson KD, Mauck RA, Lynn SE, Irene Tieleman B. Island life shapes the physiology and life history of eastern bluebirds (Sialia sialis). Physiol Biochem Zool 2013; 87:172-82. [PMID: 24457931 DOI: 10.1086/670811] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Abstract Island organisms face a range of extrinsic threats to their characteristically small populations. Certain biological differences between island and continental organisms have the potential to exacerbate these threats. Understanding how island birds differ from their continental relatives may provide insight into population viability and serve as a predictive tool for conservation efforts. We compared an eastern bluebird population in Ohio with a threatened population in Bermuda in terms of the birds' development, morphology, immunology, and reproduction. These comparisons revealed that island nestlings had shorter wings and island adults had longer wings than their continental analogs. Island nestlings also had shorter tarsi than continental nestlings at day 8 posthatch, but this difference was absent at day 15 and in adults. Adults weighed less in Bermuda than in Ohio, and both nestlings and adults in Bermuda exhibited higher levels of two immunological indexes (concentrations of an acute-phase protein and titers of nonspecific antibodies). Clutch sizes and hatch rates did not differ between the island and continental populations; however, as the breeding season progressed, brood sizes declined in Bermuda, whereas no such decline occurred in Ohio. Despite these differences and differences in nestling development, island and continental parents fed their nestlings at equal rates. Overall, our results suggest that the Bermuda phenotype may be adjusted to certain aspects of the island environment but not to others. Efforts to conserve the bluebirds of Bermuda may be improved by focusing on the intraseasonal patterns in nestling mortality and, more generally, the survival probabilities of different age classes.
Collapse
Affiliation(s)
- Kevin D Matson
- Animal Ecology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, Box 11103, 9700 CC Groningen, Netherlands; 2Department of Biology, Higley Hall, Kenyon College, Gambier, Ohio 43022; 3Department of Biology, College of Wooster, 931 College Mall, Wooster, Ohio 44691
| | | | | | | |
Collapse
|
190
|
van Dongen WFD, White J, Brandl HB, Moodley Y, Merkling T, Leclaire S, Blanchard P, Danchin E, Hatch SA, Wagner RH. Age-related differences in the cloacal microbiota of a wild bird species. BMC Ecol 2013; 13:11. [PMID: 23531085 PMCID: PMC3668179 DOI: 10.1186/1472-6785-13-11] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 03/14/2013] [Indexed: 01/25/2023] Open
Abstract
Background Gastrointestinal bacteria play a central role in the health of animals. The bacteria that individuals acquire as they age may therefore have profound consequences for their future fitness. However, changes in microbial community structure with host age remain poorly understood. We characterised the cloacal bacteria assemblages of chicks and adults in a natural population of black-legged kittiwakes (Rissa tridactyla), using molecular methods. Results We show that the kittiwake cloaca hosts a diverse assemblage of bacteria. A greater number of total bacterial OTUs (operational taxonomic units) were identified in chicks than adults, and chicks appeared to host a greater number of OTUs that were only isolated from single individuals. In contrast, the number of bacteria identified per individual was higher in adults than chicks, while older chicks hosted more OTUs than younger chicks. Finally, chicks and adults shared only seven OTUs, resulting in pronounced differences in microbial assemblages. This result is surprising given that adults regurgitate food to chicks and share the same nesting environment. Conclusions Our findings suggest that chick gastrointestinal tracts are colonised by many transient species and that bacterial assemblages gradually transition to a more stable adult state. Phenotypic differences between chicks and adults may lead to these strong differences in bacterial communities. These data provide the framework for future studies targeting the causes and consequences of variation in bacterial assemblages in wild birds.
Collapse
Affiliation(s)
- Wouter F D van Dongen
- Konrad Lorenz Institute of Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine Vienna, Savoyenstrasse 1a, Vienna, 1160, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|