151
|
Zhang W, Qi S, Xue X, Al Naggar Y, Wu L, Wang K. Understanding the Gastrointestinal Protective Effects of Polyphenols using Foodomics-Based Approaches. Front Immunol 2021; 12:671150. [PMID: 34276660 PMCID: PMC8283765 DOI: 10.3389/fimmu.2021.671150] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Plant polyphenols are rich sources of natural anti-oxidants and prebiotics. After ingestion, most polyphenols are absorbed in the intestine and interact with the gut microbiota and modulated metabolites produced by bacterial fermentation, such as short-chain fatty acids (SCFAs). Dietary polyphenols immunomodulatory role by regulating intestinal microorganisms, inhibiting the etiology and pathogenesis of various diseases including colon cancer, colorectal cancer, inflammatory bowel disease (IBD) and colitis. Foodomics is a novel high-throughput analysis approach widely applied in food and nutrition studies, incorporating genomics, transcriptomics, proteomics, metabolomics, and integrating multi-omics technologies. In this review, we present an overview of foodomics technologies for identifying active polyphenol components from natural foods, as well as a summary of the gastrointestinal protective effects of polyphenols based on foodomics approaches. Furthermore, we critically assess the limitations in applying foodomics technologies to investigate the protective effect of polyphenols on the gastrointestinal (GI) system. Finally, we outline future directions of foodomics techniques to investigate GI protective effects of polyphenols. Foodomics based on the combination of several analytical platforms and data processing for genomics, transcriptomics, proteomics and metabolomics studies, provides abundant data and a more comprehensive understanding of the interactions between polyphenols and the GI tract at the molecular level. This contribution provides a basis for further exploring the protective mechanisms of polyphenols on the GI system.
Collapse
Affiliation(s)
- Wenwen Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suzhen Qi
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
152
|
Donia T, Khamis A. Management of oxidative stress and inflammation in cardiovascular diseases: mechanisms and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34121-34153. [PMID: 33963999 DOI: 10.1007/s11356-021-14109-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Cardiovascular diseases (CVDs) have diverse physiopathological mechanisms with interconnected oxidative stress and inflammation as one of the common etiologies which result in the onset and development of atherosclerotic plaques. In this review, we illustrate this strong crosstalk between oxidative stress, inflammation, and CVD. Also, mitochondrial functions underlying this crosstalk, and various approaches for the prevention of redox/inflammatory biological impacts will be illustrated. In part, we focus on the laboratory biomarkers and physiological tests for the evaluation of oxidative stress status and inflammatory processes. The impact of a healthy lifestyle on CVD onset and development is displayed as well. Furthermore, the differences in oxidative stress and inflammation are related to genetic susceptibility to cardiovascular diseases and the variability in the assessment of CVDs risk between individuals; Omics technologies for measuring oxidative stress and inflammation will be explored. Finally, we display the oxidative stress-related microRNA and the functions of the redox basis of epigenetic modifications.
Collapse
Affiliation(s)
- Thoria Donia
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Abeer Khamis
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
| |
Collapse
|
153
|
Zhang Z, Zhang Y, Li J, Fu C, Zhang X. The Neuroprotective Effect of Tea Polyphenols on the Regulation of Intestinal Flora. Molecules 2021; 26:molecules26123692. [PMID: 34204244 PMCID: PMC8233780 DOI: 10.3390/molecules26123692] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Tea polyphenols (TPs) are the general compounds of natural polyhydroxyphenols extracted in tea. Although a large number of studies have shown that TPs have obvious neuroprotective and neuro repair effects, they are limited due to the low bioavailability in vivo. However, TPs can act indirectly on the central nervous system by affecting the “microflora–gut–brain axis”, in which the microbiota and its composition represent a factor that determines brain health. Bidirectional communication between the intestinal microflora and the brain (microbe–gut–brain axis) occurs through a variety of pathways, including the vagus nerve, immune system, neuroendocrine pathways, and bacteria-derived metabolites. This axis has been shown to influence neurotransmission and behavior, which is usually associated with neuropsychiatric disorders. In this review, we discuss that TPs and their metabolites may provide benefits by restoring the imbalance of intestinal microbiota and that TPs are metabolized by intestinal flora, to provide a new idea for TPs to play a neuroprotective role by regulating intestinal flora.
Collapse
Affiliation(s)
- Zhicheng Zhang
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
- Taizhou Biomedical Industry Research Institute Co., Ltd., Taizhou 317000, China
- College of Life Sciences, Taizhou University, Taizhou 317000, China
| | - Yuting Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China;
| | - Junmin Li
- Taizhou Biomedical Industry Research Institute Co., Ltd., Taizhou 317000, China
- College of Life Sciences, Taizhou University, Taizhou 317000, China
- Correspondence: (J.L.); (C.F.); (X.Z.)
| | - Chengxin Fu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
- Correspondence: (J.L.); (C.F.); (X.Z.)
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China;
- Correspondence: (J.L.); (C.F.); (X.Z.)
| |
Collapse
|
154
|
Co-Encapsulated Synbiotics and Immobilized Probiotics in Human Health and Gut Microbiota Modulation. Foods 2021; 10:foods10061297. [PMID: 34200108 PMCID: PMC8230215 DOI: 10.3390/foods10061297] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Growing interest in the development of innovative functional products as ideal carriers for synbiotics, e.g., nutrient bars, yogurt, chocolate, juice, ice cream, and cheese, to ensure the daily intake of probiotics and prebiotics, which are needed to maintain a healthy gut microbiota and overall well-being, is undeniable and inevitable. This review focuses on the modern approaches that are currently being developed to modulate the gut microbiota, with an emphasis on the health benefits mediated by co-encapsulated synbiotics and immobilized probiotics. The impact of processing, storage, and simulated gastrointestinal conditions on the viability and bioactivity of probiotics together with prebiotics such as omega-3 polyunsaturated fatty acids, phytochemicals, and dietary fibers using various delivery systems are considered. Despite the proven biological properties of synbiotics, research in this area needs to be focused on the proper selection of probiotic strains, their prebiotic counterparts, and delivery systems to avoid suppression of their synergistic or complementary effect on human health. Future directions should lead to the development of functional food products containing stable synbiotics tailored for different age groups or specifically designed to fulfill the needs of adjuvant therapy.
Collapse
|
155
|
Meleshko T, Rukavchuk R, Buhyna L, Pallah O, Sukharev S, Drobnych V, Boyko N. Biologically Active Substance Content in Edible Plants of Zakarpattia and Their Elemental Composition Model. Biol Trace Elem Res 2021; 199:2387-2398. [PMID: 32815090 DOI: 10.1007/s12011-020-02345-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022]
Abstract
Consumption of edible plants satisfies a significant part of human body needs in macro- and micronutrients while biologically active substances contain strong antioxidant properties and reduce the risk of a number of diseases. Balanced nutrition and design of personalized diets and treatment rely on the data on the content of macro- and micronutrients and biologically active substances. We determined polyphenol and anthocyanin content in 22 species of local edible plants using modified spectrophotometric method with Folin-Ciocalteu reagent as well as chemical elements' content in a mixture of edible plants from 13 regions using standard procedures. We performed correlational analysis of the obtained data and analysis of the main components in OriginLab, developed regional models of chemical elements' content for a mixture of edible plants, and conducted cluster analysis using common tools in Python. The results of biologically active substances' study demonstrated that the highest content of polyphenolic compounds and anthocyanins was found in grape meal of Vitis vinifera L. The study of chemical elements' content demonstrated that edible plants from lowland areas are the best and revealed clear dependences of the elements on each other and geographical conditions. The analysis of the principal components confirmed this finding. Based on the obtained data, a number of regional models of chemical elements' content in a mixture of edible plants were built, tested, and evaluated. Obtained results are the basis for designing various diets, filling composite databases of the region's food, and creating the newest biologics-pharmabiotics.
Collapse
Affiliation(s)
- Tamara Meleshko
- Department of Clinical Laboratory Diagnostics and Pharmacology, Faculty of Dentistry, Uzhhorod National University, Universytetska st. 16a, Uzhhorod, 88000, Ukraine
- Research Development and Educational Centre of Molecular Microbiology and Mucosal Immunology, Uzhhorod National University, Narodna sq. 1, Uzhhorod, 88000, Ukraine
| | - Roman Rukavchuk
- Research Development and Educational Centre of Molecular Microbiology and Mucosal Immunology, Uzhhorod National University, Narodna sq. 1, Uzhhorod, 88000, Ukraine.
| | - Larysa Buhyna
- Research Development and Educational Centre of Molecular Microbiology and Mucosal Immunology, Uzhhorod National University, Narodna sq. 1, Uzhhorod, 88000, Ukraine
| | - Oleksandra Pallah
- Department of Clinical Laboratory Diagnostics and Pharmacology, Faculty of Dentistry, Uzhhorod National University, Universytetska st. 16a, Uzhhorod, 88000, Ukraine
- Research Development and Educational Centre of Molecular Microbiology and Mucosal Immunology, Uzhhorod National University, Narodna sq. 1, Uzhhorod, 88000, Ukraine
| | - Sergii Sukharev
- Department of Ecology and Environmental Protection, Faculty of Chemistry, Uzhhorod National University, Pidgirna st. 46, Uzhhorod, 88000, Ukraine
| | - Volodymyr Drobnych
- Department of Land Management and Cadaster, Uzhhorod National University, Universytetska st. 14, Uzhhorod, 88000, Ukraine
| | - Nadiya Boyko
- Department of Clinical Laboratory Diagnostics and Pharmacology, Faculty of Dentistry, Uzhhorod National University, Universytetska st. 16a, Uzhhorod, 88000, Ukraine
- Research Development and Educational Centre of Molecular Microbiology and Mucosal Immunology, Uzhhorod National University, Narodna sq. 1, Uzhhorod, 88000, Ukraine
| |
Collapse
|
156
|
A single serving of mixed spices alters gut microflora composition: a dose-response randomised trial. Sci Rep 2021; 11:11264. [PMID: 34050197 PMCID: PMC8163817 DOI: 10.1038/s41598-021-90453-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/09/2021] [Indexed: 02/04/2023] Open
Abstract
Short-term changes in dietary intake can induce changes in gut microbiome. While various dietary polyphenols have been shown to modulate gut microflora, the acute influence of polyphenol-rich mixed spices has not been explored in a controlled setting. We investigated the effects of a single serving of mixed spices Indian curry consumption, in two separate doses, on the gut microbiome in 15 healthy, Singaporean Chinese males, with age and BMI of 23.5 ± 2.4 years and 22.9 ± 2.2 kg/m2 respectively. We found that a low-polyphenol, no spices Dose 0 Control (D0C) meal led to an increase in Bacteroides and a decrease in Bifidobacterium. In comparison to D0C, there was significant suppression of Bacteroides (p < 0.05) and an increase in Bifidobacterium (p < 0.05) with increasing doses of curry meal Dose 1 Curry (D1C) and Dose 2 Curry (D2C) containing 6 g and 12 g mixed spices respectively. Significant correlations were also found between bacterial changes and plasma phenolic acids. No differences between treatments were observed in the alpha-diversity of the gut microflora. This study has shown that a single serving of mixed spices can significantly modify/restore certain commensal microbes, particularly in people who do not regularly consume these spices.
Collapse
|
157
|
Ray SK, Mukherjee S. Evolving Interplay Between Dietary Polyphenols and Gut Microbiota-An Emerging Importance in Healthcare. Front Nutr 2021; 8:634944. [PMID: 34109202 PMCID: PMC8180580 DOI: 10.3389/fnut.2021.634944] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Polyphenols are natural plant compounds and are the most abundant antioxidants in the human diet. As the gastrointestinal tract is the primary organ provided to diet sections, the diet may be regarded as one of the essential factors in the functionality, integrity, and composition of intestinal microbiota. In the gastrointestinal tract, many polyphenols remain unabsorbed and may accumulate in the large intestine, where the intestinal microbiota are most widely metabolized. When assuming primary roles for promoting host well-being, this intestinal health environment is presented to the effect of external influences, including dietary patterns. A few different methodologies have been developed to increase solvency and transport across the gastrointestinal tract and move it to targeted intestinal regions to resolve dietary polyphenols at the low bioavailability. Polyphenols form a fascinating community among the different nutritional substances, as some of them have been found to have critical biological activities that include antioxidant, antimicrobial, or anticarcinogenic activities. Besides, it affects metabolism and immunity of the intestines and has anti-inflammatory properties. The well-being status of subjects can also benefit from the development of bioactive polyphenol-determined metabolites, although the mechanisms have not been identified. Even though the incredible variety of health-advancing activities of dietary polyphenols has been widely studied, their effect on intestinal biology adaptation, and two-way relationship between polyphenols and microbiota is still poorly understood. We focused on results of polyphenols in diet with biological activities, gut ecology, and the influence of their proportional links on human well-being and disease in this study.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, India
| |
Collapse
|
158
|
Liu J, Cao J, Li Y, Guo F. Beneficial Flavonoid in Foods and Anti-obesity Effect. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1923730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jingwen Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaoxian Cao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
159
|
Teka T, Wang L, Gao J, Mou J, Pan G, Yu H, Gao X, Han L. Polygonum multiflorum: Recent updates on newly isolated compounds, potential hepatotoxic compounds and their mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113864. [PMID: 33485980 DOI: 10.1016/j.jep.2021.113864] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/04/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonum multiflorum Thunb.(PM), (known as Heshouwu () in China) is one of the most important and well mentioned Chinese medicinal herbs in the literature for its use in blackening hair, nourishing liver and kidney, anti-aging, anti-hyperlipidemia, antioxidant, anti-inflammatory, anticancer, hepatoprotection, cardio-protection and improving age-related cognitive dysfunction. The purpose of this review is to give a comprehensive and recent update on PM: new compounds or isolated for the first time, potential hepatotoxic compounds and their mechanisms. Moreover, future perspectives and challenges in the future study of this plant are conversed which will make a new base for further study on PM. MATERIALS AND METHODS A comprehensive review of relevant published literature on PM using the scientific databases SCOPUS, PubMed, and Science Direct was done. RESULTS PM is broadly produced in many provinces of China and well known in other Eastern Asian Countries for its ethno-medical uses. Previous phytochemical investigation of PM had led to the isolation of more than 175 compounds including recently isolated 70 new compounds. Most of the new compounds isolated after 2015 are majorly dianthrone glycosides and stilbene glycosides. Processing has also a significant effect on chemical composition, pharmacological activities, and toxicity of PM. PM-induced liver injury is increasing after the first report in Hong Kong in 1996. Hepatotoxicity of PM was constantly reported in Japan, Korea, China, Australia, Britain, Italy, and other countries although its toxicity is related to idiosyncratic hepatotoxicity. More interestingly, although there is indispensable interest to predict idiosyncratic hepatotoxicity of PM and understand its mechanisms, the responsible hepatotoxic compounds and mechanisms of liver damage induced by PM are still not clear. There is a big controversy on the identification of the most responsible constituent. Anthraquinone and stilbene compounds in PM, mainly emodine and TSG are mentioned in the literature to be the main responsible hepatotoxic compounds. However, comparing the two compounds, which one is the more critical toxic agent for PM-induced hepatotoxicity is not well answered. Affecting different physiological and metabolic pathways such as oxidative phosphorylation and TCA cycle pathway, metabolic pathways, bile acid excretion pathway and genetic polymorphisms are among the mechanisms of hepatotoxicity of PM. CONCLUSION Deeper and effective high throughput experimental studies are still research hotspots to know the most responsible constituent and the mechanism of PM-induced hepatotoxicity.
Collapse
Affiliation(s)
- Tekleab Teka
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China; Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, P. O. Box 1145, Dessie, Ethiopia
| | - Liming Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Jian Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Jiajia Mou
- Department of Medicinal Chemistry, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 69 Zengchan Road, Hebei District, Tianjin, 300250, PR China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China.
| |
Collapse
|
160
|
Shi T, Bian X, Yao Z, Wang Y, Gao W, Guo C. Quercetin improves gut dysbiosis in antibiotic-treated mice. Food Funct 2021; 11:8003-8013. [PMID: 32845255 DOI: 10.1039/d0fo01439g] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The diversity and activity of the gut microbiota residing in humans and animals are significantly influenced by the diet. Quercetin, one of the representative polyphenols in human diets, possesses a wide range of biological properties. The aim of this study was to investigate the prebiotic effects of quercetin in antibiotic-treated mice. Gut dysbiosis was successfully induced in mice by treatment with an antibiotic cocktail. Gas chromatography and 16S rDNA high-throughput sequencing techniques were used to investigate short-chain fatty acid content and gut microbial diversity and composition. The results showed that quercetin supplementation significantly improved the diversity of the gut bacterial community in antibiotic-treated mice (P < 0.05). Meanwhile, intestinal barrier function was also recovered remarkably as indicated by a decrease in the content of serum d-lactic acid and the activity of serum diamine oxidase (P < 0.05). The length of intestinal villi and mucosal thickness were also significantly increased in response to quercetin treatment (P < 0.05). Furthermore, the production of butyrate in faeces was enhanced significantly in quercetin-treated mice (P < 0.05). In conclusion, quercetin is effective in recovering gut microbiota in mice after antibiotic treatment and may act as a prebiotic in combatting gut dysbiosis.
Collapse
Affiliation(s)
- Tala Shi
- Institute of Environmental and Operational Medicine, Tianjin, China. and Department of Nutrition and Food Hygiene, Binzhou Medical University, Yantai, China
| | - Xiangyu Bian
- Institute of Environmental and Operational Medicine, Tianjin, China.
| | - Zhanxin Yao
- Institute of Environmental and Operational Medicine, Tianjin, China.
| | - Yawen Wang
- Institute of Environmental and Operational Medicine, Tianjin, China.
| | - Weina Gao
- Institute of Environmental and Operational Medicine, Tianjin, China.
| | - Changjiang Guo
- Institute of Environmental and Operational Medicine, Tianjin, China.
| |
Collapse
|
161
|
Effects of Polyphenols in Tea (Camellia sinensis sp.) on the Modulation of Gut Microbiota in Human Trials and Animal Studies. GASTROENTEROLOGY INSIGHTS 2021. [DOI: 10.3390/gastroent12020018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A diet high in polyphenols is associated with a diversified gut microbiome. Tea is the second most consumed beverage in the world, after water. The health benefits of tea might be attributed to the presence of polyphenol compounds such as flavonoids (e.g., catechins and epicatechins), theaflavins, and tannins. Although many studies have been conducted on tea, little is known of its effects on the trillions of gut microbiota. Hence, this review aimed to systematically study the effect of tea polyphenols on the stimulation or suppression of gut microbiota in humans and animals. It was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. Articles were retrieved from PubMed and Scopus databases, and data were extracted from 6 human trials and 15 animal studies. Overall, large variations were observed in terms of microbiota composition between humans and animals. A more consistent pattern of diversified microbiota was observed in animal studies. Tea alleviated the gut microbiota imbalance caused by high-fat diet-induced obesity, diabetes, and ultraviolet-induced damage. The overall changes in microbiota composition measured by beta diversity analysis showed that tea had shifted the microbiota from the pattern seen in animals that received tea-free intervention. In humans, a prebiotic-like effect was observed toward the gut microbiota, but these results appeared in lower-quality studies. The beta diversity in human microbiota remains intact despite tea intervention; supplementation with different teas affects different types of bacterial taxa in the gut. These studies suggest that tea polyphenols may have a prebiotic effect in disease-induced animals and in a limited number of human interventions. Further intervention is needed to identify the mechanisms of action underlying the effects of tea on gut microbiota.
Collapse
|
162
|
Zhao L, Zhu X, Xia M, Li J, Guo AY, Zhu Y, Yang X. Quercetin Ameliorates Gut Microbiota Dysbiosis That Drives Hypothalamic Damage and Hepatic Lipogenesis in Monosodium Glutamate-Induced Abdominal Obesity. Front Nutr 2021; 8:671353. [PMID: 33996881 PMCID: PMC8116593 DOI: 10.3389/fnut.2021.671353] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Monosodium glutamate (MSG)-induced abdominal obesity, conventionally caused by hypothalamic damage, is a critical risk factor for health problem. Microbiota-gut-brain axis plays important roles in a variety of metabolic diseases. However, whether gut microbiota is involved in the pathogenesis for MSG-induced abdominal obesity and the effect of quercetin on it remains unclear. Herein, we find that MSG-induced gut microbiota dysbiosis contributes to neuronal damage in the hypothalamus, as indicated by antibiotics-induced microbiota depletion and co-house treatment. Inspired by this finding, we investigate the mechanism in-depth for MSG-induced abdominal obesity. Liver transcriptome profiling shows retinol metabolism disorder in MSG-induced abdominal obese mice. In which, retinol saturase (RetSat) in the liver is notably up-regulated, and the downstream lipogenesis is correspondingly elevated. Importantly, microbiota depletion or co-house treatment eliminates the difference of RetSat expression in the liver, indicating gut microbiota changes are responsible for liver retinol metabolism disorder. Moreover, this study finds dietary quercetin could modulate MSG-induced gut microbiota dysbiosis, alleviate hypothalamic damage and down-regulate liver RetSat expression, thus ameliorating abdominal obesity. Our study enriches the pathogenesis of MSG-induced abdominal obesity and provides a prebiotic agent to ameliorate abdominal obesity.
Collapse
Affiliation(s)
- Lijun Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqiang Zhu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mengxuan Xia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - An-Yuan Guo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yanhong Zhu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
163
|
Saracila M, Panaite TD, Papuc CP, Criste RD. Heat Stress in Broiler Chickens and the Effect of Dietary Polyphenols, with Special Reference to Willow ( Salix spp .) Bark Supplements-A Review. Antioxidants (Basel) 2021; 10:antiox10050686. [PMID: 33925609 PMCID: PMC8146860 DOI: 10.3390/antiox10050686] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 12/11/2022] Open
Abstract
Over the last decade, there has been a growing interest in the use of a wide range of phytoadditives to counteract the harmful effects of heat stress in poultry. Willow (Salix spp.) is a tree with a long history. Among various forms, willow bark is an important natural source of salicin, β-O-glucoside of saligenin, but also of polyphenols (flavonoids and condensed tannins) with antioxidant, antimicrobial, and anti-inflammatory activity. In light of this, the current review presents some literature data aiming to: (1) describe the relationship between heat stress and oxidative stress in broilers, (2) present or summarize literature data on the chemical composition of Salix species, (3) summarize the mechanisms of action of willow bark in heat-stressed broilers, and (4) present different biological effects of the extract of Salix species in different experimental models.
Collapse
Affiliation(s)
- Mihaela Saracila
- National Research-Development Institute for Animal Biology and Nutrition (IBNA), Calea Bucuresti, 1, Balotesti, 077015 Ilfov, Romania; (T.D.P.); (R.D.C.)
- Faculty of Animal Production Engineering and Management, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, District 1, 011464 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-351-2081
| | - Tatiana Dumitra Panaite
- National Research-Development Institute for Animal Biology and Nutrition (IBNA), Calea Bucuresti, 1, Balotesti, 077015 Ilfov, Romania; (T.D.P.); (R.D.C.)
| | - Camelia Puia Papuc
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 105 Splaiul Independentei, 050097 Bucharest, Romania;
- Academy of Romanian Scientists (AOSR), 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Rodica Diana Criste
- National Research-Development Institute for Animal Biology and Nutrition (IBNA), Calea Bucuresti, 1, Balotesti, 077015 Ilfov, Romania; (T.D.P.); (R.D.C.)
| |
Collapse
|
164
|
Li F, Wang L, Cai Y, Luo Y, Shi X. Safety assessment of desaminotyrosine: Acute, subchronic oral toxicity, and its effects on intestinal microbiota in rats. Toxicol Appl Pharmacol 2021; 417:115464. [PMID: 33636197 DOI: 10.1016/j.taap.2021.115464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 11/30/2022]
Abstract
In this work, the acute and subchronic toxicities of desaminotyrosine (DAT) by oral administration in SD rats and its effects on the intestinal microflora were investigated. The acute toxicity test showed that DAT is a low-toxic substance with a LD50 of 3129 mg/kg. The subchronic toxicity test showed that DAT has no toxicity at a low dose (125 mg/kg/day). However, DAT exhibited obvious toxicities to food intake, liver, kidney, and lung at higher dose (250 mg/kg/day and 500 mg/kg/day). DAT inhibited the food intake of rats in a dose-dependent manner. Serum biochemical analysis showed that DAT can increase the serum glucose level of rats. Fecal microbiota analysis showed that DAT treatment can significantly change the intestinal microflora of rats, the dose of 125 mg/kg/day has the most significant effect on the diversity of intestinal microbiota. In daily application, the side effects caused by DAT might be gastrointestinal irritation, weight loss, liver or kidney injury, and blood sugar elevation. Based on our study, the no-observed-adverse-effect level (NOAEL) of DAT is 125 mg/kg BW/day for rats.
Collapse
Affiliation(s)
- Feng Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; Institute of Pharmaceutical Biotechnology and Bioengineering, Fuzhou University, Fuzhou, Fujian 350108, China; Fujian Key Lab of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Liping Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; Institute of Pharmaceutical Biotechnology and Bioengineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yilei Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; Institute of Pharmaceutical Biotechnology and Bioengineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yihuo Luo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; Institute of Pharmaceutical Biotechnology and Bioengineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; Institute of Pharmaceutical Biotechnology and Bioengineering, Fuzhou University, Fuzhou, Fujian 350108, China; Fujian Key Lab of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
165
|
van der Merwe M, Moore D, Hill JL, Keating FH, Buddington RK, Bloomer RJ, Wang A, Bowman DD. The Impact of a Dried Fruit and Vegetable Supplement and Fiber Rich Shake on Gut and Health Parameters in Female Healthcare Workers: A Placebo-Controlled, Double-Blind, Randomized Clinical Trial. Microorganisms 2021; 9:microorganisms9040843. [PMID: 33920059 PMCID: PMC8070989 DOI: 10.3390/microorganisms9040843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022] Open
Abstract
Aim: Phytochemicals from fruits and vegetables are known to reduce inflammation and improve overall health. The objective of this study was to determine the effect of a fruit and vegetable concentrate (FVC) and high fiber component on the gut microbiome in an overweight/obese, female population. Methods: The study was a randomized, double blind, placebo-controlled trial with 57 asymptomatic, pre-menopausal, overweight/obese females between 25–50 years of age working in healthcare. Blood and fecal samples were collected before and after two, four and five months of daily supplementation. Metabolic parameters were measured, and the gut microbiome analyzed. Results: No effect was observed with FVC supplementation for blood lipids, glucose and immune parameters. There was an improvement in glucose clearance. The FVC supplement did not result in taxonomic alterations at phyla level, or changes in α or β diversity, but reduced Bacteroides abundance and increased fecal butyrate. An additional high fiber component improved levels of health associated bacteria. Conclusion: The results suggest that a dried fruit and vegetable supplement, with a high fiber meal replacement can alter the intestinal microbiota and improve glucose clearance, suggesting that this combination of supplements can improve glucose metabolism and possibly reduce the risk of insulin resistance.
Collapse
Affiliation(s)
- Marie van der Merwe
- Center for Nutraceuticals and Dietary Supplement Research, College of Health Sciences, University of Memphis, 106 Elma Roane Fieldhouse, Zach Curlin Rd., Memphis, TN 38152, USA; (D.M.); (J.L.H.); (F.H.K.); (R.K.B.); (R.J.B.)
- Correspondence:
| | - Damien Moore
- Center for Nutraceuticals and Dietary Supplement Research, College of Health Sciences, University of Memphis, 106 Elma Roane Fieldhouse, Zach Curlin Rd., Memphis, TN 38152, USA; (D.M.); (J.L.H.); (F.H.K.); (R.K.B.); (R.J.B.)
| | - Jessica L. Hill
- Center for Nutraceuticals and Dietary Supplement Research, College of Health Sciences, University of Memphis, 106 Elma Roane Fieldhouse, Zach Curlin Rd., Memphis, TN 38152, USA; (D.M.); (J.L.H.); (F.H.K.); (R.K.B.); (R.J.B.)
| | - Faith H. Keating
- Center for Nutraceuticals and Dietary Supplement Research, College of Health Sciences, University of Memphis, 106 Elma Roane Fieldhouse, Zach Curlin Rd., Memphis, TN 38152, USA; (D.M.); (J.L.H.); (F.H.K.); (R.K.B.); (R.J.B.)
| | - Randal K. Buddington
- Center for Nutraceuticals and Dietary Supplement Research, College of Health Sciences, University of Memphis, 106 Elma Roane Fieldhouse, Zach Curlin Rd., Memphis, TN 38152, USA; (D.M.); (J.L.H.); (F.H.K.); (R.K.B.); (R.J.B.)
| | - Richard J. Bloomer
- Center for Nutraceuticals and Dietary Supplement Research, College of Health Sciences, University of Memphis, 106 Elma Roane Fieldhouse, Zach Curlin Rd., Memphis, TN 38152, USA; (D.M.); (J.L.H.); (F.H.K.); (R.K.B.); (R.J.B.)
| | - Anyou Wang
- Harry Feinstone Center for Genomic Research, University of Memphis, Memphis, TN 38152, USA;
| | - Dale D. Bowman
- Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA;
| |
Collapse
|
166
|
Kasprzak-Drozd K, Oniszczuk T, Stasiak M, Oniszczuk A. Beneficial Effects of Phenolic Compounds on Gut Microbiota and Metabolic Syndrome. Int J Mol Sci 2021; 22:3715. [PMID: 33918284 PMCID: PMC8038165 DOI: 10.3390/ijms22073715] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
The human intestine contains an intricate community of microorganisms, referred to as the gut microbiota (GM), which plays a pivotal role in host homeostasis. Multiple factors could interfere with this delicate balance, including genetics, age, medicines and environmental factors, particularly diet. Growing evidence supports the involvement of GM dysbiosis in gastrointestinal (GI) and extraintestinal metabolic diseases. The beneficial effects of dietary polyphenols in preventing metabolic diseases have been subjected to intense investigation over the last twenty years. As our understanding of the role of the gut microbiota advances and our knowledge of the antioxidant and anti-inflammatory functions of polyphenols accumulates, there emerges a need to examine the prebiotic role of dietary polyphenols. This review firstly overviews the importance of the GM in health and disease and then reviews the role of dietary polyphenols on the modulation of the gut microbiota, their metabolites and how they impact on host health benefits. Inter-dependence between the gut microbiota and polyphenol metabolites and the vital balance between the two in maintaining the host gut homeostasis are also discussed.
Collapse
Affiliation(s)
- Kamila Kasprzak-Drozd
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland
| | - Mateusz Stasiak
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
167
|
Li Y, He D, Li B, Lund MN, Xing Y, Wang Y, Li F, Cao X, Liu Y, Chen X, Yu J, Zhu J, Zhang M, Wang Q, Zhang Y, Li B, Wang J, Xing X, Li L. Engineering polyphenols with biological functions via polyphenol-protein interactions as additives for functional foods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
168
|
Oesterle I, Braun D, Berry D, Wisgrill L, Rompel A, Warth B. Polyphenol Exposure, Metabolism, and Analysis: A Global Exposomics Perspective. Annu Rev Food Sci Technol 2021; 12:461-484. [PMID: 33351643 DOI: 10.1146/annurev-food-062220-090807] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polyphenols are generally known for their health benefits and estimating actual exposure levels in health-related studies can be improved by human biomonitoring. Here, the application of newly available exposomic and metabolomic technology, notably high-resolution mass spectrometry, in the context of polyphenols and their biotransformation products, is reviewed. Comprehensive workflows for investigating these important bioactives in biological fluids or microbiome-related experiments are scarce. Consequently, this new era of nontargeted analysis and omic-scale exposure assessment offers a unique chance for better assessing exposure to, as well as metabolism of, polyphenols. In clinical and nutritional trials, polyphenols can be investigated simultaneously with the plethora of other chemicals to which we are exposed, i.e., the exposome, which may interact abundantly and modulate bioactivity. This research direction aims at ultimately eluting into atrue systems biology/toxicology evaluation of health effects associated with polyphenol exposure, especially during early life, to unravel their potential for preventing chronic diseases.
Collapse
Affiliation(s)
- Ian Oesterle
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; , , .,Department of Biophysical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
| | - Dominik Braun
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; , ,
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, 1090 Vienna, Austria; .,The Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1090 Vienna, Austria
| | - Lukas Wisgrill
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Annette Rompel
- Department of Biophysical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; , ,
| |
Collapse
|
169
|
Ribeiro M, Alvarenga L, Cardozo LFMF, Chermut TR, Sequeira J, de Souza Gouveia Moreira L, Teixeira KTR, Shiels PG, Stenvinkel P, Mafra D. From the distinctive smell to therapeutic effects: Garlic for cardiovascular, hepatic, gut, diabetes and chronic kidney disease. Clin Nutr 2021; 40:4807-4819. [PMID: 34147285 DOI: 10.1016/j.clnu.2021.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023]
Abstract
Garlic, a member of the Allium family, widely used in cooking for many centuries, displays well described antioxidant and anti-inflammatory properties, as a result of its constituent organosulfur compounds, such as alliin, allicin, ajoene S-allyl-cysteine, diallyl sulfide and diallyl disulfide, among others. Although garlic has demonstrated beneficial effects in cardiovascular disease, diabetes, and cancer, its efficacy as a therapeutic intervention in chronic kidney disease remains to be proven. This review thus focuses on the potential benefits of garlic as a treatment option in chronic kidney disease. and its ability to mitigate associated cardiovascular complications and gut dysbiosis.
Collapse
Affiliation(s)
- Marcia Ribeiro
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Livia Alvarenga
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Tuany R Chermut
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Joana Sequeira
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | | | | | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| | - Denise Mafra
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| |
Collapse
|
170
|
Vazhappilly CG, Amararathna M, Cyril AC, Linger R, Matar R, Merheb M, Ramadan WS, Radhakrishnan R, Rupasinghe HPV. Current methodologies to refine bioavailability, delivery, and therapeutic efficacy of plant flavonoids in cancer treatment. J Nutr Biochem 2021; 94:108623. [PMID: 33705948 DOI: 10.1016/j.jnutbio.2021.108623] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/21/2021] [Accepted: 02/28/2021] [Indexed: 02/06/2023]
Abstract
Over the last two decades, several advancements have been made to improve the therapeutic efficacy of plant flavonoids, especially in cancer treatment. Factors such as low bioavailability, poor flavonoid stability and solubility, ineffective targeted delivery, and chemo-resistance hinder the application of flavonoids in anti-cancer therapy. Many anti-cancer compounds failed in the clinical trials because of unexpected altered clearance of flavonoids, poor absorption after administration, low efficacy, and/or adverse effects. Hence, the current research strategies are focused on improving the therapeutic efficacy of plant flavonoids, especially by enhancing their bioavailability through combination therapy, engineering gut microbiota, regulating flavonoids interaction with adenosine triphosphate binding cassette efflux transporters, and efficient delivery using nanocrystal and encapsulation technologies. This review aims to discuss different methodologies with examples from reported dietary flavonoids that showed an enhanced anti-cancer efficacy in both in vitro and in vivo models. Further, the review discusses the recent progress in biochemical modifications of flavonoids to improve bioavailability, solubility, and therapeutic efficacy.
Collapse
Affiliation(s)
| | - Madumani Amararathna
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Asha Caroline Cyril
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Rebecca Linger
- Department of Pharmaceutical and Administrative Sciences, University of Charleston, Charleston, West Virginia, USA
| | - Rachel Matar
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Maxime Merheb
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Wafaa S Ramadan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE; College of Medicine, University of Sharjah, Sharjah, UAE
| | - Rajan Radhakrishnan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada; Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
171
|
Translational Approaches with Antioxidant Phytochemicals against Alcohol-Mediated Oxidative Stress, Gut Dysbiosis, Intestinal Barrier Dysfunction, and Fatty Liver Disease. Antioxidants (Basel) 2021; 10:antiox10030384. [PMID: 33806556 PMCID: PMC8000766 DOI: 10.3390/antiox10030384] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging data demonstrate the important roles of altered gut microbiomes (dysbiosis) in many disease states in the peripheral tissues and the central nervous system. Gut dysbiosis with decreased ratios of Bacteroidetes/Firmicutes and other changes are reported to be caused by many disease states and various environmental factors, such as ethanol (e.g., alcohol drinking), Western-style high-fat diets, high fructose, etc. It is also caused by genetic factors, including genetic polymorphisms and epigenetic changes in different individuals. Gut dysbiosis, impaired intestinal barrier function, and elevated serum endotoxin levels can be observed in human patients and/or experimental rodent models exposed to these factors or with certain disease states. However, gut dysbiosis and leaky gut can be normalized through lifestyle alterations such as increased consumption of healthy diets with various fruits and vegetables containing many different kinds of antioxidant phytochemicals. In this review, we describe the mechanisms of gut dysbiosis, leaky gut, endotoxemia, and fatty liver disease with a specific focus on the alcohol-associated pathways. We also mention translational approaches by discussing the benefits of many antioxidant phytochemicals and/or their metabolites against alcohol-mediated oxidative stress, gut dysbiosis, intestinal barrier dysfunction, and fatty liver disease.
Collapse
|
172
|
Fructo-Oligosaccharides and Pectins Enhance Beneficial Effects of Raspberry Polyphenols in Rats with Nonalcoholic Fatty Liver. Nutrients 2021; 13:nu13030833. [PMID: 33802455 PMCID: PMC8001257 DOI: 10.3390/nu13030833] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, nonalcoholic fatty liver disorders have become one of the most common liver pathologies; therefore, it is necessary to investigate the dietary compounds that may support the regulation of liver metabolism and related inflammatory processes. The present study examines the effect of raspberry polyphenolic extract (RE) combined with fructo-oligosaccharides (FOSs) or pectins (PECs) on caecal microbial fermentation, liver lipid metabolism and inflammation in rats with fatty liver induced by an obesogenic diet. The combination of RE with FOSs or PECs reduced the production of short-chain fatty acids in the caecum. RE combined with FOSs exerted the most favourable effects on liver lipid metabolism by decreasing liver fat, cholesterol, triglyceride content and hepatic steatosis. RE and FOSs reduced lobular and portal inflammatory cell infiltration and IL-6 plasma levels. These effects might be related to a decrease in the hepatic expressions of PPARγ and ANGPTL4. In conclusion, PECs and FOSs enhanced the effects of RE against disorders related to nonalcoholic fatty liver; however, the most effective dietary treatment in the regulation of liver lipid metabolism and inflammation caused by an obesogenic diet was the combination of RE with FOSs.
Collapse
|
173
|
Macho-González A, Garcimartín A, Redondo N, Cofrades S, Bastida S, Nova E, Benedí J, Sánchez-Muniz FJ, Marcos A, Elvira López-Oliva M. Carob fruit extract-enriched meat, as preventive and curative treatments, improves gut microbiota and colonic barrier integrity in a late-stage T2DM model. Food Res Int 2021; 141:110124. [PMID: 33641991 DOI: 10.1016/j.foodres.2021.110124] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/19/2020] [Accepted: 01/07/2021] [Indexed: 12/28/2022]
Abstract
Epidemiological and experimental studies have suggested that dietary fiber and proanthocyanidins play an important role on gut microbiota (GM), colonic integrity and body health. Type 2 Diabetes Mellitus (T2DM) is a prevalent disease in which the modifications in the GM and colonic markers stand out. This manuscript hypothesizes the consumption of functional meat enriched in carob fruit extract [CFE; CFE-restructured meat (RM)] ameliorates the dysbiosis and colonic barrier integrity loss in a late-stage T2DM rat model induced by the conjoint action of a high-saturated-fat/high-cholesterol diet (Chol-diet) and a low dose of streptozotocin (STZ) plus a nicotinamide (NAD) injection. Three groups of eight rats were used: (1) D group, a T2DM control group, fed the Chol-diet; (2) ED group, a T2DM preventive strategy group fed the CFE-Chol-diet since the beginning of the study; and (3) DE group, a T2DM curative treatment group, fed the CFE-Chol-diet once the diabetic state was confirmed. The study lasted 8 weeks. Amount and variety of GM, feces short-chain-fatty acids (SCFAs), colonic morphology [crypt depth and density, goblet cells, proliferating cell nuclear antigen (PCNA) and transferase dUTP nick end labelling (TUNEL) indexes] and tight junctions were evaluated. A global colonic index combining 17 markers (GCindex) was calculated. ED rats displayed higher levels of GM richness, SCFAs production, crypt depth, and goblet cells than the D group. DE group showed lower Enterobacteriaceae abundance and greater TUNEL index and occludin expression in the distal colon than D counterpart. GCindex differentiated the colonic health status of the experimental groups in the order (ED > DE > D; P < 0.001) as a 17-51 range-quotation, ED, DE, and D groups displayed the values 43, 32.5, and 27, respectively. Thus, CFE-RM used as a T2DM preventive therapy could induce higher GM richness, more adequate SCFAs production, and better colonic barrier integrity. Furthermore, CFE-RM used with curative purposes induced more modest changes and mainly at the distal colonic mucosa. Further studies are needed to confirm this study's results, to ascertain the benefits of consuming proanthocyanidins-rich fiber during different T2DM stages.
Collapse
Affiliation(s)
- Adrián Macho-González
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - Alba Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - Noemí Redondo
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spain
| | - Susana Cofrades
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spain
| | - Sara Bastida
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - Esther Nova
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spain
| | - Juana Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - Francisco J Sánchez-Muniz
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - Ascensión Marcos
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spain
| | - M Elvira López-Oliva
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
174
|
Needham BD, Adame MD, Serena G, Rose DR, Preston GM, Conrad MC, Campbell AS, Donabedian DH, Fasano A, Ashwood P, Mazmanian SK. Plasma and Fecal Metabolite Profiles in Autism Spectrum Disorder. Biol Psychiatry 2021; 89:451-462. [PMID: 33342544 PMCID: PMC7867605 DOI: 10.1016/j.biopsych.2020.09.025] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental condition with hallmark behavioral manifestations including impaired social communication and restricted repetitive behavior. In addition, many affected individuals display metabolic imbalances, immune dysregulation, gastrointestinal dysfunction, and altered gut microbiome compositions. METHODS We sought to better understand nonbehavioral features of ASD by determining molecular signatures in peripheral tissues through mass spectrometry methods (ultrahigh performance liquid chromatography-tandem mass spectrometry) with broad panels of identified metabolites. Herein, we compared the global metabolome of 231 plasma and 97 fecal samples from a large cohort of children with ASD and typically developing control children. RESULTS Differences in amino acid, lipid, and xenobiotic metabolism distinguished ASD and typically developing samples. Our results implicated oxidative stress and mitochondrial dysfunction, hormone level elevations, lipid profile changes, and altered levels of phenolic microbial metabolites. We also revealed correlations between specific metabolite profiles and clinical behavior scores. Furthermore, a summary of metabolites modestly associated with gastrointestinal dysfunction in ASD is provided, and a pilot study of metabolites that can be transferred via fecal microbial transplant into mice is identified. CONCLUSIONS These findings support a connection between metabolism, gastrointestinal physiology, and complex behavioral traits and may advance discovery and development of molecular biomarkers for ASD.
Collapse
Affiliation(s)
- Brittany D. Needham
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mark D. Adame
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Gloria Serena
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, 02114, USA
| | - Destanie R. Rose
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, 95616, USA,The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, 95817, USA
| | | | | | | | | | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, 02114, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, 95616, USA,The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, 95817, USA
| | - Sarkis K. Mazmanian
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
175
|
Prebiotic effects of olive pomace powders in the gut: In vitro evaluation of the inhibition of adhesion of pathogens, prebiotic and antioxidant effects. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106312] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
176
|
Zhao N, Zhao T, Fan M, Liu Z, Pi Z, Song F, Xing J, Liu S. Stable isotope labeling derivatization combined with multiple-mass spectrometry technologies to monitor metabolites of tenuifoliside A incubated with intestinal bacteria incubation model. Talanta 2021; 224:121791. [PMID: 33379020 DOI: 10.1016/j.talanta.2020.121791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 11/17/2022]
Abstract
Aromatic carboxylic acids (ACAs), play important roles in preventive and therapeutic effects for some diseases. However, complex matrix effect and poor detection sensitivity make it difficult and even rare to detect ACAs in complex bio-samples. Herein, a stable isotope labeling derivatization (SILD) method based on one-pot synthesis of carboxylic amides by aniline (AN) and aniline-d5 (AN-d5) was firstly designed for quantitatively monitoring ACAs under mild conditions. The detection sensitivity was improved up to 500 folds. Importantly, when taking the trace tenuifoliside A (TA) containing p-hydroxyl-benzoyl- (HB) and 3, 4, 5-trimethoxylcinnamoyl- (TC) unit as a special example via intestinal bacteria incubation, the metabolites ACAs and whole metabolic profiles of TA were firstly accurately and systematically monitored by applying the SILD method combined with multiple-mass spectrometry (MMS) technologies. It provides a convenient, universal, high-sensitivity and high-recovery methodological tool for the systematically metabolic study of trace drugs in vitro and in vivo.
Collapse
Affiliation(s)
- Ningning Zhao
- National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; Institute of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230029, China
| | - Tiantian Zhao
- National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Meiling Fan
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, 130021, China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; Institute of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230029, China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zifeng Pi
- National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Junpeng Xing
- National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| |
Collapse
|
177
|
Abdulrahman AO, Alzubaidi MY, Nadeem MS, Khan JA, Rather IA, Khan MI. Effects of urolithins on obesity-associated gut dysbiosis in rats fed on a high-fat diet. Int J Food Sci Nutr 2021; 72:923-934. [PMID: 33618593 DOI: 10.1080/09637486.2021.1886255] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Obesity is a global health concern associated with the dysbiosis of intestinal microbial composition. In this study, we investigated the potentials of urolithin A (Uro-A) and urolithin B (Uro-B), two gut microbiota-derived metabolites of ellagitannins, in reducing body weight gain through the modulation of the gut microbiota. We established a high-fat diet (HFD)-induced obesity model in rats that were later administered with either 2.5 mg/kg of Uro-A or Uro-B. Serum biochemical parameters were quantified, and changes in the composition of the gut microbial community were analysed using 16S rDNA gene sequencing. Our results showed that the urolithins significantly decreased the body weight in HFD-fed rats and restored serum lipid profile. The taxonomic analysis showed that both Uro-A and Uro-modulated gut microbes related to body weight, dysfunctional lipid metabolism and inflammation. Overall, our results suggest that Uro-A and Uro-B possess anti-obesity properties, which may be related to the modulation of the gut microbial composition.
Collapse
Affiliation(s)
| | | | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jalaluddin Awlia Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Irfan A Rather
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
178
|
Casani-Cubel J, Benlloch M, Sanchis-Sanchis CE, Marin R, Lajara-Romance JM, de la Rubia Orti JE. The Impact of Microbiota on the Pathogenesis of Amyotrophic Lateral Sclerosis and the Possible Benefits of Polyphenols. An Overview. Metabolites 2021; 11:120. [PMID: 33672485 PMCID: PMC7923408 DOI: 10.3390/metabo11020120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
The relationship between gut microbiota and neurodegenerative diseases is becoming clearer. Among said diseases amyotrophic lateral sclerosis (ALS) stands out due to its severity and, as with other chronic pathologies that cause neurodegeneration, gut microbiota could play a fundamental role in its pathogenesis. Therefore, polyphenols could be a therapeutic alternative due to their anti-inflammatory action and probiotic effect. Thus, the objective of our narrative review was to identify those bacteria that could have connection with the mentioned disease (ALS) and to analyze the benefits produced by administering polyphenols. Therefore, an extensive search was carried out selecting the most relevant articles published between 2005 and 2020 on the PubMed and EBSCO database on research carried out on cell, animal and human models of the disease. Thereby, after selecting, analyzing and debating the main articles on this topic, the bacteria related to the pathogenesis of ALS have been identified, among which we can positively highlight the presence mainly of Akkermansia muciniphila, but also Lactobacillus spp., Bifidobacterium spp. or Butyrivibrio fibrisolvens. Nevertheless, the presence of Escherichia coli or Ruminococcus torques stand out negatively for the disease. In addition, most of these bacteria are associated with molecular changes also linked to the pathogenesis of ALS. However, once the main polyphenols related to improvements in any of these three ALS models were assessed, many of them show positive results that could improve the prognosis of the disease. Nonetheless, epigallocatechin gallate (EGCG), curcumin and resveratrol are the polyphenols considered to show the most promising results as a therapeutic alternative for ALS through changes in microbiota.
Collapse
Affiliation(s)
- Julia Casani-Cubel
- Doctoral Degree School, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - María Benlloch
- Department of Health Science, Catholic University San Vicente Mártir, 46001 Valencia, Spain;
| | | | - Raquel Marin
- Laboratory of Cellular Neurobiology, School of Medicine, Faculty of Health Sciences, University of La Laguna, 38190 Tenerife, Spain;
| | | | | |
Collapse
|
179
|
Makarewicz M, Drożdż I, Tarko T, Duda-Chodak A. The Interactions between Polyphenols and Microorganisms, Especially Gut Microbiota. Antioxidants (Basel) 2021; 10:188. [PMID: 33525629 PMCID: PMC7911950 DOI: 10.3390/antiox10020188] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
This review presents the comprehensive knowledge about the bidirectional relationship between polyphenols and the gut microbiome. The first part is related to polyphenols' impacts on various microorganisms, especially bacteria, and their influence on intestinal pathogens. The research data on the mechanisms of polyphenol action were collected together and organized. The impact of various polyphenols groups on intestinal bacteria both on the whole "microbiota" and on particular species, including probiotics, are presented. Moreover, the impact of polyphenols present in food (bound to the matrix) was compared with the purified polyphenols (such as in dietary supplements) as well as polyphenols in the form of derivatives (such as glycosides) with those in the form of aglycones. The second part of the paper discusses in detail the mechanisms (pathways) and the role of bacterial biotransformation of the most important groups of polyphenols, including the production of bioactive metabolites with a significant impact on the human organism (both positive and negative).
Collapse
Affiliation(s)
| | | | | | - Aleksandra Duda-Chodak
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, 30-149 Kraków, Poland; (M.M.); (I.D.); (T.T.)
| |
Collapse
|
180
|
Taîbi A, Rivallan R, Broussolle V, Pallet D, Lortal S, Meile JC, Constancias F. Terroir Is the Main Driver of the Epiphytic Bacterial and Fungal Communities of Mango Carposphere in Reunion Island. Front Microbiol 2021; 11:619226. [PMID: 33584584 PMCID: PMC7874004 DOI: 10.3389/fmicb.2020.619226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022] Open
Abstract
The diversity of both bacterial and fungal communities associated with mango surface was explored using a metabarcoding approach targeting fungal ITS2 and bacterial 16S (V3-V4) genomic regions. Fruits were collected in Reunion Island from two different orchards according to a sampling method which allowed the effect of several pre-harvest factors such as geographical location (terroir), cultivars, fruit parts, tree position in the plot, fruit position on the tree (orientation and height), as well as the harvest date to be investigated. A total of 4,266,546 fungal and 2,049,919 bacterial reads were recovered then respectively assigned to 3,153 fungal and 24,087 to bacterial amplicon sequence variants (ASVs). Alpha and beta diversity, as well as differential abundance analyses revealed variations in both bacterial and fungal communities detected on mango surfaces depended upon the studied factor. Results indicated that Burkholderiaceae (58.8%), Enterobacteriaceae (5.2%), Pseudomonadaceae (4.8%), Sphingomonadaceae (4.1%), Beijerinckiaceae (3.5%), and Microbacteriaceae (3.1%) were the dominant bacterial families across all samples. The majority of fungal sequences were assigned to Mycosphaerellaceae (34.5%), Cladosporiaceae (23.21%), Aureobasidiaceae (13.09%), Pleosporaceae (6.92%), Trichosphaeriaceae (5.17%), and Microstromatales_fam_Incertae_sedis (4.67%). For each studied location, mango fruit from each cultivar shared a core microbiome, and fruits of the same cultivar harvested in two different locations shared about 80% fungal and bacterial family taxa. The various factors tested in this study affected bacterial and fungal taxa differently, suggesting that some taxa could act as geographical (terroir) markers and in some cases as cultivar fingerprints. The ranking of the factors investigated in the present study showed that in decreasing order of importance: the plot (terroir), cultivar, fruit parts, harvest date and the position of the fruits are respectively the most impacting factors of the microbial flora, when compared to the orientation and the fruit position (height) on the tree. Overall, these findings provided insights on both bacterial and fungal diversity associated with the mango surface, their patterns from intra-fruit scale to local scale and the potential parameters shaping the mango microbiota.
Collapse
Affiliation(s)
- Ahmed Taîbi
- CIRAD, UMR Qualisud, Saint-Pierre, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, Université de La Réunion, Montpellier, France
| | - Ronan Rivallan
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Véronique Broussolle
- INRAE, Avignon Université, Sécurité et Qualité des Produits d’Origine Végétale, Avignon, France
| | - Dominique Pallet
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, Université de La Réunion, Montpellier, France
- CIRAD, UMR Qualisud, Montpellier, France
| | - Sylvie Lortal
- INRAE, Département Microbiologie et Chaine alimentaire, Jouy-en-Josas, France
| | - Jean-Christophe Meile
- CIRAD, UMR Qualisud, Saint-Pierre, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, Université de La Réunion, Montpellier, France
| | - Florentin Constancias
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, Université de La Réunion, Montpellier, France
- CIRAD, UMR Qualisud, Montpellier, France
| |
Collapse
|
181
|
Pinto T, Aires A, Cosme F, Bacelar E, Morais MC, Oliveira I, Ferreira-Cardoso J, Anjos R, Vilela A, Gonçalves B. Bioactive (Poly)phenols, Volatile Compounds from Vegetables, Medicinal and Aromatic Plants. Foods 2021; 10:foods10010106. [PMID: 33419090 PMCID: PMC7825428 DOI: 10.3390/foods10010106] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/29/2020] [Accepted: 01/01/2021] [Indexed: 02/06/2023] Open
Abstract
Polyphenols, as well as volatile compounds responsible for aromatic features, play a critical role in the quality of vegetables and medicinal, and aromatic plants (MAPs). The research conducted in recent years has shown that these plants contain biologically active compounds, mainly polyphenols, that relate to the prevention of inflammatory processes, neurodegenerative diseases, cancers, and cardiovascular disorders as well as to antimicrobial, antioxidant, and antiparasitic properties. Throughout the years, many researchers have deeply studied polyphenols and volatile compounds in medicinal and aromatic plants, particularly those associated with consumer's choices or with their beneficial properties. In this context, the purpose of this review is to provide an overview of the presence of volatile and nonvolatile compounds in some of the most economically relevant and consumed vegetables and medicinal and aromatic plants, with an emphasis on bioactive polyphenols, polyphenols as prebiotics, and, also, the most important factors that affect the contents and profiles of the volatile and nonvolatile compounds responsible for the aromatic features of vegetables and MAPs. Additionally, the new challenges for science in terms of improving polyphenol composition and intensifying volatile compounds responsible for the positive characteristics of vegetables and medicinal and aromatic plants are reported.
Collapse
Affiliation(s)
- Teresa Pinto
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (I.O.); (J.F.-C.); (R.A.); (B.G.)
- Correspondence: ; Tel.: +351-259-350-345
| | - Alfredo Aires
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (A.A.); (M.C.M.)
| | - Fernanda Cosme
- CQ-VR, Chemistry Research Centre, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (F.C.); (A.V.)
| | - Eunice Bacelar
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (I.O.); (J.F.-C.); (R.A.); (B.G.)
| | - Maria Cristina Morais
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (A.A.); (M.C.M.)
| | - Ivo Oliveira
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (I.O.); (J.F.-C.); (R.A.); (B.G.)
| | - Jorge Ferreira-Cardoso
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (I.O.); (J.F.-C.); (R.A.); (B.G.)
| | - Rosário Anjos
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (I.O.); (J.F.-C.); (R.A.); (B.G.)
| | - Alice Vilela
- CQ-VR, Chemistry Research Centre, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (F.C.); (A.V.)
| | - Berta Gonçalves
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (I.O.); (J.F.-C.); (R.A.); (B.G.)
| |
Collapse
|
182
|
Antioxidant Molecules from Plant Waste: Extraction Techniques and Biological Properties. Processes (Basel) 2020. [DOI: 10.3390/pr8121566] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The fruit, vegetable, legume, and cereal industries generate many wastes, representing an environmental pollution problem. However, these wastes are a rich source of antioxidant molecules such as terpenes, phenolic compounds, phytosterols, and bioactive peptides with potential applications mainly in the food and pharmaceutical industries, and they exhibit multiple biological properties including antidiabetic, anti-obesity, antihypertensive, anticancer, and antibacterial properties. The aforementioned has increased studies on the recovery of antioxidant compounds using green technologies to value plant waste, since they represent more efficient and sustainable processes. In this review, the main antioxidant molecules from plants are briefly described and the advantages and disadvantages of the use of conventional and green extraction technologies used for the recovery and optimization of the yield of antioxidant naturals are detailed; finally, recent studies on biological properties of antioxidant molecules extracted from plant waste are presented here.
Collapse
|
183
|
Natural Antioxidants: A Novel Therapeutic Approach to Autism Spectrum Disorders? Antioxidants (Basel) 2020; 9:antiox9121186. [PMID: 33256243 PMCID: PMC7761361 DOI: 10.3390/antiox9121186] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental syndromes with both genetic and environmental origins. Several recent studies have shown that inflammation and oxidative stress may play a key role in supporting the pathogenesis and the severity of ASD. Thus, the administration of anti-inflammatory and antioxidant molecules may represent a promising strategy to counteract pathological behaviors in ASD patients. In the current review, results from recent literature showing how natural antioxidants may be beneficial in the context of ASD will be discussed. Interestingly, many antioxidant molecules available in nature show anti-inflammatory activity. Thus, after introducing ASD and the role of the vitamin E/vitamin C/glutathione network in scavenging intracellular reactive oxygen species (ROS) and the impairments observed with ASD, we discuss the concept of functional food and nutraceutical compounds. Furthermore, the effects of well-known nutraceutical compounds on ASD individuals and animal models of ASD are summarized. Finally, the importance of nutraceutical compounds as support therapy useful in reducing the symptoms in autistic people is discussed.
Collapse
|
184
|
Zhang Y, Cheng L, Zhang X. Interactions of tea polyphenols with intestinal microbiota and their effects on cerebral nerves. J Food Biochem 2020; 45:e13575. [PMID: 33222220 DOI: 10.1111/jfbc.13575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/28/2020] [Accepted: 11/07/2020] [Indexed: 12/21/2022]
Abstract
Tea polyphenols (TP) are important functional components in tea. TP can regulate the composition of human intestinal flora, meanwhile, TP can be bio-transformed by the intestinal microbiota, resulting in relative metabolites, which prevent nerve damage, promote neurocognition, and increase resistance to oxidative stress. In recent years, cerebral nerves have become a hot topic of research, and studies have marked the importance of microbial flora and TP in protecting cerebral nerves. This paper reviews the effects of TP on intestinal microflora and the microbial degradation of TP. Furthermore, the potential effects of TP on cerebral nerves have been highlighted. PRACTICAL APPLICATIONS: Neuroscience studies are primarily focused on discerning the functional mechanism of the nervous system. The functional role of intestinal microbiota in host physiology regulation, especially neurological functions, has become a hotspot for neurological research. TP play a vital role in maintaining the steady status of intestinal flora and protecting cerebral nerve damage. An in-depth understanding of the TP and intestinal microbiota interaction, its implication on cerebral nerve protection, and the associated underlying mechanism will allow us to expand the therapeutic applications of TP.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| |
Collapse
|
185
|
Abstract
Probiotics and prebiotics are microbiota-management instruments for improving human health once they may be beneficial for maintaining a healthy community of gut microbiota and bowel function. Probiotic’s main target is the gut, via the gastrointestinal tract, although direct application to other body zones such as the vaginal tract, the oral cavity, and skin have been studied. The major source of probiotics is fermented dairy products, however, currently, there is a need for novel and non-dairy probiotics, due to the increasing number of lactose-intolerant persons in the world population, tied with the adverse effect of cholesterol contained in fermented dairy foods as well as the increasing number of strict vegetarians. In this review, we describe gut-derived effects in humans of possible microorganisms isolated from wine, such as Saccharomyces and non-Saccharomyces yeasts and bacteria, and other non-dairy fermented beverages. Those microorganisms can be grown and consumed as recommended probiotics, moreover, wine, and other beverages may also be a source of prebiotics such as polyphenols.
Collapse
|
186
|
Khare P, Maurya R, Bhatia R, Mangal P, Singh J, Podili K, Bishnoi M, Kondepudi KK. Polyphenol rich extracts of finger millet and kodo millet ameliorate high fat diet-induced metabolic alterations. Food Funct 2020; 11:9833-9847. [PMID: 33089852 DOI: 10.1039/d0fo01643h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Finger millet (FM) and kodo millet (KM) are known for their multiple health benefits. Several studies have indicated the antioxidant and hypoglycemic potential of polyphenol rich extracts (PREs) from them. However, the protective roles of PREs from these millets in overcoming high-fat diet (HFD)-induced obesity have not yet been investigated. This study aimed to identify the polyphenols in FM-PREs and KM-PREs using HPLC-DAD/ESI-MS, and to evaluate the role of PREs in mitigating lipopolysaccharide induced inflammation in murine macrophage cells and in the reduction of HFD-induced metabolic complications using male Swiss albino mice. The results suggested that KM-PRE had higher polyphenol content than FM-PRE, of which taxifolin (98%) and catechin (86.6%) were the major fractions respectively. FM-PRE and KM-PRE prevented obesity, however, KM-PRE was more profound in preventing weight gain, adipose tissue hypertrophy, hepatic steatosis, and systemic inflammation than FM-PRE. This study suggests that FM-PRE and KM-PRE could be exploited for developing functional foods or nutraceuticals against obesity and comorbidities.
Collapse
Affiliation(s)
- Pragyanshu Khare
- Healthy Gut Research Group, Center of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India.
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Armstrong L, Araújo Vieira do Carmo M, Wu Y, Antônio Esmerino L, Azevedo L, Zhang L, Granato D. Optimizing the extraction of bioactive compounds from pu-erh tea (Camellia sinensis var. assamica) and evaluation of antioxidant, cytotoxic, antimicrobial, antihemolytic, and inhibition of α-amylase and α-glucosidase activities. Food Res Int 2020; 137:109430. [DOI: 10.1016/j.foodres.2020.109430] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/13/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022]
|
188
|
Cárdenas-Castro AP, Alvarez-Parrilla E, Montalvo-González E, Sánchez-Burgos JA, Venema K, Sáyago-Ayerdi SG. Stability and anti-topoisomerase activity of phenolic compounds of Capsicum annuum "Serrano" after gastrointestinal digestion and in vitro colonic fermentation. Int J Food Sci Nutr 2020; 71:826-838. [PMID: 32131652 DOI: 10.1080/09637486.2020.1734542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
"Serrano" pepper is extensively used in Mexican cuisine. The aim of this study was to identify the bioaccessible phenolic compounds (PC) of "Serrano" pepper as well as short-chain fatty acids (SCFA) produced and PC bioconverted using an in vitro step-wise gastromimetic model of the intestinal digestion and anaerobic fermentation of the isolated indigestible fraction (IF). The anti-topoisomerase activity of the fermented samples was also evaluated. PC bioaccessibility was about 45% in the small intestine. Chlorogenic acid and capsaicin were identified during the intestinal digestion, while quercetin was identified as available to the gut microbiota. After 48-h fermentation, SCFA molar ratio was 77:11:12 for acetic, propionic and butyric acid. The PC identified in IF and after 12 h of fermentation showed anti-topoisomerase activity. A synergistic effect among the PC and gut metabolites mixture was observed, which indicates a possible antiproliferative mechanism that should be tested in further studies.
Collapse
Affiliation(s)
| | - Emilio Alvarez-Parrilla
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Chihuahua, México
| | | | | | - Koen Venema
- Centre for Healthy Eating and Food Innovation, Maastricht University-Campus Venlo, Venlo, the Netherlands
| | | |
Collapse
|
189
|
|
190
|
Detrimental effect on the gut microbiota of 1,2-dicarbonyl compounds after in vitro gastro-intestinal and fermentative digestion. Food Chem 2020; 341:128237. [PMID: 33091666 DOI: 10.1016/j.foodchem.2020.128237] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022]
Abstract
This study investigated the stability of dicarbonyl compounds (DCs), 3-deoxyglucosone (3-DG), glyoxal (GO) and methylglyoxal (MGO) during simulated gastrointestinal digestion processes and the impact these compounds have on the gut microbiota. DCs pass almost unaltered through the in-vitro gastrointestinal digestion phases (concentration loss: 11% for 3-DG, 24% for GO and MGO) and have an effect on the fermentative digestion process, reducing the total gut bacterial population up to 6 Log10 units. Previous studies have shown no antimicrobial activity for 3-DG, however, for the first time it has been shown that when incubated with faecal bacteria 3-DG strongly depressed this microbial community. The influence of dicarbonyl compounds on the anaerobic fermentation processes was confirmed by the reduced production of short-chain fatty acids. Considering the modern Western diet, characterised by high consumption of ultra-processed foods rich in dicarbonyl compounds, this could lead to a reduction of bacteria important for the microbiome.
Collapse
|
191
|
Cassani L, Gomez-Zavaglia A, Jimenez-Lopez C, Lourenço-Lopes C, Prieto MA, Simal-Gandara J. Seaweed-based natural ingredients: Stability of phlorotannins during extraction, storage, passage through the gastrointestinal tract and potential incorporation into functional foods. Food Res Int 2020; 137:109676. [PMID: 33233253 DOI: 10.1016/j.foodres.2020.109676] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/03/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
Abstract
Adding value to seaweed by extracting their different bioactive compounds and incorporating them into foods represent an interesting and strategic approach to diversify the functional foods offer. However, once harvested, fresh seaweed must overcome a sequence of crucial steps to confer their biological activity. Pre-processing operations and extraction processes, as well as long-term storage, play important roles in improving or decreasing the phlorotannins content. In their way to the gut (biological target), phlorotannins are exposed to the human gastrointestinal tract (GIT), where the physiological pH and digestive enzymes can significantly affect the phlorotannins' stability and thus, alter their biological activity. Besides, the subsequent incorporation into foodstuffs could be limited due to sensory issues, as tannins have been associated with astringency and bitter taste, and thus effective phlorotannins doses may negatively affect the sensory attributes of foods. These drawbacks expose the need of applying smart strategies to develop a final product providing the necessary protective mechanisms to maintain the active molecular form of phlorotannins up to the consumption time, also controlling their release upon arrival to the gut. In this context, the impact of these technological processes (from pre-processing to the passage through the GIT) on phlorotannins stability, as well as the innovative developed approaches to overcome these issues will be deeply discussed in this review. Besides, recent findings related to the phlorotannins' health benefits will be pointed out. Special attention on the potential incorporation of phlorotannins into functional foods will be also put it on.
Collapse
Affiliation(s)
- Lucia Cassani
- Research Group of Food Engineering, Faculty of Engineering, National University of Mar del Plata, RA7600 Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Andrea Gomez-Zavaglia
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), RA1900 La Plata, Argentina
| | - Cecilia Jimenez-Lopez
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Catarina Lourenço-Lopes
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
192
|
Gurwara S, Dai A, Ajami NJ, Graham DY, White DL, Chen L, Jang A, Chen E, El-Serag HB, Petrosino JF, Jiao L. Alcohol use alters the colonic mucosa-associated gut microbiota in humans. Nutr Res 2020; 83:119-128. [PMID: 33096423 DOI: 10.1016/j.nutres.2020.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/26/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Alcohol misuse is a risk factor for many adverse health outcomes. Alcohol misuse has been associated with an imbalance of gut microbiota in preclinical models and alcoholic diseases. We hypothesized that daily alcohol use would change the community composition and structure of the human colonic gut microbiota. Thirty-four polyp-free individuals donated 97 snap-frozen colonic biopsies. Microbial DNA was sequenced for the 16S ribosomal RNA gene hypervariable region 4. The SILVA database was used for operational taxonomic unit classification. Alcohol use was assessed using a food frequency questionnaire. We compared the biodiversity and relative abundance of the taxa among never drinkers (ND, n = 9), former drinkers (FD, n = 10), current light drinkers (LD, <2 drinks daily, n = 9), and current heavy drinkers (HD, ≥2 drinks daily, n = 6). False discovery rate-adjusted P values (q values) < .05 indicated statistical significance. HD had the lowest α diversity (Shannon index q value < 0.001), and HD's microbial composition differed the most from the other groups (P value = .002). LD had the highest relative abundance of Akkermansia (q values < 0.001). HD had the lowest relative abundance of Subdoligranulum, Roseburia, and Lachnospiraceaeunc91005 but the highest relative abundance of Lachnospiraceaeunc8895 (all q values < 0.05). The multivariable negative binomial regression model supported these observations. ND and FD had a similar microbial profile. Heavy alcohol use was associated with impaired gut microbiota that may partially mediate its effect on health outcomes.
Collapse
Affiliation(s)
- Shawn Gurwara
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Annie Dai
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Nadim J Ajami
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| | - David Y Graham
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Section of Gastroenterology, Michael E. DeBakey VA Medical Center, Houston, TX, USA.
| | - Donna L White
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Texas Medical Center Digestive Disease Center, Houston, TX, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Center for Innovations in Quality, Effectiveness and Safety, Houston, TX, USA; Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX, USA.
| | - Liang Chen
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Innovations in Quality, Effectiveness and Safety, Houston, TX, USA.
| | - Albert Jang
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Ellie Chen
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Hashem B El-Serag
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Section of Gastroenterology, Michael E. DeBakey VA Medical Center, Houston, TX, USA; Texas Medical Center Digestive Disease Center, Houston, TX, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Center for Innovations in Quality, Effectiveness and Safety, Houston, TX, USA.
| | - Joseph F Petrosino
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA; Texas Medical Center Digestive Disease Center, Houston, TX, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | - Li Jiao
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Section of Gastroenterology, Michael E. DeBakey VA Medical Center, Houston, TX, USA; Texas Medical Center Digestive Disease Center, Houston, TX, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Center for Innovations in Quality, Effectiveness and Safety, Houston, TX, USA; Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX, USA.
| |
Collapse
|
193
|
|
194
|
Andrade AC, Marinho JFU, de Souza AC, de Sousa Tavares T, Dias DR, Schwan RF, Nunes CA, Bastos SC. Prebiotic potential of pulp and kernel cake from Jerivá (Syagrus romanzoffiana) and Macaúba palm fruits (Acrocomia aculeata). Food Res Int 2020; 136:109595. [PMID: 32846620 DOI: 10.1016/j.foodres.2020.109595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 01/09/2023]
Abstract
The jerivá (Syagrus romanzoffiana) and the macaúba (Acrocomia aculeata) are palm trees of the Arecaceae family, widely distributed in tropical and subtropical areas of Latin America, which have a low production cost and high productivity throughout the year. Due to the high content of lipids, their fruits have been used for oil extraction, which generates byproducts such as the pulps and the kernel cakes, a nutritionally rich byproduct that can be added into human food and, may have prebiotic potential. Therefore, the objective of this work was to characterize and evaluate the prebiotic potential of jerivá pulp (JP), macaúba pulp (MP), jerivá kernel cake (JC) and macaúba kernel cake (MC). For this, the fruits characterization was carried out through proximate composition, phenolic compounds content, and antioxidant activity, besides evaluating the antimicrobial and fermentative capacity of Bifidobacterium lactis, Lactobacillus casei, and Lactobacillus acidophilus against Escherichia coli. Jerivá and macaúba pulps and kernel cakes presented high levels of dietary fiber (20.45% JP, 37.87% JC, 19.95% MP and 35.81% MC) and high antioxidant activity, especially JP, which also showed the high values found for ABTS and DPPH (2498.49 µMTrolox·g-1 fruit and 96.97 g fruit·g-1 DPPH, respectively), has a high total phenolic content (850.62 mg GAE·100 g-1). Also, JP promoted a better growth of probiotic strains and a more relevant pH reduction when compared to the commercial prebiotic FOS. However, MP, JC, and MC were also able to favor the growth of the strains. Probiotic microorganisms were able to use JP, MP, JC, and MC and produced short-chain fatty acids such as lactic, propionic, butyric, and acetic acid, capable of promoting health benefits. Therefore, the byproducts from jerivá and macaúba oil extraction have characteristics that indicate their prebiotic potential, and maybe interesting components to increase the nutritional value of foods.
Collapse
Affiliation(s)
- Amanda Cristina Andrade
- Lavras Federal University, Department of Nutrition, Federal University of Lavras, University Campus, Post Office Box 3037, 37200-900 Lavras, Minas Gerais, Brazil
| | - Júlia Fernanda Urbano Marinho
- Lavras Federal University, Department of Nutrition, Federal University of Lavras, University Campus, Post Office Box 3037, 37200-900 Lavras, Minas Gerais, Brazil
| | - Angélica Cristina de Souza
- Lavras Federal University, Department of Biology, Federal University of Lavras, University Campus, Post Office Box 3037, 37200-900 Lavras, Minas Gerais, Brazil
| | - Talita de Sousa Tavares
- Lavras Federal University, Department of Chemistry, Federal University of Lavras, University Campus, Post Office Box 3037, 37200-900 Lavras, Minas Gerais, Brazil
| | - Disney Ribeiro Dias
- Lavras Federal University, Department of Food Science, Federal University of Lavras, University Campus, Post Office Box 3037, 37200-900 Lavras, Minas Gerais, Brazil
| | - Rosane Freitas Schwan
- Lavras Federal University, Department of Biology, Federal University of Lavras, University Campus, Post Office Box 3037, 37200-900 Lavras, Minas Gerais, Brazil
| | - Cleiton Antônio Nunes
- Lavras Federal University, Department of Food Science, Federal University of Lavras, University Campus, Post Office Box 3037, 37200-900 Lavras, Minas Gerais, Brazil.
| | - Sabrina Carvalho Bastos
- Lavras Federal University, Department of Nutrition, Federal University of Lavras, University Campus, Post Office Box 3037, 37200-900 Lavras, Minas Gerais, Brazil
| |
Collapse
|
195
|
Warkentin T, Kolba N, Tako E. Low Phytate Peas ( Pisum sativum L.) Improve Iron Status, Gut Microbiome, and Brush Border Membrane Functionality In Vivo ( Gallus gallus). Nutrients 2020; 12:E2563. [PMID: 32847024 PMCID: PMC7551009 DOI: 10.3390/nu12092563] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 01/16/2023] Open
Abstract
The inclusion of pulses in traditional wheat-based food products is increasing as the food industry and consumers are recognizing the nutritional benefits due to the high protein, antioxidant activity, and good source of dietary fiber of pulses. Iron deficiency is a significant global health challenge, affecting approximately 30% of the world's population. Dietary iron deficiency is the foremost cause of anemia, a condition that harms cognitive development and increases maternal and infant mortality. This study intended to demonstrate the potential efficacy of low-phytate biofortified pea varieties on dietary iron (Fe) bioavailability, as well as on intestinal microbiome, energetic status, and brush border membrane (BBM) functionality in vivo (Gallus gallus). We hypothesized that the low-phytate biofortified peas would significantly improve Fe bioavailability, BBM functionality, and the prevalence of beneficial bacterial populations. A six-week efficacy feeding (n = 12) was conducted to compare four low-phytate biofortified pea diets with control pea diet (CDC Bronco), as well as a no-pea diet. During the feeding trial, hemoglobin (Hb), body-Hb Fe, feed intake, and body weight were monitored. Upon the completion of the study, hepatic Fe and ferritin, pectoral glycogen, duodenal gene expression, and cecum bacterial population analyses were conducted. The results indicated that certain low-phytate pea varieties provided greater Fe bioavailability and moderately improved Fe status, while they also had significant effects on gut microbiota and duodenal brush border membrane functionality. Our findings provide further evidence that the low-phytate pea varieties appear to improve Fe physiological status and gut microbiota in vivo, and they highlight the likelihood that this strategy can further improve the efficacy and safety of the crop biofortification and mineral bioavailability approach.
Collapse
Affiliation(s)
- Tom Warkentin
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK S7N 5A8, Canada;
| | - Nikolai Kolba
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853, USA;
| | - Elad Tako
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
196
|
Iqbal Y, Cottrell JJ, Suleria HA, Dunshea FR. Gut Microbiota-Polyphenol Interactions in Chicken: A Review. Animals (Basel) 2020; 10:E1391. [PMID: 32796556 PMCID: PMC7460082 DOI: 10.3390/ani10081391] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/03/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal tract of the chicken harbors very complex and diverse microbial communities including both beneficial and harmful bacteria. However, a dynamic balance is generally maintained in such a way that beneficial bacteria predominate over harmful ones. Environmental factors can negatively affect this balance, resulting in harmful effects on the gut, declining health, and productivity. This means modulating changes in the chicken gut microbiota is an effective strategy to improve gut health and productivity. One strategy is using modified diets to favor the growth of beneficial bacteria and a key candidate are polyphenols, which have strong antioxidant potential and established health benefits. The gut microbiota-polyphenol interactions are of vital importance in their effects on the gut microbiota modulation because it affects not only the composition of gut bacteria but also improves bioavailability of polyphenols through generation of more bioactive metabolites enhancing their health effects on morphology and composition of the gut microbiota. The object of this review is to improve the understanding of polyphenol interactions with the gut microbiota and highlights their potential role in modulation of the gut microbiota of chicken.
Collapse
Affiliation(s)
- Yasir Iqbal
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.I.); (J.J.C.); (H.A.R.S.)
| | - Jeremy J. Cottrell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.I.); (J.J.C.); (H.A.R.S.)
| | - Hafiz A.R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.I.); (J.J.C.); (H.A.R.S.)
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.I.); (J.J.C.); (H.A.R.S.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
197
|
Abstract
Purpose of Review In this review, we focus on microbiota modulation using non-digestible carbohydrate and polyphenols (i.e., prebiotics) that have the potential to modulate body weight. Recent Findings Prebiotics derived from plants have gained the interest of public and scientific communities as they may prevent diseases and help maintain health. Summary Maintaining a healthy body weight is key to reducing the risk of developing chronic metabolic complications. However, the prevalence of obesity has increased to pandemic proportions and is now ranked globally in the top five risk factors for death. While diet and behavioral modification programs aiming to reduce weight gain and promote weight loss are effective in the short term, they remain insufficient over the long haul as compliance is often low and weight regain is very common. As a result, novel dietary strategies targeting the gut microbiota have been successful in decreasing obesity and metabolic disorders via different molecular mechanisms.
Collapse
|
198
|
Vetrani C, Costabile G, Vitale M, Giacco R. (Poly)phenols and cardiovascular diseases: Looking in to move forward. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
199
|
Pérez-Gregorio R, Soares S, Mateus N, de Freitas V. Bioactive Peptides and Dietary Polyphenols: Two Sides of the Same Coin. Molecules 2020; 25:E3443. [PMID: 32751126 PMCID: PMC7435807 DOI: 10.3390/molecules25153443] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
The call for health-promoting nutraceuticals and functional foods containing bioactive compounds is growing. Among the great diversity of functional phytochemicals, polyphenols and, more recently, bioactive peptides have stood out as functional compounds. The amount of an ingested nutrient able to reach the bloodstream and exert the biological activity is a critical factor, and is affected by several factors, such as food components and food processing. This can lead to unclaimed interactions and/or reactions between bioactive compounds, which is particularly important for these bioactive compounds, since some polyphenols are widely known for their ability to interact and/or precipitate proteins/peptides. This review focuses on this important topic, addressing how these interactions could affect molecules digestion, absorption, metabolism and (biological)function. At the end, it is evidenced that further research is needed to understand the true effect of polyphenol-bioactive peptide interactions on overall health outcomes.
Collapse
Affiliation(s)
- Rosa Pérez-Gregorio
- REQUIMTE/LAQV, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 689, 4169-007 Porto, Portugal; (N.M.); (V.d.F.)
| | - Susana Soares
- REQUIMTE/LAQV, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 689, 4169-007 Porto, Portugal; (N.M.); (V.d.F.)
| | | | | |
Collapse
|
200
|
Nazzaro F, Fratianni F, De Feo V, Battistelli A, Da Cruz AG, Coppola R. Polyphenols, the new frontiers of prebiotics. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 94:35-89. [PMID: 32892838 DOI: 10.1016/bs.afnr.2020.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is a growing interest in the identification of molecules capable to promote health and with a concurrent potential for technological applications. Prebiotics are functional ingredients naturally occurring in some plant and animal foods that since many decades stimulated considerable attention from the pharmaceutical and food industries due to their positive health effects. Together the well-known biomolecules with ascertained prebiotic effect, in last year new molecules were finally recognized as prebiotics, so capable to improve the health of an organism, also through the positive effect exerted on host microbiota. Among the so-called prebiotics, a special mention should be given to polyphenols, probably the most important, or at least among the most important secondary metabolites produced by the vegetal kingdom. This short chapter wants to emphasize polyphenols and, after briefly describing the individual microbiome, to illustrate how polyphenols can, through their influence on the microbiome, have a positive effect on the health of the individual in general, and on some pathologies in particular, for which the role of a bad status of the individual microbiome has been definitively established.
Collapse
Affiliation(s)
| | | | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | | | - Adriano Gomes Da Cruz
- Food Department, Federal Institute of Education, Science and Technology of Rio de Janeiro, Brazil
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences, DiAAA-University of Molise, Campobasso, Italy
| |
Collapse
|