151
|
Establishment of a glioblastoma in vitro (in)complete resection dual co-culture model suitable for drug testing. Ann Anat 2020; 228:151440. [DOI: 10.1016/j.aanat.2019.151440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022]
|
152
|
Partridge B, Rossmeisl JH, Kaloss AM, Basso EKG, Theus MH. Novel ablation methods for treatment of gliomas. J Neurosci Methods 2020; 336:108630. [PMID: 32068011 DOI: 10.1016/j.jneumeth.2020.108630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/18/2022]
Abstract
Primary brain tumors are among the deadliest cancers that remain highly incurable. A need exists for new approaches to tumor therapy that can circumvent the blood brain barrier (BBB), target highly resistant tumors and cancer stem-like cells (CSCs) as well create an anti-cancer immunomodulatory environment. Successful treatments may also require a combinatory approach utilizing surgery, chemotherapy, radiation and novel ablation strategies that can both eliminate the bulk tumor and prevent any potential residual CSCs from propagating in the resected tissue. A number of thermal and non-thermal ablation methods have been developed and tested, which have gained much enthusiasm for the treatment of brain tumors. Here we review the most common primary brain tumors and the candidate ablation methods for targeting the tumor and its microenvironment.
Collapse
Affiliation(s)
- Brittanie Partridge
- Veterinary and Comparative Neuro-oncology Laboratory, Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - John H Rossmeisl
- Veterinary and Comparative Neuro-oncology Laboratory, Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Alexandra M Kaloss
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Erwin Kristobal Gudenschwager Basso
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA; School of Neuroscience, Virginia Tech, Blacksburg VA 24061, USA; Center for Regenerative Medicine, VT College of Veterinary Medicine, Blacksburg, Virginia, 24061, USA.
| |
Collapse
|
153
|
Georgescu MM, Olar A. Genetic and histologic spatiotemporal evolution of recurrent, multifocal, multicentric and metastatic glioblastoma. Acta Neuropathol Commun 2020; 8:10. [PMID: 32014051 PMCID: PMC6998196 DOI: 10.1186/s40478-020-0889-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma is the most frequent and aggressive primary brain tumor, characterized by extensive brain invasion and rarely, systemic metastases. The pathogenesis of metastatic glioblastoma is largely unknown. We present the first integrated clinical/histologic/genetic analysis of 5 distinct brain and lung foci from a unique case of recurrent, multifocal, multicentric and metastatic glioblastoma. The initial right frontotemporal gliosarcoma received standard surgical/chemoradiation therapy and recurred 1.5 years later, co-occurring with three additional masses localized to the ipsilateral temporal lobe, cerebellum and lung. Synchronous metastatic lung carcinoma was suspected in this long-term smoker patient with family history of cancer. However, glioblastoma was confirmed in all tumors, although with different morphologic patterns, including ependymomatous and epithelioid. Genomic profiling revealed a germline FANCD2 variant of unknown significance, and a 4-gene somatic mutation signature shared by all tumors, consisting of TERT promoter and PTEN, RB1 and TP53 tumor suppressor mutations. Additional GRIN2A and ATM heterozygous mutations were selected in the cerebellar and lung foci, but were variably present in the supratentorial foci, indicating reduced post-therapeutic genetic evolution in brain foci despite morphologic variability. Significant genetic drift characterized the lung metastasis, likely explaining the known resistance of circulating glioblastoma cells to systemic seeding. MET overexpression was detected in the initial gliosarcoma and lung metastasis, possibly contributing to invasiveness. This comprehensive analysis sheds light on the temporospatial evolution of glioblastoma and underscores the importance of genetic testing for diagnosis and personalized therapy.
Collapse
|
154
|
Koga T, Chaim IA, Benitez JA, Markmiller S, Parisian AD, Hevner RF, Turner KM, Hessenauer FM, D'Antonio M, Nguyen NPD, Saberi S, Ma J, Miki S, Boyer AD, Ravits J, Frazer KA, Bafna V, Chen CC, Mischel PS, Yeo GW, Furnari FB. Longitudinal assessment of tumor development using cancer avatars derived from genetically engineered pluripotent stem cells. Nat Commun 2020; 11:550. [PMID: 31992716 PMCID: PMC6987220 DOI: 10.1038/s41467-020-14312-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/20/2019] [Indexed: 12/27/2022] Open
Abstract
Many cellular models aimed at elucidating cancer biology do not recapitulate pathobiology including tumor heterogeneity, an inherent feature of cancer that underlies treatment resistance. Here we introduce a cancer modeling paradigm using genetically engineered human pluripotent stem cells (hiPSCs) that captures authentic cancer pathobiology. Orthotopic engraftment of the neural progenitor cells derived from hiPSCs that have been genome-edited to contain tumor-associated genetic driver mutations revealed by The Cancer Genome Atlas project for glioblastoma (GBM) results in formation of high-grade gliomas. Similar to patient-derived GBM, these models harbor inter-tumor heterogeneity resembling different GBM molecular subtypes, intra-tumor heterogeneity, and extrachromosomal DNA amplification. Re-engraftment of these primary tumor neurospheres generates secondary tumors with features characteristic of patient samples and present mutation-dependent patterns of tumor evolution. These cancer avatar models provide a platform for comprehensive longitudinal assessment of human tumor development as governed by molecular subtype mutations and lineage-restricted differentiation.
Collapse
Affiliation(s)
- Tomoyuki Koga
- Ludwig Cancer Research San Diego Branch, 9500 Gilman Dr., CMM-East Room 3055, La Jolla, CA, 92093, USA
- Department of Neurosurgery, University of Minnesota, 420 Delaware St SE, Minneapolis, MN, 55455, USA
| | - Isaac A Chaim
- Department of Cellular and Molecular Medicine, University of California San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92093, USA
- Institute for Genomic Medicine, University of California San Diego, 9500 Gilman Dr. Mail Code 0761, La Jolla, CA, 92093, USA
| | - Jorge A Benitez
- Ludwig Cancer Research San Diego Branch, 9500 Gilman Dr., CMM-East Room 3055, La Jolla, CA, 92093, USA
| | - Sebastian Markmiller
- Department of Cellular and Molecular Medicine, University of California San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92093, USA
| | - Alison D Parisian
- Ludwig Cancer Research San Diego Branch, 9500 Gilman Dr., CMM-East Room 3055, La Jolla, CA, 92093, USA
- Department of Pathology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Robert F Hevner
- Department of Pathology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Kristen M Turner
- Ludwig Cancer Research San Diego Branch, 9500 Gilman Dr., CMM-East Room 3055, La Jolla, CA, 92093, USA
| | - Florian M Hessenauer
- Ludwig Cancer Research San Diego Branch, 9500 Gilman Dr., CMM-East Room 3055, La Jolla, CA, 92093, USA
| | - Matteo D'Antonio
- Institute for Genomic Medicine, University of California San Diego, 9500 Gilman Dr. Mail Code 0761, La Jolla, CA, 92093, USA
| | - Nam-Phuong D Nguyen
- Department of Computer Science and Engineering, University of California San Diego, 9500 Gilman Dr., Mail Code 0404, La Jolla, CA, 92093, USA
| | - Shahram Saberi
- Department of Neuroscience, University of California San Diego, 9500 Gilman Dr., Mail Code 0662, La Jolla, CA, 92093, USA
| | - Jianhui Ma
- Ludwig Cancer Research San Diego Branch, 9500 Gilman Dr., CMM-East Room 3055, La Jolla, CA, 92093, USA
| | - Shunichiro Miki
- Ludwig Cancer Research San Diego Branch, 9500 Gilman Dr., CMM-East Room 3055, La Jolla, CA, 92093, USA
| | - Antonia D Boyer
- Ludwig Cancer Research San Diego Branch, 9500 Gilman Dr., CMM-East Room 3055, La Jolla, CA, 92093, USA
| | - John Ravits
- Department of Neuroscience, University of California San Diego, 9500 Gilman Dr., Mail Code 0662, La Jolla, CA, 92093, USA
| | - Kelly A Frazer
- Institute for Genomic Medicine, University of California San Diego, 9500 Gilman Dr. Mail Code 0761, La Jolla, CA, 92093, USA
- Department of Pediatrics and Rady Children's Hospital, University of California San Diego, 9500 Gilman Dr., Mail Code 0831, La Jolla, CA, 92093, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California San Diego, 9500 Gilman Dr., Mail Code 0404, La Jolla, CA, 92093, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, 420 Delaware St SE, Minneapolis, MN, 55455, USA
| | - Paul S Mischel
- Ludwig Cancer Research San Diego Branch, 9500 Gilman Dr., CMM-East Room 3055, La Jolla, CA, 92093, USA
- Department of Pathology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92093, USA.
- Institute for Genomic Medicine, University of California San Diego, 9500 Gilman Dr. Mail Code 0761, La Jolla, CA, 92093, USA.
| | - Frank B Furnari
- Ludwig Cancer Research San Diego Branch, 9500 Gilman Dr., CMM-East Room 3055, La Jolla, CA, 92093, USA.
- Department of Pathology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
| |
Collapse
|
155
|
Kan LK, Drummond KJ, Hunn M, Williams DA, O’Brien TJ, Monif M. A Simple and Reliable Protocol for the Preparation and Culturing of Fresh Surgically Resected Human Glioblastoma Tissue. Methods Protoc 2020; 3:mps3010011. [PMID: 31979088 PMCID: PMC7189671 DOI: 10.3390/mps3010011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/12/2020] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma is a heterogeneous glial cell malignancy with extremely high morbidity and mortality. Current treatment is limited and provide minimal therapeutic efficacy. Previous studies were reliant on cell lines that do not accurately reflect the heterogeneity of the glioma microenvironment. Developing reliable models of human glioblastoma is therefore essential. Direct culture of human brain tumours is often difficult and there is a limited number of protocols available. Hence, we have developed an effective method for the primary culture of human glioblastoma samples obtained during surgical resection. Culturing tumour tissue direct from human brain is advantageous in that cultures (1) more closely resemble true human disease, relative to the use of cell lines; (2) comprise a range of cellular components present in the natural tumour microenvironment; and (3) are free of added antibodies and reagents. Additionally, primary glioblastoma cultures are valuable in studies examining the effects of anti-cancer pharmaceuticals and therapeutic agents, and can be further used in live cell imaging, immunocytochemistry, flow cytometry and immunoassay experiments. Via this protocol, cells are maintained in supplemented medium at 37 °C (5% CO2) and are expected to achieve sufficient confluency within 7 days of initial culture.
Collapse
Affiliation(s)
- Liyen Katrina Kan
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia; (L.K.K.); (T.J.O.)
- Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
- Department of Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Katharine J Drummond
- Department of Surgery, The University of Melbourne, Melbourne, VIC 3010, Australia;
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
| | - Martin Hunn
- Department of Neurosurgery, Alfred Health, Melbourne, VIC 3004, Australia;
| | - David A Williams
- Department of Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Terence J O’Brien
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia; (L.K.K.); (T.J.O.)
| | - Mastura Monif
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia; (L.K.K.); (T.J.O.)
- Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
- Department of Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia;
- Department of Surgery, The University of Melbourne, Melbourne, VIC 3010, Australia;
- Correspondence:
| |
Collapse
|
156
|
Hwang JW, Loisel-Duwattez J, Desterke C, Latsis T, Pagliaro S, Griscelli F, Bennaceur-Griscelli A, Turhan AG. A novel neuronal organoid model mimicking glioblastoma (GBM) features from induced pluripotent stem cells (iPSC). Biochim Biophys Acta Gen Subj 2020; 1864:129540. [PMID: 31978452 DOI: 10.1016/j.bbagen.2020.129540] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Current experimental models using either human or mouse cell lines, are not representative of the complex features of GBM. In particular, there is no model to study patient-derived iPSCs to generate a GBM model. Overexpression of c-met gene is one of the molecular features of GBM leading to increased signaling via STAT3 phosphorylation. We generated an iPSC line from a patient with c-met mutation and we asked whether we could use it to generate neuronal-like organoids mimicking features of GBM. METHODS We have generated iPSC-aggregates differentiating towards organoids. We analyzed them by gene expression profiling, immunostaining and transmission electronic microscopy analyses (TEM). RESULTS Herein we describe that c-met-mutated iPSC aggregates spontaneously differentiate into dopaminergic neurons more rapidly than control iPSC aggregates in culture. Gene expression profiling of c-met-mutated iPSC aggregates at day +90 showed neuronal- and GBM-related genes, reproducing a genomic network described in primary human GBM. Comparative TEM analyses confirmed the enrichment of these structures in intermediate filaments and abnormal cilia, a feature described in human GBM. The c-met-mutated iPSC-derived organoids, as compared to controls expressed high levels of glial fibrillary acidic protein (GFAP), which is a typical marker of human GBM, as well as high levels of phospho-MET and phospho-STAT3. The use of temozolomide (TMZ) showed a preferential cytotoxicity of this drug in c-met-mutated neuronal-like organoids. GENERAL SIGNIFICANCE This study shows the feasibility of generating "off-the shelf" neuronal-like organoid model mimicking GBM using c-met-mutated iPSC aggregates and its potential future use in research.
Collapse
Affiliation(s)
- Jin Wook Hwang
- INSERM UMR-S 935, Université Paris Sud, 94800 Villejuif, France; ESTeam Paris Sud, Université Paris Sud, 94800 Villejuif, France
| | - Julien Loisel-Duwattez
- INSERM U1195, Université Paris Sud, Faculté de Médecine, APHP, Service de Neurologie, Bicêtre Hospital, 94276 le Kremlin Bicêtre, France
| | - Christophe Desterke
- INSERM UMR-S 935, Université Paris Sud, 94800 Villejuif, France; ESTeam Paris Sud, Université Paris Sud, 94800 Villejuif, France
| | - Theodoros Latsis
- INSERM UMR-S 935, Université Paris Sud, 94800 Villejuif, France; ESTeam Paris Sud, Université Paris Sud, 94800 Villejuif, France
| | - Sarah Pagliaro
- INSERM UMR-S 935, Université Paris Sud, 94800 Villejuif, France; ESTeam Paris Sud, Université Paris Sud, 94800 Villejuif, France
| | - Frank Griscelli
- INSERM UMR-S 935, Université Paris Sud, 94800 Villejuif, France; ESTeam Paris Sud, Université Paris Sud, 94800 Villejuif, France
| | | | - Ali G Turhan
- INSERM UMR-S 935, Université Paris Sud, 94800 Villejuif, France; INGESTEM National IPSC Infrastructure, 94800 Villejuif, France; Division of Hematology, Paris Sud University Hospitals, Le Kremlin Bicêtre 75006, Villejuif 94800, France; ESTeam Paris Sud, Université Paris Sud, 94800 Villejuif, France.
| |
Collapse
|
157
|
Dekker LJM, Wu S, Jurriëns C, Mustafa DAN, Grevers F, Burgers PC, Sillevis Smitt PAE, Kros JM, Luider TM. Metabolic changes related to the IDH1 mutation in gliomas preserve TCA-cycle activity: An investigation at the protein level. FASEB J 2020; 34:3646-3657. [PMID: 31960518 DOI: 10.1096/fj.201902352r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/26/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022]
Abstract
The discovery of the IDH1 R132H (IDH1 mut) mutation in low-grade glioma and the associated change in function of the IDH1 enzyme has increased the interest in glioma metabolism. In an earlier study, we found that changes in expression of genes involved in the aerobic glycolysis and the TCA cycle are associated with IDH1 mut. Here, we apply proteomics to FFPE samples of diffuse gliomas with or without IDH1 mutations, to map changes in protein levels associated with this mutation. We observed significant changes in the enzyme abundance associated with aerobic glycolysis, glutamate metabolism, and the TCA cycle in IDH1 mut gliomas. Specifically, the enzymes involved in the metabolism of glutamate, lactate, and enzymes involved in the conversion of α-ketoglutarate were increased in IDH1 mut gliomas. In addition, the bicarbonate transporter (SLC4A4) was increased in IDH1 mut gliomas, supporting the idea that a mechanism preventing intracellular acidification is active. We also found that enzymes that convert proline, valine, leucine, and isoleucine into glutamate were increased in IDH1 mut glioma. We conclude that in IDH1 mut glioma metabolism is rewired (increased input of lactate and glutamate) to preserve TCA-cycle activity in IDH1 mut gliomas.
Collapse
Affiliation(s)
- Lennard J M Dekker
- Department of Neurology, Erasmus University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Suying Wu
- Department of Neurology, Erasmus University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Cherise Jurriëns
- Department of Neurology, Erasmus University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Dana A N Mustafa
- Department of Pathology, Erasmus University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Frederieke Grevers
- Department of Pathology, Erasmus University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Peter C Burgers
- Department of Neurology, Erasmus University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Peter A E Sillevis Smitt
- Department of Neurology, Erasmus University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Johan M Kros
- Department of Pathology, Erasmus University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Theo M Luider
- Department of Neurology, Erasmus University Medical Centre Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
158
|
Zhou Y, Wang L, Wang C, Wu Y, Chen D, Lee TH. Potential implications of hydrogen peroxide in the pathogenesis and therapeutic strategies of gliomas. Arch Pharm Res 2020; 43:187-203. [PMID: 31956964 DOI: 10.1007/s12272-020-01205-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 01/05/2020] [Indexed: 12/15/2022]
Abstract
Glioma is the most common type of primary brain tumor, and it has a high mortality rate. Currently, there are only a few therapeutic approaches for gliomas, and their effects are unsatisfactory. Therefore, uncovering the pathogenesis and exploring more therapeutic strategies for the treatment of gliomas are urgently needed to overcome the ongoing challenges. Cellular redox imbalance has been shown to be associated with the initiation and progression of gliomas. Among reactive oxygen species (ROS), hydrogen peroxide (H2O2) is considered the most suitable for redox signaling and is a potential candidate as a key molecule that determines the fate of cancer cells. In this review, we discuss the potential cellular and molecular roles of H2O2 in gliomagenesis and explore the potential implications of H2O2 in radiotherapy and chemotherapy and in the ongoing challenges of current glioma treatment. Moreover, we evaluate H2O2 as a potential redox sensor and potential driver molecule of nanocatalytic therapeutic strategies for glioma treatment.
Collapse
Affiliation(s)
- Ying Zhou
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Provincial Universities and Colleges, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Long Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Chaojia Wang
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Yilin Wu
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Dongmei Chen
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Tae Ho Lee
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
159
|
Abramczyk H, Brozek-Pluska B, Jarota A, Surmacki J, Imiela A, Kopec M. A look into the use of Raman spectroscopy for brain and breast cancer diagnostics: linear and non-linear optics in cancer research as a gateway to tumor cell identity. Expert Rev Mol Diagn 2020; 20:99-115. [PMID: 32013616 DOI: 10.1080/14737159.2020.1724092] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
Abstract
Introduction: Currently, intensely developing of linear and non-linear optical methods for cancer detection provides a valuable tool to improve sensitivity and specificity. One of the main reasons for insufficient progress in cancer diagnostics is related to the fact that most cancer types are not only heterogeneous in their genetic composition but also reside in varying microenvironments and interact with different cell types. Until now, no technology has been fully proven for effective detecting of invasive cancer, which infiltrating the extracellular matrix.Areas covered: This review investigates the current status of Raman spectroscopy and Raman imaging for brain and breast cancer diagnostics. Moreover, the review provides a comprehensive overview of the applicability of atomic force microscopy (AFM), linear and non-linear optics in cancer research as a gateway to tumor cell identity.Expert commentary: A combination of linear and non-linear optics, particularly Raman-driven methods, has many additional advantages to identify alterations in cancer cells that are crucial for their proliferation and that distinguish them from normal cells.
Collapse
Affiliation(s)
- Halina Abramczyk
- Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Lodz, Poland
| | - Beata Brozek-Pluska
- Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Lodz, Poland
| | - Arkadiusz Jarota
- Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Lodz, Poland
| | - Jakub Surmacki
- Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Lodz, Poland
| | - Anna Imiela
- Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Lodz, Poland
| | - Monika Kopec
- Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
160
|
Zhang L, Wang J, Fu Z, Ai Y, Li Y, Wang Y, Wang Y. Sevoflurane suppresses migration and invasion of glioma cells by regulating miR-146b-5p and MMP16. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3306-3314. [PMID: 31385537 DOI: 10.1080/21691401.2019.1648282] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Glioma is the most common brain tumor with poor prognosis all over the world. Anesthetics have been demonstrated to have important impacts on cell migration and invasion in different cancers. However, the underlying mechanism that allows anesthetics-mediated progression of glioma cells remains elusive. Methods: Sevoflurane (Sev), a class of common anesthetics, was used to expose to U87-MG and U251 cells. The expressions of microRNA-146b-5p (miR-146b-5p) and matrix metallopeptidase 16 (MMP16)were measured by quantitative real-time polymerase chain reaction or western blot. Transfection was performed in glioma cells with miR-146b-5p inhibitor, inhibitor negative control, MMP16 overexpression vector, empty vector, small interfering RNA against MMP16 or scramble. Cell migration and invasion were analyzed by the trans-well assay. The interaction between miR-146b-5p and MMP16 was explored by luciferase activity and RNA immunoprecipitation assays. Results: Sev treatment inhibited migration and invasion of glioma cells. The expression of miR-146b-5p was enhanced and MMP16 protein was decreased in glioma cells after exposure of Sev. Knockdown of miR-146b-5p or overexpression of MMP16 reversed Sev-induced inhibition of migration and invasion of glioma cells. Moreover, MMP16 was indicated as a target of miR-146b-5p and its silencing attenuated the regulatory role of miR-146b-5p abrogationin Sev-treated glioma cells. Conclusion: Sev impeded cell migration and invasion through regulating miR-146b-5p and MMP16 in glioma, indicating a novel theories foundation for the application of anesthetics like Sev in glioma.
Collapse
Affiliation(s)
- Le Zhang
- a Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Jun Wang
- b Department of Operating Room, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Zhijie Fu
- a Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - YanQiu Ai
- a Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Yanrong Li
- a Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Ying Wang
- a Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Yanping Wang
- a Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| |
Collapse
|
161
|
Lenting K, van den Heuvel CNAM, van Ewijk A, ElMelik D, de Boer R, Tindall E, Wei G, Kusters B, te Dorsthorst M, ter Laan M, Huynen MA, Leenders WP. Mapping actionable pathways and mutations in brain tumours using targeted RNA next generation sequencing. Acta Neuropathol Commun 2019; 7:185. [PMID: 31747973 PMCID: PMC6865071 DOI: 10.1186/s40478-019-0826-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/02/2019] [Indexed: 01/28/2023] Open
Abstract
Many biology-based precision drugs are available that neutralize aberrant molecular pathways in cancer. Molecular heterogeneity and the lack of reliable companion diagnostic biomarkers for many drugs makes targeted treatment of cancer inaccurate for many individuals. Identifying actionable hyperactive biological pathways in individual cancers may improve this situation. To achieve this we applied a novel targeted RNA next generation sequencing (t/RNA-NGS) technique to surgically obtained glioma tissues. The test combines mutation detection with analysis of biological pathway activities that are involved in tumour behavior in many cancer types (e.g. tyrosine kinase signaling, angiogenesis signaling, immune response, metabolism), via quantitative measurement of transcript levels and splice variants of hundreds of genes. We here present proof of concept that the technique, which uses molecular inversion probes, generates a histology-independent molecular diagnosis and identifies classifiers that are strongly associated with conventional histopathology diagnoses and even with patient prognosis. The test not only confirmed known glioma-associated molecular aberrations but also identified aberrant expression levels of actionable genes and mutations that have so far been considered not to be associated with glioma, opening up the possibility of drug repurposing for individual patients. Its cost-effectiveness makes t/RNA-NGS to an attractive instrument to aid oncologists in therapy decision making.
Collapse
|
162
|
Koehler JW, Miller AD, Miller CR, Porter B, Aldape K, Beck J, Brat D, Cornax I, Corps K, Frank C, Giannini C, Horbinski C, Huse JT, O'Sullivan MG, Rissi DR, Mark Simpson R, Woolard K, Shih JH, Mazcko C, Gilbert MR, LeBlanc AK. A Revised Diagnostic Classification of Canine Glioma: Towards Validation of the Canine Glioma Patient as a Naturally Occurring Preclinical Model for Human Glioma. J Neuropathol Exp Neurol 2019; 77:1039-1054. [PMID: 30239918 DOI: 10.1093/jnen/nly085] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The National Cancer Institute-led multidisciplinary Comparative Brain Tumor Consortium (CBTC) convened a glioma pathology board, comprising both veterinarian and physician neuropathologists, and conducted a comprehensive review of 193 cases of canine glioma. The immediate goal was to improve existing glioma classification methods through creation of a histologic atlas of features, thus yielding greater harmonization of phenotypic characterization. The long-term goal was to support future incorporation of clinical outcomes and genomic data into proposed simplified diagnostic schema, so as to further bridge the worlds of veterinary and physician neuropathology and strengthen validity of the dog as a naturally occurring, translationally relevant animal model of human glioma. All cases were morphologically reclassified according to a new schema devised by the entire board, yielding a majority opinion diagnosis of astrocytoma (43, 22.3%), 19 of which were low-grade and 24 high-grade, and oligodendroglioma (134, 69.4%), 35 of which were low-grade and 99 were high-grade. Sixteen cases (8.3%) could not be classified as oligodendroglioma or astrocytoma based on morphology alone and were designated as undefined gliomas. The simplified classification scheme proposed herein provides a tractable means for future addition of molecular data, and also serves to highlight histologic similarities and differences between human and canine glioma.
Collapse
Affiliation(s)
- Jennifer W Koehler
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Andrew D Miller
- Department of Biomedical Sciences, Section of Anatomic Pathology, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - C Ryan Miller
- Department of Pathology and Laboratory Medicine.,Department of Neurology.,Department of Pharmacology, Lineberger Comprehensive Cancer Center and Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Brian Porter
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jessica Beck
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Daniel Brat
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ingrid Cornax
- Department of Pediatrics, University of California-San Diego, San Diego California
| | - Kara Corps
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Viral Immunology and Intravital Imaging Section, Bethesda, Maryland
| | - Chad Frank
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado
| | - Caterina Giannini
- Division of Anatomic Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Craig Horbinski
- Department of Pathology.,Department of Neurosurgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - M Gerard O'Sullivan
- Masonic Cancer Center Comparative Pathology Shared Resource and Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| | - Daniel R Rissi
- Department of Pathology and Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - R Mark Simpson
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Molecular Pathology Unit, Laboratory of Cancer Biology and Genetics, Bethesda, Maryland
| | - Kevin Woolard
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Joanna H Shih
- Biometrics Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Christina Mazcko
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark R Gilbert
- National Institute of Neurological Disorders and Stroke and the Center for Cancer Research, National Cancer Institute, National Institutes of Health, NeuroOncology Branch, Bethesda, Maryland
| | - Amy K LeBlanc
- National Cancer Institute, National Institutes of Health, Comparative Oncology Program, Center for Cancer Research, Bethesda, Maryland
| |
Collapse
|
163
|
Wolf KJ, Chen J, Coombes J, Aghi MK, Kumar S. Dissecting and rebuilding the glioblastoma microenvironment with engineered materials. NATURE REVIEWS. MATERIALS 2019; 4:651-668. [PMID: 32647587 PMCID: PMC7347297 DOI: 10.1038/s41578-019-0135-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/24/2019] [Indexed: 05/15/2023]
Abstract
Glioblastoma (GBM) is the most aggressive and common form of primary brain cancer. Several decades of research have provided great insight into GBM progression; however, the prognosis remains poor with a median patient survival time of ~ 15 months. The tumour microenvironment (TME) of GBM plays a crucial role in mediating tumour progression and thus is being explored as a therapeutic target. Progress in the development of treatments targeting the TME is currently limited by a lack of model systems that can accurately recreate the distinct extracellular matrix composition and anatomic features of the brain, such as the blood-brain barrier and axonal tracts. Biomaterials can be applied to develop synthetic models of the GBM TME to mimic physiological and pathophysiological features of the brain, including cellular and ECM composition, mechanical properties, and topography. In this Review, we summarize key features of the GBM microenvironment and discuss different strategies for the engineering of GBM TME models, including 2D and 3D models featuring chemical and mechanical gradients, interfaces and fluid flow. Finally, we highlight the potential of engineered TME models as platforms for mechanistic discovery and drug screening as well as preclinical testing and precision medicine.
Collapse
Affiliation(s)
- Kayla J. Wolf
- University of California, Berkeley – University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, 94720, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Joseph Chen
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Jason Coombes
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94720, USA
- Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Manish K. Aghi
- Department of Neurosurgery, University of California San Francisco (UCSF), San Francisco, California, 94158
| | - Sanjay Kumar
- University of California, Berkeley – University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, 94720, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California, 94720, USA
| |
Collapse
|
164
|
Philip B, Yu DX, Silvis MR, Shin CH, Robinson JP, Robinson GL, Welker AE, Angel SN, Tripp SR, Sonnen JA, VanBrocklin MW, Gibbons RJ, Looper RE, Colman H, Holmen SL. Mutant IDH1 Promotes Glioma Formation In Vivo. Cell Rep 2019; 23:1553-1564. [PMID: 29719265 PMCID: PMC6032974 DOI: 10.1016/j.celrep.2018.03.133] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/23/2018] [Accepted: 03/29/2018] [Indexed: 02/08/2023] Open
Abstract
Isocitrate dehydrogenase 1 (IDH1) is the most commonly mutated gene in grade II–III glioma and secondary glioblastoma (GBM). A causal role for IDH1R132H in gliomagenesis has been proposed, but functional validation in vivo has not been demonstrated. In this study, we assessed the role of IDH1R132H in glioma development in the context of clinically relevant cooperating genetic alterations in vitro and in vivo. Immortal astrocytes expressing IDH1R132H exhibited elevated (R)-2-hydroxyglutarate levels, reduced NADPH, increased proliferation, and anchorage-independent growth. Although not sufficient on its own, IDH1R132H cooperated with PDGFA and loss of Cdkn2a, Atrx, and Pten to promote glioma development in vivo. These tumors resembled pro-neural human mutant IDH1 GBM genetically, histologically, and functionally. Our findings support the hypothesis that IDH1R132H promotes glioma development. This model enhances our understanding of the biology of IDH1R132H-driven gliomas and facilitates testing of therapeutic strategies designed to combat this deadly disease.
Collapse
Affiliation(s)
- Beatrice Philip
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Diana X Yu
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Mark R Silvis
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Clifford H Shin
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - James P Robinson
- Hormel Institute, University of Minnesota, 801 16(th) Avenue NE, Austin, MN 55912, USA
| | - Gemma L Robinson
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Adam E Welker
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Stephanie N Angel
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Sheryl R Tripp
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT 84108, USA
| | - Joshua A Sonnen
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT 84108, USA; Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Matthew W VanBrocklin
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Richard J Gibbons
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Ryan E Looper
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Howard Colman
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Neurosurgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Sheri L Holmen
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA.
| |
Collapse
|
165
|
Genetically Engineered Mouse Models of Gliomas: Technological Developments for Translational Discoveries. Cancers (Basel) 2019; 11:cancers11091335. [PMID: 31505839 PMCID: PMC6770673 DOI: 10.3390/cancers11091335] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 01/25/2023] Open
Abstract
The most common brain tumours, gliomas, have significant morbidity. Detailed biological and genetic understanding of these tumours is needed in order to devise effective, rational therapies. In an era generating unprecedented quantities of genomic sequencing data from human cancers, complementary methods of deciphering the underlying functional cancer genes and mechanisms are becoming even more important. Genetically engineered mouse models of gliomas have provided a platform for investigating the molecular underpinning of this complex disease, and new tools for such models are emerging that are enabling us to answer the most important questions in the field. Here, I discuss improvements to genome engineering technologies that have led to more faithful mouse models resembling human gliomas, including new cre/LoxP transgenic lines that allow more accurate cell targeting of genetic recombination, Sleeping Beauty and piggyBac transposons for the integration of transgenes and genetic screens, and CRISPR-cas9 for generating genetic knockout and functional screens. Applications of these technologies are providing novel insights into the functional genetic drivers of gliomagenesis, how these genes cooperate with one another, and the potential cells-of-origin of gliomas, knowledge of which is critical to the development of targeted treatments for patients in the clinic.
Collapse
|
166
|
Glioblastoma multiforme restructures the topological connectivity of cerebrovascular networks. Sci Rep 2019; 9:11757. [PMID: 31409816 PMCID: PMC6692362 DOI: 10.1038/s41598-019-47567-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/19/2019] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme alters healthy tissue vasculature by inducing angiogenesis and vascular remodeling. To fully comprehend the structural and functional properties of the resulting vascular network, it needs to be studied collectively by considering both geometric and topological properties. Utilizing Single Plane Illumination Microscopy (SPIM), the detailed capillary structure in entire healthy and tumor-bearing mouse brains could be resolved in three dimensions. At the scale of the smallest capillaries, the entire vascular systems of bulk U87- and GL261-glioblastoma xenografts, their respective cores, and healthy brain hemispheres were modeled as complex networks and quantified with fundamental topological measures. All individual vessel segments were further quantified geometrically and modular clusters were uncovered and characterized as meta-networks, facilitating an analysis of large-scale connectivity. An inclusive comparison of large tissue sections revealed that geometric properties of individual vessels were altered in glioblastoma in a relatively subtle way, with high intra- and inter-tumor heterogeneity, compared to the impact on the vessel connectivity. A network topology analysis revealed a clear decomposition of large modular structures and hierarchical network organization, while preserving most fundamental topological classifications, in both tumor models with distinct growth patterns. These results augment our understanding of cerebrovascular networks and offer a topological assessment of glioma-induced vascular remodeling. The findings may help understand the emergence of hypoxia and necrosis, and prove valuable for therapeutic interventions such as radiation or antiangiogenic therapy.
Collapse
|
167
|
Current and Future Trends on Diagnosis and Prognosis of Glioblastoma: From Molecular Biology to Proteomics. Cells 2019; 8:cells8080863. [PMID: 31405017 PMCID: PMC6721640 DOI: 10.3390/cells8080863] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme is the most aggressive malignant tumor of the central nervous system. Due to the absence of effective pharmacological and surgical treatments, the identification of early diagnostic and prognostic biomarkers is of key importance to improve the survival rate of patients and to develop new personalized treatments. On these bases, the aim of this review article is to summarize the current knowledge regarding the application of molecular biology and proteomics techniques for the identification of novel biomarkers through the analysis of different biological samples obtained from glioblastoma patients, including DNA, microRNAs, proteins, small molecules, circulating tumor cells, extracellular vesicles, etc. Both benefits and pitfalls of molecular biology and proteomics analyses are discussed, including the different mass spectrometry-based analytical techniques, highlighting how these investigation strategies are powerful tools to study the biology of glioblastoma, as well as to develop advanced methods for the management of this pathology.
Collapse
|
168
|
Hara T, Verma IM. Modeling Gliomas Using Two Recombinases. Cancer Res 2019; 79:3983-3991. [PMID: 31315836 PMCID: PMC6677610 DOI: 10.1158/0008-5472.can-19-0717] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/15/2019] [Accepted: 05/30/2019] [Indexed: 01/21/2023]
Abstract
Development of animal models to investigate the complex ecosystem of malignant gliomas using the Cre/loxP recombination system has significantly contributed to our understanding of the molecular underpinnings of this deadly disease. In these model systems, once the tumor is induced by activation of Cre-recombinase in a tissue-specific manner, further genetic manipulations to explore the progression of tumorigenesis are limited. To expand the application of mouse models for gliomas, we developed glial fibrillary acidic protein (GFAP)-FLP recombinase (FLPo) mice that express FLPo recombinase specifically in GFAP-positive cells. Lentivirus-based in vivo delivery of cancer genes conditioned by FLP/FRT-mediated recombination initiated gliomas in GFAP-FLPo mice. Using the Cre-mediated multifluorescent protein-expressing system, we demonstrated that the GFAP-FLPo mouse model enables the analysis of various stages of gliomagenesis. Collectively, we present a new mouse model that will expand our ability to dissect developmental processes of gliomagenesis and to provide new avenues for therapeutic approaches. SIGNIFICANCE: This study presents a new glioma mouse model derived using lentiviral vectors and two recombination systems that will expand the ability to dissect developmental processes of gliomagenesis.
Collapse
Affiliation(s)
- Toshiro Hara
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California.
| | - Inder M Verma
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California
| |
Collapse
|
169
|
Angelopoulou E, Paudel YN, Piperi C. Emerging Pathogenic and Prognostic Significance of Paired Box 3 (PAX3) Protein in Adult Gliomas. Transl Oncol 2019; 12:1357-1363. [PMID: 31352198 PMCID: PMC6664158 DOI: 10.1016/j.tranon.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 01/19/2023] Open
Abstract
Gliomas present the most common type of brain tumors in adults, characterized by high morbidity and mortality. In search of potential molecular targets, members of paired box (PAX) family have been found expressed in neural crest cells, regulating their proliferation, apoptosis, migration and differentiation. Recently, PAX3 overexpression has been implicated in glioma tumorigenesis by enhancing proliferation, increasing invasiveness and inducing resistance to apoptosis of glioma cells, while maintaining brain glioma stem cells (BGSCs) stemness. Although the oncogenic potential of PAX3 in gliomas is still under investigation, experimental evidence suggests that PAX3 function is mainly mediated through the canonical and non-canonical Wnt signaling pathway as well as through its interaction with GFAP and p53 proteins. In addition, PAX3 may contribute to the chemoresistance of glioma cells and modulates the effectiveness of novel experimental therapies. Further evidence indicates that PAX3 may represent a novel diagnostic and prognostic biomarker for gliomas, facilitating personalized treatment. This review addresses the emerging role of PAX3 in glioma diagnosis, prognosis and treatment, aiming to shed more light on the underlying molecular mechanisms that could lead to more effective treatment approaches.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
170
|
Verhoeven J, Bolcaen J, De Meulenaere V, Kersemans K, Descamps B, Donche S, Van den Broecke C, Boterberg T, Kalala JP, Deblaere K, Vanhove C, De Vos F, Goethals I. Technical feasibility of [ 18F]FET and [ 18F]FAZA PET guided radiotherapy in a F98 glioblastoma rat model. Radiat Oncol 2019; 14:89. [PMID: 31146757 PMCID: PMC6543630 DOI: 10.1186/s13014-019-1290-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/08/2019] [Indexed: 12/21/2022] Open
Abstract
Background Glioblastoma (GB) is the most common primary malignant brain tumor. Standard medical treatment consists of a maximal safe surgical resection, subsequently radiation therapy (RT) and chemotherapy with temozolomide (TMZ). An accurate definition of the tumor volume is of utmost importance for guiding RT. In this project we investigated the feasibility and treatment response of subvolume boosting to a PET-defined tumor part. Method F98 GB cells inoculated in the rat brain were imaged using T2- and contrast-enhanced T1-weighted (T1w) MRI. A dose of 20 Gy (5 × 5 mm2) was delivered to the target volume delineated based on T1w MRI for three treatment groups. Two of those treatment groups received an additional radiation boost of 5 Gy (1 × 1 mm2) delivered to the region either with maximum [18F]FET or [18F]FAZA PET tracer uptake, respectively. All therapy groups received intraperitoneal (IP) injections of TMZ. Finally, a control group received no RT and only control IP injections. The average, minimum and maximum dose, as well as the D90-, D50- and D2- values were calculated for nine rats using both RT plans. To evaluate response to therapy, follow-up tumor volumes were delineated based on T1w MRI. Results When comparing the dose volume histograms, a significant difference was found exclusively between the D2-values. A significant difference in tumor growth was only found between active therapy and sham therapy respectively, while no significant differences were found when comparing the three treatment groups. Conclusion In this study we showed the feasibility of PET guided subvolume boosting of F98 glioblastoma in rats. No evidence was found for a beneficial effect regarding tumor response. However, improvements for dose targeting in rodents and studies investigating new targeted drugs for GB treatment are mandatory. Electronic supplementary material The online version of this article (10.1186/s13014-019-1290-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Julie Bolcaen
- Ghent University Hospital, Department of Nuclear Medicine, Ghent, Belgium.,National Research Foundation (NRF), iThemba LABS, Somerset West, South Africa
| | - Valerie De Meulenaere
- Ghent University Hospital, Department of Radiology and Medical Imaging, Ghent, Belgium
| | - Ken Kersemans
- Ghent University Hospital, Department of Nuclear Medicine, Ghent, Belgium
| | - Benedicte Descamps
- IBiTech-MEDISIP Ghent University, Department of Electronics and Information Systems, Ghent, Belgium
| | - Sam Donche
- Ghent University Hospital, Department of Nuclear Medicine, Ghent, Belgium
| | | | - Tom Boterberg
- Ghent University Hospital, Department of Radiation Oncology, Ghent, Belgium
| | | | - Karel Deblaere
- Ghent University Hospital, Department of Radiology and Medical Imaging, Ghent, Belgium
| | - Christian Vanhove
- IBiTech-MEDISIP Ghent University, Department of Electronics and Information Systems, Ghent, Belgium
| | - Filip De Vos
- Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium
| | - Ingeborg Goethals
- Ghent University Hospital, Department of Nuclear Medicine, Ghent, Belgium
| |
Collapse
|
171
|
Peeters TH, Lenting K, Breukels V, van Lith SAM, van den Heuvel CNAM, Molenaar R, van Rooij A, Wevers R, Span PN, Heerschap A, Leenders WPJ. Isocitrate dehydrogenase 1-mutated cancers are sensitive to the green tea polyphenol epigallocatechin-3-gallate. Cancer Metab 2019; 7:4. [PMID: 31139406 PMCID: PMC6526618 DOI: 10.1186/s40170-019-0198-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/09/2019] [Indexed: 01/09/2023] Open
Abstract
Background Mutations in isocitrate dehydrogenase 1 (IDH1) occur in various types of cancer and induce metabolic alterations resulting from the neomorphic activity that causes production of D-2-hydroxyglutarate (D-2-HG) at the expense of α-ketoglutarate (α-KG) and NADPH. To overcome metabolic stress induced by these alterations, IDH-mutated (IDHmut) cancers utilize rescue mechanisms comprising pathways in which glutaminase and glutamate dehydrogenase (GLUD) are involved. We hypothesized that inhibition of glutamate processing with the pleiotropic GLUD-inhibitor epigallocatechin-3-gallate (EGCG) would not only hamper D-2-HG production, but also decrease NAD(P)H and α-KG synthesis in IDHmut cancers, resulting in increased metabolic stress and increased sensitivity to radiotherapy. Methods We performed 13C-tracing studies to show that HCT116 colorectal cancer cells with an IDH1R132H knock-in allele depend more on glutaminolysis than on glycolysis for the production of D-2-HG. We treated HCT116 cells, HCT116-IDH1R132H cells, and HT1080 cells (carrying an IDH1R132C mutation) with EGCG and evaluated D-2-HG production, cell proliferation rates, and sensitivity to radiotherapy. Results Significant amounts of 13C from glutamate accumulate in D-2-HG in HCT116-IDH1wt/R132H but not in HCT116-IDH1wt/wt. Preventing glutamate processing in HCT116-IDH1wt/R132H cells with EGCG resulted in reduction of D-2-HG production. In addition, EGCG treatment decreased proliferation rates of IDH1mut cells and at high doses sensitized cancer cells to ionizing radiation. Effects of EGCG in IDH-mutated cell lines were diminished by treatment with the IDH1mut inhibitor AGI-5198. Conclusions This work shows that glutamate can be directly processed into D-2-HG and that reduction of glutamatolysis may be an effective and promising new treatment option for IDHmut cancers. Electronic supplementary material The online version of this article (10.1186/s40170-019-0198-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tom H Peeters
- 1Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500 Nijmegen, HB The Netherlands
| | - Krissie Lenting
- 2Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 26, 6525 Nijmegen, GA The Netherlands
| | - Vincent Breukels
- 1Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500 Nijmegen, HB The Netherlands
| | - Sanne A M van Lith
- 1Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500 Nijmegen, HB The Netherlands
| | - Corina N A M van den Heuvel
- 2Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 26, 6525 Nijmegen, GA The Netherlands
| | - Remco Molenaar
- 3Department of Medical Biology, Cancer Center Amsterdam at the Academic Medical Center, Meibergdreef 15, 1105 Amsterdam, AZ The Netherlands
| | - Arno van Rooij
- 4Department of Laboratory Medicine, Radboud university medical center, PO Box 9101, 6500 Nijmegen, HB The Netherlands
| | - Ron Wevers
- 4Department of Laboratory Medicine, Radboud university medical center, PO Box 9101, 6500 Nijmegen, HB The Netherlands
| | - Paul N Span
- 5Department of Radiation Oncology, Radiotherapy and OncoImmunology Laboratory, Radboud university medical center, PO Box 9101, 6500 Nijmegen, HB The Netherlands
| | - Arend Heerschap
- 1Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500 Nijmegen, HB The Netherlands
| | - William P J Leenders
- 2Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 26, 6525 Nijmegen, GA The Netherlands
| |
Collapse
|
172
|
Xu W, Sun J, Le Y, Chen J, Lu X, Yao X. Effect of pulsed millisecond current magnetic field on the proliferation of C6 rat glioma cells. Electromagn Biol Med 2019; 38:185-197. [DOI: 10.1080/15368378.2019.1608233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wenjun Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, China
| | - Jinru Sun
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, China
| | - Yangjing Le
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, China
| | - Jingliang Chen
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, China
| | - Xiaoyun Lu
- School of Life and Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Xueling Yao
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
173
|
Clavreul A, Soulard G, Lemée JM, Rigot M, Fabbro-Peray P, Bauchet L, Figarella-Branger D, Menei P. The French glioblastoma biobank (FGB): a national clinicobiological database. J Transl Med 2019; 17:133. [PMID: 31014363 PMCID: PMC6480741 DOI: 10.1186/s12967-019-1859-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/27/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Glioblastomas (GB) are the most common and lethal primary brain tumors. Significant progress has been made toward identifying potential risk factors for GB and diagnostic and prognostic biomarkers. However, the current standard of care for newly diagnosed GB, the Stupp protocol, has remained unchanged for over a decade. Large-scale translational programs based on a large clinicobiological database are required to improve our understanding of GB biology, potentially facilitating the development of personalized and specifically targeted therapies. With this goal in mind, a well-annotated clinicobiological database housing data and samples from GB patients has been set up in France: the French GB biobank (FGB). METHODS The biobank contains data and samples from adult GB patients from 24 centers in France providing written informed consent. Clinical and biomaterial data are stored in anonymized certified electronic case report forms. Biological samples (including frozen and formalin-fixed paraffin-embedded tumor tissues, blood samples, and hair) are conserved in certified biological resource centers or tumor tissue banks at each participating center. RESULTS Clinical data and biological materials have been collected for 1087 GB patients. A complete set of samples (tumor, blood and hair) is available for 66%, and at least one frozen tumor sample is available for 88% of the GB patients. CONCLUSIONS This large biobank is unique in Europe and can support the large-scale translational projects required to improve GB care. Additional biological materials, such as peritumoral brain zone and fecal samples, will be collected in the future, to respond to research needs.
Collapse
Affiliation(s)
- Anne Clavreul
- Département de Neurochirurgie, CHU, 4 rue Larrey, 49 933, Angers Cedex 9, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Gwénaëlle Soulard
- Département de Neurochirurgie, CHU, 4 rue Larrey, 49 933, Angers Cedex 9, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Jean-Michel Lemée
- Département de Neurochirurgie, CHU, 4 rue Larrey, 49 933, Angers Cedex 9, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Marion Rigot
- Département Promotion, Direction de la Recherche, CHU Nantes, Nantes, France
| | - Pascale Fabbro-Peray
- Département de Biostatistique, Epidémiologie, Santé Publique, CHU Nîmes, Nîmes, France.,Unité de recherche EA2415, Université de Montpellier, Montpellier, France
| | - Luc Bauchet
- Département de Neurochirurgie, Hôpital Gui de Chauliac, CHU Montpellier, Université de Montpellier, Montpellier, France.,Institut des Neurosciences de Montpellier INSERM U1051, Montpellier, France
| | - Dominique Figarella-Branger
- APHM, Hôpital de la Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France.,Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Philippe Menei
- Département de Neurochirurgie, CHU, 4 rue Larrey, 49 933, Angers Cedex 9, France. .,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.
| | | |
Collapse
|
174
|
Clavreul A, Pourbaghi-Masouleh M, Roger E, Menei P. Nanocarriers and nonviral methods for delivering antiangiogenic factors for glioblastoma therapy: the story so far. Int J Nanomedicine 2019; 14:2497-2513. [PMID: 31040671 PMCID: PMC6461002 DOI: 10.2147/ijn.s194858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels, is an essential component of glioblastoma (GB) progression. The development of angiogenesis inhibitor therapy, including treatments targeting vascular endothelial growth factor (VEGF) in particular, raised new hopes for the treatment of GB, but no Phase III clinical trial to date has reported survival benefits relative to standard treatment. There are several possible reasons for this limited efficacy, including VEGF-independent angiogenesis, induction of tumor invasion, and inefficient antiangiogenic factor delivery to the tumor. Efforts have been made to overcome these limitations by identifying new angiogenesis inhibitors that target angiogenesis through different mechanisms of action without inducing tumor invasion, and through the development of viral and nonviral delivery methods to improve antiangiogenic activity. Herein, we describe the nonviral methods, including convection-enhanced delivery devices, implantable polymer devices, nanocarriers, and cellular vehicles, to deliver antiangiogenic factors. We focus on those evaluated in intracranial (orthotopic) animal models of GB, the most relevant models of this disease, as they reproduce the clinical scenario of tumor progression and therapy response encountered in GB patients.
Collapse
Affiliation(s)
- Anne Clavreul
- Department of Neurosurgery, CHU, Angers, France, .,CRCINA, INSERM, University of Nantes, University of Angers, Angers, France,
| | - Milad Pourbaghi-Masouleh
- CRCINA, INSERM, University of Nantes, University of Angers, Angers, France, .,Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Emilie Roger
- MINT, INSERM 1066, CNRS 6021, University of Angers, Angers, France
| | - Philippe Menei
- Department of Neurosurgery, CHU, Angers, France, .,CRCINA, INSERM, University of Nantes, University of Angers, Angers, France,
| |
Collapse
|
175
|
Zhang W, Xiong L. Effect of lncRNA ZEB1-AS1 on proliferation, invasion and apoptosis of glioma U87 cells. Oncol Lett 2019; 17:5120-5124. [PMID: 31186725 PMCID: PMC6507304 DOI: 10.3892/ol.2019.10202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 03/18/2019] [Indexed: 12/18/2022] Open
Abstract
This study aimed to investigate the effect of LncRNA ZEB1-AS1 on the proliferation, invasion and apoptosis of human glioma U87 cells. U87 glioma cells were divided into three groups. The Si group was transfected with LncRNA ZEB1-AS1 specific SiRNA. The NC group was transfected with non-specific scramble siRNA, and untransfected glioma cells were used as the blank group. After 48 h of transfection, the proliferation of U87 cells was detected by MTT assay, apoptosis of U87 cells was detected by flow cytometry, and Transwell invasion assay was used to detect cell invasion. The expression of LncZEB1-AS1 in Si group was significantly lower than that in the NC and blank groups (P<0.01). There was no statistical difference in the OD 490 between the three groups at 24 h (P>0.05). At 48 h, the Si group was significantly lower than the NC group and the blank group (P<0.01). After 48 h, the three groups showed a gradually increasing trend, but at all the time points, the Si group was always lower than the NC and blank groups (P<0.01). The OD values of the blank and NC groups were significantly higher than the same group at the previous time point (P<0.01). The OD values of Si group at 48 and 96 h were significantly higher than those at the previous time point (P <0.05). Although there was an upward trend between 72 and 48 h, the difference was not significant (P>0.05). Flow cytometry detected apoptosis in each group and found that the apoptosis rate in the Si group was significantly higher than that in the NC and blank groups (P<0.01). Inhibition of LncRNA ZEB1-AS1 can inhibit the proliferation and invasion of glioma U87 cells and promote apoptosis. LncRNA ZEB1-AS1 is expected to become a new target for the treatment of glioma.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Lijun Xiong
- Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| |
Collapse
|
176
|
Arami H, Patel CB, Madsen SJ, Dickinson PJ, Davis RM, Zeng Y, Sturges BK, Woolard KD, Habte FG, Akin D, Sinclair R, Gambhir SS. Nanomedicine for Spontaneous Brain Tumors: A Companion Clinical Trial. ACS NANO 2019; 13:2858-2869. [PMID: 30714717 PMCID: PMC6584029 DOI: 10.1021/acsnano.8b04406] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Nanoparticles' enhanced permeation and retention (EPR) variations due to tumor heterogeneity in naturally occurring brain tumors are commonly neglected in preclinical nanomedicine studies. Recent pathological studies have shown striking similarities between brain tumors in humans and dogs, indicating that canine brain tumors may be a valuable model to evaluate nanoparticles' EPR in this context. We recruited canine clinical cases with spontaneous brain tumors to investigate nanoparticles' EPR in different brain tumor pathologies using surface-enhanced Raman spectroscopy (SERS). We used gold nanoparticles due to their surface plasmon effect that enables their sensitive and microscopic resolution detection using the SERS technique. Raman microscopy of the resected tumors showed heterogeneous EPR of nanoparticles into oligodendrogliomas and meningiomas of different grades, without any detectable traces in necrotic parts of the tumors or normal brain. Raman observations were confirmed by scanning electron microscopy (SEM) and X-ray elemental analyses, which enabled localization of individual nanoparticles embedded in tumor tissues. Our results demonstrate nanoparticles' EPR and its variations in clinically relevant, spontaneous brain tumors. Such heterogeneities should be considered alongside routine preoperative imaging and histopathological analyses in order to accelerate clinical management of brain tumors using nanomedicine approaches.
Collapse
Affiliation(s)
- Hamed Arami
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305, United States
| | - Chirag B. Patel
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305, United States
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94304, United States
| | - Steven J. Madsen
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Peter J. Dickinson
- Department of Surgical and Radiological Sciences, University of California at Davis, Davis, California 95616, United States
| | - Ryan M. Davis
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305, United States
| | - Yitian Zeng
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Beverly K. Sturges
- Department of Surgical and Radiological Sciences, University of California at Davis, Davis, California 95616, United States
| | - Kevin D. Woolard
- Department of Pathology, Microbiology and Immunology, University of California, Davis, California 95616, United States
| | - Frezghi G. Habte
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305, United States
| | - Demir Akin
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305, United States
| | - Robert Sinclair
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Sanjiv S. Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
- Stanford Neuroscience Institute, Stanford University School of Medicine, Stanford, California 94305, United States
- Corresponding Author (Sanjiv S. Gambhir).
| |
Collapse
|
177
|
Illarionova NB, Petrovski DV, Razumov IA, Zavyalov EL. Effects of radiation and manganese oxide nanoparticles on human glioblastoma cell line U-87 MG glycolysis. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Gliomas are the most common type of malignant brain tumors. Standard treatment of gliomas consists of surgical excision of the tumor with subsequent chemotherapy and radiotherapy. Tumor cells are characterized by rapid division with an increased uptake of glucose and its catabolism during glycolysis. To maintain rapid division, the level of glycolysis of the tumor cell is significantly increased, compared with normal cells. It is known that some nanoparticles (NP) have the property of accumulating in tumors. In particular, NPs of manganese oxide can penetrate into the brain and, with considerable accumulation, cause toxic effects. These facts served as a prerequisite for studying the effects of manganese oxide NPs on the viability of glioma cells. The purpose of this work was to study the effects of manganese oxide NPs, as well as their combination with gamma irradiation on the glycolysis of glioma cells. The cells were irradiated using the research radiobiological gamma-installation IGUR-1 based on 137Cs. The level of cell glycolysis was determined using the standard glycolytic stress test on a Seahorse XFp platform. Cell viability was determined using the ViaCount reagent staining of living and dead cells. Their count was performed using flow cytometry. We showed that the glycolysis of U-87 MG glioma cells was significantly reduced when incubated for 48 hours with manganese oxide NPs. Irradiation in combination with NPs or alone did not have significant effects on glycolysis of gliomas. Glioma incubation with manganese oxide NPs for 72 hours led to a significant reduction in cell viability. This study may be useful for the development of new therapies and diagnosis of gliomas.
Collapse
Affiliation(s)
| | | | | | - E. L. Zavyalov
- Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
| |
Collapse
|
178
|
Zhao X, Hao S, Wang M, Xing D, Wang C. Knockdown of pseudogene DUXAP8 expression in glioma suppresses tumor cell proliferation. Oncol Lett 2019; 17:3511-3516. [PMID: 30867791 DOI: 10.3892/ol.2019.9994] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022] Open
Abstract
A large number of pseudogenes as well as long non-coding RNAs (lncRNAs) have been identified as important regulators in human tumors. However, the clinical role and potential functional effects of the double homeobox A pseudogene 8 (DUXAP8) in glioma remains unknown. In the present study, it was revealed that pseudogene DUXAP8 is significantly upregulated in glioma tissues, compared with adjacent normal tissues. Patients with increased DUXAP8 expression were associated with higher Karnofsky Performance Status, advanced World Health Organization grade, poor disease-free survival and overall survival rates of patients with glioma. Furthermore, in vitro assays, Cell-Counting Kit-8 cell viability and cell colony forming assays demonstrated that reduced DUXAP8 expression significantly suppressed proliferation capacity. Therefore, the results of the present study indicate that pseudogene DUXAP8 is an oncogenic lncRNA and may serve as a potentially prognostic biomarker and novel target of glioma treatment.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Shuai Hao
- Department of Neurosurgery, People's Hospital of Juye County, Juye, Shandong 274900, P.R. China
| | - Minqing Wang
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Deguang Xing
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Chengwei Wang
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
179
|
Sun T, Patil R, Galstyan A, Klymyshyn D, Ding H, Chesnokova A, Cavenee WK, Furnari FB, Ljubimov VA, Shatalova ES, Wagner S, Li D, Mamelak AN, Bannykh SI, Patil CG, Rudnick JD, Hu J, Grodzinski ZB, Rekechenetskiy A, Falahatian V, Lyubimov AV, Chen YL, Leoh LS, Daniels-Wells TR, Penichet ML, Holler E, Ljubimov AV, Black KL, Ljubimova JY. Blockade of a Laminin-411-Notch Axis with CRISPR/Cas9 or a Nanobioconjugate Inhibits Glioblastoma Growth through Tumor-Microenvironment Cross-talk. Cancer Res 2019; 79:1239-1251. [PMID: 30659021 DOI: 10.1158/0008-5472.can-18-2725] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/07/2018] [Accepted: 01/15/2019] [Indexed: 02/07/2023]
Abstract
There is an unmet need for the treatment of glioblastoma multiforme (GBM). The extracellular matrix, including laminins, in the tumor microenvironment is important for tumor invasion and progression. In a panel of 226 patient brain glioma samples, we found a clinical correlation between the expression of tumor vascular laminin-411 (α4β1γ1) with higher tumor grade and with expression of cancer stem cell (CSC) markers, including Notch pathway members, CD133, Nestin, and c-Myc. Laminin-411 overexpression also correlated with higher recurrence rate and shorter survival of GBM patients. We also showed that depletion of laminin-411 α4 and β1 chains with CRISPR/Cas9 in human GBM cells led to reduced growth of resultant intracranial tumors in mice and significantly increased survival of host animals compared with mice with untreated cells. Inhibition of laminin-411 suppressed Notch pathway in normal and malignant human brain cell types. A nanobioconjugate potentially suitable for clinical use and capable of crossing blood-brain barrier was designed to block laminin-411 expression. Nanobioconjugate treatment of mice carrying intracranial GBM significantly increased animal survival and inhibited multiple CSC markers, including the Notch axis. This study describes an efficient strategy for GBM treatment via targeting a critical component of the tumor microenvironment largely independent of heterogeneous genetic mutations in glioblastoma.Significance: Laminin-411 expression in the glioma microenvironment correlates with Notch and other cancer stem cell markers and can be targeted by a novel, clinically translatable nanobioconjugate to inhibit glioma growth.
Collapse
Affiliation(s)
- Tao Sun
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Rameshwar Patil
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California.,Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Anna Galstyan
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Dmytro Klymyshyn
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hui Ding
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California.,Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Alexandra Chesnokova
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, California
| | - Frank B Furnari
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, California
| | - Vladimir A Ljubimov
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ekaterina S Shatalova
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Shawn Wagner
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Adam N Mamelak
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Serguei I Bannykh
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Chirag G Patil
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jeremy D Rudnick
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jethro Hu
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Zachary B Grodzinski
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California
| | | | - Vida Falahatian
- Duke University School of Medicine, Department of Biostatistics and Bioinformatics, Clinical Research Training Program (CRTP), Durham, North Carolina
| | - Alexander V Lyubimov
- Toxicology Research Laboratory (TRL), Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Yongmei L Chen
- Toxicology Research Laboratory (TRL), Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Lai S Leoh
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Tracy R Daniels-Wells
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Manuel L Penichet
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles; Jonsson Comprehensive Cancer Center, the Molecular Biology Institute, AIDS Institute, the California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California
| | - Eggehard Holler
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California.,Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California.,Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Regensburg, Germany
| | - Alexander V Ljubimov
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Keith L Black
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California.,Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Julia Y Ljubimova
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California. .,Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
180
|
Núñez FJ, Mendez FM, Garcia-Fabiani MB, Pardo J, Edwards M, Lowenstein PR, Castro MG. Evaluation of Biomarkers in Glioma by Immunohistochemistry on Paraffin-Embedded 3D Glioma Neurosphere Cultures. J Vis Exp 2019. [PMID: 30688315 DOI: 10.3791/58931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Analysis of protein expression in glioma is relevant for several aspects in the study of its pathology. Numerous proteins have been described as biomarkers with applications in diagnosis, prognosis, classification, state of tumor progression, and cell differentiation state. These analyses of biomarkers are also useful to characterize tumor neurospheres (NS) generated from glioma patients and glioma models. Tumor NS provide a valuable in vitro model to assess different features of the tumor from which they are derived and can more accurately mirror glioma biology. Here we describe a detailed method to analyze biomarkers in tumor NS using immunohistochemistry (IHC) on paraffin-embedded tumor NS.
Collapse
Affiliation(s)
- Felipe J Núñez
- Department of Neurosurgery, University of Michigan Medical School; Department of Cell & Developmental Biology, University of Michigan
| | - Flor M Mendez
- Department of Cell & Developmental Biology, University of Michigan
| | - Maria B Garcia-Fabiani
- Department of Neurosurgery, University of Michigan Medical School; Department of Cell & Developmental Biology, University of Michigan
| | - Joaquín Pardo
- Department of Neurosurgery, University of Michigan Medical School; INIBIOLP, Histology B-Pathology B, School of Medicine, UNLP
| | - Marta Edwards
- Department of Neurosurgery, University of Michigan Medical School; Department of Cell & Developmental Biology, University of Michigan
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School; Department of Cell & Developmental Biology, University of Michigan
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School; Department of Cell & Developmental Biology, University of Michigan;
| |
Collapse
|
181
|
Hujber Z, Horváth G, Petővári G, Krencz I, Dankó T, Mészáros K, Rajnai H, Szoboszlai N, Leenders WPJ, Jeney A, Tretter L, Sebestyén A. GABA, glutamine, glutamate oxidation and succinic semialdehyde dehydrogenase expression in human gliomas. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:271. [PMID: 30404651 PMCID: PMC6223071 DOI: 10.1186/s13046-018-0946-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022]
Abstract
Background Bioenergetic characterisation of malignant tissues revealed that different tumour cells can catabolise multiple substrates as salvage pathways, in response to metabolic stress. Altered metabolism in gliomas has received a lot of attention, especially in relation to IDH mutations, and the associated oncometabolite D-2-hydroxyglutarate (2-HG) that impact on metabolism, epigenetics and redox status. Astrocytomas and oligodendrogliomas, collectively called diffuse gliomas, are derived from astrocytes and oligodendrocytes that are in metabolic symbiosis with neurons; astrocytes can catabolise neuron-derived glutamate and gamma-aminobutyric acid (GABA) for supporting and regulating neuronal functions. Methods Metabolic characteristics of human glioma cell models – including mitochondrial function, glycolytic pathway and energy substrate oxidation – in relation to IDH mutation status and after 2-HG incubation were studied to understand the Janus-faced role of IDH1 mutations in the progression of gliomas/astrocytomas. The metabolic and bioenergetic features were identified in glioma cells using wild-type and genetically engineered IDH1-mutant glioblastoma cell lines by metabolic analyses with Seahorse, protein expression studies and liquid chromatography-mass spectrometry. Results U251 glioma cells were characterised by high levels of glutamine, glutamate and GABA oxidation. Succinic semialdehyde dehydrogenase (SSADH) expression was correlated to GABA oxidation. GABA addition to glioma cells increased proliferation rates. Expression of mutated IDH1 and treatment with 2-HG reduced glutamine and GABA oxidation, diminished the pro-proliferative effect of GABA in SSADH expressing cells. SSADH protein overexpression was found in almost all studied human cases with no significant association between SSADH expression and clinicopathological parameters (e.g. IDH mutation). Conclusions Our findings demonstrate that SSADH expression may participate in the oxidation and/or consumption of GABA in gliomas, furthermore, GABA oxidation capacity may contribute to proliferation and worse prognosis of gliomas. Moreover, IDH mutation and 2-HG production inhibit GABA oxidation in glioma cells. Based on these data, GABA oxidation and SSADH activity could be additional therapeutic targets in gliomas/glioblastomas. Electronic supplementary material The online version of this article (10.1186/s13046-018-0946-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zoltán Hujber
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Gergő Horváth
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1444, Hungary
| | - Gábor Petővári
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Ildikó Krencz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Titanilla Dankó
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Katalin Mészáros
- Hungarian Academy of Sciences - Momentum Hereditary Endocrine Tumours Research Group, Semmelweis University - National Bionics Program, Budapest, 1088, Hungary
| | - Hajnalka Rajnai
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Norbert Szoboszlai
- Laboratory of Environmental Chemistry and Bioanalytics, Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, 1518, Hungary
| | - William P J Leenders
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - András Jeney
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - László Tretter
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1444, Hungary
| | - Anna Sebestyén
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary.
| |
Collapse
|
182
|
Chi KC, Tsai WC, Wu CL, Lin TY, Hueng DY. An Adult Drosophila Glioma Model for Studying Pathometabolic Pathways of Gliomagenesis. Mol Neurobiol 2018; 56:4589-4599. [DOI: 10.1007/s12035-018-1392-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/11/2018] [Indexed: 11/28/2022]
|
183
|
Genoud V, Marinari E, Nikolaev SI, Castle JC, Bukur V, Dietrich PY, Okada H, Walker PR. Responsiveness to anti-PD-1 and anti-CTLA-4 immune checkpoint blockade in SB28 and GL261 mouse glioma models. Oncoimmunology 2018; 7:e1501137. [PMID: 30524896 PMCID: PMC6279422 DOI: 10.1080/2162402x.2018.1501137] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/21/2022] Open
Abstract
Immune checkpoint blockade (ICB) is currently evaluated in patients with glioblastoma (GBM), based on encouraging clinical data in other cancers, and results from studies with the methylcholanthrene-induced GL261 mouse glioma. In this paper, we describe a novel model faithfully recapitulating some key human GBM characteristics, including low mutational load, a factor reported as a prognostic indicator of ICB response. Consistent with this observation, SB28 is completely resistant to ICB, contrasting with treatment sensitivity of the more highly mutated GL261. Moreover, SB28 shows features of a poorly immunogenic tumor, with low MHC-I expression and modest CD8+ T-cell infiltration, suggesting that it may present similar challenges for immunotherapy as human GBM. Based on these key features for immune reactivity, SB28 may represent a treatment-resistant malignancy likely to mirror responses of many human tumors. We therefore propose that SB28 is a particularly suitable model for optimization of GBM immunotherapy.
Collapse
Affiliation(s)
- Vassilis Genoud
- Translational research center for hemato-oncology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Eliana Marinari
- Translational research center for hemato-oncology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sergey I Nikolaev
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - John C. Castle
- Biomarker Development Center, Translational Oncology at the University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Valesca Bukur
- Biomarker Development Center, Translational Oncology at the University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Pierre-Yves Dietrich
- Translational research center for hemato-oncology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Oncology, University Hospitals of Geneva, Geneva, Switzerland
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Paul R. Walker
- Translational research center for hemato-oncology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
184
|
Ganipineni LP, Ucakar B, Joudiou N, Bianco J, Danhier P, Zhao M, Bastiancich C, Gallez B, Danhier F, Préat V. Magnetic targeting of paclitaxel-loaded poly(lactic- co-glycolic acid)-based nanoparticles for the treatment of glioblastoma. Int J Nanomedicine 2018; 13:4509-4521. [PMID: 30127603 PMCID: PMC6092128 DOI: 10.2147/ijn.s165184] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Introduction Glioblastoma (GBM) therapy is highly challenging, as the tumors are very aggressive due to infiltration into the surrounding normal brain tissue. Even a combination of the available therapeutic regimens may not debulk the tumor completely. GBM tumors are also known for recurrence, resulting in survival rates averaging <18 months. In addition, systemic chemotherapy for GBM has been challenged for its minimal desired therapeutic effects and unwanted side effects. Purpose We hypothesized that paclitaxel (PTX) and superparamagnetic iron oxide (SPIO)-loaded PEGylated poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs; PTX/SPIO-NPs) can serve as an effective nanocarrier system for magnetic targeting purposes, and we aimed to demonstrate the therapeutic efficacy of this system in an orthotopic murine GBM model. Materials and methods PTX/SPIO-NPs were prepared by emulsion–diffusion–evaporation method and characterized for physicochemical properties. In vitro cellular uptake of PTX/SPIO-NPs was evaluated by fluorescence microscopy and Prussian blue staining. Orthotopic U87MG tumor model was used to evaluate blood–brain barrier disruption using T1 contrast agent, ex vivo biodistribution, in vivo toxicity and in vivo antitumor efficacy of PTX/SPIO-NPs. Results PTX/SPIO-NPs were in the size of 250 nm with negative zeta potential. Qualitative cellular uptake studies showed that the internalization of NPs was concentration dependent. Through magnetic resonance imaging, we observed that the blood–brain barrier was disrupted in the GBM area. An ex vivo biodistribution study showed enhanced accumulation of NPs in the brain of GBM-bearing mice with magnetic targeting. Short-term in vivo safety evaluation showed that the NPs did not induce any systemic toxicity compared with Taxol® (PTX). When tested for in vivo efficacy, the magnetic targeting treatment significantly prolonged the median survival time compared with the passive targeting and control treatments. Conclusion Overall, PTX/SPIO-NPs with magnetic targeting could be considered as an effective anticancer targeting strategy for GBM chemotherapy.
Collapse
Affiliation(s)
- Lakshmi Pallavi Ganipineni
- Université catholique de Louvain, Advanced Drug Delivery and Biomaterials Research Group, Louvain Drug Research Institute, Brussels, Belgium,
| | - Bernard Ucakar
- Université catholique de Louvain, Advanced Drug Delivery and Biomaterials Research Group, Louvain Drug Research Institute, Brussels, Belgium,
| | - Nicolas Joudiou
- Université catholique de Louvain, Louvain Drug Research Institute, NEST Nuclear and Electron Spin Technologies Platform, Brussels, Belgium
| | - John Bianco
- Université catholique de Louvain, Advanced Drug Delivery and Biomaterials Research Group, Louvain Drug Research Institute, Brussels, Belgium,
| | - Pierre Danhier
- Université catholique de Louvain, Louvain Drug Research Institute, NEST Nuclear and Electron Spin Technologies Platform, Brussels, Belgium
| | - Mengnan Zhao
- Université catholique de Louvain, Advanced Drug Delivery and Biomaterials Research Group, Louvain Drug Research Institute, Brussels, Belgium,
| | - Chiara Bastiancich
- Université catholique de Louvain, Advanced Drug Delivery and Biomaterials Research Group, Louvain Drug Research Institute, Brussels, Belgium,
| | - Bernard Gallez
- Université catholique de Louvain, Louvain Drug Research Institute, NEST Nuclear and Electron Spin Technologies Platform, Brussels, Belgium
| | - Fabienne Danhier
- Université catholique de Louvain, Advanced Drug Delivery and Biomaterials Research Group, Louvain Drug Research Institute, Brussels, Belgium,
| | - Véronique Préat
- Université catholique de Louvain, Advanced Drug Delivery and Biomaterials Research Group, Louvain Drug Research Institute, Brussels, Belgium,
| |
Collapse
|
185
|
Stefani FR, Eberstål S, Vergani S, Kristiansen TA, Bengzon J. Low-dose irradiated mesenchymal stromal cells break tumor defensive properties in vivo. Int J Cancer 2018; 143:2200-2212. [PMID: 29752716 PMCID: PMC6220775 DOI: 10.1002/ijc.31599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 12/16/2022]
Abstract
Solid tumors, including gliomas, still represent a challenge to clinicians and first line treatments often fail, calling for new paradigms in cancer therapy. Novel strategies to overcome tumor resistance are mainly represented by multi-targeted approaches, and cell vector-based therapy is one of the most promising treatment modalities under development. Here, we show that mouse bone marrow-derived mesenchymal stromal cells (MSCs), when primed with low-dose irradiation (irMSCs), undergo changes in their immunogenic and angiogenic capacity and acquire anti-tumoral properties in a mouse model of glioblastoma (GBM). Following grafting in GL261 glioblastoma, irMSCs migrate extensively and selectively within the tumor and infiltrate predominantly the peri-vascular niche, leading to rejection of established tumors and cure in 29% of animals. The therapeutic radiation dose window is narrow, with effects seen between 2 and 15 Gy, peaking at 5 Gy. A single low-dose radiation decreases MSCs inherent immune suppressive properties in vitro as well as shapes their immune regulatory ability in vivo. Intra-tumorally grafted irMSCs stimulate the immune system and decrease immune suppression. Additionally, irMSCs enhance peri-tumoral reactive astrocytosis and display anti-angiogenic properties. Hence, the present study provides strong evidence for a therapeutic potential of low-dose irMSCs in cancer as well as giving new insight into MSC biology and applications.
Collapse
Affiliation(s)
- Francesca Romana Stefani
- Stem Cell Center, Lund University, Lund, Sweden.,Department of Clinical Sciences, Division of Neurosurgery, Lund University, Lund, Sweden
| | - Sofia Eberstål
- Stem Cell Center, Lund University, Lund, Sweden.,Department of Clinical Sciences, Division of Neurosurgery, Lund University, Lund, Sweden
| | - Stefano Vergani
- Stem Cell Center, Lund University, Lund, Sweden.,Department of Laboratory Medicine, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - Trine A Kristiansen
- Stem Cell Center, Lund University, Lund, Sweden.,Department of Laboratory Medicine, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - Johan Bengzon
- Stem Cell Center, Lund University, Lund, Sweden.,Department of Clinical Sciences, Division of Neurosurgery, Lund University, Lund, Sweden.,Department of Neurosurgery, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
186
|
Su YT, Phan FP, Wu J. Perspectives on IDH Mutation in Diffuse Gliomas. Trends Cancer 2018; 4:605-607. [PMID: 30149878 DOI: 10.1016/j.trecan.2018.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 06/26/2018] [Indexed: 11/27/2022]
Abstract
Isocitrate dehydrogenase (IDH) mutations are biomarkers to classify diffuse gliomas into biologically similar subgroups. Tremendous efforts have been made to understand the biology of IDH-mutant gliomas at the genetic, epigenetic, transcriptional, and protein levels. Preclinical models that recapitulate human tumor biology are crucial not only to our understanding of IDH mutations in gliomagenesis, but also in testing of novel therapeutic agents that may lead to more effective therapies for IDH-mutant glioma patients.
Collapse
Affiliation(s)
- Yu-Ting Su
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892, USA
| | - Funita P Phan
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892, USA
| | - Jing Wu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892, USA.
| |
Collapse
|
187
|
Lenting K, Khurshed M, Peeters TH, van den Heuvel CNAM, van Lith SAM, de Bitter T, Hendriks W, Span PN, Molenaar RJ, Botman D, Verrijp K, Heerschap A, Ter Laan M, Kusters B, van Ewijk A, Huynen MA, van Noorden CJF, Leenders WPJ. Isocitrate dehydrogenase 1-mutated human gliomas depend on lactate and glutamate to alleviate metabolic stress. FASEB J 2018; 33:557-571. [PMID: 30001166 DOI: 10.1096/fj.201800907rr] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diffuse gliomas often carry point mutations in isocitrate dehydrogenase ( IDH1mut), resulting in metabolic stress. Although IDHmut gliomas are difficult to culture in vitro, they thrive in the brain via diffuse infiltration, suggesting brain-specific tumor-stroma interactions that can compensate for IDH-1 deficits. To elucidate the metabolic adjustments in clinical IDHmut gliomas that contribute to their malignancy, we applied a recently developed method of targeted quantitative RNA next-generation sequencing to 66 clinical gliomas and relevant orthotopic glioma xenografts, with and without the endogenous IDH-1R132H mutation. Datasets were analyzed in R using Manhattan plots to calculate distance between expression profiles, Ward's method to perform unsupervised agglomerative clustering, and the Mann Whitney U test and Fisher's exact tests for supervised group analyses. The significance of transcriptome data was investigated by protein analysis, in situ enzymatic activity mapping, and in vivo magnetic resonance spectroscopy of orthotopic IDH1mut- and IDHwt-glioma xenografts. Gene set enrichment analyses of clinical IDH1mut gliomas strongly suggest a role for catabolism of lactate and the neurotransmitter glutamate, whereas, in IDHwt gliomas, processing of glucose and glutamine are the predominant metabolic pathways. Further evidence of the differential metabolic activity in these cancers comes from in situ enzymatic mapping studies and preclinical in vivo magnetic resonance spectroscopy imaging. Our data support an evolutionary model in which IDHmut glioma cells exist in symbiosis with supportive neuronal cells and astrocytes as suppliers of glutamate and lactate, possibly explaining the diffuse nature of these cancers. The dependency on glutamate and lactate opens the way for novel approaches in the treatment of IDHmut gliomas.-Lenting, K., Khurshed, M., Peeters, T. H., van den Heuvel, C. N. A. M., van Lith, S. A. M., de Bitter, T., Hendriks, W., Span, P. N., Molenaar, R. J., Botman, D., Verrijp, K., Heerschap, A., ter Laan, M., Kusters, B., van Ewijk, A., Huynen, M. A., van Noorden, C. J. F., Leenders, W. P. J. Isocitrate dehydrogenase 1-mutated human gliomas depend on lactate and glutamate to alleviate metabolic stress.
Collapse
Affiliation(s)
- Krissie Lenting
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mohammed Khurshed
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Centre, Amsterdam, The Netherlands
| | - Tom H Peeters
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Corina N A M van den Heuvel
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sanne A M van Lith
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tessa de Bitter
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wiljan Hendriks
- Department of Cell Biology, Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands
| | - Paul N Span
- Radiotherapy and Oncoimmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Remco J Molenaar
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Centre, Amsterdam, The Netherlands
| | - Dennis Botman
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Centre, Amsterdam, The Netherlands
| | - Kiek Verrijp
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark Ter Laan
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands; and
| | - Benno Kusters
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anne van Ewijk
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Martijn A Huynen
- Center for Molecular and Biomolecular Informatics, Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands
| | - Cornelis J F van Noorden
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Centre, Amsterdam, The Netherlands
| | - William P J Leenders
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
188
|
Yu K, Youshani AS, Wilkinson FL, O'Leary C, Cook P, Laaniste L, Liao A, Mosses D, Waugh C, Shorrock H, Pathmanaban O, Macdonald A, Kamaly-Asl I, Roncaroli F, Bigger BW. A nonmyeloablative chimeric mouse model accurately defines microglia and macrophage contribution in glioma. Neuropathol Appl Neurobiol 2018; 45:119-140. [PMID: 29679380 PMCID: PMC7379954 DOI: 10.1111/nan.12489] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/02/2018] [Indexed: 12/28/2022]
Abstract
Aims Resident and peripherally derived glioma associated microglia/macrophages (GAMM) play a key role in driving tumour progression, angiogenesis, invasion and attenuating host immune responses. Differentiating these cells’ origins is challenging and current preclinical models such as irradiation‐based adoptive transfer, parabiosis and transgenic mice have limitations. We aimed to develop a novel nonmyeloablative transplantation (NMT) mouse model that permits high levels of peripheral chimerism without blood‐brain barrier (BBB) damage or brain infiltration prior to tumour implantation. Methods NMT dosing was determined in C57BL/6J or Pep3/CD45.1 mice conditioned with concentrations of busulfan ranging from 25 mg/kg to 125 mg/kg. Donor haematopoietic cells labelled with eGFP or CD45.2 were injected via tail vein. Donor chimerism was measured in peripheral blood, bone marrow and spleen using flow cytometry. BBB integrity was assessed with anti‐IgG and anti‐fibrinogen antibodies. Immunocompetent chimerised animals were orthotopically implanted with murine glioma GL‐261 cells. Central and peripheral cell contributions were assessed using immunohistochemistry and flow cytometry. GAMM subpopulation analysis of peripheral cells was performed using Ly6C/MHCII/MerTK/CD64. Results NMT achieves >80% haematopoietic chimerism by 12 weeks without BBB damage and normal life span. Bone marrow derived cells (BMDC) and peripheral macrophages accounted for approximately 45% of the GAMM population in GL‐261 implanted tumours. Existing markers such as CD45 high/low proved inaccurate to determine central and peripheral populations while Ly6C/MHCII/MerTK/CD64 reliably differentiated GAMM subpopulations in chimerised and unchimerised mice. Conclusion NMT is a powerful method for dissecting tumour microglia and macrophage subpopulations and can guide further investigation of BMDC subsets in glioma and neuro‐inflammatory diseases.
Collapse
Affiliation(s)
- K Yu
- Stem Cell and Neurotherapies Laboratory, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Department of Neurosurgery, Salford Royal Hospital, Salford, UK
| | - A S Youshani
- Stem Cell and Neurotherapies Laboratory, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Department of Neurosurgery, Salford Royal Hospital, Salford, UK
| | - F L Wilkinson
- Stem Cell and Neurotherapies Laboratory, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - C O'Leary
- Stem Cell and Neurotherapies Laboratory, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - P Cook
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - L Laaniste
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - A Liao
- Stem Cell and Neurotherapies Laboratory, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - D Mosses
- Department of Neurosurgery, Royal Manchester Children's Hospital, Manchester, UK
| | - C Waugh
- Stem Cell and Neurotherapies Laboratory, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - H Shorrock
- Stem Cell and Neurotherapies Laboratory, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - O Pathmanaban
- Stem Cell and Neurotherapies Laboratory, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Department of Neurosurgery, Salford Royal Hospital, Salford, UK
| | - A Macdonald
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - I Kamaly-Asl
- Department of Neurosurgery, Royal Manchester Children's Hospital, Manchester, UK
| | - F Roncaroli
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - B W Bigger
- Stem Cell and Neurotherapies Laboratory, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
189
|
Ganipineni LP, Danhier F, Préat V. Drug delivery challenges and future of chemotherapeutic nanomedicine for glioblastoma treatment. J Control Release 2018; 281:42-57. [PMID: 29753958 DOI: 10.1016/j.jconrel.2018.05.008] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GBM) is one of the most aggressive and deadliest central nervous system tumors, and the current standard treatment is surgery followed by radiotherapy with concurrent chemotherapy. Nevertheless, the survival period is notably low. Although ample research has been performed to develop an effective therapeutic strategy for treating GBM, the success of extending patients' survival period and quality of life is limited. This review focuses on the strategies developed to address the challenges associated with drug delivery in GBM, particularly nanomedicine. The first part describes major obstacles to the development of effective GBM treatment strategies. The second part focuses on the conventional chemotherapeutic nanomedicine strategies, their limitations and the novel and advanced strategies of nanomedicine, which could be promising for GBM treatment. We also highlighted the prominence of nanomedicine clinical translation. The near future looks bright following the beginning of clinical translation of nanochemotherapy for GBM.
Collapse
Affiliation(s)
- Lakshmi Pallavi Ganipineni
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1 73.12, 1200 Brussels, Belgium
| | - Fabienne Danhier
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1 73.12, 1200 Brussels, Belgium
| | - Véronique Préat
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1 73.12, 1200 Brussels, Belgium.
| |
Collapse
|
190
|
Nakod PS, Kim Y, Rao SS. Biomimetic models to examine microenvironmental regulation of glioblastoma stem cells. Cancer Lett 2018; 429:41-53. [PMID: 29746930 DOI: 10.1016/j.canlet.2018.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM), a malignant brain tumor, is the deadliest form of human cancer with low survival rates because of its highly invasive nature. In recent years, there has been a growing appreciation for the role that glioblastoma stem cells (GSCs) play during tumorigenesis and tumor recurrence of GBM. GSCs are a specialized subset of GBM cells with stem cell-like features that contribute to tumor initiation and therapeutic resistance. Thus, to enhance therapeutic efficiency and improve survival, targeting GSCs and their microenvironmental niche appears to be a promising approach. To develop this approach, understanding GSC-microenvironment interactions is crucial. This review discusses various biomimetic model systems to understand the impact of biophysical, biochemical, and cellular microenvironmental cues on GSC behaviors. These models include two-dimensional or matrix-free environment models, engineered biomaterial-based three-dimensional models, co-culture models, and mouse and rat in vivo models. These systems have been used to study the effects of biophysical factors, modulation of signaling pathways, extracellular matrix components, and culture conditions on the GSC phenotype. The advantages and disadvantages of these model systems and their impact in the field of GSC research are discussed.
Collapse
Affiliation(s)
- Pinaki S Nakod
- Department of Chemical & Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| | - Yonghyun Kim
- Department of Chemical & Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| | - Shreyas S Rao
- Department of Chemical & Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA.
| |
Collapse
|
191
|
Barthel FP, Wesseling P, Verhaak RGW. Reconstructing the molecular life history of gliomas. Acta Neuropathol 2018; 135:649-670. [PMID: 29616301 PMCID: PMC5904231 DOI: 10.1007/s00401-018-1842-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 12/20/2022]
Abstract
At the time of their clinical manifestation, the heterogeneous group of adult and pediatric gliomas carries a wide range of diverse somatic genomic alterations, ranging from somatic single-nucleotide variants to structural chromosomal rearrangements. Somatic abnormalities may have functional consequences, such as a decrease, increase or change in mRNA transcripts, and cells pay a penalty for maintaining them. These abnormalities, therefore, must provide cells with a competitive advantage to become engrained into the glioma genome. Here, we propose a model of gliomagenesis consisting of the following five consecutive phases that glioma cells have traversed prior to clinical manifestation: (I) initial growth; (II) oncogene-induced senescence; (III) stressed growth; (IV) replicative senescence/crisis; (V) immortal growth. We have integrated the findings from a large number of studies in biology and (neuro)oncology and relate somatic alterations and other results discussed in these papers to each of these five phases. Understanding the story that each glioma tells at presentation may ultimately facilitate the design of novel, more effective therapeutic approaches.
Collapse
Affiliation(s)
- Floris P Barthel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06030, USA.
- Department of Pathology, VU University Medical Center/Brain Tumor Center Amsterdam, Amsterdam, The Netherlands.
| | - Pieter Wesseling
- Department of Pathology, VU University Medical Center/Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Princess Máxima Center for Pediatric Oncology and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06030, USA
| |
Collapse
|
192
|
Khurshed M, Molenaar RJ, Lenting K, Leenders WP, van Noorden CJF. In silico gene expression analysis reveals glycolysis and acetate anaplerosis in IDH1 wild-type glioma and lactate and glutamate anaplerosis in IDH1-mutated glioma. Oncotarget 2018; 8:49165-49177. [PMID: 28467784 PMCID: PMC5564758 DOI: 10.18632/oncotarget.17106] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 04/03/2017] [Indexed: 12/15/2022] Open
Abstract
Hotspot mutations in isocitrate dehydrogenase 1 (IDH1) initiate low-grade glioma and secondary glioblastoma and induce a neomorphic activity that converts α-ketoglutarate (α-KG) to the oncometabolite D-2-hydroxyglutarate (D-2-HG). It causes metabolic rewiring that is not fully understood. We investigated the effects of IDH1 mutations (IDH1MUT) on expression of genes that encode for metabolic enzymes by data mining The Cancer Genome Atlas. We analyzed 112 IDH1 wild-type (IDH1WT) versus 399 IDH1MUT low-grade glioma and 157 IDH1WT versus 9 IDH1MUT glioblastoma samples. In both glioma types, IDH1WT was associated with high expression levels of genes encoding enzymes that are involved in glycolysis and acetate anaplerosis, whereas IDH1MUT glioma overexpress genes encoding enzymes that are involved in the oxidative tricarboxylic acid (TCA) cycle. In vitro, we observed that IDH1MUT cancer cells have a higher basal respiration compared to IDH1WT cancer cells and inhibition of the IDH1MUT shifts the metabolism by decreasing oxygen consumption and increasing glycolysis. Our findings indicate that IDH1WT glioma have a typical Warburg phenotype whereas in IDH1MUT glioma the TCA cycle, rather than glycolytic lactate production, is the predominant metabolic pathway. Our data further suggest that the TCA in IDH1MUT glioma is driven by lactate and glutamate anaplerosis to facilitate production of α-KG, and ultimately D-2-HG. This metabolic rewiring may be a basis for novel therapies for IDH1MUT and IDH1WT glioma.
Collapse
Affiliation(s)
- Mohammed Khurshed
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Remco J Molenaar
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Krissie Lenting
- Department of Pathology, Radboudumc, 6500 HB Nijmegen, The Netherlands
| | | | - Cornelis J F van Noorden
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
193
|
Wang C, Li Y, Chen H, Huang K, Liu X, Qiu M, Liu Y, Yang Y, Yang J. CYP4X1 Inhibition by Flavonoid CH625 Normalizes Glioma Vasculature through Reprogramming TAMs via CB2 and EGFR-STAT3 Axis. J Pharmacol Exp Ther 2018; 365:72-83. [PMID: 29437915 DOI: 10.1124/jpet.117.247130] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/29/2018] [Indexed: 01/03/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are pivotal effector cells in angiogenesis. Here, we tested whether CYP4X1 inhibition in TAMs by flavonoid CH625 prolongs survival and normalizes glioma vasculature. CH625 was selected against the CYP4X1 3D model by virtual screening and showed inhibitory activity on the CYP4X1 catalytic production of 14,15-EET-EA in the M2-polarized human peripheral blood mononuclear cells (IC50 = 16.5 μM). CH625 improved survival and reduced tumor burden in the C6 and GL261 glioma intracranial and subcutaneous model. In addition, CH625 normalized vasculature (evidenced by a decrease in microvessel density and HIF-1α expression and an increase in tumor perfusion, pericyte coverage, and efficacy of temozolomide therapy) accompanied with the decreased secretion of 14,15-EET-EA, VEGF, and TGF-β in the TAMs. Furthermore, CH625 attenuated vascular abnormalization and immunosuppression induced by coimplantation of GL261 cells with CYP4X1high macrophages. In vitro TAM polarization away from the M2 phenotype by CH625 inhibited proliferation and migration of endothelial cells, enhanced pericyte migration and T cell proliferation, and decreased VEGF and TGF-β production accompanied with the downregulation of CB2 and EGFR-dependent downstream STAT3 expression. These effects were reversed by overexpression of CYP4X1 and STAT3 or exogenous addition of 14,15-EET-EA, VEGF, TGF-β, EGF, and CB2 inhibitor AM630. These results suggest that CYP4X1 inhibition in TAMs by CH625 prolongs survival and normalizes tumor vasculature in glioma via CB2 and EGFR-STAT3 axis and may serve as a novel therapeutic strategy for human glioma.
Collapse
Affiliation(s)
- Chenlong Wang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Ying Li
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Honglei Chen
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Keqing Huang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Xiaoxiao Liu
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Miao Qiu
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Yanzhuo Liu
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Yuqing Yang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Jing Yang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| |
Collapse
|
194
|
Le CT, Leenders WPJ, Molenaar RJ, van Noorden CJF. Effects of the Green Tea Polyphenol Epigallocatechin-3-Gallate on Glioma: A Critical Evaluation of the Literature. Nutr Cancer 2018; 70:317-333. [PMID: 29570984 DOI: 10.1080/01635581.2018.1446090] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The review discusses the effects of Epigallocatechin-3-gallate Gallate (EGCG) on glioma as a basis for future research on clinical application of EGCG. Epidemiological studies on the effects of green tea or EGCG on the risk of glioma is inconclusive due to the limited number of studies, the inclusion of all tea types in these studies, and the focus on caffeine rather than EGCG. In vivo experiments using EGCG monotherapy are inconclusive. Nevertheless, EGCG induces cell death, prevents cellular proliferation, and limits invasion in multiple glioma cell lines. Furthermore, EGCG enhances the efficacy of anti-glioma therapies, including irradiation, temozolomide, carmustine, cisplatin, tamoxifen, and TNF-related apoptosis-inducing ligand, but reduces the effect of bortezomib. Pro-drugs, co-treatment, and encapsulation are being investigated to enhance clinical applicability of EGCG. Mechanisms of actions of EGCG have been partly elucidated. EGCG has both anti-oxidant and oxidant properties. EGCG inhibits pro-survival proteins, such as telomerase, survivin, GRP78, PEA15, and P-gp. EGCG inhibits signaling of PDGFR, IGF-1R, and 67LR. EGCG reduces invasiveness of cancer cells by inhibiting the activities of various metalloproteinases, cytokines, and chemokines. Last, EGCG inhibits some NADPH-producing enzymes, thus disturbing redox status and metabolism of glioma cells. In conclusion, EGCG may be a suitable adjuvant to potentiate anti-glioma therapies.
Collapse
Affiliation(s)
- Chung T Le
- a Department of Medical Biology , Academic Medical Center, University of Amsterdam, Amsterdam , The Netherlands
| | | | - Remco J Molenaar
- a Department of Medical Biology , Academic Medical Center, University of Amsterdam, Amsterdam , The Netherlands
| | - Cornelis J F van Noorden
- a Department of Medical Biology , Academic Medical Center, University of Amsterdam, Amsterdam , The Netherlands
| |
Collapse
|
195
|
Mikhailova V, Gulaia V, Tiasto V, Rybtsov S, Yatsunskaya M, Kagansky A. Towards an advanced cell-based in vitro glioma model system. AIMS GENETICS 2018; 5:91-112. [PMID: 31435515 PMCID: PMC6698577 DOI: 10.3934/genet.2018.2.91] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/14/2018] [Indexed: 02/06/2023]
Abstract
The modulation of tumor growth and development in vitro has always been one of the key factors in the research of the malignant transformation, including gliomas, prevalent and most deadly cancers of the brain. Indeed, cellular and molecular biology research employing in vitro model cell-based systems have great potential to advance both the mechanistic understanding and the treatment of human glial tumors, as it facilitates not only the understanding of glioma biology and its regulatory mechanisms Additionally they promise to afford the screening of the putative anti-tumor agents and alternative treatment approaches in a personalized manner, i.e. by virtue of using the patient-derived tumor material for such tests. However, in order to become reliable and representative, glioma model systems need to move towards including most inherent cancer features such as local hypoxia, specific genetic aberrations, native tumor microenvironment, and the three-dimensional extracellular matrix. This review starts with a brief introduction on the general epidemiological and molecular characteristics of gliomas followed by an overview of the cell-based in vitro models currently used in glioma research. As a conclusion, we suggest approaches to move to innovative cell-based in vitro glioma models. We consider that main criteria for selecting these approaches should include the adequate resemblance to the key in vivo characteristics, robustness, cost-effectiveness and ease to use, as well as the amenability to high throughput handling to allow the standardized drug screening.
Collapse
Affiliation(s)
- Valeriia Mikhailova
- Center for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Valeriia Gulaia
- Center for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Vladlena Tiasto
- Center for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Stanislav Rybtsov
- Scottish Centre for Regenerative Medicine of the University of Edinburgh, Edinburgh, United Kingdom
| | - Margarita Yatsunskaya
- Federal Scientific Center of the East Asia Terrestrial Biodiversity FEB RAS 159, Stoletij Vladivostoku Avenue, 690022, Vladivostok, Russian Federation
| | - Alexander Kagansky
- Center for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russian Federation
| |
Collapse
|
196
|
Wu Z, Nakamura M, Krauss JK, Schwabe K, John N. Intracranial rat glioma model for tumor resection and local treatment. J Neurosci Methods 2018; 299:1-7. [PMID: 29425709 DOI: 10.1016/j.jneumeth.2018.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/25/2018] [Accepted: 02/02/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Although tumor resection is among the most important prognostic factors, high grade gliomas regrow in most cases. Also, resection of glial tumors in eloquent brain regions is not or only partially possible. Despite these severe restraints, however, only a few in-vivo models have been established to investigate tumor recurrence and local treatment. Here we characterize the intracranial BT4Ca rat glioma as a model for these aspects. NEW METHOD BT4Ca cells were stereotaxically implanted into the frontal cortex of BDIX rats. Rats were than allocated to (1) a control group, which received no further treatment; (2) a catheter group, where a catheter was implanted for repeated microinjection of vehicle every 3rd day as catheter-control; (3) a resection group, where the tumor was microsurgically removed eight days after cell injection. Postoperatively, survival time, weight and general health condition were scored and the tumor size was histologically assessed. RESULTS Injection of BT4Ca cells induced fast-growing tumors with a mean survival time of 16 days in the control and catheter groups. Resection significantly prolonged survival time whereby the tumor regrew in all rats. Tumor size was similar between all groups. COMPARISON WITH EXISTING METHOD(S) We here present a robust and reliable intracranial rat glioma model, which is suitable to simulate tumor recurrence after surgical resection and local treatment. Importantly, this model does not require advanced imaging or elaborate surgical techniques. CONCLUSIONS The intracranial BT4Ca glioma model appears to be a feasible tool to investigate tumor recurrence after resection and to test local treatment.
Collapse
Affiliation(s)
- Zhiqun Wu
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Makoto Nakamura
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Kerstin Schwabe
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Nadine John
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
197
|
Resende FFB, Titze-de-Almeida SS, Titze-de-Almeida R. Function of neuronal nitric oxide synthase enzyme in temozolomide-induced damage of astrocytic tumor cells. Oncol Lett 2018; 15:4891-4899. [PMID: 29552127 DOI: 10.3892/ol.2018.7917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 06/15/2017] [Indexed: 12/16/2022] Open
Abstract
Astrocytic tumors, including astrocytomas and glioblastomas, are the most common type of primary brain tumors. Treatment for glioblastomas includes radiotherapy, chemotherapy with temozolomide (TMZ) and surgical ablation. Despite certain therapeutic advances, the survival time of patients is no longer than 12-14 months. Cancer cells overexpress the neuronal isoform of nitric oxide synthase (nNOS). In the present study, it was examined whether the nNOS enzyme serves a role in the damage of astrocytoma (U251MG and U138MG) and glioblastoma (U87MG) cells caused by TMZ. First, TMZ (250 µM) triggered an increase in oxidative stress at 2, 48 and 72 h in the U87MG, U251MG and U138MG cell lines, as revealed by 2',7'-dichlorofluorescin-diacetate assay. The drug also reduced cell viability, as measured by MTT assay. U87MG cells presented a more linear decline in cell viability at time-points 2, 48 and 72 h, compared with the U251MG and U138MG cell lines. The peak of oxidative stress occurred at 48 h. To examine the role of NOS enzymes in the cell damage caused by TMZ, N(ω)-nitro-L-arginine methyl ester (L-NAME) and 7-nitroindazole (7-NI) were used. L-NAME increased the cell damage caused by TMZ while reducing the oxidative stress at 48 h. The preferential nNOS inhibitor 7-NI also improved the TMZ effects. It caused a 12.8% decrease in the viability of TMZ-injured cells. Indeed, 7-NI was more effective than L-NAME in restraining the increase in oxidative stress triggered by TMZ. Silencing nNOS with a synthetic small interfering (si)RNA (siRNAnNOShum_4400) increased by 20% the effects of 250 µM of TMZ on cell viability (P<0.05). Hoechst 33342 nuclear staining confirmed that nNOS knock-down enhanced TMZ injury. In conclusion, our data reveal that nNOS enzymes serve a role in the damage produced by TMZ on astrocytoma and glioblastoma cells. RNA interference with nNOS merits further studies in animal models to disclose its potential use in brain tumor anticancer therapy.
Collapse
Affiliation(s)
- Fernando Francisco Borges Resende
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, Faculty of Agronomy and Veterinary Medicine, University of Brasilia, Brasília 70910-900, Brazil
| | - Simoneide Souza Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, Faculty of Agronomy and Veterinary Medicine, University of Brasilia, Brasília 70910-900, Brazil
| | - Ricardo Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, Faculty of Agronomy and Veterinary Medicine, University of Brasilia, Brasília 70910-900, Brazil
| |
Collapse
|
198
|
Ge J, Chen Q, Liu B, Wang L, Zhang S, Ji B. Knockdown of Rab21 inhibits proliferation and induces apoptosis in human glioma cells. Cell Mol Biol Lett 2017; 22:30. [PMID: 29270202 PMCID: PMC5735509 DOI: 10.1186/s11658-017-0062-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022] Open
Abstract
Background Gliomas are commonly malignant tumors that arise in the human central nervous system and have a low overall five-year survival rate. Previous studies reported that several members of Rab GTPase family are involved in the development of glioma, and abnormal expression of Rab small GTPases is known to cause aberrant tumor cell behavior. In this study, we characterized the roles of Rab21 (Rab GTPase 21), a member of Rab GTPase family, in glioma cells. Methods The study involved downregulation of Rab21 in two glioma cell lines (T98G and U87) through transfection with specific-siRNA. Experiments using the MTT assay, cell cycle analysis, apoptosis assay, real-time PCR and western blot were performed to establish the expression levels of related genes. Results The results show that downregulation of Rab21 can significantly inhibit cell growth and remarkably induce cell apoptosis in T98G and U87 cell lines. Silencing Rab21 resulted in significantly increased expression of apoptosis-related proteins (caspase7, Bim and Bax) in glioma cells. Conclusions We inferred that Rab21 silencing can induce apoptosis and inhibit proliferation in human glioma cells, indicating that Rab21 might act as an oncogene and serve as a novel target for glioma therapy.
Collapse
Affiliation(s)
- Jian Ge
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No.9 Zhangzhidong Road, Wuchang District, Wuhan, Hubei 430060 People's Republic of China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No.9 Zhangzhidong Road, Wuchang District, Wuhan, Hubei 430060 People's Republic of China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No.9 Zhangzhidong Road, Wuchang District, Wuhan, Hubei 430060 People's Republic of China
| | - Long Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No.9 Zhangzhidong Road, Wuchang District, Wuhan, Hubei 430060 People's Republic of China
| | - Shenqi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No.9 Zhangzhidong Road, Wuchang District, Wuhan, Hubei 430060 People's Republic of China
| | - Baowei Ji
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No.9 Zhangzhidong Road, Wuchang District, Wuhan, Hubei 430060 People's Republic of China
| |
Collapse
|
199
|
Arbab AS, Rashid MH, Angara K, Borin TF, Lin PC, Jain M, Achyut BR. Major Challenges and Potential Microenvironment-Targeted Therapies in Glioblastoma. Int J Mol Sci 2017; 18:ijms18122732. [PMID: 29258180 PMCID: PMC5751333 DOI: 10.3390/ijms18122732] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is considered one of the most malignant, genetically heterogeneous, and therapy-resistant solid tumor. Therapeutic options are limited in GBM and involve surgical resection followed by chemotherapy and/or radiotherapy. Adjuvant therapies, including antiangiogenic treatments (AATs) targeting the VEGF–VEGFR pathway, have witnessed enhanced infiltration of bone marrow-derived myeloid cells, causing therapy resistance and tumor relapse in clinics and in preclinical models of GBM. This review article is focused on gathering previous clinical and preclinical reports featuring major challenges and lessons in GBM. Potential combination therapies targeting the tumor microenvironment (TME) to overcome the myeloid cell-mediated resistance problem in GBM are discussed. Future directions are focused on the use of TME-directed therapies in combination with standard therapy in clinical trials, and the exploration of novel therapies and GBM models for preclinical studies. We believe this review will guide the future of GBM research and therapy.
Collapse
Affiliation(s)
- Ali S Arbab
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Mohammad H Rashid
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Kartik Angara
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Thaiz F Borin
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Ping-Chang Lin
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Meenu Jain
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| | - Bhagelu R Achyut
- Tumor Angiogenesis laboratory, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
200
|
Zebrafish in Translational Cancer Research: Insight into Leukemia, Melanoma, Glioma and Endocrine Tumor Biology. Genes (Basel) 2017; 8:genes8090236. [PMID: 28930163 PMCID: PMC5615369 DOI: 10.3390/genes8090236] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023] Open
Abstract
Over the past 15 years, zebrafish have emerged as a powerful tool for studying human cancers. Transgenic techniques have been employed to model different types of tumors, including leukemia, melanoma, glioblastoma and endocrine tumors. These models present histopathological and molecular conservation with their human cancer counterparts and have been fundamental for understanding mechanisms of tumor initiation and progression. Moreover, xenotransplantation of human cancer cells in embryos or adult zebrafish offers the advantage of studying the behavior of human cancer cells in a live organism. Chemical-genetic screens using zebrafish embryos have uncovered novel druggable pathways and new therapeutic strategies, some of which are now tested in clinical trials. In this review, we will report on recent advances in using zebrafish as a model in cancer studies—with specific focus on four cancer types—where zebrafish has contributed to novel discoveries or approaches to novel therapies.
Collapse
|