151
|
Zhang XL, Li WF, Yuan S, Guo JY, Li ZL, Chi SH, Huang WJ, Li XW, Huang SJ, Shao JW. Meta-transcriptomic analysis reveals a new subtype of genotype 3 avian hepatitis E virus in chicken flocks with high mortality in Guangdong, China. BMC Vet Res 2019; 15:131. [PMID: 31060564 PMCID: PMC6503432 DOI: 10.1186/s12917-019-1884-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/25/2019] [Indexed: 02/07/2023] Open
Abstract
Background Hepatitis E virus (HEV) is one of most important zoonotic viruses, and it can infect a wide range of host species. Avian HEV has been identified as the aetiological agent of big liver and spleen disease or hepatitis-splenomegaly syndrome in chickens. HEV infection is common among chicken flocks in China, and there are currently no practical measures for preventing the spread of the disease. The predominant avian HEV genotype circulating in China have been identified as genotype 3 strains, although some novel genotypes have also been identified from chicken flocks in China. Results In this study, we used a meta-transcriptomics approach to identify a new subtype of genotype 3 avian HEV in broiler chickens at a poultry farm located in Shenzhen, Guangdong Province, China. The complete genome sequence of the avian HEV, designated CaHEV-GDSZ01, is 6655-nt long, including a 5′ UTR of 24 nt and a 3′ UTR of 125 nt (excluding the poly(A) tail), and contains three open reading frames (ORFs). Sequence analysis indicated that the complete ORF1 (4599 nt/1532 aa), ORF2 (1821 nt/606 aa) and ORF3 (264 nt/87 aa) of CaHEV-GDSZ01 share the highest nucleotide sequence identity (85.8, 86.7 and 95.8%, respectively) with the corresponding ORFs of genotype 3 avian HEV. Phylogenetic analyses further demonstrated that the avian HEV identified in this study is a new subtype of genotype 3 avian HEV. Conclusions Our results demonstrate that a new subtype of genotype 3 avian HEV is endemic in Guangdong, China, and could cause high mortality in infected chickens. This study also provides full genomic data for better understanding the evolutionary relationships of avian HEV circulating in China. Altogether, the results presented in this study suggest that more attention should be paid to avian HEV and its potential disease manifestation.
Collapse
Affiliation(s)
- Xue-Lian Zhang
- Key Laboratory for Preventive Research of Emerging Animal Diseases, Foshan University, Foshan, 528231, Guangdong, China.,College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Wen-Feng Li
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Sheng Yuan
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Jin-Yue Guo
- Key Laboratory for Preventive Research of Emerging Animal Diseases, Foshan University, Foshan, 528231, Guangdong, China.,College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Zhi-Li Li
- Key Laboratory for Preventive Research of Emerging Animal Diseases, Foshan University, Foshan, 528231, Guangdong, China.,College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Shi-Hong Chi
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Wen-Jing Huang
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Xiao-Wen Li
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Shu-Jian Huang
- Key Laboratory for Preventive Research of Emerging Animal Diseases, Foshan University, Foshan, 528231, Guangdong, China. .,College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China.
| | - Jian-Wei Shao
- Key Laboratory for Preventive Research of Emerging Animal Diseases, Foshan University, Foshan, 528231, Guangdong, China. .,College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China. .,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
152
|
New insights into the ORF2 capsid protein, a key player of the hepatitis E virus lifecycle. Sci Rep 2019; 9:6243. [PMID: 31000788 PMCID: PMC6472401 DOI: 10.1038/s41598-019-42737-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/05/2019] [Indexed: 12/19/2022] Open
Abstract
Hepatitis E Virus (HEV) genome encodes three proteins including the ORF2 capsid protein. Recently, we demonstrated that HEV produces three different forms of ORF2: (i) the ORF2i form (infectious ORF2) which is the component of infectious particles, (ii) the secreted ORF2g (glycosylated ORF2) and ORF2c (cleaved ORF2) forms that are not associated with infectious particles, but are the major antigens in HEV-infected patient sera. The ORF2 protein sequence contains three highly conserved potential N-glycosylation sites (N1, N2 and N3). The status and biological relevance of ORF2 N-glycosylation in HEV lifecycle remain to be elucidated. Here, we generated and extensively characterized a series of ORF2 mutants in which the three N-glycosylation sites were mutated individually or in combination. We demonstrated that the ORF2g/c protein is N-glycosylated on N1 and N3 sites but not on the N2 site. We showed that N-glycosylation of ORF2 protein does not play any role in replication and assembly of infectious HEV particles. We found that glycosylated ORF2g/c forms are very stable proteins which are targeted by patient antibodies. We also demonstrated that the ORF2i protein is translocated into the nucleus of infected cells. Hence, our study led to new insights into the molecular mechanisms of ORF2 expression.
Collapse
|
153
|
Nishiyama T, Kobayashi T, Jirintai S, Kii I, Nagashima S, Prathiwi Primadharsini P, Nishizawa T, Okamoto H. Screening of novel drugs for inhibiting hepatitis E virus replication. J Virol Methods 2019; 270:1-11. [PMID: 31004661 DOI: 10.1016/j.jviromet.2019.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 03/05/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022]
Abstract
Hepatitis E, which is caused by hepatitis E virus (HEV), is generally a self-limiting, acute, and rarely fatal disease. It is sometimes fulminant and lethal, especially during pregnancy. Indeed, it occasionally takes a chronic course in immunocompromised individuals. To cure hepatitis E patients, the broad-spectrum antivirals (ribavirin and pegylated interferon α) are used. However, this treatment is insufficient and unsafe in some patients due to embryoteratogenic effects, leukopenia, and thrombocytopenia. In this study, we constructed an HEV replication reporter system with Gaussia luciferase for comprehensively screening anti-HEV drug candidates, and developed a cell-culture system using cells robustly producing HEV to validate the efficacy of anti-HEV drug candidates. We screened anti-HEV drug candidates from United States Food and Drug Administration-approved drugs using the established HEV replication reporter system, and investigated the selected candidates and type III interferons (interferon λ1-3) using the cell-culture system. In conclusion, we constructed an HEV replicon system for anti-HEV drug screening and a novel cell-culture system to strictly evaluate the replication-inhibitory activities of the obtained anti-HEV candidates. Our findings suggested that interferon λ1-3 might be effective for treating hepatitis E.
Collapse
Affiliation(s)
- Takashi Nishiyama
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi 329-0498, Japan
| | - Tominari Kobayashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi 329-0498, Japan
| | - Suljid Jirintai
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi 329-0498, Japan; Division of Pathology, Department of Basic Veterinary Medicine, Inner Mongolia Agricultural University College of Medicine, Hohhot, Inner Mongolia, China
| | - Isao Kii
- Common Facilities Unit, Integrated Research Group, Compass to Healthy Life Research Complex Program, RIKEN Cluster for Science, Technology and Innovation Hub, Kobe, Japan
| | - Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi 329-0498, Japan
| | - Putu Prathiwi Primadharsini
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi 329-0498, Japan
| | - Tsutomu Nishizawa
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi 329-0498, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi 329-0498, Japan.
| |
Collapse
|
154
|
Hepatitis E: Current Status in India and Other Asian Countries. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.1.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
155
|
Jemeršić L, Prpić J, Brnić D, Keros T, Pandak N, Đaković Rode O. Genetic diversity of hepatitis E virus (HEV) strains derived from humans, swine and wild boars in Croatia from 2010 to 2017. BMC Infect Dis 2019; 19:269. [PMID: 30890143 PMCID: PMC6425696 DOI: 10.1186/s12879-019-3906-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/14/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND To fulfill epidemiological data and investigate possible interspecies transmission, this study shall attempt to sequence representative HEV strains of human, swine and wild boar origin collected from 2010 to 2017 in Croatia. METHODS In total, 174 anti-HEV antibody positive human sera samples; 1419 blood or faeces samples of swine, as well as 720 tissue and/or blood samples of wild boar originating from different counties (18 in total) in Croatia were tested for the presence of HEV RNA. RESULTS HEV RNA was detected in 26 human sera samples (14.9%; 95% CI 10.4-21.0%). HEV RNA was detected in 216 tested swine (15.2%; 95% CI 13.5-17.1%), regardless of age, farm breeding system or geographical origin. Viral RNA was also detectable in faeces samples which prove that swine actively participate in shedding HEV into the environment. Of the total of 720 tested wild boar samples, 83 were HEV RNA positive (11.5, 95% CI 9.4-14.1%) originating from six counties. According to the sequence analysis all strains have shown to be members of Orthohepevirus A genotype HEV-3, regardless of host. The genotyping results confirm grouping of sequences into four subtypes of HEV strains of which subtypes 3a and 3c belong to the general cluster 3abchij, and were predominately detected during the study, while subtypes 3e and 3f fall within cluster 3efg. Strains within subtypes 3a and 3e were found in humans, swine and wild boars; subtype 3c strains were derived from humans and swine, whereas subtype 3f strains were found only in humans. Strains belonging to subtypes 3a and 3c were derived during the entire investigated period and may be considered endemic in Croatia, whereas strains within subtypes 3e and 3f were detected sporadically indicating the possibility of newly imported infections. CONCLUSIONS All detected strains show to be genetically highly related to strains found in humans and/or animals from other European Countries, indicating that trade of live animals or wild boar movement increases the risk of HEV infection spread. Furthermore, homologous strains found in different investigated species within this study indicate interspecies transmission of HEV and/or an existence of an accessible mutual source of infection.
Collapse
Affiliation(s)
- Lorena Jemeršić
- Croatian Veterinary Institute, Savska cesta 143, 10 000 Zagreb, Croatia
| | - Jelena Prpić
- Croatian Veterinary Institute, Savska cesta 143, 10 000 Zagreb, Croatia
| | - Dragan Brnić
- Croatian Veterinary Institute, Savska cesta 143, 10 000 Zagreb, Croatia
| | - Tomislav Keros
- Croatian Veterinary Institute, Savska cesta 143, 10 000 Zagreb, Croatia
| | - Nenad Pandak
- General Hospital “Josip Bencevic”, University of Osijek, Faculty of Medicine, Andrije Stampara 42, 35000 Slavonski Brod, Croatia
| | - Oktavija Đaković Rode
- University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, Mirogojska 8, 10 000 Zagreb, Croatia
- University of Zagreb School of Dental Medicine, Gundulićeva 5, 10000 Zagreb, Croatia
| |
Collapse
|
156
|
Cainelli F, Hortelano G, Negmetzhanov B, Ibrayeva A, Kaliaskarova K, Bulanin D, Vento S. Detection of Hepatitis E Antibodies in Kazakhstan: A Pilot Study. Cent Asian J Glob Health 2019; 7:324. [PMID: 30863665 PMCID: PMC6393053 DOI: 10.5195/cajgh.2018.324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Introduction Hepatitis E virus exposure is associated with sporadic cases of acute hepatitis and outbreaks in many countries worldwide. It is particularly dangerous for pregnant women, in whom the mortality rate is high. There are no previously published data reporting circulation of this virus in Kazakhstan. Methods We tested blood samples for IgG anti-hepatitis E virus antibodies in 199 Kazakh participants; of these 119 were workers at the EXPO 2017 building site in Astana, 35 were volunteers who got tested at the Astana City Hall on the World Hepatitis Day 2017, and 45 were volunteers who presented for screening at the Hepatogastroenterology Outpatient Clinic of the Republican Diagnostic Center, University Medical Center. Results 11 (5.5%) individuals were positive for IgG anti-HEV antibodies, with a higher seroprevalence in males (7; 6.8%) vs females (4; 4.5%). The highest number of positive samples was in the 32–46 years age group. Conclusions This pilot study suggests that Hepatitis E virus has been circulating in Kazakhstan. Studies are needed to determine whether it continues to be present, which viral genotypes are involved and what are the best methodologies for preventing its spread.
Collapse
Affiliation(s)
- Francesca Cainelli
- Department of Medicine, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Gonzalo Hortelano
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, Kazakhstan
| | - Baurzhan Negmetzhanov
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Aigerim Ibrayeva
- Department of Medicine, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | | | - Denis Bulanin
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Sandro Vento
- Department of Medicine, School of Medicine, Nazarbayev University, Astana, Kazakhstan.,University Medical Center, Astana, Kazakhstan
| |
Collapse
|
157
|
Intharasongkroh D, Thongmee T, Sa-Nguanmoo P, Klinfueng S, Duang-In A, Wasitthankasem R, Theamboonlers A, Charoonruangrit U, Oota S, Payungporn S, Vongpunsawad S, Chirathaworn C, Poovorawan Y. Hepatitis E virus infection in Thai blood donors. Transfusion 2019; 59:1035-1043. [PMID: 30443992 DOI: 10.1111/trf.15041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/10/2018] [Accepted: 09/20/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Hepatitis E virus (HEV) infection in several industrialized and developing countries is associated with the consumption of pork and other meat products, an exposure risk among the majority of blood donors. We aimed to evaluate the prevalence of HEV in plasma from healthy blood donors in Thailand. STUDY DESIGN AND METHODS We screened blood samples collected between October and December 2015, from 30,115 individual blood donors in 5020 pools of six, for HEV RNA using in-house real-time reverse-transcription polymerase chain reaction (RT-PCR). Thrice-reactive samples were subjected to a commercial real-time RT-PCR (cobas HEV test) and evaluated for anti-HEV immunoglobulin M and immunoglobulin G antibodies. Genotyping using nested RT-PCR, nucleotide sequencing, and phylogenetic analysis was performed. RESULTS Twenty-six donors were positive for HEV RNA by the in-house assay, nine of whom were also positive by cobas test. None of the latter were reactive for anti-HEV immunoglobulin M or immunoglobulin G antibodies. Six samples were successfully genotyped and found to be HEV genotype 3. Thus, the frequency of HEV infection among healthy Thai blood donors is 1 in 1158. CONCLUSION The presence of HEV RNA in the Thai blood supply was comparable to the rates reported in western European countries, but higher than in North America and Australia.
Collapse
Affiliation(s)
- Duangnapa Intharasongkroh
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thanunrat Thongmee
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pattaratida Sa-Nguanmoo
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sirapa Klinfueng
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ausanee Duang-In
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rujipat Wasitthankasem
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Apiradee Theamboonlers
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chintana Chirathaworn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
158
|
Abstract
Hepatitis E virus (HEV) infection has distinct features, depending upon the genotype and geographical area. HEV genotypes 1 and 2 are endemic to various developing countries causing epidemics of acute viral hepatitis with human to human transmission. On the other hand, HEV genotypes 3 and 4 prevalent in developed countries commonly lead to subclinical infection and are transmitted zoonotically. HEV infection typically causes acute self-limiting illness associated with low morbidity and mortality. Infection with HEV genotype 1 or 2 in pregnancy, especially in the third trimester may lead to severe illness and fulminant liver failure. Poor maternal and fetal outcomes have been reported. Areas covered: This review highlights the various aspects of HEV infection in pregnancy including diagnosis, management, and prevention. Expert commentary: Treatment is mainly supportive with diligent monitoring and intensive care. Therapeutic termination of pregnancy cannot be recommended based to the available literature. Early liver transplantation (LT) should be considered in these patients although the indications and timing of LT are still controversial. Prevention of HEV infection or illness by improved sanitation and active/passive immunization needs further research.
Collapse
Affiliation(s)
- Premashis Kar
- a Department of Gastroenterology and Hepatology , Max Super Speciality Hospital , Ghaziabad , India
| | - Anando Sengupta
- a Department of Gastroenterology and Hepatology , Max Super Speciality Hospital , Ghaziabad , India
| |
Collapse
|
159
|
Lanford RE, Walker CM, Lemon SM. Nonhuman Primate Models of Hepatitis A Virus and Hepatitis E Virus Infections. Cold Spring Harb Perspect Med 2019; 9:a031815. [PMID: 29686041 PMCID: PMC6360867 DOI: 10.1101/cshperspect.a031815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although phylogenetically unrelated, human hepatitis viruses share an exclusive or near exclusive tropism for replication in differentiated hepatocytes. This narrow tissue tropism may contribute to the restriction of the host ranges of these viruses to relatively few host species, mostly nonhuman primates. Nonhuman primate models thus figure prominently in our current understanding of the replication and pathogenesis of these viruses, including the enterically transmitted hepatitis A virus (HAV) and hepatitis E virus (HEV), and have also played major roles in vaccine development. This review draws comparisons of HAV and HEV infection from studies conducted in nonhuman primates, and describes how such studies have contributed to our current understanding of the biology of these viruses.
Collapse
Affiliation(s)
- Robert E Lanford
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas 782227
| | - Christopher M Walker
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital and College of Medicine, The Ohio State University, Columbus, Ohio 43205
| | - Stanley M Lemon
- Departments of Medicine and Microbiology & Immunology, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7030
| |
Collapse
|
160
|
Meta-Analysis of Human IgG anti-HEV Seroprevalence in Industrialized Countries and a Review of Literature. Viruses 2019; 11:v11010084. [PMID: 30669517 PMCID: PMC6357031 DOI: 10.3390/v11010084] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/11/2022] Open
Abstract
Although Hepatitis E is increasingly described as a major cause of liver disease in industrialized countries, the epidemiology is far from being fully elucidated. We provide here a comprehensive review of documented clusters of cases, and of serological studies conducted in populations with distinct types of exposure. Seroprevalence rates range from <5% to >50% depending on the countries and the groups of population. Such discrepancies can be attributed to the type of serological assay used, but this solves only a part of the problem. We performed a meta-analysis of studies performed with the broadly used Wantai HEV-IgG ELISA and found striking differences that remain difficult to understand with the current knowledge of transmission pathways.
Collapse
|
161
|
Abstract
Hepatitis E virus (HEV) possesses many of the features of other positive-stranded RNA viruses but also adds HEV-specific nuances, making its virus-host interactions unique. Slow virus replication kinetics and fastidious growth conditions, coupled with the historical lack of an efficient cell culture system to propagate the virus, have left many gaps in our understanding of its structure and replication cycle. Recent advances in culturing selected strains of HEV and resolving the 3D structure of the viral capsid are filling in knowledge gaps, but HEV remains an extremely understudied pathogen. Many steps in the HEV life cycle and many aspects of HEV pathogenesis remain unknown, such as the host and viral factors that determine cross-species infection, the HEV-specific receptor(s) on host cells, what determines HEV chronicity and the ability to replicate in extrahepatic sites, and what regulates processing of the open reading frame 1 (ORF1) nonstructural polyprotein.
Collapse
Affiliation(s)
- Scott P Kenney
- Food Animal Health Research Program, The Ohio State University, Wooster, Ohio 44691
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| |
Collapse
|
162
|
Webb GW, Dalton HR. Hepatitis E: an underestimated emerging threat. Ther Adv Infect Dis 2019; 6:2049936119837162. [PMID: 30984394 PMCID: PMC6448100 DOI: 10.1177/2049936119837162] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/08/2019] [Indexed: 12/22/2022] Open
Abstract
Hepatitis E virus (HEV) is the most common cause of viral hepatitis in the world. It is estimated that millions of people are infected every year, resulting in tens of thousands of deaths. However, these estimates do not include industrialized regions and are based on studies which employ assays now known to have inferior sensitivity. As such, this is likely to represent a massive underestimate of the true global burden of disease. In the developing world, HEV causes large outbreaks and presents a significant public-health problem. Until recently HEV was thought to be uncommon in industrialized countries, and of little relevance to clinicians in these settings. We now know that this is incorrect, and that HEV is actually very common in developed regions. HEV has proved difficult to study in vitro, with reliable models only recently becoming available. Our understanding of the lifecycle of HEV is therefore incomplete. Routes of transmission vary by genotype and location: endemic regions experience large waterborne epidemics, while sporadic cases in industrialized regions are zoonotic infections likely spread via the food chain. Both acute and chronic infection has been observed, and a wide range of extrahepatic manifestations have been reported. This includes neurological, haematological and renal conditions. As the complete clinical phenotype of HEV infection is yet to be characterized, a large proportion of cases go unrecognized or misdiagnosed. In many cases HEV infection does not feature in the differential diagnosis due to a lack of knowledge and awareness of the disease amongst clinicians. In combination, these factors have contributed to an underestimation of the threat posed by HEV. Improvements are required in terms of recognition and diagnosis of HEV infection if we are to understand the natural history of the disease, improve management and reduce the burden of disease around the world.
Collapse
Affiliation(s)
- Glynn W. Webb
- University of Manchester NHS Foundation Trust, 7 Radnor Rd London NW6 6TT Manchester, UK
| | | |
Collapse
|
163
|
Cella E, Golkocheva-Markova E, Sagnelli C, Scolamacchia V, Bruni R, Villano U, Ciccaglione AR, Equestre M, Sagnelli E, Angeletti S, Ciccozzi M. Human hepatitis E virus circulation in Bulgaria: Deep Bayesian phylogenetic analysis for viral spread control in the country. J Med Virol 2019; 91:132-138. [PMID: 30168583 DOI: 10.1002/jmv.25296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/07/2018] [Indexed: 12/23/2022]
Abstract
Hepatitis E virus (HEV) infection in Bulgaria is endemic, as demonstrated by the seroprevalence of antibody against the virus in the general population and by the high prevalence of clinical cases registered. In this study, a deep Bayesian phylogenetic analysis has been performed to provide information on the genetic diversity and the spread of HEV genotypes in Bulgaria. Three different data sets of HEV virus was built for genotyping by the maximum likelihood method, for evolutionary rate estimated by Bayesian Markov Chain Monte Carlo approach, for demographic history investigation and for selective pressure analysis. The evolutionary rate for genotype 3e, was 351 × 10-3 substitution/site/year (95% highest posterior density [95% HPD]: 145 × 10 -3 -575 × 10 -3 ). The root of the time to the most recent common ancestor of the Bayesian maximum clade credibility tree of HEV 3e genotype corresponded to 1965 (HPD 95% 1949-1994). The Bulgarian sequences mainly clustered in the main clade (clade A). The monophyletic clade included all Bulgarian genotype 3e sequences. The demographic history showed a slight growth from 1995 to 2000, followed by a sort of bottleneck in 2010s, a peak in 2011 and a new growth to 2015. Selection pressure analysis did not show sites under positive pressure but 64 statistically significant sites under negative selection. Molecular epidemiological surveillance by Bayesian phylogeny of HEV virus can contribute to trace the way of human infection after contact with swine source directly or heating meat improving public health control.
Collapse
Affiliation(s)
- Eleonora Cella
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Elitsa Golkocheva-Markova
- NRL of Viral Hepatitis, Virology Department, National Center of Infectious and Parasitic Diseases (NCIPD), Sofia, Bulgaria
| | - Caterina Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Vittoria Scolamacchia
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Rome, Italy
| | - Roberto Bruni
- Viral Hepatitis and Oncovirus and Retrovirus Diseases Unit, Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Umbertina Villano
- Viral Hepatitis and Oncovirus and Retrovirus Diseases Unit, Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Rita Ciccaglione
- Viral Hepatitis and Oncovirus and Retrovirus Diseases Unit, Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Michele Equestre
- Department of Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Evangelista Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Silvia Angeletti
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Rome, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy
| |
Collapse
|
164
|
Schlosser J, Dähnert L, Dremsek P, Tauscher K, Fast C, Ziegler U, Gröner A, Ulrich RG, Groschup MH, Eiden M. Different Outcomes of Experimental Hepatitis E Virus Infection in Diverse Mouse Strains, Wistar Rats, and Rabbits. Viruses 2018; 11:v11010001. [PMID: 30577433 PMCID: PMC6356764 DOI: 10.3390/v11010001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/11/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus (HEV) is the causative agent of acute hepatitis E in humans in developing countries, but autochthonous cases of zoonotic genotype 3 (HEV-3) infection also occur in industrialized countries. In contrast to swine, rats, and rabbits, natural HEV infections in mice have not yet been demonstrated. The pig represents a well-established large animal model for HEV-3 infection, but a suitable small animal model mimicking natural HEV-3 infection is currently missing. Therefore, we experimentally inoculated C57BL/6 mice (wild-type, IFNAR−/−, CD4−/−, CD8−/−) and BALB/c nude (nu/nu) mice, Wistar rats, and European rabbits with a wild boar-derived HEV-3 strain and monitored virus replication and shedding, as well as humoral immune responses. HEV RNA and anti-HEV antibodies were detected in one and two out of eight of the rats and all rabbits inoculated, respectively, but not in any of the mouse strains tested. Remarkably, immunosuppressive dexamethasone treatment of rats did not enhance their susceptibility to HEV infection. In rabbits, immunization with recombinant HEV-3 and ratHEV capsid proteins induced protection against HEV-3 challenge. In conclusion, the rabbit model for HEV-3 infection may serve as a suitable alternative to the non-human primate and swine models, and as an appropriate basis for vaccine evaluation studies.
Collapse
Affiliation(s)
- Josephine Schlosser
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
| | - Lisa Dähnert
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
| | - Paul Dremsek
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
| | - Kerstin Tauscher
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Christine Fast
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
| | - Ute Ziegler
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
| | | | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
- German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel, 17493 GreifswaldInsel Riems, Germany.
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
- German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel, 17493 GreifswaldInsel Riems, Germany.
| | - Martin Eiden
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
165
|
Yu W, Yang C, Hao X, Ma T, Huang F. Successful infection of BALB/c mice by a swine hepatitis E virus clone constructed with reverse genetics. BMC Infect Dis 2018; 18:687. [PMID: 30572833 PMCID: PMC6302442 DOI: 10.1186/s12879-018-3544-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023] Open
Abstract
Background Hepatitis E virus (HEV) is a leading cause of hepatitis worldwide. However, its infection biology and pathogenesis remain largely elusive. Furthermore, no proven medication is available for treating hepatitis E. Robust experimental models are urgently required to advance the research of HEV infection. Because of the lacking of a sophisticated small animal model, this study aimed to establish a mouse model of HEV infection. Methods We constructed a full-length swine HEV cDNA clone of genotype 4 (named as pGEM-HEV) by reverse genetics approach. And we inoculated with HEV RNA in BALB/c mice to establish small animal model for HEV infection and pathogenesis studies. Results The capped RNA transcripts of pGEM-HEV prepared in vitro were replication-competent in HepG2 cells. Importantly, BALB/c mice intravenously inoculated with RNA transcripts of pGEM-HEV developed an active infection as shown by shedding viruses in feces, detectable negative strand of HEV in the liver, spleen and kidney, and causing liver inflammation. Conclusion In this study, we successfully established of BALB/c mice-based small animal model for HEV provides an opportunity to further understand HEV pathogenesis and to develop effective antiviral medications.
Collapse
Affiliation(s)
- Wenhai Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, China
| | - Chenchen Yang
- Medical School, Kunming University of Science and Technology, 727 Jingming Road, Kunming, China
| | - Xianhui Hao
- Medical School, Kunming University of Science and Technology, 727 Jingming Road, Kunming, China
| | - Tianwu Ma
- Medical School, Kunming University of Science and Technology, 727 Jingming Road, Kunming, China
| | - Fen Huang
- Medical School, Kunming University of Science and Technology, 727 Jingming Road, Kunming, China.
| |
Collapse
|
166
|
Dalton HR, Izopet J. Transmission and Epidemiology of Hepatitis E Virus Genotype 3 and 4 Infections. Cold Spring Harb Perspect Med 2018. [PMID: 29530946 DOI: 10.1101/cshperspect.a032144] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Following the introduction of robust serological and molecular tools, our understanding of the epidemiology of zoonotic hepatitis E virus (HEV) has improved considerably in recent years. Current thinking suggests that consumption of pork meat products is the key route of infection in humans, but it is certainly not the only one. Other routes of infection include environmental spread, contaminated water, and via the human blood supply. The epidemiology of HEV genotype (gt)3 and gt4 is complex, as there are several sources and routes of infection, and it is likely that these vary between and within countries and over time.
Collapse
Affiliation(s)
- Harry R Dalton
- Royal Cornwall Hospital, Truro TR1 3LJ, United Kingdom.,European Centre for Environment and Human Health, University of Exeter, Truro TR1 3LJ, United Kingdom
| | - Jacques Izopet
- Department of Virology, Hepatitis E Virus National Reference Centre, Toulouse University Hospital, 31059 Toulouse, France.,Toulouse-Purpan Centre for Pathophysiology, INSERM UMR1043/CNRS UMR 5282, CPTP, Toulouse University Paul Sabatier, 31024 Toulouse, France
| |
Collapse
|
167
|
Abstract
Soon after the 1991 molecular cloning of hepatitis E virus (HEV), recombinant viral capsid antigens were expressed and tested in nonhuman primates for protection against liver disease and infection. Two genotype 1 subunit vaccine candidates entered clinical development: a 56 kDA vaccine expressed in insect cells and HEV 239 vaccine expressed in Escherichia coli Both were highly protective against hepatitis E and acceptably safe. The HEV 239 vaccine was approved in China in 2011, but it is not yet prequalified by the World Health Organization, a necessary step for introduction into those low- and middle-income countries where the disease burden is highest. Nevertheless, the stage is set for the final act in the hepatitis E vaccine story-policymaking, advocacy, and pilot introduction of vaccine in at-risk populations, in which it is expected to be cost-effective.
Collapse
Affiliation(s)
- Bruce L Innis
- Center for Vaccine Innovation and Access, PATH, Washington, D.C. 20001
| | - Julia A Lynch
- International Vaccine Institute, SNU Research Park, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
168
|
Liu T, Xiao P, Li R, She R, Tian J, Wang J, Mao J, Yin J, Shi R. Increased Mast Cell Activation in Mongolian Gerbils Infected by Hepatitis E Virus. Front Microbiol 2018; 9:2226. [PMID: 30333798 PMCID: PMC6175998 DOI: 10.3389/fmicb.2018.02226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/31/2018] [Indexed: 12/21/2022] Open
Abstract
Recently, mechanism study of hepatitis E virus (HEV) infection has attracted an increasing attention because of the growing rate of the acute hepatitis caused by the virus over the world. As an important initiate in the inflammation, mast cells (MCs) play a critical role in maintaining a healthy physiology. However, the function of the MCs in the acute hepatitis caused by HEV is still unclear. In the present study, mongolian gerbils infected by HEV were used as an animal model to evaluate the role of MCs in the HEV infection. The positive ELISA and RT-PCR results showed the gerbils was successfully infected with HEV. The number of mast cell in the liver and the small intestine in the infected animals were growing higher significantly than the control group. In addition, higher expression of the tryptase and 5-HT in the liver and the intestine detected by immunohistochemical method and western blot also indicate the activation of MCs in the infection. These results suggest that MCs play an important role in the hepatitis E.
Collapse
Affiliation(s)
- Tianlong Liu
- Laboratory of Veterinary Pathology and Public Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Peng Xiao
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Ruiwen Li
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Dingzhou, China
| | - Ruiping She
- Laboratory of Veterinary Pathology and Public Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jijing Tian
- Laboratory of Veterinary Pathology and Public Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingyuan Wang
- Laboratory of Veterinary Pathology and Public Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingjing Mao
- Laboratory of Veterinary Pathology and Public Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jun Yin
- Laboratory of Veterinary Pathology and Public Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ruihan Shi
- Laboratory of Veterinary Pathology and Public Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
169
|
Rani D, Saxena R, Nayak B, Srivastava S. Cloning and expression of truncated ORF2 as a vaccine candidate against hepatitis E virus. 3 Biotech 2018; 8:414. [PMID: 30237961 PMCID: PMC6139098 DOI: 10.1007/s13205-018-1437-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/10/2018] [Indexed: 01/09/2023] Open
Abstract
Hepatitis E virus infection is responsible for acute viral hepatitis and associated with high mortality and still birth in pregnant women in developing countries. We report expression of truncated forms of HEV ORF2 as potential vaccine candidates for nanoparticle-based delivery. These two truncated ORF2 proteins (54 kDa and 26 kDa) have been reported to be highly immunogenic and can be used as nanoparticle-based vaccine candidate. The bacterial expressed protein was purified by affinity chromatography and further confirmed by western blot using anti-HEV antibody. The chitosan nanoemulsion was synthesized using ultrasonic waves. The nanoparticle size was found to be 120-160 nm and the entrapment efficiency of purified truncated ORF2 proteins within these nanoparticles was 70% (26 kDa) and 59% (54 kDa). In cell cytotoxicity analysis, 100 µg/mL nanoemulsion was found suitable for cell viability in both HeLa and THP1 cell lines. Release kinetics of encapsulated proteins at physiological pH 7.4 showed 26-59% and 9.7-40% release of 26 kDa and 54 kDa protein within 1 h that gradually increased with time (48 h). Encapsulated proteins were found to be unstable at pH 1.2.
Collapse
Affiliation(s)
- Dibya Rani
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP 201309 India
| | - Rahul Saxena
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP 201309 India
| | - Baibaswata Nayak
- Department of Gastroenterology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| | - Sudha Srivastava
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP 201309 India
| |
Collapse
|
170
|
Sinakos Ε, Gioula G, Liava C, Papa A, Papadopoulou E, Tsakni E, Fouzas I, Akriviadis E. Prevalence of hepatitis E in liver transplant recipients in Greece. Epidemiol Infect 2018; 146:1619-1621. [PMID: 29974836 PMCID: PMC9507950 DOI: 10.1017/s0950268818001887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/09/2018] [Accepted: 06/05/2018] [Indexed: 12/23/2022] Open
Abstract
Hepatitis E virus (HEV) is a well-known cause of acute hepatitis. Immunocompromised subjects, including liver transplant recipients, are considered to be at risk for HEV infection, which occasionally follows a chronic course. The diagnosis of HEV infection in these patients must be based on HEV RNA testing, as serology has variable performance. The aim of this study was to assess the prevalence of HEV infection in liver transplant recipients in Greece by means of HEV RNA testing. Liver transplant recipients followed in the sole transplant centre in Greece were prospectively included. HEV RNA was detected by real-time RT-PCR. Positive samples were further analysed using a nested reverse transcription RT-PCR kit, which amplifies a 137-nucleotide sequence within the ORF2/ORF3 overlapping region to detect the HEV genotype and perform phylogenetic analysis. The mean age of the included patients (n = 76) was 54 years. The most common indication for liver transplantation was viral hepatitis (57%). The majority of the patients (75%) received a calcineurin inhibitor as part of their immunosuppressive regimen and had normal liver enzymes. HEV RNA was found positive in only 1/76 (1.3%) patient. Phylogenetic analysis showed that the sequence clustered into the HEV genotype 3 clade. This patient experienced an acute hepatitis flare, which nonetheless did not become chronic. The prevalence of HEV infection in liver transplant recipients in Greece is similar (1.3%) to that reported previously in other countries. Transplant physicians should be aware of this condition and its associated consequences.
Collapse
Affiliation(s)
- Ε. Sinakos
- 4th Medical Department, Aristotle University of Thessaloniki, Hippokratio Hospital, Thessaloniki, Greece
| | - G. Gioula
- Microbiology Department, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ch. Liava
- 4th Medical Department, Aristotle University of Thessaloniki, Hippokratio Hospital, Thessaloniki, Greece
| | - A. Papa
- Microbiology Department, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - E. Papadopoulou
- Microbiology Department, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - E. Tsakni
- Department of Transplant Surgery, Aristotle University of Thessaloniki, Hippokratio Hospital, Thessaloniki, Greece
| | - I. Fouzas
- Department of Transplant Surgery, Aristotle University of Thessaloniki, Hippokratio Hospital, Thessaloniki, Greece
| | - E. Akriviadis
- 4th Medical Department, Aristotle University of Thessaloniki, Hippokratio Hospital, Thessaloniki, Greece
| |
Collapse
|
171
|
Luk KC, Coller KE, Dawson GJ, Cloherty GA. Identification of a putative novel genotype 3/rabbit hepatitis E virus (HEV) recombinant. PLoS One 2018; 13:e0203618. [PMID: 30204796 PMCID: PMC6133284 DOI: 10.1371/journal.pone.0203618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/23/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus (HEV) is a viral pathogen transmitted by the fecal-oral route and is a major cause of waterborne acute hepatitis in many developing countries. In addition to infecting humans, HEV has been identified in swine, wild boars, rabbits and other mammals; with swine and wild boars being main reservoirs for zoonotic transmission of HEV. There are four major HEV genotypes known to infect humans; genotypes 1 (HEV-1) and 2 (HEV-2) are restricted to humans, and genotypes 3 (HEV-3) and 4 (HEV-4) are zoonotic. Herein, three human HEV strains originating in France were sequenced and near full-length genomes were characterized. Phylogenetic analysis showed that two strains were genotype 3 and closely grouped (a 100% bootstrap value) with subtype 3i reference strains. In percent nucleotide identities, these two strains were 94% identical to each other, 90–93% identical to subtype 3i strains, 82–86% identical to other HEV-3, and 77–79% identical to rabbit HEV strains excluding the two divergent strains KJ013414 and KJ013415 (74%); these two strains were less than 77% identical to strains of HEV genotypes 1, 2 and 4. The third strain was found distinct from any known HEV strains in the database, and located between the clusters of HEV-3 and rabbit HEV strains. This unique strain was 74–75% identical to HEV-1, 73% to HEV-2, 81–82% to HEV-3, 77–79% to rabbit HEV again excluding the two divergent strains KJ013414 and KJ013415 (74%), and 74–75% to HEV-4, suggesting a novel unclassified strain associated with HEV-3 and rabbit HEV. SimPlot and BootScan analyses revealed a putative recombination of HEV-3 and rabbit HEV sequences at four breakpoints. Phylogenetic trees of the five fragments of the genome confirmed the presence of two HEV-3 derived and three unclassified sequences. Analyses of the amino acid sequences of the three open reading frames (ORF1-3) encoded proteins of these three novel strains showed that some amino acid residues specific to rabbit HEV strains were found solely in this unclassified strain but not in the two newly identified genotype 3i strains. The results obtained by SimPlots, BootScans, phylogenetic analyses, and amino acid sequence comparisons in this study all together appear to suggest that this novel unclassified strain is likely carrying a mosaic genome derived from HEV-3 and rabbit HEV sequences, and is thus designated as a putative genotype 3/rabbit HEV recombinant.
Collapse
Affiliation(s)
- Ka-Cheung Luk
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, Illinois, United States of America
- * E-mail:
| | - Kelly E. Coller
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, Illinois, United States of America
| | - George J. Dawson
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, Illinois, United States of America
| | - Gavin A. Cloherty
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, Illinois, United States of America
| |
Collapse
|
172
|
Phylogenetic analysis of two genotype 3 Hepatitis E viruses from wild boar, Italy. Virus Genes 2018; 54:812-817. [PMID: 30203361 DOI: 10.1007/s11262-018-1597-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/31/2018] [Indexed: 12/27/2022]
Abstract
The complete and near-complete genome sequences (7206 nt and 7229 nt) of two wild boar HEV strains detected in Southern Italy were obtained by the next generation sequencing. Phylogenetic analysis and p distance comparisons of one of the strains with HEV-3 reference subtype strains confirmed the detection of a subtype 3i (p distance = 0.110) strain in wild boar, never detected in Italy either in wild boar or pigs. The sequence of the second strain was not classifiable in any of the subtypes defined to date, showing a p distance > 0.138 and a low nucleotide identity with all HEV reference strains. The virus may represent a novel subtype, with a low relationship to other strains of genotype 3 detected in wild boar, pigs, or humans in Europe. This result suggests the circulation in Italy of an emerging or uncommon HEV strain. Sequencing followed by phylogenetic analyses of the complete HEV coding regions are important tools for understanding the evolutionary and epidemiological dynamics underlying the wide genetic diversity of HEV strains.
Collapse
|
173
|
Smith DB, Simmonds P. Classification and Genomic Diversity of Enterically Transmitted Hepatitis Viruses. Cold Spring Harb Perspect Med 2018; 8:a031880. [PMID: 29530950 PMCID: PMC6120691 DOI: 10.1101/cshperspect.a031880] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hepatitis A virus (HAV) and hepatitis E virus (HEV) are significant human pathogens and are responsible for a substantial proportion of cases of severe acute hepatitis worldwide. Genetically, both viruses are heterogeneous and are classified into several genotypes that differ in their geographical distribution and risk group association. There is, however, little evidence that variants of HAV or HEV differ antigenically or in their propensity to cause severe disease. Genetically more divergent but primarily hepatotropic variants of both HAV and HEV have been found in several mammalian species, those of HAV being classified into eight species within the genus Hepatovirus in the virus family Picornaviridae. HEV is classified as a member of the species Orthohepevirus A in the virus family Hepeviridae, a species that additionally contains viruses infecting pigs, rabbits, and a variety of other mammalian species. Other species (Orthohepevirus B-D) infect a wide range of other mammalian species including rodents and bats.
Collapse
Affiliation(s)
- Donald B Smith
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom
| |
Collapse
|
174
|
Parvez MK, Subbarao N. Molecular Analysis and Modeling of Hepatitis E Virus Helicase and Identification of Novel Inhibitors by Virtual Screening. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5753804. [PMID: 30246023 PMCID: PMC6136533 DOI: 10.1155/2018/5753804] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022]
Abstract
The hepatitis E virus- (HEV-) helicase as a novel drug-target was evaluated. While cell culture model was used for mutational characterization of helicase, in silico protein modeling and virtual screening were employed to identify helicase inhibitors. None of the saturation mutant replicons significantly affected RNA replication. Notably, mutants encompassing the Walker motifs replicated as wild-type, showing indispensability of nucleotides conservation in viability compared to known criticality of amino acids. A 3D modeling of HEV-helicase and screening of a compound dataset identified ten most promising inhibitors with drug likeness, notably, JFD02650, RDR03130, and HTS11136 that interacted with Walker A residues Gly975, Gly978, Ser979, and Gly980. Our model building and virtual identification of novel helicase inhibitors warrant further studies towards developing anti-HEV drugs.
Collapse
Affiliation(s)
- Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
175
|
Su Q, Li Y, Zhang Y, Zhang Z, Meng F, Cui Z, Chang S, Zhao P. Characterization of the novel genotype avian hepatitis E viruses from outbreaks of hepatic rupture haemorrhage syndrome in different geographical regions of China. Transbound Emerg Dis 2018; 65:2017-2026. [PMID: 30086212 DOI: 10.1111/tbed.12987] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022]
Abstract
Since 2016, hepatic rupture haemorrhage syndrome (HRHS) has emerged in layer and broiler breeder hens in several provinces of China, and novel genotype avian hepatitis E viruses were detected from these chickens. To gain a better understanding of the genetic properties of the novel avian HEV strain, the capsid gene of four isolates from birds at four farms experiencing HRHS in different geographical regions were determined and compared with those of reported pathogenic and nonpathogenic avian HEV isolates as well as mammalian HEVs. Results showed that all those isolates share 80.1%-88.2% nucleotide sequence identity and 89.3%-91.9% amino acid sequence identity with other published avian HEV strains, while phylogenetic analysis further demonstrate that a novel genotype avian HEV was epidemic in China. Meanwhile, sequence analysis revealed that those novel isolates contain various amino acid mutations and even a hypervariable region in their major antigenic domains, which might be the critical factors for the pathogenicity elevation and even change their antigenicity. The data presented in this report will enhance the current understanding of the epidemiology and genetic diversity of the novel genotype avian HEV in China and provide additional insight into the critical factors that determine the pathogenicity of it.
Collapse
Affiliation(s)
- Qi Su
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Yang Li
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Yawen Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Zhihui Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Fanfeng Meng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Zhizhong Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| |
Collapse
|
176
|
Glitscher M, Himmelsbach K, Woytinek K, Johne R, Reuter A, Spiric J, Schwaben L, Grünweller A, Hildt E. Inhibition of Hepatitis E Virus Spread by the Natural Compound Silvestrol. Viruses 2018; 10:E301. [PMID: 29865243 PMCID: PMC6024817 DOI: 10.3390/v10060301] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/18/2018] [Accepted: 05/31/2018] [Indexed: 02/07/2023] Open
Abstract
Every year, there are about 20 Mio hepatitis E virus (HEV) infections and 60,000 deaths that are associated with HEV worldwide. At the present, there exists no specific therapy for HEV. The natural compound silvestrol has a potent antiviral effect against the (-)-strand RNA-virus Ebola virus, and also against the (+)-strand RNA viruses Corona-, Picorna-, and Zika virus. The inhibitory effect on virus spread is due to an inhibition of the DEAD-box RNA helicase eIF4A, which is required to unwind structured 5'-untranslated regions (UTRs). This leads to an impaired translation of viral RNA. The HEV (+)-strand RNA genome contains a 5'-capped, short 5'-UTR. This study aims to analyze the impact of silvestrol on the HEV life cycle. Persistently infected A549 cells were instrumental. This study identifies silvestrol as a potent inhibitor of the release of HEV infectious viral particles. This goes along with a strongly reduced HEV capsid protein translation, retention of viral RNA inside the cytoplasm, and without major cytotoxic effects. Interestingly, in parallel silvestrol affects the activity of the antiviral major vault protein (MVP) by translocation from the cytoplasm to the perinuclear membrane. These data further characterize the complex antiviral activity of silvestrol and show silvestrol's broad spectrum of function, since HEV is a virus without complex secondary structures in its genome, but it is still affected.
Collapse
Affiliation(s)
- Mirco Glitscher
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany.
| | | | - Kathrin Woytinek
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany.
| | - Reimar Johne
- Federal Institute for Risk Assessment, 10589 Berlin, Germany.
| | - Andreas Reuter
- Department of Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany.
| | - Jelena Spiric
- Department of Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany.
| | - Luisa Schwaben
- Department of Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany.
| | - Arnold Grünweller
- Institute of Pharmaceutical Chemistry, Philipps-Universität Marburg, 35037 Marburg, Germany.
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany.
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany.
| |
Collapse
|
177
|
Weigand K, Weigand K, Schemmerer M, Müller M, Wenzel JJ. Hepatitis E Seroprevalence and Genotyping in a Cohort of Wild Boars in Southern Germany and Eastern Alsace. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:167-175. [PMID: 29214558 DOI: 10.1007/s12560-017-9329-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
In the last few years it has been realized that the hepatitis E virus (HEV) is endemic in most industrialized countries and that it is a zoonotic disease. Potential reservoirs for HEV have been identified to be wild boars and deers, but HEV has also been found in domestic pigs and other animals. Due to the probable spread of the virus via contaminated food or contact to infected animals, HEV antibodies are present in more than 16% of the German adult population and rates are increasing with age. We collected blood from 104 wild boars in southern Germany and the border region of Alsace. We found an anti-HEV seroprevalence of 11.5% in our cohort, using ELISA. Furthermore, we observed active infection in 3.85% of the animals by positive HEV PCR in the sera of the boars. In our cohort, no regional differences of seroprevalence or active infection were seen. Sequencing revealed rather close homology of some detected HEV sequences to genotypes isolated from patients in Germany. Hence wild boars are a potential source of HEV infection in Middle Europe and the rate of infectious animals is quite high.
Collapse
Affiliation(s)
- Kilian Weigand
- Department of Gastroenterology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
| | - Kurt Weigand
- Department of Internal Medicine, Stauferklinikum Schwaebisch Gmuend, Mutlangen, Germany
| | - Mathias Schemmerer
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Martina Müller
- Department of Gastroenterology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Juergen J Wenzel
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
178
|
Syed SF, Zhao Q, Umer M, Alagawany M, Ujjan IA, Soomro F, Bangulzai N, Baloch AH, Abd El-Hack M, Zhou EM, Arain MA. Past, present and future of hepatitis E virus infection: Zoonotic perspectives. Microb Pathog 2018; 119:103-108. [DOI: 10.1016/j.micpath.2018.03.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 02/08/2023]
|
179
|
Hepatitis E in High-Income Countries: What Do We Know? And What Are the Knowledge Gaps? Viruses 2018; 10:v10060285. [PMID: 29799485 PMCID: PMC6024799 DOI: 10.3390/v10060285] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022] Open
Abstract
Hepatitis E virus (HEV) is a positive-strand RNA virus transmitted by the fecal–oral route. HEV genotypes 1 and 2 infect only humans and cause mainly waterborne outbreaks. HEV genotypes 3 and 4 are widely represented in the animal kingdom, and are mainly transmitted as a zoonosis. For the past 20 years, HEV infection has been considered an imported disease in developed countries, but now there is evidence that HEV is an underrecognized pathogen in high-income countries, and that the incidence of confirmed cases has been steadily increasing over the last decade. In this review, we describe current knowledge about the molecular biology of HEV, its clinical features, its main routes of transmission, and possible therapeutic strategies in developed countries.
Collapse
|
180
|
Rodríguez-Lázaro D, Hernandez M, Cook N. Hepatitis E Virus: A New Foodborne Zoonotic Concern. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 86:55-70. [PMID: 30077224 DOI: 10.1016/bs.afnr.2018.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hepatitis E virus (HEV) is an enteric nonenveloped single-stranded RNA virus. Among the mammalian lineages, four genotypes are associated to human infection: genogroups 1 and 2 infect only humans and are mainly found in developing countries, while genogroups 3 and 4 are zoonotic, being found in a variety of animal species including pigs, and are autochthonous in developed countries. HEV infection can result in liver damage and with genotypes 1 and 2 symptoms can be particularly severe in pregnant women, with a high lethality ratio. Several cases of foodborne transmission of hepatitis E have been reported, often involving consumption of meat, especially raw or undercooked. Information is lacking on the exact extent of foodborne transmission of HEV.
Collapse
Affiliation(s)
- David Rodríguez-Lázaro
- Microbiology Division, Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain.
| | - Marta Hernandez
- Microbiology Division, Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain; Laboratory of Molecular Biology and Microbiology, ITACyL, Valladolid, Spain
| | - Nigel Cook
- Jorvik Food and Environmental Virology, York, United Kingdom
| |
Collapse
|
181
|
Harrison L, DiCaprio E. Hepatitis E Virus: An Emerging Foodborne Pathogen. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2018. [DOI: 10.3389/fsufs.2018.00014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
182
|
Wang B, Harms D, Papp CP, Niendorf S, Jacobsen S, Lütgehetmann M, Pischke S, Wedermeyer H, Hofmann J, Bock CT. Comprehensive Molecular Approach for Characterization of Hepatitis E Virus Genotype 3 Variants. J Clin Microbiol 2018; 56:e01686-17. [PMID: 29514938 PMCID: PMC5925713 DOI: 10.1128/jcm.01686-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/02/2018] [Indexed: 12/27/2022] Open
Abstract
Autochthonous hepatitis E virus genotype 3 (HEV-3) infections in industrialized countries are more frequent than previously assumed. HEV-3 is zoonotic and the causal pathogen of chronic hepatitis E. According to the latest classification of the family Hepeviridae, 10 designated HEV-3 subtypes (HEV-3a to HEV-3j) and 7 unassigned HEV-3 subtypes are proposed. In order to identify and characterize the HEV-3 variants in circulation, we developed a molecular approach combining a sensitive HEV-specific real-time reverse transcription-PCR (RT-PCR) targeting the overlapping region of HEV ORF2 and ORF3 (the ORF2/3 region) and two newly designed consensus nested RT-PCRs targeting the HEV ORF1 and ORF2 genes, respectively. Since complete genome sequences are required for new HEV-3 subtype assignment, we implemented a straightforward approach for full-length HEV-3 genome amplification. Twenty-nine human serum samples and six human feces samples from chronic hepatitis E patients were selected for evaluation of the system. Viral loads ranged from 1 × 104 to 1.9 × 1010 copies/ml of serum and from 1.8 × 104 to 1 × 1012 copies/g of feces. Sequence and phylogenetic analyses of partial ORF1 and ORF2 sequences showed that HEV strains had considerable genetic diversity and clustered into the HEV-3c (29/35), HEV-3e (2/35), HEV-3f (2/35), and unassigned HEV-3 (2/35) subtypes. Moreover, from these strains, three full-length HEV-3 genome sequences were generated and characterized. DE/15-0030 represents a typical HEV-3c strain (95.7% nucleotide identity to wbGER27), while DE/15-0031 and SW/16-0282 have <89.2% homology to known HEV-3 strains and are phylogenetically divergent, indicating novel HEV-3 subtypes. In summary, our approach will significantly facilitate the detection, quantification, and determination of HEV-3 strains and will thus help to improve molecular diagnostics and our knowledge of HEV diversity and evolution.
Collapse
Affiliation(s)
- Bo Wang
- Division of Viral Gastroenteritis, Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Dominik Harms
- Division of Viral Gastroenteritis, Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - C Patrick Papp
- Division of Viral Gastroenteritis, Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Sandra Niendorf
- Division of Viral Gastroenteritis, Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Sonja Jacobsen
- Division of Viral Gastroenteritis, Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Marc Lütgehetmann
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Pischke
- First Medical Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Heiner Wedermeyer
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jörg Hofmann
- Institute of Medical Virology, Charité University Medicine, Berlin, Germany
- Labor Berlin, Charité-Vivantes GmbH, Berlin, Germany
| | - C-Thomas Bock
- Division of Viral Gastroenteritis, Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
183
|
Origin, antigenicity, and function of a secreted form of ORF2 in hepatitis E virus infection. Proc Natl Acad Sci U S A 2018; 115:4773-4778. [PMID: 29669922 DOI: 10.1073/pnas.1721345115] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The enterically transmitted hepatitis E virus (HEV) adopts a unique strategy to exit cells by cloaking its capsid (encoded by the viral ORF2 gene) and circulating in the blood as "quasi-enveloped" particles. However, recent evidence suggests that the majority of the ORF2 protein present in the patient serum and supernatants of HEV-infected cell culture exists in a free form and is not associated with virus particles. The origin and biological functions of this secreted form of ORF2 (ORF2S) are unknown. Here we show that production of ORF2S results from translation initiated at the previously presumed AUG start codon for the capsid protein, whereas translation of the actual capsid protein (ORF2C) is initiated at a previously unrecognized internal AUG codon (15 codons downstream of the first AUG). The addition of 15 amino acids to the N terminus of the capsid protein creates a signal sequence that drives ORF2S secretion via the secretory pathway. Unlike ORF2C, ORF2S is glycosylated and exists as a dimer. Nonetheless, ORF2S exhibits substantial antigenic overlap with the capsid, but the epitopes predicted to bind the putative cell receptor are lost. Consistent with this, ORF2S does not block HEV cell entry but inhibits antibody-mediated neutralization. These results reveal a previously unrecognized aspect in HEV biology and shed new light on the immune evasion mechanisms and pathogenesis of this virus.
Collapse
|
184
|
Tanggis, Kobayashi T, Takahashi M, Jirintai S, Nishizawa T, Nagashima S, Nishiyama T, Kunita S, Hayama E, Tanaka T, Mulyanto, Okamoto H. An analysis of two open reading frames (ORF3 and ORF4) of rat hepatitis E virus genome using its infectious cDNA clones with mutations in ORF3 or ORF4. Virus Res 2018; 249:16-30. [DOI: 10.1016/j.virusres.2018.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 01/13/2023]
|
185
|
Sogatella furcifera hepe-like virus: First member of a novel Hepeviridae clade identified in an insect. Virus Res 2018; 250:81-86. [PMID: 29605729 DOI: 10.1016/j.virusres.2018.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 11/22/2022]
Abstract
A novel virus was identified in the white-backed planthopper (Sogatella furcifera, Hemiptera: Delphacidae) and tentatively named Sogatella furcifera hepe-like virus (SfHeV). Its genome is a linear, single-stranded monopartite RNA, 7,312 nucleotides (nt) long with a 66-nt 5' UTR, 54-nt 3' UTR, and 28-nt polyA, showing typical genomic features of viruses in the family Hepeviridae, but highly divergent from known members in the family, with amino acid sequence identities of only 18.9-23% (ORF1), 13.1-18.8% (ORF2) and 1.9-11% (ORF3). Phylogenetic analysis revealed that SfHeV was closer to cutthroat trout virus (CTV), but did not cluster with any members of the family. SfHeV is the first hepe-like virus identified in a hemipteran insect and was detected in all developmental stages suggesting the presence of some level of vertical transmission. On the basis of these data, we propose that SfHeV represents a novel clade in the family Hepeviridae and tentatively name the genus Insecthepevirus.
Collapse
|
186
|
Affiliation(s)
- F. Fabrizi
- Nephrology and Dialysis Division, Hospital, Lecco - Italy
| | - P. Martin
- Department of Medicine, Division of Digestive Diseases, UCLA School of Medicine, Los Angeles, California - USA
| |
Collapse
|
187
|
Zheng M, Jiang J, Zhang X, Wang N, Wang K, Li Q, Li T, Lin Q, Wang Y, Yu H, Gu Y, Zhang J, Li S, Xia N. Characterization of capsid protein (p495) of hepatitis E virus expressed in Escherichia coli and assembling into particles in vitro. Vaccine 2018; 36:2104-2111. [PMID: 29544686 DOI: 10.1016/j.vaccine.2018.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/18/2018] [Accepted: 03/04/2018] [Indexed: 12/11/2022]
Abstract
Hepatitis E virus (HEV) is associated with acute hepatitis disease. Numerous truncated HEV capsid proteins have been successfully expressed using different expression systems. Among these, p495, a protein truncated at its N- and C-termini by 111 and 54 amino acids (aa), respectively (HEV ORF2 aa 112-606) can self-assemble into T = 1 virus-like particles (VLPs) when expressed by insect cells. A shorter p239 (aa 368-606) protein is a particulate antigen that we have previously used in our commercialized HEV vaccine, Hecolin. Here, we sought to express p495 in its soluble form (named Ep495) in E. coli and in baculovirus-infected Tn5 insect cells (named BTp495) as a back-to-back control. Characterization of p495 particles derived from these two expression systems showed similarities in particle size, morphology, and sedimentation coefficient. Antigenicity assays using a panel of anti-HEV monoclonal antibodies also showed similar strong reactivities for Ep495 and BTp495, as well as similar binding profiles that were congruent with p239. Mouse immunization results showed that Ep495 particles had comparable immunogenicity with that of BTp495 VLPs, as well as p239. Overall, our findings suggest that p495 particles produced in E. coli are ideal for the development of next-generation prophylactic vaccines against hepatitis E.
Collapse
Affiliation(s)
- Minghua Zheng
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jie Jiang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xiao Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Nan Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Kaihang Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qiong Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Tingting Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qingshan Lin
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yingbin Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ying Gu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shaowei Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
188
|
Vilanova L, Rigueira L, Perecmanis S. Seroprevalence of hepatitis E virus infection in domestic pigs in the Federal District, Brazil. ARQ BRAS MED VET ZOO 2018. [DOI: 10.1590/1678-4162-9455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Hepatitis E is caused by the hepatitis E virus (HEV) which is currently known to be a zoonotic pathogen transmitted by pigs. In Brazil, there is no information about the circulation of HEV in the swine herd of the Federal District. Therefore, a cross-sectional study was performed with sera from 449 domestic pigs, provided by the Secretary of Agriculture of the Federal District. Blood samples were collected between June and September 2014. A commercially available ELISA kit was used for the detection of IgG antibodies. High seroprevalence of antibodies to HEV was found, since 304 animals showed anti-HEV positive reactions (67.7%; 95% CI = 63.2%, 71.9%). The seropositivity presented no difference by gender or age. The results suggest that HEV circulates among domestic pigs in the Federal District and it can serve as a warning to the local public health system due to their possible involvement in human infections.
Collapse
|
189
|
Activities of Thrombin and Factor Xa Are Essential for Replication of Hepatitis E Virus and Are Possibly Implicated in ORF1 Polyprotein Processing. J Virol 2018; 92:JVI.01853-17. [PMID: 29321328 DOI: 10.1128/jvi.01853-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/19/2017] [Indexed: 01/11/2023] Open
Abstract
Hepatitis E virus (HEV) is a clinically important positive-sense RNA virus. The ORF1 of HEV encodes a nonstructural polyprotein of 1,693 amino acids. It is not clear whether the ORF1 polyprotein (pORF1) is processed into distinct enzymatic domains. Many researchers have attempted to understand the mechanisms of pORF1 processing. However, these studies gave various results and could never convincingly establish the mechanism of pORF1 processing. In this study, we demonstrated the possible role of thrombin and factor Xa in pORF1 processing. We observed that the HEV pORF1 polyprotein bears conserved cleavage sites of thrombin and factor Xa. Using a reverse genetics approach, we demonstrated that an HEV replicon having mutations in the cleavage sites of either thrombin or factor Xa could not replicate efficiently in cell culture. Further, we demonstrated in vitro processing when we incubated recombinant pORF1 fragments with thrombin, and we observed the processing of pORF1 polyprotein. The treatment of a liver cell line with a serine protease inhibitor as well as small interfering RNA (siRNA) knockdown of thrombin and factor Xa resulted in significant reduction in the replication of HEV. Thrombin and factor Xa have been well studied for their roles in blood clotting. Both of these proteins are believed to be present in the active form in the blood plasma. Interestingly, in this report, we demonstrated the presence of biologically active thrombin and factor Xa in a liver cell line. The results suggest that factor Xa and thrombin are essential for the replication of HEV and may be involved in pORF1 polyprotein processing of HEV.IMPORTANCE Hepatitis E virus (HEV) causes a liver disorder called hepatitis in humans, which is mostly an acute and self-limiting infection in adults. A high mortality rate of about 30% is observed in HEV-infected pregnant women in developing countries. There is no convincing opinion about HEV ORF1 polyprotein processing owing to the variability of study results obtained so far. HEV pORF1 has cleavage sites for two host cellular serine proteases, thrombin and factor Xa, that are conserved among HEV genotypes. For the first time, this study demonstrated that thrombin and factor Xa cleavage sites on HEV pORF1 are obligatory for HEV replication. Intracellular biochemical activities of the said serine proteases are also essential for efficient HEV replication in cell culture and must be involved in pORF1 processing. This study sheds light on the presence and roles of clotting factors with respect to virus replication in the cells.
Collapse
|
190
|
Nan Y, Wu C, Zhao Q, Sun Y, Zhang YJ, Zhou EM. Vaccine Development against Zoonotic Hepatitis E Virus: Open Questions and Remaining Challenges. Front Microbiol 2018; 9:266. [PMID: 29520257 PMCID: PMC5827553 DOI: 10.3389/fmicb.2018.00266] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/05/2018] [Indexed: 12/18/2022] Open
Abstract
Hepatitis E virus (HEV) is a fecal-orally transmitted foodborne viral pathogen that causes acute hepatitis in humans and is responsible for hepatitis E outbreaks worldwide. Since the discovery of HEV as a zoonotic agent, this virus has been isolated from a variety of hosts with an ever-expanding host range. Recently, a subunit HEV vaccine developed for the prevention of human disease was approved in China, but is not yet available to the rest of the world. Meanwhile, notable progress and knowledge has been made and revealed in recent years to better understand HEV biology and infection, including discoveries of quasi-enveloped HEV virions and of a new function of the HEV-ORF3 product. However, the impact of these new findings on the development of a protective vaccine against zoonotic HEV infection requires further discussion. In this review, hallmark characteristics of HEV zoonosis, the history of HEV vaccine development, and recent discoveries in HEV virology are described. Moreover, special attention is focused on quasi-enveloped HEV virions and the potential role of the HEV-ORF3 product as antibody-neutralization target on the surface of quasi-enveloped HEV virions to provide new insights for the future development of improved vaccines against zoonotic HEV infection.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| |
Collapse
|
191
|
Primadharsini PP, Mulyanto, Wibawa IDN, Anggoro J, Nishizawa T, Takahashi M, Jirintai S, Okamoto H. The identification and characterization of novel rat hepatitis E virus strains in Bali and Sumbawa, Indonesia. Arch Virol 2018; 163:1345-1349. [DOI: 10.1007/s00705-018-3736-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/25/2017] [Indexed: 12/21/2022]
|
192
|
Abstract
At least 20 million hepatitis E virus (HEV) infections occur annually, with >3 million symptomatic cases and ∼60,000 fatalities. Hepatitis E is generally self-limiting, with a case fatality rate of 0.5-3% in young adults. However, it can cause up to 30% mortality in pregnant women in the third trimester and can become chronic in immunocompromised individuals, such as those receiving organ transplants or chemotherapy and individuals with HIV infection. HEV is transmitted primarily via the faecal-oral route and was previously thought to be a public health concern only in developing countries. It is now also being frequently reported in industrialized countries, where it is transmitted zoonotically or through organ transplantation or blood transfusions. Although a vaccine for HEV has been developed, it is only licensed in China. Additionally, no effective, non-teratogenic and specific treatments against HEV infections are currently available. Although progress has been made in characterizing HEV biology, the scarcity of adequate experimental platforms has hampered further research. In this Review, we focus on providing an update on the HEV life cycle. We will further discuss existing cell culture and animal models and highlight platforms that have proven to be useful and/or are emerging for studying other hepatotropic (viral) pathogens.
Collapse
Affiliation(s)
- Ila Nimgaonkar
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| | - Qiang Ding
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Medical College of Cornell University, New York, New York 10021, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| |
Collapse
|
193
|
Van der Poel WHM, Dalton HR, Johne R, Pavio N, Bouwknegt M, Wu T, Cook N, Meng XJ. Knowledge gaps and research priorities in the prevention and control of hepatitis E virus infection. Transbound Emerg Dis 2018; 65 Suppl 1:22-29. [PMID: 29318757 DOI: 10.1111/tbed.12760] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Indexed: 12/17/2022]
Abstract
Hepatitis E virus (HEV), family Hepeviridae, is a main cause of epidemic hepatitis in developing countries and sporadic and cluster cases of hepatitis in industrialized countries. There are an increasing number of reported cases in humans especially in industrialized countries, and there is a high potential for transboundary spread of zoonotic genotypes of the virus through the transport of pigs, pig products and by-products. Bloodborne transmission of the virus has been reported with a significant medical concern. To better coordinate HEV research and design better control measures of HEV infections in animals, a group of HEV experts reviewed the current knowledge on the disease and considered the existing disease control tools. It was concluded that there is a lack of in-depth information about the spread of the virus from pigs to humans. The role of animals other than pigs in the zoonotic transmission of the virus to humans and the extent of foodborne transmission are poorly understood. Factors involved in development of clinical disease such as infectious dose, susceptibility and virulence of virus strains need to be studied more extensively. However, such studies are greatly hindered by the absence of a broadly applicable, efficient and sensitive in vitro cell culture system for HEV. Diagnostic tools for HEV are available but need to be further validated, harmonized and standardized. Commercially available HEV vaccines for the control of HEV infection in animal populations are needed as such vaccines can minimize the zoonotic risk for humans. Anti-HEV drugs for treatment of HEV-infected patients need to be studied more extensively. The detailed expert review can be downloaded from the project website at http://www.discontools.eu/.
Collapse
Affiliation(s)
| | - H R Dalton
- European Centre for Environment and Human Health, University of Exeter, Exeter, UK
| | - R Johne
- German Federal Institute for Risk Assessment (BFR), Berlin, Germany
| | - N Pavio
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Paris, France
| | | | - T Wu
- School of Public Health, Xiamen University, Xiamen, China
| | - N Cook
- Jorvik Food and Environmental Virology Ltd, York, UK
| | - X J Meng
- Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
194
|
An ethanol extract of Lysimachia mauritiana exhibits inhibitory activity against hepatitis E virus genotype 3 replication. J Microbiol 2017; 55:984-988. [PMID: 29214492 DOI: 10.1007/s12275-017-7477-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 12/30/2022]
Abstract
Hepatitis E virus (HEV) is an etiological agent of acute hepatitis E, a self-limiting disease prevalent in developing countries. HEV can cause fulminant hepatic failure with high mortality rates in pregnant women, and genotype 3 is reported to trigger chronic hepatitis in immunocompromised individuals worldwide. Screening of plant extracts for compounds with potential anti-HEV effects led to the identification of a 70% ethanol extract of Lysimachia mauritiana (LME) that interferes with replication of the swine HEV genotype 3 replicon. Furthermore, LME significantly inhibited replication of HEV genotype 3 and expression of HEV ORF2 in infected cells without exerting cytotoxic effects. Collectively, our findings demonstrate the potential utility of LME in the development of novel antiviral drugs against HEV infection.
Collapse
|
195
|
Nan Y, Wu C, Zhao Q, Zhou EM. Zoonotic Hepatitis E Virus: An Ignored Risk for Public Health. Front Microbiol 2017; 8:2396. [PMID: 29255453 PMCID: PMC5723051 DOI: 10.3389/fmicb.2017.02396] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/20/2017] [Indexed: 12/27/2022] Open
Abstract
Hepatitis E virus (HEV) is a quasi-enveloped, single-stranded positive-sense RNA virus. HEV belongs to the family Hepeviridae, a family comprised of highly diverse viruses originating from various species. Since confirmation of HEV's zoonosis, HEV-induced hepatitis has been a public health concern both for developing and developed countries. Meanwhile, the demonstration of a broad host range for zoonotic HEV suggests the existence of a variety of transmission routes that could lead to human infection. Moreover, anti-HEV antibody serosurveillance worldwide demonstrates a higher than expected HEV prevalence rate that conflicts with the rarity and sporadic nature of reported acute hepatitis E cases. In recent years, chronic HEV infection, HEV-related acute hepatic failure, and extrahepatic manifestations caused by HEV infection have been frequently reported. These observations suggest a significant underestimation of the number and complexity of transmission routes previously predicted to cause HEV-related disease, with special emphasis on zoonotic HEV as a public health concern. Significant research has revealed details regarding the virology and infectivity of zoonotic HEV in both humans and animals. In this review, the discovery of HEV zoonosis, recent progress in our understanding of the zoonotic HEV host range, and classification of diverse HEV or HEV-like isolates from various hosts are reviewed in a historic context. Ultimately, this review focuses on current understanding of viral pathogenesis and cross-species transmission of zoonotic HEV. Moreover, host factors and viral determinants influencing HEV host tropism are discussed to provide new insights into HEV transmission and prevalence mechanisms.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Xianyang, China
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Xianyang, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Xianyang, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Xianyang, China
| |
Collapse
|
196
|
Abstract
Background Hepatitis E (HE) caused by Hepatitis E virus (HEV) is an emerging global public health threat. It has been identified as potentially zoonotic and swine act as main reservoirs. Objectives The objective of this study was to determine the seroprevalence and risk factors associated with HEV in swine abattoir workers. Methods This was a cross-sectional study where 45 workers were sampled (N=50), serum collected and tested for presence of anti HEV IgM using ELISA. Results A seroprevalence of 13.3% was obtained with the highest 50% among slaughterers and the lowest amongst sanitary cleaner, cloth cleaners and inspector. Those in direct contact with live pigs, their carcasses and tissues were at a higher risk compared to those in indirect contact. Seroprevalence was seen to increase with age, with the highest rate among those above 24 years. Conclusion There is silent HE virus infection in abattoir workers at Wambizi as reflected by presence anti HEV IgM in 13% of the tested serum. However, no single case of HE has ever been reported in swine abattoir workers or general population in Kampala city. This silent maintenance of HEV infection amongst swine abattoir workers is an occupational risk that could challenge public health systems.
Collapse
|
197
|
Farhat R, Ankavay M, Lebsir N, Gouttenoire J, Jackson CL, Wychowski C, Moradpour D, Dubuisson J, Rouillé Y, Cocquerel L. Identification of GBF1 as a cellular factor required for hepatitis E virus RNA replication. Cell Microbiol 2017; 20. [PMID: 29112323 PMCID: PMC7162332 DOI: 10.1111/cmi.12804] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/23/2022]
Abstract
The hepatitis E virus (HEV) genome is a single‐stranded, positive‐sense RNA that encodes three proteins including the ORF1 replicase. Mechanisms of HEV replication in host cells are unclear, and only a few cellular factors involved in this step have been identified so far. Here, we used brefeldin A (BFA) that blocks the activity of the cellular Arf guanine nucleotide exchange factors GBF1, BIG1, and BIG2, which play a major role in reshuffling of cellular membranes. We showed that BFA inhibits HEV replication in a dose‐dependent manner. The use of siRNA and Golgicide A identified GBF1 as a host factor critically involved in HEV replication. Experiments using cells expressing a mutation in the catalytic domain of GBF1 and overexpression of wild type GBF1 or a BFA‐resistant GBF1 mutant rescuing HEV replication in BFA‐treated cells, confirmed that GBF1 is the only BFA‐sensitive factor required for HEV replication. We demonstrated that GBF1 is likely required for the activity of HEV replication complexes. However, GBF1 does not colocalise with the ORF1 protein, and its subcellular distribution is unmodified upon infection or overexpression of viral proteins, indicating that GBF1 is likely not recruited to replication sites. Together, our results suggest that HEV replication involves GBF1‐regulated mechanisms.
Collapse
Affiliation(s)
- Rayan Farhat
- Pasteur Institute of Lille, U1019-UMR 8204-CIIL- Center for Infection and Immunity of Lille, University of Lille, CNRS, INSERM, CHU Lille, Lille, France
| | - Maliki Ankavay
- Pasteur Institute of Lille, U1019-UMR 8204-CIIL- Center for Infection and Immunity of Lille, University of Lille, CNRS, INSERM, CHU Lille, Lille, France
| | - Nadjet Lebsir
- Pasteur Institute of Lille, U1019-UMR 8204-CIIL- Center for Infection and Immunity of Lille, University of Lille, CNRS, INSERM, CHU Lille, Lille, France
| | - Jérôme Gouttenoire
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Catherine L Jackson
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Czeslaw Wychowski
- Pasteur Institute of Lille, U1019-UMR 8204-CIIL- Center for Infection and Immunity of Lille, University of Lille, CNRS, INSERM, CHU Lille, Lille, France
| | - Darius Moradpour
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Jean Dubuisson
- Pasteur Institute of Lille, U1019-UMR 8204-CIIL- Center for Infection and Immunity of Lille, University of Lille, CNRS, INSERM, CHU Lille, Lille, France
| | - Yves Rouillé
- Pasteur Institute of Lille, U1019-UMR 8204-CIIL- Center for Infection and Immunity of Lille, University of Lille, CNRS, INSERM, CHU Lille, Lille, France
| | - Laurence Cocquerel
- Pasteur Institute of Lille, U1019-UMR 8204-CIIL- Center for Infection and Immunity of Lille, University of Lille, CNRS, INSERM, CHU Lille, Lille, France
| |
Collapse
|
198
|
Characterization of the Quasi-Enveloped Hepatitis E Virus Particles Released by the Cellular Exosomal Pathway. J Virol 2017; 91:JVI.00822-17. [PMID: 28878075 DOI: 10.1128/jvi.00822-17] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/21/2017] [Indexed: 12/30/2022] Open
Abstract
Our previous studies demonstrated that membrane-associated hepatitis E virus (HEV) particles-now considered "quasi-enveloped particles"-are present in the multivesicular body with intraluminal vesicles (exosomes) in infected cells and that the release of HEV virions is related to the exosomal pathway. In this study, we characterized exosomes purified from the culture supernatants of HEV-infected PLC/PRF/5 cells. Purified CD63-, CD9-, or CD81-positive exosomes derived from the culture supernatants of HEV-infected cells that had been cultivated in serum-free medium were found to contain HEV RNA and the viral capsid (ORF2) and ORF3 proteins, as determined by reverse transcription-PCR (RT-PCR) and Western blotting, respectively. Furthermore, immunoelectron microscopy, with or without prior detergent and protease treatment, revealed the presence of virus-like particles in the exosome fraction. These particles were 39.6 ± 1.0 nm in diameter and were covered with a lipid membrane. After treatment with detergent and protease, the diameter of these virus-like particles was 26.9 ± 0.9 nm, and the treated particles became accessible with an anti-HEV ORF2 monoclonal antibody (MAb). The HEV particles in the exosome fraction were capable of infecting naive PLC/PRF/5 cells but were not neutralized by an anti-HEV ORF2 MAb which efficiently neutralizes nonenveloped HEV particles in cell culture. These results indicate that the membrane-wrapped HEV particles released by the exosomal pathway are copurified with the exosomes in the exosome fraction and suggest that the capsids of HEV particles are individually covered by lipid membranes resembling those of exosomes, similar to enveloped viruses.IMPORTANCE Hepatitis E, caused by HEV, is an important infectious disease that is spreading worldwide. HEV infection can cause acute or fulminant hepatitis and can become chronic in immunocompromised hosts, including patients after organ transplantation. The HEV particles present in feces and bile are nonenveloped, while those in circulating blood and culture supernatants are covered with a cellular membrane, similar to enveloped viruses. Furthermore, these membrane-associated and -unassociated HEV particles can be propagated in cultured cells. The significance of our research is that the capsids of HEV particles are individually covered by a lipid membrane that resembles the membrane of exosomes, similar to enveloped viruses, and are released from infected cells via the exosomal pathway. These data will help to elucidate the entry mechanisms and receptors for HEV infection in the future. This is the first report to characterize the detailed morphological features of membrane-associated HEV particles.
Collapse
|
199
|
Tsatsralt-Od B, Primadharsini PP, Nishizawa T, Ohnishi H, Nagashima S, Takahashi M, Jirintai S, Nyamkhuu D, Okamoto H. Distinct changing profiles of hepatitis A and E virus infection among patients with acute hepatitis in Mongolia: The first report of the full genome sequence of a novel genotype 1 hepatitis E virus strain. J Med Virol 2017; 90:84-92. [PMID: 28776712 DOI: 10.1002/jmv.24907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/14/2017] [Indexed: 12/16/2022]
Abstract
In January 2012, Mongolia started a hepatitis A vaccination program, which has not yet been evaluated. The first occurrence of autochthonous acute hepatitis E in 2013, caused by genotype 4 hepatitis E virus (HEV), suggests the need for a routine study to monitor its prevalence. One hundred fifty-four consecutive patients who were clinically diagnosed with acute hepatitis between 2014 and 2015 in Ulaanbaatar, Mongolia were studied. By serological and molecular testing followed by sequencing and phylogenetic analysis, only one patient (0.6%) was diagnosed with acute hepatitis A, caused by genotype IA hepatitis A virus (HAV), and 32 (20.8%) patients were diagnosed with acute hepatitis E, caused by genotype 1 HEV. The 32 HEV isolates obtained in this study shared 99.5-100% nucleotide identity and were grouped into a cluster separated from those of subtypes 1a to 1f. Upon comparison of p-distances over the entire genome, the distances between one representative HEV isolate (MNE15-072) and 1a-1f strains were 0.071-0.137, while those between 1b and 1c were 0.062-0.070. In conclusion, the prevalence of acute hepatitis A has decreased in Mongolia since the start of the vaccination program, while the monophyletic genotype 1 HEV strain of a probably novel subtype has been prevalent.
Collapse
Affiliation(s)
- Bira Tsatsralt-Od
- National Center for Communicable Diseases, Ministry of Health, NCCD-Campus, Ulaanbaatar, Mongolia
| | - Putu Prathiwi Primadharsini
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Tsutomu Nishizawa
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Hiroshi Ohnishi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Suljid Jirintai
- Division of Pathology, Department of Basic Veterinary Medicine, Inner Mongolia Agricultural University College of Veterinary Medicine, Hohhot, Inner Mongolia, China
| | - Dulmaa Nyamkhuu
- National Center for Communicable Diseases, Ministry of Health, NCCD-Campus, Ulaanbaatar, Mongolia
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| |
Collapse
|
200
|
Nishizawa T, Primadharsini PP, Namikawa M, Yamazaki Y, Uraki S, Okano H, Horiike S, Nakano T, Takaki S, Kawakami M, Nagashima S, Takahashi M, Okamoto H. Full-length genomic sequences of new subtype 1g hepatitis E virus strains obtained from four patients with imported or autochthonous acute hepatitis E in Japan. INFECTION GENETICS AND EVOLUTION 2017; 55:343-349. [PMID: 28987806 DOI: 10.1016/j.meegid.2017.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/16/2017] [Accepted: 10/04/2017] [Indexed: 12/27/2022]
Abstract
Hepatitis E virus (HEV) causes acute or chronic hepatitis in humans worldwide and can be transmitted via the fecal-oral route. Four HEV strains (HE-JA14-2173, HE-JA15-1335, HE-JA15-1920 and HE-JA16-0610) obtained from patients with imported (from Pakistan or India) or autochthonous acute hepatitis E in Japan were most closely related to the Nepalese and Mongolian genotype 1 HEV strains of unassigned subtype within the partial ORF2 sequence. To investigate whether a putative novel subtype (1g) of genotype 1 can be assigned, full-length genomic sequences were determined for the four HEV strains. They shared 95.4-99.2% nucleotide identity over the entire genome, and differed by 6.3-11.7% from the reported HEV strains of subtypes 1a-1f and by only 0.6-4.7% from a Mongolian genotype 1 HEV strain (MNE15-072) of unassigned subtype. A phylogenetic analysis showed that the four HEV strains obtained in the present study formed a cluster with MNE15-072, with a bootstrap value of 100%. Although the p-distance between subtypes 1a and 1f was 0.048-0.083, these five strains showed a higher nucleotide p-distance value of 0.068-0.138 with the genotype 1 HEV strains of subtypes 1a-1f. A BLAST search revealed the presence of candidate members of subtype 1g HEV in at least five other countries, including France, Israel, the Netherlands, Portugal, and the UK, sharing identities of 95.4-99.6% with the HE-JA16-0610 strain within the common sequence of 294-867 nucleotides. These results support the assignment of a new subtype 1g within genotype 1 and suggest a global distribution of subtype 1g strains. Subtype 1g strains found in Europe can be imported from Asia. Further studies are needed to confirm the global distribution of HEV subtype 1g.
Collapse
Affiliation(s)
- Tsutomu Nishizawa
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan
| | - Putu Prathiwi Primadharsini
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan
| | - Masashi Namikawa
- Department of Internal Medicine, Kiryu Kosei General Hospital, Kiryu, Gunma 376-0024, Japan
| | - Yuichi Yamazaki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Satoko Uraki
- Department of Gastroenterology and Hepatology, Mie University School of Medicine, Tsu, Mie 514-8507, Japan; Department of Internal Medicine, Sakakibara Onsen Hospital, Tsu, Mie 514-1293, Japan
| | - Hiroshi Okano
- Department of Gastroenterology, Suzuka General Hospital, Suzuka, Mie 513-8630, Japan
| | - Shinichiro Horiike
- Department of Internal Medicine, Suzuka Kaisei Hospital, Suzuka, Mie 513-8505, Japan
| | - Tatsunori Nakano
- Department of Internal Medicine, Fujita Health University Nanakuri Memorial Hospital, Tsu, Mie 514-1295, Japan
| | - Shintaro Takaki
- Department of Gastroenterology/Liver Center, Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, Hiroshima 730-8619, Japan
| | - Manri Kawakami
- Department of Internal Medicine/Liver Disease Center, Okayama Saiseikai General Hospital, Okayama, Okayama 700-8511, Japan
| | - Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan
| | - Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan.
| |
Collapse
|