151
|
Abstract
Glutathione metabolism and its role in vital functions of bacterial cells are considered, as well as common features and differences between the functions of glutathione in prokaryotic and eukaryotic cells. Particular attention is given to the recent data for the role of glutathione in bacterial redox-regulation and adaptation to stresses.
Collapse
Affiliation(s)
- G V Smirnova
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences, Perm, 614081, Russia.
| | | |
Collapse
|
152
|
Porras P, Padilla CA, Krayl M, Voos W, Bárcena JA. One Single In-frame AUG Codon Is Responsible for a Diversity of Subcellular Localizations of Glutaredoxin 2 in Saccharomyces cerevisiae. J Biol Chem 2006; 281:16551-62. [PMID: 16606613 DOI: 10.1074/jbc.m600790200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutaredoxins belong to a family of small proteins with glutathione-dependent disulfide oxidoreductase activity involved in cellular defense against oxidative stress. The product of the yeast GRX2 gene is a protein that is localized both in the cytosol and mitochondria. To throw light onto the mechanism responsible for the dual subcellular distribution of Grx2 we analyzed mutant constructs containing different targeting information. By altering amino acid residues around the two in-frame translation initiation start sites of the GRX2 gene, we could demonstrate that the cytosolic isoform of Grx2 was synthesized from the second AUG, lacking an N-terminal extension. Translation from the first AUG resulted in a long isoform carrying a mitochondrial targeting presequence. The mitochondrial targeting properties of the presequence and the influence of the mature part of Grx2 were analyzed by the characterization of the import kinetics of specific fusion proteins. Import of the mitochondrial isoform is relatively inefficient and results in the accumulation of a substantial amount of unprocessed form in the mitochondrial outer membrane. Substitution of Met(35), the second translation start site, to Val resulted in an exclusive targeting to the mitochondrial matrix. Our results show that a plethora of Grx2 subcellular localizations could spread its antioxidant functions all over the cell, but one single A to G [corrected] mutation converts Grx2 into a typical protein of the mitochondrial matrix. The "A" denotes adenine, rather than alanine, and the "G" refers to guanine, not glycine [corrected]
Collapse
Affiliation(s)
- Pablo Porras
- Department of Biochemistry and Molecular Biology, University of Córdoba, 14071 Córdoba, Spain
| | | | | | | | | |
Collapse
|
153
|
Yegorova S, Yegorov O, Lou MF. Thioredoxin induced antioxidant gene expressions in human lens epithelial cells. Exp Eye Res 2006; 83:783-92. [PMID: 16712839 DOI: 10.1016/j.exer.2006.03.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Revised: 03/11/2006] [Accepted: 03/27/2006] [Indexed: 11/26/2022]
Abstract
Thioredoxin (Trx) is one of the major redox-regulating proteins. It catalyzes dithiol/disulfide exchange reactions and displays many unique intracellular and extracellular activities thereby controlling multiple mammalian cell functions. In the present study we examine the effect of exogenous Trx on the expression of several antioxidant genes in human lens epithelial (HLE B3) cells. mRNA levels for gene expression were monitored by RT-PCR and real-time PCR while protein levels were measured by western blot analysis. We have found that recombinant human Trx (hTrx)-treated HLE B3 cells have a simultaneous increase in mRNA expressions of mitochondrial manganese superoxide dismutase (MnSOD), thioltranferase 1 (TTase 1) or glutaredoxin 1 (Grx1), mitochondrial thioltransferase (TTase 2) or glutaredoxin 2 (Grx2), and thioredoxin peroxidase IV (Prx IV). The increased MnSOD and TTase 1 mRNA expressions were accompanied with their respective increases in protein levels. Other antioxidant genes, including Cu/ZnSOD, catalase, glutathione peroxidase 1 (GPx1), thioredoxin reductase 1 (TrxR1), thioredoxin peroxidase III (Prx III), and gamma-glutamyl cysteine synthetase were not affected. The ability of Trx to induce selectively these antioxidant genes in the absence of oxidative stress suggest a cytokine/growth factor-like new physiological role of hTrx in HLE B3 cells. Our data also provide evidence of a strong antioxidant defense system in HLE B3 cells that can be activated by extracellular hTrx, as well as of a possible link between the thioredoxin (Trx) and glutathione (GSH) redox regulating systems in these cells.
Collapse
Affiliation(s)
- Svitlana Yegorova
- Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, 134 VBS, Fair St./East Campus Loop, 68583-0905, USA
| | | | | |
Collapse
|
154
|
Abstract
The mitochondrion houses a variety of redox pathways, utilized for protection from oxidative damage and assembly of the organelle. The glutathione/glutaredoxin and thioredoxin systems function in the mitochondrial matrix. The intermembrane space is protected from oxidative damage via superoxide dismutase and glutathione. Subunits in the cytochrome bc (1) complex utilize disulfide bonds for enzymatic activity, whereas cytochrome oxidase relies on disulfide linkages for copper acquisition. A redox pathway (Mia40p and Erv1p) mediates the import of intermembrane space proteins such as the small Tim proteins, Cox17p, and Cox19p, which have disulfide bonds. Many of the candidate proteins with disulfide bridges possess a twin CX3C motif or CX9C motif and utilize both metal binding and disulfide linkages for function. It may seem surprising that the intermembrane space has developed redox pathways, considering that the buffered environment should be reducing like the cytosol. However, the prokaryotic origin of the mitochondrion suggests that the intermembrane space may be akin to the oxidative environment of the bacterial periplasm. Although the players forming disulfide bonds are not conserved between mitochondria and prokaryotes, the mitochondrion may have maintained redox chemistry as an assembly mechanism in the intermembrane space for the import of proteins and metals and enzymatic activity.
Collapse
Affiliation(s)
- Carla M Koehler
- Department of Chemistry and Biochemistry, Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095-1569, USA.
| | | | | |
Collapse
|
155
|
May JM, Qu ZC, Nelson DJ. Cellular disulfide-reducing capacity: an integrated measure of cell redox capacity. Biochem Biophys Res Commun 2006; 344:1352-9. [PMID: 16650819 DOI: 10.1016/j.bbrc.2006.04.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 04/08/2006] [Indexed: 11/17/2022]
Abstract
To assess the disulfide reduction capacity of intact cells, EA.hy926 endothelial cells were incubated with alpha-lipoic acid in the presence of 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB). Alpha-lipoic acid was reduced within cells to dihydrolipoic acid, which could be quantified upon efflux from the cells as reduction of DTNB. Uptake of both alpha-lipoic acid and alpha-lipoamide occurred at least in part via a medium chain fatty acid transporter, based on inhibition by octanoate. Alpha-lipoic acid was reduced within cells by pyridine nucleotide-disulfide oxidoreductases, since it is not reduced by GSH and since its reduction was inhibited by carmustine. Nonetheless, reduction was also dependent on the cellular redox environment, since it was inhibited by the redox cycling of menadione, by decreasing intracellular GSH, and by reduction of dehydroascorbate. Together, these results show that alpha-lipoic acid-dependent DTNB reduction provides a simple method to assess the disulfide-reducing capacity of intact cells, especially as determined by pyridine nucleotide-disulfide oxidoreductases.
Collapse
Affiliation(s)
- James M May
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | |
Collapse
|
156
|
Shi T, Spain SM, Rabenstein DL. A Striking Periodicity of thecis/trans Isomerization of Proline Imide Bonds in Cyclic Disulfide-Bridged Peptides. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200503470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
157
|
Shi T, Spain SM, Rabenstein DL. A Striking Periodicity of thecis/trans Isomerization of Proline Imide Bonds in Cyclic Disulfide-Bridged Peptides. Angew Chem Int Ed Engl 2006; 45:1780-3. [PMID: 16470897 DOI: 10.1002/anie.200503470] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tiesheng Shi
- Department of Chemistry, University of California, Riverside, 92521, USA
| | | | | |
Collapse
|
158
|
Whitbread AK, Masoumi A, Tetlow N, Schmuck E, Coggan M, Board PG. Characterization of the omega class of glutathione transferases. Methods Enzymol 2006; 401:78-99. [PMID: 16399380 DOI: 10.1016/s0076-6879(05)01005-0] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Omega class of cytosolic glutathione transferases was initially recognized by bioinformatic analysis of human sequence databases, and orthologous sequences were subsequently discovered in mouse, rat, pig, Caenorhabditis elegans, Schistosoma mansoni, and Drosophila melanogaster. In humans and mice, two GSTO genes have been recognized and their genetic structures and expression patterns identified. In both species, GSTO1 mRNA is expressed in liver and heart as well as a range of other tissues. GSTO2 is expressed predominantly in the testis, although moderate levels of expression are seen in other tissues. Extensive immunohistochemistry of rat and human tissue sections has demonstrated cellular and subcellular specificity in the expression of GSTO1-1. The crystal structure of recombinant human GSTO1-1 has been determined, and it adopts the canonical GST fold. A cysteine residue in place of the catalytic tyrosine or serine residues found in other GSTs was shown to form a mixed disulfide with glutathione. Omega class GSTs have dehydroascorbate reductase and thioltransferase activities and also catalyze the reduction of monomethylarsonate, an intermediate in the pathway of arsenic biotransformation. Other diverse actions of human GSTO1-1 include modulation of ryanodine receptors and interaction with cytokine release inhibitory drugs. In addition, GSTO1 has been linked to the age at onset of both Alzheimer's and Parkinson's diseases. Several polymorphisms have been identified in the coding regions of the human GSTO1 and GSTO2 genes. Our laboratory has expressed recombinant human GSTO1-1 and GSTO2-2 proteins, as well as a number of polymorphic variants. The expression and purification of these proteins and determination of their enzymatic activity is described.
Collapse
Affiliation(s)
- Astrid K Whitbread
- School of Life Sciences, Queensland University of Technology, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
159
|
Abstract
The Trx (thioredoxin) and Grx (glutaredoxin) systems control cellular redox potential, keeping a reducing thiol-rich intracellular state, which on generation of reactive oxygen species signals through thiol redox control mechanisms. Here, we give a brief overview of the human Trx and Grx systems. The main part focuses on our current knowledge about mitochondrial Grx2, which facilitates mitochondrial redox homoeostasis during oxidative stress-induced apoptosis.
Collapse
|
160
|
Abstract
Protein cysteines can undergo various forms of oxidation, some of them reversible (disulphide formation, glutathionylation and S-nitrosylation). While in the past these were viewed as protein damage in the context of oxidative stress, there is growing interest in oxidoreduction of protein thiols/disulphides as a regulatory mechanism. This review discusses the evolution of the concept of redox regulation from that of oxidative stress and the redox state of protein cysteines in different cellular compartments.
Collapse
|
161
|
Schmuck EM, Board PG, Whitbread AK, Tetlow N, Cavanaugh JA, Blackburn AC, Masoumi A. Characterization of the monomethylarsonate reductase and dehydroascorbate reductase activities of Omega class glutathione transferase variants: implications for arsenic metabolism and the age-at-onset of Alzheimer's and Parkinson's diseases. Pharmacogenet Genomics 2005; 15:493-501. [PMID: 15970797 DOI: 10.1097/01.fpc.0000165725.81559.e3] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There are two functional Omega class glutathione transferase (GST) genes in humans. GSTO1 is polymorphic with several coding region alleles, including an A140D substitution, a potential deletion of E155 and an E208K substitution. GSTO2 is also polymorphic with an N142D substitution in the coding region. We investigated the effect of these variations on the enzyme's thioltransferase, dehydroascorbate reductase, monomethylarsonate reductase and dimethylarsonate reductase activities. Variant proteins were expressed in Escherichia coli and purified by Ni-agarose affinity chromatography. GSTO2-2 was insoluble and had to be dissolved and refolded from 8 M urea. The A140D and E208K substitutions in GSTO1-1 did not alter specific activity. The deletion of E155 caused a two- to three-fold increase in the specific activity with each substrate. This deletion also caused a significant decrease in the enzyme's heat stability. The E155 deletion has been linked to abnormal arsenic excretion patterns; however, the available data do not clearly identify the cause of this abnormality. We found that GSTO2-2 has activity with the same substrates as GSTO1-1, and the dehydroascorbate reductase activity of GSTO2-2 is approximately 70-100-fold higher than that of GSTO1-1. The polymorphic N142D substitution had no effect on the specific activity of the enzyme with any substrate. The most notable feature of GSTO2-2 was its very high dehydroascorbate reductase activity, which suggests that GSTO2-2 may significantly protect against oxidative stress by recycling ascorbate. A defect in ascorbate metabolism may provide a common mechanism by which the Omega class GSTs influence the age-at-onset of Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Erica M Schmuck
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | | | | | | | | | | |
Collapse
|
162
|
Trotter EW, Grant CM. Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae. EUKARYOTIC CELL 2005; 4:392-400. [PMID: 15701801 PMCID: PMC549330 DOI: 10.1128/ec.4.2.392-400.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Thioredoxins are small, highly conserved oxidoreductases which are required to maintain the redox homeostasis of the cell. Saccharomyces cerevisiae contains a cytoplasmic thioredoxin system (TRX1, TRX2, and TRR1) as well as a complete mitochondrial thioredoxin system, comprising a thioredoxin (TRX3) and a thioredoxin reductase (TRR2). In the present study we have analyzed the functional overlap between the two systems. By constructing mutant strains with deletions of both the mitochondrial and cytoplasmic systems (trr1 trr2 and trx1 trx2 trx3), we show that cells can survive in the absence of both systems. Analysis of the redox state of the cytoplasmic thioredoxins reveals that they are maintained independently of the mitochondrial system. Similarly, analysis of the redox state of Trx3 reveals that it is maintained in the reduced form in wild-type cells and in mutants lacking components of the cytoplasmic thioredoxin system (trx1 trx2 or trr1). Surprisingly, the redox state of Trx3 is also unaffected by the loss of the mitochondrial thioredoxin reductase (trr2) and is largely maintained in the reduced form unless cells are exposed to an oxidative stress. Since glutathione reductase (Glr1) has been shown to colocalize to the cytoplasm and mitochondria, we examined whether loss of GLR1 influences the redox state of Trx3. During normal growth conditions, deletion of TRR2 and GLR1 was found to result in partial oxidation of Trx3, indicating that both Trr2 and Glr1 are required to maintain the redox state of Trx3. The oxidation of Trx3 in this double mutant is even more pronounced during oxidative stress or respiratory growth conditions. Taken together, these data indicate that Glr1 and Trr2 have an overlapping function in the mitochondria.
Collapse
Affiliation(s)
- Eleanor W Trotter
- The Faculty of Life Sciences, The University of Manchester, Manchester M60 1QD, United Kingdom
| | | |
Collapse
|
163
|
Abstract
The main function of reduced glutathione (GSH) is to protect from oxidative stress as a reactive oxygen scavenger. However, in the context of redox regulation, the ratio between GSH and its oxidized form (GSSG) determines the redox state of redox-sensitive cysteines in some proteins and, thus, acts as a signaling system. While GSH/GSSG can catalyze oxido-reduction of intra- and inter-chain disulfides by thiol-disulfide exchange, this review focuses on the formation of mixed disulfides between glutathione and proteins, also known as glutathionylation. The review discusses the regulatory role of this post-translational modification and the role of protein disulfide oxidoreductases (thioredoxin/thioredoxin reductase, glutaredoxin, protein disulfide isomerase) in the reversibility of this process.
Collapse
|
164
|
Ghezzi P, Bonetto V, Fratelli M. Thiol-disulfide balance: from the concept of oxidative stress to that of redox regulation. Antioxid Redox Signal 2005; 7:964-72. [PMID: 15998251 DOI: 10.1089/ars.2005.7.964] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Originally, small thiols, including glutathione, were viewed as protective antioxidants, acting as free radical scavengers in the context of oxidative damage. Recently, there is a growing literature showing that protein glutathionylation (formation of protein-glutathione mixed disulfides) and other forms of cysteine oxidation may be a means of redox regulation under physiological conditions. This review discusses the importance of protein oxidation in redox regulation in view of the recent data originating from the application of redox proteomics to identify redox-sensitive targets.
Collapse
Affiliation(s)
- Pietro Ghezzi
- Mario Negri Institute for Pharmacological Research, Milan, Italy.
| | | | | |
Collapse
|
165
|
Li M, Huang W, Yang Q, Liu X, Wu Q. Expression and oxidative stress tolerance studies of glutaredoxin from cyanobacterium Synechocystis sp. PCC 6803 in Escherichia coli. Protein Expr Purif 2005; 42:85-91. [PMID: 15882949 DOI: 10.1016/j.pep.2005.03.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2005] [Revised: 03/24/2005] [Accepted: 03/28/2005] [Indexed: 11/28/2022]
Abstract
Glutaredoxin (Grx), which has been found widely in bacteria, plant, and mammalian cells, is an electron carrier for ribonucleotide reductase and a general glutathione-disulfide reductase of importance for redox regulation. The open reading frame designated ssr2061 from cyanobacterium Synechocystis sp. PCC 6803 was found as a homologous gene coding for Grx. The amino acid sequence deduced from ssr2061 shares high identity with that of Grxs from other organisms. In the present study, the protein of Grx2061 encoded by ssr2061 was successfully overexpressed as soluble fraction in Escherichia coli BL21 (DE3). The recombinant protein was purified to near homogenity by two steps involving immobilized metal affinity chromatography and gel filtration chromatography with a yield of 22% and a specific activity of 41.5 micromol NADPH oxidized per milligram of protein in the 2-hydroxyethyl disulfide assay. The pET-2061 transformed Escherichia coli cells showed higher Grx activity and tolerance to H(2)O(2) mediated growth inhibition compared to cells transformed with the vector alone. This suggests that overexpression of Grx from Synechocystis sp. PCC 6803 may provide protection to E. coli cells against oxidative stress mediated by H(2)O(2).
Collapse
Affiliation(s)
- Min Li
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, PR China
| | | | | | | | | |
Collapse
|
166
|
Chung WH, Kim KD, Roe JH. Localization and function of three monothiol glutaredoxins in Schizosaccharomyces pombe. Biochem Biophys Res Commun 2005; 330:604-10. [PMID: 15796926 DOI: 10.1016/j.bbrc.2005.02.183] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2005] [Indexed: 11/26/2022]
Abstract
The fission yeast Schizosaccharomyces pombe contains two dithiol glutaredoxins (Grx1 and Grx2) and genes for three putative monothiol glutaredoxins (grx3, 4, and 5). We investigated the expression, sub-cellular localization, and functions of the three monothiol glutaredoxins. Fluorescence microscopy revealed that Grx3 is targeted to nuclear rim and endoplasmic reticulum, Grx4 primarily to the nucleus, and Grx5 to mitochondria. Null mutation of grx3 did not significantly affect growth and resistance against various oxidants, whereas grx5 mutation caused slow growth and sensitivity toward oxidants such as hydrogen peroxide, paraquat, and diamide. The grx2grx5 double mutation, deficient in all mitochondrial glutaredoxins, caused further retardation in growth and severe sensitivity toward all the oxidants tested. The grx4 mutation was not viable, suggesting a critical role of Grx4 for the physiology of S. pombe. Overproduction of Grx3 and Grx5, but not the truncated form of Grx5 without mitochondrial target sequence, severely retarded growth as Grx2 did, supporting the idea that Grx2, 3, and 5 are targeted to organellar compartments. Our results propose a distinct role for each glutaredoxin to maintain thiol redox balance, and hence the growth and stress resistance, of the fission yeast.
Collapse
Affiliation(s)
- Woo-Hyun Chung
- Laboratory of Molecular Microbiology, School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | |
Collapse
|
167
|
Lillig CH, Berndt C, Vergnolle O, Lönn ME, Hudemann C, Bill E, Holmgren A. Characterization of human glutaredoxin 2 as iron-sulfur protein: a possible role as redox sensor. Proc Natl Acad Sci U S A 2005; 102:8168-73. [PMID: 15917333 PMCID: PMC1149418 DOI: 10.1073/pnas.0500735102] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human mitochondrial glutaredoxin 2 (Grx2) is a glutathione-dependent oxidoreductase (active site: Cys-Ser-Tyr-Cys) that facilitates the maintenance of mitochondrial redox homeostasis upon induction of apoptosis by oxidative stress. Here, we have characterized Grx2 as an iron-sulfur center-containing member of the thioredoxin fold protein family. Mossbauer spectroscopy revealed the presence of a four cysteine-coordinated nonoxidizable [2Fe-2S]2+ cluster that bridges two Grx2 molecules via two structural Cys residues to form dimeric holo Grx2. Coimmunoprecipitation of radiolabeled iron with Grx2 from human cell lines indicated the presence of the cluster in vivo. The [2Fe-2S]-bridged dimer was enzymatically inactive, but degradation of the cluster and the resulting monomerization of Grx2 activated the protein. Slow degradation under aerobic conditions was prevented by the presence of glutathione, whereas glutathione disulfide as well as one-electron oxidants or reductants promoted monomerization of Grx2. We propose that the iron-sulfur cluster serves as a redox sensor for the activation of Grx2 during conditions of oxidative stress when free radicals are formed and the glutathione pool becomes oxidized.
Collapse
Affiliation(s)
- Christopher Horst Lillig
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
168
|
Rice KP, Penketh PG, Shyam K, Sartorelli AC. Differential inhibition of cellular glutathione reductase activity by isocyanates generated from the antitumor prodrugs Cloretazine™ and BCNU. Biochem Pharmacol 2005; 69:1463-72. [PMID: 15857610 DOI: 10.1016/j.bcp.2005.02.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 02/11/2005] [Indexed: 11/30/2022]
Abstract
The antitumor, DNA-alkylating agent 1,3-bis[2-chloroethyl]-2-nitrosourea (BCNU; Carmustine), which generates 2-chloroethyl isocyanate upon decomposition in situ, inhibits cellular glutathione reductase (GR; EC 1.8.1.7) activity by up to 90% at pharmacological doses. GR is susceptible to attack from exogenous electrophiles, particularly carbamoylation from alkyl isocyanates, rendering the enzyme unable to catalyze the reduction of oxidized glutathione. Evidence implicates inhibition of GR as a cause of the pulmonary toxicity often seen in high-dose BCNU-treated animals and human cancer patients. Herein we demonstrate that the prodrug Cloretazine (1,2-bis[methylsulfonyl]-1-[2-chloroethyl]-2-[(methylamino)carbonyl]hydrazine; VNP40101M), which yields methyl isocyanate and chloroethylating species upon activation, did not produce similar inhibition of cellular GR activity, despite BCNU and Cloretazine being equally potent inhibitors of purified human GR (IC(50) values of 55.5 microM and 54.6 microM, respectively). Human erythrocytes, following exposure to 50 microM BCNU for 1h at 37 degrees C, had an 84% decrease in GR activity, whereas 50 microM Cloretazine caused less than 1% inhibition under the same conditions. Similar results were found using L1210 murine leukemia cells. The disparity between these compounds remained when cells were lysed prior to drug exposure and were partially recapitulated using purified enzyme when 1mM reduced glutathione was included during the drug exposure. The superior antineoplastic potential of Cloretazine compared to BCNU in animal models could be attributed in part to the contribution of the methyl isocyanate, which is synergistic with the co-generated cytotoxic alkylating species, while at the same time unable to significantly inhibit cellular GR.
Collapse
Affiliation(s)
- Kevin P Rice
- Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
169
|
Kim HG, Kim JH, Kim BC, Park EH, Lim CJ. Carbon source-dependent regulation of a second gene encoding glutaredoxin from the fission yeast Schizosaccharomyces pombe. Mol Biol Rep 2005; 32:15-24. [PMID: 15865206 DOI: 10.1007/s11033-004-3213-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Glutaredoxin (Grx), also known as thioltransferase (TTase), is an enzyme that catalyzes the reduction of a variety of disulfide compounds, including protein disulfides, in the presence of reduced glutathione. A second gene encoding Grx (Grx2) was cloned from the chromosomal DNA of the fission yeast Schizosaccharomyces pombe. The determined DNA sequence contains 1645 bp which is able to encode a polypeptide of 110 amino acids with a molecular mass of 12.2 kDa. The genomic DNA consists of 4 exons and 3 introns. The isolated gene was found to produce functional glutaredoxin that could accelerate the growth of the fission yeast, and is highly expressed at the mid- and late exponential phases. Aluminum, cadmium and hydrogen peroxide marginally enhanced the synthesis of beta-galactosidase from the Grx2-lacZ fusion gene. Shifts to lower concentrations (0.2, 0.4 or 0.8%) of D-glucose significantly enhanced the synthesis of beta-galactosidase from the Grx2-lacZ fusion gene. And shifts to sucrose (0.2, 0.4, 0.8 or 1.6%) as a sole carbon source markedly enhanced the synthesis of beta-galactosidase from the Grx2-lacZ fusion gene, the degree of which was inversely dependent on concentration. However, nonfermentable carbon sources reduced the expression of the Grx2 gene due to their growth arrest. The transcription factor Pap1 is not involved in the basal expression and induction of the Grx2 gene. The Grx2 protein was subcellularly localized in the nucleus of the yeast cells. Our results indicate that the Grx2 protein, located in the nucleus, is linked with the yeast growth, and that the gene is regulated by carbon sources.
Collapse
Affiliation(s)
- Hong-Gyum Kim
- Division of Life Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Korea
| | | | | | | | | |
Collapse
|
170
|
Abstract
Glutaredoxin-like proteins form a new subgroup of glutaredoxins with a serine replacing the second cysteine in the CxxC-motif of the active site. Yeast Grx5 is the only glutaredoxin-like protein studied biochemically so far. We identified and cloned three genes encoding glutaredoxin-like proteins from the malaria parasite Plasmodium falciparum (Pf Glp1, Pf Glp2, and Pf Glp3) containing a conserved cysteine in the CGFS-, CKFS-, and CKYS-motif, respectively. Here, we describe biochemical properties of Pf Glp1 and Pf Glp2. Cys 99, the only cysteine residue in Pf Glp1, has a pK(a) value as low as 5.5 and is able to mediate covalent homodimerization. Monomeric and dimeric Pf Glp1 react with GSSG and GSH, respectively. Pf Glp2 is monomeric and both of its cysteine residues can be glutathionylated. Molecular models reveal a thioredoxin fold for the putative C-terminal domain of Pf Glp1, Pf Glp2, and Pf Glp3, as well as conserved residues presumably required for glutathione binding. However, Pf Glp1 and Pf Glp2 neither possess activity in a classical glutaredoxin assay nor display activity as glutathione peroxidase or glutathione S-transferase. Mutation of Ser 102 in the CGFS-motif of Pf Glp1 to cysteine did not generate glutaredoxin activity either. We conclude that, despite their ability to react with glutathione, glutaredoxin-like proteins are a mechanistically and functionally heterogeneous group with only little similarities to canonical glutaredoxins.
Collapse
Affiliation(s)
- Marcel Deponte
- Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | | | | |
Collapse
|
171
|
Landino LM, Robinson SH, Skreslet TE, Cabral DM. Redox modulation of tau and microtubule-associated protein-2 by the glutathione/glutaredoxin reductase system. Biochem Biophys Res Commun 2004; 323:112-7. [PMID: 15351709 DOI: 10.1016/j.bbrc.2004.08.065] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Indexed: 11/30/2022]
Abstract
Alterations in the redox status of proteins have been implicated in the pathology of several neurodegenerative diseases including Alzheimer's and Parkinson's. We report that peroxynitrite and H2O2-induced disulfides in the porcine brain microtubule-associated proteins tau and microtubule-associated protein-2 are substrates for the glutaredoxin reductase system composed of glutathione reductase, human or Escherichia coli glutaredoxin, reduced glutathione, and NADPH. Oxidation and reduction of cysteines in tau and microtubule-associated protein-2 were quantitated by monitoring the incorporation of 5-iodoacetamido-fluorescein, a thiol-specific labeling reagent. Reduction of disulfide bonds in the microtubule-associated proteins by the glutaredoxin reductase system restored their ability to promote the assembly of microtubules composed of purified porcine tubulin. Thiol-disulfide exchange between oxidized glutathione and the microtubule-associated proteins was detected by monitoring protein oxidation and was quantitated by measuring reduced glutathione by HPLC.
Collapse
Affiliation(s)
- Lisa M Landino
- Department of Chemistry, The College of William and Mary, P.O. Box 8795, Williamsburg, VA 23187-8795, USA.
| | | | | | | |
Collapse
|
172
|
Teixeira MC, Telo JP, Duarte NF, Sá-Correia I. The herbicide 2,4-dichlorophenoxyacetic acid induces the generation of free-radicals and associated oxidative stress responses in yeast. Biochem Biophys Res Commun 2004; 324:1101-7. [PMID: 15485668 DOI: 10.1016/j.bbrc.2004.09.158] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Indexed: 11/23/2022]
Abstract
The pro-oxidant action of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is demonstrated in this study using Saccharomyces cerevisiae as a eukaryotic experimental model. Evidence is presented for the generation of hydroxyl-radicals, in yeast cells suddenly exposed to 2,4-D, detected by in vivo electron paramagnetic resonance (EPR) spectroscopy using 5,5'-dimethyl-1-pyrroline N-oxide and 5-tert-butoxycarbonyl-5-methyl-1-pyrroline N-oxide as spin-traps. The intensity of the EPR spectra was dependent on the concentration of herbicide tested and was consistently higher in a mutant (Deltasod1) devoid of the cytosolic CuZn-superoxide dismutase. A time-course-dependent variation of the level of free-radical adducts was registered upon sudden exposure of an yeast cell population to concentrations of 2,4-D that lead to an initial period of viability loss, before resumption of inhibited growth by the viable adapted population. The variation pattern of the level of hydroxyl-radical adducts correlated with the one determined for the activity of Sod1p, cytosolic catalase Ctt1p, and the dithiol glutaredoxins Grx1p and Grx2p.
Collapse
Affiliation(s)
- Miguel C Teixeira
- Biological Sciences Research Group, Centro de Engenharia Biológica e Quimica, Instituto Superior Técnico, 1049-001 Lisbon, Portugal
| | | | | | | |
Collapse
|
173
|
Chung WH, Kim KD, Cho YJ, Roe JH. Differential expression and role of two dithiol glutaredoxins Grx1 and Grx2 in Schizosaccharomyces pombe. Biochem Biophys Res Commun 2004; 321:922-9. [PMID: 15358115 DOI: 10.1016/j.bbrc.2004.07.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Indexed: 11/28/2022]
Abstract
Glutaredoxins are glutathione-specific thiol oxidoreductases. The regulation and the role of grx1(+) and grx2(+) genes encoding dithiol glutaredoxins were analyzed in Schizosaccharomyces pombe. When tested in the same genetic background including mating type, the grx1 null mutant became sensitive to hydrogen peroxide, whereas grx2 mutant became highly sensitive to paraquat, a superoxide generator. The grx1grx2 double mutant showed additive phenotype of each single mutant. The grx1(+) gene expression was induced by various stresses such as oxidants, salts, and heat, and increased in the stationary phase, whereas grx2(+) stayed constitutive. The induction was mediated via Spc1 MAP kinase path involving both Atf1 and Pap1 transcription factors. Sub-cellular fractionation as well as fluorescence microscopy revealed that Grx1 resides mainly in the cytosol, whereas Grx2 is in mitochondria. These results suggest distinct roles for Grx1 and Grx2 in S. pombe in mediating glutathione-dependent redox homeostasis.
Collapse
Affiliation(s)
- Woo-Hyun Chung
- Laboratory of Molecular Microbiology, Institute of Microbiology, School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | |
Collapse
|
174
|
Peltoniemi M, Kaarteenaho-Wiik R, Säily M, Sormunen R, Pääkkö P, Holmgren A, Soini Y, Kinnula VL. Expression of glutaredoxin is highly cell specific in human lung and is decreased by transforming growth factor-β in vitro and in interstitial lung diseases in vivo. Hum Pathol 2004; 35:1000-7. [PMID: 15297967 DOI: 10.1016/j.humpath.2004.04.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glutaredoxins (Grx) are thiol-disulfide oxidoreductases with antioxidant capacity and catalytic functions closely associated with glutathione, an antioxidant abundantly present in human lung. The present study investigated the expression of both human glutaredoxins in cultured human lung cells and lung homogenates by reverse-transcription polymerase chain reaction and Western blotting. Immunohistochemical studies were conducted with 38 human lung specimens, including healthy lung, parenchymal sarcoidosis, extrinsic allergic alveolitis, and usual interstitial pneumonia (UIP). The ultrastructural localization of Grx1 was assessed by immunoelectron microscopy. In addition, cultured airway epithelial cells were exposed to tumor necrosis factor (TNF)-alpha and transforming growth factor (TGF)-beta. Both Grx1 and Grx2 could be detected at the mRNA and protein level in cultured human lung cells, but only Grx1 was prominently expressed in lung homogenates and alveolar macrophages. Immunohistochemically, Grx1 was highly concentrated to alveolar macrophages and weakly positive in the bronchial epithelium. Grx1 was ultrastructurally localized to the plasma membrane, cytoplasmic vacuoles, and nucleus. The expression of Grx1 decreased in alveolar macrophages of sarcoidosis and allergic alveolitis compared with the case for controls (P < 0.001), and bronchial epithelium of these diseases revealed no Grx1 immunoreactivity. Fibroblast foci and other fibrotic areas in UIP were mainly negative. In A549 cells, Grx1 was down-regulated by TGF-beta, whereas TNF-alpha caused no clear effect. Overall, high expression of Grx1 in alveolar macrophages suggests its importance in the primary defense of human lung. Decreased expression of Grx1 further suggests the impairment of this system both in inflammatory and fibrotic lung diseases, consistent with the down-regulation of Grx1 by TGF-beta in vitro.
Collapse
|
175
|
Alves R, Herrero E, Sorribas A. Predictive reconstruction of the mitochondrial iron-sulfur cluster assembly metabolism. II. Role of glutaredoxin Grx5. Proteins 2004; 57:481-92. [DOI: 10.1002/prot.20228] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
176
|
Salinas G, Selkirk ME, Chalar C, Maizels RM, Fernández C. Linked thioredoxin-glutathione systems in platyhelminths. Trends Parasitol 2004; 20:340-6. [PMID: 15193566 DOI: 10.1016/j.pt.2004.05.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The thioredoxin and glutathione systems play a central role in thiol-disulfide redox homeostasis in many organisms by providing electrons to essential enzymes, and defence against oxidative stress. These systems have recently been characterized in platyhelminth parasites, and the emerging biochemical scenario is the existence of linked processes with the enzyme thioredoxin glutathione reductase supplying reducing equivalents to both pathways. In contrast to their hosts, conventional thioredoxin reductase and glutathione reductase enzymes appear to be absent. Analysis of published data and expressed-sequence tag databases indicates the presence of linked thioredoxin-glutathione systems in the cytosolic and mitochondrial compartments of these parasites.
Collapse
Affiliation(s)
- Gustavo Salinas
- Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, Avda. A. Navarro 3051, Montevideo, CP 11600, Uruguay.
| | | | | | | | | |
Collapse
|
177
|
Stehr M, Lindqvist Y. NrdH-redoxin of Corynebacterium ammoniagenes forms a domain-swapped dimer. Proteins 2004; 55:613-9. [PMID: 15103625 DOI: 10.1002/prot.20126] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
NrdH-redoxins constitute a family of small redox proteins, which contain a conserved CXXC sequence motif, and are characterized by a glutaredoxin-like amino acid sequence but a thioredoxin-like activity profile. Here we report the structure of Corynebacterium ammoniagenes NrdH at 2.7 A resolution, determined by molecular replacement using E. coli NrdH as model. The structure is the first example of a domain-swapped dimer from the thioredoxin family. The domain-swapped structure is formed by an inter-chain two-stranded anti-parallel beta-sheet and is stabilized by electrostatic interactions at the dimer interface. Size exclusion chromatography, and MALDI-ESI experiments revealed however, that the protein exists as a monomer in solution. Similar to E. coli NrdH-redoxin and thioredoxin, C. ammoniagenes NrdH-redoxin has a wide hydrophobic pocket at the surface that could be involved in binding to thioredoxin reductase. However, the loop between alpha2 and beta3, which is complementary to a crevice in the reductase in the thioredoxin-thioredoxin reductase complex, is the hinge for formation of the swapped dimer in C. ammoniagenes NrdH-redoxin. C. ammoniagenes NrdH-redoxin has the highly conserved sequence motif W61-S-G-F-R-P-[DE]67 which is unique to the NrdH-redoxins and which determines the orientation of helix alpha3. An extended hydrogen-bond network, similar to that in E. coli NrdH-redoxin, determines the conformation of the loop formed by the conserved motif.
Collapse
Affiliation(s)
- Matthias Stehr
- Division of Molecular Structural Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
178
|
Maggioli G, Piacenza L, Carambula B, Carmona C. Purification, characterization, and immunolocalization of a thioredoxin reductase from adult Fasciola hepatica. J Parasitol 2004; 90:205-11. [PMID: 15165039 DOI: 10.1645/ge-3247] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Thioredoxin reductase (TrxR), an enzyme belonging to the flavoprotein family of pyridine nucleotide-disulfide oxidoreductases, was isolated from the deoxycholate-soluble extract of the common liver fluke, Fasciola hepatica. Purification to homogeneity of the 60-kDa enzyme from the adult worm was achieved by a combination of ammonium sulfate fractionation, anion exchange, and affinity chromatography on 2',5'-adenosine diphosphate-Sepharose. Using the 5,5'-dithiobis(2-nitrobenzoic acid) assay, the purified TrxR showed a specific activity of 7,117 U min(-1) mg(-1). The enzyme activity was completely inhibited by the presence of the gold compound aurothioglucose (IC50 = 120 nm), indicating that F. hepatica TrxR is a selenoenzyme. Also, the enzyme was capable of reducing disulfide bonds in insulin and was activated by the presence of the reduced form of flavin adenine dinucleotide, properties shared with mammalian TrxRs. Furthermore, the isolated enzyme showed very low glutaredoxin (Grx) activity (0.47 U mg(-1)), but no glutathione reductase activity was detected. Affinity-purified IgGs (20 microg ml(-1)) from the antisera produced against the purified TrxR inhibited its activity about 80% with respect to the control. The enzyme was immunolocalized in cells located within the parenchyma and in the testes, but it was not found in the tegument of the adult fluke.
Collapse
Affiliation(s)
- Gabriela Maggioli
- Unidad de Biología Parasitaria, Facultad de Ciencias, Instituto de Higiene, Av. A. Navarro 3051, CP 11600 Montevideo, Uruguay
| | | | | | | |
Collapse
|
179
|
Nardini M, Mazzocco M, Massaro A, Maffei M, Vergano A, Donadini A, Scartezzini P, Bolognesi M. Crystal structure of the glutaredoxin-like protein SH3BGRL3 at 1.6Å resolution. Biochem Biophys Res Commun 2004; 318:470-6. [PMID: 15120624 DOI: 10.1016/j.bbrc.2004.04.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Indexed: 11/19/2022]
Abstract
We report the 1.6 Angstrom resolution crystal structure of SH3BGRL3, a member of a new mammalian protein family of unknown function. The observed "thioredoxin fold" of SH3BGRL3 matches the tertiary structure of glutaredoxins, even in the N-terminal region where the sequence similarity between the two protein families is negligible. In particular, SH3BGRL3 displays structural modifications at the N-terminal Cys-x-x-Cys loop, responsible for glutathione binding and catalysis in glutaredoxins. The loop hosts a six residue insertion, yielding an extra N-terminal-capped helical turn, first observed here for the thioredoxin fold. This, together with deletion of both Cys residues, results in a substantial reshaping of the neighboring cleft, where glutathione is hosted in glutaredoxins. While not active in redox reaction and glutathione binding, SH3BGRL3 may act as an endogenous modulator of glutaredoxin activities by competing, with its fully conserved thioredoxin fold, for binding to yet unknown target proteins.
Collapse
Affiliation(s)
- Marco Nardini
- Dipartimento di Fisica-INFM e Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, Via Dodecaneso 33, 16146 Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Gelhaye E, Rouhier N, Jacquot JP. The thioredoxin h system of higher plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:265-271. [PMID: 15120110 DOI: 10.1016/j.plaphy.2004.03.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Accepted: 03/01/2004] [Indexed: 05/24/2023]
Abstract
In plants, thioredoxins h are encoded by a multigenic family of genes (eight in Arabidopsis thaliana, at least five in Populus sp.). The multiplicity of these isoforms raises the question of their specificity. This review focuses on thioredoxins h in two plant models: Arabidopsis and poplar. Thioredoxins h can be divided into three different subgroups according to the analysis of their primary structure. This paper describes the biochemical properties of each subgroup. Recent data in the field indicate that subgroup members differ by their subcellular localization as well as their reduction pathways suggesting specific functions for each subgroup. The development of proteomic tools has also increased considerably the number of potential thioredoxin targets, showing the importance of thioredoxins h in plants.
Collapse
Affiliation(s)
- Eric Gelhaye
- Interaction arbres microorganismes, Unité Mixte de Recherches, Faculté des Sciences, Université Henri-Poincaré-Nancy I-INRA, UMR 1136, BP 239, 54506 Vandoeuvre cedex, France.
| | | | | |
Collapse
|
181
|
Landino LM, Moynihan KL, Todd JV, Kennett KL. Modulation of the redox state of tubulin by the glutathione/glutaredoxin reductase system. Biochem Biophys Res Commun 2004; 314:555-60. [PMID: 14733943 DOI: 10.1016/j.bbrc.2003.12.126] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Alterations in the redox status of proteins have been implicated in the pathology of several neurodegenerative diseases. We report that peroxynitrite-induced disulfides in porcine brain tubulin are repaired by the glutaredoxin reductase system composed of glutathione reductase, human or Escherichia coli glutaredoxin, reduced glutathione, and NADPH. Reduction of disulfide bonds between the alpha- and beta-tubulin subunits by the glutathione reductase system was assessed by Western blot. Tubulin cysteine oxidation and reduction was quantitated by monitoring the incorporation of 5-iodoacetamido-fluorescein, a thiol-specific labeling reagent. Tubulin disulfide bond reduction by the glutaredoxin reductase system restored tubulin polymerization activity that was lost following peroxynitrite addition. In support of redox modulations of tubulin by glutathione, thiol-disulfide exchange between tubulin and oxidized glutathione was detected and quantitated by HPLC. In addition, glutathionylation of tubulin was detected by dot blot using an anti-GSH antibody.
Collapse
Affiliation(s)
- Lisa M Landino
- Department of Chemistry, The College of William and Mary, P.O. Box 8795, Williamsburg, VA 23187-8795, USA.
| | | | | | | |
Collapse
|
182
|
Fernandes AP, Holmgren A. Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid Redox Signal 2004; 6:63-74. [PMID: 14713336 DOI: 10.1089/152308604771978354] [Citation(s) in RCA: 480] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Most cells contain high levels of glutathione and multiple glutaredoxins, which utilize the reducing power of glutathione to catalyze disulfide reductions in the presence of NADPH and glutathione reductase (the glutaredoxin system). Glutaredoxins, like thioredoxins, may operate as dithiol reductants and are involved as alternative pathways in cellular functions such as formation of deoxyribonucleotides for DNA synthesis (by reducing the essential enzyme ribonucleotide reductase), the generation of reduced sulfur (via 3'-phosphoadenylylsulfate reductase), signal transduction, and the defense against oxidative stress. The three dithiol glutaredoxins of E. coli with the active-site sequence CPYC and a glutathione binding site in a thioredoxin/glutaredoxin fold display surprisingly different properties. These include the inducible OxyR-regulated 10-kDa Grx1 or the highly abundant 24-kDa glutathione S-transferase-like Grx2 (with Grx3 it accounts for 1% of total protein). Glutaredoxins uniquely reduce mixed disulfides with glutathione via a monothiol mechanism where only an N-terminal low pKa Cys residue is required, by using their glutathione binding site. Glutaredoxins also catalyze formation of mixed disulfides (glutathionylation), which is an important redox regulatory mechanism, particularly in mammalian cells under oxidative stress conditions, to sense cellular redox potential.
Collapse
Affiliation(s)
- Aristi Potamitou Fernandes
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | |
Collapse
|
183
|
Gelhaye E, Rouhier N, Jacquot JP. Evidence for a subgroup of thioredoxin h that requires GSH/Grx for its reduction. FEBS Lett 2004; 555:443-8. [PMID: 14675753 DOI: 10.1016/s0014-5793(03)01301-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Poplar thioredoxin h4 (popTrxh4) and a related CXXS type (popCXXS3) are both members of a plant thioredoxin h subgroup. PopTrxh4 exhibits the usual catalytic site WCGPC, whereas popCXXS3 harbors the non-typical active site WCMPS. Recombinant popTrxh4 and popCXXS3 are not reduced either by Arabidopsis thaliana NADPH-dependent thioredoxin reductases (NTR) A and B or by Escherichia coli NTR. We report here evidence that a poplar glutaredoxin as well as three E. coli Grxs are able to reduce popTrxh4. PopTrxh4 is able to reduce several thioredoxin targets as peroxiredoxins or methionine sulfoxide reductases. On the other hand, popCXXS3 exhibits an activity in the presence of glutathione and hydroxyethyldisulfide. Except for examples of glutathiolation, these are the first two examples of a direct interconnection between the thioredoxin and glutathione/glutaredoxin systems.
Collapse
Affiliation(s)
- Eric Gelhaye
- Unité Mixte de Recherche IaM INRA-UHP Nancy I, Université Henri Poincaré, 54506 Cedex, Vandoeuvre, France.
| | | | | |
Collapse
|
184
|
Wheeler GL, Grant CM. Regulation of redox homeostasis in the yeast Saccharomyces cerevisiae. PHYSIOLOGIA PLANTARUM 2004; 120:12-20. [PMID: 15032872 DOI: 10.1111/j.0031-9317.2004.0193.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
An increasingly important area of research is based on sulphydryl chemistry, since the oxidation of -SH groups is one of the earliest observable events during oxidant-mediated damage and -SH groups play a critical role in the function of many macromolecular structures including enzymes, transcription factors and membrane proteins. Glutaredoxins and thioredoxins are small heat-stable oxidoreductases, conserved throughout evolution, which play key roles in maintaining the cellular redox balance. Much progress has been made in analysing these systems in the yeast Saccharomyces cerevisiae which is a very useful model eukaryote due to its ease of genetic manipulation, its compact genome, the availability of the entire genome sequence, and the current rate of progress in gene function research. Yeast, like all eukaryotes, contains a number of glutaredoxin and thioredoxin isoenzymes located in both the cytoplasm and the mitochondria. This review describes recent findings made in yeast that are leading to a better understanding of the regulation and role of redox homeostasis in eukaryotic cell metabolism.
Collapse
Affiliation(s)
- Glen L. Wheeler
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), Manchester M60 1QD, UK
| | | |
Collapse
|
185
|
Johansson C, Lillig CH, Holmgren A. Human mitochondrial glutaredoxin reduces S-glutathionylated proteins with high affinity accepting electrons from either glutathione or thioredoxin reductase. J Biol Chem 2003; 279:7537-43. [PMID: 14676218 DOI: 10.1074/jbc.m312719200] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutaredoxins catalyze glutathione-dependent thiol disulfide oxidoreductions via a GSH-binding site and active cysteines. Recently a second human glutaredoxin (Grx2), which is targeted to either mitochondria or the nucleus, was cloned. Grx2 contains the active site sequence CSYC, which is different from the conserved CPYC motif present in the cytosolic Grx1. Here we have compared the activity of Grx2 and Grx1 using glutathionylated substrates and active site mutants. The kinetic studies showed that Grx2 catalyzes the reduction of glutathionylated substrates with a lower rate but higher affinity compared with Grx1, resulting in almost identical catalytic efficiencies (k(cat)/K(m)). Permutation of the active site motifs of Grx1 and Grx2 revealed that the CSYC sequence of Grx2 is a prerequisite for its high affinity toward glutathionylated proteins, which comes at the price of lower k(cat). Furthermore Grx2 was a substrate for NADPH and thioredoxin reductase, which efficiently reduced both the active site disulfide and the GSH-glutaredoxin intermediate formed in the reduction of glutathionylated substrates. Using this novel electron donor pathway, Grx2 reduced low molecular weight disulfides such as CoA but with particular high efficiency glutathionylated substrates including GSSG. These results suggest an important role for Grx2 in protection and recovery from oxidative stress.
Collapse
Affiliation(s)
- Catrine Johansson
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
186
|
Gidekel M, Destefano-Beltrán L, García P, Mujica L, Leal P, Cuba M, Fuentes L, Bravo LA, Corcuera LJ, Alberdi M, Concha I, Gutiérrez A. Identification and characterization of three novel cold acclimation-responsive genes from the extremophile hair grass Deschampsia antarctica Desv. Extremophiles 2003; 7:459-69. [PMID: 12955601 DOI: 10.1007/s00792-003-0345-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2003] [Accepted: 06/27/2003] [Indexed: 11/25/2022]
Abstract
Deschampsia antarctica Desv. is the only monocot that thrives in the harsh conditions of the Antarctic Peninsula and represents an invaluable resource for the identification of genes associated with freezing tolerance. In order to identify genes regulated by low temperature, we have initiated a detailed analysis of its gene expression. Preliminary 2-D gels of in vivo-labeled leaf proteins showed qualitative and quantitative differences between cold-acclimated and non-acclimated plants, suggesting differential gene expression. Similarly, cold-acclimation-related transcripts were screened by a differential display method. Of the 38 cDNAs initially identified, three cDNA clones were characterized for their protein encoding, expression pattern, response to several stresses, and for their tissue-specific expression. Northern blot analysis of DaGrx, DaRub1, and DaPyk1 encoding a glutaredoxin, a related-to-ubiquitin protein, and a pyruvate kinase-like protein, respectively, showed a distinct regulation pattern during the cold-acclimation process, and in some cases, their cold response seemed to be tissue specific. All three transcripts seem to be responsive to water stress as their levels were up-regulated with polyethyleneglycol treatment. DaRUB1 and DaPyk1 expression was up-regulated in leaf and crown, but down-regulated in roots from cold-acclimated plants. The significance of these results during the cold-acclimation process will be discussed.
Collapse
Affiliation(s)
- Manuel Gidekel
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco, Chile
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Kasuno K, Nakamura H, Ono T, Muso E, Yodoi J. Protective roles of thioredoxin, a redox-regulating protein, in renal ischemia/reperfusion injury. Kidney Int 2003; 64:1273-82. [PMID: 12969145 DOI: 10.1046/j.1523-1755.2003.00224.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Thioredoxin (TRX) is a small protein with redox-regulating functions. Although TRX is known to be induced in response to various forms of oxidative stress, including ischemia/reperfusion injury, the induction and the specific role of this protein in the kidney have not been fully investigated. METHODS Renal ischemia/reperfusion was induced by the clipping and release of renal arteries in C57BL/6 and human thioredoxin-overexpressing transgenic (hTRX-Tg) mice. TRX protein was detected by immunohistochemistry, Western blotting, and enzyme-linked immunosorbent assay (ELISA). TRX mRNA was detected by in situ hybridization and Northern blotting. Renal functions were evaluated by measuring the levels of blood urea nitrogen and serum creatinine in these mice. RESULTS With ischemia/reperfusion, endogenous murine TRX was rapidly depleted from the cytosol in the cortical proximal tubuli and detected in the urinary lumen, whereas it was spread diffusely in all segments of the tubular epithelial cells in sham-operated mice. The urinary excretion of TRX increased transiently after ischemia/reperfusion and recovered to the control level in 72 hours. In the medullary thick ascending limb (mTAL), however, TRX was specifically retained in the cytosol. A similar distribution change of transgenic hTRX was observed in the kidney of hTRX-Tg. These hTRX-Tg mice were more resistant to the injury to the mTAL and functional deterioration caused by ischemia/reperfusion, compared with wild-type mice. CONCLUSION The present findings suggest that TRX is retained in mTAL and secreted from proximal tubuli into urine during renal ischemia/reperfusion. The mTAL-specific retention of TRX may have a protective effect against renal ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Kenji Kasuno
- Department of Biological Responses, Institute for Virus Research, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
188
|
Lysell J, Stjernholm Vladic Y, Ciarlo N, Holmgren A, Sahlin L. Immunohistochemical determination of thioredoxin and glutaredoxin distribution in the human cervix, and possible relation to cervical ripening. Gynecol Endocrinol 2003; 17:303-10. [PMID: 14503974 DOI: 10.1080/gye.17.4.303.310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Thioredoxin (Trx) and glutaredoxin (Grx) are dithiol redox enzymes, catalyzing general thiol-disulfide oxidoreductions apart from being hydrogen donors for ribonucleotide reductase, an enzyme essential for DNA synthesis. In mammals, isoenzymes of Trx and Grx are found in the cytoplasm (Trx1 and Grx1) or in mitochondria (Trx2 and Grx2). Trx and Grx play a role in cellular defence against oxidative stress and in redox regulation of cellular function. The localization and levels of human Trx1 and human Grx1 have been determined in the human cervix by immunohistochemistry and image analysis. Cervical biopsies were obtained from five non-pregnant, five term pregnant and five postpartum women. The levels of both Trx1 and Grx1 were increased in the nuclei (after translocation from the cytoplasm) of stromal cells in cervices from the term pregnant group as compared to the non-pregnant group, but the levels in the postpartum group did not differ significantly from those of the other two groups. These results are in agreement with our previous data on the mRNA expression of these two redox enzymes. The increased levels of the redox enzymes in term pregnancy suggest that they can be regulating factors involved in the process of cervical ripening, e.g. transcription factors and enzymes. Secreted Trx may participate in removing inhibitors of collagen-degrading metalloproteinases.
Collapse
Affiliation(s)
- J Lysell
- Division for Reproductive Endocrinology, Department of Biochemistry and Biophysics, Karolinska Institutet, Karolinska Hospital, L5:01, S-171 76 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
189
|
Tamarit J, Belli G, Cabiscol E, Herrero E, Ros J. Biochemical characterization of yeast mitochondrial Grx5 monothiol glutaredoxin. J Biol Chem 2003; 278:25745-51. [PMID: 12730244 DOI: 10.1074/jbc.m303477200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Grx5 is a yeast mitochondrial protein involved in iron-sulfur biogenesis that belongs to a recently described family of monothiolic glutaredoxin-like proteins. No member of this family has been biochemically characterized previously. Grx5 contains a conserved cysteine residue (Cys-60) and a non-conserved one (Cys-117). In this work, we have purified wild type and mutant C60S and C117S proteins and characterized their biochemical properties. A redox potential of -175 mV was calculated for wild type Grx5. The pKa values obtained by titration of mutant proteins with iodoacetamide at different pHs were 5.0 for Cys-60 and 8.2 for Cys-117. When Grx5 was incubated with glutathione disulfide, a transient mixed disulfide was formed between glutathione and the cystein 60 of the protein because of its low pKa. Binding of glutathione to Cys-60 promoted a decrease in the Cys-117 pKa value that triggered the formation of a disulfide bond between both cysteine residues of the protein, indicating that Cys-117 plays an essential role in the catalytic mechanism of Grx5. The disulfide bond in Grx5 could be reduced by GSH but at a rate at least 20 times slower than that observed for the reduction of glutaredoxin 1 from E. coli, a dithiolic glutaredoxin. This slow reduction rate could suggest that GSH may not be the physiologic reducing agent of Grx5. The fact that wild type Grx5 efficiently reduced a glutathiolated protein used as a substrate indicated that Grx5 may act as a thiol reductase inside the mitochondria.
Collapse
Affiliation(s)
- Jordi Tamarit
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Rovira Roure 44, 25198 Lleida, Spain
| | | | | | | | | |
Collapse
|
190
|
Abstract
The yeast Saccharomyces cerevisiae contains two glutaredoxins, encoded by GRX1 and GRX2, that are required for resistance to reactive oxygen species. We recently reported that Grx1 is active as a glutathione peroxidase and can directly reduce hydroperoxides (Collinson, E. J., Wheeler, G. L., Garrido, E. O., Avery, A. M., Avery, S. V., and Grant, C. M. (2002) J. Biol. Chem. 277, 16712-16717). We now show that Grx2 is also a general hydroperoxidase, and kinetic data indicate that both enzymes have a similar pattern of activity, which is highest with hydrogen peroxide, followed by cumene hydroperoxide and tert-butyl hydroperoxide. Furthermore, both Grx1 and Grx2 are shown be active as glutathione S-transferases (GSTs), and their activity with model substrates such as 1-chloro-2,4-dinitrobenzene is similar to their activity with hydroperoxides. Analysis of the Grx1 active site residues shows that Cys-27, but not Cys-30, is required for both the peroxidase and transferase activities, indicating that these reactions proceed via a monothiol mechanism. Deletion analysis shows that Grx1 and Grx2 have an overlapping function with yeast GSTs, encoded by GTT1 and GTT2, and are responsible for the majority of cellular GST activity. In addition, multiple mutants lacking GRX1, GRX2, GTT1, and GTT2 show increased sensitivity to stress conditions, including exposure to xenobiotics, heat, and oxidants. In summary, glutaredoxins are multifunctional enzymes with oxidoreductase, peroxidase, and GST activity, and are therefore ideally suited to detoxify the wide range of xenobiotics and oxidants that can be generated during diverse stress conditions.
Collapse
Affiliation(s)
- Emma J Collinson
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester M60 1QD, United Kingdom
| | | |
Collapse
|
191
|
Agorio A, Chalar C, Cardozo S, Salinas G. Alternative mRNAs arising from trans-splicing code for mitochondrial and cytosolic variants of Echinococcus granulosus thioredoxin Glutathione reductase. J Biol Chem 2003; 278:12920-8. [PMID: 12538593 DOI: 10.1074/jbc.m209266200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thioredoxin and glutathione systems are the major thiol-dependent redox systems in animal cells. They transfer via the reversible oxidoreduction of thiols the reducing equivalents of NADPH to numerous substrates and substrate reductases and constitute major defenses against oxidative stress. In this study, we cloned from the helminth parasite Echinococcus granulosus two trans-spliced mRNA variants that encode thioredoxin glutathione reductases (TGR). These variants code for mitochondrial and cytosolic selenocysteine-containing isoforms that possess identical glutaredoxin (Grx) and thioredoxin reductase (TR) domains and differ exclusively in their N termini. Western blot analysis of subcellular fractions with specific anti-TGR antibodies showed that TGR is present in both compartments. The biochemical characterization of the native purified TGR suggests that the Grx and TR domains of the enzyme can function either coupled or independently of each other, because the Grx domain can accept electrons from either TR domains or the glutathione system and the TR domains can transfer electrons to either the fused Grx domain or to E. granulosus thioredoxin.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Base Sequence
- Cytosol/enzymology
- DNA Primers
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Echinococcus/chemistry
- Echinococcus/enzymology
- Echinococcus/genetics
- Exons
- Genetic Variation
- Humans
- Kinetics
- Mice
- Mitochondria/enzymology
- Molecular Sequence Data
- Multienzyme Complexes/chemistry
- Multienzyme Complexes/genetics
- Multienzyme Complexes/metabolism
- NADH, NADPH Oxidoreductases/chemistry
- NADH, NADPH Oxidoreductases/genetics
- NADH, NADPH Oxidoreductases/metabolism
- Nucleic Acid Conformation
- Polymerase Chain Reaction
- RNA, Helminth/chemistry
- RNA, Helminth/genetics
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- Rats
- Sequence Alignment
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Astrid Agorio
- Cátedra de Inmunología, Facultad de Química/Ciencias, Universidad de la República, Avenida Alfredo Navarro 3051, Piso 2, CP 11.600, Montevideo, Uruguay
| | | | | | | |
Collapse
|
192
|
Whitbread AK, Tetlow N, Eyre HJ, Sutherland GR, Board PG. Characterization of the human Omega class glutathione transferase genes and associated polymorphisms. PHARMACOGENETICS 2003; 13:131-44. [PMID: 12618591 DOI: 10.1097/00008571-200303000-00003] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Omega class glutathione transferases (GSTs) have been identified in many organisms, including human, mouse, rat, pig, Caenorhabditis eglands and Drosophila melanogaster. These GSTs have poor activity with common GST substrates, but exhibit novel glutathione-dependent thioltransferase, dehydroascorbate reductase and monomethylarsonate reductase activities, and modulate Ca release by ryanodine receptors. An investigation of the genomic organization of human GSTO1 identified a second actively transcribed member of the Omega class (GSTO1). Both GSTO1 and GSTO2 are composed of six exons and are separated by 7.5 kb on chromosome 10q24.3. A third sequence that appears to be a reverse-transcribed pseudogene (GSTO3p) has been identified on chromosome 3. GSTO2 has 64% amino acid identity with GSTO1 and conserves the cysteine residue at position 32, which is thought to be important in the active site of GSTO1. Expression of GSTO2 mRNA was seen in a range of tissues, including the liver, kidney, skeletal muscle and prostate. The strongest GSTO2 expression was in the testis, which also expresses a larger transcript than other tissues. Characterization of recombinant GSTO2 has been limited by its poor solubility. Two functional polymorphisms of GSTO1 have been identified. One alters a splice junction and causes the deletion of E155 and another results in an A140D substitution. Characterization of these variants revealed that the A140D substitution affects neither heat stability, nor activity towards 1-chloro-2,4-dinitrobenzene or hydroxyethyl disulphide. In contrast, deletion of residue E155 appears to contribute towards both a loss of heat stability and increased enzymatic activity.
Collapse
Affiliation(s)
- Astrid K Whitbread
- Molecular Genetics Group, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | | | | | | |
Collapse
|
193
|
Tanaka-Kagawa T, Jinno H, Hasegawa T, Makino Y, Seko Y, Hanioka N, Ando M. Functional characterization of two variant human GSTO 1-1s (Ala140Asp and Thr217Asn). Biochem Biophys Res Commun 2003; 301:516-20. [PMID: 12565892 DOI: 10.1016/s0006-291x(02)03066-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Glutathione-S-transferase class Omega (GSTO 1-1) belongs to a new subfamily of GSTs, which is identical with human monomethylarsonic acid (MMA(V)) reductase, the rate limiting enzyme for biotransformation of inorganic arsenic, environmental carcinogen. Recombinant GSTO 1-1 variants (Ala140Asp and Thr217Asn) were functionally characterized using representative substrates. No significant difference was observed in GST activity towards 1-chloro-2,4-dinitrobenzene, whereas thioltransferase activity was decreased to 75% (Ala140Asp) and 40% (Thr217Asn) of the wild-type GSTO 1-1. For MMA(V) reductase activity, the Ala140Asp variant exhibited similar kinetics to wild type, while the Thr217Asn variant had lower V(max) (56%) and K(m) (64%) values than the wild-type enzyme. The different activities of the enzyme variants may influence both the intracellular thiol status and arsenic biotransformation. This can help explain the variation between individuals in their susceptibility to oxidative stress and inorganic arsenic.
Collapse
Affiliation(s)
- Toshiko Tanaka-Kagawa
- Division of Environmental Chemistry, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
194
|
Trotter EW, Grant CM. Non-reciprocal regulation of the redox state of the glutathione-glutaredoxin and thioredoxin systems. EMBO Rep 2003; 4:184-8. [PMID: 12612609 PMCID: PMC1315827 DOI: 10.1038/sj.embor.embor729] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2002] [Revised: 10/31/2002] [Accepted: 11/20/2002] [Indexed: 01/23/2023] Open
Abstract
Our studies in yeast show that there is an essential requirement for either an active thioredoxin or an active glutathione (GSH)-glutaredoxin system for cell viability. Glutathione reductase (Glr1) and thioredoxin reductase (Trr1) are key regulatory enzymes that determine the redox state of the GSH-glutaredoxin and thioredoxin systems, respectively. Here we show that Trr1 is required during normal cell growth, whereas there is no apparent requirement for Glr1. Analysis of the redox state of thioredoxins and glutaredoxins in glr1 and trr1 mutants reveals that thioredoxins are maintained independently of the glutathione system. In contrast, there is a strong correlation between the redox state of glutaredoxins and the oxidation state of the GSSG/2GSH redox couple. We suggest that independent redox regulation of thioredoxins enables cells to survive in conditions under which the GSH-glutaredoxin system is oxidized.
Collapse
Affiliation(s)
- Eleanor W. Trotter
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), PO Box 88, Manchester M60 1QD, UK
| | - Chris M. Grant
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), PO Box 88, Manchester M60 1QD, UK
- Tel: +44 161 200 4192; Fax: +44 161 236 0409;
| |
Collapse
|
195
|
Dietz KJ. Redox control, redox signaling, and redox homeostasis in plant cells. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 228:141-93. [PMID: 14667044 DOI: 10.1016/s0074-7696(03)28004-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Redox chemistry is a key feature of life. Oxidized substrates are reduced to synthesize functional molecules; reduced substrates are oxidized for energy supply. In addition, cells must fight against uncontrolled oxidation of essential constituents, a process that continuously occurs in an atmosphere of 21% O2. The redox situation is further complicated in plants with their highly reactive photosynthetic metabolism. To this end it is now well established that redox regulation is a central element in adjusting plant metabolism and development to the prevailing environmental conditions. This review introduces general redox chemistry and the main components of the cellular redox network, namely pyridine nucleotides, ascorbate, glutathione, lipoic acid, tocopherol, thioredoxins, glutaredoxins, peroxiredoxins, and other thiol proteins. Examples for redox sensing, transduction, redox-regulated enzymes and transcription, and the function of regulatory circuits are presented. Emphasis is placed on redox regulation of photosynthesis, which is the best understood metabolism governed by redox control on essentially all levels, ranging from gene transcription to translation, assembly and turnover, as well as short-term adaptation by state transition and enzyme activity. Increasing evidence shows the importance of redox regulation in the context of transport, plant development, and programmed cell death.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- Biochemistry and Physiology of Plants, W5-134, Faculty of Biology, University of Bielefeld, 33501 Bielefeld, Germany
| |
Collapse
|
196
|
Borges CR, Geddes T, Watson JT, Kuhn DM. Dopamine biosynthesis is regulated by S-glutathionylation. Potential mechanism of tyrosine hydroxylast inhibition during oxidative stress. J Biol Chem 2002; 277:48295-302. [PMID: 12376535 DOI: 10.1074/jbc.m209042200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosine hydroxylase (TH), the initial and rate-limiting enzyme in the biosynthesis of the neurotransmitter dopamine, is inhibited by the sulfhydryl oxidant diamide in a concentration-dependent manner. The inhibitory effect of diamide on TH catalytic activity is enhanced significantly by GSH. Treatment of TH with diamide in the presence of [(35)S]GSH results in the incorporation of (35)S into the enzyme. The effect of diamide-GSH on TH activity is prevented by dithiothreitol (DTT), as is the binding of [(35)S]GSH, indicating the formation of a disulfide linkage between GSH and TH protein cysteinyls. Loss of TH catalytic activity caused by diamide-GSH is partially recovered by DTT and glutaredoxin, whereas the disulfide linkage of GSH with TH is completely reversed by both. Treatment of intact PC12 cells with diamide results in a concentration-dependent inhibition of TH activity. Incubation of cells with [(35)S]cysteine, to label cellular GSH prior to diamide treatment, followed by immunoprecipitation of TH shows that the loss of TH catalytic activity is associated with a DTT-reversible incorporation of [(35)S]GSH into the enzyme. A combination of matrix-assisted laser desorption/ionization/mass spectrometry and liquid chromatography/tandem mass spectrometry was used to identify the sites of S-glutathionylation in TH. Six cysteines (177, 249, 263, 329, 330, and 380) of the seven cysteine residues in TH were confirmed as substrates for modification. Only Cys-311 was not S-glutathionylated. These results establish that TH activity is influenced in a reversible manner by S-glutathionylation and suggest that cellular GSH may regulate dopamine biosynthesis under conditions of oxidative stress or drug-induced toxicity.
Collapse
Affiliation(s)
- Chad R Borges
- Department of Biochemistry, Michigan State University, East Lansing 48824, USA
| | | | | | | |
Collapse
|
197
|
Girardini J, Amirante A, Zemzoumi K, Serra E. Characterization of an omega-class glutathione S-transferase from Schistosoma mansoni with glutaredoxin-like dehydroascorbate reductase and thiol transferase activities. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5512-21. [PMID: 12423349 DOI: 10.1046/j.1432-1033.2002.03254.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glutathione S-transferases (EC 2.5.1.18) (GSTs), are a family of multifunctional enzymes present in all living organisms whose main function is the detoxification of electrophilic compounds. GSTs are considered the most prominent detoxifying class II enzymes in helminths. We describe here the characterization of novel dehydroascorbate reductase and thiol transferase activities that reside in the human parasite Schistosoma mansoni GSTx. Protein sequence analysis of this parasite product showed lower identity to known GSTs. However, phylogenic analysis placed SmGSTx among the recently described omega class GSTs (GSTO1-1). We report here that SmGSTO protein is a 28-kDa polypeptide, detected in all life stages of the parasite, being highly expressed in adult worms. Like other omega class GSTs, SmGSTO showed very low activity toward classical GSTs substrates as 1-chloro-2,4-dinitrobenzene, and no binding affinity to glutathione-agarose matrix but showed some biochemical characteristics related with thioredoxins/glutaredoxins. Interestingly, SmGSTO was able to bind S-hexyl glutathione matrix and displayed significant glutathione-dependent dehydroascorbate reductase and thiol transferase enzymatic activities.
Collapse
Affiliation(s)
- Javier Girardini
- Instituto de Biología Molecular y Celular de Rosario, IBR-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR; and Facultad de Odontología, UNR, Rorario, Argentina
| | | | | | | |
Collapse
|
198
|
Lind C, Gerdes R, Hamnell Y, Schuppe-Koistinen I, von Löwenhielm HB, Holmgren A, Cotgreave IA. Identification of S-glutathionylated cellular proteins during oxidative stress and constitutive metabolism by affinity purification and proteomic analysis. Arch Biochem Biophys 2002; 406:229-40. [PMID: 12361711 DOI: 10.1016/s0003-9861(02)00468-x] [Citation(s) in RCA: 253] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Redox modification of proteins is proposed to play a central role in regulating cellular function. However, high-throughput techniques for the analysis of the redox status of individual proteins in complex mixtures are lacking. The aim was thus to develop a suitable technique to rapidly identify proteins undergoing oxidation of critical thiols by S-glutathionylation. The method is based on the specific reduction of mixed disulfides by glutaredoxin, their reaction with N-ethylmaleimide-biotin, affinity purification of tagged proteins, and identification by proteomic analysis. The method unequivocally identified 43 mostly novel cellular protein substrates for S-glutathionylation. These include protein chaperones, cytoskeletal proteins, cell cycle regulators, and enzymes of intermediate metabolism. Comparisons of the patterns of S-glutathionylated proteins extracted from cells undergoing diamide-induced oxidative stress and during constitutive metabolism reveal both common protein substrates and substrates failing to undergo enhanced S-glutathionylation during oxidative stress. The ability to chemically tag, select, and identify S-glutathionylated proteins, particularly during constitutive metabolism, will greatly enhance efforts to establish posttranslational redox modification of cellular proteins as an important biochemical control mechanism in coordinating cellular function.
Collapse
Affiliation(s)
- Christina Lind
- Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
199
|
Bellí G, Polaina J, Tamarit J, De La Torre MA, Rodríguez-Manzaneque MT, Ros J, Herrero E. Structure-function analysis of yeast Grx5 monothiol glutaredoxin defines essential amino acids for the function of the protein. J Biol Chem 2002; 277:37590-6. [PMID: 12138088 DOI: 10.1074/jbc.m201688200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Grx5 defines a family of yeast monothiol glutaredoxins that also includes Grx3 and Grx4. All three proteins display significant sequence homology with proteins found from bacteria to humans. Grx5 is involved in iron/sulfur cluster assembly at the mitochondria, but the function of Grx3 and Grx4 is unknown. Three-dimensional modeling based on known dithiol glutaredoxin structures predicted a thioredoxin fold structure for Grx5. Positionally conserved amino acids in this glutaredoxin family were replaced in Grx5, and the effect on the biological function of the protein has been tested. For all changes studied, there was a correlation between the effects on several different phenotypes: sensitivity to oxidants, constitutive protein oxidation, ability for respiratory growth, auxotrophy for a number of amino acids, and iron accumulation. Cys(60) and Gly(61) are essential for Grx5 function, whereas other single or double substitutions in the same region had no phenotypic effects. Gly(115) and Gly(116) could be important for the formation of a glutathione cleft on the Grx5 surface, in contrast to adjacent Cys(117). Substitution of Phe(50) alters the beta-sheet in the thioredoxin fold structure and inhibits Grx5 function. None of the substitutions tested affect the structure at a significant enough level to reduce protein stability.
Collapse
Affiliation(s)
- Gemma Bellí
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Rovira Roure 44, 25198-Lleida, Spain
| | | | | | | | | | | | | |
Collapse
|
200
|
Affiliation(s)
- Enrique Herrero
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, 25198 Lleida, Spain
| | | |
Collapse
|