151
|
Bettonte S, Berton M, Stader F, Battegay M, Marzolini C. Management of Drug Interactions with Inducers: Onset and Disappearance of Induction on Cytochrome P450 3A4 and Uridine Diphosphate Glucuronosyltransferase 1A1 Substrates. Eur J Drug Metab Pharmacokinet 2023:10.1007/s13318-023-00833-9. [PMID: 37278880 DOI: 10.1007/s13318-023-00833-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND People living with HIV may present co-morbidities requiring the initiation and subsequently the discontinuation of medications with inducing properties. The time to reach maximal enzyme induction and to return to baseline enzyme levels has not been thoroughly characterized. OBJECTIVE The aim of this study was to evaluate the onset and disappearance of dolutegravir [uridine diphosphate glucuronosyltransferase (UGT) 1A1 and cytochrome P450 (CYP) 3A4 substrate] and raltegravir (UGT1A1 substrate) induction with strong and moderate inducers using physiologically based pharmacokinetic (PBPK) modeling. METHODS The predictive performance of the PBPK model to simulate dolutegravir and raltegravir pharmacokinetics and to reproduce the strength of induction was verified using clinical drug-drug interaction studies (steady-state induction) and switch studies (residual induction). The model was considered verified when the predictions were within 2-fold of the observed data. One hundred virtual individuals (50% female) were generated to simulate the unstudied scenarios. The results were used to calculate the fold-change in CYP3A4 and UGT1A1 enzyme levels upon initiation and discontinuation of strong (rifampicin) or moderate (efavirenz or rifabutin) inducers. RESULTS The time for reaching maximal induction and subsequent disappearance of CYP3A4 induction was 14 days for rifampicin and efavirenz but 7 days for rifabutin. The distinct timelines for the moderate inducers relate to their different half-lives and plasma concentrations. The induction and de-induction processes were more rapid for UGT1A1. CONCLUSIONS Our simulations support the common practice of maintaining the adjusted dosage of a drug for another 2 weeks after stopping an inducer. Furthermore, our simulations suggest that an inducer should be administered for at least 14 days before conducting interaction studies to reach maximal induction.
Collapse
Affiliation(s)
- Sara Bettonte
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Medicine and Clinical Research, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
- Faculty of Medicine, University of Basel, 4031, Basel, Switzerland.
| | - Mattia Berton
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Medicine and Clinical Research, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Faculty of Medicine, University of Basel, 4031, Basel, Switzerland
| | | | - Manuel Battegay
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Medicine and Clinical Research, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Faculty of Medicine, University of Basel, 4031, Basel, Switzerland
| | - Catia Marzolini
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Medicine and Clinical Research, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
- Faculty of Medicine, University of Basel, 4031, Basel, Switzerland.
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, L69 3GF, UK.
| |
Collapse
|
152
|
Torabinejad S, Miro C, Barone B, Imbimbo C, Crocetto F, Dentice M. The androgen-thyroid hormone crosstalk in prostate cancer and the clinical implications. Eur Thyroid J 2023; 12:e220228. [PMID: 36930264 PMCID: PMC10160561 DOI: 10.1530/etj-22-0228] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/18/2023] Open
Abstract
There is increasing evidence that thyroid hormones (THs) work in an integrative fashion with androgen receptors (ARs) to regulate gonadal differentiation and reproductive function. Studies reveal that THs have interactions with the AR promoter region and increase AR expression. THs also have a role in the regulation of enzymes involved in the biosynthesis of androgens, such as 5α-reductase, which is essential in the conversion of testosterone into its active form, 5α-dihydrotestosterone. Additionally, the presence of androgen response elements in the promoter regions of TH-related genes, such as deiodinases and TH receptor isoforms, has been identified in some vertebrates, indicating a mutual interaction between THs and ARs. Since the androgen signaling pathway, mediated by ARs, plays a key role in the formation and progression of prostate cancer (PCa), the existence of crosstalk between THs and ARs supports the epidemiologic and experimental evidence indicating a relationship between the high incidence of PCa and hyperthyroidism. This article aims to review the role of androgen-TH crosstalk in PCa and its implication in clinical management. As life expectancy is growing these days, it can increase the number of patients with PCa and the critical relevance of the disease. In order to gain better knowledge about PCa and to improve clinical management, it is essential to get better insight into the key factors related to the formation and progression of this cancer.
Collapse
Affiliation(s)
- Sepehr Torabinejad
- Department of Clinical Medicine and Surgery, University of Naples ’Federico II’, Naples, Italy
| | - Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples ’Federico II’, Naples, Italy
| | - Biagio Barone
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II
| | - Ciro Imbimbo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II
| | - Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples ’Federico II’, Naples, Italy
- CEINGE – Biotecnologie Avanzate Scarl, Naples, Italy
| |
Collapse
|
153
|
Xu P. Nuclear Receptors in Health and Diseases. Int J Mol Sci 2023; 24:9153. [PMID: 37298107 PMCID: PMC10252477 DOI: 10.3390/ijms24119153] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Nuclear receptors (NRs) are a vital superfamily of transcription factors that play crucial roles in physiology and pharmacology [...].
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China;
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
154
|
Somsen BA, Sijbesma E, Leysen S, Honzejkova K, Visser EJ, Cossar PJ, Obšil T, Brunsveld L, Ottmann C. Molecular basis and dual ligand regulation of tetrameric Estrogen Receptor α/14-3-3ζ protein complex. J Biol Chem 2023:104855. [PMID: 37224961 PMCID: PMC10302166 DOI: 10.1016/j.jbc.2023.104855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
Therapeutic strategies targeting Nuclear Receptors (NRs) beyond their endogenous ligand binding pocket have gained significant scientific interest, driven by a need to circumvent problems associated with drug resistance and pharmacological profile. The hub protein 14-3-3 is an endogenous regulator of various NRs, providing a novel entry point for small molecule modulation of NR activity. Exemplified, 14-3-3 binding to the C-terminal F-domain of the Estrogen Receptor alpha (ERα), and small molecule stabilization of the ERα/14-3-3ζ protein complex by the natural product Fusicoccin A (FC-A), was demonstrated to downregulate ERα-mediated breast cancer proliferation. This presents a novel drug discovery approach to target ERα, however, structural and mechanistic insights into ERα/14-3-3 complex formation are lacking. Here, we provide an in-depth molecular understanding of the ERα/14-3-3ζ complex by isolating 14-3-3ζ in complex with an ERα protein construct comprising its Ligand Binding Domain (LBD) and phosphorylated F-domain. Bacterial co-expression and co-purification of the ERα/14-3-3ζ complex, followed by extensive biophysical and structural characterization, revealed a tetrameric complex between the ERα homodimer and the 14-3-3ζ homodimer. 14-3-3ζ binding to ERα, and ERα/14-3-3ζ complex stabilization by FC-A, appeared to be orthogonal to ERα endogenous agonist (E2) binding, E2-induced conformational changes, and cofactor recruitment. Similarly, the ERα antagonist 4-hydroxytamoxifen inhibited cofactor recruitment to the ERα LBD while ERα was bound to 14-3-3ζ. Furthermore, stabilization of the ERα/14-3-3ζ protein complex by FC-A was not influenced by the disease-associated and 4-hydroxytamoxifen resistant ERα-Y537S mutant. Together, these molecular and mechanistic insights provide direction for targeting ERα via the ERα/14-3-3 complex as an alternative drug discovery approach.
Collapse
Affiliation(s)
- Bente A Somsen
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Eline Sijbesma
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Seppe Leysen
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Karolina Honzejkova
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Emira J Visser
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Peter J Cossar
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Tomáš Obšil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| |
Collapse
|
155
|
Weng X, Zhu Q, Liao C, Jiang G. Cumulative Exposure to Phthalates and Their Alternatives and Associated Female Reproductive Health: Body Burdens, Adverse Outcomes, and Underlying Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37196176 DOI: 10.1021/acs.est.3c00823] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The global birth rate has recently shown a decreasing trend, and exposure to environmental pollutants has been identified as a potential factor affecting female reproductive health. Phthalates have been widely used as plasticizers in plastic containers, children's toys, and medical devices, and their ubiquitous presence and endocrine-disrupting potential have already raised particular concerns. Phthalate exposure has been linked to various adverse health outcomes, including reproductive diseases. Given that many phthalates are gradually being banned, a growing number of phthalate alternatives are becoming popular, such as di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH), di(2-ethylhexyl) adipate (DEHA), and di(2-ethylhexyl) terephthalate (DEHTP), and they are beginning to have a wide range of environmental effects. Studies have shown that many phthalate alternatives may disrupt female reproductive function by altering the estrous cycle, causing ovarian follicular atresia, and prolonging the gestational cycle, which raises growing concerns about their potential health risks. Herein, we summarize the effects of phthalates and their common alternatives in different female models, the exposure levels that influence the reproductive system, and the effects on female reproductive impairment, adverse pregnancy outcomes, and offspring development. Additionally, we scrutinize the effects of phthalates and their alternatives on hormone signaling, oxidative stress, and intracellular signaling to explore the underlying mechanisms of action on female reproductive health, because these chemicals may affect reproductive tissues directly or indirectly through endocrine disruption. Given the declining global trends of female reproductive capacity and the potential ability of phthalates and their alternatives to negatively impact female reproductive health, a more comprehensive study is needed to understand their effects on the human body and their underlying mechanisms. These findings may have an important role in improving female reproductive health and in turn decreasing the number of complications during pregnancy.
Collapse
Affiliation(s)
- Xueyu Weng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
156
|
Kolliari-Turner A, Lima G, Wang G, Malinsky FR, Karanikolou A, Eichhorn G, Tanisawa K, Ospina-Betancurt J, Hamilton B, Kumi PY, Shurlock J, Skiadas V, Twycross-Lewis R, Kilduff L, Martin RP, Ash GI, Potter C, Guppy FM, Seto JT, Fossati C, Pigozzi F, Borrione P, Pitsiladis Y. An observational human study investigating the effect of anabolic androgenic steroid use on the transcriptome of skeletal muscle and whole blood using RNA-Seq. BMC Med Genomics 2023; 16:94. [PMID: 37138349 PMCID: PMC10157927 DOI: 10.1186/s12920-023-01512-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/08/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND The effects of Anabolic Androgenic Steroids (AAS) are largely illustrated through Androgen Receptor induced gene transcription, yet RNA-Seq has yet to be conducted on human whole blood and skeletal muscle. Investigating the transcriptional signature of AAS in blood may aid AAS detection and in muscle further understanding of AAS induced hypertrophy. METHODS Males aged 20-42 were recruited and sampled once: sedentary controls (C), resistance trained lifters (RT) and resistance trained current AAS users (RT-AS) who ceased exposure ≤ 2 or ≥ 10 weeks prior to sampling. RT-AS were sampled twice as Returning Participants (RP) if AAS usage ceased for ≥ 18 weeks. RNA was extracted from whole blood and trapezius muscle samples. RNA libraries were sequenced twice, for validation purposes, on the DNBSEQ-G400RS with either standard or CoolMPS PE100 reagents following MGI protocols. Genes were considered differentially expressed with FDR < 0.05 and a 1.2- fold change. RESULTS Cross-comparison of both standard reagent whole blood (N = 55: C = 7, RT = 20, RT-AS ≤ 2 = 14, RT-AS ≥ 10 = 10, RP = 4; N = 46: C = 6, RT = 17, RT-AS ≤ 2 = 12, RT-AS ≥ 10 = 8, RP = 3) sequencing datasets, showed that no genes or gene sets/pathways were differentially expressed between time points for RP or between group comparisons of RT-AS ≤ 2 vs. C, RT, or RT-AS ≥ 10. Cross-comparison of both muscle (N = 51, C = 5, RT = 17, RT-AS ≤ 2 = 15, RT-AS ≥ 10 = 11, RP = 3) sequencing (one standard & one CoolMPS reagent) datasets, showed one gene, CHRDL1, which has atrophying potential, was upregulated in RP visit two. In both muscle sequencing datasets, nine differentially expressed genes, overlapped with RT-AS ≤ 2 vs. RT and RT-AS ≤ 2 vs. C, but were not differentially expressed with RT vs. C, possibly suggesting they are from acute doping alone. No genes seemed to be differentially expressed in muscle after the long-term cessation of AAS, whereas a previous study found long term proteomic changes. CONCLUSION A whole blood transcriptional signature of AAS doping was not identified. However, RNA-Seq of muscle has identified numerous differentially expressed genes with known impacts on hypertrophic processes that may further our understanding on AAS induced hypertrophy. Differences in training regimens in participant groupings may have influenced results. Future studies should focus on longitudinal sampling pre, during and post-AAS exposure to better control for confounding variables.
Collapse
Affiliation(s)
- Alexander Kolliari-Turner
- School of Sport and Heath Sciences, University of Brighton Welkin House, 30 Carlisle Road, Eastbourne, BN20 7SN UK
- Centre for Stress and Age-Related Disease, University of Brighton, Brighton, UK
| | - Giscard Lima
- School of Sport and Heath Sciences, University of Brighton Welkin House, 30 Carlisle Road, Eastbourne, BN20 7SN UK
- Muscle Research, Murdoch Children’s Research Institute, Parkville, VIC Australia
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Guan Wang
- School of Sport and Heath Sciences, University of Brighton Welkin House, 30 Carlisle Road, Eastbourne, BN20 7SN UK
- Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, UK
| | - Fernanda Rossell Malinsky
- School of Sport and Heath Sciences, University of Brighton Welkin House, 30 Carlisle Road, Eastbourne, BN20 7SN UK
| | - Antonia Karanikolou
- School of Sport and Heath Sciences, University of Brighton Welkin House, 30 Carlisle Road, Eastbourne, BN20 7SN UK
| | - Gregor Eichhorn
- School of Sport and Heath Sciences, University of Brighton Welkin House, 30 Carlisle Road, Eastbourne, BN20 7SN UK
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK
| | - Kumpei Tanisawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | | | - Blair Hamilton
- School of Sport and Heath Sciences, University of Brighton Welkin House, 30 Carlisle Road, Eastbourne, BN20 7SN UK
- Centre for Stress and Age-Related Disease, University of Brighton, Brighton, UK
- The Gender Identity Clinic, Tavistock and Portman NHS Foundation Trust, London, UK
| | - Paulette Y.O. Kumi
- Centre for Sports and Exercise Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | - Vasileios Skiadas
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Richard Twycross-Lewis
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
- St Mary’s University, Twickenham, London, UK
| | - Liam Kilduff
- Applied Sports, Technology, Exercise, and Medicine Research Centre (A-STEM), Faculty of Science and Engineering, Swansea University, Swansea, Wales
| | - Renan Paulo Martin
- Department of Biophysics, Federal University of Sao Paulo, Sao Paulo, Brazil
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Garrett I. Ash
- Veterans Affairs Connecticut Healthcare System, West Haven, CT USA
- Center for Medical Informatics, Yale University, New Haven, CT USA
| | | | - Fergus M. Guppy
- Centre for Stress and Age-Related Disease, University of Brighton, Brighton, UK
- Institute for Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, UK
| | - Jane T. Seto
- Muscle Research, Murdoch Children’s Research Institute, Parkville, VIC Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC Australia
| | - Chiara Fossati
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Fabio Pigozzi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Paolo Borrione
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Yannis Pitsiladis
- School of Sport and Heath Sciences, University of Brighton Welkin House, 30 Carlisle Road, Eastbourne, BN20 7SN UK
- Centre for Stress and Age-Related Disease, University of Brighton, Brighton, UK
| |
Collapse
|
157
|
Kumar R, Sena LA, Denmeade SR, Kachhap S. The testosterone paradox of advanced prostate cancer: mechanistic insights and clinical implications. Nat Rev Urol 2023; 20:265-278. [PMID: 36543976 PMCID: PMC10164147 DOI: 10.1038/s41585-022-00686-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2022] [Indexed: 12/24/2022]
Abstract
The discovery of the benefits of castration for prostate cancer treatment in 1941 led to androgen deprivation therapy, which remains a mainstay of the treatment of men with advanced prostate cancer. However, as early as this original publication, the inevitable development of castration-resistant prostate cancer was recognized. Resistance first manifests as a sustained rise in the androgen-responsive gene, PSA, consistent with reactivation of the androgen receptor axis. Evaluation of clinical specimens demonstrates that castration-resistant prostate cancer cells remain addicted to androgen signalling and adapt to chronic low-testosterone states. Paradoxically, results of several studies have suggested that treatment with supraphysiological levels of testosterone can retard prostate cancer growth. Insights from these studies have been used to investigate administration of supraphysiological testosterone to patients with prostate cancer for clinical benefits, a strategy that is termed bipolar androgen therapy (BAT). BAT involves rapid cycling from supraphysiological back to near-castration testosterone levels over a 4-week cycle. Understanding how BAT works at the molecular and cellular levels might help to rationalize combining BAT with other agents to achieve increased efficacy and tumour responses.
Collapse
Affiliation(s)
- Rajendra Kumar
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Laura A Sena
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Samuel R Denmeade
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Sushant Kachhap
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
158
|
Pommergaard HC. Prognostic biomarkers in and selection of surgical patients with hepatocellular carcinoma. APMIS 2023; 131 Suppl 146:1-39. [PMID: 37186326 DOI: 10.1111/apm.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
|
159
|
Kim H, Park C, Kim TH. Targeting Liver X Receptors for the Treatment of Non-Alcoholic Fatty Liver Disease. Cells 2023; 12:cells12091292. [PMID: 37174692 PMCID: PMC10177243 DOI: 10.3390/cells12091292] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/29/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) refers to a range of conditions in which excess lipids accumulate in the liver, possibly leading to serious hepatic manifestations such as steatohepatitis, fibrosis/cirrhosis and cancer. Despite its increasing prevalence and significant impact on liver disease-associated mortality worldwide, no medication has been approved for the treatment of NAFLD yet. Liver X receptors α/β (LXRα and LXRβ) are lipid-activated nuclear receptors that serve as master regulators of lipid homeostasis and play pivotal roles in controlling various metabolic processes, including lipid metabolism, inflammation and immune response. Of note, NAFLD progression is characterized by increased accumulation of triglycerides and cholesterol, hepatic de novo lipogenesis, mitochondrial dysfunction and augmented inflammation, all of which are highly attributed to dysregulated LXR signaling. Thus, targeting LXRs may provide promising strategies for the treatment of NAFLD. However, emerging evidence has revealed that modulating the activity of LXRs has various metabolic consequences, as the main functions of LXRs can distinctively vary in a cell type-dependent manner. Therefore, understanding how LXRs in the liver integrate various signaling pathways and regulate metabolic homeostasis from a cellular perspective using recent advances in research may provide new insights into therapeutic strategies for NAFLD and associated metabolic diseases.
Collapse
Affiliation(s)
- Hyejin Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Chaewon Park
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Tae Hyun Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Drug Information Research Institute, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Muscle Physiome Research Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
160
|
Yang H, Narayan S, Schmidt MV. From Ligands to Behavioral Outcomes: Understanding the Role of Mineralocorticoid Receptors in Brain Function. Stress 2023; 26:2204366. [PMID: 37067948 DOI: 10.1080/10253890.2023.2204366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Stress is a normal response to situational pressures or demands. Exposure to stress activates the hypothalamic-pituitary-adrenal (HPA) axis and leads to the release of corticosteroids, which act in the brain via two distinct receptors: mineralocorticoid receptors (MR) and glucocorticoid receptors (GR). Persistent HPA axis overactivation or dysregulation can disrupt an individual's homeostasis, thereby contributing to an increased risk for mental illness. On the other hand, successful coping with stressful events involves adaptive and cognitive processes in the brain that render individuals more resilient to similar stressors in the future. Here we review the role of the MR in these processes, starting with an overview of the physiological structure, ligand binding, and expression of MR, and further summarizing its role in the brain, its relevance to psychiatric disorders, and related rodent studies. Given the central role of MR in cognitive and emotional functioning, and its importance as a target for promoting resilience, future research should investigate how MR modulation can be used to alleviate disturbances in emotion and behavior, as well as cognitive impairment, in patients with stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Huanqing Yang
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Sowmya Narayan
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Department Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| |
Collapse
|
161
|
Ye C, Behnke JA, Hardin KR, Zheng JQ. Drosophila melanogaster as a model to study age and sex differences in brain injury and neurodegeneration after mild head trauma. Front Neurosci 2023; 17:1150694. [PMID: 37077318 PMCID: PMC10106652 DOI: 10.3389/fnins.2023.1150694] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
Repetitive physical insults to the head, including those that elicit mild traumatic brain injury (mTBI), are a known risk factor for a variety of neurodegenerative conditions including Alzheimer's disease (AD), Parkinson's disease (PD), and chronic traumatic encephalopathy (CTE). Although most individuals who sustain mTBI typically achieve a seemingly full recovery within a few weeks, a subset experience delayed-onset symptoms later in life. As most mTBI research has focused on the acute phase of injury, there is an incomplete understanding of mechanisms related to the late-life emergence of neurodegeneration after early exposure to mild head trauma. The recent adoption of Drosophila-based brain injury models provides several unique advantages over existing preclinical animal models, including a tractable framework amenable to high-throughput assays and short relative lifespan conducive to lifelong mechanistic investigation. The use of flies also provides an opportunity to investigate important risk factors associated with neurodegenerative conditions, specifically age and sex. In this review, we survey current literature that examines age and sex as contributing factors to head trauma-mediated neurodegeneration in humans and preclinical models, including mammalian and Drosophila models. We discuss similarities and disparities between human and fly in aging, sex differences, and pathophysiology. Finally, we highlight Drosophila as an effective tool for investigating mechanisms underlying head trauma-induced neurodegeneration and for identifying therapeutic targets for treatment and recovery.
Collapse
Affiliation(s)
- Changtian Ye
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Joseph A. Behnke
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Katherine R. Hardin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - James Q. Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
162
|
Vijayakumar K, Prasanna B, Rengarajan RL, Rathinam A, Velayuthaprabhu S, Vijaya Anand A. Anti-diabetic and hypolipidemic effects of Cinnamon cassia bark extracts: an in vitro, in vivo, and in silico approach. Arch Physiol Biochem 2023; 129:338-348. [PMID: 32985927 DOI: 10.1080/13813455.2020.1822415] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/26/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
The present investigation was aimed to study the anti-diabetic and hypolipidemic potential of Cinnamon cassia (Lauraceae family) bark in streptozotocin (STZ)-induced diabetic rats. The preliminary phytochemical analysis (hexane, petroleum ether, chloroform, ethanol, methanol, and aqueous extracts), GC-MS analysis (ethanol), in vitro (aqueous, ethanol and methanol), in vivo (ethanol) and in silico anti-diabetic activity with hypolipidemic effect of C. cassia bark was analysed. The ethanolic extract of the C. cassia bark has a fine inhibitory activity than the aqueous and methanolic extract. Out of 20 different compounds identified, seven compounds were biologically active, and 9-octadecenoic acid has highly interacted with PPARα/γ in docking studies. The levels of diabetic markers, enzymes, and lipid profiles were altered in STZ-induced rats, but after the treatment of C. cassia, the levels were returned to the normal. The study may prove the ethanolic extract of C. cassia has a powerful anti-diabetic and anti-hyperlipidemic activity.
Collapse
Affiliation(s)
- K Vijayakumar
- Department of Chemistry, Sri Meenakshi Vidiyal Arts and Science College, Tiruchirappalli, India
| | - B Prasanna
- Department of Biochemistry, Manonmaniam Sundaranar University, Thirunelveli, India
| | - R L Rengarajan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| | - A Rathinam
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
- Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University, Shenzhen, China
| | - S Velayuthaprabhu
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - A Vijaya Anand
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| |
Collapse
|
163
|
Chang KS, Chen ST, Sung HC, Hsu SY, Lin WY, Hou CP, Lin YH, Feng TH, Tsui KH, Juang HH. Androgen Receptor Upregulates Mucosa-Associated Lymphoid Tissue 1 to Induce NF-κB Activity via Androgen-Dependent and -Independent Pathways in Prostate Carcinoma Cells. Int J Mol Sci 2023; 24:ijms24076245. [PMID: 37047218 PMCID: PMC10093854 DOI: 10.3390/ijms24076245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The androgen-dependent or -independent pathways are regarded as primary therapeutic targets for the neoplasm of the prostate. Mucosa-associated lymphoid tissue 1 (MALT1) acting as a paracaspase in the regulation of nuclear factor κB (NF-κB) signal transduction plays a central role in inflammation and oncogenesis in cancers. This study confirmed the potential linkages between androgen and NF-κB activation by inducing MALT1 in the androgen receptor-full length (ARFL)-positive LNCaP and 22Rv1 prostate cancer cells. Although androgen did not stimulate MALT1 expression in AR-null or ectopic ARFL-overexpressed PC-3 cells, the ectopic overexpression of the AR splicing variant 7 (ARv7) upregulated MALT1 to activate NF-κB activities in 22Rv1 and PC-3 cells. Since the nuclear translocation of p50 and p65 was facilitated by ARv7 to motivate NF-κB activity, the expressions of MALT1, prostate-specific antigen (PSA), and N-myc downstream regulated 1 (NDRG1) were therefore induced in ectopic ARv7-overexpressed prostate cancer cells. Ectopic ARv7 overexpression not only enhanced 22Rv1 or PC-3 cell growth and invasion in vitro but also the tumor growth of PC-3 cells in vivo. These results indicate that an androgen receptor induces MALT1 expression androgen-dependently and -independently in ARFL- or ARv7-overexpressed prostate cancer cells, suggesting a novel ARv7/MALT1/NF-κB-signaling pathway may exist in the cells of prostate cancer.
Collapse
|
164
|
Leone P, Solimando AG, Prete M, Malerba E, Susca N, Derakhshani A, Ditonno P, Terragna C, Cavo M, Silvestris N, Racanelli V. Unraveling the Role of Peroxisome Proliferator-Activated Receptor β/Δ (PPAR β/Δ) in Angiogenesis Associated with Multiple Myeloma. Cells 2023; 12:cells12071011. [PMID: 37048084 PMCID: PMC10093382 DOI: 10.3390/cells12071011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Growing evidence suggests a role for peroxisome proliferator-activated receptor β/δ (PPAR β/δ) in the angiogenesis, growth, and metastasis of solid tumors, but little is known about its role in multiple myeloma (MM). Angiogenesis in the bone marrow (BM) is characteristic of disease transition from monoclonal gammopathy of undetermined significance (MGUS) to MM. We examined the expression and function of PPAR β/δ in endothelial cells (EC) from the BM of MGUS (MGEC) and MM (MMEC) patients and showed that PPAR β/δ was expressed at higher levels in MMEC than in MGEC and that the overexpression depended on myeloma plasma cells. The interaction between myeloma plasma cells and MMEC promoted the release of the PPAR β/δ ligand prostaglandin I2 (PGI2) by MMEC, leading to the activation of PPAR β/δ. We also demonstrated that PPAR β/δ was a strong stimulator of angiogenesis in vitro and that PPAR β/δ inhibition by a specific antagonist greatly impaired the angiogenic functions of MMEC. These findings define PGI2-PPAR β/δ signaling in EC as a potential target of anti-angiogenic therapy. They also sustain the use of PPAR β/δ inhibitors in association with conventional drugs as a new therapeutic approach in MM.
Collapse
|
165
|
Shi YB, Tanizaki Y, Wang S, Fu L. Essential and subtype-dependent function of thyroid hormone receptors during Xenopus metamorphosis. VITAMINS AND HORMONES 2023; 123:503-523. [PMID: 37717996 PMCID: PMC11285022 DOI: 10.1016/bs.vh.2023.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Thyroid hormone (T3) plays critical roles in organ metabolism and development in vertebrates. Anuran metamorphosis is perhaps the most dramatic and best studied developmental process controlled by T3. Many changes in different organs/tissues during anuran metamorphosis resemble the maturation/remodeling of the corresponding organs/tissues during mammalian postembryonic development. The plasma T3 level peaks during both anuran metamorphosis and mammalian postembryonic development. T3 exerts its developmental function through transcriptional regulation via T3 receptors (TRs). Studies on the metamorphosis of two highly related anurans, pseudo-tetraploid Xenopus laevis and diploid Xenopus tropicalis, have led to a dual function model for TRs during development. This has been supported by strong molecular and genetic evidence. Here we review some of the evidence with a focus on more recent gene knockout studies in Xenopus tropicalis. These studies have not only supported the model but also revealed novel and TR subtype-specific roles during Xenopus development, particularly a critical role of TRα in controlling developmental timing and rate.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States.
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Shouhong Wang
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
166
|
Tovo PA, Marozio L, Abbona G, Calvi C, Frezet F, Gambarino S, Dini M, Benedetto C, Galliano I, Bergallo M. Pregnancy Is Associated with Impaired Transcription of Human Endogenous Retroviruses and of TRIM28 and SETDB1, Particularly in Mothers Affected by Multiple Sclerosis. Viruses 2023; 15:v15030710. [PMID: 36992419 PMCID: PMC10051116 DOI: 10.3390/v15030710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Accumulating evidence highlights the pathogenetic role of human endogenous retroviruses (HERVs) in eliciting and maintaining multiple sclerosis (MS). Epigenetic mechanisms, such as those regulated by TRIM 28 and SETDB1, are implicated in HERV activation and in neuroinflammatory disorders, including MS. Pregnancy markedly improves the course of MS, but no study explored the expressions of HERVs and of TRIM28 and SETDB1 during gestation. Using a polymerase chain reaction real-time Taqman amplification assay, we assessed and compared the transcriptional levels of pol genes of HERV-H, HERV-K, HERV-W; of env genes of Syncytin (SYN)1, SYN2, and multiple sclerosis associated retrovirus (MSRV); and of TRIM28 and SETDB1 in peripheral blood and placenta from 20 mothers affected by MS; from 27 healthy mothers, in cord blood from their neonates; and in blood from healthy women of child-bearing age. The HERV mRNA levels were significantly lower in pregnant than in nonpregnant women. Expressions of all HERVs were downregulated in the chorion and in the decidua basalis of MS mothers compared to healthy mothers. The former also showed lower mRNA levels of HERV-K-pol and of SYN1, SYN2, and MSRV in peripheral blood. Significantly lower expressions of TRIM28 and SETDB1 also emerged in pregnant vs. nonpregnant women and in blood, chorion, and decidua of mothers with MS vs. healthy mothers. In contrast, HERV and TRIM28/SETDB1 expressions were comparable between their neonates. These results show that gestation is characterized by impaired expressions of HERVs and TRIM28/SETDB1, particularly in mothers with MS. Given the beneficial effects of pregnancy on MS and the wealth of data suggesting the putative contribution of HERVs and epigenetic processes in the pathogenesis of the disease, our findings may further support innovative therapeutic interventions to block HERV activation and to control aberrant epigenetic pathways in MS-affected patients.
Collapse
Affiliation(s)
- Pier-Angelo Tovo
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Correspondence: (P.-A.T.); (M.B.)
| | - Luca Marozio
- Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, 10126 Turin, Italy
| | - Giancarlo Abbona
- Pathology Unit, Department Laboratory Medicine, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Cristina Calvi
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Federica Frezet
- Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, 10126 Turin, Italy
| | - Stefano Gambarino
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Maddalena Dini
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Chiara Benedetto
- Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, 10126 Turin, Italy
| | - Ilaria Galliano
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Massimiliano Bergallo
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Correspondence: (P.-A.T.); (M.B.)
| |
Collapse
|
167
|
Garabuczi É, Tarban N, Fige É, Patsalos A, Halász L, Szendi-Szatmári T, Sarang Z, Király R, Szondy Z. Nur77 and PPARγ regulate transcription and polarization in distinct subsets of M2-like reparative macrophages during regenerative inflammation. Front Immunol 2023; 14:1139204. [PMID: 36936920 PMCID: PMC10020500 DOI: 10.3389/fimmu.2023.1139204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Macrophage polarization is a process whereby macrophages develop a specific phenotype and functional response to different pathophysiological stimuli and tissue environments. In general, two main macrophage phenotypes have been identified: inflammatory (M1) and alternatively activated (M2) macrophages characterized specifically by IL-1β and IL-10 production, respectively. In the cardiotoxin-induced skeletal muscle injury model bone marrow-derived macrophages (BMDMs) play the central role in regulating tissue repair. Bone marrow-derived monocytes arriving at the site of injury differentiate first to M1 BMDMs that clear cell debris and trigger proliferation and differentiation of the muscle stem cells, while during the process of efferocytosis they change their phenotype to M2 to drive resolution of inflammation and tissue repair. The M2 population is formed from at least three distinct subsets: antigen presenting, resolution-related and growth factor producing macrophages, the latest ones expressing the transcription factor PPARγ. Nuclear receptor subfamily 4 group A member 1 (NR4A1; also termed Nur77) transcription factor is expressed as an early response gene, and has been shown to suppress the expression of pro-inflammatory genes during efferocytosis. Here we demonstrate that (1) Nur77 null BMDMs are characterized by elevated expression of PPARγ resulting in enhanced efferocytosis capacity; (2) Nur77 and PPARγ regulate transcription in different subsets of M2 skeletal muscle macrophages during muscle repair; (3) the loss of Nur77 prolongs M1 polarization characterized by increased and prolonged production of IL-1β by the resolution-related macrophages normally expressing Nur77; whereas, in contrast, (4) it promotes M2 polarization detected via the increased number of IL-10 producing CD206+ macrophages generated from the PPARγ-expressing subset.
Collapse
Affiliation(s)
- Éva Garabuczi
- Department of Integrative Health Sciences, Institute of Health Sciences, Faculty of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Nastaran Tarban
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Fige
- Doctoral School of Dental Sciences, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Andreas Patsalos
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - László Halász
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Tímea Szendi-Szatmári
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Róbert Király
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsuzsa Szondy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Section of Dental Biochemistry, Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
168
|
Ferrer MJ, Abruzzese GA, Heber MF, Ferreira SR, Campo Verde Arbocco F, Motta AB. Intrauterine androgen exposure impairs gonadal adipose tissue functions of adult female rats. Theriogenology 2023; 198:131-140. [PMID: 36584634 DOI: 10.1016/j.theriogenology.2022.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Prenatal androgen exposure induces fetal programming leading to alterations in offspring health and phenotypes that resemble those seen in women with Polycystic Ovary Syndrome. It has been described that prenatal androgenization affects the reproductive axis and leads to metabolic and endocrine disorders. Adipose tissue plays a crucial role in all these functions and is susceptible to programming effects. Particularly, gonadal adipose tissue is involved in reproductive functions, so dysfunctions in this tissue could be related to fertility alterations. We aimed to investigate the extent to which prenatal hyperandrogenization is able to alter the functionality of gonadal adipose tissue in female adult rats, including lipid metabolism, adipokines expression, and de novo synthesis of steroids. Pregnant rats were treated with 1 mg of testosterone from day 16 to day 19 of pregnancy, and female offspring were followed until 90 days of age, when they were euthanized. The prenatally hyperandrogenized (PH) female offspring displayed two phenotypes: irregular ovulatory (PHiov) and anovulatory (PHanov). Regarding lipid metabolism, both PH groups displayed disruptions in the main lipid pathways with altered levels of triglyceride and increased lipid peroxidation levels. In addition, we found that Peroxisome Proliferator-Activated Receptors (PPARs) alpha protein expression was decreased in both PH phenotypes (p < 0.05), but no changes were found in PPARγ protein levels. Furthermore, regarding adipokines, no changes were found in Leptin and Adiponectin protein levels, but Chemerin protein levels were decreased in the PHiov group (p < 0.05). Regarding de novo synthesis of steroids, the PHanov group showed increased protein levels of Cyp17a1 and Cyp19, while the PHiov group only showed decreased protein levels of Cyp19 (p < 0.05). These results suggest that prenatal androgen exposure affects females' gonadal adipose tissue in adulthood, disturbing different lipid pathways, Chemerin expression, and de novo synthesis of steroids.
Collapse
Affiliation(s)
- María José Ferrer
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - Giselle Adriana Abruzzese
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Florencia Heber
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvana Rocío Ferreira
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fiorella Campo Verde Arbocco
- Laboratorio de Hormonas y Biología del Cáncer, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, 5500, Mendoza, Argentina; Laboratorio de Reproducción y Lactancia, IMBECU, CONICET, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad de Mendoza, Mendoza, Argentina
| | - Alicia Beatriz Motta
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
169
|
Erra Diaz F, Mazzitelli I, Bleichmar L, Melucci C, Thibodeau A, Dalotto Moreno T, Marches R, Rabinovich GA, Ucar D, Geffner J. Concomitant inhibition of PPARγ and mTORC1 induces the differentiation of human monocytes into highly immunogenic dendritic cells. Cell Rep 2023; 42:112156. [PMID: 36842088 DOI: 10.1016/j.celrep.2023.112156] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/29/2022] [Accepted: 02/08/2023] [Indexed: 02/27/2023] Open
Abstract
Monocytes can differentiate into macrophages (Mo-Macs) or dendritic cells (Mo-DCs). The cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) induces the differentiation of monocytes into Mo-Macs, while the combination of GM-CSF/interleukin (IL)-4 is widely used to generate Mo-DCs for clinical applications and to study human DC biology. Here, we report that pharmacological inhibition of the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) in the presence of GM-CSF and the absence of IL-4 induces monocyte differentiation into Mo-DCs. Remarkably, we find that simultaneous inhibition of PPARγ and the nutrient sensor mammalian target of rapamycin complex 1 (mTORC1) induces the differentiation of Mo-DCs with stronger phenotypic stability, superior immunogenicity, and a transcriptional profile characterized by a strong type I interferon (IFN) signature, a lower expression of a large set of tolerogenic genes, and the differential expression of several transcription factors compared with GM-CSF/IL-4 Mo-DCs. Our findings uncover a pathway that tailors Mo-DC differentiation with potential implications in the fields of DC vaccination and cancer immunotherapy.
Collapse
Affiliation(s)
- Fernando Erra Diaz
- Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Ignacio Mazzitelli
- Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Lucía Bleichmar
- Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Claudia Melucci
- Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Asa Thibodeau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Tomás Dalotto Moreno
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Radu Marches
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Jorge Geffner
- Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
170
|
Bhargava A. Unraveling corticotropin-releasing factor family-orchestrated signaling and function in both sexes. VITAMINS AND HORMONES 2023; 123:27-65. [PMID: 37717988 DOI: 10.1016/bs.vh.2023.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Stress responses to physical, psychological, environmental, or cellular stressors, has two arms: initiation and recovery. Corticotropin-releasing factor (CRF) is primarily responsible for regulating and/or initiating stress responses via, whereas urocortins (UCNs) are involved in the recovery response to stress via feedback inhibition. Stress is a loaded, polysemous word and is experienced in a myriad of ways. Some stressors are good for an individual, in fact essential, whereas other stressors are associated with bad outcomes. Perceived stress, like beauty, lies in the eye of the beholder, and hence the same stressor can result in individual-specific outcomes. In mammals, there are two main biological sexes with reproduction as primary function. Reproduction and nutrition can also be viewed as stressors; based on a body of work from my laboratory, we propose that the functions of all other organs have co-evolved to optimize and facilitate an individual's nutritional and reproductive functions. Hence, sex differences in physiologically relevant outcomes are innate and occur at all levels- molecular, endocrine, immune, and (patho)physiological. CRF and three UCNs are peptide hormones that mediate their physiological effects by binding to two known G protein-coupled receptors (GPCRs), CRF1 and CRF2. Expression and function of CRF family of hormones and their receptors is likely to be sexually dimorphic in all organs. In this chapter, based on the large body of work from others and my laboratory, an overview of the CRF family with special emphasis on sex-specific actions of peripherally expressed CRF2 receptor in health and disease is provided.
Collapse
Affiliation(s)
- Aditi Bhargava
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
171
|
Royan MR, Kayo D, Weltzien FA, Fontaine R. Sexually Dimorphic Regulation of Gonadotrope Cell Hyperplasia in Medaka Pituitary via Mitosis and Transdifferentiation. Endocrinology 2023; 164:7040530. [PMID: 36791137 PMCID: PMC9994597 DOI: 10.1210/endocr/bqad030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
The 2 pituitary gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), regulate the reproductive function in all vertebrates. While many studies have investigated the regulation of gonadotropin production and release by sex steroid feedback, its role on the regulation of gonadotrope cell number remains unclear. Using medaka as a model and an optimized protocol to restore physiological sex steroids levels following gonadectomy, we show that gonadal sex steroids not only decrease fshb transcript levels, but also Fsh cell number in both sexes. We then investigated the origin of Fsh cell hyperplasia induced by gonadectomy. In both sexes, bromodeoxyuridine incubation shows that this is achieved via Fsh cell mitosis. In situ hybridization reveals that new Fsh cells also originate from transdifferentiating Tsh cells in females, but not in males. Both phenomena are inhibited by sex steroid supplementation via feeding. In males (but not females), gonadectomy (without recovery with sex steroid supplementation) also reduces sox2 transcript levels and Sox2-immunopositive population size, suggesting that Sox2 progenitors may be recruited to produce new Fsh cells. Opposite to Fsh cells, gonadectomy decreases lhb levels in both sexes, and levels are not restored by sex steroid supplementation. In addition, the regulation of Lh cell number also seems to be sex dependent. Removal of gonadal sex steroids stimulates Lh cell mitosis in male (like Fsh cells) but not in females. To conclude, our study provides the first evidence on sexually dimorphic mechanisms used in the fish pituitary to remodel gonadotrope populations in response to sex steroids.
Collapse
Affiliation(s)
- Muhammad Rahmad Royan
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Daichi Kayo
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, 980-8577 Sendai, Japan
| | - Finn-Arne Weltzien
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Romain Fontaine
- Correspondence: Romain Fontaine, PhD, Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Oluf Thesens Vei 22, 1432 Ås, Norway.
| |
Collapse
|
172
|
Mohammed AA, El-Matty DMA, Abdel-Azeem R, Raafat K, Hussein MA, El-Ansary AR, Hafez W, Hassan HA, Nassar NA, Selim NM, Ghaith D, Kholy AAE, Abd El Salam SM, Anouti FA, Wahba AS. Allelic Discrimination of Vitamin D Receptor Polymorphisms and Risk of Type 2 Diabetes Mellitus: A Case-Controlled Study. Healthcare (Basel) 2023; 11:healthcare11040485. [PMID: 36833019 PMCID: PMC9956945 DOI: 10.3390/healthcare11040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
(1) Background: Type 2 diabetes mellitus (T2DM) is one of the rapidly growing healthcare problems, and several vitamin D receptor (VDR) polymorphisms seem to modulate the risk of T2DM. Our research was designed to investigate the allelic discrimination of VDR polymorphisms and T2DM occurrence risk. (2) Methods: This case-control research included 156 patients with T2DM and 145 healthy control subjects. Most of the study population were males 56.6% vs. 62.8% in the case and control groups, respectively. Genotyping for VDR single nucleotide polymorphisms (SNPs), rs228570 (Fok1), rs7975232 (Apa1), and rs1544410 (Bsm1) was compared between both groups. (3) Results: There was a negative link between vitamin D levels and insulin sensitivity. A significant difference was noted in the allelic discrimination of VDR polymorphism rs228570 and rs1544410 between the study groups (p < 0.001). No difference was observed in the allelic discrimination of VDR polymorphism rs7975232 between the groups (p = 0.063). Moreover, T2DM patients had significantly higher levels of fasting blood sugar (FBS), glycated hemoglobin HbA1c, 2-h post-prandial blood sugar (PP), serum glutamic oxaloacetic transaminase (SGOT), serum glutamic-pyruvic transaminase (SGPT), total cholesterol, and triglycerides (p < 0.001), while High-Density Lipoprotein (HDL) Cholesterol (HDL-C) was significantly decreased (p = 0.006). (4) Conclusions: VDR polymorphisms had a positive association with T2DM risk among the Egyptian population. Further large-scale research using deep sequencing of samples is strongly urged to investigate different vitamin D gene variants and interactions, as well as the influence of vitamin D on T2DM.
Collapse
Affiliation(s)
- Amal Ahmed Mohammed
- Department of Biochemistry and Molecular Biology, National Hepatology and Tropical Medicine Research Institute (NHTMRI), Cairo 11796, Egypt
| | - Dina M. Abo El-Matty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Rola Abdel-Azeem
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Khaled Raafat
- Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Cairo11566, Egypt
| | - Mona A. Hussein
- Department of Internal Medicine, National Institute of Diabetes and Endocrinology, Cairo 11562, Egypt
| | - Amira R. El-Ansary
- Department of Internal Medicine, Faculty of Medicine, Misr University for Science and Technology, Giza 12577, Egypt
| | - Wael Hafez
- Department of Internal Medicine, The National Research Centre, Cairo 12622, Egypt
- Correspondence: or ; Tel.: +20-9712235000
| | - Hatem Ahmed Hassan
- Department of Internal Medicine and Gastroenterology, Faculty of Medicine, Minia University, Minia 61519, Egypt
| | | | - Nora Mahmoud Selim
- Department of Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo 12613, Egypt
| | - Doaa Ghaith
- Department of Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo 12613, Egypt
| | - Amal A. El Kholy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Soha M. Abd El Salam
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez University, Suez 43512, Egypt
| | - Fatme Al Anouti
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
| | - Alaa S. Wahba
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
173
|
Wang YW, Lan L, Wang M, Zhang JY, Gao YH, Shi L, Sun LP. PROTACS: A technology with a gold rush-like atmosphere. Eur J Med Chem 2023; 247:115037. [PMID: 36566716 DOI: 10.1016/j.ejmech.2022.115037] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/03/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Abnormally expressed or malfunctioning proteins may affect or even damage cells, leading to the onset of diseases. Proteolysis targeting chimera (PROTAC) technology has been proven to be a fresh therapeutic strategy, superior to conventional small molecule inhibitors for the treatment of diseases caused by pathogenic proteins. Unlike conventional small molecule inhibitors that are occupancy-driven, PROTACs are heterobifunctional small molecules with catalytic properties. They combine with E3 ligases and target proteins to form a ternary complex, rendering the target protein ubiquitous and subsequently degraded by the proteasome. This paper focuses first on significant events in the development of PROTAC technology from 2001 to 2022, followed by a brief overview of various PROTACs categorized by target proteins. In addition, the applications of PROTACs in the treatment of diseases and fundamental biology are also under discussion.
Collapse
Affiliation(s)
- Yu-Wei Wang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Li Lan
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Min Wang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Jin-Yang Zhang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yu-Hui Gao
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Lei Shi
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Li-Ping Sun
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
174
|
Davis D, Vajaria R, Delivopoulos E, Vasudevan N. Localisation of oestrogen receptors in stem cells and in stem cell-derived neurons of the mouse. J Neuroendocrinol 2023; 35:e13220. [PMID: 36510342 PMCID: PMC10909416 DOI: 10.1111/jne.13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/24/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022]
Abstract
Oestrogen receptors (ER) transduce the effects of the endogenous ligand, 17β-estradiol in cells to regulate a number of important processes such as reproduction, neuroprotection, learning and memory and anxiety. The ERα or ERβ are classical intracellular nuclear hormone receptors while some of their variants or novel proteins such as the G-protein coupled receptor (GPCR), GPER1/GPR30 are reported to localise in intracellular as well as plasma membrane locations. Although the brain is an important target for oestrogen with oestrogen receptors expressed differentially in various nuclei, subcellular organisation and crosstalk between these receptors is under-explored. Using an adapted protocol that is rapid, we first generated neurons from mouse embryonic stem cells. Our immunocytochemistry approach shows that the full length ERα (ERα-66) and for the first time, that an ERα variant, ERα-36, as well as GPER1 is present in embryonic stem cells. In addition, these receptors typically decrease their nuclear localisation as neuronal maturation proceeds. Finally, although these ERs are present in many subcellular compartments such as the nucleus and plasma membrane, we show that they are specifically not colocalised with each other, suggesting that they initiate distinct signalling pathways.
Collapse
Affiliation(s)
- DeAsia Davis
- School of Biological Sciences, University of Reading, Reading, UK
| | - Ruby Vajaria
- School of Biological Sciences, University of Reading, Reading, UK
| | | | | |
Collapse
|
175
|
Di Pietro G, Forcucci F, Chiarelli F. Endocrine Disruptor Chemicals and Children's Health. Int J Mol Sci 2023; 24:2671. [PMID: 36768991 PMCID: PMC9916521 DOI: 10.3390/ijms24032671] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
We are all exposed to endocrine-disrupting chemicals (EDCs) starting from embryonic life. The fetus and child set up crucial developmental processes allowing adaptation to the environment throughout life: they are extremely sensitive to very low doses of hormones and EDCs because they are developing organisms. Considering the developmental origin of well-being and diseases, every adult organism expresses consequences of the environment in which it developed. The molecular mechanisms through which the main EDCs manifest their effects and their potential association with endocrine disorders, such as diabetes, obesity, thyroid disease and alteration of adrenal hormones, will be reviewed here. Despite 40 years having passed since the first study on EDCs, little is yet known about them; therefore, our purpose is to take stock of the situation to establish a starting point for further studies. Since there is plenty of evidence showing that exposure to EDCs may adversely impact the health of adults and children through altered endocrine function-suggesting their link to endocrinopathies-it is essential in this context to bear in mind what is already known about endocrine disruptors and to deepen our knowledge to establish rules of conduct aimed at limiting exposure to EDCs' negative effects. Considering that during the COVID-19 pandemic an increase in endocrine disruptor effects has been reported, it will also be useful to address this new phenomenon for better understanding its basis and limiting its consequences.
Collapse
Affiliation(s)
| | | | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti “G. d’Annunzio”, 66100 Chieti, Italy
| |
Collapse
|
176
|
Taspase1 Facilitates Topoisomerase IIβ-Mediated DNA Double-Strand Breaks Driving Estrogen-Induced Transcription. Cells 2023; 12:cells12030363. [PMID: 36766705 PMCID: PMC9913075 DOI: 10.3390/cells12030363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
The human protease Taspase1 plays a pivotal role in developmental processes and cancerous diseases by processing critical regulators, such as the leukemia proto-oncoprotein MLL. Despite almost two decades of intense research, Taspase1's biology is, however, still poorly understood, and so far its cellular function was not assigned to a superordinate biological pathway or a specific signaling cascade. Our data, gained by methods such as co-immunoprecipitation, LC-MS/MS and Topoisomerase II DNA cleavage assays, now functionally link Taspase1 and hormone-induced, Topoisomerase IIβ-mediated transient DNA double-strand breaks, leading to active transcription. The specific interaction with Topoisomerase IIα enhances the formation of DNA double-strand breaks that are a key prerequisite for stimulus-driven gene transcription. Moreover, Taspase1 alters the H3K4 epigenetic signature upon estrogen-stimulation by cleaving the chromatin-modifying enzyme MLL. As estrogen-driven transcription and MLL-derived epigenetic labelling are reduced upon Taspase1 siRNA-mediated knockdown, we finally characterize Taspase1 as a multifunctional co-activator of estrogen-stimulated transcription.
Collapse
|
177
|
Lin Y, Tan H, Yu G, Zhan M, Xu B. Molecular Mechanisms of Noncoding RNA in the Occurrence of Castration-Resistant Prostate Cancer. Int J Mol Sci 2023; 24:ijms24021305. [PMID: 36674820 PMCID: PMC9860629 DOI: 10.3390/ijms24021305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Although several therapeutic options have been shown to improve survival of most patients with prostate cancer, progression to castration-refractory state continues to present challenges in clinics and scientific research. As a highly heterogeneous disease entity, the mechanisms of castration-resistant prostate cancer (CRPC) are complicated and arise from multiple factors. Among them, noncoding RNAs (ncRNAs), the untranslated part of the human transcriptome, are closely related to almost all biological regulation, including tumor metabolisms, epigenetic modifications and immune escape, which has encouraged scientists to investigate their role in CRPC. In clinical practice, ncRNAs, especially miRNAs and lncRNAs, may function as potential biomarkers for diagnosis and prognosis of CRPC. Therefore, understanding the molecular biology of CRPC will help boost a shift in the treatment of CRPC patients. In this review, we summarize the recent findings of miRNAs and lncRNAs, discuss their potential functional mechanisms and highlight their clinical application prospects in CRPC.
Collapse
Affiliation(s)
- Yu Lin
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Haisong Tan
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guopeng Yu
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (M.Z.); (B.X.)
| | - Bin Xu
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (M.Z.); (B.X.)
| |
Collapse
|
178
|
Shi YB, Tanizaki Y, Wang S, Fu L. Essential and subtype-dependent function of thyroid hormone receptors during Xenopus metamorphosis. VITAMINS AND HORMONES 2023. [DOI: 10.1016/bs.vh.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
179
|
Melo N, Belyaeva OV, Berger WK, Halasz L, Yu J, Pilli N, Yang Z, Klyuyeva AV, Elmets CA, Atigadda V, Muccio DD, Kane MA, Nagy L, Kedishvili NY, Renfrow MB. Next-generation retinoid X receptor agonists increase ATRA signaling in organotypic epithelium cultures and have distinct effects on receptor dynamics. J Biol Chem 2023; 299:102746. [PMID: 36436565 PMCID: PMC9807999 DOI: 10.1016/j.jbc.2022.102746] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022] Open
Abstract
Retinoid X receptors (RXRs) are nuclear transcription factors that partner with other nuclear receptors to regulate numerous physiological processes. Although RXR represents a valid therapeutic target, only a few RXR-specific ligands (rexinoids) have been identified, in part due to the lack of clarity on how rexinoids selectively modulate RXR response. Previously, we showed that rexinoid UAB30 potentiates all-trans-retinoic acid (ATRA) signaling in human keratinocytes, in part by stimulating ATRA biosynthesis. Here, we examined the mechanism of action of next-generation rexinoids UAB110 and UAB111 that are more potent in vitro than UAB30 and the FDA-approved Targretin. Both UAB110 and UAB111 enhanced ATRA signaling in human organotypic epithelium at a 50-fold lower concentration than UAB30. This was consistent with the 2- to 5- fold greater increase in ATRA in organotypic epidermis treated with UAB110/111 versus UAB30. Furthermore, at 0.2 μM, UAB110/111 increased the expression of ATRA genes up to 16-fold stronger than Targretin. The less toxic and more potent UAB110 also induced more changes in differential gene expression than Targretin. Additionally, our hydrogen deuterium exchange mass spectrometry analysis showed that both ligands reduced the dynamics of the ligand-binding pocket but also induced unique dynamic responses that were indicative of higher affinity binding relative to UAB30, especially for Helix 3. UAB110 binding also showed increased dynamics towards the dimer interface through the Helix 8 and Helix 9 regions. These data suggest that UAB110 and UAB111 are potent activators of RXR-RAR signaling pathways but accomplish activation through different molecular responses to ligand binding.
Collapse
Affiliation(s)
- Nathalia Melo
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Olga V Belyaeva
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Wilhelm K Berger
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Laszlo Halasz
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Nagesh Pilli
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Zhengrong Yang
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alla V Klyuyeva
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Craig A Elmets
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA; Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Venkatram Atigadda
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Donald D Muccio
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Laszlo Nagy
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Natalia Y Kedishvili
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Matthew B Renfrow
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
180
|
Sawada T, Kanemoto Y, Kurokawa T, Kato S. The epigenetic function of androgen receptor in prostate cancer progression. Front Cell Dev Biol 2023; 11:1083486. [PMID: 37025180 PMCID: PMC10070878 DOI: 10.3389/fcell.2023.1083486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Androgen and androgen deprivation (castration) therapies, including androgen receptor antagonists, are clinically used to treat patients with prostate cancer. However, most hormone-dependent prostate cancer patients progress into a malignant state with loss of hormone-dependency, known as castration (drug)-resistant prostate cancer (CRPC), after prolong androgen-based treatments. Even in the CRPC state with irreversible malignancy, androgen receptor (AR) expression is detectable. An epigenetic transition to CRPC induced by the action of AR-mediated androgen could be speculated in the patients with prostate cancer. Androgen receptors belongs to the nuclear receptor superfamily with 48 members in humans, and acts as a ligand-dependent transcriptional factor, leading to local chromatin reorganization for ligand-dependent gene regulation. In this review, we discussed the transcriptional/epigenetic regulatory functions of AR, with emphasis on the clinical applications of AR ligands, AR protein co-regulators, and AR RNA coregulator (enhancer RNA), especially in chromatin reorganization, in patients with prostate cancer.
Collapse
Affiliation(s)
- Takahiro Sawada
- Graduate School of Life Science and Engineering, Iryo Sosei University, Fukushima, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Fukushima, Japan
| | - Yoshiaki Kanemoto
- Graduate School of Life Science and Engineering, Iryo Sosei University, Fukushima, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Fukushima, Japan
| | - Tomohiro Kurokawa
- Graduate School of Life Science and Engineering, Iryo Sosei University, Fukushima, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Fukushima, Japan
- School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Shigeaki Kato
- Graduate School of Life Science and Engineering, Iryo Sosei University, Fukushima, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Fukushima, Japan
- School of Medicine, Fukushima Medical University, Fukushima, Japan
- *Correspondence: Shigeaki Kato,
| |
Collapse
|
181
|
Kim S, Lim SW, Choi J. Drug discovery inspired by bioactive small molecules from nature. Anim Cells Syst (Seoul) 2022; 26:254-265. [PMID: 36605590 PMCID: PMC9809404 DOI: 10.1080/19768354.2022.2157480] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Natural products (NPs) have greatly contributed to the development of novel treatments for human diseases such as cancer, metabolic disorders, and infections. Compared to synthetic chemical compounds, primary and secondary metabolites from medicinal plants, fungi, microorganisms, and our bodies are promising resources with immense chemical diversity and favorable properties for drug development. In addition to the well-validated significance of secondary metabolites, endogenous small molecules derived from central metabolism and signaling events have shown great potential as drug candidates due to their unique metabolite-protein interactions. In this short review, we highlight the values of NPs, discuss recent scientific and technological advances including metabolomics tools, chemoproteomics approaches, and artificial intelligence-based computation platforms, and explore potential strategies to overcome the current challenges in NP-driven drug discovery.
Collapse
Affiliation(s)
- Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea, Seyun Kim
| | - Seol-Wa Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jiyeon Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
182
|
Interactions governing transcriptional activity of nuclear receptors. Biochem Soc Trans 2022; 50:1941-1952. [DOI: 10.1042/bst20220338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
The key players in transcriptional regulation are transcription factors (TFs), proteins that bind specific DNA sequences. Several mechanisms exist to turn TFs ‘on’ and ‘off’, including ligand binding which induces conformational changes within TFs, subsequently influencing multiple inter- and intramolecular interactions to drive transcriptional responses. Nuclear receptors are a specific family of ligand-regulated TFs whose activity relies on interactions with DNA, coregulator proteins and other receptors. These multidomain proteins also undergo interdomain interactions on multiple levels, further modulating transcriptional outputs. Cooperation between these distinct interactions is critical for appropriate transcription and remains an intense area of investigation. In this review, we report and summarize recent findings that continue to advance our mechanistic understanding of how interactions between nuclear receptors and diverse partners influence transcription.
Collapse
|
183
|
Hassan HM, Onabote O, Isovic M, Passos DT, Dick FA, Torchia J. Regulation of Chromatin Accessibility by the Farnesoid X Receptor Is Essential for Circadian and Bile Acid Homeostasis In Vivo. Cancers (Basel) 2022; 14:cancers14246191. [PMID: 36551676 PMCID: PMC9777377 DOI: 10.3390/cancers14246191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
The Farnesoid X Receptor (FXR) belongs to the nuclear receptor superfamily and is an essential bile acid (BA) receptor that regulates the expression of genes involved in the metabolism of BAs. FXR protects the liver from BA overload, which is a major etiology of hepatocellular carcinoma. Herein, we investigated the changes in gene expression and chromatin accessibility in hepatocytes by performing RNA-seq in combination with the Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) using a novel FXR knockout mouse model (Fxrex5Δ: Nr1h4ex5Δ/ex5Δ) generated through CRISPR/Cas9. Consistent with previous Fxr knockout models, we found that Fxrex5Δ mice develop late-onset HCC associated with increased serum and hepatic BAs. FXR deletion was associated with a dramatic loss of chromatin accessibility, primarily at promoter-associated transcription factor binding sites. Importantly, several genes involved in BA biosynthesis and circadian rhythm were downregulated following loss of FXR, also displayed reduced chromatin accessibility at their promoter regions. Altogether, these findings suggest that FXR helps to maintain a transcriptionally active state by regulating chromatin accessibility through its binding and recruitment of transcription factors and coactivators.
Collapse
Affiliation(s)
- Haider M. Hassan
- Department of Biochemistry, Western University, London, ON N6A 5C1, Canada
- Department of Oncology, London Regional Cancer Program and the Lawson Health Research Institute, London, ON N6A 5W9, Canada
| | - Oladapo Onabote
- Department of Biochemistry, Western University, London, ON N6A 5C1, Canada
- Department of Oncology, London Regional Cancer Program and the Lawson Health Research Institute, London, ON N6A 5W9, Canada
| | - Majdina Isovic
- Department of Oncology, London Regional Cancer Program and the Lawson Health Research Institute, London, ON N6A 5W9, Canada
| | - Daniel T. Passos
- Department of Oncology, London Regional Cancer Program and the Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5C1, Canada
| | - Frederick A. Dick
- Department of Oncology, London Regional Cancer Program and the Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5C1, Canada
| | - Joseph Torchia
- Department of Biochemistry, Western University, London, ON N6A 5C1, Canada
- Department of Oncology, London Regional Cancer Program and the Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Correspondence: ; Tel.: +519-685-8692
| |
Collapse
|
184
|
Kapama A, Papadimitriou DT, Mastorakos G, Vlahos NF, Papagianni M. Identification of the Rare Ala871Glu Mutation in the Androgen Receptor Gene Leading to Complete Androgen Insensitivity Syndrome in an Adolescent Girl with Primary Amenorrhea. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1900. [PMID: 36553343 PMCID: PMC9777019 DOI: 10.3390/children9121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Complete Androgen Insensitivity Syndrome (CAIS) is a rare genetic condition by mutations in the androgen receptor (AR) gene resulting in target issue resistance to androgens and a female phenotype in genetically male individuals. A 16-year-old phenotypically female individual presented to our clinic with primary amenorrhea. Her clinical evaluation showed normal female external genitalia, Tanner III breast development and sparse pubic and axillary hair (Tanner stage II). Hormonal assessment revealed increased concentrations of Luteinizing Hormone (LH), Testosterone and Antimüllerian Hormone (AMH). Image studies detected no uterus or gonads, but a blind vagina and the karyotype was 46, XY. These findings suggested the diagnosis of CAIS, and genetic testing of the AR gene revealed a rare pathogenic mutation of cytosine to adenine (c.2612C>A) replacing alanine with glutamic acid at position 871 (p.Ala871Glu) in the AR, previously described once in two adult sisters. The patient underwent gonadectomy and received hormonal replacement therapy. This study expands the AR mutation database and shows the complexity and the importance of prompt diagnosis, proper management, and follow-up for CAIS patients, underlining the need for standardized protocols.
Collapse
Affiliation(s)
- Aikaterini Kapama
- Department of Internal Medicine, 401 General Military Hospital of Athens, 11525 Athens, Greece
| | - Dimitrios T. Papadimitriou
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Second Department of Obstetrics and Gynecology, Aretaieion University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
- Department of Pediatric-Adolescent Endocrinology and Diabetes, Athens Medical Center, 15125 Marousi, Greece
| | - George Mastorakos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Second Department of Obstetrics and Gynecology, Aretaieion University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Nikolaos F. Vlahos
- Second Department of Obstetrics and Gynecology, Aretaieion University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Maria Papagianni
- Department of Nutrition and Dietetics, University of Thessaly, 42132 Trikala, Greece
- Unit of Endocrinology, Diabetes and Metabolism, Third Department of Pediatrics, Aristotle University of Thessaloniki, Hippokrateion Hospital of Thessaloniki, 54642 Thessaloniki, Greece
| |
Collapse
|
185
|
Li X, Liu S, Qi D, Qi H, Wang Y, Zhao K, Tian F. Genome-wide identification and expression of the peroxisome proliferator-activated receptor gene family in the Tibetan highland fish Gymnocypris przewalskii. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1685-1699. [PMID: 36469183 DOI: 10.1007/s10695-022-01152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Peroxisome proliferator-activated receptor (PPAR) plays an important role in the regulation of lipid metabolism and has been widely identified in diverse species. Gymnocypris przewalskii is a native fish of the Qinghai Tibetan Plateau that survives in a chronically cold environment. In the current study, we conducted genome-wide identification of PPAR genes, revealing the existence of seven PPARs in the G. przewalskii genome. Collinearity was observed between two copies of PPARαb and PPARγ in G. przewalskii, suggesting that the additional copy might be gained through whole genome duplication. Both phylogenetic and multiple sequence alignment analyses indicated that PPARs in G. przewalskii were conserved with teleosts. The cold treatment (10 °C and 4 °C) led to the developmental delay of G. przewalskii embryos. Continuous expression of PPARs was observed during the embryonic development of G. przewalskii under normal and cold conditions, with significantly different transcriptional patterns. These results indicated that PPARs participated in the embryonic development of G. przewalskii, and were involved in the cold response during development. The current study proposed a potential role of PPARs in the cold response in the embryonic development of G. przewalskii, which shed light on understanding cold adaptation in Tibetan highland fish.
Collapse
Affiliation(s)
- Xiaohuan Li
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810001, Qinghai, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sijia Liu
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810001, Qinghai, China
| | - Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Hongfang Qi
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris Przewalskii, Xining, Qinghai, China
| | - Yang Wang
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris Przewalskii, Xining, Qinghai, China
| | - Kai Zhao
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810001, Qinghai, China.
| | - Fei Tian
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810001, Qinghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
186
|
Molecular Cloning and Characterization of a Fasciola gigantica Nuclear Receptor Subfamily 1 (FgNR1). Pathogens 2022; 11:pathogens11121458. [PMID: 36558792 PMCID: PMC9787296 DOI: 10.3390/pathogens11121458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Fasciola gigantica, a giant liver fluke, causes tremendous loss to the livestock economy in several regions throughout the world. The situation of drug resistance has been emerging increasingly; therefore, novel drugs and drug targets need to be discovered. The adult F. gigantica inhabits the major bile ducts where bile salts accumulate—these are steroid-like molecules that mediate several physiological processes in organisms through interacting with their specific nuclear receptors. However, the molecular mechanism of the interaction in the parasitic organisms have not been clearly understood. In this study, putative nuclear receptor subfamily 1 of F. gigantica (FgNR1) was identified. Nucleotide and amino acid sequences of the FgNR1 homolog were obtained from the transcriptome of F. gigantica and predicted for properties and functions using bioinformatics. The full-length cDNA was cloned and expressed in the bacterial expression system and then used for immunization. Western analysis and immunolocalization suggested that FgNR1 could be detected in the crude worm antigens and was highly expressed in the caeca and testes of the adult parasite. Moreover, the bile could significantly activate the expression of FgNR1 in cultured parasites. Our results indicated that FgNR1 has high potential for the development of a novel anthelminthic drug in the future.
Collapse
|
187
|
Liu Y, Duan Y, Zhao N, Zhu X, Yu X, Jiao S, Song Y, Shi L, Ma Y, Wang X, Yu B, Qu A. Peroxisome Proliferator-Activated Receptor α Attenuates Hypertensive Vascular Remodeling by Protecting Vascular Smooth Muscle Cells from Angiotensin II-Induced ROS Production. Antioxidants (Basel) 2022; 11:antiox11122378. [PMID: 36552585 PMCID: PMC9774484 DOI: 10.3390/antiox11122378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Vascular remodeling is the fundamental basis for hypertensive disease, in which vascular smooth muscle cell (VSMC) dysfunction plays an essential role. Previous studies suggest that the activation of peroxisome proliferator-activated receptor α (PPARα) by fibrate drugs has cardiovascular benefits independent of the lipid-lowering effects. However, the underlying mechanism remains incompletely understood. This study explored the role of PPARα in angiotensin II (Ang II)-induced vascular remodeling and hypertension using VSMC-specific Ppara-deficient mice. The PPARα expression was markedly downregulated in the VSMCs upon Ang II treatment. A PPARα deficiency in the VSMC significantly aggravated the Ang II-induced hypertension and vascular stiffness, with little influence on the cardiac function. The morphological analyses demonstrated that VSMC-specific Ppara-deficient mice exhibited an aggravated vascular remodeling and oxidative stress. In vitro, a PPARα deficiency dramatically increased the production of mitochondrial reactive oxidative species (ROS) in Ang II-treated primary VSMCs. Finally, the PPARα activation by Wy14643 improved the Ang II-induced ROS production and vascular remodeling in a VSMC PPARα-dependent manner. Taken together, these data suggest that PPARα plays a critical protective role in Ang II-induced hypertension via attenuating ROS production in VSMCs, thus providing a potential therapeutic target for hypertensive diseases.
Collapse
Affiliation(s)
- Ye Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, China
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yan Duan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, China
| | - Nan Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, China
| | - Xinxin Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, China
| | - Xiaoting Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, China
| | - Shiyu Jiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, China
| | - Yanting Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, China
- Department of Pathology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Li Shi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, China
| | - Yutao Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, China
| | - Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, China
| | - Baoqi Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, China
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, China
- Correspondence:
| |
Collapse
|
188
|
Mu C, Zhang X, Zhang J, Hao X. Procyanidins regulate colonic metabolome, inflammatory response and antioxidant capacity in lambs fed a high‐concentrate diet. J Anim Physiol Anim Nutr (Berl) 2022. [DOI: 10.1111/jpn.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/20/2022] [Accepted: 10/30/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Chuntang Mu
- College of Animal Science Shanxi Agricultural University Jinzhong China
| | - Xuanzi Zhang
- College of Animal Science Shanxi Agricultural University Jinzhong China
| | - Jianxin Zhang
- College of Animal Science Shanxi Agricultural University Jinzhong China
| | - Xiaoyan Hao
- College of Animal Science Shanxi Agricultural University Jinzhong China
| |
Collapse
|
189
|
Estrogen-Inducible LncRNA BNAT1 Functions as a Modulator for Estrogen Receptor Signaling in Endocrine-Resistant Breast Cancer Cells. Cells 2022; 11:cells11223610. [PMID: 36429038 PMCID: PMC9688125 DOI: 10.3390/cells11223610] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Recent advances in RNA studies have revealed that functional long noncoding RNAs (lncRNAs) contribute to the biology of cancers. In breast cancer, estrogen receptor α (ERα) is an essential transcription factor that primarily promotes the growth of luminal-type cancer, although only a small number of lncRNAs are identified as direct ERα targets and modulators for ERα signaling. In this study, we performed RNA-sequencing for ER-positive breast cancer cells and identified a novel estrogen-inducible antisense RNA in the COL18A1 promoter region, named breast cancer natural antisense transcript 1 (BNAT1). In clinicopathological study, BNAT1 may have clinical relevance as a potential diagnostic factor for prognoses of ER-positive breast cancer patients based on an in situ hybridization study for breast cancer specimens. siRNA-mediated BNAT1 silencing significantly inhibited the in vitro and in vivo growth of tamoxifen-resistant ER-positive breast cancer cells. Notably, BNAT1 silencing repressed cell cycle progression whereas it promoted apoptosis. Microarray analysis revealed that BNAT1 silencing in estrogen-sensitive breast cancer cells repressed estrogen signaling. We showed that BNAT1 knockdown decreased ERα expression and repressed ERα transactivation. RNA immunoprecipitation showed that BNAT1 physically binds to ERα protein. In summary, BNAT1 would play a critical role in the biology of ER-positive breast cancer by modulating ERα-dependent transcription regulation. We consider that BNAT1 could be a potential molecular target for diagnostic and therapeutic options targeting luminal-type and endocrine-resistant breast cancer.
Collapse
|
190
|
Zhang X, Zhang Z, Xue X, Fan T, Tan C, Liu F, Tan Y, Jiang Y. PROTAC Degrader of Estrogen Receptor α Targeting DNA-Binding Domain in Breast Cancer. ACS Pharmacol Transl Sci 2022; 5:1109-1118. [PMID: 36407946 PMCID: PMC9667539 DOI: 10.1021/acsptsci.2c00109] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 12/24/2022]
Abstract
PROteolysis-TArgeting Chimeras (PROTACs) are a powerful class of drugs that selectively degrade the proteins of interest (POIs) through cellular ubiquitination mechanisms. Estrogen receptor α (ERα) plays a vital role in the pathogenesis and treatment of breast cancer. In this work, the DNA-binding domain (DBD) of ERα was selected as the target to avoid drug resistance caused by the ligand-binding domain (LBD) of ERα. The estrogen response element (ERE), a natural DNA sequence binding with DBD of ERα, was chosen as a recognized unit of PROTAC. Therefore, we designed a nucleic acid-conjugated PROTAC, ERE-PROTAC, via a click reaction, in which the ERE sequence recruits ERα and the typical small molecule VH032 recruits the von Hippel-Lindau (VHL) E3 ligase. The proposed ERE-PROTAC showed to efficiently and reversibly degrade ERα in different breast cancer cells by targeting the DBD, indicating its potential to overcome the current resistance caused by LBD mutations.
Collapse
Affiliation(s)
| | | | - Xiaoqi Xue
- State Key Laboratory of Chemical
Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School Tsinghua University, Shenzhen 518055, China
| | - Tingting Fan
- State Key Laboratory of Chemical
Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School Tsinghua University, Shenzhen 518055, China
| | - Chunyan Tan
- State Key Laboratory of Chemical
Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School Tsinghua University, Shenzhen 518055, China
| | - Feng Liu
- State Key Laboratory of Chemical
Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School Tsinghua University, Shenzhen 518055, China
| | - Ying Tan
- State Key Laboratory of Chemical
Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School Tsinghua University, Shenzhen 518055, China
| | - Yuyang Jiang
- State Key Laboratory of Chemical
Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
191
|
Khan MZI, Uzair M, Nazli A, Chen JZ. An overview on Estrogen receptors signaling and its ligands in breast cancer. Eur J Med Chem 2022; 241:114658. [PMID: 35964426 DOI: 10.1016/j.ejmech.2022.114658] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 02/07/2023]
Abstract
Estrogen governs the regulations of various pathological and physiological actions throughout the body in both males and females. Generally, 17β-estradiol an endogenous estrogen is responsible for different health problems in pre and postmenopausal women. The major activities of endogenous estrogen are executed by nuclear estrogen receptors (ERs) ERα and ERβ while non-genomic cytoplasmic pathways also govern cell growth and apoptosis. Estrogen accomplished a fundamental role in the formation and progression of breast cancer. In this review, we have hyphenated different studies regarding ERs and a thorough and detailed study of estrogen receptors is presented. This review highlights different aspects of estrogens ranging from receptor types, their isoforms, structures, signaling pathways of ERα, ERβ and GPER along with their crystal structures, pathological roles of ER, ER ligands, and therapeutic strategies to overcome the resistance.
Collapse
Affiliation(s)
| | - Muhammad Uzair
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Adila Nazli
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Jian-Zhong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
192
|
Nelczyk AT, Ma L, Gupta AD, Gamage HEV, McHenry MT, Henn MA, Kadiri M, Wang Y, Krawczynska N, Bendre S, He S, Shahoei SH, Madak-Erdogan Z, Hsiao SH, Saleh T, Carpenter V, Gewirtz DA, Spinella MJ, Nelson ER. The nuclear receptor TLX (NR2E1) inhibits growth and progression of triple- negative breast cancer. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166515. [PMID: 35932893 PMCID: PMC9983295 DOI: 10.1016/j.bbadis.2022.166515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/14/2022]
Abstract
Development of targeted therapies will be a critical step towards reducing the mortality associated with triple-negative breast cancer (TNBC). To achieve this, we searched for targets that met three criteria: (1) pharmacologically targetable, (2) expressed in TNBC, and (3) expression is prognostic in TNBC patients. Since nuclear receptors have a well-defined ligand-binding domain and are thus highly amenable to small-molecule intervention, we focused on this class of protein. Our analysis identified TLX (NR2E1) as a candidate. Specifically, elevated tumoral TLX expression was associated with prolonged recurrence-free survival and overall survival for breast cancer patients with either estrogen receptor alpha (ERα)-negative or basal-like tumors. Using two TNBC cell lines, we found that stable overexpression of TLX impairs in vitro proliferation. RNA-Seq analysis revealed that TLX reduced the expression of genes implicated in epithelial-mesenchymal transition (EMT), a cellular program known to drive metastatic progression. Indeed, TLX overexpression significantly decreased cell migration and invasion, and robustly decreased the metastatic capacity of TNBC cells in murine models. We identify SERPINB2 as a likely mediator of these effects. Taken together, our work indicates that TLX impedes the progression of TNBC. Several ligands have been shown to regulate the transcriptional activity of TLX, providing a framework for the future development of this receptor for therapeutic intervention.
Collapse
Affiliation(s)
- Adam T. Nelczyk
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Liqian Ma
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Anasuya Das Gupta
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Hashni Epa Vidana Gamage
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Michael T. McHenry
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Madeline A. Henn
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Mohammed Kadiri
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yu Wang
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Natalia Krawczynska
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Shruti Bendre
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Sisi He
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Sayyed Hamed Shahoei
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA,Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA.,Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Shih-Hsuan Hsiao
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Tareq Saleh
- Department of Basic Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Valerie Carpenter
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| | - Michael J. Spinella
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA,Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA.,Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Erik R. Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA.,Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA,Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA.,Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA.,University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| |
Collapse
|
193
|
Jamshidi N, Nigam SK. Drug transporters OAT1 and OAT3 have specific effects on multiple organs and gut microbiome as revealed by contextualized metabolic network reconstructions. Sci Rep 2022; 12:18308. [PMID: 36316339 PMCID: PMC9622871 DOI: 10.1038/s41598-022-21091-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022] Open
Abstract
In vitro and in vivo studies have established the organic anion transporters OAT1 (SLC22A6, NKT) and OAT3 (SLC22A8) among the main multi-specific "drug" transporters. They also transport numerous endogenous metabolites, raising the possibility of drug-metabolite interactions (DMI). To help understand the role of these drug transporters on metabolism across scales ranging from organ systems to organelles, a formal multi-scale analysis was performed. Metabolic network reconstructions of the omics-alterations resulting from Oat1 and Oat3 gene knockouts revealed links between the microbiome and human metabolism including reactions involving small organic molecules such as dihydroxyacetone, alanine, xanthine, and p-cresol-key metabolites in independent pathways. Interestingly, pairwise organ-organ interactions were also disrupted in the two Oat knockouts, with altered liver, intestine, microbiome, and skin-related metabolism. Compared to older models focused on the "one transporter-one organ" concept, these more sophisticated reconstructions, combined with integration of a multi-microbial model and more comprehensive metabolomics data for the two transporters, provide a considerably more complex picture of how renal "drug" transporters regulate metabolism across the organelle (e.g. endoplasmic reticulum, Golgi, peroxisome), cellular, organ, inter-organ, and inter-organismal scales. The results suggest that drugs interacting with OAT1 and OAT3 can have far reaching consequences on metabolism in organs (e.g. skin) beyond the kidney. Consistent with the Remote Sensing and Signaling Theory (RSST), the analysis demonstrates how transporter-dependent metabolic signals mediate organ crosstalk (e.g., gut-liver-kidney) and inter-organismal communication (e.g., gut microbiome-host).
Collapse
Affiliation(s)
- Neema Jamshidi
- grid.19006.3e0000 0000 9632 6718Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA USA ,grid.266100.30000 0001 2107 4242Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA USA
| | - Sanjay K. Nigam
- grid.266100.30000 0001 2107 4242Departments of Pediatrics and Medicine (Nephrology), University of California, San Diego, La Jolla, CA USA
| |
Collapse
|
194
|
Meszaros A, Ahmed J, Russo G, Tompa P, Lazar T. The evolution and polymorphism of mono-amino acid repeats in androgen receptor and their regulatory role in health and disease. Front Med (Lausanne) 2022; 9:1019803. [PMID: 36388907 PMCID: PMC9642029 DOI: 10.3389/fmed.2022.1019803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Androgen receptor (AR) is a key member of nuclear hormone receptors with the longest intrinsically disordered N-terminal domain (NTD) in its protein family. There are four mono-amino acid repeats (polyQ1, polyQ2, polyG, and polyP) located within its NTD, of which two are polymorphic (polyQ1 and polyG). The length of both polymorphic repeats shows clinically important correlations with disease, especially with cancer and neurodegenerative diseases, as shorter and longer alleles exhibit significant differences in expression, activity and solubility. Importantly, AR has also been shown to undergo condensation in the nucleus by liquid-liquid phase separation, a process highly sensitive to protein solubility and concentration. Nonetheless, in prostate cancer cells, AR variants also partition into transcriptional condensates, which have been shown to alter the expression of target gene products. In this review, we summarize current knowledge on the link between AR repeat polymorphisms and cancer types, including mechanistic explanations and models comprising the relationship between condensate formation, polyQ1 length and transcriptional activity. Moreover, we outline the evolutionary paths of these recently evolved amino acid repeats across mammalian species, and discuss new research directions with potential breakthroughs and controversies in the literature.
Collapse
Affiliation(s)
- Attila Meszaros
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Junaid Ahmed
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Giorgio Russo
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Peter Tompa
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Research Centre for Natural Sciences (RCNS), ELKH, Budapest, Hungary
| | - Tamas Lazar
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
195
|
Khan SH, Braet SM, Koehler SJ, Elacqua E, Anand GS, Okafor CD. Ligand-induced shifts in conformational ensembles that describe transcriptional activation. eLife 2022; 11:e80140. [PMID: 36222302 PMCID: PMC9555869 DOI: 10.7554/elife.80140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/14/2022] [Indexed: 11/15/2022] Open
Abstract
Nuclear receptors function as ligand-regulated transcription factors whose ability to regulate diverse physiological processes is closely linked with conformational changes induced upon ligand binding. Understanding how conformational populations of nuclear receptors are shifted by various ligands could illuminate strategies for the design of synthetic modulators to regulate specific transcriptional programs. Here, we investigate ligand-induced conformational changes using a reconstructed, ancestral nuclear receptor. By making substitutions at a key position, we engineer receptor variants with altered ligand specificities. We combine cellular and biophysical experiments to characterize transcriptional activity, as well as elucidate mechanisms underlying altered transcription in receptor variants. We then use atomistic molecular dynamics (MD) simulations with enhanced sampling to generate ensembles of wildtype and engineered receptors in combination with multiple ligands, followed by conformational analysis and correlation of MD-based predictions with functional ligand profiles. We determine that conformational ensembles accurately describe ligand responses based on observed population shifts. These studies provide a platform which will allow structural characterization of physiologically-relevant conformational ensembles, as well as provide the ability to design and predict transcriptional responses in novel ligands.
Collapse
Affiliation(s)
- Sabab Hasan Khan
- Department of Biochemistry and Molecular Biology, Pennsylvania State UniversityState CollegeUnited States
| | - Sean M Braet
- Department of Chemistry, Pennsylvania State UniversityState ParkUnited States
| | | | - Elizabeth Elacqua
- Department of Chemistry, Pennsylvania State UniversityState ParkUnited States
| | | | - C Denise Okafor
- Department of Biochemistry and Molecular Biology, Pennsylvania State UniversityState CollegeUnited States
- Department of Chemistry, Pennsylvania State UniversityState ParkUnited States
| |
Collapse
|
196
|
Thomas P, Pang Y, Camilletti MA, Castelnovo LF. Functions of Membrane Progesterone Receptors (mPRs, PAQRs) in Nonreproductive Tissues. Endocrinology 2022; 163:6679267. [PMID: 36041040 DOI: 10.1210/endocr/bqac147] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/19/2022]
Abstract
Gender differences in a wide variety of physiological parameters have implicated the ovarian hormones, estrogens and progesterone, in the regulation of numerous nonreproductive tissue functions. Rapid, nongenomic (nonclassical) progesterone actions mediated by membrane progesterone receptors (mPRs), which belong to the progestin and adipoQ receptor family, have been extensively investigated in reproductive and nonreproductive tissues since their discovery in fish ovaries 20 years ago. The 5 mPR subtypes (α, β, γ, δ, ε) are widely distributed in vertebrate tissues and are often expressed in the same cells as the nuclear progesterone receptor (PR) and progesterone receptor membrane component 1, thereby complicating investigations of mPR-specific functions. Nevertheless, mPR-mediated progesterone actions have been identified in a wide range of reproductive and nonreproductive tissues and distinguished from nuclear PR-mediated ones by knockdown of these receptors with siRNA in combination with a pharmacological approach using mPR- and PR-specific agonists. There are several recent reviews on the roles of the mPRs in vertebrate reproduction and cancer, but there have been no comprehensive assessments of mPR functions in nonreproductive tissues. Therefore, this article briefly reviews mPR functions in a broad range of nonreproductive tissues. The evidence that mPRs mediate progesterone and progestogen effects on neuroprotection, lordosis behavior, respiratory control of apnea, olfactory responses to pheromones, peripheral nerve regeneration, regulation of prolactin secretion in prolactinoma, immune functions, and protective functions in vascular endothelial and smooth muscle cells is critically reviewed. The ubiquitous expression of mPRs in vertebrate tissues suggests mPRs regulate many additional nonreproductive functions that remain to be identified.
Collapse
Affiliation(s)
- Peter Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Yefei Pang
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| | | | - Luca F Castelnovo
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| |
Collapse
|
197
|
The Crucial Role of AR-V7 in Enzalutamide-Resistance of Castration-Resistant Prostate Cancer. Cancers (Basel) 2022; 14:cancers14194877. [PMID: 36230800 PMCID: PMC9563243 DOI: 10.3390/cancers14194877] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Androgen receptor splice variant 7 (AR-V7) has always been considered a key driver for triggering enzalutamide resistance of castration-resistant prostate cancer (CRPC). In recent years, both the homeostasis of AR-V7 protein and AR-V7’s relationship with LncRNAs have gained great attention with in-depth studies. Starting from protein stability and LncRNA, the paper discusses and summarizes the mechanisms and drugs that affect the CRPC patients’ sensitivity to enzalutamide by regulating the protein or transcriptional stability of AR-V7, hoping to provide therapeutic ideas for subsequent research to break through the CRPC therapeutic bottleneck. Abstract Prostate cancer (PCa) has the second highest incidence of malignancies occurring in men worldwide. The first-line therapy of PCa is androgen deprivation therapy (ADT). Nonetheless, most patients progress to castration-resistant prostate cancer (CRPC) after being treated by ADT. As a second-generation androgen receptor (AR) antagonist, enzalutamide (ENZ) is the current mainstay of new endocrine therapies for CRPC in clinical use. However, almost all patients develop resistance during AR antagonist therapy due to various mechanisms. At present, ENZ resistance (ENZR) has become challenging in the clinical treatment of CRPC. AR splice variant 7 (AR-V7) refers to a ligand-independent and constitutively active variant of the AR and is considered a key driver of ENZR in CRPC. In this review, we summarize the mechanisms and biological behaviors of AR-V7 in ENZR of CRPC to contribute novel insights for CRPC therapy.
Collapse
|
198
|
Verma S, Chakraborti S, Singh OP, Pande V, Dixit R, Pandey AV, Pandey KC. Recognition of fold- and function-specific sites in the ligand-binding domain of the thyroid hormone receptor-like family. Front Endocrinol (Lausanne) 2022; 13:981090. [PMID: 36246927 PMCID: PMC9559826 DOI: 10.3389/fendo.2022.981090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The thyroid hormone receptor-like (THR-like) family is the largest transcription factors family belonging to the nuclear receptor superfamily, which directly binds to DNA and regulates the gene expression and thereby controls various metabolic processes in a ligand-dependent manner. The THR-like family contains receptors THRs, RARs, VDR, PPARs, RORs, Rev-erbs, CAR, PXR, LXRs, and others. THR-like receptors are involved in many aspects of human health, including development, metabolism and homeostasis. Therefore, it is considered an important therapeutic target for various diseases such as osteoporosis, rickets, diabetes, etc. METHODS In this study, we have performed an extensive sequence and structure analysis of the ligand-binding domain (LBD) of the THR-like family spanning multiple taxa. We have use different computational tools (information-theoretic measures; relative entropy) to predict the key residues responsible for fold and functional specificity in the LBD of the THR-like family. The MSA of THR-like LBDs was further used as input in conservation studies and phylogenetic clustering studies. RESULTS Phylogenetic analysis of the LBD domain of THR-like proteins resulted in the clustering of eight subfamilies based on their sequence homology. The conservation analysis by relative entropy (RE) revealed that structurally important residues are conserved throughout the LBDs in the THR-like family. The multi-harmony conservation analysis further predicted specificity in determining residues in LBDs of THR-like subfamilies. Finally, fold and functional specificity determining residues (residues critical for ligand, DBD and coregulators binding) were mapped on the three-dimensional structure of thyroid hormone receptor protein. We then compiled a list of natural mutations in THR-like LBDs and mapped them along with fold and function-specific mutations. Some of the mutations were found to have a link with severe diseases like hypothyroidism, rickets, obesity, lipodystrophy, epilepsy, etc. CONCLUSION Our study identifies fold and function-specific residues in THR-like LBDs. We believe that this study will be useful in exploring the role of these residues in the binding of different drugs, ligands, and protein-protein interaction among partner proteins. So this study might be helpful in the rational design of either ligands or receptors.
Collapse
Affiliation(s)
- Sonia Verma
- Parasite-Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
- Pediatric Endocrinology, Diabetology, and Metabolism, University Children’s Hospital, Bern, Switzerland
- Translational Hormone Research Cluster, Department of Biomedical Research, University of Bern, Bern, Switzerland
| | | | - Om P. Singh
- Parasite-Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Veena Pande
- Kumaun University, Nainital, Uttrakhand, India
| | - Rajnikant Dixit
- Parasite-Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Amit V. Pandey
- Pediatric Endocrinology, Diabetology, and Metabolism, University Children’s Hospital, Bern, Switzerland
- Translational Hormone Research Cluster, Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Kailash C. Pandey
- Parasite-Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
199
|
Michalek S, Goj T, Plazzo AP, Marovca B, Bornhauser B, Brunner T. LRH
‐1/
NR5A2
interacts with the glucocorticoid receptor to regulate glucocorticoid resistance. EMBO Rep 2022; 23:e54195. [PMID: 35801407 PMCID: PMC9442305 DOI: 10.15252/embr.202154195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Svenja Michalek
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
- Konstanz Research School Chemical Biology KORS‐CB University of Konstanz Konstanz Germany
| | - Thomas Goj
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
| | - Anna Pia Plazzo
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
| | - Blerim Marovca
- Division of Oncology and Children's Research Centre University Children's Hospital Zurich Zurich Switzerland
| | - Beat Bornhauser
- Division of Oncology and Children's Research Centre University Children's Hospital Zurich Zurich Switzerland
| | - Thomas Brunner
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
- Konstanz Research School Chemical Biology KORS‐CB University of Konstanz Konstanz Germany
| |
Collapse
|
200
|
Takada I, Hidano S, Takahashi S, Yanaka K, Ogawa H, Tsuchiya M, Yokoyama A, Sato S, Ochi H, Nakagawa T, Kobayashi T, Nakagawa S, Makishima M. Transcriptional coregulator Ess2 controls survival of post-thymic CD4 + T cells through the Myc and IL-7 signaling pathways. J Biol Chem 2022; 298:102342. [PMID: 35933014 PMCID: PMC9436822 DOI: 10.1016/j.jbc.2022.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
Ess2, also known as Dgcr14, is a transcriptional co-regulator of CD4+ T cells. Ess2 is located in a chromosomal region, the loss of which has been associated with 22q11.2 deletion syndrome (22q11DS), which causes heart defects, skeletal abnormalities, and immunodeficiency. However, the specific association of Ess2 with 22q11DS remains unclear. To elucidate the role of Ess2 in T-cell development, we generated Ess2 floxed (Ess2fl/fl) and CD4+ T cell-specific Ess2 KO (Ess2ΔCD4/ΔCD4) mice using the Cre/loxP system. Interestingly, Ess2ΔCD4/ΔCD4 mice exhibited reduced naïve T-cell numbers in the spleen, while the number of thymocytes (CD4-CD8-, CD4+CD8+, CD4+CD8-, and CD4-CD8+) in the thymus remained unchanged. Furthermore, Ess2ΔCD4/ΔCD4 mice had decreased NKT cells and increased γδT cells in the thymus and spleen. A genome-wide expression analysis using RNA-seq revealed that Ess2 deletion alters the expression of many genes in CD4 single-positive thymocytes, including genes related to the immune system and Myc target genes. In addition, Ess2 enhanced the transcriptional activity of c-Myc. Some genes identified as Ess2 targets in mice show expressional correlation with ESS2 in human immune cells. Moreover, Ess2ΔCD4/ΔCD4 naïve CD4+ T cells did not maintain survival in response to IL-7. Our results suggest that Ess2 plays a critical role in post-thymic T-cell survival through the Myc and IL-7 signaling pathways.
Collapse
Affiliation(s)
- Ichiro Takada
- Division of Biochemistry, Department of Biomedical Sciences, School of Medicine, Nihon University, Itabashi-ku, Tokyo, Japan.
| | - Shinya Hidano
- Department of Infectious Diseases Control, Faculty of Medicine, Oita University, Oita, Japan
| | - Sayuri Takahashi
- Department of Urology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kaori Yanaka
- RNA Biology Laboratory, RIKEN Advanced Research Institute, Wako, Saitama, Japan
| | - Hidesato Ogawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Megumi Tsuchiya
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Atsushi Yokoyama
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Shingo Sato
- Center for Innovative Cancer Treatment, Tokyo Medical and Dental University Medical Hospital, Tokyo, Japan
| | - Hiroki Ochi
- Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama, Japan
| | - Tohru Nakagawa
- Department of Urology, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Takashi Kobayashi
- Department of Infectious Diseases Control, Faculty of Medicine, Oita University, Oita, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, School of Medicine, Nihon University, Itabashi-ku, Tokyo, Japan.
| |
Collapse
|