151
|
Topf M, Baker ML, John B, Chiu W, Sali A. Structural characterization of components of protein assemblies by comparative modeling and electron cryo-microscopy. J Struct Biol 2005; 149:191-203. [PMID: 15681235 DOI: 10.1016/j.jsb.2004.11.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 11/05/2004] [Indexed: 02/01/2023]
Abstract
We explore structural characterization of protein assemblies by a combination of electron cryo-microscopy (cryoEM) and comparative protein structure modeling. Specifically, our method finds an optimal atomic model of a given assembly subunit and its position within an assembly by fitting alternative comparative models into a cryoEM map. The alternative models are calculated by MODELLER [J. Mol. Biol. 234 (1993) 313] from different sequence alignments between the modeled protein and its template structures. The fitting of these models into a cryoEM density map is performed either by FOLDHUNTER [J. Mol. Biol. 308 (2001) 1033] or by a new density fitting module of MODELLER (Mod-EM). Identification of the most accurate model is based on the correlation between the model accuracy and the quality of fit into the cryoEM density map. To quantify this correlation, we created a benchmark consisting of eight proteins of different structural folds with corresponding density maps simulated at five resolutions from 5 to 15 angstroms, with three noise levels each. Each of the proteins in the set was modeled based on 300 different alignments to their remotely related templates (12-32% sequence identity), spanning the range from entirely inaccurate to essentially accurate alignments. The benchmark revealed that one of the most accurate models can usually be identified by the quality of its fit into the cryoEM density map, even for noisy maps at 15 angstroms resolution. Therefore, a cryoEM density map can be helpful in improving the accuracy of a comparative model. Moreover, a pseudo-atomic model of a component in an assembly may be built better with comparative models of the native subunit sequences than with experimentally determined structures of their homologs.
Collapse
Affiliation(s)
- Maya Topf
- Department of Biopharmaceutical Sciences, California Institute for Quantitative Biomedical Research, Mission Bay Genentech Hall, 600 16th Street, Suite N472D, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
152
|
Novoa RR, Calderita G, Arranz R, Fontana J, Granzow H, Risco C. Virus factories: associations of cell organelles for viral replication and morphogenesis. Biol Cell 2005; 97:147-72. [PMID: 15656780 PMCID: PMC7161905 DOI: 10.1042/bc20040058] [Citation(s) in RCA: 349] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Accepted: 07/06/2004] [Indexed: 12/13/2022]
Abstract
Genome replication and assembly of viruses often takes place in specific intracellular compartments where viral components concentrate, thereby increasing the efficiency of the processes. For a number of viruses the formation of 'factories' has been described, which consist of perinuclear or cytoplasmic foci that mostly exclude host proteins and organelles but recruit specific cell organelles, building a unique structure. The formation of the viral factory involves a number of complex interactions and signalling events between viral and cell factors. Mitochondria, cytoplasmic membranes and cytoskeletal components frequently participate in the formation of viral factories, supplying basic and common needs for key steps in the viral replication cycle.
Collapse
Affiliation(s)
- Reyes R Novoa
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
153
|
Imbert-Laurenceau E, Berger MC, Pavon-Djavid G, Jouan A, Migonney V. Surface modification of polystyrene particles for specific antibody adsorption. POLYMER 2005. [DOI: 10.1016/j.polymer.2004.11.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
154
|
Affiliation(s)
- Richard J Kuhn
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
155
|
Abstract
Rhabdoviruses are a diverse, widely-distributed group of enveloped viruses that assemble and bud from the plasma membrane of host cells. Recent advances in the identification of domains on both the envelope glycoprotein and the matrix protein of rhabdoviruses that contribute to virus assembly and release have allowed us to refine current models of rhabdovirus budding and to describe in better detail the interplay between both viral and cellular components involved in the budding process. In this review we discuss the steps involved in rhabdovirus assembly beginning with genome encapsidation and the association of nucleocapsid-matrix protein pre-assembly complexes with the inner leaflet of the plasma membrane, how condensation of these complexes may occur, how microdomains containing the envelope glycoprotein facilitate bud site formation, and how multiple forms of the matrix protein may participate in virion extrusion and release.
Collapse
Affiliation(s)
- Himangi R Jayakar
- GTx Inc., 3 N. Dunlap, Van Vleet Research Building, Memphis, TN 38163, USA
| | | | | |
Collapse
|
156
|
Abstract
Alphaviruses are small highly ordered enveloped RNA viruses, which replicate very efficiently in the infected cell. They consist of a nucleocapsid (NC) and a surrounding membrane with glycoproteins. In the NC the positive single stranded RNA genome of the virus is enclosed by a T=4 icosahedral shell of capsid (C) proteins. The glycoproteins form a second shell with corresponding symmetry on the outside of the lipid membrane. These viruses mature by budding at the plasma membrane (PM) of the infected cell and enter into new cells by acid-triggered membrane fusion in endosomes. The viral glycoprotein consists of two subunits, E1, which carries the membrane fusion function, and E2, which suppresses this function until acid activation occurs. In the infected cell the RNA replication and transcription are confined to the cytoplasmic surface of endosome-derived vesicles called cytopathic vacuoles type I (CPV I). These structures are closely associated with membranes of the endoplasmic reticulum (ER), thereby creating a microenvironment for synthesis of viral proteins, assembly of the glycoproteins and formation of genome-C complexes. The budding process of the virus is initiated by C-glycoprotein interactions, possibly already before the glycoproteins arrive at the PM. This might involve a premade, ordered NC or a less ordered form of the genome-C complex. In the latter case, the interactions in the glycoprotein shell provide the major driving force for budding. The nature of the C-glycoprotein interaction has been resolved at atomic resolution by modelling. It involves hydrophobic interactions between a Tyr-X-Leu tripeptide in the internal tail of the E2 subunit and a pocket on the surface of the C protein. When the virus enters the endosome of a new cell the acid conditions trigger rearrangements in the glycoprotein shell, which result in the dissociation of the interactions that drive budding and a concomitant activation of the membrane fusion function in the E1 subunit.
Collapse
Affiliation(s)
- Henrik Garoff
- Department of Biosciences at Novum, Karolinska Institute, S-141 57 Huddinge, Sweden.
| | | | | |
Collapse
|
157
|
Beauséjour Y, Tremblay MJ. Interaction between the cytoplasmic domain of ICAM-1 and Pr55Gag leads to acquisition of host ICAM-1 by human immunodeficiency virus type 1. J Virol 2004; 78:11916-25. [PMID: 15479832 PMCID: PMC523275 DOI: 10.1128/jvi.78.21.11916-11925.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have examined the molecular basis for the selective incorporation of the adhesion molecule ICAM-1 within human immunodeficiency virus type 1 (HIV-1). The process of ICAM-1 incorporation was investigated by using different ICAM-1 constructs in combination with virus capture and immunoprecipitation studies, Western blot and confocal microscopy analyses, and infectivity assays. Experiments conducted with viruses bearing a truncated version of ICAM-1 revealed that the cytoplasmic domain of ICAM-1 governs insertion of this adhesion molecule into HIV-1. Further experiments suggested that there is an association between ICAM-1 and the virus-encoded Pr55(Gag) polyprotein. This study represents the first demonstration that structural Gag polyproteins play a key role in the uptake of a host-derived cell surface by the virus entity. Taken together, our results indicate that interactions between viral and cellular proteins are responsible for the selective uptake of host ICAM-1 by HIV-1. This observation describes a new strategy by which HIV-1 can modulate its replicative cycle, considering that insertion of ICAM-1 within nascent virions has been shown to increase virus infectivity.
Collapse
Affiliation(s)
- Yannick Beauséjour
- Research Center in Infectious Diseases, RC709, CHUL Research Center, Faculty of Medicine, Laval University, Quebec, Canada
| | | |
Collapse
|
158
|
Zhang X, Kielian M. Mutations that promote furin-independent growth of Semliki Forest virus affect p62-E1 interactions and membrane fusion. Virology 2004; 327:287-96. [PMID: 15351216 DOI: 10.1016/j.virol.2004.06.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Accepted: 06/24/2004] [Indexed: 11/17/2022]
Abstract
The enveloped alphavirus Semliki Forest virus (SFV) infects cells via a low pH-triggered membrane fusion reaction mediated by the E1 protein. E1's fusion activity is regulated by its heterodimeric interaction with a companion membrane protein E2. Mature E2 protein is generated by furin processing of the precursor p62. Processing destabilizes the heterodimer, allowing dissociation at acidic pH, E1 conformational changes, and membrane fusion. We used a furin-deficient cell line, FD11, to select for SFV mutants that show increased growth in the absence of p62 processing. We isolated and characterized 7 such pci mutants (p62 cleavage independent), which retained the parental furin cleavage site but showed significant increases in their ability to carry out membrane fusion in the p62 form. Sequence analysis of the pci mutants identified mutations primarily on the E2 protein, and suggested sites important in the interaction of p62 with E1 and the regulation of fusion.
Collapse
Affiliation(s)
- Xinyong Zhang
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
159
|
Kiermayr S, Kofler RM, Mandl CW, Messner P, Heinz FX. Isolation of capsid protein dimers from the tick-borne encephalitis flavivirus and in vitro assembly of capsid-like particles. J Virol 2004; 78:8078-84. [PMID: 15254179 PMCID: PMC446133 DOI: 10.1128/jvi.78.15.8078-8084.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flaviviruses have a spherical capsid that is composed of multiple copies of a single capsid protein and, in contrast to the viral envelope, apparently does not have an icosahedral structure. So far, attempts to isolate distinct particulate capsids and soluble forms of the capsid protein from purified virions as well as to assemble capsid-like particles in vitro have been largely unsuccessful. Here we describe the isolation of nucleocapsids from tick-borne encephalitis (TBE) virus and their disintegration into a capsid protein dimer by high-salt treatment. Purified capsid protein dimers could be assembled in vitro into capsid-like particles when combined with in vitro transcribed viral RNA. Particulate structures could also be obtained when single-stranded DNA oligonucleotides were used. These data suggest that the dimeric capsid protein functions as a basic building block in the assembly process of flaviviruses.
Collapse
Affiliation(s)
- Stefan Kiermayr
- Institute of Virology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
160
|
Hammarstedt M, Garoff H. Passive and active inclusion of host proteins in human immunodeficiency virus type 1 gag particles during budding at the plasma membrane. J Virol 2004; 78:5686-97. [PMID: 15140966 PMCID: PMC415843 DOI: 10.1128/jvi.78.11.5686-5697.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human immunodeficiency virus type 1 particles form by budding at the surface of most cell types. In this process, a piece of the plasma membrane is modified into an enveloped virus particle. The process is driven by the internal viral protein Pr55(gag). We have studied how host proteins in the membrane are dealt with by Pr55(gag) during budding. Are they included in or excluded from the particle? The question was approached by measuring the relative concentrations of host and viral proteins in the envelope of Pr55(gag) particles and in their donor membranes in the cell. We observed that the bulk of the host proteins, including actin and clathrin, were passively included into the virus-like Gag particles. This result suggests that budding by Pr55(gag) proceeds without significant alteration of the original host protein composition at the cell membrane. Nevertheless, some proteins were concentrated in the particles, and a few were excluded. The concentrated proteins included cyclophilin A and Tsg-101. These were recruited to the plasma membrane by Pr55(gag). The membrane-bound cyclophilin A was concentrated into particles as efficiently as Pr55(gag), whereas Tsg-101 was concentrated more efficiently. The latter finding is consistent with a role for Tsg-101 in Gag particle release.
Collapse
Affiliation(s)
- Maria Hammarstedt
- Department of Biosciences at Novum, Karolinska Institute, S-14157 Huddinge, Sweden
| | | |
Collapse
|
161
|
Kahl CA, Marsh J, Fyffe J, Sanders DA, Cornetta K. Human immunodeficiency virus type 1-derived lentivirus vectors pseudotyped with envelope glycoproteins derived from Ross River virus and Semliki Forest virus. J Virol 2004; 78:1421-30. [PMID: 14722297 PMCID: PMC321387 DOI: 10.1128/jvi.78.3.1421-1430.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ross River virus (RRV) and Semliki Forest virus (SFV) are two alphaviruses that have a high degree of amino acid homology, as well as a very broad host range. We show here that envelope glycoproteins derived from both viruses can pseudotype human immunodeficiency virus type 1 (HIV-1)-derived lentivirus vectors. Both RRV and SFV glycoproteins considerably expand the host range of the lentivirus vector, and vectors can be efficiently concentrated by ultracentrifugation. A systematic analysis comparing the alphaviral glycoproteins to the vesicular stomatitis virus glycoprotein (VSV-G) revealed that lentivirus vectors incorporate RRV glycoproteins with an efficiency comparable to that of VSV-G. Both pseudotypes have comparable physical titers, but infectious titers with the RRV pseudotype are lower than with VSV-G. Incorporation of SFV glycoproteins into lentivirus vector is less efficient, leading to decreased physical and infectious titers. The transduction rates with VSV-G-, RRV-, and SFV-pseudotyped lentivirus vectors into adherent cell lines can be significantly increased by using a combination of Polybrene and plates coated with CH-296 recombinant fibronectin fragments. Together, our data suggest that RRV and SFV glycoproteins might be suitable as alternatives to VSV-G for pseudotyping lentivirus vectors.
Collapse
Affiliation(s)
- Christoph A Kahl
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
162
|
Frolov I. Persistent infection and suppression of host response by alphaviruses. ARCHIVES OF VIROLOGY. SUPPLEMENTUM 2004:139-47. [PMID: 15119769 DOI: 10.1007/978-3-7091-0572-6_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alphaviruses cause chronic noncytopathic infection in mosquito cells and develop a highly cytopathic infection in a wide variety of cells of vertebrate origin. Upon infection, alphaviruses modify cellular processes to meet the virus needs for propagation. Downregulation of translation and transcription caused by viral infection appears to reduce interferon (IFN) and cytokine gene expression and allows more efficient dissemination of infection. Alphaviruses with mutations in nonstructural protein nsP2 can become less cytopathic and capable of persisting in some vertebrate cell lines for a number of passages. nsP2 likely functions as an important regulator of virus-host cell interactions and plays a significant role in suppressing the antiviral response. Mammalian cells having no defects in type I IFN system react to replication of the nsP2 viral mutants by more efficient activation of IFN and IFN-dependent genes and are capable of eliminating established alphavirus infection. Blocking of IFN-alpha/beta signaling makes mouse fibroblasts unable to stop replication of Sindbis virus (SINV) with mutated nsP2 and leads to persistent infection. Downregulation of transcription and translation during alphavirus infection are quite independent events, and both probably are involved in inhibition of the antiviral response.
Collapse
Affiliation(s)
- I Frolov
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1019, USA.
| |
Collapse
|
163
|
Rossmann MG. John Edsall's influence. Biophys Chem 2003; 100:105-8. [PMID: 12646355 DOI: 10.1016/s0301-4622(02)00268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Michael G Rossmann
- Department of Biological Science, Purdue University, West Lafayette, IN 47907-1392, USA.
| |
Collapse
|
164
|
Abstract
Co-infection of a host cell by two unrelated enveloped viruses can lead to the production of pseudotypes: virions containing the genome of one virus but the envelope proteins of both viruses. The selection of components during virus assembly must therefore be flexible enough to allow the incorporation of unrelated viral membrane proteins, yet specific enough to exclude the bulk of host proteins. This apparent contradiction has been termed the pseudotypic paradox. There is mounting evidence that lipid rafts play a role in the assembly pathway of non-icosahedral, enveloped viruses. Viral components are concentrated initially in localized regions of the plasma membrane via their interaction with lipid raft domains. Lateral interactions of viral structural proteins amplify the changes in local lipid composition which in turn enhance the concentration of viral proteins in the rafts. An affinity for lipid rafts may be the common feature of enveloped virus proteins that leads to the formation of pseudotypes.
Collapse
Affiliation(s)
- John A G Briggs
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, UK
| | - Thomas Wilk
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, UK
| | - Stephen D Fuller
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, UK
| |
Collapse
|
165
|
Ferreira D, Hernandez R, Horton M, Brown DT. Morphological variants of Sindbis virus produced by a mutation in the capsid protein. Virology 2003; 307:54-66. [PMID: 12667814 DOI: 10.1016/s0042-6822(02)00034-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sindbis virus is a complex aggregate of RNA, protein and lipid. The virus is organized as two nested T = 4 icosahedral protein shells between which is sandwiched a lipid bilayer. The virus RNA resides within the inner protein shell. The inner protein shell is attached to the outer protein shell through contacts to proteins in the outer shell, which penetrate the lipid bilayer. The data presented in the following manuscript show that mutations in the capsid protein can result in the assembly of the virus structural proteins into icosahedra of different triangulation numbers. The triangulation numbers calculated, for these morphological variants, follow the sequence T = 4, 9, 16, 25 and 36. All fall into the class P = 1 of icosadeltahedra as was predicted by. The data support their hypothesis that families of icosahedra would be developed by altering the distance between the points of insertion of the five-fold axis. This capsid protein defect also results in the incorporation of much of the capsid protein, into large cytoplasmic aggregates of protein and RNA. These observations support models suggesting that the geometry of a pre-formed nucleocapsid organizes the assembly of the virus membrane proteins into a structure of identical configuration and argues against models suggesting that assembly of the membrane glycoproteins directs the assembly of the nucleocapsid.
Collapse
Affiliation(s)
- Davis Ferreira
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | |
Collapse
|
166
|
Sjöberg M, Garoff H. Interactions between the transmembrane segments of the alphavirus E1 and E2 proteins play a role in virus budding and fusion. J Virol 2003; 77:3441-50. [PMID: 12610119 PMCID: PMC149539 DOI: 10.1128/jvi.77.6.3441-3450.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The alphavirus envelope is built by heterodimers of the membrane proteins E1 and E2. The complex is formed as a p62E1 precursor in the endoplasmic reticulum. During transit to the plasma membrane (PM), it is cleaved into mature E1-E2 heterodimers, which are oligomerized into trimeric complexes, so-called spikes that bind both to each other and, at the PM, also to nucleocapsid (NC) structures under the membrane. These interactions drive the budding of new virus particles from the cell surface. The virus enters new cells by a low-pH-induced membrane fusion event where both inter- and intraheterodimer interactions are reorganized to establish a fusion-active membrane protein complex. There are no intact heterodimers left after fusion activation; instead, an E1 homotrimer remains in the cellular (or viral) membrane. We analyzed whether these transitions depend on interactions in the transmembrane (TM) region of the heterodimer. We observed a pattern of conserved glycines in the TM region of E1 and made two mutants where either the glycines only (SFV/E1(4L)) or the whole segment around the glycines (SFV/E1(11L)) was replaced by leucines. We found that both mutations decreased the stability of the heterodimer and increased the formation of the E1 homotrimer at a suboptimal fusion pH, while the fusion activity was decreased. This suggested that TM interactions play a role in virus assembly and entry and that anomalous or uncoordinated protein reorganizations take place in the mutants. In addition, the SFV/E1(11L) mutant was completely deficient in budding, which may reflect an inability to form multivalent NC interactions at the PM.
Collapse
Affiliation(s)
- Mathilda Sjöberg
- Department of Biosciences at Novum, Karolinska Institute, S-141 57 Huddinge, Sweden.
| | | |
Collapse
|
167
|
Hammar L, Markarian S, Haag L, Lankinen H, Salmi A, Cheng RH. Prefusion rearrangements resulting in fusion Peptide exposure in Semliki forest virus. J Biol Chem 2003; 278:7189-98. [PMID: 12493775 DOI: 10.1074/jbc.m206015200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Semliki Forest virus (SFV), like many enveloped viruses, takes advantage of the low pH in the endosome to convert into a fusion-competent configuration and complete infection by fusion with the endosomal membrane. Unlike influenza virus, carrying an N-terminal fusion peptide, SFV represents a less-well understood fusion principle involving an endosequence fusion peptide. To explore the series of events leading to a fusogenic configuration of the SFV, we exposed the virus to successive acidification, mimicking endosomal conditions, and followed structural rearrangements at probed sensor surfaces. Thus revealed, the initial phase involves a transient appearance of a non-linear neutralizing antibody epitope in the fusion protein, E1. Concurrent with the disappearance of this epitope, a set of masked sequences in proteins E1 and E2 became exposed. When pH reached 6.0-5.9 the virion transformed into a configuration of enlarged diameter with the fusion peptide optimally exposed. Simultaneously, a partly hidden sequence close to the receptor binding site in E2 became fully uncovered. At this presumably fusogenic stage, maximally 80 fusion peptide-identifying antibody Fab fragments could be bound per virion, i.e. one ligand per three copies of the fusion protein. The phenomena observed are discussed in terms of alphavirus structure and reported functional domains.
Collapse
Affiliation(s)
- Lena Hammar
- Department of Biosciences, Karolinska Institute, Huddinge S-141 57, Sweden.
| | | | | | | | | | | |
Collapse
|
168
|
Willits D, Zhao X, Olson N, Baker T, Zlotnick A, Johnson J, Douglas T, Young M. Effects of the cowpea chlorotic mottle bromovirus beta-hexamer structure on virion assembly. Virology 2003; 306:280-8. [PMID: 12642101 PMCID: PMC4191912 DOI: 10.1016/s0042-6822(02)00054-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The X-ray crystal structure of Cowpea chlorotic mottle bromovirus (CCMV) revealed a unique tubular structure formed by the interaction of the N-termini from six coat protein subunits at each three-fold axis of the assembled virion. This structure, termed the beta-hexamer, consists of six short beta-strands. The beta-hexamer was postulated to play a critical role in the assembly and stability of the virion by stabilizing hexameric capsomers. Mutational analyses of the beta-hexamer structure, utilizing both in vitro and in vivo assembly assays, demonstrate that this structure is not required for virion formation devoid of nucleic acids in vitro or for RNA-containing virions in vivo. However, the beta-hexamer structure does contribute to virion stability in vitro and modulates disease expression in vivo. These results support a model for CCMV assembly through pentamer intermediates.
Collapse
Affiliation(s)
- D. Willits
- Department of Plant Sciences Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | - X. Zhao
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - N. Olson
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - T.S. Baker
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - A. Zlotnick
- Department of Biochemistry and Molecular Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK 73190, USA
| | - J.E. Johnson
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - T. Douglas
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - M.J. Young
- Department of Plant Sciences Plant Pathology, Montana State University, Bozeman, MT 59717, USA
- Corresponding author. Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717. (M.J. Young)
| |
Collapse
|
169
|
Gilbert RJ, Grimes JM, Stuart DI. Hybrid vigor: hybrid methods in viral structure determination. ADVANCES IN PROTEIN CHEMISTRY 2003; 64:37-91. [PMID: 13677045 DOI: 10.1016/s0065-3233(03)01002-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- Robert J Gilbert
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | | | | |
Collapse
|
170
|
Affiliation(s)
- Richard J Kuhn
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
171
|
Paredes A, Alwell-Warda K, Weaver SC, Chiu W, Watowich SJ. Structure of isolated nucleocapsids from venezuelan equine encephalitis virus and implications for assembly and disassembly of enveloped virus. J Virol 2003; 77:659-64. [PMID: 12477868 PMCID: PMC140571 DOI: 10.1128/jvi.77.1.659-664.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is an important human and equine pathogen in the Americas, with widespread reoccurring epidemics extending from South America to the southern United States. Most troubling, VEEV has been made into a weapon by several countries and is currently restricted by the Centers for Disease Control and Prevention as a potential biological warfare and terrorism agent. To facilitate the development of antiviral compounds, the structure of the nucleocapsid isolated from VEEV has been determined by electron cryomicroscopy and image reconstruction and represents the first three-dimensional structure of a nucleocapsid isolated from a single-stranded enveloped RNA virus. The isolated VEEV nucleocapsid undergoes significant reorganization relative to its structure within VEEV. However, the isolated nucleocapsid clearly exhibits T=4 icosahedral symmetry, and its characteristic nucleocapsid hexons and pentons are preserved. The diameter of the isolated nucleocapsid is approximately 11.5% larger than that of the nucleocapsid within VEEV, with radial expansion being greatest near the hexons. Significantly, this is the first direct structural evidence showing that a simple enveloped virus undergoes large conformational changes during maturation, suggesting that the lipid bilayer and the transmembrane proteins of simple enveloped viruses provide the energy necessary to reorganize the nucleocapsid during maturation.
Collapse
Affiliation(s)
- Angel Paredes
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
172
|
Op De Beeck A, Molenkamp R, Caron M, Ben Younes A, Bredenbeek P, Dubuisson J. Role of the transmembrane domains of prM and E proteins in the formation of yellow fever virus envelope. J Virol 2003; 77:813-20. [PMID: 12502797 PMCID: PMC140810 DOI: 10.1128/jvi.77.2.813-820.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flavivirus envelope proteins have been shown to play a major role in virus assembly. These proteins are anchored into cellular and viral membranes by their C-terminal domain. These domains are composed of two hydrophobic stretches separated by a short hydrophilic segment containing at least one charged residue. We investigated the role of the transmembrane domains of prM and E in the envelope formation of the flavivirus yellow fever virus (YFV). Alanine scanning insertion mutagenesis has been used to examine the role of the transmembrane domains of prM and E in YFV subviral particle formation. Most of the insertions had a dramatic effect on the release of YFV subviral particles. Some of these mutations were introduced into the viral genome. The ability of these mutant viruses to produce infectious particles was severely reduced. The alanine insertions did not affect prM-E heterodimerization. In addition, replacement of the charged residues present in the middle of the transmembrane domains had no effect on subviral particle release. Taken together, these data indicate that the transmembrane domains of prM and E play a crucial role in the biogenesis of YFV envelope. In addition, these data indicate some differences between the transmembrane domains of the hepaciviruses and the flaviviruses.
Collapse
Affiliation(s)
- Anne Op De Beeck
- CNRS-UPR2511. INSERM-IFR17, Institut de Biologie de Lille/Institut Pasteur de Lille, 59021 Lille Cedex, France
| | | | | | | | | | | |
Collapse
|
173
|
Affiliation(s)
- Liang Tong
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
| |
Collapse
|
174
|
Mukhopadhyay S, Chipman PR, Hong EM, Kuhn RJ, Rossmann MG. In vitro-assembled alphavirus core-like particles maintain a structure similar to that of nucleocapsid cores in mature virus. J Virol 2002; 76:11128-32. [PMID: 12368355 PMCID: PMC136650 DOI: 10.1128/jvi.76.21.11128-11132.2002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In vitro-assembled core-like particles produced from alphavirus capsid protein and nucleic acid were studied by cryoelectron microscopy. These particles were found to have a diameter of 420 A with 240 copies of the capsid protein arranged in a T=4 icosahedral surface lattice, similar to the nucleocapsid core in mature virions. However, when the particles were subjected to gentle purification procedures, they were damaged, preventing generation of reliable structural information. Similarly, purified nucleocapsid cores isolated from virus-infected cells or from mature virus particles were also of poor quality. This suggested that in the absence of membrane and glycoproteins, nucleocapsid core particles are fragile, lacking accurate icosahedral symmetry.
Collapse
Affiliation(s)
- Suchetana Mukhopadhyay
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA.
| | | | | | | | | |
Collapse
|
175
|
Zhang W, Mukhopadhyay S, Pletnev SV, Baker TS, Kuhn RJ, Rossmann MG. Placement of the structural proteins in Sindbis virus. J Virol 2002; 76:11645-58. [PMID: 12388725 PMCID: PMC136788 DOI: 10.1128/jvi.76.22.11645-11658.2002] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2002] [Accepted: 08/08/2002] [Indexed: 11/20/2022] Open
Abstract
The structure of the lipid-enveloped Sindbis virus has been determined by fitting atomic resolution crystallographic structures of component proteins into an 11-A resolution cryoelectron microscopy map. The virus has T=4 quasisymmetry elements that are accurately maintained between the external glycoproteins, the transmembrane helical region, and the internal nucleocapsid core. The crystal structure of the E1 glycoprotein was fitted into the cryoelectron microscopy density, in part by using the known carbohydrate positions as restraints. A difference map showed that the E2 glycoprotein was shaped similarly to E1, suggesting a possible common evolutionary origin for these two glycoproteins. The structure shows that the E2 glycoprotein would have to move away from the center of the trimeric spike in order to expose enough viral membrane surface to permit fusion with the cellular membrane during the initial stages of host infection. The well-resolved E1-E2 transmembrane regions form alpha-helical coiled coils that were consistent with T=4 symmetry. The known structure of the capsid protein was fitted into the density corresponding to the nucleocapsid, revising the structure published earlier.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | | | | | | | | | |
Collapse
|
176
|
Strauss EG, Lenches EM, Strauss JH. Molecular genetic evidence that the hydrophobic anchors of glycoproteins E2 and E1 interact during assembly of alphaviruses. J Virol 2002; 76:10188-94. [PMID: 12239293 PMCID: PMC136572 DOI: 10.1128/jvi.76.20.10188-10194.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chimeric alphaviruses in which the 6K and glycoprotein E1 moieties of Sindbis virus are replaced with those of Ross River virus grow very poorly, but upon passage, adapted variants arise that grow >100 times better. We have sequenced the entire domain encoding the E2, 6K, and E1 proteins of a number of these adapted variants and found that most acquired two amino acid changes, which had cumulative effects. In three independent passage series, amino acid 380 of E2, which is in the transmembrane domain, was mutated from the original isoleucine to serine in two instances and to valine once. We have now changed this residue to seven others by site-directed mutagenesis and tested the effects of these mutations on the growth of both the chimera [SIN(RRE1)] and of parental Sindbis. These results indicate that the transmembrane domains of glycoproteins E2 and E1 of alphaviruses interact in a sequence-dependent manner and that this interaction is required for efficient budding and assembly of infectious virions.
Collapse
Affiliation(s)
- Ellen G Strauss
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | |
Collapse
|
177
|
Haag L, Garoff H, Xing L, Hammar L, Kan ST, Cheng R. Acid-induced movements in the glycoprotein shell of an alphavirus turn the spikes into membrane fusion mode. EMBO J 2002; 21:4402-10. [PMID: 12198142 PMCID: PMC126182 DOI: 10.1093/emboj/cdf442] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In the icosahedral (T = 4) Semliki Forest virus, the envelope protomers, i.e. E1-E2 heterodimers, make one-to-one interactions with capsid proteins below the viral lipid bilayer, transverse the membrane and form an external glycoprotein shell with projections. The shell is organized by protomer domains interacting as hexamers and pentamers around shell openings at icosahedral 2- and 5-fold axes, respectively, and the projections by other domains associating as trimers at 3- and quasi 3-fold axes. We show here, using cryo- electron microscopy, that low pH, as occurs in the endosomes during virus uptake, results in the relaxation of protomer interactions around the 2- and the 5-fold axes in the shell, and movement of protomers towards 3- and quasi 3-fold axes in a way that reciprocally relocates their putative E1 and E2 domains. This seemed to be facilitated by a trimerization of transmembrane segments at the same axes. The alterations observed help to explain several key features of the spike-mediated membrane fusion reaction, including shell dissolution, heterodimer dissociation, fusion peptide exposure and E1 homotrimerization.
Collapse
Affiliation(s)
- Lars Haag
- Karolinska Institute, Department of Biosciences, S-141 57 Huddinge and Pharmacia Corporation, S-645 41 Strängnäs, Sweden Corresponding author e-mail:
| | - Henrik Garoff
- Karolinska Institute, Department of Biosciences, S-141 57 Huddinge and Pharmacia Corporation, S-645 41 Strängnäs, Sweden Corresponding author e-mail:
| | - Li Xing
- Karolinska Institute, Department of Biosciences, S-141 57 Huddinge and Pharmacia Corporation, S-645 41 Strängnäs, Sweden Corresponding author e-mail:
| | - Lena Hammar
- Karolinska Institute, Department of Biosciences, S-141 57 Huddinge and Pharmacia Corporation, S-645 41 Strängnäs, Sweden Corresponding author e-mail:
| | - Sin-Tau Kan
- Karolinska Institute, Department of Biosciences, S-141 57 Huddinge and Pharmacia Corporation, S-645 41 Strängnäs, Sweden Corresponding author e-mail:
| | - R.Holland Cheng
- Karolinska Institute, Department of Biosciences, S-141 57 Huddinge and Pharmacia Corporation, S-645 41 Strängnäs, Sweden Corresponding author e-mail:
| |
Collapse
|
178
|
Frank J. Single-particle imaging of macromolecules by cryo-electron microscopy. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2002; 31:303-19. [PMID: 11988472 DOI: 10.1146/annurev.biophys.31.082901.134202] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cryo-electron microscopy (cryo-EM) of biological molecules in single-particle (i.e., unordered, nonaggregated) form is a new approach to the study of molecular assemblies, which are often too large and flexible to be amenable to X-ray crystallography. New insights into biological function on the molecular level are expected from cryo-EM applied to the study of such complexes "trapped" at different stages of their conformational changes and dynamical interactions. Important molecular machines involved in the fundamental processes of transcription, mRNA splicing, and translation are examples for successful applications of the new technique, combined with structural knowledge gained by conventional techniques of structure determination, such as X-ray crystallography and NMR.
Collapse
Affiliation(s)
- Joachim Frank
- Howard Hughes Medical Institute, Health Research Inc at the Wadsworth Center, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, NY 12201-0509, USA.
| |
Collapse
|
179
|
Zhang W, Fisher BR, Olson NH, Strauss JH, Kuhn RJ, Baker TS. Aura virus structure suggests that the T=4 organization is a fundamental property of viral structural proteins. J Virol 2002; 76:7239-46. [PMID: 12072523 PMCID: PMC136343 DOI: 10.1128/jvi.76.14.7239-7246.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aura and Sindbis viruses are closely related alphaviruses. Unlike other alphaviruses, Aura virus efficiently encapsidates both genomic RNA (11.8 kb) and subgenomic RNA (4.2 kb) to form virus particles. Previous studies on negatively stained Aura virus particles predicted that there were two major size classes with potential T=3 and T=4 capsid structures. We have used cryoelectron microscopy and three-dimensional image reconstruction techniques to examine the native morphology of different classes of Aura virus particles produced in BHK cells. Purified particles separated into two components in a sucrose gradient. Reconstructions of particles in the top and bottom components were computed to resolutions of 17 and 21 A, respectively, and compared with reconstructions of Sindbis virus and Ross River virus particles. Aura virus particles of both top and bottom components have similar, T=4 structures that resemble those of other alphaviruses. The morphology of Aura virus glycoprotein spikes closely resembles that of Sindbis virus spikes and is detectably different from that of Ross River virus spikes. Thus, some aspects of the surface structure of members of the Sindbis virus lineage have been conserved, but other aspects have diverged from the Semliki Forest/Ross River virus lineage.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | |
Collapse
|
180
|
Abstract
A novel contour-based matching criterion is presented for the quantitative docking of high-resolution structures of components into low-resolution maps of macromolecular complexes. The proposed Laplacian filter is combined with a six-dimensional search using fast Fourier transforms to rapidly scan the rigid-body degrees of freedom of a probe molecule relative to a fixed target density map. A comparison of the docking performance with the standard cross-correlation criterion demonstrates that contour matching with the Laplacian filter significantly extends the viable resolution range of correlation-based fitting to resolutions as low as 30 A. The gain in docking precision at medium to low resolution (15-30 A) is critical for image reconstructions from electron microscopy (EM). The new algorithm enables for the first time the reliable docking of smaller molecular components into EM densities of large biomolecular assemblies at such low resolutions. As an example of the practical effectiveness of contour-based fitting, a new pseudo-atomic model of a microtubule was constructed from a 20 A resolution EM map and from atomic structures of alpha and beta tubulin subunits.
Collapse
Affiliation(s)
- Pablo Chacón
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
181
|
Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, Lenches E, Jones CT, Mukhopadhyay S, Chipman PR, Strauss EG, Baker TS, Strauss JH. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 2002; 108:717-25. [PMID: 11893341 PMCID: PMC4152842 DOI: 10.1016/s0092-8674(02)00660-8] [Citation(s) in RCA: 1154] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The first structure of a flavivirus has been determined by using a combination of cryoelectron microscopy and fitting of the known structure of glycoprotein E into the electron density map. The virus core, within a lipid bilayer, has a less-ordered structure than the external, icosahedral scaffold of 90 glycoprotein E dimers. The three E monomers per icosahedral asymmetric unit do not have quasiequivalent symmetric environments. Difference maps indicate the location of the small membrane protein M relative to the overlaying scaffold of E dimers. The structure suggests that flaviviruses, and by analogy also alphaviruses, employ a fusion mechanism in which the distal beta barrels of domain II of the glycoprotein E are inserted into the cellular membrane.
Collapse
Affiliation(s)
- Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Tellinghuisen TL, Perera R, Kuhn RJ. Genetic and biochemical studies on the assembly of an enveloped virus. GENETIC ENGINEERING 2002; 23:83-112. [PMID: 11570108 DOI: 10.1007/0-306-47572-3_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- T L Tellinghuisen
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
183
|
Rossmann MG, Bernal R, Pletnev SV. Combining electron microscopic with x-ray crystallographic structures. J Struct Biol 2001; 136:190-200. [PMID: 12051899 DOI: 10.1006/jsbi.2002.4435] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Analgorithm has been developed for placing three-dimensional atomic structures into appropriately scaled cryoelectron microscopy maps. The first stage in this process is to conduct a three-dimensional angular search in which the center of gravity of an X-ray crystallographically determined structure is placed on a selected position in the cryoelectron microscopy map. The quality of the fit is measured by the sum of the density at each atomic position. The second stage is to refine the three angles and three translational parameters for the best (usually 25 to 100) fits. Useful criteria for this refinement include the sum of densities at atomic sites, the lack of atoms in negative or low density, the absence of atomic clashes between symmetry-related positions of the atomic structure, and the distances between identifiable features in the map and their positions on the fitted atomic structure. These refinements generally lead to a convergence of the originally chosen, top scoring fits to just a few (about 3 to 8) acceptable possibilities. Usually, the best remaining fit is clearly superior to any of the others.
Collapse
Affiliation(s)
- M G Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA.
| | | | | |
Collapse
|
184
|
Paredes A, Alwell-Warda K, Weaver SC, Chiu W, Watowich SJ. Venezuelan equine encephalomyelitis virus structure and its divergence from old world alphaviruses. J Virol 2001; 75:9532-7. [PMID: 11533216 PMCID: PMC114521 DOI: 10.1128/jvi.75.19.9532-9537.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although alphaviruses have been extensively studied as model systems for the structural organization of enveloped viruses, no structures exist for the phylogenetically distinct eastern equine encephalomyelitis (EEE)-Venezuelan equine encephalomyelitis (VEE) lineage of New World alphaviruses. Here we report the 25-A structure of VEE virus, obtained from electron cryomicroscopy and image reconstruction. The envelope spike glycoproteins of VEE virus have a T=4 icosahedral arrangement, similar to that observed in Old World Sindbis, Semliki Forest, and Ross River alphaviruses. However, VEE virus has pronounced differences in its nucleocapsid structure relative to nucleocapsid structures repeatedly observed in Old World alphaviruses.
Collapse
Affiliation(s)
- A Paredes
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
185
|
Martín CS, Burnett RM, de Haas F, Heinkel R, Rutten T, Fuller SD, Butcher SJ, Bamford DH. Combined EM/X-ray imaging yields a quasi-atomic model of the adenovirus-related bacteriophage PRD1 and shows key capsid and membrane interactions. Structure 2001; 9:917-30. [PMID: 11591347 DOI: 10.1016/s0969-2126(01)00642-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The dsDNA bacteriophage PRD1 has a membrane inside its icosahedral capsid. While its large size (66 MDa) hinders the study of the complete virion at atomic resolution, a 1.65-A crystallographic structure of its major coat protein, P3, is available. Cryo-electron microscopy (cryo-EM) and three-dimensional reconstruction have shown the capsid at 20-28 A resolution. Striking architectural similarities between PRD1 and the mammalian adenovirus indicate a common ancestor. RESULTS The P3 atomic structure has been fitted into improved cryo-EM reconstructions for three types of PRD1 particles: the wild-type virion, a packaging mutant without DNA, and a P3-shell lacking the membrane and the vertices. Establishing the absolute EM scale was crucial for an accurate match. The resulting "quasi-atomic" models of the capsid define the residues involved in the major P3 interactions, within the quasi-equivalent interfaces and with the membrane, and show how these are altered upon DNA packaging. CONCLUSIONS The new cryo-EM reconstructions reveal the structure of the PRD1 vertex and the concentric packing of DNA. The capsid is essentially unchanged upon DNA packaging, with alterations limited to those P3 residues involved in membrane contacts. These are restricted to a few of the N termini along the icosahedral edges in the empty particle; DNA packaging leads to a 4-fold increase in the number of contacts, including almost all copies of the N terminus and the loop between the two beta barrels. Analysis of the P3 residues in each quasi-equivalent interface suggests two sites for minor proteins in the capsid edges, analogous to those in adenovirus.
Collapse
Affiliation(s)
- C S Martín
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Harley D, Sleigh A, Ritchie S. Ross River virus transmission, infection, and disease: a cross-disciplinary review. Clin Microbiol Rev 2001; 14:909-32, table of contents. [PMID: 11585790 PMCID: PMC89008 DOI: 10.1128/cmr.14.4.909-932.2001] [Citation(s) in RCA: 288] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ross River virus (RRV) is a fascinating, important arbovirus that is endemic and enzootic in Australia and Papua New Guinea and was epidemic in the South Pacific in 1979 and 1980. Infection with RRV may cause disease in humans, typically presenting as peripheral polyarthralgia or arthritis, sometimes with fever and rash. RRV disease notifications in Australia average 5,000 per year. The first well-described outbreak occurred in 1928. During World War II there were more outbreaks, and the name epidemic polyarthritis was applied. During a 1956 outbreak, epidemic polyarthritis was linked serologically to a group A arbovirus (Alphavirus). The virus was subsequently isolated from Aedes vigilax mosquitoes in 1963 and then from epidemic polyarthritis patients. We review the literature on the evolutionary biology of RRV, immune response to infection, pathogenesis, serologic diagnosis, disease manifestations, the extraordinary variety of vertebrate hosts, mosquito vectors, and transmission cycles, antibody prevalence, epidemiology of asymptomatic and symptomatic human infection, infection risks, and public health impact. RRV arthritis is due to joint infection, and treatment is currently based on empirical anti-inflammatory regimens. Further research on pathogenesis may improve understanding of the natural history of this disease and lead to new treatment strategies. The burden of morbidity is considerable, and the virus could spread to other countries. To justify and design preventive programs, we need accurate data on economic costs and better understanding of transmission and behavioral and environmental risks.
Collapse
Affiliation(s)
- D Harley
- Australian Centre for International and Tropical Health and Nutrition, Medical School, University of Queensland, Brisbane 4006, Queensland, Australia
| | | | | |
Collapse
|
187
|
Lu YE, Eng CH, Shome SG, Kielian M. In vivo generation and characterization of a soluble form of the Semliki forest virus fusion protein. J Virol 2001; 75:8329-39. [PMID: 11483778 PMCID: PMC115077 DOI: 10.1128/jvi.75.17.8329-8339.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During infection of host cells, a number of enveloped animal viruses are known to produce soluble forms of viral membrane glycoproteins lacking the transmembrane domain. The roles of such soluble glycoproteins in viral life cycles are incompletely understood, but in several cases they are believed to modulate host immune response and viral pathogenesis. Semliki Forest virus (SFV) is an enveloped alphavirus that infects cells through low-pH-dependent fusion and buds from the plasma membrane. Fusion is mediated by the E1 subunit of the SFV spike protein. Previous studies described the in vivo generation of E1s, a truncated soluble form of E1, under conditions in which budding is inhibited in mammalian host cells. We have here examined the properties of E1s generation and the biological activity of E1s. E1s cleavage required spike protein transport out of the endoplasmic reticulum and was independent of virus infection. Cell surface E1 efficiently acted as a precursor for E1s. E1s generation was strongly pH dependent in BHK cells, with optimal cleavage at a pH of < or =7.0, conditions that inhibited the budding of SFV but not the budding of the rhabdovirus vesicular stomatitis virus. The pH dependence of E1s production and SFV budding was unaffected by the stability of the spike protein dimer but was a function of the host cell. Similar to the intact virus and in vitro-generated E1 ectodomain, treatment of E1s at low pH in the presence of target membranes triggered specific acid-dependent conformational changes. Thus, under a variety of conditions, SFV-infected cells can produce a soluble form of E1 that is biologically active.
Collapse
Affiliation(s)
- Y E Lu
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
188
|
Abstract
Recent structural analyses of the Semliki Forest virus envelope suggest that the spike subunit E1, which is responsible for virus membrane fusion, also maintains the organization of the spike protein shell that encompasses the enveloped virus. This gives E1 a unique opportunity to control membrane stability during the membrane fusion reaction. Here, we present a model for this control mechanism.
Collapse
Affiliation(s)
- H Garoff
- Karolinska Institute, Dept of Biosciences at Novum, S-141 57 Huddinge, Sweden.
| | | |
Collapse
|
189
|
Zhou ZH, Liao W, Cheng RH, Lawson JE, McCarthy DB, Reed LJ, Stoops JK. Direct evidence for the size and conformational variability of the pyruvate dehydrogenase complex revealed by three-dimensional electron microscopy. The "breathing" core and its functional relationship to protein dynamics. J Biol Chem 2001; 276:21704-13. [PMID: 11285267 DOI: 10.1074/jbc.m101765200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structural studies by three-dimensional electron microscopy of the Saccharomyces cerevisiae truncated dihydrolipoamide acetyltransferase (tE(2)) component of the pyruvate dehydrogenase complex reveal an extraordinary example of protein dynamics. The tE(2) forms a 60-subunit core with the morphology of a pentagonal dodecahedron and consists of 20 cone-shaped trimers interconnected by 30 bridges. Frozen-hydrated and stained molecules of tE(2) in the same field vary in size approximately 20%. Analyses of the data show that the size distribution is bell-shaped, and there is an approximately 40-A difference in the diameter of the smallest and largest structures that corresponds to approximately 14 A of variation in the length of the bridge between interconnected trimers. Companion studies of mature E(2) show that the complex of the intact subunit exhibits a similar size variation. The x-ray structure of Bacillus stearothermophilus tE(2) shows that there is an approximately 10-A gap between adjacent trimers and that the trimers are interconnected by the potentially flexible C-terminal ends of two adjacent subunits. We propose that this springlike feature is involved in a thermally driven expansion and contraction of the core and, since it appears to be a common feature in the phylogeny of pyruvate dehydrogenase complexes, protein dynamics is an integral component of the function of these multienzyme complexes.
Collapse
Affiliation(s)
- Z H Zhou
- Department of Pathology and Laboratory Medicine, University of Texas, Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
190
|
Skoging-Nyberg U, Liljeström P. M-X-I motif of semliki forest virus capsid protein affects nucleocapsid assembly. J Virol 2001; 75:4625-32. [PMID: 11312332 PMCID: PMC114215 DOI: 10.1128/jvi.75.10.4625-4632.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alphavirus budding is driven by interactions between spike and nucleocapsid proteins at the plasma membrane. The binding motif, Y-X-L, on the spike protein E2 and the corresponding hydrophobic cavity on the capsid protein were described earlier. The spike-binding cavity has also been suggested to bind an internal hydrophobic motif, M113-X-I115, of the capsid protein. In this study we found that replacement of amino acids M113 and I115 with alanines, as single or double mutations, abolished formation of intracellular nucleocapsids. The mutants could still bud efficiently, but the NCs in the released virions were not stable after removal of the membrane and spike protein layer. In addition to wild-type spherical particles, elongated multicored particles were found at the plasma membrane and released from the host cell. We conclude that the internal capsid motif has a biological function in the viral life cycle, especially in assembly of nucleocapsids. We also provide further evidence that alphaviruses may assemble and bud from the plasma membrane in the absence of preformed nucleocapsids.
Collapse
Affiliation(s)
- U Skoging-Nyberg
- Microbiology and Tumorbiology Center, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
191
|
Lescar J, Roussel A, Wien MW, Navaza J, Fuller SD, Wengler G, Wengler G, Rey FA. The Fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 2001; 105:137-48. [PMID: 11301009 DOI: 10.1016/s0092-8674(01)00303-8] [Citation(s) in RCA: 402] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Semliki Forest virus (SFV) has been extensively studied as a model for analyzing entry of enveloped viruses into target cells. Here we describe the trace of the polypeptide chain of the SFV fusion glycoprotein, E1, derived from an electron density map at 3.5 A resolution and describe its interactions at the surface of the virus. E1 is unexpectedly similar to the flavivirus envelope protein, with three structural domains disposed in the same primary sequence arrangement. These results introduce a new class of membrane fusion proteins which display lateral interactions to induce the necessary curvature and direct budding of closed particles. The resulting surface protein lattice is primed to cause membrane fusion when exposed to the acidic environment of the endosome.
Collapse
Affiliation(s)
- J Lescar
- Laboratoire de Génétique des Virus, CNRS-UPR 9053, 1, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Pletnev SV, Zhang W, Mukhopadhyay S, Fisher BR, Hernandez R, Brown DT, Baker TS, Rossmann MG, Kuhn RJ. Locations of carbohydrate sites on alphavirus glycoproteins show that E1 forms an icosahedral scaffold. Cell 2001; 105:127-136. [PMID: 11301008 PMCID: PMC4140091 DOI: 10.1016/s0092-8674(01)00302-6] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There are 80 spikes on the surface of Sindbis virus arranged as an icosahedral surface lattice. Each spike consists of three copies of each of the glycoproteins E1 and E2. There are two glycosylation sites on E1 and two on E2. These four sites have been located by removal of the glycosylation recognition motifs using site-specific mutagenesis, followed by cryoelectron microscopy. The positions of these sites have demonstrated that E2 forms the protruding spikes and that E1 must be long and narrow, lying flat on the viral surface, forming an icosahedral scaffold analogous to the arrangement of the E glycoprotein in flaviviruses. This arrangement of E1 leads to both dimeric and trimeric intermolecular contacts, consistent with the observed structural changes that occur on fusion with host cell membranes, suggesting a similar fusion mechanism for alpha- and flaviviruses.
Collapse
Affiliation(s)
- Sergei V. Pletnev
- Department of Biological Sciences Purdue University West Lafayette, Indiana 47907
| | - Wei Zhang
- Department of Biological Sciences Purdue University West Lafayette, Indiana 47907
| | | | - Bonnie R. Fisher
- Department of Biological Sciences Purdue University West Lafayette, Indiana 47907
| | - Raquel Hernandez
- Department of Molecular and Structural Biochemistry North Carolina State University Raleigh, North Carolina 27695
| | - Dennis T. Brown
- Department of Molecular and Structural Biochemistry North Carolina State University Raleigh, North Carolina 27695
| | - Timothy S. Baker
- Department of Biological Sciences Purdue University West Lafayette, Indiana 47907
| | - Michael G. Rossmann
- Department of Biological Sciences Purdue University West Lafayette, Indiana 47907
- To whom correspondence should be addressed ()
| | - Richard J. Kuhn
- Department of Biological Sciences Purdue University West Lafayette, Indiana 47907
| |
Collapse
|
193
|
Gaspar LP, Terezan AF, Pinheiro AS, Foguel D, Rebello MA, Silva JL. The metastable state of nucleocapsids of enveloped viruses as probed by high hydrostatic pressure. J Biol Chem 2001; 276:7415-21. [PMID: 11092899 DOI: 10.1074/jbc.m010037200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enveloped viruses fuse their membranes with cellular membranes to transfer their genomes into cells at the beginning of infection. What is not clear, however, is the role of the envelope (lipid bilayer and glycoproteins) in the stability of the viral particle. To address this question, we compared the stability between enveloped and nucleocapsid particles of the alphavirus Mayaro using hydrostatic pressure and urea. The effects were monitored by intrinsic fluorescence, light scattering, and binding of fluorescent dyes, including bis(8-anilinonaphthalene-1-sulfonate) and ethidium bromide. Pressure caused a drastic dissociation of the nucleocapsids as determined by tryptophan fluorescence, light scattering, and gel filtration chromatography. Pressure-induced dissociation of the nucleocapsids was poorly reversible. In contrast, when the envelope was present, pressure effects were much less marked and were highly reversible. Binding of ethidium bromide occurred when nucleocapsids were dissociated under pressure, indicating exposure of the nucleic acid, whereas enveloped particles underwent no changes. Overall, our results demonstrate that removal of the envelope with the glycoproteins leads the particle to a metastable state and, during infection, may serve as the trigger for disassembly and delivery of the genome. The envelope acts as a "Trojan horse," gaining entry into the host cell to allow release of a metastable nucleocapsid prone to disassembly.
Collapse
Affiliation(s)
- L P Gaspar
- Programa de Biologia Estrutural, Departamento de Bioquimica Médica, Instituto de Ciências Biomédicas, Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
194
|
Sharkey CM, North CL, Kuhn RJ, Sanders DA. Ross River virus glycoprotein-pseudotyped retroviruses and stable cell lines for their production. J Virol 2001; 75:2653-9. [PMID: 11222688 PMCID: PMC115889 DOI: 10.1128/jvi.75.6.2653-2659.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2000] [Accepted: 12/11/2000] [Indexed: 01/13/2023] Open
Abstract
Pseudotyped retroviruses have important applications as vectors for gene transfer and gene therapy and as tools for the study of viral glycoprotein function. Recombinant Moloney murine leukemia virus (Mo-MuLV)-based retrovirus particles efficiently incorporate the glycoproteins of the alphavirus Ross River virus (RRV) and utilize them for entry into cells. Stable cell lines that produce the RRV glycoprotein-pseudotyped retroviruses for prolonged periods of time have been constructed. The pseudotyped viruses have a broadened host range, can be concentrated to high titer, and mediate stable transduction of genes into cells. The RRV glycoprotein-pseudotyped retroviruses and the cells that produce them have been employed to demonstrate that RRV glycoprotein-mediated viral entry occurs through endocytosis and that membrane fusion requires acidic pH. Alphavirus glycoprotein-pseudotyped retroviruses have significant advantages as reagents for the study of the biochemistry and prevention of alphavirus entry and as preferred vectors for stable gene transfer and gene therapy protocols.
Collapse
Affiliation(s)
- C M Sharkey
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | | | | | |
Collapse
|
195
|
Tellinghuisen TL, Perera R, Kuhn RJ. In vitro assembly of Sindbis virus core-like particles from cross-linked dimers of truncated and mutant capsid proteins. J Virol 2001; 75:2810-7. [PMID: 11222705 PMCID: PMC115906 DOI: 10.1128/jvi.75.6.2810-2817.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A nucleic acid-bound capsid protein dimer was previously identified using a Sindbis virus in vitro nucleocapsid assembly system and cross-linking reagents. Cross-link mapping, in combination with a model of the nucleocapsid core, suggested that this dimer contained one monomer from each of two adjacent capsomeres. This intercapsomere dimer is believed to be the initial intermediate in the nucleocapsid core assembly mechanism. This paper presents the purification of cross-linked dimers of a truncated capsid protein and the partial purification of cross-linked dimers of a full-length assembly-defective mutant. The assembly of core-like particles from these cross-linked capsid protein dimers is demonstrated. Core-like particles generated from cross-linked full-length mutant CP(19-264)L52D were examined by electron microscopy and appeared to have a morphology similar to that of wild-type in vitro-assembled core-like particles, although a slight size difference was often visible. Truncated cross-linked CP(81-264) dimers generated core-like particles as well. These core-like particles could subsequently be disassembled when reversible cross-linking reagents were used to form the dimers. The ability of the covalent intercapsomere cross-link to rescue capsid proteins with assembly defects or truncations in the amino-terminal region of the capsid protein supports the previous model of assembly and suggests a possible role for the amino-terminal region of the protein.
Collapse
Affiliation(s)
- T L Tellinghuisen
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
196
|
Ferlenghi I, Clarke M, Ruttan T, Allison SL, Schalich J, Heinz FX, Harrison SC, Rey FA, Fuller SD. Molecular organization of a recombinant subviral particle from tick-borne encephalitis virus. Mol Cell 2001; 7:593-602. [PMID: 11463384 DOI: 10.1016/s1097-2765(01)00206-4] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The tick-borne encephalitis (TBE) flavivirus contains two transmembrane proteins, E and M. Coexpression of E and the M precursor (prM) leads to secretion of recombinant subviral particles (RSPs). In the most common form of these RSPs, analyzed at a 19 A resolution by cryo-electron microscopy (cryo-EM), 60 copies of E pack as dimers in a T = 1 icosahedral surface lattice (outer diameter, 315 A). Fitting the high-resolution structure of a soluble E fragment into the RSP density defines interaction sites between E dimers, positions M relative to E, and allows assignment of transmembrane regions of E and M. Lateral interactions among the glycoproteins stabilize this capsidless particle; similar interactions probably contribute to assembly of virions. The structure suggests a picture for trimer association under fusion-inducing conditions.
Collapse
Affiliation(s)
- I Ferlenghi
- The Structural Biology Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Escors D, Ortego J, Laude H, Enjuanes L. The membrane M protein carboxy terminus binds to transmissible gastroenteritis coronavirus core and contributes to core stability. J Virol 2001; 75:1312-24. [PMID: 11152504 PMCID: PMC114037 DOI: 10.1128/jvi.75.3.1312-1324.2001] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The architecture of transmissible gastroenteritis coronavirus includes three different structural levels, the envelope, an internal core, and the nucleocapsid that is released when the core is disrupted. Starting from purified virions, core structures have been reproducibly isolated as independent entities. The cores were stabilized at basic pH and by the presence of divalent cations, with Mg(2+) ions more effectively contributing to core stability. Core structures showed high resistance to different concentrations of detergents, reducing agents, and urea and low concentrations of monovalent ions (<200 mM). Cores were composed of the nucleoprotein, RNA, and the C domain of the membrane (M) protein. At high salt concentrations (200 to 300 mM), the M protein was no longer associated with the nucleocapsid, which resulted in destruction of the core structure. A specific ionic interaction between the M protein carboxy terminus and the nucleocapsid was demonstrated using three complementary approaches: (i) a binding assay performed between a collection of M protein amino acid substitution or deletion mutants and purified nucleocapsids that led to the identification of a 16-amino-acid (aa) domain (aa 237 to 252) as being responsible for binding the M protein to the nucleocapsid; (ii) the specific inhibition of this binding by monoclonal antibodies (MAbs) binding to a carboxy-terminal M protein domain close to the indicated peptide but not by MAbs specific for the M protein amino terminus; and (iii) a 26-residue peptide, including the predicted sequence (aa 237 to 252), which specifically inhibited the binding. Direct binding of the M protein to the nucleoprotein was predicted, since degradation of the exposed RNA by RNase treatment did not affect the binding. It is proposed that the M protein is embedded within the virus membrane and that the C region, exposed to the interior face of the virion in a population of these molecules, interacts with the nucleocapsid to which it is anchored, forming the core. Only the C region of the M protein is part of the core.
Collapse
Affiliation(s)
- D Escors
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
198
|
Perera R, Owen KE, Tellinghuisen TL, Gorbalenya AE, Kuhn RJ. Alphavirus nucleocapsid protein contains a putative coiled coil alpha-helix important for core assembly. J Virol 2001; 75:1-10. [PMID: 11119567 PMCID: PMC113891 DOI: 10.1128/jvi.75.1.1-10.2001] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The alphavirus nucleocapsid core is formed through the energetic contributions of multiple noncovalent interactions mediated by the capsid protein. This protein consists of a poorly conserved N-terminal region of unknown function and a C-terminal conserved autoprotease domain with a major role in virion formation. In this study, an 18-amino-acid conserved region, predicted to fold into an alpha-helix (helix I) and embedded in a low-complexity sequence enriched with basic and Pro residues, has been identified in the N-terminal region of the alphavirus capsid proteins. In Sindbis virus, helix I spans residues 38 to 55 and contains three conserved leucine residues, L38, L45, and L52, conforming to the heptad amino acid organization evident in leucine zipper proteins. Helix I consists of an N-terminally truncated heptad and two complete heptad repeats with beta-branched residues and conserved leucine residues occupying the a and d positions of the helix, respectively. Complete or partial deletion of helix I, or single-site substitutions at the conserved leucine residues (L45 and L52), caused a significant decrease in virus replication. The mutant viruses were more sensitive to elevated temperature than wild-type virus. These mutant viruses also failed to accumulate cores in the cytoplasm of infected cells, although they did not have defects in protein translation or processing. Analysis of these mutants using an in vitro assembly system indicated that the majority were defective in core particle assembly. Furthermore, mutant proteins showed a trans-dominant negative phenotype in in vitro assembly reactions involving mutant and wild-type proteins. We propose that helix I plays a central role in the assembly of nucleocapsid cores through coiled coil interactions. These interactions may stabilize subviral intermediates formed through the interactions of the C-terminal domain of the capsid protein and the genomic RNA and contribute to the stability of the virion.
Collapse
Affiliation(s)
- R Perera
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
199
|
Thuman-Commike PA, Chiu W. Reconstruction principles of icosahedral virus structure determination using electron cryomicroscopy. Micron 2000; 31:687-711. [PMID: 10838029 DOI: 10.1016/s0968-4328(99)00077-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Electron cryomicroscopy is a useful tool for studying the three-dimensional structure of icosahedral viruses. This review is intended to provide beginners with an understanding of icosahedral virus structure determination focusing on the data processing aspects. We begin with an overview of the entire structure determination process and a brief summary of the sample preparation and imaging aspects. Next, we provide detailed descriptions of each data processing step leading to three-dimensional reconstruction, including application of image corrections, resolution assessment, and structure visualization. To aid in understanding this reconstruction process we provide a variety of illustrative examples. Last, we summarize future prospects for icosahedral virus structural studies.
Collapse
Affiliation(s)
- P A Thuman-Commike
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
200
|
Forsell K, Xing L, Kozlovska T, Cheng RH, Garoff H. Membrane proteins organize a symmetrical virus. EMBO J 2000; 19:5081-91. [PMID: 11013211 PMCID: PMC302099 DOI: 10.1093/emboj/19.19.5081] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2000] [Revised: 08/03/2000] [Accepted: 08/10/2000] [Indexed: 01/13/2023] Open
Abstract
Alphaviruses are enveloped icosahedral viruses that mature by budding at the plasma membrane. According to a prevailing model maturation is driven by binding of membrane protein spikes to a preformed nucleocapsid (NC). The T = 4 geometry of the membrane is thought to be imposed by the NC through one-to-one interactions between spike protomers and capsid proteins (CPs). This model is challenged here by a Semliki Forest virus capsid gene mutant. Its CPs cannot assemble into NCs, or its intermediate structures, due to defective CP-CP interactions. Nevertheless, it can use its horizontal spike-spike interactions on membrane surface and vertical spike-CP interactions to make a particle with correct geometry and protein stoichiometry. Thus, our results highlight the direct role of membrane proteins in organizing the icosahedral conformation of alphaviruses.
Collapse
Affiliation(s)
- K Forsell
- Karolinska Institute, Department of Biosciences at Novum, S-141 57 Huddinge, Sweden
| | | | | | | | | |
Collapse
|